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Abstract. Hardware-based Root of Trust (HRT) is considered the gold standard for
bootstrapping trust in secure computing. This paper analyzes HRT implementations
across state-of-the-art TEEs and differentiates HRT implementation across two
dimensions: 1) Security Properties & Threats and 2) Hardware Capabilities. Later,
this work analyzes and compares 1) Intel SGX, 2) ARM TrustZone, 3) NXP Trust
Architecture, 4) AMD SEV, 5) Microsoft Pluton, and 6) Apple T2 HRTS in terms of
threats, security properties, and capabilities.
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1 Introduction

Trustworthy computing is recognized as an open challenge in cybersecurity. Trusted
Execution Environments (TEEs) are secure execution environments where applications
can be executed securely irrespective of the rest of the system. However, TEEs are
complex designs consisting of software and hardware component(s) and provide an enriched
execution environment. A core technical constraint of TEE is to guarantee trust, i.e., to
make computing behave as per user expectations. Significant support has emerged for
hardware-based root-of-trust (HRT) implementation to anchor trust in secure computing.
HRT is perceived to be more secure compared to the software-only counterpart. Individual
TEEs are designed to cater a distinct threat models and consequently have differing
implementations of HRTs and software component(s). For example, Apple T2 [6] guarantees
trust in mobile and laptops, whereas Microsoft Pluton[5] protects gaming consoles against
physical attacks. The appropriate capabilities of an HRT are determined by the applicable
attack scenarios and corresponding mitigation strategies. A detailed study on understanding
of HRT implementation is missing in literature.

A hardware root-of-trust may be implemented in a variety of ways, even for the the
same attack model. For example, a system may implement the hardware root-of-trust
as a separate hardware module or fuse it inside the processor chip itself. The core
metrics for analyzing these secure systems vary from one design to the other, hence HRT
implementations. One design may consider a large set of attacks and introduce high
hardware intrusiveness compare to software components. In comparison, a different design
may consider a high software intrusiveness against a larger subset of attacks and have
much lower hardware complexity.

This paper analyze hardware-based root-of-trust implementation across state-of-the-art
trusted execution environments and compares distinct HRT implementations regarding
security guarantees, and threat-prevention assurances. We illustrate the usefulness of
this work by analyzing and comparing HRT implementations in 1) Intel SGX, 2) ARM
TrustZone, 3) NXP Trust Architecture, 4) AMD SEV, 5) Microsoft Pluton, and 6) Apple
T2.
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Figure 1: The design process of HRTs (1) identification of threats, (2) Security properties
that formally guarantee protection against threats, and (3) hardware capabilities that
implement security properties.

We begin by defining HRTs based on the understanding of industry and security groups.
The next section describes a detailed background about threats to secure systems &
formal security properties that guarantee protection against them, then the capabilities
that implement security guarantees to protect against those threats. Later, we present a
case-study analysis and comparison of six state-of-the-art HRT implementations.

2 Hardware Root-of-Trust

The terminology Hardware Root-of-Trust (HRT) is often used as the foundational block
by vendors of different security schemes, protocols, products, or services within secure
computing, but every designer refers to a different object using this terminology. For
example, Intel [3] defines HRT as cryptographic keys protected by hardware and inseparable
ID from hardware. Dell [2] defines it as an immutable hardware chip that is used to attest
the integrity of the BIOS code. Once BIOS is verified, this trusted BIOS is used to start
chain-of-trust in the Dell systems. NXP [4] refers to it’s SoC solution QorIQ Layerscape
Processing Platforms Trust Architecture 3.0 as a HRT. In contrast to industry, NIST [9]
refers to Trusted Computing Group (TCG) defined Trusted Platform Modules (TPM) as
HRT in one of their Special Publications 800-164. TCG [10] defines TPM as a computer
chip (microcontroller) that can securely store artifacts used to authenticate the system.
Considering these various definitions of HRTs, we unify a HRT definition in this paper as:

Definition 1. Hardware-based Root-of-Trust (HRT) is an immutable hardware component
or a set of hardware components (e.g., an encryption engine and/or a dedicated secure
processor) considered unconditionally trusted against a well-defined threat model.

HRT is sometimes confused with Trusted Execution Environment (TEE). TEE is
a comprehensive, secure execution environment that consists of software and hardware
component(s) and protects against a well-defined threat model. In contrast, HRT is a
hardware component(s) that used in secure computing to anchor trust against a specific
threat model. An HRT is often used within TEE to enforce authentication, encryption,
and isolation.

3 Background

To understand and compare distinct HRTS, a breakdown of HRT across two dimensions: 1)
Security Properties & Threats, and 2) Capabilities. This breakdown is used in the second
part of framework to compare distinct HRTS in terms of security guarantees against threat
vectors, performance implications of different capabilities in HRTSs, and implementation
cost of these capabilities in HRTs. Figure 1 presents the abstract view of the framework.
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3.1 Framework Components

The framework has two components. The first comprises the threats to HRTs as well as
the corresponding security properties they target. The second consists of the capabilities
that provide defenses against those threats and thus assure those same security properties.
In this section we outline the key security properties, threats, and capabilities.

3.1.1 Threats & Security Properties

HRTs are used to bootstrap trust in secure computing and protect against various threats
to critical assets. In this section, the framework explains the different types of available
threats to HRT. After explaining threats to HRTS, this section discusses security properties
that guarantee protection against these threats. This framework broadly categorizes
threats into physical threats and software threats. The framework discusses traditional
physical threats, software threats, and side-channel threats within these categories. The
majority of existing HRTs fail to protect against both physical and software side-channel
threats.

Physical threats are a set of attacks in which the attacker has physical access to
hardware resources of the critical assets. This framework further breaks down physical
attacks into probe attacks and physical side-channel attacks. Probe attacks are passive
attacks that allow attackers to access critical assets’ secrets by physically probing exposed
wires or pins on interconnects or DRAM / Processor chips, respectively. Physical side-
channel threats are passive attacks where the attackers observe power, heat, or electro-
magnetic leakages of the HRT. They then infer information on critical assets using these
observations.

Software threats are a set of attacks in which the attacker co-exists alongside
critical assets on the hardware resources. This framework categorizes software threats
into application-level attacks, system-level attacks, and software side-channel attacks.
Application-level malware (e.g.,. Mirai malware) usually exploits zero-day bugs to compro-
mise critical assets. Contrary, system-level threats involve malicious operating systems
or firmware (e.g., root-kits). A malicious OS or firmware disables all enforced security
capabilities. Software side-channel threats are emerging practical class of attacks (e.g.,
Spectre & Meltdown) that exploit underlying hardware to break security guarantees.

Security Properties HRTs protect against threats by enforcing fundamental security
properties (i.e., confidentiality and integrity). TEEs enforce these properties with the
help of hardware/software capabilities. Confidentiality provides strong guarantees for
critical assets from getting accessed by unauthorized malicious entities. An HRT usually
satisfies confidentiality by enforcing isolation or sealing (e.g., encryption) for critical assets.
Integrity guarantees an HRT’s originality, and an HRT can guarantee integrity by attesting
(a proof of authenticity) critical assets on any given instance.

3.1.2 Capabilities

TEEs enforce security properties with the help of HRTs or a combination of HRT /software
capabilities that protect against threats.

Hardware Isolation A TEE usually includes an execution engine that operates on
critical assets. The HRT execution capabilities (e.g., processor core, cache, TLB’s, etc.)
are either spatially isolated or temporally isolated to enforce confidentiality.

Memory A TEE requires a secure storage area to store critical data, and this capability
is implemented using a dedicated or shared memory component. The dedicated memory is
used for critical storage. In the case of shared memory, HRT encrypts critical assets using
an encryption engine to avoid information leakage from shared memory.

Encryption Engine A TEE includes a dedicated hardware based encryption engine
(i.e., HRT) that converts exposed critical assets into ciphered critical assets and vice-versa.
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An encryption engine requires secret keys to perform operations.

Secret Keys There are two types of secret keys (private keys and derived keys) within
HRTS. Private keys are permanently fused cryptographic keys within the chip (e.g., secure
storage, co-processor, or encryption engine). These keys are used within the encryption
engine to encrypt critical assets or used to generate derived keys. Derived keys are unique
cryptographic keys that are generated at runtime using permanently fused private keys.
These derived keys have various purposes, including encryption for secure applications.

Secure Storage Secure storage is a multi-purpose dedicated memory region/module
used to store derived keys and critical information (e.g., execution status of critical assets).
Another important usage of secure storage is to store hashes for on-chip attestation of
software packages, including firmware, OS, and hypervisor. Secure storage is only accessible
to hardware-specific elements, e.g., memory encryption engine or a secure co-processor.

Secure Boot Secure boot is a hardware/software capability that allows on-chip
attestation of firmware, operating systems, and applications using hashes stored in the
secure storage.

3.2 Framework Application

The classification of threats and capabilities allows to compare distinctive HRTs with each
other.

3.2.1 Security Analysis Comparison

HRTs consist of a set of capabilities that protect against threats and thereby assure certain
security properties. A comparative security analysis of two different HRTs allows a user to
identify: 1) where a particular threat is addressed by a HRT, 2) what capability defends
against specific threats, and 3) what security property is thus guaranteed. For example, an
HRT ‘A’ can protect against software threats using spatial isolation of hardware resources,
while HRT ‘B’ protects software threats using temporal hardware resource isolation; both
implementations will satisfy the security property of confidentiality but incur different
performance and implementation costs.

4 Analysis of HRTs

The purpose of the framework is to allow users to differentiate between different HRT
offerings. We aim to illustrate its use with a case study of ten state-of-the-art HRTSs.
We begin by breaking down these HRTs in terms of threats, security properties, and
capabilities. Our results are summarized in Table 1.

4.1 Intel SGX

Intel SGX is an HRT with a trusted execution environment (TEE) [15] to protect critical
assets against systen software level threats in cloud computing. Intel assumes that its
processor chips are protected against sophisticated physical attacks due to its sensitive
fabrication technology, the processor chip will malfunction or crash if any such attacks are
conducted [11]. Therefore, Intel considers physical attacks on processor chips beyond the
scope of SGX’s threat model as shown in Table 1.

To protect against software attacks, Intel SGX executes critical assets (e.g., software
libraries) in isolated containers called enclaves. Enclaves consist of isolated hardware using
temporal isolation of execution resources and spatial isolation of memory regions using
enclave page cache (EPC). This memory area is not accessible to any user or privileged
software (e.g., OS and firmware). Enclaves effectively enforce confidentiality to protect
against software attacks. Intel SGX also features a memory encryption engine (MEE),
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Table 1: Analysis & comparisons of HRTS in secure computing in terms of threats, security
properties, and capabilities. “X” represents that specific threat(s) are not considered in the
threat model; whereas the “gray box” depicts that some other capability is dealing with
that specific threat within an HRT. An empty box represents no identifiable or documented
description regarding that specific attack. C is confidentiality, and I is integrity.

Threats / Properties & Physical Threats Software Threats
Capabilities Probe Attacks User Software System Software
Core RAM Core Firmware 0s
Hardware Isolation
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B
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o .
= | Derived Keys MEE MEE MEE
Secure Storage
o | © | Hardware Isolation Secure World Secure World
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: 3 Secure Storage X X
El = Secure Boot Secure Boot
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Zn

Crypto Engine
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N Derived Keys W Hw Monitor HW Crypto Secure Boot Secure Boot
~ | Secure Storage Crypto | Crypto
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© | Hardware Isolation Secure Enclave
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Crypto Engine

which is used to enforce integrity for critical assets. The MEE is made up of a cipher
engine, permanently fused primary keys, dynamically generated derived keys and secure
storage for derived keys. It is used to encrypt/decrypt critical assets and protect against
attacks on interconnects and DRAM.

4.2 ARM TrustZone

ARM TrustZone is an HRT with a TEE [12] with applications in mobile and embedded
security. It offers a system-wide approach to protect critical assets against software threats.
ARM TrustZone provides hardware isolation built into the CPU by running two domains
side-by-side, and sharing resources per set configuration to guarantee confidentiality. The
two execution environments are: a “secure world” hosting TEE for running trusted code
and a “normal world” for running general code. The partition of the two worlds is achieved
by hardware logic in the AMBA bus fabric, peripherals, and processors. TrustZone can
secure a software library or an entire OS to run in a secure area. It is based on the
principle of least privilege, so the system modules (like drivers and applications) do not
have access to a resource unless necessary. TrustZone includes a secure boot sequence that
verifies secure boot images (i.e., firmware, OS, and secure applications), authenticated
using private keys, stored in secure storage. Once booted, the communication between
secure and normal world takes place via software called “core logic” in Cortex-M processors
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or “secure monitor” in Cortex-A processors. It uses specific areas of memory that cannot be
accessed by non-secure OS regardless of privilege level, and the operations executed in the
secure world are not accessible by users with kernel access and rights. It considers physical
threats as out-of-scope of their threat model and is silent about software side-channel
attacks.

4.3 NXP TrustLayer Architecture

NXP Trust Architecture [4] is a system-on-chip (SoC) based HRT built using an ARM core
with TrustZone technology and have applications in embedded systems. NXP’s TrustLayer
Architecture extends the threat vector of ARM TrustZone to include protection against
both software and physical threats. It is silent about software side-channel threats to the
best of our knowledge. NXP TrustLayer guarantees confidentiality using hardware-enforced
isolated environment at the processor core, interconnects, and memory level critical assets
using TrustZone Secure World (including secure boot to create chain-of-trust) and protects
against software attacks. NXP TrustLayer enforces integrity property and protects against
physical attacks on interconnects and DRAM with its security engine called SEC. SEC
consists of a cipher engine, one-time programmable primary keys stored in secure storage
called security fuses, and dynamically generated derived keys. NXP TrustLayer also
includes a temper monitor detector that protects against physical threats on the SoC chip.

4.4 AMD SEV

AMD Secure Encrypted Virtualization (SEV) [1] is a security extension to AMD EPYC
processors, with the primary purpose of protecting virtual machines (VM) against malicious
system-level software (i.e., hypervisors). As AMD SEV has a specific threat model, it
does not discuss other threats, including user-level attacks within VMs, firmware level
attacks, and physical attacks. It consists of two modules, a secure co-processor, and a
cipher module. The secure co-processor has an ARM core, fused private keys, and secure
storage. The co-processor is used to generate and store derived keys (public/private), and
configurations for VMs. Each VM’s contents are encrypted with the private key using the
cipher engine to isolate the VMs and the hypervisor from each other. This guarantees
confidentiality for critical assets (i.e., VMs). SEV requires configurations for VM and
hypervisor. The configuration allows the VM to indicate which memory pages should be
encrypted. The hypervisor uses hardware virtualization instructions and communication
with the AMD Secure processor to manage the memory controller’s appropriate keys.

4.5 Microsoft Pluton

Microsoft Pluton [5] is an HRT introduced in Xbox products to prevent piracy of games
and cheating on the Xbox platform. Pluton threat model protects against physical threats
on exposed pins and wires and software threats, including bugs in the application and
system-level software that leads to leakage of critical assets (i.e., primary keys). Pluton
secure processor is a dedicated chip that is considered trustworthy. The secure pluton
processor consists of a crypto engine, secure storage (for registers and derived keys), secure
memory (RAM and ROM), primary fused keys, and a side-channel monitor. Xbox splits
memory read-only OS memory and read-write register memory. OS is verified using a
secure boot with fused keys. Xbox secure OS splits games into integrity-protected and
encrypted Xbox Virtual Disks (XVD) that are verified using a hardware streaming crypto
engine.
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4.6 Apple T2

Apple T2 [6] is a multipurpose dedicated secure enclave co-processor that ensures security
in Apple products. Apple threat model includes physical threats on DRAM modules and
software threats involving application-level and system-level attacks. T2 includes secure
enclaves that include encrypted memory storage to store private keys for secure boot,
FileVault, and fingerprint data for Touch ID. Apple T2 includes a dedicated AES crypto
engine that connects non-volatile storage with Apple general purpose processor. Secure
boot capability verifies the integrity of firmware, boot loaders, and kernels to initiate a
chain of trust for user-level applications.

5 Case Study Comparisons of HRTs

The framework is used to compare security analysis, performance implications, and
hardware/software implementation costs for analyzed HRTs.

5.1 Security Analysis Comparison

Table 1 includes the details for the security analysis comparison of the HRTSs in terms of
their threats. HRTs are designed to protect against a wide range of threats. This section
compares HRTs based on physical, software, and side-channel threats.

5.1.1 Physical Threats

involve probing exposed wires, pins and using sophisticated hardware (i.e., lasers) to leak
secrets. All HRTs except ARM TrustZone include a crypto engine that encrypts all data
leaving the HRT chip. These encrypted secrets travel on wires and are stored in secondary
storage. An attacker can probe the wires and exposed pins but requires keys to decrypt
secrets. All HRTs assume that physical chip that consists of an HRT are immutable to
probing except NXP TrustLayer and Microsoft Pluton. NXP TrustLayer and Microsoft
Pluton includes a dedicated temper monitor / side channel monitor capability to detect
physical attacks on the chip.

5.1.2 Software Threats

are categorized into application-level attacks (i.e., bugs in software), and system-level
attacks (i.e., malicious OS or firmware). All HRTs except AMD SEV offer a spatial or
temporal isolated environment to protect against application-level attacks. AMD SEV
threat model doesn’t consider software level attacks, instead protects virtual machines
against system-level attacks (i.e., malicious hypervisor). Intel SGX, ARM TrustZone, and
NXP TrustLayer provide temporal isolation to critical assets for processing. Whereas
Microsoft Pluton, and Apple T2 offer dedicated chip (spatial isolation) for critical assets
processing. All HRTs except Intel SGX offer secure boot capability to protect against
system-level attacks, and trust either firmware or OS. Intel SGX enclaves guarantee
protection against system-level attacks.

5.1.3 Side Channel Threats

NXP TrustLayer and Microsoft Pluton include dedicated capabilities to protect against
physical side-channel attacks (i.e., power or heat analysis). However, none of the HRTs
guarantee protection against software side-channel attacks (i.e., timing attacks).
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6 Conclusion

This paper developed an analytical framework for analyzing implementations of root-of-
Trust in hardware. It allows a system developer or user to reason about distinct HRT
implementations in terms of security, performance, and implementation cost. We use
framework to evaluate ten HRTS, including Intel SGX, ARM TrustZone, NXP Trust
Architecture, AMD SEV, Microsoft Pluton, and Apple T2 These HRTs have significantly
different threat challenges. Even when systems consider the same threat, they often
implement different capabilities to defend against it. This results in differences across
performance and implementation cost. The appropriateness of an HRT depends on the
operational exposure to threats, as well as practical constraints around overhead and
resources. No single implementation will be a silver bullet. This research provides a way
for both researchers and practitioners to examine and reach a common understanding of
the relative merits of different HRTs.
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