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Abstract

We give the first black box lower bound for signature protocols that can be described as group
actions, which include many based on isogenies. We show that, for a large class of signature
schemes making black box use of a (potentially non-abelian) group action, the signature length
must be Ω(λ2/ log λ). Our class of signatures generalizes all known signatures that derive
security exclusively from the group action, and our lower bound matches the state of the art,
showing that the signature length cannot be improved without deviating from the group action
framework.

1 Introduction

Post-quantum cryptography aims to develop classical cryptosystems that remain secure against
an adversary who has access to a large-scale quantum computer. One approach to post-quantum
cryptography relies on the observation that Shor’s discrete log algorithm [Sho94] does not apply in
an algebraic structure called a group action. This gives rise to group-action-based cryptography for
post-quantum public key encryption, key exchange, digital signatures, and more [BY91, JQSY19,
ADMP20]. The resulting cryptosystems look somewhat similar to classical systems that rely on
the difficulty of discrete log in a finite cyclic group.

Informally, a group action is a mapping of the form ∗ : G×X → X, where G is a finite group
and X is a set, such that for any g1, g2 ∈ G and any x ∈ X, we have g1 ∗ (g2 ∗ x) = (g1g2) ∗ x.
Moreover, if e ∈ G is the identity of G then e ∗ x = x for all x ∈ X. The discrete log problem for
such a group action is to find a g ∈ G, if one exists, such that x0 = g ∗ x1, given only x0, x1 ∈ X as
input. Note that Shor’s algorithm fails to solve this problem precisely because there is no efficiently
computable group operation on the set X. The best known quantum algorithms for group action
discrete log run in sub-exponential time in the security parameter [Kup05, Reg04, Kup13, Pei20].

Currently the most widely studied cryptographic group action is derived from isogeny graphs of
elliptic curves [Cou06, RS06]. To avoid the sub-exponential quantum algorithm mentioned above,
some constructions use supersingular isogeny graphs [JF11, FJP14], which present less structure
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than a group action. However, a recent attack by Castryck and Decru [CD22] and Maino and
Martindale [MM22] shows that certain key exchange protocols that rely on supersingular isogeny
graphs (in particular, rely on the SIDH assumption) are insecure. The attack does not appear to
affect various isogeny-based signature schemes such as SeaSign [DG19, DPV19], CSI-FiSh [BKV19,
EKP20, CS20], and SQISign [DKL+20, DLW22].

Short signatures. An important open problem in post-quantum cryptography is to construct a
signature scheme for which the combined length of a public key and a signature is comparable to
that of the Schnorr scheme, namely 32+64 = 96 bytes (for 128-bit security). The four post-quantum
NIST signature finalists [CCJ+16] have the following combined public-key/signature lengths: 3740
bytes for Dilithum2, 1563 bytes for Falcon512, and over 50KB for both Rainbow variants. These
numbers are an order of magnitude higher than the combined length for the Schnorr scheme. We
note that the combined public-key/signature length for SQISign is only 268 bytes — better than
the NIST candidates, but still worse than Schnorr. SQISign uses specific properties of supersingular
isogenies, and is not a generic group-action signature scheme.

Can we do better? One might expect that due to the similarity between group-action-based
systems and systems using a finite cyclic group, one should be able to design a post-quantum
Schnorr-like signature scheme using a generic group action. However, this remains an open problem.
For example, the signature scheme SeaSign [DG19], which can be described as a generic group-action
signature scheme (as in Section 1.3), has a combined public-key/signature length of about 3KB (see
column 3 of Table 2 from [DG19]). In this paper we show that this is no accident.

1.1 Our Results

Let λ be a security parameter. Our main result is a lower bound of Ω(λ2/ log λ) for a wide class of
group-action-based signatures. This lower bound matches the signature length of state-of-the-art
constructions such as SeaSign. Concretely, we prove the following theorem about identification (ID)
protocols:

Theorem 1.1 (Informal). For any public-coin identification protocol secure against eavesdropping
in a black box (potentially non-abelian) group action model, the sender must send at least (λ −
1)/ log2 λ set elements in order to achieve soundness 2−λ.

Here, public coin means that the verifier generates its messages by simply sampling uniform bit
strings. Note that Theorem 1.1 works for any such group action; in particular we do not assume
any regularity or transitivity. Also note that by handling non-abelian group actions, our model
easily incorporates features like twists, as twists can be seen as action by a slightly larger group
arising from a semi-direct product.

Since set elements need to be at a minimum λ bits to prevent solving discrete logarithms, we
thus obtain a lower bound of (λ− 1)2/ log2 λ bits for the communication from prover to verifier.

All known efficient group-action-based signature schemes are built by transforming a public
coin ID protocol into a signature, typically via Fiat-Shamir [FS87], but other transforms are also
possible [Unr15]. Thus, our lower bound yields a lower bound on the length of signatures in such
protocols.

Our model of black box group actions. We formalize black box group actions by adapting
Maurer’s [Mau05] generic group model to the black box group action setting. In this model, instead
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of getting set elements “in the clear”, all parties are only given handles to the set elements, and then
operate on these handles via an oracle. This reflects how current group-action based signature and
ID protocols are constructed. Below, we discuss why we choose to adapt Maurer’s model instead
of Shoup’s [Sho97] model.

Extensions. We also discuss several extensions to structures that generalize group actions. In
particular, many isogenies cannot be framed straightforwardly as group actions. We therefore
formalize a graph action model, which generalizes group actions to these more general structures,
and observe that our impossibility readily applies in this more general setting as well.

1.2 Discussion

Schnorr identification requires sending only a single group element, and security can be proven
under the discrete logarithm assumption in plain groups. Theorem 1.1 shows that the situation is
quite different in the group action setting. In the language of [RTV04], our result shows there is
no semi-black box construction of an efficient ID protocol from hard discrete logarithms over group
actions. Even more, “discrete logarithm” can be replaced by any problem that is (classically)
unconditionally hard in generic group actions, including CDH and even more exotic assumptions
such as the linear hidden shift assumption [ADMP20]. Thus, to sidestep our lower bound, one must
design signatures that are not based on ID protocols, rely on non-generic use of the group action,
or rely on cryptographic hardness assumptions beyond what a group action alone provides.

On our black box model. A natural question is whether our lower bound also applies to an
analog of Shoup’s generic group model tailored to group actions, replacing handles with random
labels. Unfortunately, lower bounding signatures in Shoup’s model appears to be very challenging.
In particular, a lower bound in such a model would imply as a special case a lower bound in the
random oracle model (ROM)1. Even through the best-known (many-time) random oracle signatures
have signature size Ω(λ3) [Mer88]2, it is a long-standing open problem to obtain any non-trivial
bound. We cannot even rule out that optimal O(λ)-length signatures from random oracles exist.
We sidestep this major barrier by instead utilizing Maurer’s model.

Our model of group actions using handles captures all known techniques for efficient ID protocols
from group actions. However, it is known that such a model fails to capture a number of standard
generic techniques [Zha22]. These standard generic techniques are typically used in symmetric
key settings, as they involve operations like breaking strings into individual bits or XORs. Such
operations break algebraic structure, seemingly negating the purpose of introducing algebraic tools
in the first place. Nevertheless, such techniques could perhaps be employed in combination with
algebraic tools to achieve more efficient signatures. As such, our impossibility does not fully rule
out short signatures from group actions, but still represents a significant barrier.

On ID protocols. At a technical level, our lower bound is for ID protocols. This is because
it is known that signatures are impossible in Maurer’s generic group model [DHH+21], and the
impossibility readily extends to our formalization of the black box group action model using handles.

1Shoup’s generic groups imply random oracles [ZZ21], and the proof readily adapts to group actions with random
labels.

2If the number of messages is a priori bounded, it is possible to have signatures of length O(λ2) [Mer90].
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As such, any direct lower bound for signatures in our group action model would be completely
meaningless.

Thus, any attempt at proving a lower bound for signatures is presented with a conundrum: work
in Shoup’s version of group actions, where the long-standing open problem of signature length from
random oracles presents a major barrier. Or work in Maurer’s model, where signatures are simply
impossible.

While signatures do not exist in Maurer’s version of black box groups/group actions, ID pro-
tocols do exist. The transformation from ID protocol to signature, say via Fiat-Shamir, is then
the only part of the signature that doesn’t work in Maurer’s model. This is because applying
Fiat-Shamir requires hashing a group element/set element into a bit string. Such hashing is of
course allowed in the standard model, but it is forbidden in Maurer’s since only the group (action)
operation is allowed to be applied to elements. Fortunately, the most efficient signature schemes
from groups and group actions are obtained by transforming ID protocols.

The Fiat-Shamir transformation is well-understood, both classically [BR93, PS96] and quan-
tumly [LZ19, DFMS19], and adds zero signature-length overhead over the underlying ID protocol3.
But the length of any signature based on ID protocols is always lower-bounded by the ID proto-
col itself. Thus, our lower bound immediately applies to signatures based on ID protocols, which
captures all-known practical group-action based signatures. Thus, our lower bound shows that a
Ω(λ2/ log2 λ) signature length is inherent with current techniques.

Note that our lower bound is only for public coin protocols. This is inherent, as group actions
give public key encryption, and any public key encryption scheme can be turned into an ID protocol,
as follows [DKPW12]: the verifier encrypts a random message and sends the ciphertext, and the
prover simply decrypts the ciphertext and sends the resulting message. The number of set elements
in the protocol is just the number of set elements in a ciphertext, which in the case of group-action-
based public key encryption, is just a constant. This protocol, however, is secret coin, as the
verifier’s message is a ciphertext that hides both the message and the encryption randomness.
Such secret coin ID protocols are not amenable to Fiat-Shamir or related transformations, and
there is no known direct way to turn them into signatures. Thus, our restriction to public coin
protocols is justified by the ultimate goal of lower-bounding signatures.

1.3 Technical overview

Existing Group Action-based Signatures. The main group-action-based signatures are built
from a public coin identification (ID) protocol, and then by converting the ID protocol into a sig-
nature. This conversion is typically Fiat-Shamir [FS87], but other transforms are possible [Unr15].
For reasons explained above, we focus on analyzing the underlying ID protocol.

Throughout, we will focus on the number of set elements sent by the prover, which is a proxy
for the total communication of the ID protocol. Note that when converting into a signature scheme,
usually not all the terms of the ID protocol need to be sent explicitly, since they can be computed
from the other terms for a valid signature. Nevertheless, the number of set elements remains linear
in the total signature size.

The usual way to build an ID protocol from group actions, is the following adaptation of
Schnorr’s identification protocol [Sch90] for plain groups:

3Other transforms such as Unruh’s [Unr15] do require overhead.
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• The public key contains two set elements x0, x1 such that x0 = g ∗ x1. The secret key is a
random g ∈ G.

• The prover first chooses a random h ∈ G, and sends a = h ∗ x1.

• The verifier replies with a random bit b.

• The prover then outputs r = hgb−1.

• The verifier checks that a = r ∗ xb

The ID protocol is easily seen to be zero knowledge. The protocol has (classical) soundness error
1/2: if an adversary can break security with probability non-negligibly greater than 1/2, then a
standard rewinding argument shows that it can compute hgb−1 for both b = 0 and b = 1; dividing
gives g, the discrete log between x0 and x1, which is presumably hard to compute. On the other
hand, it is trivial to break security with probability 1/2: the prover simply guesses the bit b, and
computes a = r ∗ xb for a random r. Conditioned on the guess for b being correct, the transcript
seen by the verifier will have the correct distribution.

To achieve better soundness, one can run the protocol many times, either sequentially or in
parallel. To get soundness error 2−λ, one would need λ trials, requiring λ set elements to be sent
from the prover.

One can do slightly better, at the cost of a somewhat larger public key. Abstracting an opti-
mization of De Feo and Galbraith [DG19] (See [DG19], Section 4) to the setting of group actions,
consider the following protocol:

• The public key contains P set elements x1, . . . , xP . The secret key is g2, . . . , gP such that
xi = gi ∗ x1 for i > 1.

• The prover chooses a random h ∈ G, and sends a = h ∗ x1.

• The verifier replies with a random c ∈ [P ]

• The prover then outputs r = hg−1
c , where g1 = 1.

• The verifier checks that a = r ∗ xc

The above protocol achieves soundness error 1/P , without any additional set elements in the
protocol, but at the cost of expanding the public key to P set elements. To achieve soundness
error 2−λ, we can set P = λ/ log λ, and repeat the protocol P times. The result is public keys and
protocol transcripts containing P set elements.

Generalizing both protocols, if we let P,N be the number of set elements in the public key and
protocol transcript, and S the soundness error, both protocols above have S = P−N .

We note that if one relaxes zero knowledge, then smaller soundness error is possible. For
example, for security against direct attacks, the prover can just reveal g, and now soundness matches
the hardness of computing discrete logarithms. For eavesdropping security where the attacker sees
t transcripts, one can modify the large public key protocol above to have the prover simply reveal a
discrete logarithm between x1 and a random choice of xi. While this latter scheme has noticeable
soundness error, in both cases here the prover actually sends no set elements at all. Other strategies
are possible to improve soundness in the bounded eavesropping setting. Nevertheless, for schemes
of this nature, it seems to always be the case that t ≤ P .
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Our Lower Bound. Our main result is that for eavesdropping security under t transcripts, for
any desired polynomial poly:

S ≥ (1− P/t− 1/poly)× P−N (1)

For unbounded transcripts, this shows that the S = P−N of the known group-action-based protocols
is essentially tight. It also shows to get non-trivial soundness when the prover sends no elements
at all requires the number of elements in the public key to be at least as large as the number of
transcripts, matching intuition for such schemes.

Intuition. We now provide the intuition for our lower bound. Consider the collection of set
elements seen by the verifier, which we will call V . V includes both set elements in the public key,
as well as set elements sent by the prover and any set elements computed by the verifier. Now,
consider a group action query by the verifier, such as g ∗ x, resulting in output y. The verifier
therefore knows the discrete logarithm between x and y. Since the protocol is public coin, this
means the discrete logarithm is also revealed by the protocol transcript.

By looking at all such queries, we induce a graph structure on V , where we connect the input
and output nodes of any query by the verifier. Since discrete logarithms compose, the verifier knows
the discrete logarithm between any two connected nodes.

We can now assume, essentially without loss of generality, that no two public key nodes are in the
same connected component. After all, if they were, then the protocol transcript reveals the discrete
logarithm between these nodes. If the protocol were zero-knowledge, this would mean the discrete
logarithm can be computed from publicly-available information. Even in the eavesdropping setting,
it means the discrete logarithm can be computed from the transcripts provided to the adversary.
In either case, this means that one of the two nodes was in some sense superfluous. We can make
this precise, showing that if the ID protocol is secure even if the adversary sees sufficiently many
transcripts, then we can compile the protocol into one where all public key components are in
different connected components. This transformation slightly impacts correctness, and results in
the P/t term in Equation 1.

We then give an adversary for any scheme where the public key nodes are in different connected
components. Essentially, whenever the adversary is required to send a set element y, it simply
guesses which of the public key nodes x that y will be connected to, and generates y such that it
knows the discrete logarithm between y and x. We show, essentially, that conditioned on the guess
being correct for every node sent by the prover, our adversary can correctly simulate the protocol
execution, and convince the verifier. The probability of guessing correctly at every step is exactly
P−N , where P is the number of public key elements, and N is the number of elements sent by the
prover.

For technical reasons, the above does not quite work perfectly. Essentially, our simulation
ensures that the graph seen by the verifier has an edge everywhere it should, but does not guarantee
that the graph has no edges where it should not. But we observe that if there is a bad edge in
the simulated graph, this connects two nodes that should not be connected. We are able to argue,
roughly, that this means we can remove nodes from the graph, somewhat analogous to how we
handled public key elements in the same connected component. As in that case, there is still some
error in the simulation, though it can be made an arbitrary small polynomial. This results in the
1/poly term in Equation 1.
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Formalizing the above intuition is non-trivial. The main difficulty, analogous to all black box
separations, is that the construction and adversary could completely ignore the group action and
just run some standard-model short signature scheme such as Schnorr.

Following Impagliazzo-Rudich [IR89], we block such a construction by giving the adversary
unlimited private computation and only bound the number of queries to the group action to a
polynomial. This captures constructions whose only source of hardness is the group action.

With unlimited private computation, we can brute force any signature scheme that does not
use the group action. The challenge comes in attacking schemes that are a combination of using
the group action, but also using standard-model building blocks, as a naive brute force will result
in exponentially many queries.

We formalize the above intuition through a sequence of protocol simplification steps, where
we gradually restrict the prover and verifier, showing that the simplifications are without loss of
generality. Eventually we reach a simplified protocol where we can apply the intuition above and
prove our lower bound. See Section 3 for details.

Extensions. In Section 4, we discuss a couple of extensions to our main lower bound. We first
consider a generalized model where it is possible to directly sample set elements, without having
to derive them from other elements. While no existing group-action-based signature utilizes such
direct sampling, it is supported by elliptic curves and therefore important to consider. We show,
with some key modifications to our main proof, that our lower bound applies in this model as well.

We also give a generalization of black box group actions, that we call black box graph actions.
This captures many of the features of group actions, but eliminates the group structure on the
acting set, instead viewing the action as a walk on a graph. This is how isogeny-based signatures
tend to work anyway, and by generalizing to a less-structured object, we make our lower bound
more general. Our lower bound does not use any particular features of the group structure, and
trivially adapts to a graph action.

2 Preliminaries

Notation: We use λ ∈ Z to denote the security parameter. We use x ← y to denote the
assignment of the value of y to x. We write x ←$ S to denote sampling an element from the set
S independently and uniformly at random. For a randomized algorithm A we write y ←$ A(x)
to denote the random variable that is the output of A(x). We use [n] for the set {1, . . . , n}. We
denote vectors in bold font: u ∈ Zm

q is a vector of length m whose elements are each in Zq.

2.1 Group actions

A group action consists of a (not necessarily abelian) group G, a set X, and a binary operation
∗ : G×X → X satisfying the following properties:

• Identity: If e ∈ G is the identity element, then e ∗ x = x for any x ∈ X.

• Compatibility: For all g, h ∈ G and x ∈ X, (gh) ∗X = g ∗ (h ∗X).

For applications to cryptography, we want the group action to have certain computationally in-
tractible problems. A typical minimal hard problem is that of computing “discrete logarithms”:
computing g from x and g ∗ x.
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Our Model of Black Box Group Actions. Here, we give our model of a black box group
action. Our model is analogous to Maurer’s [Mau05] model for generic groups, but adapted to
group actions. In our case, we model the group itself as a standard-model object, but then the set
elements are only provided via handles. In more detail, the following oracles are provided to all
parties:

• Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if x = y and 0
otherwise.

• Act(g, ⟨x⟩) takes as input a group element g and a handle ⟨x⟩ to a set element, and returns a
handle ⟨y⟩ for the set element y = g ∗ x.

Additionally, all parties are provided with a handle ⟨x0⟩ to a starting set element x0. Each query
incurs unit cost, and all computation outside of queries is zero cost. Algorithms are not allowed any
computation on handles, except to pass them to other algorithms or send as inputs to the oracles
Eq,Act. The only handles an algorithm can query to Eq,Act are those provided explicitly as input
(including ⟨x0⟩), or provided as output of prior queries to Act. A probabilistic polynomial time
algorithm is a probabilistic algorithm in this model whose total cost is bounded by a polynomial.

Remark 2.1. The above model assumes there is a single starting handle ⟨x0⟩, and the only way
to derive additional set elements is to act on this handle. This is how existing isogeny-based iden-
tification protocols work. However, isogenies provide a bit more functionality: in particular, it is
possible to sample directly into the set elements. This does not give the adversary any more power,
since such directly sampled elements will be essentially random and unrelated to any other element.
However, such sampling could potentially be used in protocol design.

We will not allow such sampling for the rest of this section, as it allows us to explain our main
ideas in a simpler manner. In Section 4.1 we extend the black box group action model to capture
such a functionality, and show that our impossibility also extends to this model.

Verification Oracle. We can augment our black box group action model with the following
oracle:

• Ver(g, ⟨x⟩, ⟨y⟩) which returns 1 if g ∗ x = y and 0 otherwise.

This oracle can readily be simulated as Eq(Act(g, ⟨x⟩), ⟨y⟩), so including Ver does not change the
model. However, this oracle will still be convenient for our proofs. Concretely, we will make crucial
use of the following lemma:

Lemma 2.1. Let A be a deterministic algorithm in the black box group action model that may take
as input handles ⟨x1⟩, . . . , ⟨xn⟩ and non-handle terms, and outputs k handles ⟨y1⟩, . . . , ⟨yk⟩, as well
as non-handle terms. Let q be the number of queries A makes. Then there is another algorithm A′

with identical input/output behavior to A. However, A′ is restricted in the following way:

• It makes no queries to Eq.

• It makes at most O(q) queries to Ver, which must all come before any Act query.

• After making its queries to Ver, it makes exactly k queries to Act in parallel to produce its
handle outputs: ⟨y1⟩ = Act(g1, ⟨xi1⟩), . . . , ⟨yk⟩ = Act(gk, ⟨xik⟩). After making the Act queries,
A′ is not allowed to make any queries to any oracle.
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Lemma 2.1 allows us to reduce general algorithms to relatively simple forms, which will make
analyzing them easier. Note that Lemma 2.1 applies also to randomized algorithms by considering
the random coins as an input. Then A′ will also get these same random coins. We now prove
Lemma 2.1.

Proof. Consider a general algorithm A in the black box group action model, which makes arbitrary
queries to Eq and Act. We construct A′ as follows. We assume that integers and set elements
are encoded such that they are disjoint. A′ creates “dummy” handles ⟨1⟩, . . . , ⟨n⟩, which it feeds
into A along with any non-handle inputs. These dummy handles will be stand-ins for the true
handles ⟨x1⟩, . . . , ⟨xn⟩ provided to A′. We will also create a table T containing tuples (j, g, i),
which correspond to the dummy handle ⟨j⟩ being a stand-in for the real handle ⟨g ∗ xi⟩. Therefore,
T is initialized to contain the tuples (i,1, i) for i = 1, . . . , n. We will maintain that A only ever
sees dummy handles.

A′ simulates A on the dummy handles ⟨1⟩, . . . , ⟨n⟩ as well as any non-handle inputs to A′.
However, A′ will intercept all the queries A makes. On each query:

• If the query has the form Act(g, ⟨j⟩) query, A′ looks up an entry (j, g′, i) in T , which will be
guaranteed to exist. It will then add the entry (j′, g · g′, i) to T , where j′ is one more than
the number of entries in T so far. A′ then replies with the dummy handle ⟨j′⟩. Note that the
entry (j, g′, i) ∈ T means that ⟨j⟩ is a stand-in for ⟨g′ ∗ xi⟩. Therefore, A expects the result
of the query to be ⟨(g · g′) ∗ xi⟩, corresponding exactly to the newly added entry (j′, g · g′, i).

• If the query has the form Eq(⟨j0⟩, ⟨j1⟩), look up entries (j0, g0, i0), (j1, g1, i1) in T , which are
guaranteed to exist. Then it makes a query b ← Ver(g−1

1 · g0, ⟨xi0⟩, ⟨xi1⟩) and replies with b.
Note that since ⟨j0⟩ is a stand-in for ⟨g0 ∗ xi0⟩ and ⟨j1⟩ is a stand-in for ⟨g1 ∗ xi1⟩, we have
equality if any only if g0 ∗ xi0 = g1 ∗ xi1 ⇔ (g−1

1 · g0) ∗ xi0 = xi1 , which is exactly the result of
the Ver query.

Finally, when it A outputs handles ⟨j1⟩, . . . , ⟨jk⟩, A′ will look up entries (jt, gt, it) ∈ T for t =
1, . . . , k. It will then make a single round of Act queries ⟨yt⟩ = Act(gt, xit). Observe that ⟨jt⟩ is
exactly a stand-in for ⟨gt ∗ xit⟩ = ⟨yt⟩. A′ will output ⟨y1⟩, . . . , ⟨yk⟩, as well as any non-handle
outputs of A.

At every step, we therefore see that A′ simply replaces the handles A sees with appropriate
stand-ins, but correctly answers the Eq queries and produces the correct output handles and non-
handle elements. Thus A′ perfectly simulates the outputs of A.

We then define an abstract model for ID protocols that use a graph action.

2.2 ID protocols using a group action oracle

Here, we define the abstract model for an ID protocol using a group action oracle. An ID protocol
in the black box group action model consists of the following algorithms:

• Gen(), a probabilistic algorithm which makes a polynomial number of queries, and samples a
public key/secret key pair (pk, sk). We will always assume without loss of generality that sk
is just the random coins used in Gen(). On the other hand, pk may contain a combination of
both (handles to) set elements and non-set element terms.
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• P(pk, sk), a probabilistic interactive algorithm that makes a polynomial number of queries,
which takes as input (pk, sk), and interacts with a verifier through several rounds of inter-
action. In general, the prover’s messages may contain any combination of handles to set
elements and also non-set element terms.

• V(pk), a probabilistic interactive algorithm that makes a polynomial number of queries, which
takes as input pk, and interacts with the prover. In general, the verifier’s messages may contain
any combination of handles to set elements and also non-set element terms. At the end of
the interaction, V outputs a bit b.

We denote the interaction of of P and V by b ←$ V(pk) ⇐⇒ P(pk, sk). The transcript of the
interaction is the list T of all messages sent. As we are in the black box group action model, we
bound the number of queries of each algorithm to polynomial, but do not otherwise bound the
computation outside of the queries.

Definition 2.1. A protocol Π = (Gen,P,V) has completeness C if

Pr[1←$ V(pk)⇐⇒ P(pk, sk)] ≥ C ,

where the probability is over (pk, sk)←$ Gen() and the random coins of P,V.

We do not define soundness, but instead define the opposite of soundness, since we are interested
showing that protocols with too little communication are unsound:

Definition 2.2. A protocol Π = (Gen,P,V) is (t, S)-unsound if there exists an algorithm A making
polynomially many queries such that

Pr[1←$ V(pk)⇐⇒ A(pk, T1, . . . , Tt)] ≥ S ,

where T1, . . . , Tt are t transcripts of independent trials of V(pk)⇐⇒ P(pk, sk). Here, the probability
is over (pk, sk)←$ Gen(), the randomness of the transcripts Ti, and the random coins of A,V.

Definition 2.3. We say a protocol Π is public coin if V’s random coins can be written as (c1, . . . , ck)
such that the ith message of V is ci.

For a public coin protocol, we will equivalently think of V as just being an algorithm which takes
as input the transcript and outputs a bit b. The execution of the protocol itself simply chooses
each message from the verifier uniformly at random.

Notation. We will be using the following notation for ID protocols throughout this paper:

C: the correctness probability t: number of transcripts given to the adversary
S: the soundness error P : the number of set elements in the public key
R: the number of rounds N : the number of set elements sent by the prover

We will be considering multiple ID protocols throughout this paper, which we distinguish by
subscripts, e.g. Π1,Π2, . . . . In such cases, we will use the same subscripts for our notation: e.g.
C1, C2, . . . for correctness probability, etc.
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3 The lower bound

This section contains our main theorem, a lower bound on the communication of any secure group-
action-based ID protocol.

3.1 The main theorem

Theorem 3.1. If a public coin ID protocol Π in the black box group action model has completeness
C, then for any polynomial t, the protocol is (t, S)-unsound, for S ≥ (C−P/t−1/poly)×P−N , where
poly is any polynomial. In particular, if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P , then N ≥ (λ−1)/ log2 P .

In other words, if we want λ-bit security, we need the number of set elements sent by the
prover to be at least (λ − 1)/ log2 P . As each set element itself will generally be at least λ bits,
and the number of public key elements is a polymomial, this means λ bits of security requires total
prover communication size of Ω(λ2/ log λ). This corresponds to the size of signatures once we apply
Fiat-Shamir.

In the remainder of this section, we now prove this theorem using a sequence of protocol simplifi-
cation steps.

3.2 Normal Form Protocols

Label the set elements of the public key 1, . . . , P . Given a transcript T , we will then number the set
elements in T as P+1, . . . , P+N in the order they appear in T . Let V = [P+N ]. We will somewhat
abuse notation and refer to {1, . . . , P} ⊆ V as public key elements, and {P + 1, . . . , P + N} as
transcript elements.

Definition 3.1. A public coin ID protocol is in normal form if the following are true:

• Verification is deterministic conditioned on the transcript.

• Verification only queries Ver and not Act,Eq.

• The final message from the prover contains a list Q, where each entry in Q has the form
(g, i, j, b). Here, i, j ∈ [P + N ] index into the combined set elements of the public key and
transcript, g is a group element, and b is a bit. Let xi, xj be the elements at position i and j,
respectively. (g, i, j, b) corresponds to querying Ver(g, ⟨xi⟩, ⟨xj⟩) and receiving outcome b.

• The verifier first makes verification queries corresponding to those in Q: for a tuple (g, i, j, b),
it queries b′ ← Ver(g, ⟨xi⟩, ⟨xj⟩). These are the only queries it makes. If any of the query
responses are inconsistent with Q, that is if b ̸= b′, the verifier immediately aborts and rejects.

Assuming all queries are consistent, the verifier is allowed arbitrary subsequent deterministic
computation to decide whether to accept or reject, but it can make no additional queries.

Lemma 3.2. If there is a public coin ID protocol Π in the group action model, then there is also
a normal form ID protocol Π1 such that t1 = t, C1 = C, S1 = S,N1 = N,P1 = P,R1 = R+ 2.

Proof. First, observe that we can trivially make any protocol have deterministic verification by
adding to the end of the protocol a message from V to P containing the random coins of V. We
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therefore assume deterministic verification. By Lemma 2.1, since verification outputs a bit (and
therefore no handles), we can also assume the verifier only makes queries to Ver and not Eq,Act.

Now that verification is deterministic, let P1 be the new prover, which runs P. Then, at the
end of running P, P1 runs the verifier for itself, to see exactly what queries the verifier will make,
assembling the query list Q.

We now explain how to construct V1. First, for each (g, i, j, b) ∈ Q, V1 makes the corresponding
query to Ver, obtaining b′. If b ̸= b′, then V1 immediately aborts and rejects.

If b = b′ for each (g, i, j, b) ∈ Q, then V1 runs V on the first r+1 messages of the transcript, except
that it has to intercept all of the Ver queries V makes, which correspond to an entry (g, i, j, b) ∈ Q,
and answers the query with b.

It is straightforward that V1 ⇐⇒ P1 exactly simulates the behavior of V ⇐⇒ P, and so C1 = C.
For soundness, consider an adversary A1 that convinces V1 with probability S1. We construct an
adversary A that convinces V with probability S. A runs A1, and just discards the query list Q
that A′ outputs. If A1 wins, then it must be that all queries V1 (and hence V) makes are consistent
with Q, and also that V accepts. In other words, V accepts transcript T whenever V1 accepts
transcript T1, where T is the same as T ′ but with the query list Q discarded. Hence S ≥ S1.

3.3 The Transcript Graph

Recall that V = [P +N ] indexes the combined set elements of the public key and transcript, with
[P ] corresponding to the public key elements and [P + 1, P + N ] corresponding to the transcript
elements.

Consider running the verifier V. Any accepting Ver query by V corresponds to an edge between
nodes in V ; call this edge set of accepting queries E. Then GT = (V,E) forms an undirected
graph. GT is the transcript graph of T . We note that verification may be randomized, yielding
different transcript graphs each time. However, we will always assume a normal form protocol with
deterministic verification, meaning that GT is uniquely determined by the protocol transcript.

We say that a transcript graph is valid if there is no path between any two distinct public
key elements. In other words, each public key element lies in a different connected component.
Otherwise, a transcript graph is invalid.

3.4 Respecting Verifiers

Definition 3.2. A respecting verifier for a normal-form protocol is one that always rejects tran-
scripts with invalid transcript graphs.

Lemma 3.3. If there is a public coin normal form ID protocol Π1 in the group action model,
then there is also a public coin normal form ID protocol Π2 with a respecting verifier, such that
t2 = 0, C2 ≥ C1 −N1/t1, S2 ≤ S1, N2 = N1, P2 ≤ P1, R2 = R1.

Proof. The intuition is that we use the provided protocol transcripts to compute the discrete
logarithms between public key elements, and then use this information to represent certain public
key elements in terms of others. This lets us remove such public key elements. If the next protocol
run would have likely connected two public key elements together, then the previous runs would
have also likely connected them anyway, meaning one of the elements would not have been in the
public key in the first place.

In more detail, given Π1 = (Gen1,P1,V1) for a public coin normal form ID protocol, we construct
Π2 = (Gen2,P2,V2) as follows.
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Gen2(): First run (pk1, sk1)←
$ Gen1(). Now run P1(pk1, sk1)⇐⇒ V1(pk1) for t1 independent trails,

collecting transcripts T1, . . . , Tt1 . It then computes the transcript graphs GT1 , . . . , GTt1
. Then for

i = 1, . . . , P1, it does the following:

• If the i-th public key set element ⟨xi⟩ is connected to any previous public key set element ⟨xj⟩
at position j < i through any path of edges in ∪ℓ∈[t1]GTℓ

, take the minimal such j. Then use
the queries in Tℓ to determine the group element g such that xi = g ∗xj . Delete ⟨xi⟩ from the
public key, and replace it with the pair (j, g). If there is no such path, then leave ⟨xi⟩ as is.

Note that since j is minimal, in particular xj is not connected to any xℓ for ℓ < j. So if ⟨xi⟩ is
replaced with (j, g), it must mean that ⟨xj⟩ has not been deleted.

Then pk2 = pk1, except with all the deleted set elements replaced by the appropriate (j, g).
sk2 = sk1

4.

P2: P2 runs P1, except that any time P2 would need a deleted ⟨xi⟩ from the public key, P2
re-computes it as ⟨xi⟩ = Act(g, ⟨xj⟩) for the appropriate (j, g).

V2: V2 runs V1, except that any time V1 would needs a deleted ⟨xi⟩ from the public key, V2 re-
computes it as ⟨xi⟩ = Act(g, ⟨xj⟩) for the appropriate (j, g). Moreover, at the end of the protocol V2
computes the transcript graph GT , defined over the non-deleted elements in pk2, and automatically
rejects if GT is invalid.

Security. If V2 did not check the validity of GT , then the interaction between P2 and V2 is
identical to that of P1,V1, since each just re-computes the correct ⟨xi⟩ as needed. Moreover, notice
that computing pk2 from pk1 can be done by an adversary for P1,V1 using the t1 transcripts
provided to it in the passive security game. Adding a reject condition in V2 only decreases the
adversary’s success probability.

Correctness. In order to establish the correctness of the protocol, we just need to bound the
probability GT is invalid. Fix some (pk1, sk1). For any transcript graph GT , let G

′
T be the induced

graph with nodes in [P1], where there is an edge between two nodes in [P1] if and only if there
is a path between those nodes in GT . Let ni be the number of connected components in in
G′

i := ∪j≤iG
′
Tj
, and ei = E[ni] be the expectation of ni. Note that n0 = P1, ni ≥ 0 for all i, and

ni+1 ≤ ni. Therefore, these (in)equalities hold in expectation.
Moreover, i 7→ ei is convex, meaning ei − ei+1 ≤ ei−1 − ei for all i. To see this, let n′

i be the
number of connected components in G′

Ti−1
∪ G′

Ti+1
. The difference relative to ni is that we swap

out G′
Ti

for G′
Ti+1

. Let e′i = E[n′
i]. Since G′

Ti
and G′

Ti+1
come from the same distribution, we

must have e′i = ei. Now let ri := ni−1 − ni and r′i := ni−1 − n′
i. This means G′

Ti+1
connects ri+1

pairs of the connected components of G′
i together, and r′i pairs of connected components of G′

i−1.
For every connection G′

Ti+1
makes between connected components of G′

i, there are corresponding

connected components ofG′
i−1 that it also connects, since the connected components ofG′

i−1 is just a
refinement of the the connected components of G′

i. Thus r
′
i ≥ ri+1, meaning E[ri] = E[r′i] ≥ E[ri+1].

Hence ei − ei+1 ≤ ei−1 − ei.

4Technically, we assumed sk was the random coins of Gen, and so our sk2 should also include the random coins
used to generate the Ti. However, this information will not be needed in the actual protocol, so we can think of sk2
as being just sk1.
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By the triangle inequality, this means |et1+1 − et1 | ≤ P1/t1. In particular, Pr[nt1+1 < nt1 ] <
P1/t1. But notice that nt1+1 = nt1 corresponds to the transcript graph of P2 ⇐⇒ V2 being
valid. This is because pk2 has exactly nt1 public key elements remaining, one for each connected
component in ∪j∈[t1]G′

Tj
. Then any edge between remaining public key elements in pk2 would have

reduced the number of connected components, implying nt1+1 < nt1 .
Therefore, except with probability P1/t1, the transcript graph for P2 ⇐⇒ V2 is valid. This

means V2 accepts with probability at least C2 ≥ C1 − P1/t1.

3.5 Guessing Provers

A guessing prover has the following structure:

• The prover initially guesses a random partition W of V , such that each set in the partition
contains exactly one public key element. In other words, for each transcript element in V ,
the prover chooses a random public key element to associate the transcript element to. The
number of possible W is PN .

• Recall by Lemma 2.1 that we can always assume the prover only queries Act on input set
elements, and immediately outputs the result of the query as an set output. Consider such
a query ⟨y⟩ = Act(g, ⟨x⟩). The prover guarantees that for any such query, ⟨y⟩ is in the same
element of W as is ⟨x⟩.

• Let W ′ be the partition corresponding to the connected components of the final transcript
graph GT . Then if W ′ is not a refinement of W , the prover aborts and sends ⊥ for its last
message (which the verifier would presumably reject if it were respecting).

• The prover never makes any queries to Eq.

Lemma 3.4. If there is a public coin normal form ID protocol Π2 with a respecting verifier in
the group action model and t2 = 0, then there is a public coin normal form ID protocol Π3 with a
respecting verifier and guessing prover such that t3 = 0, C3 ≥ C2 × P−N2

2 , S3 ≤ S2, N3 = N2, P3 =
P2, R3 = R2. In particular, conditioned on P3 not sending ⊥, its correctness probability is at least
C2.

Proof. Recall that we assume P is given the random coins used during setup. In particular, P is
able to compute the discrete logs between public key elements. This means it always knows the
discrete logs between any group elements, and can therefore answer any Eq query by itself without
making the query.
P3 simply runs P2, except that it processes each query. Suppose P2 computes ⟨y⟩ = Act(g, ⟨x1⟩)

for public key element ⟨x1⟩, while P3 needs to compute ⟨y⟩ = Act(g′, ⟨x2⟩) for some other public
key element ⟨x2⟩. Since P3 can compute the discrete log h such that x1 = h ∗ x2, we can simply
set g′ = gh. Thus, P3 perfectly simulates the messages of P2, until the last message. Importantly,
all the previous messages are independent of W .

Whenever the prover convinces the verifier, since the verifier is respecting, the transcript graph
is valid and must therefore have each public key element in a different connecting component. Let
W ′ be the associated partition of the public key elements. Since W ′ is independent of W , we must
have that W ′ = W with probability P−N2

2 . In particular, W ′ is a refinement of W with probability
at least P−N2

2 . Hence, the overall correctness probability is at least C3 ≥ C2 × P−N2
2 .
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3.6 Finishing the Proof of Theorem 3.1

We are now ready to finish the proof of Theorem 3.1, by showing the following

Lemma 3.5. If there is a public coin normal form ID protocol Π2 with a respecting verifier in the
group action model, then for any polynomial poly, S2 ≥ (C2 − 1/poly)× P−N2

2

Proof. We first invoke Lemma 3.4 to arrive at a protocol Π3 with soundness error S3 ≤ S2, and
where the guessing prover P3 has correctness C2 conditioned on it not sending ⊥ in the last message,
for an overall correctness probability C3 ≥ C2 × P−N2

2 .
We create a family of malicious provers A(i), which are only given pk3, and attempt to simulate

P3. Let aux3 be the non-set element part of pk3. A(i) samples random coins for Gen3, conditioned
on Gen3 outputting aux3. By Lemma 2.1, the part of Gen3 that outputs aux3 maps bits to bits,
and so makes no oracle queries at all. Therefore, sampling the random coins can be done without

making any queries. Let sk
(1)
3 be the obtained public key.

In the case ofA(1), we now simply run P3(pk3, sk
(1)
3 ). Let q(1) be the probability of convincing the

verifier, conditioned on the final message of P3 not being ⊥. When ignoring the set elements, sk
(1)
3

is identically distributed to sk3. Therefore, P3(pk3, sk
(1)
3 ) is identically distributed to P3(pk3, sk3),

unless (1) the P3(pk3, sk
(1)
3 ) does not send ⊥, and also (2) there is a query in (g, i, j, b) ∈ Q where

b ̸= Ver(g, ⟨xi⟩, ⟨xj⟩). We note that if i, j are in the same part of the partition W , then this is
guaranteed to never happen, since all elements within a partition element are generated as in the
honest P3. Also, recall that the verifier is respecting, meaning for i, j in different parts, it rejects
if ever b = 1.

Therefore, the only “bad” case is when i, j are in different parts of the partition W , A(1)

generates (g, i, j, b = 0), but actually Ver(g, ⟨xi⟩, ⟨xj⟩) = 1, meaning g ∗ xi = xj . But observe that,
in this case, the actual Ver query reveals the discrete log between two public key elements, which
presumably should be hard. We will use this bad event to create a different adversary with a better
success probability.

Concretely, let A(2), generates sk
(1)
3 , but then simulates for itself the interaction V3(pk) ⇐⇒

A(1)(pk3, sk
(1)
3 ) (choosing its own messages for V3), but conditioned on the final transcript graph

GT yielding a partition W ′ that is a refinement of W . Note that since P3 never makes queries to
Eq and the transcript graph GT does not contain set elements, determining whether the simulation
has W ′ being a refinement of W can be computed without making any oracle queries at all (by
Lemma 2.1). So even though this event is exponentially unlikely, conditioning on this event can
be done with only a polynomial number of queries (namely the number of queries in the protocol).
Let p(1) be the probability a discrete log is revealed. By our conditioning on P3 not sending ⊥, we
have that (C3 − q(1)) ≤ p(1).

ThenA(2) chooses sk
(2)
3 from the same distribution as sk

(1)
3 , except that if any discrete logs g∗xi =

xj are revealed in the first step, it also conditions on Gen producing public key elements with these
discrete log. As before, this conditional sampling can be done without making any queries. Now

A(2) simply runs P3(pk3, sk
(2)
3 ). Let q(1) be the probability of convincing the verifier, conditioned on

the final output of P3 not being ⊥. Now by similar arguments as before, P3(pk3, sk
(2)
3 ) is identically

distributed to P3(pk3, sk3), unless a “bad” case occurs, where Q contains (g, i, j, b = 0) such that
Ver(g, ⟨xi⟩, ⟨xj⟩) = 1. Except here, the ”bad” case must also reveal a “new” discrete log, meaning
g ∗ xi = xj could not be derived from any discrete logs revealed in the first step. This is because if
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g ∗xi = xj could be derived from the discrete logs in the first step, our conditioning on the discrete
logs in the first step would have ensured that Q contained the correct value of b. Let p(2) be the
probability that a new discrete log is revealed. By our conditioning, we have that (C3−q(2)) ≤ p(2).

We similarly define A(3),A(4), . . . . We have that (C3 − q(i)) ≤ p(i).
Now, note that there can only be at most P3−1 “new” discrete logs revealed across the various

steps. This means that, for any u,
∑u

i=1 p
(i) ≤ P3 − 1. This in particular means that, for any u,

there must be an i ∈ [u] such that p(i) < P3/u. So for any desired polynomial error poly, there will
be some i ≤ poly × P3 such that p(i) < 1/poly, in which case q(i) > C3 − 1/poly. In other words,
A(i), conditioned on not outputting ⊥ in the final message, convinced the verifier with probability
at least C3 − 1/poly. Then, since A(i) outputs something other than ⊥ with probability at least
P−N3
3 , the overall soundness error of A(i) is at least S3 ≥ (C3 − 1/poly)× P−N3

3 .
It remains to show that A(i) makes a polynomial number of queries. Indeed, the sampling of

the various sk
(j)
3 requires no queries, and then A(i) runs i executions of the protocol, each incurring

a polynomial number of queries. Since i itself is polynomial, the total query count is polynomial.

4 Extensions

Here, we discuss a few possible different models for black box group actions, extending our model
from Section 3.

4.1 Direct Sampling

We now consider a model which captures the following feature of isogeny-based group actions: the
ability to directly sample into the set elements, without having to act on existing elements. Our
model is identical to the model from Section 2, except that it provides an additional random oracle
for sampling elements:

• Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if x = y and 0
otherwise.

• Act(g, ⟨x⟩) takes as input a group element g and a handle ⟨x⟩ to a set element, and returns a
handle ⟨y⟩ for the set element y = g ∗ x.

• Samp(s) takes as input a string s ∈ {0, 1}λ and outputs ⟨L(s)⟩ where L : {0, 1}λ → X is a
uniform random function.

As before, each query incurs unit cost, and all computation outside of queries is zero cost. Algo-
rithms are not allowed any computation on handles, except to pass them to other algorithms or
send as inputs to the oracles Eq,Act. The only handles an algorithm can query to Eq,Act are those
provided explicitly as input, or provided as output of prior queries to Act or Samp. Note that we
do not explicitly provide an ⟨x0⟩ as it is redundant, given Samp.

We call this model the extended black box group action model. We now prove the following:

Theorem 4.1. If a public coin ID protocol Π in the extended black box group action model has
completeness C, then for any polynomial t, the protocol is (t, S)-unsound, for S ≥ (C − P/t −
1/poly) × (P + 1)−N , where poly is any polynomial. In particular, if S ≤ 2−λ, C ≥ 0.99 and
t ≥ 2.05P , then N ≥ (λ− 1)/ log2(P + 1).
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Note that the quantitative theorem statement is almost identical to that of Theorem 3.1, except
that P−N is replaced with (P + 1)−N . This slightly weaker bound is inconsequential for security.

Proof. The proof follows a very similar outline to the proof of Theorem 3.1, with a couple of key
changes.

Normal Form Protocols. We first define a normal form protocol similar to Definition 3.1, but
with some changes:

• Verification is deterministic conditioned on the transcript. This is identical to Definition 3.1.

• Verification only queries Ver,Samp and not Act,Eq. This is identical to Definition 3.1, except
that we allow for Samp queries.

• The final message from the prover contains a list Q, where each entry in Q has either the
form (g, i, j, b) or s. Here, (g, i, j, b) represents an Act query as in Definition 3.1. The new
part are terms of the form s, which correspond to a query Samp(s).

• The verifier first makes queries corresponding to those in Q. These are the only queries it
makes. If any of the query responses are inconsistent with Q, the verifier immediately aborts
and rejects.

Assuming all queries are consistent, the verifier is allowed arbitrary subsequent deterministic
computation to decide whether to accept or reject, but it can make no additional queries.

By an essentially identical proof to that of Lemma 3.2, we can conclude the following:

Lemma 4.2. If there is a public coin ID protocol Π in the group action model, then there is also
a normal form ID protocol Π1 such that t1 = t, C1 = C, S1 = S,N1 = N,P1 = P,R1 = R+ 2.

The Transcript Graph. We define the transcript graph similarly to Section 3, except that we
also include the results of any verifier queries to Samp as nodes in the graph. We connect nodes in
this graph via accepting Ver queries as before.

We say that a transcript graph is valid if there is no path between any two public key elements,
and also no path between a public key element and an Samp element. We include paths of length
zero in our notion of paths, so every node has a path to itself. In other words, each public key
element lies in a different connected component, and those connected components are distinct from
any connected component containing an Samp element. Otherwise, a transcript graph is invalid.

Respecting Verifiers. As in Section 3, a respecting verifier for a normal-form protocol is one
that rejects invalid transcript graphs, except we use our updated notion of invalid transcripts. We
now state an updated version of Lemma 3.2 to work with extended group actions, which follows
from an essentially identical argument.

Lemma 4.3. If there is a public coin normal form ID protocol Π1 in the extended group action
model, then there is also a public coin normal form ID protocol Π2 with a respecting verifier, such
that t2 = 0, C2 ≥ C1 −N1/t1, S2 ≤ S1, N2 = N1, P2 ≤ P1, R2 = R1.
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Guessing Provers. A guessing prover has the following structure:

• The prover initially guesses a random partition W of V into P + 1 sets, P of which contain
exactly one public key element, and the final set containing none. The difference from Sec-
tion 3 is that we allow for this extra set containing no public key elements. The number of
possible W is (P + 1)N , slightly more than in Section 3 owing to the additional set.

• The prover only queries Act on input set elements or the result of a Samp query. It then
immediately outputs the result of the Act query as an set output. Moreover, for any such
query ⟨y⟩ = Act(g, ⟨x⟩), the prover guarantees that ⟨y⟩ and ⟨x⟩ are in the same element of
W . This is the same as Section 3, except we allow the prover to derive its outputs also from
Samp queries.

• Let W ′ be the partition corresponding to the connected components of the final transcript
graph GT . Then if W ′ is not a refinement of W , the prover aborts and sends ⊥ for its last
message (which the verifier would presumably reject if it were respecting).

• The prover never makes any queries to Eq.

The following is proved via an almost identical proof to Lemma 3.4:

Lemma 4.4. If there is a public coin normal form ID protocol Π2 with a respecting verifier in the
extended group action model and t2 = 0, then there is a public coin normal form ID protocol Π3

with a respecting verifier and guessing prover such that t3 = 0, C3 ≥ C2 × P−N2
2 , S3 ≤ S2, N3 =

N2, P3 = P2, R3 = R2. In particular, conditioned on P3 not sending ⊥, its correctness probability
is at least C2.

Finishing the Proof. We now give an extension of Lemma 3.5, which finishes the proof of
Theorem 4.1:

Lemma 4.5. If there is a public coin normal form ID protocol Π2 with a respecting verifier in the
group action model, then for any polynomial poly, S2 ≥ (C2 − 1/poly)× (P2 + 1)−N2

The proof follows an almost identical argument to that of Lemma 3.5, leveraging Lemma 4.4.
Putting Lemmas 4.2, 4.3, and 4.5 together gives Theorem 4.1.

4.2 Black Box Graph Actions

Here, we generalize the group structure of the black box group action to what we call a graph
action. Instead of a group, there is a labelled directed graph G = (X,E) whose nodes are the set
X, satisfying the following properties:

• Reversibility: If there is an edge (x, y) ∈ E, then (y, x) ∈ E.

• Composition: If there is a path p from x to y, then the edge (x, y) ∈ E.

• Unambiguous labels: For any node x, all the outgoing edges from x have distinct labels.
Likewise, all the incoming edges to x have distinct labels. There may be overlapping edges
amongst between the incoming and outgoing edges.
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• Base labels: There is a set S of labels, such that for every node x ∈ X and every label
s ∈ S, there is an incoming edge and an outgoing edge from x with label s.

In the case of a group action, the edge labels are group elements, and for all nodes x and group
elements g, the edge (x, g ∗ x) ∈ E and has label g. Reversibility, composition, and unambiguous
labels follow immediately from the basic properties of group actions.

Now the following oracles are provided to all parties:

• Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if x = y and 0
otherwise.

• Act(ℓ, ⟨x⟩) takes as input a label ℓ and a handle ⟨x⟩ to a node. If there is an edge (x, y) ∈ E
with label ℓ, then output (ℓ′, ⟨y⟩), where ℓ′ is the label for (y, x) ∈ E. Otherwise output ⊥.

• Inv(ℓ, ⟨x⟩) takes as input a label ℓ and a handle ⟨x⟩ to a node. If there is an edge (y, x) ∈ E
with label ℓ, then output (ℓ′, ⟨y⟩), where ℓ′ is the label for (x, y) ∈ E. Otherwise output ⊥.

• Comp(ℓ1, ℓ2, ⟨x⟩) takes as input labels ℓ1, ℓ2 and a handle ⟨x⟩ to a node. If there are edges
(x, y) ∈ E and (y, z) ∈ E with labels ℓ1, ℓ2 respectively, then output ℓ3, the label for the edge
(x, z). Otherwise output ⊥.

Like with the group action model, each query incurs unit cost, and all computation outside of
queries is zero cost. Algorithms are not allowed any computation on handles, except to pass them to
other algorithms or send as inputs to the oracles Eq,Act, Inv,Comp. A probabilistic polynomial time
algorithm is a probabilistic algorithm in this model whose total cost is bounded by a polynomial.
We can also consider extending the model to include an Samp which generates handles to random
nodes.

By inspecting our proof of Theorem 3.1, we see that our lower bound also holds in the black
box graph action model. The limitation of this model, however, is that for many graphs, there
is trivially no security. Thus, while our impossibility for short signatures will apply for arbitrary
graphs, in many cases the impossibility is uninteresting as there will be more trivial attacks.

In more detail, consider an adversary given a handle ⟨x⟩ to a node. The adversary can choose
two arbitrary labels ℓ1, ℓ2, and compute Comp(ℓ1, ℓ2, ⟨x⟩), resulting in a label ℓ3. Observe that
ℓ1, ℓ2, ℓ3 are given as bit-strings, as opposed to handles.

For a general graph structure, it may be that Comp(ℓ1, ℓ2, ⟨x⟩) ̸= Comp(ℓ1, ℓ2,
⟨y⟩) for different nodes x, y. Thus, ℓ3 potentially tells us information about x. If the adversary can
generate many such (ℓ1, ℓ2) pairs, then after a polynomial number of queries x may be uniquely
determined by the list of ℓ3 = Comp(ℓ1, ℓ2, ⟨x⟩) values. In such a case, the graph action trivially has
no security: an adversary can de-reference ⟨x⟩ into x by making a polynomial number of queries
to get a list of ℓ3 values, and then brute force search for a node x ∈ G with the given composition
structure. This brute force search may require exponential computation, but since the query count
is polynomial this would be considered an adversary in the black box graph action model.

Such a trivial insecurity does not contradict our lower bound, but would render it meaningless.
The obvious way out would be for the graph to have the property that Comp(ℓ1, ℓ2, ⟨x⟩) =

Comp(ℓ1, ℓ2, ⟨y⟩) for all x, y, or at least for equality to hold with overwhelming probability over
random x, y. In other words, for any ℓ1, ℓ2, there is a unique ℓ3 such that Comp(ℓ1, ℓ2, ⟨x⟩) = ℓ3 for
most x.
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But in this case, if we define ℓ1 × ℓ2 as the unique ℓ3, this gives us a group structure on the
set of labels, and this group acts on the set X. Thus, it appears that to avoid trivial attacks, we
actually imposed a group action structure, and thus reduce to the case of Section 3.

4.3 A Fully Idealized Graph Action

Here, we present a fully idealized graph action model, which allows for general graphs (not corre-
sponding to group actions) without rendering the graph action model trivially insecure.

The idea is to protect edge labels behind handles, in addition to the nodes. This means that,
even though Comp(ℓ1, ℓ2, ⟨x⟩) ̸= Comp(ℓ1, ℓ2, ⟨y⟩), the actual output of Comp(ℓ1, ℓ2, ⟨x⟩) is a handle.
Attempting to brute force search for x given the list of label handles is no longer possible without
making exponentially many queries.

This model is incomparable to the previous graph action model and also the group action
model: while it prevents the attacker from making use of the bit representation of edge labels, it
also prevents the construction from making use of such labels. In much of the group action and
isogeny literature, the protocols do not need the bit representation, and would work with such a
fully idealized graph action model. But there are construction techniques that would make use of
such a bit representation (see [Zha22] for a discussion in the context of generic groups), and our
fully idealized model would not allow for such techniques. Thus, while the model extends the graph
structure, it limits constructions in other ways.

We now give the model. The graph G = (X,E) is still defined in the same way, but we modify
the oracles that are provided to the parties:

• Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if x = y and 0
otherwise.

• Act(⟨ℓ⟩, ⟨x⟩) takes as input a handle ⟨ℓ⟩ to a label and a handle ⟨x⟩ to a node. If there is
an edge (x, y) ∈ E with label ℓ, then output (⟨ℓ′⟩, ⟨y⟩), where ℓ′ is the label for (y, x) ∈ E.
Otherwise output ⊥.

• Inv(⟨ℓ⟩, ⟨x⟩) takes as input a handle ⟨ℓ⟩ to a label and a handle ⟨x⟩ to a node. If there is
an edge (y, x) ∈ E with label ℓ, then output (⟨ℓ′⟩, ⟨y⟩), where ℓ′ is the label for (x, y) ∈ E.
Otherwise output ⊥.

• Comp(⟨ℓ1⟩, ⟨ℓ2⟩, ⟨x⟩) takes as input handles ⟨ℓ1⟩, ⟨ℓ2⟩ to labels and a handle ⟨x⟩ to a node. If
there are edges (x, y) ∈ E and (y, z) ∈ E with labels ℓ1, ℓ2 respectively, then output ⟨ℓ3⟩, the
handle to the label for the edge (x, z). Otherwise output ⊥.

The following is a straightforward extension of Theorem 3.1:

Theorem 4.6. If a public coin ID protocol Π in the fully idealized black box graph action model
has completeness C, then for any polynomial t, the protocol is (t, S)-unsound, for S ≥ (C − P/t−
1/poly)× P−N , where poly is any polynomial. In particular, if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P ,
then N ≥ (λ− 1)/ log2 P .
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