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Abstract

An anamorphic encryption scheme allows two parties who share a so-called double key to
embed covert messages in ciphertexts of an established PKE scheme. This protects against a
dictator that can force the receiver to reveal the secret keys for the PKE scheme, but who is
oblivious about the existence of the double key. We identify two limitations of the original
model by Persiano, Phan, and Yung (EUROCRYPT 2022). First, in their definition a double
key can only be generated once, together with a key-pair. This has the drawback that a receiver
who wants to use the anamorphic mode after a dictator comes to power, needs to deploy a new
key-pair, a potentially suspicious act. Second, a receiver cannot distinguish whether or not a
ciphertext contains a covert message.

In this work we propose a new model that overcomes these limitations. First, we allow to
associate multiple double keys to a key-pair, after its deployment. This also enables deniability
in case the double key only depends on the public key. Second, we propose a natural robustness
notion, which guarantees that anamorphically decrypting a regularly encrypted message results
in a special symbol indicating that no covert message is contained, which also eliminates certain
attacks.

Finally, to instantiate our new, stronger definition of anamorphic encryption, we provide
generic and concrete constructions. Concretely, we show that ElGamal and Cramer-Shoup
satisfy a new condition, selective randomness recoverability, which enables robust anamorphic
extensions, and we also provide a robust anamorphic extension for RSA-OAEP.
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1 Introduction

1.1 Background and Motivation

Cryptography has a huge impact on society, particularly with regards to the right to privacy. The
increased use of electronic communication has heightened concerns over privacy, leading to debates
between researchers and politicians about the need to limit encryption as a safeguard to privacy.

In [PPY22], Persiano, Phan, and Yung, point out that the security guarantees offered by
cryptography for private communication rely on two implicit and fundamental assumptions: the
sender-freedom assumption and the receiver-privacy assumption. The former assumes that, when
using a regular public-key encryption (PKE) scheme, the sender is free to pick the message to be
sent, while the latter assumes that the message is considered private based on the assumption that
the receiver’s private key is not compromised. The authors argue that both assumptions can be
challenged by those parties whose power cryptography threatens to limit. For instance, in a dictator-
led country, individuals can be forced by authorities to encrypt and send adversarially-selected
messages, thereby undermining the sender-freedom assumption. Additionally, law enforcement
agencies can request the private keys of citizens, thereby undermining the receiver-privacy assumption.
This presents a significant challenge for cryptography, particularly as governments around the world
seek to limit the power of encryption in order to maintain control.

In order to overcome the second challenge, Persiano et al. introduce a new cryptographic
paradigm, receiver-anamorphic encryption. As introduced in [PPY22], a receiver-anamorphic
PKE scheme PKE = (Gen,Enc,Dec) can be deployed in two different ways: normal or anamorphic.
In the normal mode, a receiver initially generates a regular key-pair (sk , pk) using PKE.Gen and
authentically broadcasts the public key pk to everyone; then a sender can encrypt a message m

with pk using PKE.Enc, which can be recovered by the receiver from the resulting ciphertext c with
the secret key sk using PKE.Dec. Additionally, PKE is associated with a so-called anamorphic
triplet AnamPKE = (aGen, aEnc, aDec). In the anamorphic mode, the receiver initially generates
an anamorphic key-pair (ask , apk) together with a so-called double key dk using AnamPKE.aGen,
and only broadcasts the anamorphic public key apk , which ideally is indistinguishable from a
regular public key pk . Now, any sender can use apk to normally encrypt a message m using
PKE.Enc, but selected senders, with whom the receiver additionally shared the double key dk , using
AnamPKE.aEnc will be able to embed a covert message m̂ in the encryption of a normal message
m. Hence, a ciphertext c produced using the double key dk (which necessarily also contains the
anamorphic public key apk) carries two messages: the normal message m that can be decrypted
with the anamorphic secret key ask using PKE.Dec, and the covert message m̂ that can be decrypted
with the double key dk using AnamPKE.aDec. Such scheme allows to protect sensitive information
from an adversary who might force the receiver to surrender the secret key. When requested to do
so, the owner of an anamorphic key-pair (ask , apk) will reveal the associated anamorphic secret
key ask , but not the double key dk . The adversary will then gain access only to the normal
message m, while the covert message m̂ containing sensitive information remains private. The
security requirement is that the anamorphic key-pair (ask , apk) must be indistinguishable from
its normal counterparts (sk , pk), and the ciphertexts produced using the double key dk must be
indistinguishable from those produced using a normal public key pk .
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For the receiver-anamorphic setting, on which this paper solely focuses, Persiano et al. put
forth two constructions. The first is based on rejection sampling, a technique inspired by the
biased-ciphertext attack of [BPR14], that allows to send one bit as covert message. As part of
their shared double key, sender and receiver agree upon a secret key K for a PRF F mapping
ciphertexts to bits. Then, to embed a covert bit b in the encryption of a normal message m, the
sender generates fresh ciphertexts c← Enc(pk ,m) until F(K, c) = b. Note that this approach can
be naturally extended to bitstrings, but to keep anamorphic encryption efficient, the sender can
only transmit logarithmically many bits in the security parameter κ.

The second construction is based on the celebrated Naor-Yung transform (NYT), that given an
IND-CPA PKE scheme CPA = (Gen,Enc,Dec) and a simulation-sound NIZK NIZK = (Prove,Verify)
for a polynomial-time relation capturing equality of plaintext for CPA, with simulator (S0, S1), yields
an IND-CCA PKE scheme NYT = (Gen ′,Enc ′,Dec ′). We first briefly recall how the traditional
NYT is defined, and then give an overview of its anamorphic mode given by Persiano et al. The key
generation algorithm NYT.Gen ′ defines the public key pk ′ := (pk 0, pk 1, σ), where pk 0 and pk 1 two
independently chosen public keys of CPA, and σ is a CRS for NIZK. Crucially, the secret key is
defined only as sk ′ := sk 0, the secret key associated with pk 0, that is, sk 1 (the secret key associated
with pk 1) is forgotten by NYT.Gen ′. To encrypt message m, the encryption algorithm NYT.Enc ′ first
computes ciphertexts c0 := CPA.Enc(pk 0,m; r0) and c1 := CPA.Enc(pk 1,m; r1), using random and
independent coin tosses r0 and r1. Then, it runs NIZK.Prove on input instance ((pk 0, c0), (pk 1c1)),
witness (r0, r1,m), and σ from pk ′, producing a proof π that c0 and c1 encrypt the same message,
and finally outputs ciphertext c := (c0, c1, π). The decryption algorithm NYT.Dec ′ simply runs
NIZK.Verify to check π and, if successful, outputs m := Dec(sk 0, c0).

The anamorphic triplet AnamNYT = (aGen, aEnc, aDec) for NYT is defined as follows. The
anamorphic key generation algorithm AnamNYT.aGen defines the anamorphic public key as apk :=

(pk 0, pk 1, σ), where pk 0 and pk 1 two independently chosen public keys of CPA, but the CRS σ is
instead obtained by running simulator S0, which returns the CRS-trapdoor pair (σ, τ). The anamor-
phic secret key is defined as ask := sk 0, whereas the double key is defined as dk := (pk 0, pk 1, sk 1, τ).
The anamorphic encryption algorithm AnamNYT.aEnc takes as input the double key dk , a nor-
mal messages m, and a covert message m̂ from the same message space, and first computes
c0 := CPA.Enc(pk 0,m; r0) and c1 := CPA.Enc(pk 1, m̂; r1). The (fake) proof π is then constructed
by running the simulator S1 on input the trapdoor τ and the instance ((pk 0, c0), (pk 1, c1)). The
anamorphic decryption algorithm AnamNYT.aDec works exactly as NYT.Dec ′. Maybe somewhat
surprisingly, the anamorphic mode for the Naor-Yung scheme allows to embed covert messages from
the same domain of normal messages. Persiano et al. argue that therefore, this effectively allows for
bandwidth rate of 1, as opposed to (log κ)/κ for the rejection sampling technique.

Limitation of Persiano’s et al. Work. In this paper we identify two limitations of the original work.
The first is that in Persiano et al.’s model of (receiver-)anamorphic encryption, anamorphic key-
pairs and double keys are coupled, that is, once the public key is deployed, it is not possible
anymore to associate with it a new double key. This is indeed the case for their Naor-Yung
anamorphic encryption scheme. To see this, imagine a receiver broadcasting a regular NYT public
key (pk 0, pk 1, σ); now, since the CRS σ is generated normally rather than with the simulator S0, it
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is impossible to associate a fresh double key dk = (pk 0, pk 1, sk 1, τ), because the receiver neither
has sk 1 (recall that this is forgotten by regular key-generation), nor the trapdoor τ.

The second limitation is that in the original set of notions, an important property is missing:
When decrypting anamorphically a ciphertext that was generated using normal encryption, it
should be natural to except an error signaling the receiver that the ciphertext is void of any covert
message. By default this is not achieved by both the rejection sampling technique and the Naor-Yung
anamorphic scheme, since anamorphic decryption will always output a message.

We will therefore modify the model by allowing double keys to be created independently of
key-pairs, and also introduce a new notion for anamorphic encryption which we call robustness,
addressing the above mentioned issue. We will first develop simple solutions relying on sender and
receiver being synchronized by keeping matching counters, but the main challenge will be to get rid
of this last assumption. Therefore, the natural question which we fully solve in this paper can be
summarized as:

Can we construct (receiver-)anamorphic PKE schemes that are robust and do not
require the sender and the receiver to be synchronized?

We will affirmatively answer this question by proposing both an improvement of the model, as well
as novel constructions within it, starting from ones that assume synchrony between sender and
receiver, and culminating in one which is unsynchronized. We see a parallel between our work and
that of Abdalla et al. [ABN10], which introduced the robustness notion for PKE only a decade after
the notion of key-privacy was originally introduced by Bellare et al. [BBDP01], and which are by
now understood to be two essential properties which go hand in hand in the context of anonymity
(cf. [KMO+13]).

1.2 Contributions

Stronger Model. In [PPY22], the anamorphic key generation algorithm outputs a key-pair and
a double key. The requirement is then that the output “anamorphic” key-pair essentially is
indistinguishable from a regular key-pair. We strengthen the model by requiring that the anamorphic
key generation only outputs a double key, on input a key-pair. Therefore, in our model there is no
“anamorphic” key-pair, and for this reason in this work we use quotation marks (when referring
to concepts from the original work of [PPY22]). For the same reason, in our work we update the
original term “anamorphic triplet” used by Persiano et al. to “anamorphic extension”. We identify
several advantages of our new model.

Multiple double keys. Our new model allows the receiver to set up several double keys for its public
key, not just one. This enables the possibility to have multiple covert channels, something
that is for example impossible to achieve with the Naor-Yung anamorphic encryption scheme.

On-the-fly double keys. Maybe even more crucially, being able to open a covert channel after having
deployed a public key seems to be a crucial requirement in the dictator model envisioned by
Persiano et al. Indeed, we think that the Naor-Yung anamorphic encryption scheme partially
contradicts the original paradigm, since a dictator that comes to power after the receiver has
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deployed a public key, will be suspicious of such public key being updated (to accommodate
for a secret double key).

Covert channel towards a different receiver. Another advantage of decoupling double keys from key
pairs is that it potentially allows to embed covert messages addressed to a party different
than the one in possession of the secret key associated with the public key used. We remark
that this is only the case if anamorphic decryption does not depend on the secret key of the
normal receiver, which will be the case for all our constructions but the first.

Deniability. Finally, we note that our model naturally enables an important property for the receiver:
deniability. In case the double key only depends on the public key (which is indeed the
case for all of our constructions), a malicious sender holding the receiver’s double key cannot
convince the dictator that the receiver holds the same double key, and therefore would be
misbehaving (in the eyes of the dictator). More precisely, because the double key can be
generated either by the sender or the receiver, the sender could simulate a double key and a
couple of messages, without the help of the receiver.

This is in contrast with Persiano et al.’s anamorphic Naor-Yung transform AnamNYT. There,
note that a malicious sender could frame a receiver who set up a double key in conjunction
with an “anamorphic” key-pair (and therefore implicitly depending on the “anamorphic” secret
key) simply by conveying the double key dk = (pk 0, pk 1, sk 1, τ) to the dictator. Then, the
latter can do the following, to be convinced that indeed the receiver set up the key-pair
pk = (pk 0, pk 1, σ) anamorphically: First, pick two different messages m0,m1 and obtain the
ciphertexts c0 := CPA.Enc(pk 0,m0; r0) and c1 := CPA.Enc(pk 1,m1; r1), for some fresh and
independent randomnesses r0, r1. Then, produce a fake proof π using the simulator S1 on
input the trapdoor τ (from the double key dk) and the (false) instance ((pk 0, c0), (pk 1, c1)).
Finally, run NIZK.Verify on input the CRS σ, the instance ((pk 0, c0), (pk 1, c1)), and the proof
π. If this yields 1, then the dictator can tell that indeed it was able to generate a covert
message that is bound to the receiver via its public key pk . The key insight is that this proves
that the receiver must have shared the trapdoor of the simulated CRS with the snitching
sender, as otherwise the latter could not have come up with a valid trapdoor τ for the CRS σ

that would have made the dictator successfully verify.

Robustness Notion. In [PPY22], no notion of robustness was considered. In particular, for a
given PKE scheme (Gen,Enc,Dec) with an anamorphic extension (aGen, aEnc, aDec) and honestly
generated (“anamorphic”) key-pair (sk , pk) and double key dk , the authors only contemplated the
following three cases (additionally to the case consisting of the regular use of the base scheme):

1. A message and covert message pair (m, m̂) is encrypted using the anamorphic encryption
algorithm aEnc and is decrypted using the anamorphic decryption algorithm aDec (fully
anamorphic encryption mode or fAME in the original work).

2. A message and covert message pair (m, m̂) is encrypted using the anamorphic encryption
algorithm aEnc and is decrypted using the regular decryption algorithm Dec (anamorphic
with normal decryption or andAME in the original work).
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3. A message m is encrypted using the regular encryption algorithm Enc and is decrypted using
the regular decryption algorithm Dec (normal mode of operation or nAME in the original
work).

Clearly, an important case is missing:1

4. A message m is encrypted using the regular encryption algorithm Enc and is decrypted using
the anamorphic decryption algorithm aDec.

In this latter case, it is intuitively desirable that a special symbol ⊥ is output indicating that
the ciphertext (intentionally) contains no covert message. This is important because in the dictator
model introduced in [PPY22], a crucial paradigm is that of anamorphically enhancing schemes that
are well-established, and therefore potentially already being actively used for regular communication
(and only occasionally required to transmit covert messages, from some point in time onward). We
put forth a notion of robustness for anamorphic encryption that aims exactly at capturing this. We
require that messages encrypted with the regular encryption algorithm, if decrypted anamorphically,
reveal no covert message whatsoever (since there was none meant in the first place), that is, the
special symbol ⊥ is output instead.

Maybe even more critically, we also observe that robustness might be not solely about func-
tionality, but about security as well: The dictator could trick receivers into reveling that they are
indeed in possession of a double key by sending them normally encrypted messages and observing
whether they show any reaction. For a non-robust anamorphic scheme this might indeed be the
case, while for a robust scheme this attack yields no information to the dictator.

Assuming we have an anamorphic extension of a PKE scheme that is not robust in the sense
above, a naive approach that achieves the notion is for the sender and receiver to agree on a subspace
of the covert messages that are deemed invalid. The larger such subspace, the higher the chances
that a ciphertext not intentionally carrying a covert message, is not falsely interpreted by the
receiver as instead carrying one. For example, considering the rejection sampling technique outlined
before for transmitting one bit covertly, one could pick a PRF mapping ciphertexts to t+ 1 bits
instead of just one bit, and then require that only ciphertext mapped by the PRF to a bitstring
0tb, for some b ∈ {0, 1}, are to be understood as intentionally carrying the covert message b.

Indeed, in one of our constructions, we will follow this approach. Still, a natural question is
whether it is possible to construct anamorphic extensions that already achieve robustness, without
the need of sacrificing a subset of the possible covert messages as in the approach outlined above.
We will show that indeed such anamorphic extensions are possible.

Constructions. We begin by providing a generic approach to obtain anamorphic extensions achieving
robustness that assumes sender and receiver to be synchronized, that is, by assuming they use
matching counters to anamorphically encrypt and decrypt the same covert message. We then
identify a new class of PKE schemes by putting forth a new property, which we call selective
randomness recoverability (SRR), and which allows for the parties to be unsynchronized. More

1 The original work considers a further case, the anamorphic with normal encryption or aneAME, but in our
model, since the anamorphic key generation algorithm does not output a key-pair, this case is equivalent to our third
case, and hence irrelevant.
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precisely, the sender will keep state (or even be stateless), but crucially the receiver will be able to
decrypt without the need of knowing the sender’s state. We will show that the well-established
schemes of ElGamal [ElG85] and Cramer-Shoup [CS98] satisfy our SRR notion, and can therefore
be used in a robustly anamorphic mode. Finally, we also provide a generic transformation yielding
a robustly anamorphic encryption scheme from one that is anamorphic but not robust. We apply
this transformation to the OAEP scheme from [BR95], thus showing that the well-established
RSA-OAEP scheme can be used in a robustly anamorphic mode.

On Covert Message Space Size. We remark that our constructions support covert messages smaller
than normal messages, unlike Persiano et al.’s anamorphic Naor-Yung transform AnamNYT which
allows covert messages of the same size as normal ones. Indeed, as the authors of [PPY22] claim,
their scheme achieves bandwidth rate of 1, since it is possible to embed covert messages from the
same space as that of normal messages. However, we argue that their notion of bandwidth rate
is perhaps not practically justifiable. Rather than comparing the size of covert messages with the
size of normal messages, we propose to compare it with the expansion caused by encryption.
Intuitively, this makes sense, because, in practical terms, the number of extra bits introduced by
encrypting define an upper bound on how many bits can actually be securely embedded as covert
message in the ciphertext. With respect to this new notion, the scheme AnamNYT would not
achieve bandwidth rate of 1. See Section 3.3 for a more in-depth discussion.

1.3 Related Work

Anamorphic encryption shares similar goals with key-escrow [Mic93, Bla94, FY95, Dak96, AAB+97,
YY98, AAB+15, GKL21], deniable encryption [CDNO97], kleptography [YY96, YY97, YY98,
YY10, CNE+14, BPR14, RTYZ16, RTYZ17], (public-key) steganography [Sim83, R+98, vH04], and
subvertable backdoored encryption [HPRV19], but also significantly differs from those in various
aspects. For a comprehensive comparison to the cited papers, we refer the reader to the original
work by Persiano et al. [PPY22].

Concurrently to our work, Kutyłowski, Persiano, Phan, Yung, and Zawada have extended the
anamorphic setting to capture digital signatures [KPP+23b] and also investigated more PKE schemes
satisfying their notions of receiver-anamorphic encryption [KPP+23a]. We point out that in the
latter work, even though the authors considered anamorphic modes for schemes also studied in our
paper, such as ElGamal, Cramer-Shoup, and RSA-OAEP, their model does not include the notion
of robustness. Moreover, maybe even more importantly, we note that one of their solutions, used for
example in their anamorphic mode for ElGamal and Cramer-Shoup, consists of including parts of
the receiver’s secret key in the double key2, which is not the case for any of our constructions. We
consider this approach dissatisfactory, since sharing the secret key directly undermines the security
of the regular use of the underlying PKE scheme.

After publication of our preprint [BGH+23], more articles pertaining robustness in anamorphic
encryption appeared. Wang, Chen, Huang, Yung [WCHY23] introduced an analogous robustness
notion for sender -anamorphic encryption. Their notion also captures the guarantee that decryption

2 In case of ElGamal the whole secret key is included.
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of anamorphic ciphertexts with the wrong duplicate secret key should result in an explicit abort signal.
In [CGM24], Catalano, Giunta, and Migliaro extend the notion of anamorphism to homomorphic
encryption, and in their work they also provide new anamorphic constructions of regular PKE
schemes that also satisfy robustness. In particular they show how both the classic hybrid encryption
paradigm and the IBE-to-CCA construction enable a robust anamorphic extension.

2 Preliminaries

2.1 Notation

Let N = {1, 2, . . .}. For any n ∈ N, we use the convention [n]
.
= {1, . . . , n}. For any sets K, T , we

model a look-up table T mapping a key k ∈ K to a value v ∈ V as a function K→ V ∪ {⊥}, and we
define the following operations: Initializing a look-up table T to an empty one is denoted T := [ ];
Assigning value v to key k in T is denoted T[k] := v, and we assume that any value previously
assigned to k will be overwritten by v; Reading the value assigned to key k in T and assigning it to
v is denoted v := T[k], and if T does not hold any value for k (that is, no value has been assigned
to k in T before), then v will be assigned the special symbol ⊥. Finally, if X is a finite set, we
let x $← X denote picking an element of X uniformly at random and assigning it to x, and for a
probabilistic algorithm A we let y← AO1,O2,... denote running A with oracle access to O1, O2, . . .,
modeled as functions, and assigning the output to y.

2.2 Games, Adversaries, and Reductions

We work in the concrete security setting pioneered by Bellare et al. [BKR94, BDJR97], and use the
code-based game-playing framework of Bellare and Rogaway [BR06]. All of our security notions are
defined following the real-or-ideal paradigm, where a distinguisher3 needs to tell two games apart.
A game G specifies a number of procedures O1,O2, . . . that model oracles for the distinguisher
D. G also optionally defines a procedure Init, and (if not specified otherwise), D will output a
bit b. Execution of distinguisher D with game G then consists of running D with oracle access to
Init and O1,O2, . . ., with the restrictions that D’s single call to Init must be its first overall call.
Any input given to Init as well as any variable specified therein, will be subsequently accessible
(both readable and writable) to any of the other oracles. Moreover, a distinguisher D ′ internally
running another distinguisher D with (simulated) oracles Init∗,O1,O2, . . . will also learn all the
input and output values resulting from the interaction of D with its oracles, and these will be
implicitly referred in the code. The output of the execution is the bit output by D, and we use the
notation Pr[G(D)]

.
= Pr[b = 0 |b ← DInit,O1,O2,...]. We abuse notation and let Pr[bad] denote the

probability that a flag bad (initially set to false) is set to true in some game. Finally, in order not to
overload the notation, we associate public and anamorphic parameters of schemes implicitly in
games and adversaries.

3 We use the term distinguisher rather than adversary because the latter is more general, but our notions are all
real-or-ideal.
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Game Gprf-0
F

Init():

01 K $← K

Eval(X):

02 return F(K,X)

Game Gprf-1
F

Init():

01 f $← YX

Eval(X):

02 return f(X)

Figure 1: Games defining prf security for a function F : K ×X → Y.

2.3 Public-Key Encryption (PKE)

We begin by recalling the conventional syntax of public-key encryption and its associated notion of
security. In this work we only consider indistinguishability under chosen-plaintext attacks, rather
than chosen-ciphertext attacks.

Definition 2.1. A public-key encryption (PKE) scheme is a tuple Π = (Gen,Enc,Dec) depending
on some implicit public parameter pp, where:

• Gen is a probabilistic algorithm that outputs a key-pair (sk , pk)← Gen().

• Enc is a probabilistic algorithm that on input a public key pk and a message m ∈ M,
outputs a ciphertext c← Enc(pk ,m). When necessary, we make the randomness r ∈ R
explicit by writing c := Enc(pk ,m; r).

• Dec is a deterministic algorithm that on input a secret key sk and a ciphertext c, outputs
a message m := Dec(sk , c) ∈ M, or potentially a special symbol ⊥ /∈ M indicating an
error.

We call a PKE scheme perfectly correct if for every message m ∈ M,

Pr[Dec(sk ,Enc(pk ,m)) = m | (sk , pk)← Gen()] = 1.

In this paper we tacitly consider only PKE schemes that are perfectly correct and which sample
the randomness always uniformly at random, which means that c← Enc(pk ,m) is always the same
as r $← R followed by c := Enc(pk ,m; r). Moreover, since we only consider PKE schemes that achieve
IND-CPA security, we also assume that for any pk , m, r, and r ′, Enc(pk ,m; r) ̸= Enc(pk ,m; r ′).

2.4 Pseudorandom Functions (PRF)

Let F : K×X → Y be an efficiently computable function. We say that F is a (secure) pseudorandom
function (prf) if for any K ∈ K, F(K, ·) is indistinguishable from a uniformly selected X → Y function
f.

Definition 2.2. For F : K ×X → Y, we define the advantage of a prf distinguisher D as

Advprf
F (D)

.
= Pr[Gprf-0

F (D)] − Pr[Gprf-1
F (D)],

with games Gprf-0
F and Gprf-1

F as defined in Figure 1. We let q(D) denote the total number of
queries to Eval made by D.
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3 Rethinking the Anamorphic Model

In this section we present our first contribution regarding the model, which we see as putting
anamorphic encryption on solid grounds.4 Recall that in this paper we are only focusing on
receiver -anamorphic encryption, and therefore we will drop the prefix most of the times.

3.1 Enhancing the Model: Decoupling Double Keys from Key-Pairs

As previously mentioned, our first contribution consists in changing the model for (receiver-
)anamorphic encryption so that the process of generating a double key is not coupled with the
process of generating a key-pair. Again, this has several advantages, such as allowing to set up
double keys on the fly for an already deployed public key, the possibility to set up more than just
one double key, and therefore have different covert channels, and finally also the possibility to set
up covert channels towards parties other than the holder of the used public key.

Syntax of (Receiver-)Anamorphic PKE. We begin by defining the syntax of an anamorphic extension
Σ for a given PKE scheme Π. Note that Π implicitly defines some public parameters pp, upon which
Σ’s implicit anamorphic parameters ap depend.

Definition 3.1. For a PKE scheme Π = (Gen,Enc,Dec) with implicit public parameter pp, an
anamorphic extension for Π is a tuple Σ = (aGen, aEnc, aDec) depending on some implicit
anamorphic parameter ap (depending on pp), where:

• aGen is a probabilistic algorithm that on input a key-pair (sk , pk) for Π, outputs a double
key dk ← aGen(sk , pk).

• aEnc is a probabilistic algorithm that on input a double key dk, a (normal) message
m ∈ M for Π, and a covert message m̂ ∈ M̂, outputs a ciphertext c ← aEnc(dk ,m, m̂)

for Π. When necessary, we make aEnc stateful by including a state st as input and a
new state st ′ as output, and writing (c; st ′) := aEnc(dk ,m, m̂; st). We denote by ε the
initial empty state.

• aDec is a deterministic algorithm that on input a double key dk and a ciphertext c for Π,
outputs a covert message m̂ := aDec(dk , c) ∈ M̂ or the special symbol ⊥ /∈ M̂ indicating
the absence of a covert message. When necessary, we make aDec stateful including a
state st as input and a new state st ′ as output, and writing (m̂; st ′) := aDec(dk , c; st).

Note that unlike how we defined PKE in Definition 2.1, for anamorphic extensions we do not
hard-code correctness in their syntax, but we will rather model it as a separate property. The
reason is that for one of our constructions, correctness will not be perfect, but only computational.

4 We identify a parallel between our re-formulation and enhancement of the anamorphic model to the work of
Young and Yung [YY18], who claimed to have done the same for universal re-encryption of Golle et al. [GJJS04].
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Game Gcor-0
Π,Σ,m

Init():

01 (sk , pk)← Gen()

02 dk ← aGen(sk , pk)

03 st := ε

AEncADec(m̂):

04 c← aEnc(dk ,m, m̂)

05 (c; st ′)← aEnc(dk ,m, m̂; st)

06 st := st ′

07 m̂ ′ := aDec(dk , c)

08 return m̂ ′

Game Gcor-1
Π,Σ,m

Init():

01 // Do nothing

AEncADec(m̂):

02 return m̂

Figure 2: Games defining correctness of an anamorphic encryption scheme Π = (Gen,Enc,Dec)
with anamorphic extension Σ = (aGen, aEnc, aDec). The boxed code is for anamorphic extensions
with stateful aEnc and stateless aDec.

Correctness of (Receiver-)Anamorphic PKE. For a PKE scheme Π with anamorphic extension Σ, we
define correctness (cor) by capturing that for any message m, it must be hard to find a covert
message m̂ which if encrypted anamorphically with m into c← aEnc(dk ,m, m̂) and subsequently
anamorphically decrypted into m̂ ′ := aDec(dk , c), is such that m̂ ′ ̸= m̂. Formally, instead of defining
a game with a winning condition, we formulate this property as the equivalent distinguishing problem.

Definition 3.2. For a PKE scheme Π with anamorphic extension Σ and arbitrary message
m ∈ M, we define the advantage of a cor distinguisher D as

Advcor
Π,Σ,m(D)

.
= Pr[Gcor-0

Π,Σ,m(D)] − Pr[Gcor-1
Π,Σ,m(D)],

with games Gcor-0
Π,Σ,m and Gcor-1

Π,Σ,m as defined in Figure 2. We let q(D) denote the total number of
messages queried to AEncADec by D.

Security of (Receiver-)Anamorphic PKE. Following [PPY22], for a PKE scheme Π with anamorphic
extension Σ, we define security in terms of indistinguishability of anamorphic mode from normal
mode (sec). More specifically, we require for ciphertexts generated by the anamorphic encryption
algorithm to be indistinguishable from ciphertexts generated by the normal encryption algorithm.

Definition 3.3. For a PKE scheme Π with anamorphic extension Σ, we define the advantage of
an sec distinguisher D as

Advsec
Π,Σ(D)

.
= Pr[Gsec-0

Π,Σ (D)] − Pr[Gsec-1
Π,Σ (D)],

with games Gsec-0
Π,Σ and Gsec-1

Π,Σ as defined in Figure 3. We let q(A) denote the total number of
messages queried to AEnc by A.
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Game Gsec-0
Π,Σ

Init():

01 (sk , pk)← Gen()

02 dk ← aGen(sk , pk)

03 st := ε

04 return (sk , pk)

AEnc(m, m̂):

05 c← aEnc(dk ,m, m̂)

06 (c; st ′)← aEnc(dk ,m, m̂; st)

07 st := st ′

08 return c

Game Gsec-1
Π,Σ

Init():

01 (sk , pk)← Gen()

02 return (sk , pk)

AEnc(m, m̂):

03 c← Enc(pk ,m)

04 return c

Figure 3: Games defining the sec notion of an anamorphic extension Σ = (aGen, aEnc, aDec) for
PKE scheme Π = (Gen,Enc,Dec). The boxed code is for anamorphic extensions with stateful aEnc.

Game Grob-0
Π,Σ

Init():

01 (sk , pk)← Gen()

02 dk ← aGen(sk , pk)

EncADec(m , st ):

03 c← Enc(pk ,m)

04 m̂ := aDec(dk , c ; st )

05 return m̂

Game Grob-1
Π,Σ

Init():

01 // Do nothing

EncADec(m , st ):

02 return ⊥

Figure 4: Games defining robustness of an anamorphic encryption scheme Π = (Gen,Enc,Dec)
with anamorphic extension Σ = (aGen, aEnc, aDec). The boxed code is for anamorphic extensions
with stateful aDec.

For a PKE scheme Π with anamorphic extension Σ, [PPY22] additionally defines security
in terms of indistinguishability of anamorphic ciphertexts under a chosen-plaintext attack
(ind-anam-cpa). More specifically, they require that for a fixed (normal) message m, anamorphic
encryptions of covert messages m̂0 and m̂1 with m be indistinguishable. They also show that the
sec notion for anamorphic extensions implies ind-anam-cpa security, which roughly speaking means
that in order to show that anamorphic ciphertexts are indistinguishable from one another, it suffices
to show that anamorphic ciphertexts are indistinguishable from regular ones. In Appendix B we
reformulate ind-anam-cpa security and reprove the implication in our formalization.
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3.2 Enhancing the Model: Robustness

For a PKE scheme Π with anamorphic extension Σ, we define robustness (rob) by capturing
that it must be hard to find a message m which if encrypted normally into c ← Enc(pk ,m) and
subsequently anamorphically decrypted into m̂ := aDec(dk , c), is such that m̂ ̸= ⊥. Formally,
instead of defining a game with a winning condition, we formulate this property as the equivalent
distinguishing problem.

Definition 3.4. For a PKE scheme Π with anamorphic extension Σ, we define the advantage of
a rob distinguisher D as

Advrob
Π,Σ(D)

.
= Pr[Grob-0

Π,Σ (D)] − Pr[Grob-1
Π,Σ (D)],

with games Grob-0
Π,Σ and Grob-1

Π,Σ as defined in Figure 4. We let q(D) denote the total number of
messages queried to EncADec by D.

3.3 Anamorphic Length Efficiency

A PKE scheme generally expands a messages of length µ to a longer ciphertext of length µ + λ,
where λ is usually referred to as the ciphertext expansion. For an anamorphic encryption scheme,
due to basic information-theoretic reasons, the length ℓ of a covert message is bounded by λ, and if
robustness is required, it necessarily needs to be shorter than λ. One can hence define the ratio

ϕ
.
=

ℓ

λ

as the anamorphic length efficiency of such a scheme, that aims at quantifying how well the
anamorphic encryption makes use of the extra λ bits in the ciphertext. Note that this quantity can
potentially achieve 1 only if robustness is not considered.

Looking ahead, for our ElGamal-based construction from Section 5.2 we have λ ≈ ρ, where ρ is
the length of the randomness. Therefore,

ϕEG ≈ ℓ

ρ
,

where ℓ ≪ ρ due to our requirement of robustness. More concretely, ℓ needs to be polynomial in the
security parameter, while ρ needs to be exponential (this can be concretely obtained by the bounds
on the adversarial advantages for correctness and robustness from Lemmas 4.6 and 4.8). Even if this
indeed implies that the anamorphic length efficiency of our construction is less than 1, we conjecture
that this is an intrinsic requirement for any possible anamorphic extension of ElGamal requiring
robustness, as otherwise it seems that the discrete log assumption would be contradicted. We leave
it is an interesting open question to prove that indeed our scheme has optimal anamorphic length
efficiency, in our updated model of (receiver-) anamorphic encryption that considers robustness.

Let us now compute the newly defined anamorphic length efficiency ϕNYT for Persiano et al.’s
anamorphic Naor-Yung transform AnamNYT instead. For this, let λ ′ be the ciphertext expansion of
the underlying IND-CPA scheme and ω the proof size of the underlying NIZK scheme. Then, we
have that µ+ λ = 2(µ+ λ ′) +ω, that is,

λ = µ+ 2λ ′ +ω.
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Now, consider an underlying IND-CPA scheme with randomness of (fixed) size ρ ′ which is optimal
in the sense that λ ′ ≈ ρ ′ (this is indeed the case for many practical schemes, such as for ElGamal).
Then, we can rewrite the above equation as

λ ≈ µ+ 2ρ ′ +ω.

Therefore, since ℓ = µ for AnamNYT, according to our new notion of anamorphic length efficiency,
we have

ϕNYT ≈ µ

µ+ 2ρ ′ +ω
< 1.

We point out that Persiano et al. used a different ratio to estimate the efficiency an anamorphic
encryption scheme, namely ℓ/µ, which they call bandwidth rate. Indeed, according to this notion,
AnamNYT achieves bandwidth rate of 1.

4 Generic Robustly Anamorphic Extensions

In this section we present four ways to achieve robustly anamorphic public-key encryption. We
begin with an overview of the results by giving, for each construction, an informal interpretation and
practicality considerations. All proofs of the main results in this section are deferred to Appendix A.

4.1 Overview of the Results

We begin by proposing a simple approach that allows to enhance any PKE scheme into one which has
a robust anamorphic extension by embedding covert messages in the randomness upon encryption.
This first solution is synchronized, that is, requires sender and receiver to keep matching counters
for each new covert message.

Theorem (informal). Σ1 (Construction 1) provides a secure and robust (Definitions 3.3 and 3.4)
synchronized anamorphic mode for any PKE scheme for transmitting at most τ covert
messages (Lemmas 4.1 and 4.2), for any τ with log τ polynomial in the underlying security
parameter.

We then optimize this anamorphic extension for a special class of PKE schemes, which encom-
passes the classic ElGamal [ElG85] and Cramer-Shoup [CS98] schemes.

Theorem (informal). Σ2 (Construction 2) provides a secure and robust (Definitions 3.3 and 3.4)
synchronized anamorphic mode for any SRR PKE scheme (Definition 4.1) for transmitting
at most τ covert messages (Lemmas 4.1 and 4.2), for any τ with log τ polynomial in the
underlying security parameter.

We then proceed by optimizing the anamorphic extension even further for such special PKE
schemes, resulting in a robustly anamorphic PKE scheme that does not require the sender and the
receiver to be synchronized, at the cost of reducing the number of covert messages that can be
transmitted overall.
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Theorem (informal). Σ3 (Construction 3) provides a correct, secure, and robust (Definitions 3.2,
3.3 and 3.4) unsynchronized anamorphic mode for any SRR PKE scheme (Definition 4.1)
for transmitting στ covert messages (Lemmas 4.6, 4.7 and 4.8), for any σ and τ polynomial
in the underlying security parameter.

Finally, we provide a means to transform an anamorphic PKE scheme that is not robust into
one which is. We apply this approach to the OAEP scheme from [BR95], hence showing that also
RSA-OAEP can be used in a robustly anamorphic mode.

Theorem (informal). Σ4 (Construction 3) provides a secure and robust (Definitions 3.3 and 3.4)
synchronized anamorphic mode for any (non-robust) anamorphic PKE scheme (Lemma 4.9).

Σ1 (sync.)
Σ2 (sync.) Σ3 (unsync.)

Σ4 (sync.)
w/o P.C. w/ P.C. w/o P.C. w/ P.C.

aGen 1 1 ≤ ℓ 1 ≤ ℓ 1

aEnc 1 1 1 ≈ τ ≈ τ 1

(sk)aDec ≤ ℓ ≤ ℓ 1 ≤ σℓ ≤ σ 1

Figure 5: Comparison of the runtime complexities for the introduced constructions, in terms of
required iterations. P.C. stands for pre-computation. Note that for Σ3, the approximated runtime
complexity of aEnc is taken in expectation, since the algorithm is randomized.

In Figure 5, we summarize the runtime complexities of each construction. Note that for each
of them, the size ℓ of the covert message space must be polynomial in the underlying security
parameter, since (sk)aDec (or aGen, in case of pre-computation) have runtime complexity ≤ ℓ.5

Moreover, note that the further limitation on the number of transmissible covert messages for Σ3 is
due to the runtime complexity of aEnc.

4.2 Σ1: A Synchronized Solution for Any PKE Scheme

Our first solution allows to embed covert messages in ciphertext of any PKE which is at a minimum
randomized and IND-CPA secure. The idea is quite simple: Assuming sender and receiver can be
synchronized by keeping a matching counter ctr, whenever the sender wants to embed a covert
message m̂ from some small space M̂ into an encryption of a normal message m, it will first compute
r := F(K, (ctr, m̂)), where F is a PRF and K is a key that the two parties agreed upon in advance
as part of their double key dk , and then it will generate the ciphertext c := Enc(pk ,m; r). Now,
since we are assuming that the receiver knows the exact value ctr that was used by the sender,
it will be able to retrieve m̂ simply by first normally decrypting c into m := Dec(sk , c), and then
trial-re-encrypt m as c ′ := Enc(pk ,m;F(K, (ctr, m̂ ′))) for every m̂ ′ ∈ M̂, until c ′ = c. At that
point, the receiver will know that the successful covert message m̂ ′ for which equality holds was
indeed the one meant by the sender, or at least with good enough probability. Note that for this to
work, the receiver also needs to additionally provide its secret key sk upon anamorphic decryption,

5 In case of pre-computation, this is true also for the space complexity of aDec.
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aGen(sk , pk) :

01 K $← K
02 dk := (K, pk)

03 return dk

aEnc(dk ,m, m̂; ctr) :

04 r := F(K, (ctr, m̂))

05 r := m̂⊕ F(K, ctr)

06 c := Enc(pk ,m; r)

07 return (c; ctr+ 1)

skaDec(sk , dk , c; ctr) :

01 m := Dec(sk , c)

02 foreach m̂ ∈ M̂ do

03 r ′ := F(K, (ctr, m̂))

04 r ′ := m̂⊕ F(K, ctr)

05 c ′ := Enc(pk ,m; r ′)

06 if c ′ = c then

07 return (m̂; ctr+ 1)

08 return ⊥

Figure 6: Synchronized robustly anamorphic extensions Σ1 = (aGen, aEnc, skaDec) from Construc-
tion 1 for any PKE scheme Π = (Gen,Enc,Dec) and Σ ′

1 = (aGen, aEnc, skaDec) for PKE schemes
Π = (Gen,Enc,Dec) where the randomness space is a group ⟨R,⊕⟩.

and for this reason we denote this algorithm slightly differently as skaDec. We next formalize this
construction, and then formally prove these two properties.

Construction 1. Let Π = (Gen,Enc,Dec) be an arbitrary PKE scheme with randomness space R
and ρ

.
= |R|. For covert message space M̂, with ℓ

.
= |M̂|, and F a function K×([τ]×M̂)→ R, let

the anamorphic extension Σ1
.
= (aGen, aEnc, skaDec) with anamorphic parameters ap = (K, τ,F)

be defined as in Figure 6. Note that Σ1 trivially satisfies perfect correctness.

Security of Σ1. To see that the scheme is indeed secure, note that we can replace F(K, ·) by a
truly random function f. Therefore, since the counters are assumed not to repeat, r will always be
uniformly distributed, hence c will be indistinguishable from a regular ciphertext output by Enc.
The following result is restated and proven formally in Appendix A.1.

Lemma 4.1. Let Σ1 be the anamorphic extension from Construction 1 for an arbitrary PKE
scheme Π. There exists an efficient transformation of any sec distinguisher D into a prf
distinguisher D ′ with q(D ′) = q(D) ≤ τ such that

Advsec
Π,Σ1

(D) = Advprf
F (D ′).

Robustness of Σ1. To see that the scheme is indeed robust, further observe that when using regular
encryption and sampling a uniformly random r, the chance that for a fixed counter ctr there exists
a covert message m̂ such that r = f((ctr, m̂)), for a uniformly random function f, is 1/ρ. Note that
this probability is negligible if R has exponential size, and such a collision can happen for each of
A’s queries, and for each m̂. The following result is restated and proven formally in Appendix A.1.

Lemma 4.2. Let Σ1 be the anamorphic extension from Construction 1 for an arbitrary PKE
scheme Π. There exists an efficient transformation of any rob distinguisher D into a prf
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distinguisher D ′ with q
.
= q(D ′) = q(D) ≤ τ such that

Advrob
Π,Σ1

(D) ≤ Advprf
F (D ′) +

qℓ

ρ
.

Σ ′
1: Assuming the Randomness Space is a Group. If the PKE scheme Π is such that the randomness

space R used by Enc forms a group under some operation ⊕, then it is possible to slightly modify the
construction Σ1 into Σ ′

1 as outlined in Figure 6. This would require F to be a function K× [τ]→ R,
and M̂ ⊆ R. The advantage would be that computing F would be faster since the input is smaller,
but the constraint would be that covert messages must now fit into the randomness space. In our
next construction, we will indeed make this assumptions, hence the proof of security of Σ ′

1 follows
directly from Lemma 4.3.

4.3 Σ2: A Better Synchronized Solution for Special PKE Schemes

We next present a construction that unlike the previous one does not require the receiver of an
anamorphic ciphertext to know the secret key of the original receiver. This has a major advantage:
It is possible for a sender to embed a covert message addressed to a party different than the
original receiver of the ciphertext! To achieve this property, we require a special type of PKE.
Ideally, as we will later see in Section 4.5, a scheme that allows to recover the randomness used to
generate the ciphertext, naturally lends itself to an anamorphic mode (even though, in this case we
would again require the receiver to know the original secret key). Still, as we will next show, it is
possible for some scheme to selectively recover the randomness used to generate a ciphertext. More
precisely, we will use the fact that if a part of the ciphertext depends only on the randomness (and
neither on the public key, nor on the message), then if we only use a subset of the randomness space,
we can test whether a certain value r was used as randomness. We next formalize the required
property on such a PKE scheme, and then outline the whole idea in more detail.

Definition 4.1. A PKE scheme Π = (Gen,Enc,Dec) is selectively-randomness-recoverable (SRR) if
the following three conditions hold:

1. The randomness space R of Enc forms a group under some operation ⊕.

2. For any public key pk, message m, and randomness r ∈ R, there exists efficiently
computable injective functions α and β such that for the ciphertext c := Enc(pk ,m; r),

c = (α(pk ,m, r), β(r)).6

3. There exists an efficiently computable function γ such that, for any a, b ∈ R,

γ(β(a⊕ b), b) = β(a).

6 In practice, the ciphertext might be a bit string, in which case we would instead have c = α(pk ,m, r)∥β(r).
Moreover, note that order does not matter, so we could also have c = (β(r), α(pk ,m, r)).
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aGen(sk , pk) :

01 K $← K
02 dk := (K, pk)

03 return dk

aEnc(dk ,m, m̂; ctr) :

01 t := F(K, ctr)

02 r := m̂⊕ t

03 c := Enc(pk ,m; r)

04 return (c; ctr+ 1)

aDec(dk , (c1, c2); ctr) :

01 t := F(K, ctr)

02 s := γ(c2, t)

03 foreach m̂ ∈ M̂ do

04 if β(m̂) = s then

05 return (m̂; ctr+ 1)

06 return ⊥

Figure 7: Synchronized robustly anamorphic extension Σ2 = (aGen, aEnc, aDec) for SRR PKE
scheme Π = (Gen,Enc,Dec).

Consider now a PKE scheme Π that is SRR. Then, in order to embed a covert message m̂ into a
ciphertext for a normal message m, the sender simply xors m̂ with a one-time pad t := F(K, ctr),
and uses r := m̂ ⊕ t as randomness to generate c := Enc(pk ,m; r). By virtue of Π being SRR, it
then holds that c = (α(pk ,m, r), β(r))), where β(r) = β(m̂⊕ F(K, ctr)), and therefore the receiver
can recover m̂ knowing K and ctr, since γ(β(m̂⊕ F(K, ctr)),F(K, ctr)) = β(m̂). More precisely,
on input a ciphertext (c1, c2), it first computes s := γ(c2,F(K, ctr)), which equals β(m̂), and then
tries all values m̂ ′ ∈ M̂ until β(m̂ ′) = s. At that point, the receiver will know that the successful
covert message m̂ ′ for which equality holds was indeed the one meant by the sender, or at least
with good enough probability. We next formalize this construction, and then formally prove these
two properties.

Construction 2. Let Π = (Gen,Enc,Dec) be an SRR PKE scheme with randomness space R and
ρ

.
= |R|. For covert message space M̂ ⊆ R, with ℓ

.
= |M̂|, and F a function K × [τ]→ R, let

the anamorphic extension Σ2
.
= (aGen, aEnc, aDec) with anamorphic parameters ap = (K, τ,F)

be defined as in Figure 7. Note that Σ2 trivially satisfies perfect correctness.

Security of Σ2. To see that the scheme is indeed secure, note that we can replace F(K, ·) by a truly
random function f. Therefore, since the counters are assumed not to repeat, t = f(ctr) will always
be uniformly distributed. This will be true for r = m̂⊕ t as well, since R is a group, hence c will
be indistinguishable from a regular ciphertext output by Enc. The following result is restated and
proven formally in Appendix A.2.

Lemma 4.3. Let Σ2 be the anamorphic extension from Construction 2 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any sec distinguisher
D into a prf distinguisher D ′ with q(D ′) = q(D) ≤ τ such that

Advsec
Π,Σ2

(D) = Advprf
F (D ′).

Robustness of Σ2. To see that the scheme is indeed robust, further observe that when using regular
encryption and sampling a uniformly random r, the chance that for a fixed counter ctr there exists
a covert message m̂ such that β(m̂) = γ(β(r), f(ctr)), for a uniformly random function f, is the
same as the chance that r = m̂⊕ f(ctr), which is 1/ρ. Note that this probability is negligible if R
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aGen(sk , pk) :

01 K $← K
02 T := [ ]

03 foreach m̂ ∈ M̂ do

04 T[β(m̂)] := m̂

05 dk := (K,T, pk)

06 return dk

aEnc(dk ,m, m̂; ctr) :

01 t := F(K, ctr)

02 r := m̂⊕ t

03 c := Enc(pk ,m; r)

04 return (c; ctr+ 1)

aDec(dk , (c1, c2); ctr) :

01 t := F(K, ctr)

02 s := γ(c2, t)

03 m̂ := T[s]

04 return (m̂; ctr+ 1)

Figure 8: Synchronized robustly anamorphic extension Σ ′
2 = (aGen, aEnc, aDec) with pre-

computation for SRR PKE scheme Π = (Gen,Enc,Dec).

has exponential size, and such a collision can happen for each of A’s queries, and for each m̂. The
following result is restated and proven formally in Appendix A.2.

Lemma 4.4. Let Σ2 be the anamorphic extension from Construction 2 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any rob distinguisher
D into a prf distinguisher D ′ with q

.
= q(D ′) = q(D) ≤ τ such that

Advrob
Π,Σ2

(D) ≤ Advprf
F (D ′) +

qℓ

ρ
.

Σ ′
2: Optimizing Σ2 with Pre-Computation. Note that the time complexity of aDec from Σ2 is still

comparable to that of skaDec from Σ1. Still, for Σ2 it is possible to perform a significant optimization
that cannot be applied to Σ1. Since the only check done inside the for loop is β(m̂) = s, it is
possible to pre-compute the inverse mapping β−1 in form of a look-up table T. More precisely, aGen
will insert value m̂ under key β(m̂) in T, and include T in the double key. Then, upon anamorphic
decryption, the for loop can be substituted by a simple look-up operation in T. The resulting scheme
Σ ′
2 is formalized in Figure 8, and it inherits both security and robustness of Σ2 from Lemmas 4.3

and 4.4.

4.4 Σ3: An Unsynchronized Solution for Special PKE Schemes

We now show how to take advantage of the SRR property from Definition 4.1 even further, and
develop a simple technique yielding an anamorphic extension for any SRR PKE that does away
with the requirement of sender and receiver to keep synchronized (on the counters). The gist of it
is to create anamorphic ciphertexts so that the receiver can (partially) extract the counters from
it. Recall the scheme from Figure 8: Upon anamorphic encryption, we generate the (one-time)
pad F(K, ctr), set the randomness as r := m̂⊕ F(K, ctr), where m̂ is the covert message, and then
(deterministically) obtain the ciphertext c as Enc(pk ,m; r). Since the PKE scheme Π is SRR, recall
that c = (α(pk ,m, r), β(r)). The main idea is now to carefully select a counter ctr, such that it is
possible to actually recover ctr itself from β(r) = β(m̂⊕ F(K, ctr)). To achieve this, one could use
an efficiently computable function δ, and repeatedly try fresh values for r, until δ(β(r)) = ctr.
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But this approach has a severe limitation: Roughly speaking, on average one value r will
correspond to one value ctr, so in the worst case it might be possible not to find a pair (r, ctr) such
that δ(β(r)) = ctr, which would imply that m̂ cannot be anamorphically encrypted! Therefore, we
need to “split” the state into st = (x, y), for x ∈ [σ] and y ∈ [τ], for some σ, τ defined as part of the
anamorphic parameters ap. We can now concretely require δ to be a Im(β)→ [τ] function, and look
for a pair (x, y) such that δ(β(m̂⊕ F(K, (x, y)))) = y. In order to ensure that finding such a pair
does not take too long, we need that δ partitions R, with ρ

.
= |R|, as uniformly as possible, that is,

∀y ∈ [τ] :
∣∣(δ ◦ β)−1(y)

∣∣ ≥ ⌊ρ
τ

⌋
. (1)

Note that (1) implies that for any y ∈ [y], ⌊ρ/τ⌋ ≤ |(δ ◦ β)−1(y)
∣∣ ≤ ⌈ρ/τ⌉, and therefore also

ρ/τ− 1 ≤ |(δ ◦ β)−1(y)
∣∣ ≤ ρ/τ+ 1.

To anamorphically decrypt, we first get y := δ(c2) = δ(β(r)), and then we look for the first x
such that there exists an m̂ for which γ(c2,F(K, (x, y))) = β(m̂). Since as for Σ2 it is possible to
pre-compute the inverse of β, we directly define this construction by employing a look-up table T
mapping β(m̂) to m̂. Recall that, for t := F(K, (x, y)), correctness then follows by:

m̂ = T[s] = β−1(s) = β−1(γ(c2, t)) = β−1(γ(β(r), t))

= β−1(γ(β(m̂⊕ t), t)) = β−1(β(m̂)) = m̂.

Note that the main advantage is that now the receiver does not need to know the counter to
decrypt anamorphically, therefore sender and receiver need not be synchronized. Still, a drawback
of this approach is that now it is possible for anamorphic decryption to return the wrong covert
message. This means, that this construction cannot achieve perfect correctness. Nevertheless, we
will show that it achieves computational correctness, by providing a bound that makes explicit how
parameters should be set. Looking ahead, Lemma 4.6 essentially says that one should choose the
size σ of the domain of the counter part x not to be too large.

We first present a stateful version of this construction, that is, one where the sender keeps
updating the state (x, y) by increasing it lexicographically for each try. More precisely, given the a
state (x, y), we update it to (x, y+ 1) if y < τ, to (x+ 1, 1) if y = τ and x < σ, and (1, 1) otherwise.
We denote this operation by (x, y) := ILσ,τ(x, y). This stateful approach allows for an easier analysis;
we then slightly modify it into a stateless construction.

Construction 3. Let Π = (Gen,Enc,Dec) be an SRR PKE scheme with randomness space R
and ρ

.
= |R|, and function β as for Definition 4.1. For covert message space M̂ ⊆ R, with

ℓ
.
= |M̂|, F a function K × ([σ]× [τ])→ R, and δ a function Im(β)→ [τ] satisfying (1), let the

anamorphic extension Σ3
.
= (aGen, aEnc, aDec) with anamorphic parameters ap = (K, δ, σ, τ,F)

be defined as in Figure 9.

Efficiency of Σ3. Since anamorphic encryption aEnc of Σ3 needs to iterate an undefined number of
times, we need to know an estimate of its running time in order to deem it practical, or just to be
sure the algorithm indeed terminates. To do so, we make the simplifying assumption that the PRF
F is replaced by a truly random function f. Then, since each pair (x, y) input to f is never repeated,
we can assume r to be freshly and uniformly distributed in each iteration.
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aGen(sk , pk) :

01 K $← K
02 T := [ ]

03 foreach m̂ ∈ M̂ do

04 T[β(m̂)] := m̂

05 dk := (K,T, pk)

06 return dk

aEnc(dk ,m, m̂; (x, y)) :

01 repeat

02 (x, y) := ILσ,τ(x, y)

03 t := F(K, (x, y))

04 r := m̂⊕ t

05 until δ(β(r)) = y

06 c := Enc(pk ,m; r)

07 return (c; (x, y))

aDec(dk , (c1, c2)) :

01 y := δ(c2)

02 foreach x ∈ [σ] do

03 t := F(K, (x, y))

04 s := γ(c2, t)

05 m̂ := T[s]

06 if m̂ ̸= ⊥ then

07 return m̂

08 return ⊥

Figure 9: Stateful unsynchronized robustly anamorphic extension Σ3 = (aGen, aEnc, aDec) with
pre-computation for SRR PKE scheme Π = (Gen,Enc,Dec).

Lemma 4.5. Let T be the random variable denoting the number of iterations performed by aEnc,
and assume r is uniformly distributed over R in each iteration. Then, E[T ] ≤ (ρ+τ)ρτ

(ρ−τ)2
.

Proof. Let ω ∈ N and r1, . . . , rω be uniformly distributed over R and y1, . . . , yω ∈ [τ] arbitrary
(representing the different values taken by y in each iteration). Then, using (1), we have

Pr[T = ω] = Pr

[(
ω−1⋂
i=1

{(δ ◦ β)(ri) ̸= yi}

)
∩ {(δ ◦ β)(rω) = yω}

]

=

ω−1∏
j=1

Pr[(δ ◦ β)(ri) ̸= yi] · Pr[(δ ◦ β)(rω) = yω]

=

ω−1∏
j=1

Pr[ri /∈ (δ ◦ β)−1(yi)] · Pr[rω ∈ (δ ◦ β)−1(yω)]

=

(
1−

∣∣(δ ◦ β)−1(yi)
∣∣

ρ

)ω−1

·
∣∣(δ ◦ β)−1(yω)

∣∣
ρ

≤
(
1−

ρ/τ− 1

ρ

)ω−1

· ρ/τ+ 1

ρ

=

(
1−

ρ− τ

ρτ

)ω−1

· ρ+ τ

ρτ
.

Therefore, since τ < ρ,

E[T ] =
∞∑

ω=1

ω · Pr[T = ω] ≤
∞∑

ω=1

ω ·
(
1−

ρ− τ

ρτ

)ω−1

· ρ+ τ

ρτ

=

(
1−

ρ− τ

ρτ
− 1

)−2

· ρ+ τ

ρτ
=

(ρ+ τ)ρτ

(ρ− τ)2
.

Note that for τ ≪ ρ, we have E[T ] ≈ τ. Moreover, in case τ divides ρ, then condition (1) can be
replaced by

∣∣(δ ◦ β)−1(y)
∣∣ = τ/ρ, resulting in E[T ] = τ.
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Correctness of Σ3. To see that the scheme indeed satisfies computational correctness, suppose a
covert message m̂ is anamorphically encrypted with a normal message m resulting in ciphertext
c = (c1, c2) with c2 = β(r) = β(m̂⊕ F(K, (x, y))), for some x ∈ [σ] and y ∈ [τ]. Then anamorphic
decryption of c might give the wrong output in case a m̂ ′ ̸= m̂ and an x ′ ̸= x exist, such that
m̂ ′ = T[s], that is, β(m̂ ′) = s = γ(β(m̂⊕F(K, (x, y))), F(K, (x ′, y))). Now, by the definition of γ, we
have that this is the case if and only if m̂⊕ F(K, (x, y)) = m̂ ′ ⊕ F(K, (x ′, y)), which has probability
σℓ/ρ of happening. The following result is restated and proven formally in Appendix A.3.

Lemma 4.6. Let Σ3 be the anamorphic extension from Construction 3 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any cor distinguisher
D into a prf distinguisher D ′ with q

.
= q(D ′) = q(D) ≤ στ such that

Advcor
Π,Σ3

(D) ≤ Advprf
F (D ′) +

qσℓ

ρ
.

Security of Σ3. To see that the scheme is indeed secure, note that we can replace F(K, ·) by a truly
random function f. Therefore, since the state pairs (x, , y) are assumed not to repeat, t = f((x, y))
will always be uniformly distributed. This will be true for r = m̂⊕ t as well, since R is a group.
Once δ(β(r)) = y is satisfied, r will still be freshly and uniformly distributed, hence c will be
indistinguishable from a regular ciphertext output by Enc. The following result is restated and
proven formally in Appendix A.3.

Lemma 4.7. Let Σ3 be the anamorphic extension from Construction 3 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any sec distinguisher
D into a prf distinguisher D ′ with q(D ′) = q(D) ≤ στ such that

Advsec
Π,Σ3

(D) = Advprf
F (D ′).

Robustness of Σ3. To see that the scheme is indeed robust, further observe that when using regular
encryption and sampling a uniformly random r, the chance that for a fixed counter ctr there exists
a covert message m̂ such that β(m̂) = γ(β(r), f(ctr)), for a uniformly random function f, is the
same as the chance that r = m̂⊕ f(ctr), which is 1/ρ. Note that this probability is negligible if R
has exponential size, and such a collision can happen for each of A’s queries, for each x ∈ [σ], and
for each m̂. The following result is restated and proven formally in Appendix A.3.

Lemma 4.8. Let Σ3 be the anamorphic extension from Construction 3 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any rob distinguisher
D into a prf distinguisher D ′ with q

.
= q(D ′) = q(D) ≤ στ such that

Advrob
Π,Σ3

(D) ≤ Advprf
F (D ′) +

qσℓ

ρ
.

Σ ′
3: Optimizing Σ3 with Stateful Anamorphic Encryption. As mentioned above, we can easily modify the

stateful anamorphic extension Σ3 into a stateless anamorphic extension Σ ′
3, as defined in Figure 10.

The idea is simply to pick uniformly random values x ∈ [σ] and y ∈ [τ] in each iteration, rather
than lexicographically increasing the state pair (x, y). Then, by the birthday problem we have that,
the correctness, security, and robustness bounds degrade by approximately an additive term q2/στ.
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aGen(sk , pk) :

01 K $← K
02 T := [ ]

03 foreach m̂ ∈ M̂ do

04 T[β(m̂)] := m̂

05 dk := (K,T, pk)

06 return dk

aEnc(dk ,m, m̂) :

01 repeat

02 x $← [σ]

03 y $← [τ]

04 t := F(K, (x, y))

05 r := m̂⊕ t

06 until δ(β(r)) = y

07 c := Enc(pk ,m; r)

08 return c

aDec(dk , (c1, c2)) :

01 y := δ(c2)

02 foreach x ∈ [σ] do

03 t := F(K, (x, y))

04 s := γ(c2, t)

05 m̂ := T[s]

06 if m̂ ̸= ⊥ then

07 return m̂

08 return ⊥

Figure 10: Unsynchronized robustly anamorphic extension Σ ′
3 = (aGen, aEnc, aDec) with pre-

computation for SRR PKE scheme Π = (Gen,Enc,Dec).

4.5 Σ4: Making Robust any (Non-Robust) Anamorphic Extension

In this section we present a very simple generic transformation that given a non-robust anamorphic
encryption scheme, yields one that is additionally robust. We then show in Section 5.3 how to
concretely apply this transformation to the Optimal Asymmetric Encryption Padding (OAEP)
technique transforming any trapdoor permutation into a secure PKE scheme from [BR95]. Keeping
in mind the original goal of [PPY22], that is to find anamorphic modes of well-established schemes,
the latter implies that the widely employed RSA-OAEP indeed admits an robustly anamorphic
mode, as we will concretely show in Section 5.3.

Our construction will be for stateful anamorphic extensions, and in order to achieve reasonable
guarantees it requires that the covert message space of the base anamorphic extension be the
randomness space of the underlying PKE scheme. For this reason, the rejection sampling technique
from [PPY22] seems not to be suitable, since it is efficient only when transmitting at most
logarithmically many covert bits in the security parameter.

Construction 4. Let Π be a PKE scheme with randomness space R, with ρ
.
= |R|, let Σ =

(aGen, aEnc, aDec) be a (non-robust) stateful anamorphic extension for Π with covert message
space R. For covert message space M̂ ⊆ R, with ℓ

.
= |M̂| < ρ, define the stateful anamorphic

extension Σ4
.
= (aGen, aEnc, aDec ′), where on input a double key dk, a ciphertext c, and a state

st, aDec ′ first computes (m̂, st ′) := aDec(dk , c; st), and then outputs (m̂, st ′) if m̂ ∈ M̂ ′, and
⊥ otherwise.

Note that Σ4 trivially satisfies perfect correctness. Moreover, note that the security of Σ4 is
trivially inherited by the security of the underlying anamorphic extension Σ. Regarding robustness,
it is also easy to see that there is an acceptable degradation if ℓ is small (that is, ℓ ≪ ρ). We state
the following lemma without proof (the intuition is that once we substitute the ciphertext c by a
random string in Grob-0

Π,Σ4
, due to ind$-cpa, we then have a chance ℓ

ρ for each query to provoke the
bad event that m̂ ̸= ⊥, which makes distinguishing Grob-1

Π,Σ4
trivial).

Lemma 4.9. Let Σ4 be the anamorphic extension from Construction 4 for a PKE scheme Π

with (non-robust) anamorphic extension Σ. There exists an efficient transformation of any
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rob distinguisher D into a prf distinguisher D ′ with q
.
= q(D ′) = q(D) such that

Advrob
Π,Σ4

(D) ≤ Advind$-cpa
Π,Σ (D ′) +

qℓ

ρ
.

5 Concrete Instantiations of the Generic Constructions

In this section we show concrete instantiations of our generic constructions Σ2 (and the related Σ ′
2),

Σ3 (and the related Σ ′
3), and Σ4 from Section 4 for well-established PKE schemes, thus showing

practical anamorphic modes are indeed possible. All proofs are deferred to ??.

5.1 Instantiations of Σ2: ElGamal and Cramer-Shoup

Synchronized Robustly Anamorphic ElGamal. We now show that the classic ElGamal PKE scheme
admits an anamorphic extension since it is SRR. First, let recall the conventional specification of
the ElGamal PKE scheme [ElG85].

Construction 5. Let G be a cyclic group of prime order q with generator g, and let the public
parameter be pp = (G, q, g). Then the ElGamal PKE scheme is defined as the tuple ElGamal =
(Gen,Enc,Dec), where:

• Gen: sample sk $← Zq, set pk := gsk , and output the key-pair (sk , pk).7

• Enc: on input a public key pk and a message m ∈ G, sample r $← Zq, set c1 := m · pk r,
c2 := gr, and output the ciphertext (c1, c2).

• Dec: on input a secret key sk and a ciphertext (c1, c2), output c1 · c−sk
2 .

Lemma 5.1. The ElGamal PKE scheme is SRR.

Proof. We prove each item from Definition 4.1:

1. ⟨Zq;⊕⟩, where ⊕ denotes addition modulo q, is clearly a group.

2. With α(a, b, c) := b · ac and β(a) := ga, we have that for public key pk , message m,
and randomness r, Enc(pk ,m; r) = (α(pk ,m, r), β(r)). Moreover, both α and β are clearly
injective.

3. With γ(a, b) := a · g−b, we have that for any a, b ∈ Zq,

γ(β(a⊕ b), b) = γ(ga⊕b, b) = ga⊕b · g−b = ga = β(a).

Putting things together, for completeness we finally describe the resulting synchronized anamor-
phic extension SyncAnamElGamal for ElGamal with pre-computation.

Construction 6. For covert message space M̂ ⊆ Zq, with ℓ
.
= |M̂|, and F a function K× [τ]→ Zq,

let the anamorphic extension SyncAnamElGamal .
= (aGen, aEnc, aDec) for the ElGamal PKE

scheme from Construction 5 with anamorphic parameters ap = (K, τ,F) be defined as in
Figure 11.

7 Recall that, even if we did not explicitate it here, we assume that pp can be obtained from both sk and pk .
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aGen(sk , pk) :

01 K $← K
02 T := [ ]

03 foreach m̂ ∈ M̂ do

04 T[gm̂] := m̂

05 dk := (K,T, pk)

06 return dk

aEnc(dk ,m, m̂; ctr) :

01 t := F(K, ctr)

02 r := m̂⊕ t

03 c1 := m · pkr

04 c2 := gr

05 c := (c1, c2)

06 return (c; ctr+ 1)

aDec(dk , (c1, c2); ctr) :

01 t := F(K, ctr)

02 s := c2 · g−t

03 m̂ := T[s]

04 return (m̂; ctr+ 1)

Figure 11: Synchronized robustly anamorphic extension SyncAnamElGamal .
= (aGen, aEnc, aDec)

with pre-computation for the SRR PKE scheme ElGamal.

Synchronized Robustly Anamorphic Cramer-Shoup. We now show that also the classic Cramer-Shoup
PKE scheme admits an anamorphic extension since it is SRR as well. First, let recall the conventional
specification of the Cramer-Shoup PKE scheme [CS98]. Note that in the following definition, we
tailor the syntactic description to exactly match our notion of SRR PKE.

Construction 7. Let G be a cyclic group of prime order q with generators g1 and g2, let
H : G3 → Zq be a hash function, and let the public parameter be pp = (G, q, g1, g2, H). Then
the Cramer-Shoup PKE scheme is defined as the tuple CramerShoup = (Gen,Enc,Dec), where:

• Gen: sample x1, x2, y1, y2, z
$← Zq, set c := gx11 gx22 , d := g

y1

1 g
y2

2 , e := gz1, sk := (x1, x2, y1, y2, z),
pk := (c, d, e) and output the key-pair (sk , pk).

• Enc: on input a public key pk = (c, d, e) and a message m ∈ G, sample r $← Zq, set
u1 := gr1, u2 := gr2, v := m · er, h := H(u1, u2, v), w := crdrh, and output the ciphertext
c := ((v,w), (u1, u2)).

• Dec: on input a secret key sk and a ciphertext ((v,w), (u1, u2)), compute h := H(u1, u2, v),
and if ux1+y1h

1 u
x2+y2h
2 = w, then output v · u−z

1 ; otherwise, output the special symbol ⊥.

Lemma 5.2. The CramerShoup PKE scheme is SRR.

Proof. We prove each item from Definition 4.1:

1. ⟨Zq;⊕⟩, where ⊕ denotes addition modulo q, is clearly a group.

2. With α((a1, a2, a3), b, c) := (b · ac
3, a

c
1a

c·H(gc1,g
c
2,b·a

c
3)

2 ) and β(a) := (ga1 , g
a
2 ), we have that for

public key pk , message m, and randomness r, Enc(pk ,m; r) = (α(pk ,m, r), β(r)).

3. With γ((a1, a2), b) := (a1 · g−b
1 , a2 · g−b

2 ), we have that for any a, b ∈ Zq,

γ(β(a⊕ b), b) = γ((ga⊕b
1 , ga⊕b

2 ), b)

= (ga⊕b
1 · g−b

1 , ga⊕b
2 · g−b

2 )

= (ga1 , g
a
2 )

= β(a).
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aGen((c, d, e)) :

01 K $← K
02 T := [ ]

03 foreach m̂ ∈ M̂ do

04 T[(gm̂
1 , gm̂

2 )] := m̂

05 dk := (K,T, (c, d, e))

06 return dk

aEnc(dk ,m, m̂; ctr) :

01 t := F(K, ctr)

02 r := m̂⊕ t

03 u1 := gr
1

04 u2 := gr
2

05 v := m · er

06 h := H(u1, u2, v)

07 w := crdrh

08 c := ((v,w), (u1, u2))

09 return (c; ctr+ 1)

aDec(dk , (c1, (c2,1, c2,2)); ctr) :

01 t := F(K, ctr)

02 s := (c2,1 · g−t
1 , c2,2 · g−t

2 )

03 m̂ := T[s]

04 return (m̂; ctr+ 1)

Figure 12: Synchronized robustly anamorphic extension SyncAnamCramerShoup .
=

(aGen, aEnc, aDec) with pre-computation for the SRR PKE scheme CramerShoup.

Putting things together, for completeness we finally describe the resulting synchronized anamor-
phic extension SyncAnamCramerShoup for CramerShoup.

Construction 8. For covert message space M̂ ⊆ Zq, with ℓ
.
= |M̂|, and F a function K× [τ]→ Zq,

let the anamorphic extension SyncAnamCramerShoup .
= (aGen, aEnc, aDec) for the CramerShoup

PKE scheme from Construction 5 with anamorphic parameters ap = (K, τ,F) be defined as in
Figure 11.

5.2 Instantiations of Σ3: ElGamal and Cramer-Shoup

Unsynchronized Robustly Anamorphic ElGamal. We now show how to obtain an even better anamorphic
extension for ElGamal by defining a simple function δ satisfying (1). For this, we need to instantiate
the underlying group G. Concretely, consider the case of G = Z∗

p, for p prime, with order q = p− 1,
and let δ(x)

.
= Rτ(x) + 1 ∈ [τ], where Rτ(·) denotes the remainder modulo τ.

Lemma 5.3. For p prime, g a generator of Z∗
p, q

.
= p− 1, τ ≤ q, and y ∈ [τ]:

|{r ∈ Zq |Rτ(g
r) + 1 = y}| ≥

⌊q
τ

⌋
.

Proof. Note that Rτ(g
r) + 1 = y is true if and only if gr − y + 1 = kτ for some integer k.

More precisely, since kτ + y − 1 = gr ∈ Z∗
p, which implies 1 ≤ kτ + y − 1 ≤ q, we have that

k ∈ K
.
= {(2− y)/τ, . . . , (q− y+ 1)/τ}. Therefore,

|{r ∈ Zq |Rτ(g
r) + 1 = y}| =

∣∣{c ∈ Z∗
p |Rτ(c) + 1 = y}

∣∣
=
∣∣{c ∈ Z∗

p

∣∣ ∃k ∈ K : c = kτ+ y− 1}
∣∣

= |K| =
q− y+ 1

τ
−

2− y
τ

+ 1

=
q+ τ− 1

τ
≥ q

τ
≥
⌊q
τ

⌋
,

since the mapping k 7→ kτ+ y− 1 is injective, and τ ≥ 1.
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aGen(sk , pk) :

01 K $← K
02 T := [ ]

03 foreach m̂ ∈ M̂ do

04 T[gm̂] := m̂

05 dk := (K,T, pk)

06 return dk

aEnc(dk ,m, m̂) :

01 repeat

02 x $← [σ]

03 y $← [τ]

04 t := F(K, (x, y))

05 r := m̂⊕ t

06 until Rτ(g
r) = y

07 c1 := m · pkr

08 c2 := gr

09 c := (c1, c2)

10 return c

aDec(dk , (c1, c2)) :

01 y := Rτ(c2)

02 foreach x ∈ [σ] do

03 t := F(K, (x, y))

04 s := c2 · g−t

05 m̂ := T[s]

06 if m̂ ̸= ⊥ then

07 return m̂

08 return ⊥

Figure 13: Synchronized robustly anamorphic extension AnamElGamal .
= (aGen, aEnc, aDec) with

pre-computation for the SRR PKE scheme ElGamal.

Putting things together, for completeness we finally describe the resulting stateless unsynchro-
nized anamorphic extension AnamElGamal for ElGamal with pre-computation.

Construction 9. For covert messages set M̂ ⊆ Zq, with ℓ
.
= |M̂|, and F a function K× ([σ]× [τ])→

Zq, let the anamorphic extension AnamElGamal .
= (aGen, aEnc, aDec) for the ElGamal PKE

scheme from Construction 5 with anamorphic parameters ap = (K, Rτ, σ, τ,F) be defined as in
Figure 13.

In Appendix C we provide a test implementation of AnamElGamal. Note that it is possible to
similarly show that ElGamal instantiated over an elliptic curve, such as Curve25519, also admits a
robust anamorphic extension. More concretely, with G a subgroup of E/Fp of prime order q ≈ p/8,
for p = 2255 − 19, we can define δ as in Lemma 5.3, and apply it to the x coordinate of the points.

Unsynchronized Robustly Anamorphic Cramer-Shoup. We now show how to obtain an even better
anamorphic extension also for Cramer-Shoup by defining a simple function δ satisfying (1). For
this, we need to again instantiate the underlying group G as G = Z∗

p. With δ((x, y))
.
= Rτ(x) + 1,

we can then reuse Lemma 5.3. Putting things together, for completeness we finally describe the
resulting stateless unsynchronized anamorphic extension AnamCramerShoup for CramerShoup with
pre-computation. Note that we also slightly deviate from the specification of Figure 10 by only
using the first of the two group elements in β(m̂) as index to the look-up table T.

Construction 10. For covert messages set M̂ ⊆ Zq, with ℓ
.
= |M̂|, and F a function K×([σ]×[τ])→

Zq, let the anamorphic extension AnamCramerShoup .
= (aGen, aEnc, aDec) for the CramerShoup

PKE scheme from Construction 7 with anamorphic parameters ap = (K, Rτ, σ, τ,F) be defined
as in Figure 14.
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aGen(sk , pk) :

01 K $← K
02 T := [ ]

03 foreach m̂ ∈ M̂ do

04 T[gm̂
1 ] := m̂

05 dk := (K,T, pk)

06 return dk

aEnc(dk ,m, m̂) :

01 repeat

02 x $← [σ]

03 y $← [τ]

04 t := F(K, (x, y))

05 r := m̂⊕ t

06 until Rτ(g
r
1) = y

07 u1 := gr
1

08 u2 := gr
2

09 v := m · er

10 h := H(u1, u2, v)

11 w := crdrh

12 c := ((v,w), (u1, u2))

13 return c

aDec(dk , (c1, (c2,1, c2,2))) :

01 y := Rτ(c2,1)

02 foreach x ∈ [σ] do

03 t := F(K, (x, y))

04 s := c2,1 · g−t
1

05 m̂ := T[s]

06 if m̂ ̸= ⊥ then

07 return m̂

08 return ⊥

Figure 14: Synchronized robustly anamorphic extension AnamCramerShoup .
= (aGen, aEnc, aDec)

with pre-computation for the SRR PKE scheme CramerShoup.

5.3 Instantiation of Σ4: RSA-OAEP

We begin by recalling the OAEP technique from [BR95]. Let f : {0, 1}n → {0, 1}n be a trapdoor
permutation and f−1 its inverse. With l < n, let G : {0, 1}t → {0, 1}n−l and H : {0, 1}n−l → {0, 1}t be
random oracles. We can now construct an IND-CPA PKE scheme by first padding each messages
m ∈ {0, 1}n−l and then applying the trapdoor permutation as follows: Choose a uniformly random
value r $← {0, 1}l, and then output the ciphertext c := f(m⊕ G(r)∥r⊕ H(m⊕ G(r))). Because of the
Feistel-network-like structure of the OAEP, the ciphertext c can then be easily decrypted as follows:
First obtain a∥b := f−1(c), and then recompute the randomness r = b⊕ H(a), and finally output
the original plaintext m = a⊕ G(r).

An interesting property of OAEP, is that it is (fully) randomness recoverable [LW10], meaning
that given an encryption c of a message m generated using randomness r, from c and the the
secret key sk alone, it is possible to fully recover r. This naturally lends itself to a synchronized
anamorphic scheme as follows: Just like in our first construction Σ1, use a counter ctr and a PRF
F to generate a one-time pad t := F(K, ctr) ∈ {0, 1}l, and set the randomness to r := m̂⊕ t. Being
randomness recoverable, OAEP then allows to efficiently retrieve m̂ simply by first recovering the
randomness r, and then computing m̂ := r⊕ F(K, ctr).

Now, by the discussion in Section 4.5, we have that this anamorphic extension for OAEP can
be trivially made robust by choosing a small enough l ′ < l and instantiating Σ4 with M̂ .

= {0, 1}l
′
.

Therefore, when f denotes the RSA trapdoor permutation f(x) := RN(x
e), where N = pq for

two primes p, q, and e ∈ Zϕ(n), we have that RSA-OAEP indeed admits a robustly anamorphic
extension.
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Gsec-0
Π,Σ1

G1
Π,Σ1

Init():

01 (sk , pk)← Gen()

02 K $← K

03 f $← R[τ]×M̂

04 ctr := 0

05 return (sk , pk)

AEnc(m, m̂):

06 r := F(K, (ctr, m̂))

07 r := f((ctr, m̂))

08 c := Enc(pk ,m; r)

09 ctr := ctr+ 1

10 return c

G2
Π,Σ1

Init():

01 (sk , pk)← Gen()

02 return (sk , pk)

AEnc(m, m̂):

03 r $← R
04 c← Enc(pk ,m; r)

05 return c

Gsec-1
Π,Σ1

Init():

01 (sk , pk)← Gen()

02 return (sk , pk)

AEnc(m, m̂):

03 c← Enc(pk ,m)

04 return c

D ′Init,Eval

01 b← DInit∗,AEnc∗

02 return b

Init∗():

03 Init()

04 (sk , pk)← Gen()

05 ctr := 0

06 return (sk , pk)

AEnc∗(m, m̂):

07 r := Eval((ctr, m̂))

08 c := Enc(pk ,m; r)

09 ctr := ctr+ 1

10 return c

Figure 15: Games Gsec-0
Π,Σ1

, G1
Π,Σ1

, G2
Π,Σ1

, Gsec-1
Π,Σ1

, and distinguisher D ′ for the proof of Lemma 4.1.

A Proofs

A.1 Proofs for the Σ1 Construction

Lemma 4.1. Let Σ1 be the anamorphic extension from Construction 1 for an arbitrary PKE
scheme Π. There exists an efficient transformation of any sec distinguisher D into a prf
distinguisher D ′ with q(D ′) = q(D) ≤ τ such that

Advsec
Π,Σ1

(D) = Advprf
F (D ′).

Proof. Define games Gsec-0
Π,Σ1

, G1
Π,Σ1

, G2
Π,Σ1

, Gsec-1
Π,Σ1

, and distinguisher D ′ as in Figure 15. D ′ is such
that if it is interacting with Gprf-0

F , it perfectly emulates Gsec-0
Π,Σ1

towards D, and if it is interacting
with Gprf-1

F , it perfectly emulates G1
Π,Σ1

towards D. Since the counter ctr used as part of the input
to the uniform random function f is never repeating, r is effectively uniformly distributed in G1

Π,Σ1
,

and therefore G1
Π,Σ1

is perfectly indistinguishable from G2
Π,Σ1

. Moreover, G2
Π,Σ1

is just a more explicit
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Grob-0
Π,Σ1

G1
Π,Σ1

Init():

01 (sk , pk)← Gen()

02 K $← K

03 f $← R[τ]×M̂

EncADec(m, ctr):

04 c := Enc(pk ,m)

05 foreach m̂ ∈ M̂ do

06 r ′ := F(K, (ctr, m̂))

07 r ′ := f((ctr, m̂))

08 c ′ := Enc(pk ,m; r ′)

09 if c ′ = c then

10 return m̂

11 return ⊥

G2
Π,Σ1

Init():

01 bad := false

EncADec(m, ctr):

02 r $← R
03 foreach m̂ ∈ M̂ do

04 r ′ $← R
05 if r ′ = r then

06 bad := true

07 return m̂

08 return ⊥

Grob-1
Π,Σ1

Init():

01 // Do nothing

EncADec(m, ctr):

02 return ⊥

D ′Init,Eval

01 b← DInit∗,EncADec∗

02 return b

Init∗():

03 Init()

04 (sk , pk)← Gen()

EncADec∗(m, ctr):

05 c := Enc(pk ,m)

06 foreach m̂ ∈ M̂ do

07 r := Eval((ctr, m̂))

08 c ′ := Enc(pk ,m; r ′)

09 if c ′ = c then

10 return m̂

11 return ⊥

Figure 16: Games Grob-0
Π,Σ1

, G1
Π,Σ1

, G2
Π,Σ1

, Grob-1
Π,Σ1

, and distinguisher D ′ for the proof of Lemma 4.2.

description of Gsec-1
Π,Σ1

, and thus they too are perfectly indistinguishable. Therefore, we have

Advsec
Π,Σ1

(D) = Pr[Gsec-0
Π,Σ1

(D)] − Pr[Gsec-1
Π,Σ1

(D)]

= (Pr[Gsec-0
Π,Σ1

(D)] − Pr[G1
Π,Σ1

(D)])

+ (Pr[G1
Π,Σ1

(D)] − Pr[G2
Π,Σ1

(D)])

+ (Pr[G2
Π,Σ1

(D)] − Pr[Gsec-1
Π,Σ1

(D)])

= (Pr[Gprf-0
F (D ′)] − Pr[Gprf-1

F (D ′)]) + 0+ 0

= Advprf
F (D ′).

Lemma 4.2. Let Σ1 be the anamorphic extension from Construction 1 for an arbitrary PKE
scheme Π. There exists an efficient transformation of any rob distinguisher D into a prf
distinguisher D ′ with q

.
= q(D ′) = q(D) ≤ τ such that

Advrob
Π,Σ1

(D) ≤ Advprf
F (D ′) +

qℓ

ρ
.

Proof. Define games Grob-0
Π,Σ1

, G1
Π,Σ1

, G2
Π,Σ1

, Grob-1
Π,Σ1

, and distinguisher D ′ as in Figure 16. D ′ is such
that if it is interacting with Gprf-0

F , it perfectly emulates Grob-0
Π,Σ1

towards D, and if it is interacting

33



with Gprf-1
F , it perfectly emulates G1

Π,Σ1
towards D. Without loss of generality,8 we can assume

that D never repeats counters, hence r ′ is effectively uniformly distributed in G1
Π,Σ1

. Then, since
c := Enc(pk ,m) corresponds to r $← R followed by c := Enc(pk ,m; r), and since for any pk , m, r,
and r ′ we have that Enc(pk ,m; r) ̸= Enc(pk ,m; r ′), it follows that G1

Π,Σ1
is perfectly indistinguishable

from G2
Π,Σ1

. Moreover, G2
Π,Σ1

and Grob-1
Π,Σ1

are identical until bad is set to true, which happens with
probability qℓ/ρ. Therefore, using the fundamental lemma of game playing, we have

Advrob
Π,Σ1

(D) = Pr[Grob-0
Π,Σ1

(D)] − Pr[Grob-1
Π,Σ1

(D)]

= (Pr[Grob-0
Π,Σ1

(D)] − Pr[G1
Π,Σ1

(D)])

+ (Pr[G1
Π,Σ1

(D)] − Pr[G2
Π,Σ1

(D)])

+ (Pr[G2
Π,Σ1

(D)] − Pr[Grob-1
Π,Σ1

(D)])

≤ (Pr[Gprf-0
F (D ′)] − Pr[Gprf-1

F (D ′)]) + 0+ Pr[bad]

≤ Advprf
F (D ′) +

qℓ

ρ
.

A.2 Proofs for the Σ2 Construction

Lemma 4.3. Let Σ2 be the anamorphic extension from Construction 2 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any sec distinguisher
D into a prf distinguisher D ′ with q(D ′) = q(D) ≤ τ such that

Advsec
Π,Σ2

(D) = Advprf
F (D ′).

Proof. Define games Gsec-0
Π,Σ2

, G1
Π,Σ2

, G2
Π,Σ2

, Gsec-1
Π,Σ2

, and distinguisher D ′ as in Figure 17. D ′ is such
that if it is interacting with Gprf-0

F , it perfectly emulates Gsec-0
Π,Σ2

towards D, and if it is interacting
with Gprf-1

F , it perfectly emulates G1
Π,Σ2

towards D. Since the counter ctr used as input to the
uniform random function f is never repeating, t is effectively uniformly distributed in G1

Π,Σ2
, and

since so is r = m̂⊕ t, G1
Π,Σ2

is perfectly indistinguishable from G2
Π,Σ2

. Moreover, G2
Π,Σ2

is just a more
explicit description of Gsec-1

Π,Σ2
, and thus they too are perfectly indistinguishable. Therefore, we have

Advsec
Π,Σ2

(D) = Pr[Gsec-0
Π,Σ2

(D)] − Pr[Gsec-1
Π,Σ2

(D)]

= (Pr[Gsec-0
Π,Σ2

(D)] − Pr[G1
Π,Σ2

(D)])

+ (Pr[G1
Π,Σ2

(D)] − Pr[G2
Π,Σ2

(D)])

+ (Pr[G2
Π,Σ2

(D)] − Pr[Gsec-1
Π,Σ2

(D)])

= (Pr[Gprf-0
F (D ′)] − Pr[Gprf-1

F (D ′)]) + 0+ 0

= Advprf
F (D ′).

8 Whether D repeats counters or not, the probability of a collision between r and r ′, over all of D’s queries, remains
the same.
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Gsec-0
Π,Σ2

G1
Π,Σ2

Init():

01 (sk , pk)← Gen()

02 K $← K

03 f $← R[τ]

04 ctr := 0

05 return (sk , pk)

AEnc(m, m̂):

06 t := F(K, ctr)

07 t := f(ctr)

08 r := m̂⊕ t

09 c := Enc(pk ,m; r)

10 ctr := ctr+ 1

11 return c

G2
Π,Σ2

Init():

01 (sk , pk)← Gen()

02 return (sk , pk)

AEnc(m, m̂):

03 r $← R
04 c← Enc(pk ,m; r)

05 return c

Gsec-1
Π,Σ2

Init():

01 (sk , pk)← Gen()

02 return (sk , pk)

AEnc(m, m̂):

03 c← Enc(pk ,m)

04 return c

D ′Init,Eval

01 b← DInit∗,AEnc∗

02 return b

Init∗():

03 Init()

04 (sk , pk)← Gen()

05 ctr := 0

06 return (sk , pk)

AEnc∗(m, m̂):

07 t := Eval(ctr)

08 r := m̂⊕ t

09 c := Enc(pk ,m; r)

10 ctr := ctr+ 1

11 return c

Figure 17: Games Gsec-0
Π,Σ2

, G1
Π,Σ2

, G2
Π,Σ2

, Gsec-1
Π,Σ2

, and distinguisher D ′ for the proof of Lemma 4.3.

Lemma 4.4. Let Σ2 be the anamorphic extension from Construction 2 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any rob distinguisher
D into a prf distinguisher D ′ with q

.
= q(D ′) = q(D) ≤ τ such that

Advrob
Π,Σ2

(D) ≤ Advprf
F (D ′) +

qℓ

ρ
.

Proof. Define games Grob-0
Π,Σ2

, G1
Π,Σ2

, G2
Π,Σ2

, Grob-1
Π,Σ2

, and distinguisher D ′ as in Figure 18. D ′ is such
that if it is interacting with Gprf-0

F , it perfectly emulates Grob-0
Π,Σ2

towards D, and if it is interacting
with Gprf-1

F , it perfectly emulates G1
Π,Σ2

towards D. Without loss of generality,9 we can assume
that D never repeats counters, hence t is effectively uniformly distributed in G1

Π,Σ2
. Then, since

(c1, c2) := Enc(pk ,m) corresponds to r $← R followed by (c1, c2) := Enc(pk ,m; r), and since
γ(β(r), t) = β(m̂) if and only if r = m̂ ⊕ t, it follows that G1

Π,Σ2
is perfectly indistinguishable

from G2
Π,Σ2

. Moreover, G2
Π,Σ2

and Grob-1
Π,Σ2

are identical until bad is set to true, which happens with

9 Whether D repeats counters or not, the probability of a collision between r and m̂⊕ t, over all of D’s queries,
remains the same.
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Grob-0
Π,Σ2

G1
Π,Σ2

Init():

01 (sk , pk)← Gen()

02 K $← K

03 f $← R[τ]

EncADec(m, ctr):

04 (c1, c2) := Enc(pk ,m)

05 t := F(K, ctr)

06 t := f(ctr)

07 s := γ(c2, t)

08 foreach m̂ ∈ M̂ do

09 if β(m̂) = s do

10 return m̂

11 return ⊥

G2
Π,Σ2

Init():

01 bad := false

EncADec(m, ctr):

02 r $← R
03 t $← R
04 foreach m̂ ∈ M̂ do

05 if r = m̂⊕ t then

06 bad := true

07 return m̂

08 return ⊥

Grob-1
Π,Σ2

Init():

01 // Do nothing

EncADec(m, ctr):

02 return ⊥

D ′Init,Eval

01 b← DInit∗,EncADec∗

02 return b

Init∗():

03 Init()

04 (sk , pk)← Gen()

EncADec∗(m, ctr):

05 (c1, c2) := Enc(pk ,m)

06 t := Eval(ctr)

07 s := γ(c2, t)

08 foreach m̂ ∈ M̂ do

09 if β(m̂) = s do

10 return m̂

11 return ⊥

Figure 18: Games Grob-0
Π,Σ2

, G1
Π,Σ2

, G2
Π,Σ2

, Grob-1
Π,Σ2

, and distinguisher D ′ for the proof of Lemma 4.4.

probability qℓ/ρ. Therefore, using the fundamental lemma of game playing, we have

Advrob
Π,Σ2

(D) = Pr[Grob-0
Π,Σ2

(D)] − Pr[Grob-1
Π,Σ2

(D)]

= (Pr[Grob-0
Π,Σ2

(D)] − Pr[G1
Π,Σ2

(D)])

+ (Pr[G1
Π,Σ2

(D)] − Pr[G2
Π,Σ2

(D)])

+ (Pr[G2
Π,Σ2

(D)] − Pr[Grob-1
Π,Σ2

(D)])

≤ (Pr[Gprf-0
F (D ′)] − Pr[Gprf-1

F (D ′)]) + 0+ Pr[bad]

≤ Advprf
F (D ′) +

qℓ

ρ
.

A.3 Proofs for the Σ3 Construction

Lemma 4.6. Let Σ3 be the anamorphic extension from Construction 3 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any cor distinguisher
D into a prf distinguisher D ′ with q

.
= q(D ′) = q(D) ≤ στ such that

Advcor
Π,Σ3

(D) ≤ Advprf
F (D ′) +

qσℓ

ρ
.
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Gcor-0
Π,Σ3,m

G1
Π,Σ3,m

Init():

01 (sk , pk)← Gen()

02 K $← K

03 f $← R[σ]×[τ]

04 (x, y) := (0, 0)

AEncADec(m̂):

05 repeat

06 (x, y) := ILσ,τ(x, y)

07 t := F(K, (x, y))

08 t := f((x, y))

09 r := m̂⊕ t

10 until δ(β(r)) = y

11 (c1, c2) := Enc(pk ,m; r)

12 y ′ := δ(c2) // = δ(β(r)) = y

13 foreach x ′ ∈ [σ] do

14 t ′ := F(K, (x ′, y ′))

15 t ′ := f((x ′, y ′))

16 s := γ(c2, t
′) // = γ(β(r), t ′)

17 foreach m̂ ′ ∈ M̂ do

18 if β(m̂ ′) = s then

19 return m̂ ′

20 return ⊥

G2
Π,Σ3,m

Init():

01 (x, y) := (0, 0)

02 bad := true

AEncADec(m̂):

03 repeat

04 (x, y) := ILσ,τ(x, y)

05 tx
$← R

06 r := m̂⊕ tx

07 until δ(β(r)) = y

08 foreach x ′ ∈ [σ] do

09 if x ′ ̸= x

10 tx ′
$← R

11 s := γ(β(r), tx ′)

12 foreach m̂ ′ ∈ M̂ do

13 if β(m̂ ′) = s then

14 if m̂ ′ ̸= m̂ then

15 bad := true

16 return m̂ ′

17 // Unreachable

Gcor-1
Π,Σ3,m

Init():

01 // Do nothing

AEncADec(m̂):

02 return m̂

D ′Init,Eval

01 b← DInit∗,AEncADec∗

02 return b

Init∗():

03 Init()

04 (sk , pk)← Gen()

05 (x, y) := (0, 0)

AEncADec∗(m):

06 repeat

07 (x, y) := ILσ,τ(x, y)

08 t := Eval((x, y))

09 r := m̂⊕ t

10 until δ(β(r)) = y

11 foreach x ′ ∈ [σ] do

12 t ′ := Eval((x ′, y))

13 s := γ(β(r), t ′)

14 foreach m̂ ′ ∈ M̂ do

15 if β(m̂ ′) = s then

16 return m̂ ′

17 // Unreachable

Figure 19: Games Gcor-0
Π,Σ3,m

, G1
Π,Σ3,m

, G2
Π,Σ3,m

, Gcor-1
Π,Σ3,m

, and distinguisher D ′ for the proof of
Lemma 4.6.

Proof. Define games Gcor-0
Π,Σ3,m

, G1
Π,Σ3,m

, G2
Π,Σ3,m

, Gcor-1
Π,Σ3,m

and distinguisher D ′ as in Figure 19.
Note that for convenience we define game Gcor-0

Π,Σ3,m
without pre-processing. D ′ is such that if it is

interacting with Gprf-0
F , it perfectly emulates Gcor-0

Π,Σ3
towards D, and if it is interacting with Gprf-1

F , it
perfectly emulates G1

Π,Σ3
towards D. Since the state (x, y) used as input to the uniform random

function f is never repeating, t and every value t ′ computed in the for loop for each x ′ ∈ [σ] are
effectively uniformly distributed in G1

Π,Σ3
. Then it follows that G1

Π,Σ3
is perfectly indistinguishable

from G2
Π,Σ3

. Moreover, G2
Π,Σ3

and Gcor-1
Π,Σ3

are identical until bad is set to true. For each queried covert
message m̂, this happens if there exists an x ′ ̸= x and a m̂ ′ ̸= m̂ such that β(m̂ ′) = s. To compute
the probability of bad being set to true for a fixed m̂, let X .

= [σ]∖ {x} and N .
= M̂∖ {m̂}. Then,
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since β(m̂ ′) = γ(β(m̂⊕ tx), tx ′) if and only if m̂⊕ tx = m̂ ′ ⊕ tx ′ , we have

Pr[∃x ′ ∈ X , m̂ ′ ∈ N : β(m̂ ′) = γ(β(r), tx ′)]

= Pr[∃x ′ ∈ X , m̂ ′ ∈ N : β(m̂ ′) = γ(β(m̂⊕ tx), tx ′)]

= Pr[∃x ′ ∈ X , m̂ ′ ∈ N : m̂⊕ tx = m̂ ′ ⊕ tx ′ ]

= Pr[∃x ′ ∈ X , m̂ ′ ∈ N : tx ⊕ tx ′ = m̂⊕ m̂ ′]

≤
∑
x ′∈X

∑
m̂ ′∈N

Pr[tx ⊕ tx ′ = m̂⊕ m̂ ′]

≤ σℓ

ρ
.

Therefore, using the fundamental lemma of game playing, we have

Advcor
Π,Σ3

(D) = Pr[Gcor-0
Π,Σ3

(D)] − Pr[Gcor-1
Π,Σ3

(D)]

= (Pr[Gcor-0
Π,Σ3

(D)] − Pr[G1
Π,Σ3

(D)])

+ (Pr[G1
Π,Σ3

(D)] − Pr[G2
Π,Σ3

(D)])

+ (Pr[G2
Π,Σ3

(D)] − Pr[Gcor-1
Π,Σ3

(D)])

≤ (Pr[Gprf-0
F (D ′)] − Pr[Gprf-1

F (D ′)]) + 0+ Pr[bad]

≤ Advprf
F (D ′) +

qσℓ

ρ
.

Lemma 4.7. Let Σ3 be the anamorphic extension from Construction 3 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any sec distinguisher
D into a prf distinguisher D ′ with q(D ′) = q(D) ≤ στ such that

Advsec
Π,Σ3

(D) = Advprf
F (D ′).

Proof. Define games Gsec-0
Π,Σ3

, G1
Π,Σ3

, G2
Π,Σ3

, Gsec-1
Π,Σ3

, and distinguisher D ′ as in Figure 20. D ′ is such
that if it is interacting with Gprf-0

F , it perfectly emulates Gsec-0
Π,Σ3

towards D, and if it is interacting
with Gprf-1

F , it perfectly emulates G1
Π,Σ3

towards D. Since the state pair (x, y) used as input to the
uniform random function f is never repeating, t is effectively uniformly distributed in G1

Π,Σ3
, and

since so is r = m̂⊕ t, G1
Π,Σ3

is perfectly indistinguishable from G2
Π,Σ3

. Moreover, since by Lemma 4.5
we know that E[T ] ≈ τ <∞, where T denotes the number of iterations in AEnc, G2

Π,Σ3
is perfectly

indistinguishable from Gsec-1
Π,Σ3

. Therefore, we have

Advsec
Π,Σ3

(D) = Pr[Gsec-0
Π,Σ3

(D)] − Pr[Gsec-1
Π,Σ3

(D)]

= (Pr[Gsec-0
Π,Σ3

(D)] − Pr[G1
Π,Σ3

(D)])

+ (Pr[G1
Π,Σ3

(D)] − Pr[G2
Π,Σ3

(D)])

+ (Pr[G2
Π,Σ3

(D)] − Pr[Gsec-1
Π,Σ3

(D)])

= (Pr[Gprf-0
F (D ′)] − Pr[Gprf-1

F (D ′)]) + 0+ 0

= Advprf
F (D ′).
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Gsec-0
Π,Σ3

G1
Π,Σ3

Init():

01 (sk , pk)← Gen()

02 K $← K

03 f $← R[σ]×[τ]

04 (x, y) := (0, 0)

05 return (sk , pk)

AEnc(m, m̂):

06 repeat

07 (x, y) := ILσ,τ(x, y)

08 t := F(K, (x, y))

09 t := f((x, y))

10 r := m̂⊕ t

11 until δ(β(r)) = y

12 c := Enc(pk ,m; r)

13 return c

G2
Π,Σ3

Init():

01 (sk , pk)← Gen()

02 (x, y) := (0, 0)

03 return (sk , pk)

AEnc(m, m̂):

04 repeat

05 (x, y) := ILσ,τ(x, y)

06 r $← R
07 until δ(β(r)) = y

08 c := Enc(pk ,m; r)

09 return c

Gsec-1
Π,Σ3

Init():

01 (sk , pk)← Gen()

02 return (sk , pk)

AEnc(m, m̂):

03 c := Enc(pk ,m)

04 return c

D ′Init,Eval

01 b← DInit∗,AEnc∗

02 return b

Init∗():

03 Init()

04 (sk , pk)← Gen()

05 (x, y) := (0, 0)

06 return (sk , pk)

AEnc∗(m, m̂):

07 repeat

08 (x, y) := ILσ,τ(x, y)

09 Eval((x, y))

10 r := m̂⊕ t

11 until δ(β(r)) = y

12 c := Enc(pk ,m; r)

13 return c

Figure 20: Games Gsec-0
Π,Σ3

, G1
Π,Σ3

, G2
Π,Σ3

, Gsec-1
Π,Σ3

, and distinguisher D ′ for the proof of Lemma 4.7.

Lemma 4.8. Let Σ3 be the anamorphic extension from Construction 3 for an SRR PKE scheme
Π satisfying Definition 4.1. There exists an efficient transformation of any rob distinguisher
D into a prf distinguisher D ′ with q

.
= q(D ′) = q(D) ≤ στ such that

Advrob
Π,Σ3

(D) ≤ Advprf
F (D ′) +

qσℓ

ρ
.

Proof. Define games Grob-0
Π,Σ3

, G1
Π,Σ3

, G2
Π,Σ3

, Grob-1
Π,Σ3

, and distinguisher D ′ as in Figure 21. Note that for
convenience we define game Gcor-0

Π,Σ3,m
without pre-processing. D ′ is such that if it is interacting with

Gprf-0
F , it perfectly emulates Grob-0

Π,Σ3
towards D, and if it is interacting with Gprf-1

F , it perfectly emulates
G1

Π,Σ3
towards D. Without loss of generality,10 we can assume that state pairs (x, y) are never

repeated, hence t is effectively uniformly distributed in G1
Π,Σ3

. Then, since (c1, c2) := Enc(pk ,m)

corresponds to r $← R followed by (c1, c2) := Enc(pk ,m; r), and since γ(β(r), t) = β(m̂) if and only
if r = m̂⊕ t, it follows that G1

Π,Σ3
is perfectly indistinguishable from G2

Π,Σ3
. Moreover, G2

Π,Σ3
and

10 Whether a state pair (x, y) is repeated or not, the probability of a collision between r and m̂⊕ t, over all of D’s
queries, remains the same.
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Grob-0
Π,Σ3

G1
Π,Σ3

Init():

01 (sk , pk)← Gen()

02 K $← K

03 f $← R[τ]

EncADec(m):

04 (c1, c2) := Enc(pk ,m)

05 y := δ(c2)

06 foreach x ∈ [σ] do

07 t := F(K, (x, y))

08 t := f((x, y))

09 s := γ(c2, t)

10 foreach m̂ ∈ M̂ do

11 if β(m̂) = s do

12 return m̂

13 return ⊥

G2
Π,Σ3

Init():

01 bad := false

EncADec(m):

02 r $← R
03 foreach x ∈ [σ] do

04 t $← R
05 foreach m̂ ∈ M̂ do

06 if r = m̂⊕ t then

07 bad := true

08 return m̂

09 return ⊥

Grob-1
Π,Σ3

Init():

01 // Do nothing

EncADec(m):

02 return ⊥

D ′Init,Eval

01 b← DInit∗,EncADec∗

02 return b

Init∗():

03 Init()

04 (sk , pk)← Gen()

EncADec∗(m):

05 (c1, c2) := Enc(pk ,m)

06 y := δ(c2)

07 foreach x ∈ [σ] do

08 t := Eval((x, y))

09 s := γ(c2, t)

10 foreach m̂ ∈ M̂ do

11 if β(m̂) = s do

12 return m̂

13 return ⊥

Figure 21: Games Grob-0
Π,Σ3

, G1
Π,Σ3

, G2
Π,Σ3

, Grob-1
Π,Σ3

, and distinguisher D ′ for the proof of Lemma 4.8.

Grob-1
Π,Σ3

are identical until bad is set to true, which happens with probability qσℓ/ρ. Therefore, using
the fundamental lemma of game playing, we have

Advrob
Π,Σ2

(D) = Pr[Grob-0
Π,Σ2

(D)] − Pr[Grob-1
Π,Σ2

(D)]

= (Pr[Grob-0
Π,Σ2

(D)] − Pr[G1
Π,Σ2

(D)])

+ (Pr[G1
Π,Σ2

(D)] − Pr[G2
Π,Σ2

(D)])

+ (Pr[G2
Π,Σ2

(D)] − Pr[Grob-1
Π,Σ2

(D)])

≤ (Pr[Gprf-0
F (D ′)] − Pr[Gprf-1

F (D ′)]) + 0+ Pr[bad]

≤ Advprf
F (D ′) +

qσℓ

ρ
.

B IND-CPA Security of Anamorphic Ciphertexts

For a PKE scheme Π with anamorphic extension Σ, [PPY22] additionally defines security in terms of
indistinguishability of anamorphic ciphertexts under a chosen-plaintext attack (ind-anam-cpa).
More specifically, they require that for a fixed (normal) message m, anamorphic encryptions of covert
messages m̂0 and m̂1 with m be indistinguishable. We reformulate this notion as real-or-random
rather than left-or-right (cf. [BDJR97]).
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Game Gind-anam-cpa-0
Π,Σ,m

Init():

01 (sk , pk)← Gen()

02 dk ← aGen(sk , pk)

03 return (sk , pk)

AEnc(m̂):

04 c← aEnc(dk ,m, m̂)

05 return c

Game Gind-anam-cpa-1
Π,Σ,m

Init():

01 (sk , pk)← Gen()

02 dk ← aGen(sk , pk)

03 return (sk , pk)

AEnc(m̂):

04 m̃ $← M̂
05 c← aEnc(dk ,m, m̃)

06 return c

Figure 22: Games defining ind-anam-cpa security of an anamorphic extension Σ = (aGen, aEnc, aDec)
for PKE scheme Π = (Gen,Enc,Dec).

Definition B.1. For a PKE scheme Π with anamorphic extension Σ and arbitrary message
m ∈ M, we define the advantage of an ind-anam-cpa distinguisher D as

Advind-anam-cpa
Π,Σ,m (D)

.
= Pr[Gind-anam-cpa-0

Π,Σ,m (D)] − Pr[Gind-anam-cpa-1
Π,Σ,m (D)],

with games Gind-anam-cpa-0
Π,Σ,m and Gind-anam-cpa-1

Π,Σ,m as defined in Figure 22. We let q(D) denote the
total number of messages queried to Enc by D.

As shown in [PPY22], the sec notion for anamorphic extensions implies ind-anam-cpa security,
which roughly speaking means that in order to show that anamorphic ciphertexts are indistinguish-
able from one another, it suffices to show that anamorphic ciphertexts are indistinguishable from
regular ones. We next reprove this simple result using our new formalism.

Theorem B.1. For a PKE scheme Π with anamorphic extension Σ, let and m ∈ M be arbitrary.
There exists an efficient transformation of any ind-anam-cpa distinguisher D into an sec
distinguisher D ′

m with q(D ′
m) = q(D) such that

Advind-anam-cpa
Π,Σ,m (D) ≤ 2 · Advsec

Π,Σ(D
′
m).

Proof. For an arbitrary message m ∈ M, define game GΠ,Σ,m and adversaries D ′
m,1, D

′
m,2 as in

Figure 23. D ′
m,1 is such that if it is interacting with Gsec-0

Π,Σ , it perfectly emulates Gind-anam-cpa-0
Π,Σ,m

towards D, and if it is interacting with Gsec-1
Π,Σ , it perfectly emulates G1

Π,Σ towards D. D ′
m,2 is such

that if it is interacting with Gsec-1
Π,Σ , it perfectly emulates G1

Π,Σ towards D, and if it is interacting
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GΠ,Σ,m

Init():

01 (sk , pk)← Gen()

02 return (sk , pk)

AEnc(m̂):

03 c← Enc(pk ,m)

04 return c

D ′Init,AEnc
m,1 D ′Init,AEnc

m,2

01 b← DInit∗,AEnc∗

02 return b

03 return 1− b

Init∗():

04 (sk , pk)← Init()

05 return (sk , pk)

AEnc∗(m̂):

06 c← AEnc(m, m̂)

07 m̃ $←M

08 c← AEnc(m, m̃)

09 return c

Figure 23: Game GΠ,Σ,m and adversaries D ′
m,1, D

′
m,2 for the proof of Theorem B.1.

with Gsec-0
Π,Σ , it perfectly emulates Gind-anam-cpa-1

Π,Σ,m towards D. Therefore, we have

Advind-anam-cpa
Π,Σ,m (D) = Pr[Gind-anam-cpa-0

Π,Σ,m (D)] − Pr[Gind-anam-cpa-1
Π,Σ,m (D)]

= (Pr[Gind-anam-cpa-0
Π,Σ,m (D)] − Pr[GΠ,Σ,m(D)])

+ (Pr[GΠ,Σ,m(D)] − Pr[Gind-anam-cpa-1
Π,Σ,m (D)])

= (Pr[Gsec-0
Π,Σ (D ′

m,1)] − Pr[Gsec-1
Π,Σ (D ′

m,1)])

+ (Pr[Gsec-0
Π,Σ (D ′

m,2)] − Pr[Gsec-1
Π,Σ (D ′

m,2)])

= Advsec
Π,Σ(D

′
m,1) + Advsec

Π,Σ(D
′
m,2)

= 2 · Advsec
Π,Σ(D

′),

where D ′
m is the distinguisher that initially flips a uniform coin, and depending on the outcome it

either behaves as D ′
m,1 or as D ′

m,2.

C ElGamal’s Σ3 Anamorphic Extension Test Code

We implemented the synchronized robustly anamorphic extension AnamElGamal .
= (aGen, aEnc, aDec)

with pre-computation for the SRR PKE scheme ElGamal from Construction 9 in Python, with
F = AES, to test the four scenarios mentioned in Section 1.2. Note that this code requires the
package PyCryptodome.

import random
from Crypto.Cipher import AES

class PublicParams:
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def __init__(self, p, q, g):
self.p = p
self.q = q
self.g = g

class AnamParams:
def __init__(self, l, s, t):

self.F = lambda pp, K, x, y: \
int.from_bytes(AES.new(K, AES.MODE_ECB) \
.encrypt(x.to_bytes(8, ’little’) \
+ y.to_bytes(8, ’little’)), "little") % pp.p

self.d = lambda ap, x: x % ap.t
self.l = l
self.s = s
self.t = t

class KeyPair:
def __init__(self, sk, pk):

self.sk = sk
self.pk = pk

class DoubleKey:
def __init__(self, K, T, pk):

self.K = K
self.T = T
self.pk = pk

def Gen(pp):
sk = random.randint(0, pp.q - 1)
pk = pow(pp.g, sk, pp.p)
return KeyPair(sk, pk)

def Enc(pp, pk, msg):
r = random.randint(0, pp.q - 1)
c0 = (msg * pow(pk, r, pp.p)) % pp.p
c1 = pow(pp.g, r, pp.p)
return c0, c1

def Dec(pp, sk, c):
return (c[0] * pow(c[1], -sk, pp.p)) % pp.p

def aGen(pp, ap, pk):
K = random.randbytes(16)
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T = dict()
for i in range(ap.l):

T[pow(pp.g, i, pp.p)] = i
return DoubleKey(K, T, pk)

def aEncCtr(pp, ap, dk, msg, cm, ctr):
found = False
for x in range(ctr[0], ap.s):

for y in range(ctr[1], ap.t):
t = ap.F(pp, dk.K, x, y)
r = (cm + t) % pp.q
if ap.d(ap, pow(pp.g, r, pp.p)) == y:

found = True
break

if found:
break

ctr[1] = 0
ctr[0] = (x + (1 if y == ap.t - 1 else 0)) % ap.s
ctr[1] = (y + 1) % ap.t
c0 = (msg * pow(dk.pk, r, pp.p)) % pp.p
c1 = pow(pp.g, r, pp.p)
ctx = (c0, c1)
return ctx, ctr

def aEnc(pp, ap, dk, msg, cm):
while True:

x = random.randint(0, ap.s - 1)
y = random.randint(0, ap.t - 1)
t = ap.F(pp, dk.K, x, y)
r = (cm + t) % pp.q
if ap.d(ap, pow(pp.g, r, pp.p)) == y:

break
c0 = (msg * pow(dk.pk, r, pp.p)) % pp.p
c1 = pow(pp.g, r, pp.p)
ctx = (c0, c1)
return ctx

def aDec(pp, ap, dk, ctx):
y = ap.d(ap, ctx[1])
for x in range(ap.s):

t = ap.F(pp, dk.K, x, y)
s = (ctx[1] * pow(pp.g, -t, pp.p)) % pp.p
if s in dk.T:
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return dk.T[s]
return -1

# Settings
runs = 50

# Public Parameters (safe prime, pow(g, (p - 1) // 2, p) != 1)
#p, g = int("0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1\
#29024E088A67CC74020BBEA63B139B22514A08798E3404DD\
#EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245\
#E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED\
#EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381\
#FFFFFFFFFFFFFFFF", 0), 5 # Oakley group (RFC 2409)
p, g = 1000000007, 5
q = p - 1
pp = PublicParams(p, q, g)
print("p =", pp.p)
print("q =", pp.q)
print("g =", pp.g)

# Anamorphic Parameters
l = 100
s = 100
t = 100
ap = AnamParams(l, s, t)
print("l =", ap.l)
print("s =", ap.t)
print("t =", ap.s)

# Keys Generation
kp = Gen(pp)
dk = aGen(pp, ap, kp.pk)
print("(sk, pk) = (%d, %d)" % (kp.sk, kp.pk))
print("K =", dk.K)
print("T = [", ", ".join(str(a) + "->" + str(b) for (a,b) in \

sorted([((pp.g ** i) % pp.p, i) for i in range(l)])), ’]’)

# Testing aEnc -> Dec and aEnc -> aDec
msg = random.randint(1, pp.p - 1)
cm = random.randint(0, l - 1)
#ctr = [0, 0]
for i in range(runs):

#c, ctr = aEncCtr(pp, dk, msg, cm, ctr)
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ctx = aEnc(pp, ap, dk, msg, cm)
msg_ = Dec(pp, kp.sk, ctx)
cm_ = aDec(pp, ap, dk, ctx)
print("(%d, %d) -> aEnc -> (%d, %d) -> Dec -> %d" \

% (msg, cm, ctx[0], ctx[1], msg_))
print("(%d, %d) -> aEnc -> (%d, %d) -> aDec -> %d" \

% (msg, cm, ctx[0], ctx[1], cm_))

# Testing Enc -> Dec and Enc -> aDec
for i in range(runs):

m = random.randint(1, pp.p - 1)
ctx = Enc(pp, kp.pk, m)
msg_ = Dec(pp, kp.sk, ctx)
cm_ = aDec(pp, ap, dk, ctx)
print("%d -> Enc -> (%d, %d) -> Dec -> %d" \

% (m, ctx[0], ctx[1], msg_))
print("%d -> Enc -> (%d, %d) -> aDec -> %d" \

% (m, ctx[0], ctx[1], cm_), "(!)" if cm_ != -1 else "")
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