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Abstract. In this paper we, for the first time, study the question under
which circumstances decomposing a round function of a Substitution-
Permutation Network is possible uniquely . More precisely, we provide
necessary and sufficient criteria for the non-linear layer on when a de-
composition is unique. Our results in particular imply that, when crypto-
graphically strong S-boxes are used, the decomposition is indeed unique.

We then apply our findings to the notion of alignment, pointing out that
the previous definition allows for primitives that are both aligned and
unaligned simultaneously.

As a second result, we present experimental data that shows that align-
ment might only have limited impact. For this, we compare aligned and
unaligned versions of the cipher PRESENT.
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1 Introduction

Most of the security analysis of symmetric primitives is actually based on their
representation and not on the primitive itself: When arguing about the resistance
of ciphers or cryptographic permutations, our arguments are in most cases based
on a given decomposition of the cipher, in many cases into a linear layer and
a set of mappings that are applied in parallel, i.e. S-boxes. While this is very
helpful in many cases, it can lead to wrong results in others, see e.g. [3].

Using those ingredients when designing efficient and secure ciphers or cryp-
tographic permutations has a long standing history. It can be seen as having its
roots already in Shannon’s seminal ideas on confusion and diffusion [25]. While
many alternative design strategies exist, the use of S-boxes and linear layers is
arguably dominating today’s designs and include AES, SHA-3, and many of the
primitives for the final round of the NIST lightweight crypto competition3.

In this paper we touch upon a very fundamental aspect of this decomposition:
its uniqueness.

3 https://csrc.nist.gov/Projects/lightweight-cryptography/finalists

https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
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Decomposing a Round Function. Let us turn the view away from designing a ci-
pher or being given a description of a Substitution-Permutation Network (SPN)
but rather to a given round function (or maybe even the composition of several
round functions). We can imagine having oracle access to the round function
only. Here two natural questions arise. First, how to detect if a given round
function is actually an SPN round function, and in a second step, how to find
the corresponding decomposition. Those questions have been intensively studied
since the last 30 years, starting with the seminal SASAS and ASASA crypt-
analysis papers [6,22]. Indeed, there are algorithms that can efficiently find a
decomposition into an S-box and a linear layer. In particular, those algorithms
answer the existence of a decomposition. Moreover, a natural extension of the
decomposition of a round function is the representation of a given block cipher,
and having multiple representations of the same cipher can have not only a theo-
retical impact (some properties might be easier to study using one representation
rather than another), but also a practical one, see for example [1,24] where using
a different representation to implement the ciphers PRESENT and GIFT can
lead to an increase in performances.

However, and this is very surprising for us, while the existence of a decompo-
sition has been studied extensively since almost 30 years, the uniqueness of such
a decomposition was, to the best of our knowledge, never studied but always
given for granted.

To be very clear, there are obvious, and well known, limitations to a unique
decomposition already discussed in [6]. In particular, the order of the S-boxes and
their choice up to affine equivalence, i.e. up to composing with affine bijections is
clearly not unique. What we are interested in, and what has not been questioned
so far, is uniqueness up to those equivalent representations.

Crucially, some security arguments, like counting the number of active S-
boxes to bound the probability/absolute correlation of a differential/linear trail,
could give different results depending on the decomposition. As we will discuss
below, without additional requirements on the S-boxes, a unique decomposition
is not guaranteed in general.4 While this is interesting as a fundamental property
of round functions, it also impacts very recent work on alignment.

Alignment - intuitively. Alignment of symmetric primitives is a property that
has been initially coined during the SHA-3 competition by the Keccak-team in
[5] but actually is an idea that dates back to the wide-trail strategy and the
use of super-boxes (or code-concatenation) in order to argue about resistance of
block ciphers against differential and linear attacks. Interestingly, while already
mentioned more than 10 years ago and since then been used in numerous papers
[9,11,13,20], the term was never precisely defined. In all the papers mentioned
above the term is used in connection with SPNs and we restrict to those designs
here as well.

4 Thankfully, for the case of counting S-boxes those requirements lead to trivial bounds
for the probability/absolute correlation of a differential/linear trail, no matter the
decomposition.
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Intuitively, and this is common in all those papers, alignment is used when
the linear layer of an SPN manipulates the state in words, i.e. is word-oriented,
and those words are either identical to S-box inputs or consist of multiple S-box
inputs (or outputs). However, there are several flavors of this common intuition.
For example, several papers mention strong and weak alignment. In [20] the
authors mention that no good bounds on the probabilities of differential trails
are known for Keccak as it is weakly aligned. Reciprocally, it is argued e.g. in
[13] that strong alignment allows proving strong bounds.

The importance of the property, along with its positive and negative conno-
tations, is reflected in several second-round candidates of the NIST lightweight
project. For Subterranean the designers state in [11] as a feature that “In a way,
the Subterranean round function is the nec plus ultra of weak alignment“, while
the authors of Saturnin [9] advertise their design “the strongly-aligned version
of the wide-trail strategy“

So while many researches might have one (or several) more (or less) pre-
cise ideas what alignment with respect to designing a substitution permutation
network might mean, a formal definition was not given.

Alignment – defined. This only changed very recently with the work of Bordes
et al. [8] at CRYPTO 2021 where a definition of alignment was given and its
impact on several cryptographically relevant criteria was studied.

Even so it is not stated exactly this way, a round function, with a given
decomposition into an S-box layer and a linear layer, is aligned, according to
[8], if and only if the primitive has a super-box structure. A super-box structure
means that two rounds of the primitive decompose (up to linear changes of input
and output) into a set of two or more parallel applications of mappings. Those
parallel mappings are then refereed to as super-boxes.

Unfortunately, this definition has shortcomings as discussed below.
The first problem is based on the fact that alignment is defined for a round

function with a given description as a fixed S-box and linear layer. Ideally, one
would hope that alignment, i.e. the existence of super-boxes, is a property that
is inherent to the round function and not to its description only.

The second shortcoming of alignment is its impact on security. In [8] several
aligned and unaligned ciphers were compared with respect to e.g. the number of
linear and differential characteristics of high probability. Within this selection,
ciphers being aligned suffered more from clustering effects. However, the exact
impact of alignment on those properties remained unclear. The main reason for
this is that the ciphers that are used in the comparisons are very different and
it is far from clear whether the difference in the observed behaviours is (mainly)
due to alignment or (mainly) due to other properties that separate the ciphers.

Our Contribution

We first present our main result on the uniqueness of decomposition, Theorem 1,
in Section 2, which states that a decomposition is not unique if and only if
(at least) one S-box has maximal differential uniformity and another one has
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maximal linearity. For better readability, we first present the results and shift
the proofs and several more technical insights to Section 5.

With respect to alignment, we show in Section 3, based on the non-uniqueness
of maximal decomposition in general, that there exist round functions that have
both an aligned and an unaligned description. We also give a non-artificial ex-
ample, namely the cipher DEFAULT[2], which is aligned and unaligned at the
same time.

Furthermore, in Section 4 we present experimental data showing that the
impact of alignment with respect to the security criteria studied in [8] may be
almost non-existent if we consider alignment as an isolated property. We show
this by comparing variants of the same cipher instead of different ciphers. For
this we choose the cipher PRESENT. Here, by changing only the original bit-
permutation one can nicely create versions that are aligned or unaligned. As
we detail, those variants behave very similarly in all aspects, in contrast to the
results of [8], see e.g. Fig. 3.

2 Main Results on the Uniqueness of Decompositions

It is easy to see that every round function that is un-keyed (or in which a simple
key addition takes place at the end of the round) can be seen as an SPN by simply
choosing the non-linear layer to be the round function itself (without the addition
of the key in the keyed case) and the linear layer to be the identity. Obviously,
this representation of a round function is not very useful. But it already shows
that without further restrictions, a decomposition of a round function into non-
linear and linear layer cannot be unique. Hence, it is not clear if the properties
one infers from one possible decomposition are the same for a different one.

In other words, if we want to infer properties of a round function based on its
linear and non-linear layer, we should make sure that it is actually well defined,
i. e. it only depends on the round function and not on the choice of decomposition.
To give just one example, the arguments made in [3] for the resistance against
invariant attacks are only valid for one given decomposition and can be shown
to be invalid for another.5

Before presenting our results, let us first fix some notations and definitions.

2.1 Preliminaries

Basic Notation. We will denote by F2 the Galois field with 2 elements and with
+ the addition in this field, which can be seen as an exclusive or. With Fn2 we
will denote the n dimensional vector space over this field, with xT the transpose
of a (column) vector x ∈ Fn2 and with xT · y the (canonical) inner product of
x, y ∈ Fn2 . Furthermore, we will denote by ⊕ the direct sum of vector spaces,
i. e. U ⊕ V = W if and only if W = U + V := {u + v | u ∈ U, v ∈ V } and

5 The arguments are mainly based on the rational canonical form of the linear layer
and this form might change when using linear equivalent S-boxes and modifying the
linear layer accordingly.
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U ∩ V = {0} for vector spaces U, V ⊂ W . Given a direct sum
⊕

i Ui = W we
will denote by πUi : W → Ui the projection onto Ui along

⊕
l 6=i Ul, i. e. πUi has

kernel
⊕

l 6=i Ul, image Ui and is the identity if restricted to Ui.
6 We will also

consider the direct sum
(⊕

i∈I Ui
)
⊕
(⊕

i/∈I Ui
)

and will write UI :=
⊕

i∈I Ui as
well as πUI :=

∑
i∈I π

U
i for the projection onto

⊕
i∈I Ui along

⊕
i/∈I Ui or simply

Ui 6=l and πUi 6=l if I = {i|i 6= l}. Also, we will denote by F|U the restriction of a
function F to the subset U of its domain.

General Definitions. Let us give some general definitions that we will use through-
out this paper.

Definition 1 (Linear/Affine Equivalence). We call two functions F,G :
Fn2 → Fn2 affine equivalent if there exist a, b ∈ Fn2 as well as invertible matrices
A,B ∈ Fn×n2 such that F (x) = b+B ·G (A · x+ a) for all x ∈ Fn2 . If a = 0 = b
we also call F,G linear equivalent.

Definition 2 (Differential Uniformity (cf.[23])). Let F : U → V for sub-
spaces U, V ⊂ Fn2 . Then we call maxα∈U\{0},β∈V |{x ∈ U |F (x) +F (x+α) = β}|
the differential uniformity of F and say that it is maximal if it is equal to |U |.

Definition 3 (Linearity, (see [10] for an in-depth discussion)). Let F :
U → V for subspaces U, V ⊂ Fn2 . Then we call maxα∈Fn

2 \V ⊥,β∈Fn
2 ,c∈F2

|{x ∈
U |αT · F (x) = βT · x + c}| the linearity of F , where V ⊥ := {x ∈ Fn2 |xT · y =
0 ∀y ∈ V }, and say that it is maximal if it is equal to |U |.

2.2 Defining a (Maximal) Decomposition

Given a (round) function we would like to be able to find a unique decomposi-
tion into non-linear and linear layer(s). Similarly to [8], we require the number
of S-boxes in the non-linear layer to be maximal. While in general such a de-
composition is not unique, we show conditions under which it is. Hence, under
these conditions it is possible to infer properties of the round function (such as
alignment[8]) based on the linear and non-linear layer(s) of the corresponding
unique decomposition.

A Natural Definition. Let us start with formally defining what we understand
by a decomposition. Since a non-linear layer typically consists of independent
S-boxes (i. e. functions that don’t share input and output bits), one can see the
S-box layer as the sum of independent functions. For example, the non-linear
layer N : Fn1

2 × Fn2
2 → Fn1

2 × Fn2
2 with

N

(
x1
x2

)
=

(
S1(x1)
S2(x2)

)
6 In other words, the direct sum enables us to express every element x ∈W as

∑
i xi

for unique xi ∈ Ui. Hence, πUi is the mapping defined by x =
∑
i xi 7→ xi.
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and S1 : Fn1
2 → Fn1

2 as well as S2 : Fn2
2 → Fn2

2 can be seen as

N

(
x1
x2

)
=

(
S1(x1)

0

)
+

(
0

S2(x2)

)
where the input/output spaces of those two functions are Fn1

2 × 0n2 resp. 0n1 ×
Fn2
2 . Note that Fn1

2 ×0n2⊕0n1×Fn2
2 = Fn1

2 ×F
n2
2 . A linear layer now only changes

the input/output spaces of those functions. Hence, we will define a decomposition
of a (round) function by the sum of functions defined on subspaces of the input
and output spaces.

Definition 4 (Decomposition). Let F : Fn2 → Fn2 be bijective. Furthermore,
let U1, ..., Ud and V1, ..., Vd be non-trivial7 subspaces of Fn2 with

⊕
i Ui = Fn2 =⊕

i Vi, as well as Fi : Ui → Vi with

F (x) = F

(∑
i

πUi (x)

)
=
∑
i

Fi ◦ πUi (x).

We call {(Ui, Vi, Fi) | 1 ≤ i ≤ d} a decomposition of F . If d > 1 we call the
decomposition non-trivial.

Note that the reason we need to restrict the definition to non-trivial subspaces
is that it is always possible to extend the decomposition by F̂ : {0} → {0}, which
does not give any additional information about the (round) function. Moreover,
as the order of the functions does not matter, we only consider a set of tuples.

We would like to point out that we actually allow two linear layers, i. e. we
are decomposing into L2 ◦ N ◦ L1 where L1 and L2 are linear layers and N is
a non-linear layer. But note that the r round iteration (L2 ◦ N ◦ L1)r is linear
equivalent to (L1 · L2 ◦N)r, meaning that both (round) functions, L2 ◦N ◦ L1

and L1 ·L2 ◦N , lead to the same cryptographic properties. With that, allowing
two linear layers seems actually more natural than restricting to one linear layer
only.

Refining Decompositions. It is easy to see that given a (non-trivial) decomposi-
tion {(Ui, Vi, Fi) | 1 ≤ i ≤ d} it is always possible to find another decomposition
by combining two (or more) of the Fi, i. e. {(

⊕
i∈Il Ui,

⊕
i∈Il Vi,

∑
i∈Il Fi ◦ π

U
i ) |

1 ≤ l ≤ m} is also a decomposition for every partition of the index space
I1, ..., Im ⊂ {1, ..., d}.

Hence, in order for a decomposition to be unique it is clear that one at least
has to maximize the number of S-boxes. To this end, we will now define in which
case one decomposition is a refinement of another decomposition, which reminds
of [8] while technically being different as [8] focuses on the linear layer only.

Definition 5 (Refinement). Let F : Fn2 → Fn2 be bijective. Let further D =
{(Ui, Vi, Fi) | 1 ≤ i ≤ d} and E = {(Wi, Xi, Gi) | 1 ≤ i ≤ e} be two decompo-
sitions of F . We call E a refinement of D if e > d and for all i there exists a
value of j such that Wi ⊂ Uj.
7 More precise, we allow the subspaces to be equal to Fn2 but not to be {0}.
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The intuition behind this is that we further decompose each of the individual
S-Boxes. Based on this, we can now define a maximal decomposition.

Definition 6 (Maximal Decomposition). We call a decomposition D max-
imal if there exists no refinement of D.

In other words, a decomposition is maximal if we cannot decompose the
individual S-boxes any further. It is an interesting question, which we leave open
for now, whether two maximal decompositions have to have the same number of
S-boxes, or even more, the same size spectrum (see Definition 10 below).

2.3 A Sufficient and Necessary Condition for Unique
Decompositions

Knowing the definition of a maximal decomposition, we can now state our main
result in context of decompositions.

Theorem 1. Let F : Fn2 → Fn2 be bijective and let D = {(Ui, Vi, Fi)|1 ≤ i ≤ d}
be a maximal decomposition of F . Then D is unique if and only if there exists
no pair (i, k) with i 6= k such that Fi has maximal differential uniformity and
Fk has maximal linearity.

We will prove this in detail in Section 5.
Since one of the S-boxes having maximal differential uniformity (resp. maxi-

mal linearity) means that the same has to be true for the whole (round) function,
we can relax the condition and receive a sufficient, but not necessary, condition.

Corollary 1. Let F : Fn2 → Fn2 be bijective. If F does not have maximal differen-
tial uniformity or maximal linearity then F has a unique maximal decomposition.

Since differential uniformity and linearity are properties that should already
be known for most (if not all) cryptographic primitives, this makes it easy to
argue about the uniqueness of their maximal decomposition.

Some Intuition on the Functions without a Unique Maximal Decomposition.
Given Theorem 1 it is actually not hard to show (see Supplementary Mate-
rial B) that the functions without a unique maximal decomposition are exactly
those that are affine equivalent to ones of the form

R


x1
x2
x3
x4

 =


f(x1)

g(x1) + x2
x3

h

(
x3
x4

)

}

S-box(es)S-box(es)
,

where x1 ∈ Fn2 , x4 ∈ Fm2 for integers n,m and x2, x3 ∈ F2, as well as f : Fn2 → Fn2 ,
g : Fn2 → F2 and h : F2 × Fm2 → Fm2 . The reason is that such functions allow
us to “mix” S-boxes without changing it, as we can add x3 (from the second
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S-box) to x2 (from the first S-box) before the non-linear layer, but also revert
this linear transformation after the non-linear layer by just changing the original
linear layer (more details will be given in Example 2).

Given that one typically tries to minimize the differential uniformity and
linearity, it may seem like functions without a unique maximal decomposition
are not of interest to cryptographers, but there exists at least one widely-used
type of round function that actually has no unique maximal decomposition,
namely the one of a generalized Feistel network.

In total, we are able to show that whenever cryptographically strong S-boxes
are used the representation of its round function can indeed be used for arguing
about its properties, while the same is not always true in the opposing case, as
we will see next.

3 Re-Aligning Alignment

To give just one example of why the uniqueness of a maximal decomposition can
be important, let us take a look at the concept of alignment by Bordes et al.[8].
While the intuition should be that a round function is aligned if the primitive
has a superbox structure, i. e. the iteration of two rounds exhibits a non-trivial
decomposition, the original definition is a bit more involved. Therefore, let us
quickly recall the definition of alignment from [8]. For this, we assume that the
round function consists of the parallel application of m equally-sized S-boxes, a
bijective linear transformation and the addition of a key (resp. constant), i. e. we
can write the round function as L ◦N + c, where L ∈ Fn×n2 is a bijective linear
mapping,

N =

S1

...
Sm


is the non-linear layer, with Si : Fn/m2 → Fn/m2 bijective, and c ∈ Fn2 is a constant
(resp. key). For simplicity, we will use a slightly different but equivalent version
of the definition from [8].

Definition 7 (Alignment[8], sub-optimal). Let Ui := 0(i−1)·n/m × Fn/m2 ×
0(m−i)·n/m for i = 1, . . . ,m. A round function L ◦ N + c (as above) is called
aligned if L can be written as T ◦M such that

– it exists a permutation τ : {1, . . . ,m} → {1, . . . ,m} with T (Ui) = Uτ(i) and

– it exists J ⊂ {1, . . . ,m} (non-trivial) such that M
(⊕

i∈J Ui
)

=
⊕

i∈J Ui
and M

(⊕
i/∈J Ui

)
=
⊕

i/∈J Ui,

where the split between the linear and nonlinear layer is chosen so as to maximize
the number of S-boxes in N . 8

8 This version is equivalent to the one from [8] since T (Ui) = Uτ(i) means that T is the
composition of a ΠN -Shuffle and a ΠN aligned linear function. As the composition
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The problem with this definition is that it is not invariant under affine (or
even linear) equivalence (of the round function iterated two times), while the
existence of a superbox structure is. One non-artificial example where this is
indeed a problem is the cipher DEFAULT[2], which is aligned, but a linear
equivalent version would not be aligned.

Before we explain the problem in more detail, let us give an alternative
definition that is exactly equivalent to the existence of a superbox structure.

Definition 8 (Alignment). We call a round function R aligned if there exists
a non-trivial decomposition of R ◦ R. In the keyed case we require a non-trivial
decomposition for every key.

Note that whenever a round function is aligned according to the original
definition it is indeed aligned, since it implies a non-trivial decomposition of
R ◦R with in- and output spaces of a certain form, while a round function that
is not aligned according to the original definition could actually be aligned, but
the in- and output spaces may not be of the form required in Definition 7.

On the Need of Decomposability for all Keys. On the first glance, requiring de-
composibility for all possible key choices may seem as a downside. But note that
the original definition does the same (even in the un-keyed case), as it implies a
non-trivial decomposition of R ◦R for all possible key/constant additions. Also,
there does not seem to be a way around this as the existence of a superbox struc-
ture can be key dependent. For instance, let F be self inverse and let R = F + k
be the round function for a round key k. Then R ◦ R is affine equivalent to
F (F + k), which is the identity for k = 0 and therefore clearly decomposable,
while the same is not necessarily true for k 6= 0.

A real world example of a key dependent decomposition is the block cipher
CRAFT[4], for which Leander et al. show in [19] that there exist some Tweak-
keys for which the round function is now very similar to a Feistel network, while
originally being an SPN.

That said, it seems to be more in line with [8] to require the existence of
a superbox structure for all possible key choices, while clearly a more refined
definition would be possible. But, since we show in Section 4 that the impact
of alignment may be hugely overestimated, we will settle with a definition most
true to the original one for now.

Alignment and Generalized Feistel Networks. While there exist non-artificial ex-
amples, like the cipher DEFAULT[2], that are aligned according to the definition
from [8], but a linear equivalent cipher is not, showing this for DEFAULT is a
bit more involved, but does not give further insights into the problem. Hence, we

of a ΠN′ aligned and a ΠN aligned function is obviously ΠN′ aligned if ΠN ≤ ΠN′ ,
it is then enough to check that M is ΠN′ aligned, with ΠN′ being non-trivial.
Since it is only important that ΠN′ is non-trivial, this can be done by checking if
M
(⊕

i∈J Ui
)

=
⊕

i∈J Ui and M
(⊕

i/∈J Ui
)

=
⊕

i/∈J Ui for some J ⊂ {1, . . . ,m},
i. e. checking for all possible ΠN′ with two boxes.



10 Baptiste Lambin, Gregor Leander, and Patrick Neumann

f +

x1 x2

f +

y1 y2

f +

x3 x4

f +

y3 y4

f +

x5 x6

f +

y5 y6

f +

x7 x8

f +

y7 y8

Fig. 1: Example of a round function that is aligned, while a linear equivalent
two round composition would not be according to [8]. The colors indicate the
alignment resp. superbox structure and the dotted lines the individual S-boxes.

x′1 x′2

y′1 y′2

x′3 x′4

y′3 y′4

x′5 x′6

y′5 y′6

x′7 x′8

y′7 y′8

+

Fig. 2: Linear layer of a (linear) self-equivalent version of the round function from
Fig. 1. The colors indicate the initial alignment resp. superbox structure.

refer to Supplementary Material A.1 for this and use a more suitable example
at this point. Let us have a look at the generalized Feistel network depicted in
Fig. 1. Obviously, we can see the permutation of the output as a linear layer
and the non-linear transformation of each Feistel branch as an S-box (indicated
by the dotted box in the figure). As can be seen, two rounds of this construc-
tion result in two independent parts, which shows the existence of a superbox
structure. A quick check with the definition from [8] shows that this structure
is indeed aligned. But the problem is that the same does not hold true for a
linear equivalent version of this two round structure. To see this, note that the
linear transformation that adds x3 to x2 commutes with the S-box layer. Hence,
we can look at a linear equivalent version where we replace the second permu-
tation/linear layer by this linear transformation. Since it commutes with the
S-box layer, we end up with the linear layer depicted in Fig. 2 between the two
S-box layers. Here we can see that the addition of y′3 to y′2 mixes the two colors,
and a quick look at the definition from [8] reveals that this version would not
be aligned anymore, while the superbox structure is obviously still present. For
more details on this, we refer to Supplementary Material A.2.
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4 Aligned and Unaligned Versions of PRESENT

We are interested in looking at how alignment affects the cryptographic prop-
erties of very similar primitives, and to do so we chose to look at variants of
the block cipher PRESENT where we keep the same S-box but change the per-
mutation. Given the link to central digraphs and the fact that those are fully
classified in dimension 16, makes PRESENT a very suitable candidate for our
purpose as one can essentially investigate the full spectra of bit permutations
and their impact on alignment.

Especially, we will show that alignment can have a very minor effect in how
it influences linear and differential trails.9

4.1 Digraphs and PRESENT

One round of PRESENT consists of 16 parallel applications of the same 4-bit S-
box followed by a bit permutation of the 64-bit state. The permutation is chosen
in such a way that full dependency is reached after two rounds, or more precisely
3 applications of the S-box layer interleaved with two permutation layers. In [17]
it was shown how any such permutation leads to what is called a central digraph.

Definition 9. Let G = (V,E) be a directed graph with vertices V and edges E.
G is a central digraph if for every pair of nodes u, v ∈ V it exists a unique w ∈ V
such that (u,w) ∈ E and (w, v) ∈ E. That is for every pair of vertices there exist
a unique path of length 2 between them.

A PRESENT-like bit permutation P operating on {0, . . . , 63} gives rise to
a central digraph by identifying the 16 S-boxes with 16 vertices and adding an
edge from vertex i to vertex j if there exists an output bit of the i-th S-box that
is mapped to the j-th S-box in the next round. Note that when restricting to
permutations with full dependency after two rounds (thus leading to a central
digraph), there are no duplicate edges on this digraph as, for a given S-box, each
of its four output bits needs to be sent to a different S-box on the next round.

All Central Digraphs of Order 16 up to isomorphism. There are exactly 3492
central digraphs of order 16 up to graph isomorphism, see [17]. Graph isomor-
phism, translated to the PRESENT-like structure, correspond to permuting the
order of S-boxes. Moreover, many PRESENT-like permutations will end up in
the same digraph as the order of input and output bits within each S-box is ne-
glected in the graph representation, but relevant for the cipher. As such, not all
properties of the cipher can be deduced from the digraph directly. For example,
as shown in [18] the number of (linear) trails might well differ for two permu-
tations that correspond to the same digraph. While some properties cannot be
deduced from the digraph only, others – in particular alignment – can.

9 The code we used to make these experiments is available at: https://doi.org/10.
5281/zenodo.7660387.

https://doi.org/10.5281/zenodo.7660387
https://doi.org/10.5281/zenodo.7660387
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Aligned and Non-Aligned Central Digraphs. As mentioned above there are ex-
actly 3492 central digraphs leading to full diffusion after 2 rounds. We can further
group them into several sets using the following definition.

Definition 10 (Size spectrum of a decomposition). Let F : Fn2 → Fn2 be
bijective and let D = {(Ui, Vi, Fi)|1 ≤ i ≤ d} be a decomposition of F . We call
the multiset SD = {dim(Ui)|1 ≤ i ≤ d} the size spectrum of D.

Moreover, we will say that a digraph G is aligned (resp. unaligned) if the per-
mutations induced from G result in an aligned (resp. unaligned) round function.
Recalling the previous sections and in particular Corollary 1, this makes sense
as the PRESENT S-box neither has trivial linearity nor differential uniformity
and thus its maximal decomposition is unique.

Over all the 3492 central digraphs, their alignment is distributed as follows:

– One single digraph is aligned with a maximal decomposition of size spectrum
{4, 4, 4, 4}. Especially, the original permutation in PRESENT belongs to this
class; that is two rounds of PRESENT can be rewritten as consisting of 4
super-boxes of 16 bits each.

– 37 digraphs lead to a maximal decomposition of size spectrum {4, 4, 8};
– 1207 digraphs lead to a maximal decomposition of size spectrum {4, 12};
– 220 digraphs lead to a maximal decomposition of size spectrum {8, 8};
– 2027 digraphs lead to a maximal decomposition of size spectrum {16}, i.e.

all these digraphs are unaligned.

Since our goal is to compare aligned and unaligned versions of PRESENT, we will
focus on the two corresponding cases to generate permutations: the (single) case
where the maximal decomposition is of size spectrum {4, 4, 4, 4}, corresponding
to the digraph of the original permutation, and the case where the digraph is
unaligned. As in [8], we will focus on the linear and differential properties of the
resulting variants of PRESENT.

4.2 Linear Cryptanalysis

The idea is to focus only on linear trails with one active S-box per round. This
has two advantages. First, it covers the bulk of the correlation used in most of
the attacks on PRESENT, cf. [14]. Second, it simplifies the analysis and we can
nicely use graph theory and efficient algorithms therein to control the effect of
unaligning the original PRESENT permutation.

A linear trail with a single active S-box per round implies for a bit-permutation
that has full dependency in two rounds, that only one-to-one bit linear approx-
imations have to be considered through the S-box. There are only 8 possible
one-to-one bit transitions with non-zero correlation within the PRESENT S-box,
see [7]. For us, the only important point here is that there is no 1-1 transition
involving the LSB neither at the input nor at the output of the S-box.

As such, if one were to change the permutation by only modifying the values
in the permutation that are affecting the LSB (both at the input and output) of
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the S-boxes, one would get a new permutation that has the same number of linear
trails built from 1-1 transitions. That is, two bit-permutations that only differ
in those bits, lead to ciphers with a very similar behaviour with respect to linear
attacks. More specifically, this means that an alternative permutation should be
built from the following partial permutation, where ? is an undetermined value

p? = (?, ?, ?, ?, ?, 17, 33, 49, ?, 18, 34, 50, ?, 19, 35, 51, ?, ?, ?, ?, ?, 21, 37, 53, ?, 22,

38, 54, ?, 23, 39, 55, ?, ?, ?, ?, ?, 25, 41, 57, ?, 26, 42, 58, ?, 27, 43, 59, ?, ?, ?, ?,

?, 29, 45, 61, ?, 30, 46, 62, ?, 31, 47, 63).

Extending the partial permutation in an unaligned way. To build the
entire permutation, we want it to both have the above structure (i.e. fits the
partial permutation) as well as lead to one of the central digraphs that has the
alignment we want to study. Luckily, this can nicely be done with graph theory.
The idea is that the partial permutation has to correspond to a sub-graph in
one of the central digraphs we aim for.

More explicitly, from the partial permutation p?, one can deduce a digraph
H?. H? contains an edge from vertex i to vertex j if there exists an output bit
of index a with p?(a) 6= ? in the i-th S-box that is mapped to an input bit of
index b with p?(b) 6= ? in the j-th S-box in the next round. Then there exists a
permutation that both fits the partial permutation and leads to one of the 2027
unaligned digraphs G if and only if H? is subgraph isomorphic to G.

Such a permutation would then be unaligned while still preserving the linear
trails built from 1-1 transitions. We used the subgraph isomorphism solver by
McCreesh et al. [21] to find all possible subgraph isomorphisms between H? and
the unaligned digraphs, and over the 2027 unaligned digraphs, there are 346 that
lead to at least one subgraph isomorphism.

Thus, to build alternative permutations, we first choose one of these 346 (un-
aligned) subgraphs, choose one of the subgraph isomorphism and complete the
partial permutation according to this isomorphism to obtain a full permutation.
Note that several permutations can be built from a given digraph and subgraph
isomorphism, however the exact number is rather hard to evaluate.

By building alternative permutations like this, we can deduce the following
proposition that takes care of the most prominent linear trails.

Proposition 1. For any (aligned or unaligned) permutation generated as de-
scribed above, the number of linear trails in PRESENT built with only 1-1 tran-
sitions is exactly the same as when using the original permutation, and all those
trails have an absolute bias of 2−3r over r rounds.

4.3 Differential Cryptanalysis

Once we obtain a permutation, we can then evaluate different metrics for differ-
ential cryptanalysis, and as an echo to [8] we chose to evaluate the number of
trails, number of core patterns and number of differentials (i.e. considering the
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Table 1: Largest deviations observed on the number of differential trails.

1 permutation per graph all permutations in the same class

Rounds Original Alternative Weight Min. Alt. Max. Alt. Weight

2 248.35 248.21 24 211.11 211.15 6

3 246.29 243.05 32 28.93 29.15 8

4 28.19 26.32 12 27.09 27.52 12

clustering effect of differential trails), which are defined in the following section.
We can then repeat the procedure by generating another permutation, possibly
also choosing another digraph and/or subgraph isomorphism.

Differential Trails. We made experiments to observe how having an unaligned
permutation affects the distribution of differential trails (see Definition 13 in
Supplementary Material D.1), more specifically the number of trails of a given
weight (i.e. the − log2 of the probability).

We computed the number of trails up to a given weight over 2, 3 and 4 rounds
for both the original permutation as well as for several permutations generated
as described in the previous section. The computation was done as an exhaustive
search using a standard Branch & Bound algorithm as well as the convolution
technique showed in [8] for the first and last round. For 3 rounds, we adapted the
algorithm in Appendix A.3 of [8], with some simplifications and optimizations
since the linear layer is only a permutation in our case. For 4 rounds, the same
algorithm as for 3 rounds is used to generate trails over 3 rounds, which are then
manually extended by adding one round at the end.

We give the detailed results in Supplementary Material D.1, comparing the
original permutation to a batch of variant permutations generated in 2 ways:
either one random permutation is generated from one random isomorphism for
each digraph (thus 346 variants considered), or 346 permutations are generated
from one isomorphism and one single graph, to showcase that the number of trails
remains rather stable within the same class of permutation. We also give a short
summary of the largest deviations in Table 1. Each row starts by the number of
rounds, followed by 3 entries giving the number of trails for the original (resp.
alternative) permutations with the largest gap and for which weight this gap
happens, when the alternative permutations are generated as one permutation
for one isomorphism for each graph. The remaining 3 entries of the row showcase
the largest gap between any of the alternative permutations, which are generated
within the same class, showing that in this case the results are rather stable.

Overall, while the (unaligned) alternative permutations tend to lead to lower
numbers of trails than the (aligned) original permutation (but not always, e.g.
over 4 rounds, there are ∼ 217.31 trails of weight 15 for the original permutation
while one alternative permutation leads to ∼ 217.40 trails of the same weight),
the gap between the original and alternative permutations is rather small and
the distribution seems to remain very similar.
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Table 2: Largest deviations observed on the number of core patterns. No devia-
tion for 2 rounds when permutations are in the same class.

1 permutation per graph all permutations in the same class

Rounds Original Alternative Active S-boxes Min. Alt. Max. Alt. Active S-boxes

2 231.48 231.34 12 - - -

3 234.18 231.32 17 227.99 228.05 15

4 233.70 231.02 18 231.81 231.92 18

Core Patterns. In [8], Bordes et al. look at the influence of alignment for trun-
cated differentials (where one only considers whether or not a given S-box has a
non-zero difference) over a few block ciphers. However due to PRESENT’s linear
layer being a bit-permutation, truncated differentials are not really meaningful
to study. Instead, we will consider core patterns, which are essentially differen-
tial trails without considering the first and last S-box layer. More precisely, core
patterns are defined as follows.

Definition 11. Let (α1, β1, α2, . . . , αr, βr) be a differential trail over r rounds
with

α1
S−→ β1

p−→ α2
S−→ . . .

p−→ αr
S−→ βr

Then (β1, α2, . . . , αr) is called a core pattern.

While core patterns are still influenced by valid differentials of the S-box for
3 rounds and more, considering them allows us to ignore the effect of the first
and last S-box layer that ”inflate” the number of trails.

As for differential trails, we computed the number of core patterns for up to
a given number of active S-boxes over 2, 3 and 4 rounds, both for the original
permutation as well as for a batch of alternative permutations, which are given
in details in Supplementary Material D.2, with a short summary for the largest
deviations given in Table 2, structured in the same way as the previous table
for differential trails. The algorithm to obtain these results is very similar as for
differential trails, except that the bounding step in the Branch & Bound is done
over the number of active S-boxes, ignoring the weight of the trails as well as
ignoring the first and last S-box layer.

Clustering of Differential Trails. While differential trails are what is usu-
ally used to mount differential attacks, it has been shown multiple times (e.g.
[12,16,26]) that the actual probability of the underlying differential can devi-
ate quite significantly from the probability of a differential trail because of the
clustering effect. In short, the probability of a differential (α1, αr) is the sum
of the probability of all differential trails starting (resp. ending) with α1 (resp.
αr), see Proposition 2 in Supplementary Material D.3. Usually, the dominant
trail hypothesis is used to argue that the highest probability of any trail fitting
a given differential dominates over all other trails, that is, the probability of the
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Table 3: Largest deviations observed on the number of differentials.

1 permutation per graph all permutations in the same class

Rounds Original Alternative Weight Min. Alt. Max. Alt. Weight

2 225.63 225.08 12.9556 215.99 216.02 8.97763

3 230.15 228.69 20.8301 29.07 29.20 8

differential is about the same as the probability of the trail. However several
examples in the literature show that this is not always the case, and as such it
is useful to evaluate the actual probability of differentials over a given cipher.

Adapting the algorithm used to compute differential trails, we were able
to also compute the probabilities of differentials over 2 and 3 rounds for both
the original permutation as well as for several alternative permutations. The
resulting cumulative histogram are given in Fig. 18 and Fig. 20, selecting one
random permutation for one random isomorphism for each of the 346 graphs.
Note that for 2 rounds, the histogram is exact, computing the weight of all
differentials with at most 6 active S-boxes, while for 3 rounds, as the number
of active S-boxes in the middle round is harder to control, the trails that were
considered in the sum of probabilities were limited to the ones containing at most
8 active S-boxes as to lower the complexity of the computations. As we can see,
the distribution for alternative (unaligned) permutations seems quite close to
the distribution from the original (aligned) permutation. As before, we give a
short summary of the largest observed deviations in Table 3, while the detailed
results are given in Supplementary Material D. As an example, in Fig. 3a, we
give the cumulative histogram of the number of differential of a given weight
over 2 rounds, where the red line represents the cumulative histogram for the
original permutation, while each alternative permutation is represented by a blue
line. As all the alternative permutations give very close results, their respective
lines are all clumped together, which still highlights what we want to show here.
Note that while for 2 rounds, the alternative permutations give a very similar
curve, for 3 rounds there seems to be a divergence starting around weight 15,
see Fig. 20, while still remaining quite close.

To compare this to [8], we give in Fig. 3b the cumulative histogram the
authors gave from their analysis of Saturnin, Spongent and Xoodoo, the first
two being aligned while the latter being unaligned. Here, the largest gap between
Spongent (aligned) and Xoodoo (unaligned) is several orders of magnitude larger
than for PRESENT (about 220 near weight 21), and the distributions are very
different. Thus, we now have examples of aligned and unaligned ciphers that
behave very similar (the PRESENT variants) and very different (Spongent and
Xoodoo). Those examples jointly raise doubt about the impact of alignment on
its own.

Moreover, the minimal weight for which there is at least one differential is
different, while in our experiments when comparing variants of the same cipher,
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(a) Variants of PRESENT (original in red,
variants in blue) (b) Saturnin, Spongent and Xoodoo [8]

Fig. 3: Cumulative histogram of the number of differentials of a given weight
over 2 rounds.

the same minimal weight is achieved both for the (aligned) original permutation
as well as for the (unaligned) variants.

While these experiments show that we can find unaligned permutations that
are technically better than the original PRESENT permutation, the margin be-
tween the two is rather small and the distributions seem to be very close to each
other. Overall, the distributions also seem to diverge mostly toward ”larger”
weights, while low weight trails/differentials are probably the most important
ones to focus on, and it’s worth recalling that all of these alternative permuta-
tions have the exact same linear trails built from 1-1 transitions as the original
permutation. At the very least, these experiments clearly show that when com-
paring aligned vs. unaligned round function of a very similar design, the answer
to whether one is clearly better than the other is a lot less clear cut than what
was stated in [8].

5 An In Depth Analysis of the Uniqueness of
Decompositions

In this section, we will explain the results from Section 2 in greater depth. More
precisely, we will give more details on decompositions, how one can (possibly)
find refinements based on two decompositions, and finally, prove Theorem 1.

Reconstructing a Decomposition Based on the Input Spaces. While the Fi, which
can be interpreted as linear transformed S-boxes, are useful for motivating our
definition, they are strictly speaking not needed as long as the actual function
F is known. To see this, we first note that they can be recovered by projecting
onto the corresponding output space.

Corollary 2. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be
a decomposition of F . Then we have that πVi ◦ F = Fi ◦ πUi .
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Proof. Since F =
∑
j Fj ◦πUj and πVj ◦Fi is the same as Fi in the case that i = j

and zero otherwise, the claim follows from

πVi ◦ F = πVi ◦

∑
j

Fj ◦ πUj

 =
∑
j

πVi ◦ Fj ◦ πUj = Fi ◦ πUi .

Now, we show that the Fi provide no additional information, since the re-
striction of F to Ui is identical to Fi plus some constant that can be recovered
by projecting F (0) onto

⊕
l 6=i Vl.

Corollary 3. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be
a decomposition of F . Then we have that Fi = F|Ui

+ πVl 6=i ◦ F (0) and we can

write F =
∑
l F ◦ πUl + (d+ 1 mod 2) · F (0).

Proof. We know that F =
∑
l Fl ◦ πUl by definition. Hence, we have that

F ◦ πUi =
∑
l

Fl ◦ πUl ◦ πUi = Fi ◦ πUi +
∑
l 6=i

Fl(0) = Fi ◦ πUi +
∑
l 6=i

πVl ◦ F (0).

Therefore, we get that

F =
∑
l

Fl ◦ πUl =
∑
l

F ◦ πUl +
∑
i 6=l

πVi ◦ F (0)


=
∑
l

F ◦ πUl +
∑
l

(
F (0) + πVl ◦ F (0)

)
=
∑
l

F ◦ πUl + (d+ 1 mod 2) · F (0).

Looking at the S-box layer, we quickly see why this is the case. Assume that

N

(
x1
x2

)
=

(
S1(x1)
S2(x2)

)
.

To isolate S1, we would fix x2 = 0. But in order to get the second component to
be zero for the output space to be a subspace, we have to add S2(0) to it.

In addition to not having to know the Fi, we also do not need to know the
output spaces Vi. But note that it is still important that the output sets are
subspaces that are in direct sum.

Corollary 4. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be
a decomposition of F . Then we have that Vi = F (Ui) + F (0).

Proof. We already know that Vi = Fi(Ui) = F (Ui) +πVl 6=i ◦F (0). The claim now

follows from the fact that πVi ◦ F (0) = Fi(0) ∈ Vi.
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Hence, the only thing we need to know for constructing a decomposition
are the input spaces. Therefore, if we are able to construct a decomposition
of F based on the input spaces Ui by first recovering the output spaces Vi =
F (Ui) +F (0), verifying that the Vi are indeed subspaces and in direct sum, and
then constructing the Fi as F|Ui

+ πVl 6=i ◦ F (0), validating that F =
∑
i Fi ◦ πUi

holds, then we say that the input spaces Ui induce a decomposition of F .

Lemma 1 (Induction of Decomposition). Let F : Fn2 → Fn2 be bijective.
Let further U1, ..., Ud be non-trivial subspaces of Fn2 with

⊕
i Ui = Fn2 and let us

define Vi := F (Ui) + F (0). If the Vi are subspaces with
⊕

i Vi = Fn2 and if

F =
∑
i

F ◦ πUi + (d+ 1 mod 2) · F (0)

then D = {(Ui, Vi, Fi) | 1 ≤ i ≤ d} with Fi := F|Ui
+πVl 6=i◦F (0) is a decomposition

of F . In this case, we say that {Ui | 1 ≤ i ≤ d} induces the decomposition D.

Proof. This follows from the observations above and by definition of the Fi, as∑
i

Fi ◦ πUi =
∑
i

(
F|Ui

◦ πUi + πVl 6=i ◦ F (0)
)

=
∑
i

F ◦ πUi + (d+ 1 mod 2) · F (0).

Note that we could have used this as the definition of decomposition. While
this does not need the redundant information of the Fi and Vi, it is way less
intuitive. Also, when working with decompositions it can be quite useful to have
both the Fi and the Vi at hand, too.

Decompositions of Affine Equivalent Functions. We will now show a one-to-
one relationship between the decompositions of two affine equivalent functions,
which means that the existence of a unique maximal decomposition is actually
invariant under affine equivalence.

Lemma 2. Let F,G : Fn2 → Fn2 be bijective and affine equivalent, i. e. F = A ◦
G (B + b)+a for invertible matrices A,B ∈ Fn×n2 and constants a, b ∈ Fn2 . Then
{Ui|1 ≤ i ≤ d} induces a decomposition of F if and only if {B · Ui|1 ≤ i ≤ d}
induces a decomposition of G.

Proof. Let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} be the decomposition of F induced by
{Ui|1 ≤ i ≤ d}. It obviously holds that

⊕
iB · Ui = Fn2 , as B is invertible. In

addition, if we denote by I the identity mapping, we get that

A ◦G (B + b) + a = F =
∑
i

F ◦ πUi + (d+ 1 mod 2) · F (0)

=
∑
i

(
F ◦ πUi + F ◦ πUl 6=i ◦B−1(b) + F ◦ πUi ◦B−1(b) + F ◦B−1(b) + F (0)

)
+ (d+ 1 mod 2) · F (0),
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since we can decompose F ◦B−1(b) into F ◦πUl 6=i◦B−1(b)+F ◦πUi ◦B−1(b)+F (0).

But, as
∑
i F ◦πUi ◦B−1(b) = F ◦B−1(b) + (d+ 1 mod 2) ·F (0), this is equal to∑

i

(
F ◦ πUi + F ◦ πUl 6=i ◦B−1(b) + F (0)

)
+ (d+ 1 mod 2) · F ◦B−1(b)

=
∑
i

F
(
πUi + πUl 6=i ◦B−1(b)

)
+ (d+ 1 mod 2) · F ◦B−1(b)

=
∑
i

F
(
πUi
(
I +B−1(b)

)
+B−1(b)

)
+ (d+ 1 mod 2) · F ◦B−1(b)

=
∑
i

(
A ◦G

(
B ◦ πUi

(
I +B−1(b)

)
+B ·B−1(b) + b

)
+ a
)

+ (d+ 1 mod 2) ·
(
A ◦G

(
B ◦B−1(b) + b

)
+ a
)

=A

(∑
i

G
(
B ◦ πUi

(
I +B−1(b)

))
+ (d+ 1 mod 2) ·G(0)

)
+ a.

In other words, we have that

G =
∑
i

G
(
B ◦ πUi ◦B−1

)
+ (d+ 1 mod 2) ·G(0),

where B ◦ πUi ◦B−1 are the projections onto B · Ui. In addition, we get that

A (G(B · Ui) +G(0)) =F (Ui +B−1 · b) + F (B−1 · b)

=
∑
l

F ◦ πUl (Ui +B−1 · b) + (d+ 1 mod 2) · F (0)

+
∑
l

F ◦ πUl (B−1 · b) + (d+ 1 mod 2) · F (0)

=F ◦ πUi (Ui) + F ◦ πUi (B−1 · b)
=Fi ◦ πUi (Ui) + πVl 6=iF (0) + Fi ◦ πUi (B−1 · b) + πVl 6=iF (0)

=Vi + Fi ◦ πUi (B−1 · b) = Vi.

As
⊕

iA
−1 · Vi = Fn2 , it now follows from Lemma 1 that {B · Ui|1 ≤ i ≤ d}

induces a decomposition of G. The reverse direction follows from switching the
roles of F and G, as both affine mappings are bijective.

This especially shows that a decomposition is invariant (up to changing the
Fi) under the addition of constants (e. g. a key), both at the beginning or the
end of the round function. Hence, we can ignore such additions.

While the lemma above also enables us to study an affine equivalent version
of a function such that one decomposition has a preferable form, e. g. Ui =

0mi × Fdim(Ui)
2 × 0m

′
i , other decompositions are not necessarily of such a form.
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Finding Refinements. In order to judge if a decomposition is maximal we need
to know if there exists a refinement. For this, let us try to find a refinement given
two decompositions.

Corollary 5. Let F : Fn2 → Fn2 be bijective and let {Ui | 1 ≤ i ≤ d} and
{Wi | 1 ≤ i ≤ e} both induce decompositions of F . Then we have that

F + (d · e+ 1 mod 2) · F (0) =
∑
i,j

F ◦ πUi ◦ πWj =
∑
i,j

F ◦ πWj ◦ πUi .

Proof. We know that we can write F =
∑
i F ◦ πUi + (d+ 1 mod 2) · F (0) resp.

F =
∑
j F ◦ πWj + (e+ 1 mod 2) · F (0). This means that

F ◦ πWj =
∑
i

F ◦ πUi ◦ πWj + (d+ 1 mod 2) · F (0),

which in turn means that

F =
∑
j

F ◦ πWj + (e+ 1 mod 2) · F (0)

=
∑
j

(∑
i

F ◦ πUi ◦ πWj + (d+ 1 mod 2) · F (0)

)
+ (e+ 1 mod 2) · F (0)

=
∑
i,j

F ◦ πUi ◦ πWj + (d · e+ 1 mod 2) · F (0).

As we will see, if Im(πUi ◦ πWj ) ∩ Im(πUl ◦ πWk ) = {0} holds for all i 6= l and
j 6= k then we have found a refinement. But as soon as there exists a non-trivial
intersection, there exist multiple maximal decompositions. To see that the case
of a non-trivial intersection is even possible, let us look at the following example.

Example 1. Let R be as in Section 2, i. e.

R


x1
x2
x3
x4

 =


f(x1)

g(x1) + x2
x3

h

(
x3
x4

)

}

S-boxS-box
,

where x1 ∈ Fn2 , x4 ∈ Fm2 for integers n,m and x2, x3 ∈ F2, as well as f : Fn2 → Fn2 ,
g : Fn2 → F2 and h : F2 × Fm2 → Fm2 . Because of Lemma 2 we can ignore a linear
layer that would usually mix the output of the two S-boxes.

Let us consider the following subspaces

U1 := Fn2 × F2 × 0× 0m, U2 := 0n × 0× F2 × Fn2 ,
W1 := U1, W2 := {(0, a, a, b)T | a ∈ F2, b ∈ Fm2 }.

It is not too hard to see that both {U1, U2} and {W1,W2} induce decompositions
(we refer to Example 2 in the Supplementary Material for more details) while
they are obviously not identical, nor is one the refinement of the other. But

Im(πU1 ◦ πW1 )∩ Im(πU1 ◦ πW2 ) = U1 ∩ 0n×F2× 0× 0m = 0n×F2× 0× 0m 6= {0}.



22 Baptiste Lambin, Gregor Leander, and Patrick Neumann

5.1 The Case of Trivial Intersections

Based on Corollary 5, one may hope that the set {Im(πUi ◦πWj )|i, j}\{0} induces
a decomposition that is a refinement of both initial decompositions. While it
is clear that in case of only trivial intersections of those images they form a
direct sum, the same is not directly clear for the corresponding output spaces
Im(πVi ◦πXj ◦F ) = Im(πVi ◦πXj ). Obviously, the intersection can only be non-trivial

if i = l as otherwise Im(πUi ) ∩ Im(πUl ) = {0} already holds, which reduces our
analysis to the spaces Im(πUi ◦πWj )∩Im(πUi ◦πWk ) resp. Im(πVi ◦πXj )∩Im(πVi ◦πXk ).
As the next corollary shows, the input spaces are in direct sum if and only if the
output spaces are in direct sum.

Corollary 6. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d}
and {(Wi, Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . Then for all i, j, k,
it holds that

Im(πUi ◦ πWj ) ∩ Im(πUi ◦ πWk ) = {0} ⇔ Im(πVi ◦ πXj ) ∩ Im(πVi ◦ πXk ) = {0}.

Proof. From Corollaries 2 and 3 we know that F ◦ πUi = Fi ◦ πUi + πVl 6=i ◦F (0) =

πVi ◦ F + πVl 6=iF (0), which means that

F ◦ πUi ◦ πWj =πVi ◦ F ◦ πWj + F (0) + πVi ◦ F (0)

=πVi
(
πXj ◦ F + F (0) + πXj ◦ F (0)

)
+ F (0) + πVi ◦ F (0)

=πVi ◦ πXj ◦ F + F (0) + πVi ◦ πXj ◦ F (0)

=πVi ◦ πXj (F + F (0)) + F (0).

Let x ∈ Im(πUi ◦ πWj ) ∩ Im(πUi ◦ πWk ), i. e. there exist a, b ∈ Fn2 such that πUi ◦
πWj (a) = x = πUi ◦ πWk (b). This means that

F (x) + F (0) = F ◦ πUi ◦ πWj (a) + F (0) = πVi ◦ πXj (F (a) + F (0))

and similarly F (x) +F (0) = πVi ◦πXk (F (b) + F (0)), i. e. there exists c = F (a) +
F (0) and d = F (b) + F (0) such that πVi ◦ πXj (c) = F (x) + F (0) = πVi ◦ πXk (d).
As F is a bijection, implying that F (x) +F (0) = 0 if and only if x = 0 and that
the mappings a 7→ c and b 7→ d are also bijections, the claim follows.

Next, we want to show that if Im(πUi ◦ πWj ) ∩ Im(πUi ◦ πWk ) = {0} holds for
for all i and j 6= k, we either get a refinement or the two decompositions are
identical. To do so, we first take a deeper look at compositions of the projections.

Corollary 7. Let U1, ..., Ud and W1, ...,We be subspaces of Fn2 such that
⊕

i Ui =
Fn2 =

⊕
i Vi. Then Im(πUi ◦πWj )∩Im(πUi ◦πWk ) = {0} hold for for all i and j 6= k

if and only if πUi ◦ πWj = πWj ◦ πUi for all i, j.

Proof. Let us assume that Im(πUi ◦ πWj ) ∩ Im(πUi ◦ πWk ) = {0} holds for for all i

and j 6= k. Hence, we know that
⊕

i,j Im(πUi ◦ πWj ) = Fn2 , and we have to show
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that πUi ◦ πWj = πWj ◦ πUi for all i, j. Since both
∑
l,k π

U
l ◦ πWk and

∑
k π

W
k are

the identity, it holds that

0 = πUi + πUi =
∑
l,k

πUl ◦ πWk ◦ πUi +
∑
k

πUi ◦ πWk ◦ πUi =
∑
l 6=i,k

πUl ◦ πWk ◦ πUi .

As 0 ∈ Im(πUl ◦ πWk ) for all l, k, and those images are in direct sum, we know
that πUl ◦ πWk ◦ πUi = 0 has to hold for all l 6= i and all k. This shows that
πWj ◦ πUi = πUi ◦ πWj , since

πWj ◦ πUi =
∑
l

πUl ◦ πWj ◦ πUi = πUi ◦ πWj ◦ πUi ,

but also
πUi ◦ πWj =

∑
l

πUi ◦ πWj ◦ πUl = πUi ◦ πWj ◦ πUi .

Now, let us assume that πUi ◦ πWj = πWj ◦ πUi for all i, j, which means that

πUi ◦πWj ◦πUi ◦πWj = πUi ◦πWj ◦πWj ◦πUi = πUi ◦πWj ◦πUi = πUi ◦πUi ◦πWj = πUi ◦πWj ,

i. e. the πUi ◦ πWj are projections. If k 6= j then we have that

πUi ◦ πWj ◦ πUl ◦ πWk = πUi ◦ πWj ◦ πWk ◦ πUl = 0.

But also, since Im(πUi ◦ πWj ) ∩ Im(πUl ◦ πWk ) ⊂ Im(πUi ◦ πWj ) and πUi ◦ πWj is a
projection, it has to hold that

{0} ⊂ Im(πUi ◦ πWj ) ∩ Im(πUl ◦ πWk ) =πUi ◦ πWj
(
Im(πUi ◦ πWj ) ∩ Im(πUl ◦ πWk )

)
⊂πUi ◦ πWj

(
Im(πUl ◦ πWk )

)
= {0}.

In other words, if all the intersections are trivial, we not only know that we
can find a refinement based on the two decompositions, but also that the order in
which we do, first decomposing according to the Ui and then refining according to
the Wj or the other way around, does not matter since the resulting projections
and therefore the subspaces are identical. This leads us to the following lemma.

Lemma 3. Let F : Fn2 → Fn2 be bijective and let {Ui | 1 ≤ i ≤ d} and {Wi | 1 ≤
i ≤ e} induce the decompositions D and E of F . If for every i and j 6= k it holds
that Im(πUi ◦πWj )∩Im(πUi ◦πWk ) = {0} then we can either construct a refinement
of D or E induced by the set of input spaces {Ui∩Wj |1 ≤ i ≤ d, 1 ≤ j ≤ e}\{{0}}
or D = E.

Proof. By our reasoning above, we already know that if Im(πUi ◦ πWj )∩ Im(πUi ◦
πWk ) = {0} holds for every i and j 6= k the images Im(πUi ◦πWj ) form a direct sum,

as do the images Im(πVi ◦ πXj ). Note that Corollary 7 shows that πUi ◦ πWj =

πWj ◦ πUi are the corresponding projections. Therefore, Ui ⊃ Im(πUi ◦ πWj ) =
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Im(πWj ◦ πUi ) ⊂Wj , but also Ui ∩Wj ⊂ Im(πWj ) and Ui ∩Wj ⊂ Im(πUi ), which
means that

Ui ∩Wj ⊂ Im(πUi ◦ πWj ) ⊂ Ui ∩Wj .

Hence, Im(πUi ◦ πWj ) = Ui ∩ Wj and if we remove the trivial subspaces then
Corollary 5 shows that the set of input spaces {Ui ∩ Wj |1 ≤ i ≤ d, 1 ≤ j ≤
e} \ {{0}} induces a decomposition. Also, it obviously holds that Wj ∩Ui ⊂Wj

and Ui ∩Wj ⊂ Ui, which means that we either got a refinement of D or E, or
D is identical to E.

5.2 The Case of Non-Trivial Intersections

Now, let us look at the case in which at least one intersection of the images
is non-trivial. As we will see, this means that (at least) one S-Box has to have
maximal differential uniformity and another one has to have maximal linearity.
In order to show that, we need the following lemma.

Lemma 4. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} and
{(Wi, Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . Then we have that

F

∑
j

πUi ◦ πWj

 =
∑
j

F ◦ πUi ◦ πWj + (e+ 1 mod 2) · F (0).

Proof. The claim follows from

F

∑
j

πUi ◦ πWj

 = F ◦ πUi

∑
j

πWj

 = F ◦ πUi = πVi ◦ F + πVl 6=i ◦ F (0)

=πVi

∑
j

F ◦ πWj + (e+ 1 mod 2) · F (0)

+ πVl 6=i ◦ F (0)

=
∑
j

πVi ◦ F ◦ πWj + (e+ 1 mod 2) · πVi ◦ F (0) + πVl 6=i ◦ F (0)

=
∑
j

(
F ◦ πUi ◦ πWj + πVl 6=i ◦ F (0)

)
+ (e+ 1 mod 2) · πVi ◦ F (0) + πVl 6=i ◦ F (0)

=
∑
j

F ◦ πUi ◦ πWj + (e+ 1 mod 2) · F (0).

Since the inputs to the F ◦ πUi ◦ πWj can be seen as independent as the Wj

are in direct sum, this already shows that there has to be some kind of linearity.

Behaviour on the Intersections. Next, we will show that each Fi (resp. the
corresponding S-box) has to be affine on each of the subspaces Im(πUi ◦ πVj ) ∩
Im(πUi ◦ πVk ), which is trivial in the case that those subspaces are {0}, but gives
us more information in the case of a non-trivial intersection. For this, we will
first take a deeper look at such intersections.
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Corollary 8. Let U1, ..., Ud,W1, ...,We ⊂ Fn2 be subspaces with
⊕

i Ui = Fn2 =⊕
iWi. Also, let P be a composition of alternating projections πUi , π

W
j . Then it

holds that

Im(P ◦ πWj ) ∩ Im(P ◦ πWk 6=j) = Im(P ◦ πWj ◦ πUl 6=i) = Im(P ◦ πWk 6=j ◦ πUl 6=i).

Proof. Note that as πWi ◦ πWk 6=j = 0, we can assume that P is either of the form

p ◦ ... ◦ πUi ◦ πWj ◦ πUi with p ∈ {πUi ◦ πWj , πWj ◦ πUi } or P ◦ πWk 6=j is zero. As in
the second case the claim is obviously true, let us assume that P is of the form
p ◦ ... ◦ πUi ◦ πWj ◦ πUi . It holds that

Im(P ◦ πWj ) ∩ Im(P ◦ πWk 6=j)
={P (x)|x ∈Wj} ∩ {P (x′)|x′ ∈Wk 6=j}
={y|P (x) = y = P (x′), x ∈Wj , x

′ ∈Wk 6=j}
={P ◦ πWj (x+ x′)|P (x) + P (x′) = 0, x ∈Wj , x

′ ∈Wk 6=j}
={P ◦ πWj (x̂)|x̂ ∈ ker(P )}
⊃Im(P ◦ πWj ◦ πUl 6=i)

as Ul 6=i = ker(πUi ) ⊂ ker(P ). In addition, we have that

{P ◦ πWj (x̂)|x̂ ∈ ker(P )} ={P ◦ πWj (x̂) + p ◦ P (x̂)|x̂ ∈ ker(P )}
={P

(
πWj (x̂) + πWj ◦ πUi (x̂)

)
|x̂ ∈ ker(P )}

={P ◦ πWj ◦ πUl 6=i(x̂)|x̂ ∈ ker(P )}
⊂Im(P ◦ πWj ◦ πUl 6=i),

which, together with πUi ◦ πWj ◦ πUl 6=i = πUi ◦
(
I + πWj

)
◦ πUl 6=i = πUi ◦ πWk 6=j ◦ πUl 6=i,

where I denotes the identity, completes the proof.

In other words, if we set P = πUi , the intersections Im(πUi ◦πVj )∩Im(πUi ◦πVk 6=j)
are actually the images of πUi ◦ πWj ◦ πUl 6=i = πUi ◦ πWk 6=j ◦ πUl 6=i. With this and the
lemma above, we can now show that the function has to be affine on those
intersection resp. images.

Lemma 5. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} and
{(Wi, Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . Then we have that F is
affine on Im(πUi ◦ πWj ◦ πUl 6=i) for every i, j.

Proof. Let x, y ∈ Im(πUi ◦ πWj ◦ πUl 6=i) = Im(πUi ◦ πWk 6=j ◦ πUl 6=i), i. e. there exist

a, b ∈ Fn2 such that x = πUi ◦ πWj ◦ πUl 6=i(a) and y = πUi ◦ πWk 6=j ◦ πUl 6=i(b). Also,

let us define Ŵ1 := Wj and Ŵ2 := Wk 6=j . Note that {Ŵ1, Ŵ2} also induces a
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decomposition, which, combined with the above lemma, leads to

F (x+ y) =F
(
πUi ◦ πWj ◦ πUl 6=i(a) + πUi ◦ πWk 6=j ◦ πUl 6=i(b)

)
=F

(∑
r=1,2

πUi ◦ πŴr
(
πWj ◦ πUl 6=i(a) + πWk 6=j ◦ πUl 6=i(b)

))
=F ◦ πUi ◦ πWj ◦ πUl 6=i(a) + F ◦ πUi ◦ πWk 6=j ◦ πUl 6=i(b) + F (0)

=F (x) + F (y) + F (0).

A direct consequence of this is that F ◦πUi ◦πWj ◦πUl 6=i is affine, or equivalent

that F ◦ πUi ◦ πWj ◦ πUl 6=i + F (0) is linear.10 But as we can iteratively represent
F composed with a projection onto an input space as the projection of F onto
the corresponding output space (plus a constant), this gives us the following.

Corollary 9. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d} and
{(Wi, Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . If πUi ◦ πWj ◦ πUl 6=i 6= 0
then there exists an k 6= i such that Fk has maximal linearity.

Proof. We know that F ◦ πUi ◦ πWj ◦ πUl 6=i + F (0) is linear. But this means that

F ◦ πUi ◦ πWj ◦ πUl 6=i + F (0) =πVi
(
F ◦ πWj ◦ πUl 6=i + F (0)

)
= ... = πVi ◦ πXj ◦ πVl 6=i (F + F (0))

=
∑
l 6=i

πVi ◦ πXj ◦ πVl
(
Fl ◦ πUl + Fl(0)

)
is also linear. Since the inputs to the Fl are independent, this shows that πVi ◦
πXj ◦ πVl

(
Fl ◦ πUl + Fl(0)

)
is linear for every l 6= i. As πUi ◦ πWj ◦ πUl 6=i 6= 0, we

also know that πVi ◦ πXj ◦ πVl 6=i 6= 0, and therefore there exists a k 6= i such that

πVi ◦πXj ◦πVk 6= 0, which in turn means that πVi ◦πXj ◦πVk (Fk + Fk(0)) 6= 0. Hence,

we can simply select αT as a non-zero component of πVi ◦ πXj ◦ πVk and get that

αT · Fk + αT · Fk(0) is linear and non-trivial, i. e. Fk has maximal linearity.

In other words, a non-trivial intersection implies a (non-trivial) affine com-
ponent of one of the S-boxes. But it even implies more.

Non-Trivial Intersections Imply Maximal Differential Uniformity. Knowing that
F is affine on these intersections, we are now able to show that this implies
maximal differential uniformity of the corresponding Fi.

Lemma 6. Let F : Fn2 → Fn2 be bijective and let {(Ui, Vi, Fi) | 1 ≤ i ≤ d}
and {(Wi, Xi, Gi) | 1 ≤ i ≤ e} be two decompositions of F . If it holds that
Im(πUi ◦πWj )∩Im(πUi ◦πWk 6=j) 6= {0} for some i, j then Fi has maximal differential
uniformity.

10 Note that in the case of trivial intersections, we have that πUi ◦ πWj ◦ πUl6=i = πWj ◦
πUi ◦ πUl6=i = 0, which means that F ◦ πUi ◦ πWj ◦ πUl 6=i + F (0) = 0



Pitfalls and Shortcomings for Decompositions and Alignment 27

Proof. Let α ∈ Im(πUi ◦ πWj ) ∩ Im(πUi ◦ πWk 6=j) = Im(πUi ◦ πWj ◦ πUl 6=i) and x ∈
Ui = Im(πUi ◦ πWj ◦ πUi ) + Im(πUi ◦ πWk 6=j ◦ πUi ), i. e. we can write x = x1 + x2
for x1 ∈ Im(πUi ◦ πWj ◦ πUi ) and x2 ∈ Im(πUi ◦ πWk 6=j ◦ πUi ). Furthermore, we

can find a, b1, b2 such that α = πUi ◦ πWj ◦ πUl 6=i(a), x1 = πUi ◦ πWj ◦ πUi (b1) and

x2 = πUi ◦ πWk 6=j ◦ πUi (b2), which, together with Lemma 4, gives us

F (x+ α) = F (x1 + x2 + α)

=F
(
πUi ◦ πWj

(
πUl 6=i(a) + πUi (b1)

)
+ πUi ◦ πWk 6=j ◦ πUi (b2)

)
=F ◦ πUi ◦ πWj

(
πUl 6=i(a) + πUi (b1)

)
+ F ◦ πUi ◦ πWk 6=j ◦ πUi (b2) + F (0),

where for the last step we use the fact that πWj (â) = πWj

(
πWj (â) + πWk 6=j(b̂)

)
and πWk 6=j(b̂) = πWk 6=j

(
πWj (â) + πWk 6=j(b̂)

)
. In addition, it is easy to see that that

F ◦ πUi ◦ πWj
(
πUl 6=i(a) + πUi (b1)

)
=πVi ◦ πXj ◦ F

(
πUl 6=i(a) + πUi (b1)

)
+ F (0) + πVi ◦ πXj ◦ F (0)

=πVi ◦ πXj
(
F ◦ πUl 6=i(a) + F ◦ πUi (b1) + F (0)

)
+ F (0) + πVi ◦ πXj ◦ F (0)

=F ◦ πUi ◦ πWj ◦ πUi (b1) + F ◦ πUi ◦ πWj ◦ πUl 6=i(a) + F (0).

If we combine those observations and apply Lemma 4 once more, we get that

F (x+ α)

=F ◦ πUi ◦ πWj ◦ πUi (b1) + F ◦ πUi ◦ πWj ◦ πUl 6=i(a) + F (0)

+ F ◦ πUi ◦ πWk 6=j ◦ πUi (b2) + F (0)

=F ◦ πUi
(
πWj ◦ πUi (b1) + πWk 6=j ◦ πUi (b2)

)
+ F ◦ πUi ◦ πWj ◦ πUl 6=i(a) + F (0)

=F (x) + F (α) + F (0).

In other words, F (x) + F (x + α) = F (α) + F (0) holds for every x ∈ Ui, which
means that F|Ui

and therefore Fi has maximal differential uniformity.

Obviously, if one of the Fi has maximal differential uniformity, the same has
to be true for the whole (round) function.

Maximal Differential Uniformity Together with Maximal Linearity Implies Non-
Unique Maximal Decomposition. Next, we will show that one S-box having max-
imal differential uniformity and another one having maximal linearity implies
that there exists no unique maximal decomposition.

Lemma 7. Let F : Fn2 → Fn2 be bijective and let D = {(Ui, Vi, Fi)|1 ≤ i ≤ d}
be a maximal decomposition of F . If there exist i 6= k such that Fi has maximal
differential uniformity and Fk has maximal linearity then D is not unique.

Proof. Let us assume that there exists i 6= k such that Fi has maximal differential
uniformity, i. e. we can find an a ∈ Ui such that Fi(x) +Fi(x+ a) is constant for



28 Baptiste Lambin, Gregor Leander, and Patrick Neumann

all x ∈ Ui, and therefore the same as Fi(a)+Fi(0), and Fk has maximal linearity,
i. e. there exists an α ∈ Fn2 \V ⊥k and β ∈ Fn2 such that βT ·x+αT ·Fk(x) is constant
for all x ∈ Uk, and hence the same as αT · Fk(0). Let us define L : Fn2 → Ui
by L · x := a · βT · πUk (x) for all x ∈ Fn2 . Then both πUi + L and πUk + L are
projections, as πUi ◦L = L = L◦πUk , L◦πUi = 0 = πUk ◦L and L2 = 0. In addition,
their sum is obviously πUi + πUk , which means that their images together with
Ul for l /∈ {i, k} form a direct sum of Fn2 . Also, as Im

(
πUi + L

)
= Ui + a = Ui

we have that F (Im(πUi + L)) + F (0) = F (Ui) + F (0) = Vi is, by definition, a
subspace. To show that F (Im(πUk + L)) + F (0) is also a subspace, let us define
the projection P := πVk + Fi ◦ L ◦ F−1k ◦ πVk + Fi(0). Note that P is linear, as
Fi(x + a) = Fi(x) + Fi(a) + Fi(0) for all x ∈ Ui. Furthermore, P is indeed a
projection, since πVk

(
πVk + Fi ◦ L ◦ F−1k ◦ πVk + Fi(0)

)
= πVk and therefore P 2 =

P . We now get that

F (Im(πUk + L)) + F (0) ={F
(
πUk (x) + L · x

)
+ F (0)|x ∈ Fn2}

=

{∑
l

(
Fl ◦ πUl

(
πUk (x) + L · x

)
+ Fl(0)

)
|x ∈ Uk

}
={Fk ◦ πUk (x) + Fk(0) + Fi ◦ L · x+ Fi(0)|x ∈ Uk}
={y + Fi ◦ L · F−1k (y + Fk(0)) + Fi(0)|y ∈ Vk}
=Im(P ),

which means that F (Im(πUk + L)) + F (0) is also a subspace. At last, since

F
(
πUi + L

)
+ F

(
πUk + L

)
=
∑
l

Fl ◦ πUl
(
πUi + L

)
+
∑
l

Fl ◦ πUl
(
πUk + L

)
=Fi

(
πUi + L

)
+ Fk(0) + Fi ◦ L+ Fk ◦ πUk

=Fi ◦ πUi + Fi ◦ L+ Fi(0) + Fi ◦ L+ Fk(0) + Fk ◦ πUk
=F ◦ πUi + F ◦ πUk ,

we get that
∑
l/∈{i,k} F ◦πUl +F

(
πUi + L

)
+F

(
πUk + L

)
+(d+1 mod 2)·F (0) = F .

Therefore, {Ul|l 6= k}∪Im
(
πUk + L

)
induces a decomposition of F , different than

D but with the same number of S-boxes, which means that D is not unique.

If we combine all the observations above, we can finally prove Theorem 1.

Proof of Theorem 1. First, let {(Ui, Vi, Fi)|1 ≤ i ≤ d} be a maximal decomposi-
tion of F and assume that there exist i 6= k such that Fi has maximal differential
uniformity and Fk has maximal linearity. Then we know from Lemma 7 that this
maximal decomposition is not unique.

Now, let {(Ui, Vi, Fi)|1 ≤ i ≤ d} and {(Wi, Xi, Gi) | 1 ≤ i ≤ e} be two
different maximal decompositions. We know from Lemma 3 that if all the inter-
sections Im(πUi ◦πWj )∩Im(πUi ◦πWk ) were trivial, we could either refine one of the
decompositions or they are identical. But since they are both maximal and not
identical, we know that some of those intersection have to be non-trivial. Hence,
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we can follow from Corollary 9 and Lemma 6 that there exists a pair i 6= k such
that Fi has maximal differential uniformity and Fk has maximal linearity.

6 Conclusion

In this paper we discussed the uniqueness of decompositions, as well as the
impact of alignment. With respect to the uniqueness of decomposition, we have
seen that this very natural and simple question required quite some technical
backup to be finally settled. In our opinion, it is of interest to further explore
the possible impact of such non-unique decompositions not only on security and
security arguments, but also on implementation aspects.

With respect to the impact of alignment, we show, based on the example of
aligned and unaligned versions of PRESENT, that the impact of alignment on
its own may only be limited. We therefore encourage further work to either find
conditions under which alignment has a meaningful impact, or to show that the
impact of plain alignment is insignificant in general. Especially, we would like
to advocate for further case studies to try to only change the property under
scrutiny, as this produces more convincing results. Another future direction is
to develop more fine grained notions that do capture the structural alignment
in a non-binary manner.

Finally, and this can be seen as the broader scope, we encourage research that
investigates the use of representations of a cipher in arguments for its security.
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Supplementary Material

A More Details on the Examples for Decomposition and
Alignment

While the explanation of the examples we give for both, decomposition and
alignment, should already be sufficient to get the main idea, it may be beneficial
to explain them in more detail, which is what we intend to do in this section. We
will start with the example that shows the existence of non-trivial intersections
of the images Im(πUi ◦ πWj ), i. e. Example 1.

Example 2. Let R be as in Section 2, i. e.

R


x1
x2
x3
x4

 =


f(x1)

g(x1) + x2
x3

h

(
x3
x4

)

}

S-boxS-box
,

where x1 ∈ Fn2 , x4 ∈ Fm2 for integers n,m and x2, x3 ∈ F2, as well as f : Fn2 → Fn2 ,
g : Fn2 → F2 and h : F2 × Fm2 → Fm2 . Because of Lemma 2 we can ignore a linear
layer that would usually mix the output of the two S-boxes.

Let us consider the following subspaces

U1 := Fn2 × F2 × 0× 0m, U2 := 0n × 0× F2 × Fn2 ,
W1 := U1, W2 := {(0, a, a, b)T | a ∈ F2, b ∈ Fm2 }

and the corresponding projections

πU1


x1
x2
x3
x4

 =


x1
x2
0
0

 , πU2


x1
x2
x3
x4

 =


0
0
x3
x4

 ,

πW1


x1
x2
x3
x4

 =


x1

x2 + x3
0
0

 , πW2


x1
x2
x3
x4

 =


0
x3
x3
x4

 .
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Then we can construct the Fi (resp. Gi) based on that

F1 ◦ πU1


x1
x2
x3
x4

 = R ◦ πU1


x1
x2
x3
x4

+


0
0
0

h(0)

 =


f(x1)

g(x1) + x2
0
0



F2 ◦ πU2


x1
x2
x3
x4

 = R ◦ πU2


x1
x2
x3
x4

+


f(0)
g(0)

0
0

 =


0
0
x3

h

(
x3
x4

)


G1 ◦ πW1


x1
x2
x3
x4

 = R ◦ πW1


x1
x2
x3
x4

+


0
0
0

h(0)

 =


f(x1)

g(x1) + x2 + x3
0
0



G2 ◦ πW2


x1
x2
x3
x4

 = R ◦ πU2


x1
x2
x3
x4

+


f(0)
g(0)

0
0

 =


0
x3
x3

h

(
x3
x4

)
 .

It is easy to see that indeed F1 ◦ πU1 + F2 ◦ πU2 = R = G1 ◦ πW1 + G2 ◦ πW2 .
Furthermore, the output spaces are identical to the input spaces (and are indeed
subspaces), which means that

{(U1, F1, U1), (U2, F2, U2)} and {(W1, G1,W1), (W2, G2,W2)}

are (different) decompositions of R. But

Im(πU1 ◦ πW1 ) ∩ Im(πU1 ◦ πW2 ) =Fn2 × F2 × 0× 0m × F2 × 0× 0m

=0n × F2 × 0× 0m 6= {0},

i. e. we have found a non-trivial intersection.

In the end, this example also provides the main idea of why a maximal
decomposition may not be unique: One may be able to “mix” the S-boxes of a
maximal decomposition.

Next, we give more details on the examples that illustrates a crucial problem
with the definition of alignment from [8].

A.1 The Cipher DEFAULT – Aligned but also Unaligned?

Let us give a bit more details about why the cipher DEFAULT[2] is aligned, but a
linear equivalent representation is not. First, note that DEFAULT (more precise
that part of DEFAULT which the authors call DEFAULT Layer, as it is meant
to prevent fault attacks), which is basically identical to GIFT-128 except of the



34 Baptiste Lambin, Gregor Leander, and Patrick Neumann

S-box and the key schedule, uses an S-box that has both, maximal differential
uniformity and maximal linearity. Hence, we know that we can “mix” S-boxes,
and therefore change the aligned representation (note that GIFT-128 is aligned
and with that also DEFAULT, as can be seen in Fig. 4) into an unaligned one
(at least according to [8]). Let us go into the details why this is the case.

For this, note that the DEFAULT S-box can be written as

S


x1
x2
x3
x4

 =


x1 + x2 + x3

(x1 + x4)(x2 + x3) + x1 + x2
x2 + x3 + x4

(x1 + x4)(x2 + x3) + x3 + x4

 ,

where x1 denotes the least significant bit. Let us define

M :=


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

 , N :=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 1

 , O :=


1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 1

 ,K :=


0 1 0 1
1 0 0 1
1 1 1 1
1 1 0 0

 ∈ F4×4
2 .

It is not hard to see that

(
S
S

)
=

(
K O
O K

)(
S
S

)(
M N
N M

)

holds. If we extend this to each S-box getting mixed with their left neighbor
(looping around at the leftmost S-box), i. e. use

L :=



M 0 0 . . . 0 N
N M 0 . . . 0 0
0 N M . . . 0 0
...

. . .
. . .

...
0 0 0 . . . M 0
0 0 0 . . . N M


∈ F128×128

2

and the corresponding linear mapping that reverts L after the application of the
S-box layer, which we shall call L̂, we can get a linear equivalent round function
by seeing L as a part of the previous round. If we look at the round function of
DEFAULT (Fig. 5), this means that we would replace the original permutation
P , which is the same as for GIFT-128, by L ◦ P ◦ L̂ (and use round keys L(k)
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instead of k). Note that L ◦ P ◦ L̂ has the form

Ã B̃ C̃ D̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 0

0 0 0 F̃ H̃ B̃ C̃ D̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 F̃ H̃ B̃ C̃ D̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 F̃ H̃ B̃ C̃ D̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ H̃ B̃ C̃ D̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ H̃ B̃ C̃ D̃ Ẽ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ H̃ B̃ C̃ D̃ Ẽ 0 0 0

Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ H̃ B̃ C̃ D̃

Ĩ C̃ D̃ J̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃

0 0 F̃ G̃ K̃ C̃ D̃ J̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 F̃ G̃ K̃ C̃ D̃ J̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 F̃ G̃ K̃ C̃ D̃ J̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ K̃ C̃ D̃ J̃ Ẽ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ K̃ C̃ D̃ J̃ Ẽ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ K̃ C̃ D̃ J̃ Ẽ 0 0 0

Ẽ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ K̃ C̃ D̃ J̃

L̃ D̃ J̃ B̃ M̃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃

0 F̃ G̃ 0 L̃ D̃ J̃ B̃ M̃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 F̃ G̃ 0 L̃ D̃ J̃ B̃ M̃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 F̃ G̃ 0 L̃ D̃ J̃ B̃ M̃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 L̃ D̃ J̃ B̃ M̃ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 L̃ D̃ J̃ B̃ M̃ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 L̃ D̃ J̃ B̃ M̃ 0 0 0

M̃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 L̃ D̃ J̃ B̃

Ñ J̃ B̃ C̃ Õ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0

F̃ G̃ 0 0 Ñ J̃ B̃ C̃ Õ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 F̃ G̃ 0 0 Ñ J̃ B̃ C̃ Õ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 F̃ G̃ 0 0 Ñ J̃ B̃ C̃ Õ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 0 Ñ J̃ B̃ C̃ Õ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 0 Ñ J̃ B̃ C̃ Õ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 0 Ñ J̃ B̃ C̃ Õ 0 0 0

Õ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F̃ G̃ 0 0 Ñ J̃ B̃ C̃



,

where

Ã =


0 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , B̃ =


1 1 0 1
1 0 0 1
0 0 0 0
0 0 0 0

 , C̃ =


0 0 0 0
1 1 0 1
1 1 1 1
0 0 0 0

 , D̃ =


1 1 0 0
0 0 0 0
1 1 0 1
0 0 0 0

 ,

Ẽ =


1 1 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , F̃ =


1 1 0 0
0 0 0 0
0 0 0 0
1 1 0 0

 , G̃ =


1 1 0 1
0 0 0 0
0 0 0 0
1 1 0 1

 , H̃ =


1 0 0 0
0 0 0 0
0 0 0 0
1 1 0 1

 ,
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Ĩ =


1 1 0 1
1 0 0 1
0 0 0 0
1 1 0 1

 , J̃ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , K̃ =


0 0 0 0
1 0 0 1
0 0 0 0
0 0 0 0

 , L̃ =


0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0

 ,

M̃ =


0 0 0 0
1 1 0 1
0 0 0 0
0 0 0 0

 , Ñ =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Õ =


0 0 0 0
0 0 0 0
1 1 0 1
0 0 0 0

 ∈ F4×4
2 .

As a sanity check that this linear equivalent version is indeed that, linear equiva-
lent to the original version, we implemented them and validated the test vectors
provided by the designers for both version.11

It is now not hard to verify that this linear equivalent version of DEFAULT
is not aligned (according to [8]), while the original version is.
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Fig. 4: Alignment for ciphers using the permutation of GIFT-128 (the leftmost
bit is the least significant bit).
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Fig. 5: Round function of DEFAULT.

A.2 Generalized Feistel Networks – Alignment not Well Defined

To give a more general example, let us consider a generalized Feistel network as
in Fig. 1, i. e. we have a round function R : (Fn2 )

8 → (Fn2 )
8

defined as

R

x1...
x8

 = L ◦N

x1...
x8


11 The source code is available at https://doi.org/10.5281/zenodo.7660387.

https://doi.org/10.5281/zenodo.7660387
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with

N

x1...
x8

 =


s

(
x1
x2

)
...

s

(
x7
x8

)
 ,

s

(
l
r

)
=

(
l

r + f(l)

)
and f : Fn2 → Fn2 , as well as

L =



0 0 0 0 0 In 0 0
0 0 0 0 0 0 In 0
0 0 0 In 0 0 0 0
In 0 0 0 0 0 0 0
0 In 0 0 0 0 0 0
0 0 In 0 0 0 0 0
0 0 0 0 0 0 0 In
0 0 0 0 In 0 0 0


.

Here, the horizontal and vertical linear in the description of L are to indicate
the box partition of L (see [8] for the definition of box partition) resp. that L is
(up to row permutation) a block diagonal matrix as

L =



0 0 In 0 0 0 0 0
0 0 0 In 0 0 0 0
0 0 0 0 In 0 0 0
0 0 0 0 0 In 0 0
0 0 0 0 0 0 In 0
0 0 0 0 0 0 0 In
In 0 0 0 0 0 0 0
0 In 0 0 0 0 0 0


·



0 0 0 0 0 0 0 In
0 0 0 0 In 0 0 0
0 0 0 0 0 In 0 0
0 0 0 0 0 0 In 0
0 0 0 In 0 0 0 0
In 0 0 0 0 0 0 0
0 In 0 0 0 0 0 0
0 0 In 0 0 0 0 0


.

Hence, R is indeed aligned according to the definition form [8] resp. Definition 7.

Note that N is of the same form as the function R from Section 2 resp.
Example 2, since we can see the first resp. last two S-box as one big S-box and,
if we denote by pl and pf the projection onto the last resp. first bit of s, we have
that

pl ◦ s
(
l
r

)
= pl ◦ f(l) + pl(r) and pf ◦ s

(
l
r

)
= pf (l).

Hence, a maximal decomposition of N , and therefore of R, is not unique, which
we will use to show that a linear equivalent version of R would not be aligned
according to [8] resp. Definition 7, while it still is according to our definition of
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alignment. For this, let us take a look at A−1 ◦N ◦A with

A = A−1 =



In 0 0 0 0 0 0 0
0 In In 0 0 0 0 0
0 0 In 0 0 0 0 0
0 0 0 In 0 0 0 0
0 0 0 0 In 0 0 0
0 0 0 0 0 In 0 0
0 0 0 0 0 0 In 0
0 0 0 0 0 0 0 In


,

i. e. we add x3 to x2. Note that we are able to revert A after the application
of N . In other words, A and N commute and we have that A−1 ◦ N ◦ A =
A−1 ◦A◦N = N . In terms of decomposition, the application of A is the same as
changing the input spaces from Ui = (02n)i−1 × (Fn2 )2 × (02n)4−i for i = 1, ..., 4

to U1,W2 := {(0, a, a, b, 0, 0, 0, 0)T ∈ (Fn2 )
8 | a, b ∈ Fn2}, U3, U4. Hence, the first

two S-boxes change to


s

(
x1

x2 + x3

)
0
0
0

 and



(
0
x3

)
s

(
x3
x4

)
0
0

 .

Thus, it is easy to see that we can construct two different decompositions.
If we want to look at whether R is aligned or not, we look at R ◦ R =

L ◦ A−1 ◦ N ◦ A ◦ L ◦ A−1 ◦ N ◦ A. This should be equivalent to checking if
N ◦A ◦ L ◦A−1 ◦N is aligned or not.12 It holds that

A ◦ L ◦A−1 = A ◦ L ◦A =



0 0 0 0 0 In 0 0
0 0 0 In 0 0 In 0
0 0 0 In 0 0 0 0
In 0 0 0 0 0 0 0
0 In In 0 0 0 0 0
0 0 In 0 0 0 0 0
0 0 0 0 0 0 0 In
0 0 0 0 In 0 0 0


,

where we mark the difference to L in red and the lines indicate the smallest
possible box partition resp. the in-/output spaces Ui. Hence, there exists no
permutation of the output spaces Ui (i. e. permutation of pairs of consecutive
rows) such that A◦L◦A−1 is a block diagonal matrix, which means that according
to [8] R would not be aligned, while it is easy to see that by our definition it is.

12 Note that in Section 3 we actually looked at N ◦ L ◦ A−1 ◦N instead, which (also)
is linear equivalent to R ◦R
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B More Details on Functions without Unique Maximal
Decomposition

Here, we would like to provide some additional information on functions without
unique maximal decomposition that were not important for proving Theorem 1,
but still give some interesting insights. Let us start with why functions without
a unique maximal decomposition are affine equivalent to functions of the form

R


x1
x2
x3
x4

 =


(

f(x1)
g(x1) + x2

)
 x3

h

(
x3
x4

)
 .

As we already know, the functions without unique maximal decomposition are
exactly those that have one S-box with maximal differential uniformity and an-
other one with maximal linearity. Since we can see the other S-boxes of a decom-
position as part of one of those two S-boxes, we can (without loss of generality)
assume that our decomposition consists of exactly two S-boxes. Hence, we will
show that a function having maximal differential uniformity is the same as the
function being affine equivalent to one of the form

G

(
x
y

)
=

(
f(x)

g(x) + y

)
,

while a function having maximal linearity is the same as the function being affine
equivalent to

H

(
x
y

)
=

 x

h

(
x
y

) .

Lemma 8. Let n be a positive integers and F : Fn2 → Fn2 be bijective. Then
F has maximal differential uniformity if and only if F is linear equivalent to a
function G : Fn−12 × F2 → Fn−12 × F2 with

G

(
x
y

)
=

(
f(x)

g(x) + y

)
,

where f : Fn−12 → Fn−12 and g : Fn−12 → F2.

Proof. Obviously

G

(
x
y

)
=

(
f(x)

g(x) + y

)
has maximal differential uniformity. So, since the differential uniformity is in-
variant under affine equivalence, if F is affine equivalent to G it has maximal
differential uniformity, too.

Now, let F have maximal differential uniformity, which means that there
exist α, β ∈ Fn2 such that F (x) + F (x + α) = β for all x ∈ Fn2 . Hence, we can
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linearly transform the input space so that α corresponds to the last bit. In other
words, F is linear equivalent to a function Ĝ : Fn−12 × F2 → Fn2 with

Ĝ

(
x
y

)
= Ĝ

(
x
0

)
+ y · β.

If we now linearly transform the output such that β corresponds to the last bit,
we get a function G̃ : Fn−12 × F2 → Fn−12 × F2 with

G̃

(
x
y

)
= G̃

(
x
0

)
+

(
0
y

)
.

Hence, F is linear equivalent to a function of the required form.

In other words, a function with maximal differential uniformity is affine equiv-
alent to a generalization of the round function of a Feistel network.

Lemma 9. Let n be a positive integers and F : Fn2 → Fn2 be bijective. Then
F has maximal linearity if and only if F is affine equivalent to a function H :
F2 × Fn−12 → F2 × Fn−12 with

H

(
x
y

)
=

 x

h

(
x
y

) ,

where h : F2 × Fn−12 → Fn−12 .

Proof. Obviously, H has maximal linearity and linearity is invariant under affine
equivalence. Hence, let us assume that F has maximal linearity, i. e. there exist
α, β ∈ Fn2 \ {0} and c ∈ F2 such that αT · F (x) = βT · x+ c holds for all x ∈ Fn2 .
Since α is non-zero, we can find a basis of Fn2 that contains α. Let A ∈ Fn×n2 be
the matrix with this (transposed) basis vectors as rows, αT being the first row.
Furthermore, β is non-zero, which means that we can also find a basis which
contains β. Let B ∈ Fn×n2 be the matrix that contains those basis vectors as
column, β being the first column. But this means that

A · F ·B−1 =

(
I + c
h

)
for some h : F2 × Fn−12 → Fn−12 and I ∈ F1×1

2 the identity mapping, as the first
coordinate of A · F · B−1 is αT · F · B−1 and we know that this is the same as
βT ·B−1+c, which, by how we chose B gives the first input bit plus the constant
c. In other words, F is affine equivalent to H.

While we would have liked to give a version of Theorem 1 that does not
require us to know one maximal decomposition, e. g. by showing that a maximal
decomposition would not be unique if and only if the (round) function would
have maximal differential uniformity and maximal linearity, it is important that
(at least) one S-box has maximal differential uniformity and another one has
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maximal linearity, as this enables us to change the input spaces and show that
they still induce a decomposition. But if only one S-box would have both, maxi-
mal differential uniformity and maximal linearity, then this may not be possible.

Another interesting fact is that the functions without unique maximal decom-
position are exactly those that are affine self-equivalent where the equivalence
is not just due to a permutation of the S-boxes and/or affine equivalence of the
S-boxes.

Lemma 10. Let F : Fn2 → Fn2 be bijective. Then F has no unique maximal
decomposition if and only if F is affine self-equivalent where the equivalence is
not just due to a permutation of the S-boxes and/or affine equivalence of the
S-boxes.

Proof. Let us assume that F has no unique maximal decomposition. Hence, we
know that there exist invertible matrices A,B ∈ Fn×n2 and a, b ∈ Fn2 such that
R = B ◦ F (A+ a) + b, with

R


x1
x2
x3
x4

 =


(

f(x1)
g(x1) + x2

)
 x3

h

(
x3
x4

)
 ,

where x1 ∈ Fn−m−22 , x4 ∈ Fm2 for an integer m and x2, x3 ∈ F2, as well as
f : Fn−m−22 → Fn−m−22 , g : Fn−m−22 → F2 and h : F2 × Fm2 → Fm2 . Here,

S1

(
x1
x2

)
=

(
f(x1)

g(x1) + x2

)
, S2

(
x3
x4

)
=

 x3

h

(
x3
x4

)
are S-boxes, i. e. if we define U1 := Fn−m−22 × F2 × 0× 0m and U2 := 0n−m−2 ×
0× F2 × Fm2 then {U1, U2} induces a decomposition of R. Let us define

L :=


In−m−2 0 0 0

0 I1 I1 0
0 0 I1 0
0 0 0 Im

 .

Then we know that R = L ◦R ◦ L and L · Ui /∈ {U1, U2}. Furthermore,

F = B−1 ◦ L ◦B ◦ F
(
A ◦ L ◦A−1 + a+A ◦ L ◦A−1 · a

)
and we know from Lemma 2 that {A · Ui|i = 1, 2} induces a decomposition of
F , where A ◦πUi ◦A−1 are the corresponding projections. We can now use those
projections on the affine equivalent description of F and look at the resulting
input spaces Im

(
A ◦ L ◦A−1 ◦A ◦ πUi ◦A−1

)
= A ◦ L · Ui which, as A has full

rank and since {L · Ui|i = 1, 2} 6= {U1, U2}, are different to {A · Ui|i = 1, 2}.
Therefore, for every refinement of the decomposition induced by {A·Ui|i = 1, 2},
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the self-equivalence above does not only permute S-boxes and/or is due to affine
equivalence of the S-boxes as it “mixes” them.

Now, let us assume that F has a unique maximal decomposition induced by
{Ui|1 ≤ i ≤ d} and that F is affine self-equivalent, i. e. F = B ◦ F (A+ a) + b.
But we know from Lemma 2 that {A·Ui|1 ≤ i ≤ d} also induces a decomposition
of F that has the same number of S-boxes. Hence, the self-equivalence can only
transform the S-boxes independently and change their order as otherwise the
maximal decomposition induced by {Ui|1 ≤ i ≤ d} would not be unique.

C A Link Between Decompositions and Subspace Trails

Interestingly, finding a decomposition is directly linked to finding subspace trails[15].
Here, we define subspace trails as follows.

Definition 12 (Subspace Trails). Let F : Fn2 → Fn2 . We call a pair (U, V ) ⊂
Fn2 × Fn2 of subspaces a subspace trail of F if for all x ∈ Fn2 and for all δ ∈ U
we have that F (x) + F (x+ δ) ∈ V .

Note that the original definition by Grassi et al. is stated as ∀x ∈ Fn2∃b ∈
Fn2 : F (x+ U) ⊂ V + b. But since U is a vector space, we know that 0 ∈ U and
therefore F (x+ 0) ∈ V + b, which means that F (x+ U) + F (x) ⊂ V . Thus, the
two definitions are equivalent.

Having subspace trails that form a direct sum is actually equivalent to hav-
ing a decomposition. While it is easy to find the subspace trails based on a
decomposition, we can also create a decomposition based on them.

Lemma 11. Let F : Fn2 → Fn2 be bijective. A set of subspace trails of F {(Ui, Vi) |
1 ≤ i ≤ d} forms a direct sum (i. e.

⊕
i Ui = Fn2 =

⊕
i Vi) if and only if

{Ui | 1 ≤ i ≤ d} induces a decomposition of F .

Proof. Let us start with the backward direction, i. e. let {(Ui, Fi, Vi) | 1 ≤ i ≤ d}
be a decomposition of F and let δ ∈ Ui. We know that

F (x) + F (x+ δ) =
∑
l

Fl ◦ πUl (x) +
∑
l

Fl ◦ πUl (x+ δ)

=
∑
l

Fl ◦ πUl (x) +
∑
l 6=i

Fl ◦ πUl (x) + Fi ◦ πUi (x+ δ)

= Fi ◦ πUi (x) + Fi ◦ πUi (x+ δ) ∈ Vi,

which means that {(Ui, Vi) | 1 ≤ i ≤ d} is a set of subspace trails of F that form
a direct sum (by definition of a decomposition).

Now, let us assume that {(Ui, Vi) | 1 ≤ i ≤ d} is a set of subspace trails of F
that form a direct sum. We show that {Ui | 1 ≤ i ≤ d} induces a decomposition
of F by using Lemma 1. First, we note that V̂i := F (Ui)+F (0) ⊂ Vi by definition
of a subspace trail. But as the Vi also from a direct sum and since F is bijective
we have that dim(V̂i) = dim(Ui) and therefore V̂i = Vi. What is left to show
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is that F =
∑
i F ◦ πUi + (d + 1 mod 2) · F (0) holds. For this, we will use a

telescoping sum. Let p be a permutation of the indices {1, ..., d}. Then we have
that

F (0) + F (x) = F (0) +

d∑
i=2

(
F (x+

d∑
l=i

πUp(l)(x)) + F (x+

d∑
l=i

πUp(l)(x))

)
+ F (x)

=

d∑
i=1

(
F (x+

d∑
l=i

πUp(l)(x)) + F (x+

d∑
l=i+1

πUp(l)(x))

)

since we can write F (0) = F (x+
∑
l π

U
l (x)) and F (x) = F (x+

∑d
l=d+1 π

U
l (x)).13

Note that each of the terms F (x+
∑d
l=i π

U
p(l)(x)) + F (x+

∑d
l=i+1 π

U
p(l)(x)) ∈ Vi

since the difference of the inputs lies in Ui. Hence, we know that

πVp(1) (F (x) + F (0)) = πVp(1)

(
F (x+

d∑
l=1

πUp(1)(x)) + F (x+

d∑
l=2

πUp(1)(x))

)
= πVp(1)

(
F (0) + F (πUp(1)(x))

)
.

Since we know that F (0) + F (πUp(1)(x)) ∈ Vp(1), we get that

πVp(1) (F (x) + F (0)) = F (0) + F (πUp(1)(x)).

As for every i we can find a p such that p(1) = i, this shows that

πVi ◦ F = F ◦ πUi + πVl 6=i ◦ F (0).

Combining all this gives us

F =
∑
i

πVi ◦ F =
∑
i

(
F ◦ πUi + πVl 6=i ◦ F (0)

)
=
∑
i

F ◦ πUi + (d+ 1 mod 2) · F (0),

which completes the proof.

13 As usual, we assume that the empty sum is zero.
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D Results on the Number of Trails, Core Patterns and
Differentials on Variants of PRESENT

D.1 Number of trails

Recall that differential trails are defined as follows.

Definition 13. For a given function F : Fn2 → Fn2 , the pair of differences

(α, β) ∈ (Fn2 )
2

is called a valid differential if the number of solutions to the
equation

F (x) + F (x+ α) = β

is non-zero, and denoted α
F−→ β. This differential has an associated probability

defined as

pF (α, β) =
|{x ∈ Fn2 |F (x) + F (x+ α) = β}|

2n
.

For a block cipher with round functions Fi, we call (α1, α2, . . . , αr) a differential
trail if we have

α1
F1−→ α2

F2−→ . . .
Fr−→ αr.

By denoting the product of the probabilities of each differential in the trail

p(α1, α2, . . . , αr) =

r−1∏
i=1

pFi
(αi, αi+1),

the weight of a differential trail is defined as

w(α1, α2, . . . , αr) = − log2(p(α1, α2, . . . , αr)).

Over 2 rounds. We show in Figure 6 the histogram giving the number of
trails of a given weight for the original permutation as well as for all variants we
generated, where variants are obtained by generating one random permutation
for one random isomorphism for each of the 346 graphs. Each data point is
represented by a short blue line marker, which clearly shows how close each
variant is to each other. To give a better view, we also provide in Table 4 the
minimum and maximum number of trails over all variants for a given weight, as
well as the number of trails of a given weight for the original permutation.

Moreover in Figure 7 and Table 5 we provide the same data representation
but when the 346 variant permutations are generated from a single isomorphism
from a single graph, as to show that the distribution is also rather stable within
the same class of permutation generated by a given graph and isomorphism.

Over 3 rounds. In the same way, Figure 8 gives the histogram for the num-
ber of differential trails over 3 rounds for a given weight, with Table 6 giving
the minimum and maximum number of trails for all variants and the original
permutation. Again, we also compared how the number of trails evolves within
the same equivalence class, which is depicted in Figure 9 for the histogram and
Table 7 for the minimum and maximum values.
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Over 4 rounds. Finally, Figure 10 gives the histogram for the number of differ-
ential trails over 4 rounds for a given weight, with Table 8 giving the minimum
and maximum number of trails for all variants and the original permutation.

Comparison when using permutations coming from the same equivalence
class is depicted in Figure 11 for the histogram and Table 9 for the minimum
and maximum values.

D.2 Number of Core Patterns

The histogram for core patterns follow the same structure as for differential
trails, except that the metric is now the number of active S-boxes instead of the
weight, each also with a table giving the minimum and maximum values for all
alternative permutations as well as the original permutation.

Over 2 rounds. We give the histogram for the number of core patterns over 2
rounds in Figure 12 and the min/max table in Table 10. The comparison when
taking permutations within the same equivalence class is given by Figure 13 and
the corresponding table in Table 11.

Over 3 rounds. We give the histogram for the number of core patterns over 2
rounds in Figure 14 and the min/max table in Table 12. The comparison when
taking permutations within the same equivalence class is given by Figure 15 and
the corresponding table in Table 13.

Over 4 rounds. We give the histogram for the number of core patterns over 2
rounds in Figure 16 and the min/max table in Table 14. The comparison when
taking permutations within the same equivalence class is given by Figure 17 and
the corresponding table in Table 15.

D.3 Number of Differentials

Differentials are obtained as described in Section 4.3, summing the probability of
all matching differential trails before computing the corresponding weight. More
precisely, the probability of a differential can be computed from the probabilities
of all fitting differential trail as follows.

Proposition 2. The probability pE(α1, αr) of a differential (α1, αr) over a given
block cipher E, i.e. the probability that the equation

E(x) + E(x+ α1) = αr

holds, can be obtained by summing the probability of any differential trail starting
(resp. ending) with α1 (resp. αr), i.e.

pE(α1, αr) =
∑

α2,...,αr−1

p(α1, α2, . . . , αr)
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Here, using a regular histogram like before is a bit more problematic for
several reasons : the resulting weight is not guaranteed to be an integer anymore,
there can be a wide range of different weight, and the number of differential of
a given weight can also widely vary (e.g. 215 differentials for a weight w but 23

differentials for a weight w+0.1). Thus, we instead give a cumulative histogram,
meaning that a data point with abscissa (weight) w and ordinate (number of
differentials) n, means that there are n differentials of weight lower or equal than
w.

Moreover, as again there is a large number of different weight values, we
do not give the min/max tables like for differential trails and core patterns,
however the largest gaps are still given in Section 4.3. As for trails and core
patterns, the red line represent the values for the original permutation, while
each alternative permutation is represented by a blue line. As the values for
alternative permutations are very close together, all lines are clumping together,
which is good enough for our purpose of showing how close they all are.

Over 2 rounds. The cumulative histogram for differentials over 2 rounds when
generating one random permutation for one random isomorphism for each graph
is given in Figure 18, while the cumulative histogram when selecting permuta-
tions within the same equivalence class is given in Figure 19. Here those his-
tograms are exact, meaning for a data point with weight w and number of
differentials n, there are exactly n differentials of weight lower or equal than w.

Over 3 rounds. The cumulative histogram for differentials over 3 rounds when
generating one random permutation for one random isomorphism for each graph
is given in Figure 20, while the cumulative histogram when selecting permuta-
tions within the same equivalence class is given in Figure 21. Note that this time,
the histograms are not exact as due to computation limitations, we limited the
trails we enumerate to compute the weight of the differential to trails with at
most 8 active S-boxes. This means that for a data point with weight w and num-
ber of differentials n, there are n differentials with weight lower or equal than w
where the weight is computed by considering only trails with ≤ 8 active S-boxes.
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Fig. 6: Histogram of the number of trails over 2 rounds. Variants are obtained
by generating one random permutation for one random isomorphism for each of
the 346 graphs.

Table 4: Minimum and maximum number of trails of each given weight over
all variants compared to the original permutation over 2 rounds. Variants are
obtained by generating one random permutation for one random isomorphism
for each of the 346 graphs.

Weight Min. Max. Original Weight Min. Max. Original

4 7.58 7.67 7.58 15 30.29 30.34 30.39

5 9.93 10.00 10.00 16 32.30 32.35 32.40

6 11.04 11.19 11.17 17 34.31 34.35 34.41

7 12.73 12.88 12.81 18 36.33 36.38 36.44

8 15.30 15.41 15.33 19 38.34 38.39 38.45

9 17.95 17.98 17.99 20 40.33 40.39 40.46

10 20.08 20.12 20.14 21 42.32 42.37 42.44

11 21.97 22.01 22.04 22 44.29 44.35 44.42

12 23.98 24.00 24.03 23 46.25 46.31 46.39

13 26.10 26.14 26.16 24 48.21 48.27 48.35

14 28.23 28.28 28.31
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Fig. 7: Histogram of the number of trails over 2 rounds. Variants are obtained
by generating 346 random permutations for one random isomorphism for one of
the graphs.

Table 5: Minimum and maximum number of trails of each given weight over
all variants compared to the original permutation over 2 rounds. Variants are
obtained by generating 346 random permutations for one random isomorphism
for one of the graphs.

Weight Min. Max. Original Weight Min. Max. Original

4 7.58 7.61 7.58 15 30.31 30.32 30.39

5 9.98 10.00 10.00 16 32.32 32.33 32.40

6 11.11 11.15 11.17 17 34.33 34.34 34.41

7 12.80 12.84 12.81 18 36.35 36.36 36.44

8 15.30 15.33 15.33 19 38.36 38.37 38.45

9 17.96 17.97 17.99 20 40.36 40.37 40.46

10 20.11 20.12 20.14 21 42.34 42.35 42.44

11 21.99 22.00 22.04 22 44.31 44.32 44.42

12 23.98 23.99 24.03 23 46.28 46.29 46.39

13 26.11 26.12 26.16 24 48.24 48.25 48.35

14 28.25 28.26 28.31
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Fig. 8: Histogram of the number of trails over 3 rounds. Variants are obtained
by generating one random permutation for one random isomorphism for each of
the 346 graphs.

Table 6: Minimum and maximum number of trails of each given weight over
all variants compared to the original permutation over 3 rounds. Variants are
obtained by generating one random permutation for one random isomorphism
for each of the 346 graphs.

Weight Min. Max. Original Weight Min. Max. Original

8 8.81 9.35 9.25 21 29.36 30.10 30.92

9 12.38 12.50 12.45 22 30.60 31.36 32.23

10 14.51 14.59 14.54 23 31.77 32.58 33.53

11 15.93 16.00 16.00 24 32.92 33.83 34.89

12 17.01 17.06 17.02 25 34.10 35.12 36.31

13 18.00 18.09 18.05 26 35.31 36.45 37.75

14 18.96 19.10 19.23 27 36.56 37.79 39.18

15 19.87 20.15 20.53 28 37.83 39.12 40.60

16 21.35 21.88 22.41 29 39.10 40.43 42.01

17 23.12 23.81 24.45 30 40.38 41.74 43.42

18 24.86 25.62 26.31 31 41.69 43.06 44.84

19 26.51 27.26 27.99 32 43.05 44.42 46.29

20 28.00 28.75 29.52
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Fig. 9: Histogram of the number of trails over 3 rounds. Variants are obtained
by generating 346 random permutations for one random isomorphism for one of
the graphs.

Table 7: Minimum and maximum number of trails of each given weight over
all variants compared to the original permutation over 3 rounds. Variants are
obtained by generating 346 random permutations for one random isomorphism
for one of the graphs.

Weight Min. Max. Original Weight Min. Max. Original

8 8.93 9.15 9.25 21 29.93 29.95 30.92

9 12.44 12.47 12.45 22 31.19 31.20 32.23

10 14.54 14.56 14.54 23 32.40 32.41 33.53

11 15.97 15.99 16.00 24 33.63 33.65 34.89

12 17.02 17.04 17.02 25 34.91 34.94 36.31

13 18.03 18.05 18.05 26 36.22 36.25 37.75

14 19.01 19.03 19.23 27 37.55 37.58 39.18

15 20.00 20.06 20.53 28 38.87 38.90 40.60

16 21.59 21.65 22.41 29 40.17 40.19 42.01

17 23.52 23.57 24.45 30 41.44 41.48 43.42

18 25.36 25.40 26.31 31 42.73 42.77 44.84

19 27.04 27.07 27.99 32 44.04 44.11 46.29

20 28.56 28.58 29.52
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Fig. 10: Histogram of the number of trails over 4 rounds. Variants are obtained
by generating one random permutation for one random isomorphism for each of
the 346 graphs.

Table 8: Minimum and maximum number of trails of each given weight over
all variants compared to the original permutation over 4 rounds. Variants are
obtained by generating one random permutation for one random isomorphism
for each of the 346 graphs.

Weight Min. Max. Original Weight Min. Max. Original

12 6.32 8.53 8.19 23 27.33 27.51 27.71

13 11.82 12.54 12.52 24 28.58 28.81 29.10

14 15.08 15.29 15.27 25 29.84 30.13 30.49

15 17.29 17.40 17.31 26 31.08 31.45 31.90

16 18.89 18.96 18.97 27 32.32 32.77 33.30

17 20.22 20.31 20.30 28 33.57 34.10 34.69

18 21.41 21.51 21.49 29 34.83 35.41 36.06

19 22.60 22.68 22.70 30 36.09 36.71 37.41

20 23.74 23.83 23.89 31 37.35 38.00 38.75

21 24.89 25.00 25.10 32 38.61 39.29 40.07

22 26.11 26.24 26.39
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Fig. 11: Histogram of the number of trails over 4 rounds. Variants are obtained
by generating 346 random permutations for one random isomorphism for one of
the graphs.

Table 9: Minimum and maximum number of trails of each given weight over
all variants compared to the original permutation over 4 rounds. Variants are
obtained by generating 346 random permutations for one random isomorphism
for one of the graphs.

Weight Min. Max. Original Weight Min. Max. Original

12 7.09 7.52 8.19 23 27.42 27.44 27.71

13 12.08 12.21 12.52 24 28.70 28.73 29.10

14 15.22 15.27 15.27 25 29.99 30.02 30.49

15 17.33 17.36 17.31 26 31.28 31.31 31.90

16 18.91 18.94 18.97 27 32.59 32.62 33.30

17 20.28 20.31 20.30 28 33.90 33.93 34.69

18 21.43 21.46 21.49 29 35.21 35.24 36.06

19 22.61 22.63 22.70 30 36.52 36.55 37.41

20 23.76 23.79 23.89 31 37.82 37.85 38.75

21 24.92 24.96 25.10 32 39.11 39.13 40.07

22 26.16 26.18 26.39
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Fig. 12: Histogram of the number of core patterns for each given number of
active S-boxes over 2 rounds. Variants are obtained by generating one random
permutation for one random isomorphism for each of the 346 graphs.

Table 10: Minimum and maximum number of core patterns for each given num-
ber of active S-boxes over all variants compared to the original permutation over
2 rounds. Variants are obtained by generating one random permutation for one
random isomorphism for each of the 346 graphs.

Weight Min. Max. Original Weight Min. Max. Original

2 6.00 6.00 6.00 9 24.19 24.23 24.30

3 7.58 7.58 7.58 10 26.63 26.68 26.77

4 11.34 11.36 11.38 11 29.01 29.06 29.13

5 13.73 13.75 13.78 12 31.34 31.39 31.48

6 16.60 16.63 16.69 13 33.62 33.67 33.75

7 19.14 19.17 19.22 14 35.86 35.90 35.98

8 21.71 21.76 21.83 15 38.04 38.08 38.15
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Fig. 13: Histogram of the number of core patterns for each given number of
active S-boxes over 2 rounds. Variants are obtained by generating 346 random
permutations for one random isomorphism for one of the graphs.

Table 11: Minimum and maximum number of core patterns for each given num-
ber of active S-boxes over all variants compared to the original permutation over
2 rounds. Variants are obtained by generating 346 random permutations for one
random isomorphism for one of the graphs.

Weight Min. Max. Original Weight Min. Max. Original

2 6.00 6.00 6.00 9 24.22 24.22 24.30

3 7.58 7.58 7.58 10 26.67 26.67 26.77

4 11.36 11.36 11.38 11 29.04 29.04 29.13

5 13.75 13.75 13.78 12 31.38 31.38 31.48

6 16.62 16.62 16.69 13 33.66 33.66 33.75

7 19.16 19.16 19.22 14 35.89 35.89 35.98

8 21.74 21.74 21.83 15 38.07 38.07 38.15
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Fig. 14: Histogram of the number of core patterns for each given number of
active S-boxes over 3 rounds. Variants are obtained by generating one random
permutation for one random isomorphism for each of the 346 graphs.

Table 12: Minimum and maximum number of core patterns for each given num-
ber of active S-boxes over all variants compared to the original permutation over
3 rounds. Variants are obtained by generating one random permutation for one
random isomorphism for each of the 346 graphs.

Weight Min. Max. Original Weight Min. Max. Original

4 8.75 8.75 8.75 11 19.60 20.73 22.10

5 9.17 9.17 9.17 12 21.56 22.57 24.13

6 10.01 10.41 10.88 13 23.71 24.69 26.35

7 13.59 14.15 14.77 14 25.57 26.58 28.14

8 15.18 15.82 16.57 15 27.28 28.36 29.41

9 16.24 17.09 17.99 16 29.09 30.28 31.09

10 17.99 19.07 20.28 17 31.32 32.59 34.18
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Fig. 15: Histogram of the number of core patterns for each given number of
active S-boxes over 3 rounds. Variants are obtained by generating 346 random
permutations for one random isomorphism for one of the graphs.

Table 13: Minimum and maximum number of core patterns for each given num-
ber of active S-boxes over all variants compared to the original permutation over
3 rounds. Variants are obtained by generating 346 random permutations for one
random isomorphism for one of the graphs.

Weight Min. Max. Original Weight Min. Max. Original

4 8.75 8.75 8.75 11 20.51 20.53 22.10

5 9.17 9.17 9.17 12 22.32 22.35 24.13

6 10.30 10.33 10.88 13 24.39 24.42 26.35

7 14.02 14.02 14.77 14 26.24 26.28 28.14

8 15.68 15.69 16.57 15 27.99 28.05 29.41

9 16.88 16.91 17.99 16 29.88 29.94 31.09

10 18.83 18.86 20.28 17 32.15 32.19 34.18
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Fig. 16: Histogram of the number of core patterns for each given number of
active S-boxes over 4 rounds. Variants are obtained by generating one random
permutation for one random isomorphism for each of the 346 graphs.

Table 14: Minimum and maximum number of core patterns for each given num-
ber of active S-boxes over all variants compared to the original permutation over
4 rounds. Variants are obtained by generating one random permutation for one
random isomorphism for each of the 346 graphs.

Weight Min. Max. Original Weight Min. Max. Original

6 9.51 9.55 9.51 13 21.54 22.52 23.55

7 10.07 10.08 10.08 14 23.29 24.36 25.50

8 12.83 13.15 13.45 15 25.14 26.26 27.58

9 14.59 14.93 15.43 16 27.06 28.20 29.64

10 16.13 16.68 17.29 17 29.02 30.15 31.65

11 17.88 18.58 19.27 18 31.02 32.14 33.70

12 19.77 20.57 21.48
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Fig. 17: Histogram of the number of core patterns for each given number of
active S-boxes over 4 rounds. Variants are obtained by generating 346 random
permutations for one random isomorphism for one of the graphs.

Table 15: Minimum and maximum number of core patterns for each given num-
ber of active S-boxes over all variants compared to the original permutation over
4 rounds. Variants are obtained by generating 346 random permutations for one
random isomorphism for one of the graphs.

Weight Min. Max. Original Weight Min. Max. Original

6 9.51 9.52 9.51 13 22.29 22.36 23.55

7 10.08 10.08 10.08 14 24.11 24.19 25.50

8 13.02 13.09 13.45 15 25.98 26.07 27.58

9 14.83 14.87 15.43 16 27.90 28.00 29.64

10 16.54 16.58 17.29 17 29.83 29.94 31.65

11 18.42 18.46 19.27 18 31.81 31.92 33.70

12 20.38 20.43 21.48
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Fig. 18: Cumulative histogram of the number of differentials of a given weight
over 2 rounds. Variants are obtained by generating one random permutation for
one random isomorphism for each of the 346 graphs.

Fig. 19: Cumulative histogram of the number of differentials of a given weight
over 2 rounds. Variants are obtained by generating 346 random permutations
for one random isomorphism for one of the graphs.
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Fig. 20: Cumulative histogram of the number of differentials of a given weight
over 3 rounds. Variants are obtained by generating one random permutation for
one random isomorphism for each of the 346 graphs.

Fig. 21: Cumulative histogram of the number of differentials of a given weight
over 3 rounds. Variants are obtained by generating 346 random permutations
for one random isomorphism for one of the graphs.
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