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Abstract. We introduce Bicorn, an optimistically efficient distributed
randomness protocol with strong robustness under a dishonest majority.
Bicorn is a “commit-reveal-recover” protocol. Each participant commits
to a random value, which are combined to produce a random output. If
any participants fail to open their commitment, recovery is possible via
a single time-lock puzzle which can be solved by any party. In the opti-
mistic case, Bicorn is a simple and efficient two-round protocol with no
time-lock puzzle. In either case, Bicorn supports open, flexible participa-
tion, requires only a public bulletin board and no group-specific setup or
PKI, and is guaranteed to produce random output assuming any single
participant is honest. All communication and computation costs are (at
most) linear in the number of participants with low concrete overhead.

1 Introduction

Distributed randomness beacons (DRBs) aim to enable a group of n participants
to jointly compute a random output (which we denote Ω) such that no partic-
ipant or coalition of participants can predict or influence the outcome. Among
many other applications, they are useful for cryptographically verifiable lotteries
or leader election in efficient distributed consensus protocols.

A classic approach is commit-reveal [9]. First, all participants publish a com-
mitment ci = Commit(ri) to a random value ri. Next, participants reveal their
ri values and the result is Ω = Combine(r1, . . . , rn) for some suitable combi-
nation function (such as exclusive-or or a cryptographic hash). Commit-reveal
protocols are simple, efficient, and secure as long as one participant chooses a
random ri value—assuming all participants open their commitments. However,
the output can be biased by the last participant to open their commitment (a
so-called last-revealer attack), as that participant will know all other ri values
and can compute Ω early. If the last revealer doesn’t like the impending value
of Ω, they can refuse to open, forcing the protocol to abort. Even if the last
revealer is removed from subsequent protocol runs, this enables one bit of bias.

Related work. Several approaches exist to avoid last-revealer attacks. Commit-
reveal-punish protocols impose a financial penalty on any participant who fails
to open their commitment. This penalty can be automatically enforced using
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modern cryptocurrencies [2,33], but this requires locking up capital and security
relies on economic assumptions about the value of manipulation to the attacker.

Other protocols relax the security model of commit-reveal and assume an
honest majority of participants. Many constructions enable a majority of par-
ticipants to recover the input of a malicious minority of participants [7,8,19,20,
24, 26, 28, 35, 36, 38], using cryptographic tools such as publicly verifiable secret
sharing (PVSS). Typically, these constructions can tolerate some threshold t of
malicious participants failing to complete the protocol, with the trade-off that
any coalition of t+1 participants can (secretly) learn the impending output early
and potentially bias the protocol, leading to a requirement that t < n

2 (honest
majority). These protocols are also often quite complex, with communication
and computation costs superlinear in n. Another approach is to rely on thresh-
old cryptography for participants to jointly compute a cryptographic function
which produces Ω, such as threshold signatures in Dfinity [18], threshold encryp-
tion [22], or threshold inversion in RSA groups [3,4]. The drand DRB [1], which
uses a chain of threshold BLS signatures, is now deployed publicly with a group
of 16 participating nodes producing a new random output every 30 seconds.

A very different approach to constructing DRBs uses time-based cryptog-
raphy, specifically using delay functions to prevent manipulation. The simplest
example is Unicorn [29], a one-round protocol in which participants directly pub-
lish (within a fixed time window) a random input ri. The result is computed as
Ω = Delay(Combine(r1, . . . , rn)). By assumption, a party cannot compute the
Delay function before the deadline to publish their contribution ri and therefore
cannot predict Ω or choose ri in such a way as to influence it. This protocol
retains the strong n − 1 (dishonest majority) security model of commit-reveal,
but with no last-revealer attacks. It is also simple and, using modern verifiable
delay functions4 (VDFs) [11], the result can be efficiently verified. The downside
is that a delay function must be computed for every run of the protocol.

Our approach. We introduce the Bicorn family of DRB protocols, which retain
the advantages of Unicorn while enabling efficient computation of the result (with
no delay) if all participants act honestly. The general structure is:

• Each of n participants chooses a random value ri and publishes ci = TCom(ri)
using a timed commitment scheme [14] TCom before some deadline T1.

• In the optimistic case, every participant opens their commitment by pub-
lishing ri. The DRB output is Ω = Combine(r1, . . . , rn). In this case, the
protocol is equivalent to a classic commit-reveal protocol.

• If any participant does not publish their ri value, it can be recovered by
computing ri = ForceOpen(ci), a slow function requiring t steps of sequential
work which cannot be evaluated quickly enough for a malicious coalition of
participants to learn honest participants’ committed values early. The result
Ω is the same as in the optimistic case, even if all participants don’t reveal
their committed values.

4 The original Unicorn proposal used modular square roots in a prime-order group.
We consider using a modern VDF instead.
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This protocol structure was used in a recent proposal by Thyagarajan et
al. [39]. They observe that by using a homomorphic commitment scheme, the
commitments can be combined and only a single forced opening is required, in-
stead of opening every withholding participant’s commitment separately. Asymp-
totically, their protocols require linear (O(n)) communication and computation
costs when run with n participants.

However, Thyagarajan et al. use a general-purpose CCA-secure timed com-
mitment scheme suitable for committing to arbitrary messages, which introduces
significant practical complexity and overhead. Our key insight is that construct-
ing a DRB does not require a general-purpose commitment scheme; it is sufficient
to use a special restricted commitment scheme which only enables committing
to a pseudorandom message. As a result, our protocols are considerably simpler
and offer much better concrete performance.

Contributions. We introduce the Bicorn family of protocols, which comes in
three flavors with slightly different security proofs and practical implications:

• Bicorn-ZK, which requires each participant to publish a zero-knowledge
proof of knowledge of exponent. This imposes the highest practical overhead
but offers the simplest security proof.

• Bicorn-PC, in which participants “pre-commit” their contribution before
the protocol. This is the simplest version, though it adds an extra commu-
nication round (which can be amortized over multiple runs).

• Bicorn-RX, which utilizes a randomized exponent to prevent manipulation
attacks. This is the most efficient version in practice, though the security
proof relies on stronger assumptions.

In Section 3, we prove security of our constructions by reducing to the RSW
assumption [34] in the algebraic group model (AGM) [25], except for Bicorn-ZK
where we assume a zero-knowledge proof of knowledge of exponent (ZK-PoKE)
exists. The Bicorn-RX variant assumes a random oracle. In Section 6, we report
on concrete implementations of these protocols in Ethereum, showing that our
constructions are practical and incur 3–8× increase in per-user cost compared
to commit-reveal (but with no manipulation due to aborts) and 5–7× compared
to Unicorn (but with no delay function required in the optimistic case).

2 Overview

2.1 Protocol Outline

We specify all three of our protocol variants in Protocol 1. Our protocols are
initialized via a security parameter λ and a delay parameter t, and work over a
group of unknown order, which we denote G (see preliminaries in Section 3). In
addition to the group G, the public parameters include a pair (g, h), where g is a

generator of the group and h = g2t . If desired, a Wesolowski [42] or Pietrzak [31]
proof of exponentiation can enable efficient verification that h was computed
correctly. Note that this setup only needs to be run once ever (for a specific
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delay parameter t) and can be used repeatedly (and concurrently) by separate
protocol instances; the number of participants does not need to be known and
may dynamically change over time.

The common structure of Bicorn protocols is:

• Each of n participants chooses a random value αi and publishes ci =
gαi . The value ci can be viewed as the input to a VDF whose output is
(ci)

2t , with αi serving as a trapdoor to quickly compute (ci)
2t = (gαi)2t =

(g2t)αi = hαi . Without knowledge of αi this value is slow to compute.
Depending on the security assumptions made, αi can be sampled from dif-
ferent distributions. We abstract this choice by parameterizing by a uniform
distribution B from which αi is sampled.

• Participants “open” their commitment ci by revealing a value α̃i. It can be
quickly verified that α̃i is the correct αi by verifying that ci = gα̃i .

• Optimistic case: Given all correct αi values, the DRB output Ω is the prod-
uct Ω =

∏
i∈[n] h

αi , which is unpredictable as long as at least one of the
αi values was randomly chosen and is easy to compute if all αi values are
correctly revealed.

• Pessimistic case: If any participant withholds αi (or chose ci without knowl-
edge of the corresponding αi), then the missing value hαi can be recovered

(slowly) by computing hαi = (ci)
2t , equivalent to evaluating a VDF. If mul-

tiple participants withhold αi, naively one must compute each missing value
hαi individually. A more efficient approach (which works even if all partic-
ipants withhold αi) is to first combine each participant’s contribution into
the value ω =

∏
i∈[n] ci. The output can then be computed via a single slow

computation as Ω = ω2t , which is identical to the output Ω =
∏
i∈[n] h

α̃i

computed in the optimistic case.

By itself this protocol is insecure, because a malicious participant need not
choose ci by choosing a value αi and computing gαi . An adversary j who has pre-
computed a desired output Ω∗ = (ω∗)

2t and is able to publish last can compute
a malicious contribution:

cj = ω∗ ·

 ∏
i∈[n],i 6=j

ci

−1

(1)

This will cancel out every other participant’s contribution and force the out-
put value Ω∗. There are three ways to prevent this attack, each leading to a
protocol variant with slightly different properties, which we will present in the
following subsections. We present the protocols combined for comparison in Pro-
tocol 1, with separate presentations in Appendix D.

2.2 Bicorn-ZK: Using Zero-Knowledge Proofs

The conceptually simplest fix is for each user to publish, along with their com-
mitment ci, a zero-knowledge proof-of-knowledge πi = ZK-PoKE(g, ci, αi) of the
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Setup(λ, t) (run once for all protocol runs)

1. Run (G, g, A,B)
$←− GGen(λ) to generate a group of unknown order

2. Compute h← g2
t

, optionally with πh = PoE(g, h, 2t)

3. Output (G, g, h, πh, A,B)

Prepare() (run by each participant i)

αi
$←− B

ci ← gαi

πi ← ZK-PoKE(g, ci, αi)

αi
$←− B

ci ← gαi

di ← H(ci)

αi
$←− B

ci ← gαi

Precommit(di) (run by each participant i)

− Publish di −

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T0 . . .

Commit(ci, πi) (run by each participant i)

Publish ci, πi Publish ci Publish ci

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T1 . . .

Reveal(αi) (run by each participant i)

Publish αi Publish αi Publish αi

Finalize({(α̃i, ci, di, πi)}ni=1) (optimistic case, once per protocol run)

1. ∀j Verify proof πj

– else: remove user j

2. ∀j Verify cj = gα̃j

– else: go to Recover

Ω =
∏
i∈[n]

hα̃i

1. ∀j Verify dj = H(cj)

– else: remove user j

2. ∀j Verify cj = gα̃j

– else: go to Recover

Ω =
∏
i∈[n]

hα̃i

1. b∗ ← H (c1|| . . . ||cn)

2. ∀j Verify cj = gα̃j

– else: go to Recover

Ω =
∏
i∈[n]

(
hH(ci‖b∗)

)α̃i

Recover({(ci, di, πi)}ni=1) (pessimistic case, once per protocol run)

Ω =

∏
i∈[n]

ci

2t

Ω =

∏
i∈[n]

ci

2t

Ω =

∏
i∈[n]

c
H(ci‖b∗)
i

2t

Protocol 1: All Bicorn protocol variants: Bicorn-ZK (left column), Bicorn-PC (center
column), and Bicorn-RX (right column). Each protocol is presented individually in
Appendix D.
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discrete logarithm of ci to the base gi (i.e. αi). This version (Bicorn-ZK) is spec-
ified in Protocol 1 (left). This removes the attack above, as an adversary who
computes cj via Equation 1 will not know the discrete log of cj to the base g.
Such proofs can be done in groups of unknown order particularly efficiently in
this case. The use of a fixed base g enables the simpler ZKPoKRep protocol of
Boneh et al. [12] (possibly in combination with their proof aggregation PoKCR
protocol).

Participants publishing invalid proofs are removed, and the protocol can con-
tinue and still produce output. Attempting to participate with an invalid proof
is equivalent to not participating at all (though participants who do so might
need to be blocked or penalized financially to deter denial-of-service attacks).

It might be tempting to optimize the protocol by not verifying each proof πi
in the optimistic case, instead checking directly that ci = gα̃i using the revealed
value α̃i. However, this would introduce a subtle attack: a malicious participant
could publish a correctly generated (ci, α̃i) pair but with an invalid proof π̃i.
Next, after all other participants have revealed their α values, the attacker can
compute the impending result Ω with their own contribution included, as well
as the alternative Ω′ if it is removed. They could then choose which output is
produced, introducing one bit of bias into the protocol: by publishing α̃i, they
will remain in the protocol (as π̃i is not checked) and Ω will result, whereas by
withholding α̃i they will force the pessimistic case, in which they will be removed
on account of the faulty π̃i and Ω′ will result. Thus, it is important to verify
every participant’s proof πi in both cases to prevent this attack.

2.3 Bicorn-PC: Using Precommitment

Another approach to prevent manipulation is to add an initial precommitment
round where participants publish di = H(ci), preventing them from choosing
ci in reaction to what others have chosen. This version (Bicorn-PC) is specified
in Protocol 1 (center). Participants can decline to reveal their committed ci,
in which case they are removed and the protocol can continue safely. Because
participants will not have time to compute the impending output before choosing
whether to reveal, this does not introduce any opportunity for manipulation.

Note that the precommitted values di can be published at any point prior
to T0 (the point at which participants start revealing their actual commitment
ci). If the protocol is run iteratively, it is possible for participants to publish any
number of precommitments di in advance (or a single commitment to a set of di
values using a set commitment construction such as a Merkle Tree), making the
protocol a two-round protocol on an amortized basis.

2.4 Bicorn-RX: Using Pseudorandom Exponents

Finally, we can prevent manipulation by raising each participant’s contribu-
tion ci to a unique (small) exponent which depends on all other participants’
contributions. Specifically, we define b∗ to be the hash of all ci values: b∗ =
H (c1||c2|| . . . ||cn). We then raise each value ci to the pseudorandom exponent
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Protocol Rounds Communication Assumptions

§2.2 Bicorn-ZK 2 n(〈G〉+ 〈B〉+ |π|) RSW, ZK-PoKE

§2.3 Bicorn-PC 3 n(〈G〉+ 〈B〉+ λ) RSW, AGM

§2.4 Bicorn-RX 2 n(〈G〉+ 〈B〉) RSW, AGM, ROM

Table 1: A brief comparison of the Bicorn variants. See Figure 1 for notation (〈G〉 and
〈B〉 are the sizes of elements from G and B, respectively) and Section 3 for a background
on the RSW assumptions, the algebraic group model (AGM), the random oracle model
(ROM), and zero-knowledge proof of knowledge of exponent (ZK-PoKE).

bi = H(ci ‖ b∗). The intuition is that modifying any contribution ci will in-
duce new exponents on each participant’s contribution which prevents an ad-

versary from forcing the value ω =
∏
i∈[n] c

H(ci‖b∗)
i to a fixed value. A similar

technique was used by Boneh et al. [13] to prevent rogue-key attacks in BLS
multi-signatures. This version (Bicorn-RX) is specified in Protocol 1 (right).

2.5 Comparison

Each of these leads to a secure protocol, albeit reducing to slightly different com-
putational assumptions, as we will prove in Section 5. All of our protocols reduce
to the RSW assumptions with Bicorn-PC and Bicorn-RX requiring the algebraic
group model (AGM) for the security reductions and Bicorn-RX also assuming
a random oracle. Bicorn-ZK doesn’t require the AGM explicitly but instead as-
sumes a secure zero-knowledge proof of knowledge of exponent (ZK-PoKE) for
which efficient existing protocols are proven secure only in the AGM [12].

Each protocol also offers slightly different performance trade-offs, though
asymptotically all require O(n) broadcast communication by participating nodes
and O(n) computation to verify the result. While Bicorn-PC incurs an extra
round, Bicorn-ZK incurs extra computational overhead which may be significant
in some scenarios (e.g. smart contracts). Bicorn-RX requires only two rounds and
does not require the user to produce proofs but requires extra group exponenti-
ations which incur slightly higher costs than Bicorn-PC.

3 Preliminaries

Algebraic group model. In some of our security proofs, we consider security
against algebraic adversaries which we model using the algebraic group model,
following the treatment of [25]. We call an algorithm A algebraic if for all group
elements Z that are output (either as final output or as input to oracles), A addi-
tionally provides the representation of Z relative to all previously received group
elements. The previously received group elements include both original inputs to
the algorithm and outputs received from calls to oracles. More specifically, if [X]i
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GC-RSW
A,t,GGen(λ)

(G, g, A,B)
$←− GGen(λ)

σ ← A0(G, g, A,B)

x
$←− G

ỹ
$←− A1(σ, x)

Return ỹ = x2
t

GC-RSWe

A,t,GGen (λ)

(G, g, A,B)
$←− GGen(λ)

σ ← A0(G, g, A,B)

x
$←− G

(e, ỹ)
$←− A1(σ, x)

Return ỹ = (xe)2
t

GD-RSW
A,t,b,GGen(λ)

(G, g, A,B)
$←− GGen(λ)

σ ← A0(G, g, A,B)

x
$←− G; ỹ1 ← x2

t

; ỹ0
$←− G

b′
$←− A1(σ, x, ỹb)

Return b = b′

Fig. 1: Security games for the repeated squaring hardness assumptions: computational
RSW (left), computational power-of-RSW (center), and decisional RSW (right).

is the list of group elements [X0, . . . , Xn] ∈ G that A has received so far, then,
when producing group element Z, A must also provide a list [z]i = [z0, . . . , zn]
such that Z =

∏
iX

zi
i .

Groups of unknown order and RSW assumptions. Our protocols will
operate over cyclic groups of unknown order. We assume an efficient group gen-
eration algorithm GGen(λ) that takes as input security parameter λ and outputs
a group description G, generator g, and range [A,B] where A, B, and B−A are
all exponential in λ; the group G has order in range [A,B]. We assume efficient

algorithms for sampling from the group (g
$←− G) and for testing membership.

There are a few currently known options with which to instantiate a group
of unknown order. One option that requires only a transparent setup is through
class groups of imaginary quadratic order [15]. However, class groups typically
incur high concrete overheads. Instead, one may opt for more efficient RSA
groups, which require a trusted setup or multiparty computation “ceremony” [21]
to compute the modulus N = pq without revealing safe primes p, q. Looking
forward, we will require our group to additionally be cyclic and satisfy the low
order assumption [10]. So instead we will use the group QR+

N , the group of signed
quadratic residues modulo N (we refer to Pietrzak for more details [31]).

The security of our constructions is based on the assumption, originally pro-
posed by RSW [34], that, given a random element x ∈ G, the fastest algorithm

to compute y = x(2t) takes t sequential steps. We use three RSW assumptions;
we provide security games in Figure 1. Detailed descriptions of each assumption
are provided in Appendix A.

Randomizing exponent sizes. We recall a useful lemma for randomizing
group elements [30].

Lemma 1. For any cyclic group G and generator g, if r
$←− B is chosen uni-

formly at random, then the statistical distance between gr and the uniform dis-

tribution over G is at most |G|2|B| .

Looking forward, we will use this lemma in our security proofs to replace a
generator taken to the power of a large exponent of size |B| ≈ 22λ · |G| with
a random element. Alternatively, one may opt for the stronger short exponent
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indistinguishability (SEI) assumption [23] which asserts that an adversary cannot
computationally distinguish between a uniformly random element of G and gr

for r
$←− [0, 22λ]. The latter assumption enables significant efficiency gains in

practice, with participants publishing 32-byte α values instead of 288 bytes.

Non-interactive zero-knowledge proofs. A non-interactive proof system for
a relation R over statement-witness pairs (x,w) enables producing a proof, π ←
Prove(pk, x, w), that convinces a verifier ∃w : (x,w) ∈ R, 0/1← Verify(vk, π, x);
pk and vk are proving and verification keys output by a setup, (pk, vk) ←
Keygen(R). A non-interactive argument of knowledge further convinces the ver-
ifier not only that the witness w exists but also that the prover knows w, and
if proved in zero-knowledge, the verifier does not learn any additional informa-
tion about w. We defer the formal security properties to Appendix B. In this
work, we will make use of proof systems for two relations. First, we use PoE
for the following relation for proofs of exponentiation in groups of unknown or-
der [12,31,42]: {((x, y ∈ G, α ∈ Z),⊥) : y = xα}. Second, we use ZK-PoKE (real-
ized by ZKPoKRep from [12]) for zero-knowledge proofs of knowledge of exponent
in groups of unknown order: {((x, y ∈ G), α ∈ Z) : y = xα}.

4 Timed DRBs: Syntax and Security Definitions

We first define a timed DRB using a generalized syntax which captures all of
our protocol variants. A timed DRB protocol DRB with time parameter t is a
tuple of algorithms (Setup,Prepare,Finalize,Recover). We describe them below
for a run of the protocol with n participants:

• Setup(λ, t)
$−→ pp: The setup algorithm takes as input a security parameter

λ and a time parameter t and outputs a set of public parameters pp.

• Prepare(pp)
$−→ (αi, ci, di, πi): The prepare algorithm is run by each partic-

ipant and outputs a tuple of opening, commitment, precommitment, and
proof. The precommitment is contributed during the Precommit phase (see
Protocol 1). The commitment and proof are contributed during the Commit
phase, and the opening is contributed during the Reveal phase. The length
of the Commit phase is dictated by the time parameter t.

• Finalize(pp, {(αi, ci, di, πi)}ni=1)→ Ω: The finalize algorithm is run after the
Reveal phase and verifies the contributions of participants to optimistically
produce a final output Ω or returns ⊥ indicating the need to move to the
pessimistic case.

• Recover(pp, {(ci, di, πi)}ni=1)→ Ω: The recover algorithm performs the timed
computation to recover the output Ω without any revealed α values.

We require Finalize to be a deterministic algorithm running in time polylog(t)
(the fast optimistic case), and Recover to be a deterministic algorithm running
in time (1+ε)t for some small ε. We also require the following security properties
of a timed DRB (given in pseudocode in Figure 2):
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GconsistA,t,n,DRB(λ)

pp
$←− Setup(λ, t)

(α1, c1, d1, π1)
$←− Prepare(pp)

(σ, {di}n
′
i=1)

$←− A0(pp, d1)

{(αi, ci, πi)}ni=2
$←− A1(σ, c1, π1)

Ω ← Finalize(pp, {(αi, ci, di, πi)}ni=1)

Return

∧Ω 6= ⊥

Ω 6= Recover(pp, {(ci, di, πi)}ni=1)



GunpredA,t,n,DRB(λ)

pp
$←− Setup(λ, t)

(α1, c1, d1, π1)
$←− Prepare(pp)

(σ, {di}n
′
i=1)

$←− A0(pp, d1)

(Ω̃, {(ci, πi)}ni=2)
$←− A1(σ, c1, π1)

Return Ω̃ = Recover(pp, {(ci, di, πi)}ni=1)

GindistA,t,n,b,DRB(λ)

pp
$←− Setup(λ, t)

(α1, c1, d1, π1)
$←− Prepare(pp)

(σ0, {di}n
′
i=1)

$←− A0(pp, d1)

(σ1, {(ci, πi)}ni=2)
$←− A1(σ0, c1, π1)

Ω1 ← Recover(pp, {(ci, di, πi)}ni=1)

Ω0
$←− G

b′
$←− A2(σ1, Ωb)

Return b = b′

Fig. 2: Security games for our three main security properties: consistency (left), t-
unpredictability (center), and t-indistinguishability (right).

Consistency. Our first security property is a form of correctness. We require
that it is not possible for the optimistic and pessimistic paths to return different
outputs. The adversary is tasked with providing an accepting set of contribu-
tions that results in different outputs from Finalize and Recover. We define the

advantage of an adversary as Advconsist
A,t,n,DRB(λ) = Pr

[
Gconsist
A,t,n,DRB(λ) = 1

]
.

t-Unpredictability. The t-unpredictability game tasks an adversary with pre-
dicting the final output Ω exactly, allowing it control of all but a single honest
protocol participant (which publishes first). We define the advantage of an ad-

versary as Advunpred
A,t,n,DRB(λ) = Pr

[
Gunpred
A,t,n,DRB(λ) = 1

]
.

t-Indistinguishability. The t-unpredictability property does not guarantee the
output is indistinguishable from random. For that, we provide a stronger t-
indistinguishability property in which the adversary must distinguish an honest
output from a random output, again allowing the adversary control of all but
one participant. We define the advantage of an adversary as: Advindist

A,t,n,DRB(λ) =∣∣∣Pr
[
Gindist
A,t,n,1,DRB(λ) = 1

]
− Pr

[
Gindist
A,t,n,0,DRB(λ) = 1

]∣∣∣. A timed DRB that satisfies

t-unpredictability can be transformed generically into one with t-indistinguishability
by applying a suitable randomness extractor [40, 41] or hash function (modeled
as a random oracle) to the output. A nice feature of our DRBs is that they satisfy
t-indistinguishability with respect to the group output space (without applying
a randomness extractor) under the suitable decisional RSW assumption.

Discussion. In t-unpredictability and t-indistinguishability, the adversaries A1

and A2 are restricted to run in fewer than t sequential steps. This is a slight
simplification of the (p, σ)-sequentiality assumption in VDFs [11], which is suit-
able for working in the AGM in which parallelism is not helpful in computing
group operations.
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Note that our syntax and security definitions encompass all three of our
protocol variants. Except for Bicorn-ZK, the proofs πi can be set to ⊥ and are
ignored; except for Bicorn-PC, the precommitment values di can be set to ⊥
and are ignored. Also note that there are n′ (≥ n) values of di output by the
adversary; they have the option in Bicorn-PC to choose which to use in later
steps. The implementation of Recover is unique to each protocol.

We observe that the consistency property holds unconditionally for all Bicorn
variants, as Finalize and Recover are deterministic and algebraically equivalent.
It remains to prove unpredictability and indistinguishability for each variant.

5 Security of Bicorn-RX

We present a proof of t-unpredictability for Bicorn-RX here, as it is representa-
tive of the techniques used for all other proofs; we defer the full security proofs
for Bicorn-ZK, Bicorn-PC, and Bicorn-RX to Appendix C.

Theorem 1 (t-Unpredictability of Bicorn-RX). Let Abrx = (Abrx,0,Abrx,1)
be an algebraic adversary against the t-unpredictability of BRX with random ex-
ponent space B = [22λ ·B] where hash function H is modeled as a random oracle.
Then we construct an adversary Arsw = (Arsw,0,Arsw,1) such that

Advunpred
Abrx,t,n,BRX

(λ) ≤ AdvC-RSWe

Arsw,t,GGen(λ) +
2(q2

ro + n) + 1

22λ+1
+
∏̀
i=1

I 1
pi

(ri, n) ,

and where GGen
$−→ (G, g, A,B) generates the group of unknown order (|G| =∏`

i=1 p
ri
i for distinct primes p1, . . . , p`) used by BRX, qro is the number of queries

made to the random oracle, n is the number of participants, and I 1
p
(r, n) =

(1− 1
p )n

∑∞
j=r

(
n+r−1

r

)
p−j is the regularized beta function. The running time of

T (Arsw,0) ≈ T (Abrx,0) + 2t and T (Arsw,1) ≈ T (Abrx,1).

Proof. At a high level, our proof strategy will be to replace the initial commit-
ment c1 provided by the single honest participant with a random group element.
If Abrx can win with non-negligible probability, then we show that due to un-
predictability of the random exponents applied in Bicorn-RX, it must be that
a nontrivial large exponent of c1 was computed which we can use to win the
computational power-of-RSW game.

More specifically, we bound the advantage ofAbrx by bounding the advantage
of a series of game hops, using the fundamental lemma of game playing and
its identical-until-bad argument [6]. We define G = Gunpred

Abrx,t,n,BRX
(λ) and hybrids

G1,G2,G3 for which we justify the following claims leading to the inequality above:

• |Pr [G(λ) = 1]− Pr [G1(λ) = 1]| ≤ 1
22λ+1

• |Pr [G1(λ) = 1]− Pr [G2(λ) = 1]| ≤ q2ro
22λ

• |Pr [G2(λ) = 1]− Pr [G3(λ) = 1]| ≤ n
22λ +

∏`
i=1 I 1

pi

(ri, n)

• Pr [G3(λ) = 1] = AdvC-RSWe

Arsw,t,GGen(λ)

11



G → G1. Hybrid G1 is defined the same as G except G1 samples c1 in Prepare at
random from G instead of through an exponent sampled from B. By Lemma 1,
the statistical distance between G and G1 is at most 1/22λ+1.

We can view G1 as computing the beacon output Ω using the representations
of {ci}ni=2 provided by the algebraic adversary. Since Abrx is algebraic, it will
provide a representation for each ci in terms of elements (c1, g, h). That is, the
adversary outputs [(ei,0, ei,1, ei,2)]ni=2 such that ci = c

ei,0
1 gei,1hei,2 .

Given a value ĥ = h2t , we can compute Ω as follows. Consider the random
exponents bi = H(ci ‖ b∗) where b∗ = H (c1|| . . . ||cn), and let b = (b1, . . . , bn).
Using these, we have:

Ω =

(
n∏
i=1

cbii

)2t

=

(
cb11 ·

n∏
i=2

(
c
ei,0
1 gei,1hei,2

)bi)2t

=
(
c
b1+

∑n
i=2 biei,0

1 g
∑n
i=2 biei,1h

∑n
i=2 biei,2

)2t

By letting e = (1, e2,0, . . . , en,0), m1 =

n∑
i=2

biei,1, and m2 =

n∑
i=2

biei,2,

=
(
c
〈b,e〉
1 gm1hm2

)2t

= (c2
t

1 )〈b,e〉 · hm1 · ĥm2

Thus if Abrx wins, i.e., Ω̃ = Ω, then we have

(c2
t

1 )〈b,e〉 = Ω̃ · h−m1 · ĥ−m2

and we build Arsw to win the computational power-of-RSW game by setting c1
equal to challenge element x and returning this value along with 〈b, e〉. All that
is left to show is that 〈b, e〉 6= 0 which we can do through an application of
the Schwartz-Zippel lemma modulo a composite [17, 37, 44]. Define a non-zero
polynomial f(x1, . . . , xn) = x1 +

∑n
i=2 xiei,0. Note that f(b) = 〈b, e〉.

G1 → G2. To apply the Schwartz-Zippel lemma modulo a composite, we must first
have that the evaluation point b does not coincide with values precomputed by
the adversary. To do this, we step through G2 in which we disallow the output of
the random oracle H from colliding with (the trailing substring of) any previous
inputs to the random oracle. This ensures that the adversary has not made
any previous queries that include b∗ and ultimately ensures that the bi values
are chosen randomly after the polynomial is decided. We can apply a standard
birthday analysis to bound the probability of collision among the qro queries
made to q2

ro/2
2λ, to bound the distinguishing advantage between G1 and G2.

G2 → G3. After we have that the evaluation point b does not coincide with
precomputed values, we transition to G3 which is identical to G2 except it
aborts if f(b) = 0. We bound the distinguishing advantage to probability
n

22λ +
∏`
i=1 I 1

pi

(ri, n) by applying Schwartz-Zippel modulo a composite [17]. Ad-

versary Arsw can simulate G3 perfectly, simulating the setup and computing ĥ
with 2t work, and wins the RSW game with the same advantage as G3. �

12



Gas Costs (×103), Operations Involved

Commit/user Reveal/user Recover

Commit-Reveal 50 store2λ 60 xor, hash -

[29] Unicorn 55 store2λ - 30n n·hash


+2,330
poe.v

§2.2 Bicorn-ZK 2,950 zk-poke.v, storeG 300 exp, mul (negligible)

§2.3 Bicorn-PC 155; 180 mul, storeG 300 exp, mul (negligible)

§2.4 Bicorn-RX 145 mul, storeG 425 2·exp, mul 170n n·exp

Table 2: Ethereum gas costs and main operations involved for each Bicorn variant
as well as Unicorn and Commit-Reveal DRBs. For Bicorn-PC, the Commit cost is
split to show Precommit and Commit costs. The operations are: storeG/2λ, storing a
group element or 2λ-bit value; mul, multiplication of two group elements; exp, raising
a group element to a power of size 2λ bits; poe.v and zk-poke.v, verifying a proof of
exponentiation and proof of knowledge of exponent, respectively. Concrete costs are
given with G = QR+

N within an RSA-2048 group and λ = 128.

6 Implementation

We implemented all three variants of Bicorn in Solidity and measured the associ-
ated gas costs in Ethereum [43]. Our results are presented in Table 2. We instan-
tiate G as an RSA group with a 2048-bit modulus (specifically, it is the quadratic
residue subgroup QR+

N [31]). Multiplying two group elements costs ∼90,000 gas
and raising a group element to a power of size 32 bytes costs ∼150,000 gas. As
mentioned in Section 3, we use the short exponent indistinguishability (SEI) as-
sumption [23] to reduce the size of the exponent required in practice from 288 to
32 bytes. The largest costs for each protocol are verifying a proof of exponentia-
tion (PoE) for the VDF computation in the pessimistic Recover case and verifying
a zero-knowledge proof of knowledge of exponent needed for each commitment
in Bicorn-ZK. We implemented both proofs using non-interactive variants of
Wesolowski proofs (ZKPoKRep from [12] for the latter), which requires a prime
challenge to be sampled. Verifying this “hash-to-prime” operation costs between
2.3–4 million gas. 5

Comparison to other DRBs. Per-user Costs: We find that the user operations
for Bicorn-RX are practical on Ethereum with them costing 3× for Commit
and 7× for Reveal when compared to the standard Commit-Reveal and Unicorn
protocols. In total, the sum of these operations per user per run comes to under
600,000 gas, or $6 USD when 1 Eth = $1,000 USD and 1 gas = 10 Gwei.

5 Verifying “hash-to-prime” involves testing the primality of a number on-chain using
Pocklington certificates. This costs between 2.3–4 million gas, depending on the size
of the certificate. Table 2 reports costs with the smallest possible certificate.
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Pessimistic Costs: In the pessimistic case, a single call to Recover is required in
all versions of Bicorn, costing millions of gas. This pessimistic case is roughly
equivalent to every run of Unicorn. As the number of users grows large and the
chances of Bicorn’s optimistic case occurring decrease though, at some point it
may make more sense to switch to Unicorn and avoid the overheads of Commit
and Reveal that Bicorn protocols incur.

7 Discussion

Last revealer prediction. All Bicorn variants come with a fundamental secu-
rity caveat: if participant j withholds their αj value, but all others publish, then
participant j will be able to simulate the optimistic case and learn Ω quickly,
while the honest participants will need to execute the pessimistic case and com-
pute the delay function to complete before learning Ω. Similarly, a coalition of
malicious participants can share their α values and privately compute Ω. This
issue appears fundamental; in any protocol with a fast optimistic case and a slow
pessimistic case, a unified malicious coalition can simulate the optimistic case.

This does not undermine t-unpredictability or t-indistinguishability and does
not allow an adversary to manipulate the outcome. As a result, any protocol
built on top of Bicorn should consider the output Ω to be potentially available
to adversaries as of the deadline T1, even if the result is not publicly known until
T1 + t if the pessimistic case is triggered. For example, in a lottery application
all wagers must be locked in before time T1.

Incentives and punishment. While all Bicorn variants ensure malicious par-
ticipants cannot manipulate the output, they can waste resources by forcing the
protocol into the more-expensive recovery mode. The protocol provides account-
ability as to which nodes published an incorrect αi value or other minor devia-
tions which lead to removal (i.e. publishing an incorrect ci such that H(ci) 6= di
in Bicorn-PC or publishing an incorrect πi in Bicorn-ZK). If signatures are added
to each message, efficient fraud proofs are possible. In a blockchain setting, fi-
nancial penalties can be used to punish incorrect behavior.

Batch verification optimization. In the optimistic case, the n exponentia-
tions required to verify that ci = gα̃i for each participant can be streamlined
via batch verification [5, 16]. The general idea is that gx = 1 ∧ gy = 1 can be

verified more efficiently by checking gr·x+y = 1 for a random r
$←− R, as the

latter equation implies the former with high probability given a large enough
R. In our case, to verify that c1 = gα̃1 ∧ c2 = gα̃2 ∧ . . . ∧ cn = gα̃n , we gener-

ate random values ri
$←− R and verify that g

∑
ri·α̃i =

∏
crii . Thus, instead of

computing n exponentiations each with an exponent of size |B|, verification re-
quires only one exponentiation with an exponent of size n|B||R| and one n-way
multi-exponentiation [32].

Lowering costs with rollup proofs. Practical costs can become significant
if all users must post data to the blockchain to participate. For example, each
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run of Bicorn-RX costs about $6 USD per user even in the optimistic case. An
alternative solution is to perform Bicorn mediated via a rollup server (Rollup-
Bicorn) which gathers every participant’s ci value and publishes:

• A commitment s = SetCommitment(C) to the set C = {c1, . . . , cn} of all
participant contributions. For example, s might be a Merkle Tree root.

• The value c∗ =
∏
i∈[n] ci, the product of all participants’ commitments.

– For Bicorn-RX, c∗ will be adjusted with each party’s exponentH(ci||b∗).
• A succinct proof (SNARK) πrollup-commit that c∗ has been computed consis-

tently with the set S. This proof does not need to be zero-knowledge.

– For Bicorn-ZK, the proof must recursively check each proof πi.

– For Bicorn-PC, the proof must check ci was correctly precommitted.

– For Bicorn-RX, the proof must check ci was raised to the power bi.

In the optimistic case, if all participants reveal their private value αi, then
the rollup server can finalize the protocol by posting:

• The output Ω and a succinct proof (SNARK) πrollup-finalize that states that:

– The prover knows a set A = {α1, . . . , αn}
– For each ci ∈ C, it holds that ci = gαi

– The output Ω was computed correctly given the set A.

In the pessimistic case, if the rollup server goes offline without supplying the
second proof (or some participants don’t publish αi), anybody can still compute

Ω = c
(2t)
∗ . A single proof could be used which is a disjunction of verifying the

rollup server’s proof πrollup-finalize or verifying a PoE proof that Ω = c2
t

∗ . The end
result is that Bicorn can be run with O(1) cost for any number of participants.

Lowering cost with delegation. While the rollup approach requires only
constant overhead on the blockchain regardless of the number of participants,
the primary downside (in common with most rollup systems) is that the rollup
server can censor by refusing to include any participant’s ci in the protocol. In
the worst case, a malicious rollup server might only allow participants from a
known cabal to participate, who are then able to manipulate the DRB output.

To achieve the best of both worlds (the efficiency of rollup servers for large
protocol runs as well as robustness against censorship), we might design a dele-
gated Bicorn protocol. In a delegated protocol, users can choose between multiple
rollup servers or directly participate as an untrusted (possibly singleton) rollup
server. This works like delegated proof-of-stake protocols: participants can dele-
gate for efficiency if they want or participate individually if no server is consid-
ered trustworthy. This is straightforward for Bicorn-PC and Bicorn-ZK, as each
rollup server can simply compute a partial product c∗ which are multiplied to-
gether to obtain the final output Ω. Such a protocol for Bicorn-RX would require
additional rounds of exponent randomization, to ensure each user’s exponent is
randomized by contributions from users at other rollup servers.
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compute y = x(2t) takes t sequential steps. We follow the formalism of Katz et
al. [27]. We use three RSW assumptions; we provide security games in Figure 1.
Computational RSW. In the computational RSW game, the adversary A =
(A0,A1) is tasked with computing the 2t-th power of a challenge element. The
adversary acts in two stages. In the preprocessing stage, A0 is given a description
of the group and outputs an intermediate state passed to A1. In the challenge
stage, A1 is given the challenge input x and intermediate state σ and attempts
to output y = x2t . We define the advantage of an adversary as:

AdvC-RSW
A,t,GGen(λ) = Pr

[
GC-RSW
A,t,GGen(λ) = 1

]
In this game and in the following, the advantage is only meaningful when

the challenge stage adversary’s running time is limited to < t. In the Strong
AGM (SAGM) [27] and when G is QRN , it is shown that when A0,A1 run in
fewer than poly(λ), t steps, respectively, GC-RSW can be won with only negligible
probability assuming the hardness of factoring [27, Theorem 2].
Computational power-of-RSW. We introduce a stronger variant of computational
RSW that we term computational “power-of-RSW.” In this game, the adver-
sary need not output y = x2t directly, rather the adversary may output (e, ye)

such that ye = (xe)2t . The hardness of computational power-of-RSW for time-
bounded adversaries can be shown with a slight modification of the proof used to
show the hardness of computational RSW in [27]. The SAGM adversary outputs

d (alongside e 6= 0) with |d| < 2t such that xd = xe·2
t

. Computing 4(e · 2t − d)
then gives a multiple of φ(N), allowing us to factor N . We define the advantage
of an adversary as:

AdvC-RSWe

A,t,GGen(λ) = Pr
[
GC-RSWe

A,t,GGen(λ) = 1
]

Decisional RSW. Finally, a stronger decisional assumption is that an attacker
cannot even distinguish x2t from a random group element. There is no proof for
this assumption, even in generic models. We define the advantage of an adversary
as:

AdvD-RSW
A,t,GGen(λ) =

∣∣Pr
[
GD-RSW
A,t,1,GGen(λ) = 1

]
− Pr

[
GD-RSW
A,t,0,GGen(λ) = 1

]∣∣

B Additional Zero-Knowledge Proof Preliminaries

Here we define the security properties for a non-interactive proof system.

Completeness. A proof system is complete if given a true statement, a prover
with a witness can convince the verifier. We will make use of proof systems
with perfect completeness. A proof system has perfect completeness if for all
(x,w) ∈ R,

Pr [Verify(x,Prove(x,w)) = 1] = 1 .
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GsoundA,R,PoK,S,X(λ)

(stS, pp)
$←− S.Setup(λ)

(x, π)
$←− ASimProve(pp)

w ← X(A)

Return
∧


PoK.Verify(x, π)

(x,w) 6∈ R

(x, π) 6∈ Q


SimProve(x,w)

π
$←− S.Prove(x : stS)

Q ← Q∪ {(x, π)}
Return π

GzkA,b,R,PoK,S(λ)

pp1
$←− PoK.Setup(λ)

(stS, pp0)
$←− S.Setup(λ)

b′
$←− AProve(ppb)

Return b′

Prove(x,w)

Require (x,w) ∈ R
π1

$←− PoK.Prove(x,w)

π0
$←− S.Prove(x : stS)

Return πb

Fig. 3: Soundness (left) and zero knowledge (right) security games for non-interactive
zero knowledge proof systems.

Knowledge soundness. A proof system is computationally knowledge sound if
whenever a prover is able to produce a valid proof for a statement x, it is a true
statement, i.e., there exists some witness w such that (x,w) ∈ R. We require
a stronger property to allow for simulating proofs for false statements. This
scenario is common in security proofs and so it is desirable to have soundness
even in the presence of simulated proofs. This stronger notion of knowledge
soundness is known as simulation-extractability and is defined by the security
game Gsound

A,R,PoK,S,X(λ) (Figure 3) in which an adversary is tasked with finding a
verifying statement and proof where the statement is not in R. The advantage
of an adversary is defined as

Advsound
A,R,PoK,S,X(λ) = Pr[Gsound

A,R,PoK,S,X(λ) = 1] .

Zero knowledge. A proof system is computationally zero-knowledge if a proof
does not leak any information besides the truth of a statement. Zero knowledge
is defined by the security game Gzk

A,b,R,PoK,S(λ) (Figure 3) in which an adversary
is tasked with distinguishing between proofs generated from a valid witness and
simulated proofs generated without a witness by simulator S. The advantage of
an adversary is defined as

Advzk
A,R,PoK,S(λ) =

∣∣Pr[Gzk
A,1,R,PoK,S(λ) = 1]− Pr[Gzk

A,0,R,PoK,S(λ) = 1]
∣∣ .
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C Additional security proofs

C.1 Security of Bicorn-RX

Theorem 2 (t-Indistinguishability of Bicorn-RX). Let Abrx = (Abrx,0,Abrx,1,Abrx,2)
be an adversary against the t-indistinguishability of BRX with random exponent
space B = [22λ ·B] where hash function H is modeled as a random oracle. Then
we construct an adversary Arsw = (Arsw,0,Arsw,1) such that

Advindist
Abrx,t,n,BRX(λ) ≤ AdvD-RSW

Arsw,t,GGen(λ) +
2q2

ro + 1

22λ
+ 2(p̃+ q̃− 1)(

n

|im(H)|
+
n2

p̃q̃
) ,

and where GGen
$−→ (G, g, A,B) generates a group of unknown order QR+

N (whose
order is p̃q̃ where N = pq for p = 2p̃ + 1, q = 2q̃ + 1) used by BRX, qro is the
number of queries made to the random oracle, n is the number of participants,
and im(H) is the image of H. The running time of T (Arsw,0) ≈ T (Abrx,0) + 2t
and T (Arsw,1) ≈ T (Abrx,1) + T (Abrx,2).

Proof. We bound the advantage of Abrx by bounding the advantage of a series
of game hops, using the fundamental lemma of game playing and its identical-
until-bad argument [6]. We define Gb = Gindist

Abrx,t,n,b,BRX
(λ) and hybrids Gb1,Gb2,Gb3

for which we justify the following claims leading to the inequality above:

•
∣∣Pr
[
Gb(λ) = 1

]
− Pr

[
Gb1(λ) = 1

]∣∣ ≤ 1
22λ+1

•
∣∣Pr
[
Gb1(λ) = 1

]
− Pr

[
Gb2(λ) = 1

]∣∣ ≤ q2ro
22λ

•
∣∣Pr
[
Gb2(λ) = 1

]
− Pr

[
Gb3(λ) = 1

]∣∣ ≤ (p̃+ q̃ − 1) · ( n
|im(H)| + n2

p̃q̃ )

•
∣∣Pr
[
G1

3(λ) = 1
]
− Pr

[
G0

3(λ) = 1
]∣∣ = AdvD-RSW

Arsw,t,GGen(λ)

Hybrid Gb1 is defined the same as Gb except Gb1 samples c1 in Prepare at
random from G instead of through an exponent sampled from B. By Lemma 1,
the statistical distance between Gb and Gb1 is at most 1/22λ+1.

We can view Gb1 as computing the beacon output Ω using the representations
of {ci}ni=2 provided by the algebraic adversary. Since Abrx is algebraic, it will
provide a representation for each ci in terms of elements (c1, g, h). That is, the
adversary outputs [(ei,0, ei,1, ei,2)]ni=2 such that ci = c

ei,0
1 gei,1hei,2 .

As in the unpredictability proof, given a value ĥ = h2t , we can compute
Ω as follows. Consider the random exponents bi = H(ci ‖ b∗) where b∗ =
H (c1|| . . . ||cn), and let b = (b1, . . . , bn). Using these, we have:

Ω =

(
n∏
i=1

cbii

)2t

=

(
cb11 ·

n∏
i=2

(
c
ei,0
1 gei,1hei,2

)bi)2t

=
(
c
b1+

∑n
i=2 biei,0

1 g
∑n
i=2 biei,1h

∑n
i=2 biei,2

)2t

By letting e = (1, e2,0, . . . , en,0), m1 =

n∑
i=2

biei,1, and m2 =

n∑
i=2

biei,2,
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=
(
c
〈b,e〉
1 gm1hm2

)2t

= (c2
t

1 )〈b,e〉 · hm1 · ĥm2

We consider a transition in which c2
t

1 is replaced with a random group element
following the decisional RSW game. We will want to show that the distinguishing
advantage for this transition is equal to the advantage of Arsw. To do this, we
will first need to set up the transition with a few more hybrids.

First, as in the unpredictability game, we transition through Gb2 to disallow
collisions in the random oracle in the way specified in the proof of Theorem 1.
Next, we further define Gb3 that is the same as Gb2 but aborts if g〈b,e〉 is not a
generator of QR+

N . This happens if gcd(〈b, e〉, |QR+
N |) 6= 1, a condition that is

equivalent (in modulo |QR+
N | = p̃q̃) to f(b) = 〈b, e〉 = k for k ∈ {0, p̃, q̃, . . . , p̃q̃−

p̃, p̃q̃− q̃}. As we can apply Schwartz-Zippel modulo a composite [17, Remark 3]
to each k and there are p̃+ q̃ − 1 such k’s, we apply the union bound to bound

the probability that g〈b,e〉 is not a generator of QR+
N to (p̃+ q̃−1)·( n

|im(H)|+
n2

p̃q̃ ),

where |im(H)| denotes the size of the image of the random oracle. While a large
|im(H)| may be required for this theoretical bound, a remark here is that one
may opt for stronger assumptions, such as the short exponent indistinguishability
(SEI) assumption [23] due to the fact thatH outputs occur only in the exponents,
for efficiency gains in practice.

Now, we are set up to construct Arsw by bounding the distinguishing advan-
tage between G1

3 and G0
3 where G1

3 computes the challenge Ω using the process

above, while G0
3 computes the challenge Ω by replacing c2

t

1 with a random group
element. Note that in the case of G1

3 , Ω is computed to match the output of
Recover. On the other hand, in the case of G0

3 , Ω is in fact a random group
element. This can be seen as follows. The random group element that replaces

c2
t

1 can be written as gr for some r
$←− [1, |G|], and so we have:

Ω = (gr)〈b,e〉 · hm1 · ĥm2 = (g〈b,e〉)r · hm1 · ĥm2

Since g〈b,e〉 is a generator by the previous hybrid transition, we have that
(g〈b,e〉)r is a random group element, and so Ω is a random group element. Thus,
Arsw perfectly simulates Gb3 based on the challenge bit, simulating the setup and

computing ĥ with 2t work, and wins the RSW game with the same advantage
as the distinguishing advantage between G1

3 and G0
3 . �

C.2 Security of Bicorn-ZK

Theorem 3 (t-Unpredictability of Bicorn-ZK). Let Abzk = (Abzk,0,Abzk,1)
be an adversary against the t-unpredictability of BZK with random exponent space
B = [22λ · B]. Then we construct adversaries Arsw = (Arsw,0,Arsw,1), Azk, and
Asound such that

Advunpred
Abzk,t,n,BZK

(λ) ≤ AdvC-RSW
Arsw,t,GGen(λ)+Advzk

Azk,ZK-PoKE(λ)+Advsound
Asound,ZK-PoKE,S,X(λ)+

1

22λ+1
,

and where GGen
$−→ (G, g, A,B) generates the group of unknown order used by

BZK, and S and X are the simulator and extractor for ZK-PoKE. The running
time of T (Arsw,0) ≈ T (Abzk,0) + t and T (Arsw,1) ≈ T (Abzk,1).
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Proof. We bound the advantage of Abzk by bounding the advantage of a series
of game hops, using the fundamental lemma of game playing and its identical-
until-bad argument [6]. We define G = Gunpred

Abzk,t,n,BZK
(λ) and hybrids G1,G2,G3 for

which we justify the following claims leading to the inequality above:

• |Pr [G(λ) = 1]− Pr [G1(λ) = 1]| ≤ Advzk
Azk,ZK-PoKE(λ)

• |Pr [G1(λ) = 1]− Pr [G2(λ) = 1]| ≤ 1
22λ+1

• |Pr [G2(λ) = 1]− Pr [G3(λ) = 1]| ≤ Advsound
Asound,ZK-PoKE,S,X(λ)

• Pr [G3(λ) = 1] = AdvC-RSW
Arsw,t,GGen(λ)

Hybrid G1 is defined the same as G except G1 simulates the zero-knowledge
proof π1 in Prepare. The distinguishing advantage is directly bounded by the
zero-knowledge property of ZK-PoKE.

Hybrid G2 is defined the same as G1 except G2 samples c1 in Prepare at
random from G instead of through an exponent sampled from B. By Lemma 1,
the statistical distance between G1 and G2 is at most 1/22λ+1.

Hybrid G3 extracts the discrete log {αi}ni=2 from the adversary-provided
{πi}ni=2 using the extractor from the knowledge soundness property of ZK-PoKE.
We bound the probability of any extraction failure using an adversary against
the simulation-extractability soundness of ZK-PoKE.

Game G3 outputs 1 when Ω̃ = Ω = (c1)2t ·
∏n
i=2 h

αi . We build an adversary
Arsw that wins the computational RSW game with the same advantage as G3

by replacing c1 with challenge x and outputting ỹ = Ω̃∏n
i=2 h

αi
. �

Theorem 4 (t-Indistinguishability of Bicorn-ZK). Let Abzk = (Abzk,0,Abzk,1,Abzk,2)
be an adversary against the t-indistinguishability of BZK with random exponent
space B = [22λ ·B]. Then we construct adversaries Arsw = (Arsw,0,Arsw,1), Azk,
and Asound such that

Advindist
Abzk,t,n,BZK(λ) ≤ AdvD-RSW

Arsw,t,GGen(λ)+2·Advzk
Azk,ZK-PoKE(λ)+2·Advsound

Asound,ZK-PoKE,S,X(λ)+
1

22λ
,

and where GGen
$−→ (G, g, A,B) generates the group of unknown order used by

BZK, and S and X are the simulator and extractor for ZK-PoKE. The running
time of T (Arsw,0) ≈ T (Abzk,0) + t and T (Arsw,1) ≈ T (Abzk,1) + T (Abzk,2).

Proof. We bound the advantage of Abzk by bounding the advantage of a series
of game hops, using the fundamental lemma of game playing and its identical-
until-bad argument [6]. We define Gb = Gindist

Abzk,t,n,b,BZK
(λ) and hybrids Gb1,Gb2,Gb3

for which we justify the following claims leading to the inequality above:

•
∣∣Pr
[
Gb(λ) = 1

]
− Pr

[
Gb1(λ) = 1

]∣∣ ≤ Advzk
Azk,ZK-PoKE(λ)

•
∣∣Pr
[
Gb1(λ) = 1

]
− Pr

[
Gb2(λ) = 1

]∣∣ ≤ 1
22λ+1

•
∣∣Pr
[
Gb2(λ) = 1

]
− Pr

[
Gb3(λ) = 1

]∣∣ ≤ Advsound
Asound,ZK-PoKE,S,X(λ)

•
∣∣Pr
[
G1

3(λ) = 1
]
− Pr

[
G0

3(λ) = 1
]∣∣ = AdvD-RSW

Arsw,t,GGen(λ)

Hybrids Gb1, Gb2 and Gb3 are defined as in the unpredictability proof for Bicorn-
ZK, simulating π1, sampling a random c1, and extracting {αi}ni=2, respectively.

23



In G1
3 , the challenge output is computed to match the output of Recover as

Ω = (c1)2t ·
∏n
i=2 h

αi . In G0
3 , the challenge output is computed in the same

way but by replacing (c1)2t with a random group element resulting in Ω to
be a random group element. Thus, Arsw perfectly simulates Gb3 based on the

challenge bit (by setting c1 equal to challenge input x and replacing c2
t

1 with
challenge input y) and wins the RSW game with the same advantage as the
distinguishing advantage between G1

3 and G0
3 . �

C.3 Security of Bicorn-PC

Theorem 5 (t-Unpredictability of Bicorn-PC). Let Abpc = (Abpc,0,Abpc,1)
be an adversary against the t-unpredictability of BPC with random exponent space
B = [22λ · B] where hash function H is modeled as a random oracle. Then we
construct an adversary Arsw = (Arsw,0,Arsw,1) such that

Advunpred
Abpc,t,n,BPC

(λ) ≤ AdvC-RSW
Arsw,t,GGen(λ) +

4n · qro + 1

22λ+1
,

and where GGen
$−→ (G, g, A,B) generates the group of unknown order used by

BPC, n is the number of participants, and qro is the number of queries made
to the random oracle. The running time of T (Arsw,0) ≈ T (Abpc,0) + 2t and
T (Arsw,1) ≈ T (Abpc,1).

Proof. We bound the advantage of Abpc by bounding the advantage of a series
of game hops, using the fundamental lemma of game playing and its identical-
until-bad argument [6]. We define G = Gunpred

Abpc,t,n,BPC
(λ) and hybrids G1,G2,G3 for

which we justify the following claims leading to the inequality above:

• |Pr [G(λ) = 1]− Pr [G1(λ) = 1]| ≤ 1
22λ+1

• |Pr [G1(λ) = 1]− Pr [G2(λ) = 1]| ≤ n·qro
22λ

• |Pr [G2(λ) = 1]− Pr [G3(λ) = 1]| ≤ n·qro
22λ

• Pr [G3(λ) = 1] = AdvC-RSW
Arsw,t,GGen(λ)

Hybrid G1 is defined the same as G except G1 samples c1 in Prepare at random
from G instead of through an exponent sampled from B. By Lemma 1, the
statistical distance between G and G1 is at most 1/22λ+1.

Hybrid G2 is defined the same as G1 except we disallow collisions in the ran-
dom oracle used for precommitments, i.e., we use sampling without replacement
instead of sampling from [22λ]. We can apply a standard birthday analysis to
bound the probability of collision among the n queries made to n ·qro/2

2λ, which
bounds the distinguishing advantage between G1 and G2.

We can view G2 as computing the beacon output Ω using the representations
of {ci}ni=2 provided by the algebraic adversary. Since Abpc is algebraic, it will
provide a representation for each ci not in terms of (c1, g, h), but in terms of
(g, h). The reason, which is important to note, is that the adversary needs to
precommit before being given c1 in Bicorn-PC. Accordingly, we check if ci was
queried to the random oracle by Abpc,0 for each {ci}ni=2. Since we disallow col-
lisions in the random oracle in a prior game hop, there is only one possible ci
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that maps to each di. If the random oracle was not queried on ci then we do not
have a representation for ci in (g, h). The contribution ci will affect the output if
the sampling of a new value for H(ci) matches di provided by the adversary. If
it does, this is a “bad” case, and we can bound the probability of this occurring
for all n by n · qro/2

2λ. We transition to G3 where this bad case does not occur.
Then we have that the adversary outputs [(ei,1, ei,2)]ni=2 such that ci =

gei,1hei,2 . Using this, and given a value ĥ = h2t , we can compute Ω as follows:

Ω =

(
n∏
i=1

ci

)2t

=

(
c1 ·

n∏
i=2

gei,1hei,2

)2t

=
(
c1 · g

∑n
i=2 ei,1 · h

∑n
i=2 ei,2

)2t

By letting m1 =
n∑
i=2

ei,1 and m2 =

n∑
i=2

ei,2,

= (c1 · gm1 · hm2)
2t

= (c2
t

1 ) · hm1 · ĥm2

Thus if Abpc wins, i.e., Ω̃ = Ω, then we have

(c2
t

1 ) = Ω̃ · h−m1 · ĥ−m2 ,

and we build Arsw to win the computational RSW game by setting c1 equal to
challenge element x and returning this value. The simulation is perfect, with 2t
work to perform setup and compute ĥ, and thus the advantage of Arsw matches
the advantage of G3. �

Theorem 6 (t-Indistinguishability of Bicorn-PC). Let Abpc = (Abpc,0,Abpc,1,Abpc,2)
be an adversary against the t-indistinguishability of BPC with random exponent
space B = [22λ ·B] where hash function H is modeled as a random oracle. Then
we construct an adversary Arsw = (Arsw,0,Arsw,1) such that

Advindist
Abpc,t,n,BPC(λ) ≤ AdvD-RSW

Arsw,t,GGen(λ) +
4n · qro + 1

22λ
,

and where GGen
$−→ (G, g, A,B) generates the group of unknown order used by

BPC, n is the number of participants, and qro is the number of queries made
to the random oracle. The running time of T (Arsw,0) ≈ T (Abpc,0) + 2t and
T (Arsw,1) ≈ T (Abpc,1) + T (Abpc,2).

Proof. We bound the advantage of Abpc by bounding the advantage of a series
of game hops, using the fundamental lemma of game playing and its identical-
until-bad argument [6]. We define Gb = Gindist

Abpc,t,n,b,BPC
(λ) and hybrids Gb1,Gb2,Gb3

for which we justify the following claims leading to the inequality above:

•
∣∣Pr
[
Gb(λ) = 1

]
− Pr

[
Gb1(λ) = 1

]∣∣ ≤ 1
22λ+1

•
∣∣Pr
[
Gb1(λ) = 1

]
− Pr

[
Gb2(λ) = 1

]∣∣ ≤ n·qro
22λ

•
∣∣Pr
[
Gb2(λ) = 1

]
− Pr

[
Gb3(λ) = 1

]∣∣ ≤ n·qro
22λ

•
∣∣Pr
[
G1

3(λ) = 1
]
− Pr

[
G0

3(λ) = 1
]∣∣ = AdvD-RSW

Arsw,t,GGen(λ)
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Bicorn Setup

Setup
input : λ, t
output : group G, generators g, h ∈ G, proof πh, range [A,B]

1. Run (G, g, A,B)
$←− GGen(λ) to generate a group of unknown order

2. Compute h← g2
t

, optionally with πh = PoE(g, h, 2t)

Protocol 2: Bicorn setup routine (common to all protocol variants), where PoE is a
proof of exponentiation [12].

Hybrids Gb1, Gb2 and Gb3 are defined as in the unpredictability proof for Bicorn-
PC, sampling a random c1, disallowing random oracle collisions, and disallowing
precommitments that do not provide a representation in (g, h), respectively. In

G1
3 , the challenge output is computed to match Recover as Ω = (c1)2t ·hm1 · ĥm2 .

In G0
3 , the challenge output is computed in the same way but by replacing (c1)2t

with a random group element resulting in Ω to be a random group element.
Thus, Arsw perfectly simulates Gb3 based on the challenge bit (by setting c1 equal

to challenge input x and replacing c2
t

1 with challenge input y) and wins the RSW
game with the same advantage as the distinguishing advantage between G1

3 and
G0

3 . �

D Individual protocol presentations

For reference, we present each protocol variant separately.
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Bicorn-ZK

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T0

Commit
Each participant i runs:

1. Sample αi
$←− B

2. Compute ci ← gαi

3. Compute πi ← ZK-PoKE(g, ci, αi)
4. Publish ci, πi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T1

Reveal
Each participant i runs:

1. Publish αi

Finalize
input : ci, πi, α̃i for i ∈ [1, n]
output : Ω

1. For all users i, verify πi using ci
(a) If verification fails for any πi, remove participant i

2. Verify that ci = gα̃i for all i ∈ [1, n]

(a) If so, output Ω =
∏
i∈[n]

hα̃i // optimistic case

3. Output Ω =

∏
i∈[n]

ci

2t

// pessimistic case

(a) Optionally, a proof πΩ can be output to enable efficient verification of Ω

Protocol 3: Bicorn protocol with zero-knowledge proofs of knowledge of exponent
(ZK-PoKE)

27



Bicorn-PC

Precommit
Each participant i runs:

1. Sample αi
$←− B

2. Compute ci ← gαi

3. Publish di = H(ci)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T0

Commit
Each participant i runs:

1. Publish ci

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T1

Reveal
Each participant i runs:

1. Publish αi

Finalize
input : di, c̃i, α̃i for i ∈ [1, n]
output : Ω

1. Verify that di = H(c̃i) for all i ∈ [1, n]
(a) If any di 6= H(c̃i) or c̃i was not published by T1, remove participant i

2. Verify that c̃i = gα̃i for all i ∈ [1, n]

(a) If so, output Ω =
∏
i∈[n]

hα̃i // optimistic case

3. Output Ω =

∏
i∈[n]

c̃i

2t

// pessimistic case

(a) Optionally, a proof πΩ can be output to enable efficient verification of Ω

Protocol 4: Bicorn protocol with precommitment round
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Bicorn-RX

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T0

Commit
Each participant i runs:

1. Sample αi
$←− B

2. Compute ci ← gαi

3. Publish ci

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . deadline T1

Reveal
Each participant i runs:

1. Publish αi

Finalize
input : ci, α̃i for i ∈ [1, n]
output : Ω

1. Compute b∗ = H (c1||c2|| . . . ||cn)
2. Verify that ci = gα̃i for all i ∈ [1, n]

(a) If so, output Ω =
∏
i∈[n]

(
hH(ci‖b∗)

)α̃i
// optimistic case

3. Output Ω =

∏
i∈[n]

c
H(ci‖b∗)
i

2t

// pessimistic case

(a) Optionally, a proof πΩ can be output to enable efficient verification of Ω

Protocol 5: Bicorn protocol with randomized exponents using a random oracle H
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