
Sieving for large twin smooth integers
using single solutions to Prouhet-Tarry-Escott

Knud Ahrens

Faculty of Computer Science and Mathematics
University of Passau, Germany
knud.ahrens@uni-passau.de

Abstract. In the isogeny-based track of post-quantum cryptography
the signature scheme SQISign relies on primes p such that p±1 is smooth.
In 2021 a new approach to find those numbers was discovered using solu-
tions to the Prouhet-Tarry-Escott (PTE) problem. With these solutions
one can sieve for smooth integers A and B with a difference of |A−B| = C
fixed by the solution. Then some 2A/C and 2B/C are smooth integers
hopefully enclosing a prime. They took many different PTE solutions
and combined them into a tree to process them more efficiently. But for
bigger numbers there are fewer promising PTE solutions so their ad-
vantage over the naive approach (checking a single solution at a time)
fades.
For a single PTE solution the search can be optimised for the corre-
sponding C and allows to only sieve those integers that are divisible by
C. In this work we investigate such optimisations and show a significant
speed-up compared to the naive approach.

Keywords: Isogeny-based cryptography · post-quantum cryptography
· twin smooth integers · Prouhet-Tarry-Escott problem · SQISign.

1 Introduction

Cryptography based on isogenies of elliptic curves produced some candidates for
post-quantum cryptography. One example from this field is the signature scheme
SQISign [8]. Isogenies of small degree can be evaluated efficiently using Vélu’s
formulae, while isogenies of composite degree can be decomposed into several iso-
genies of prime degree. Therefore many protocols based on supersingular curves
use fields of characteristic p such that either p + 1 or p − 1 is smooth, which
allows for efficient evaluation of isogenies of degree p + 1 or p − 1, respectively.
A smooth integer only has small prime factors below a fixed smoothness bound.

SQISign uses isogenies of degree p + 1 and p − 1, and to be able to eval-
uate them efficiently one needs both p + 1 and p − 1 to be smooth in which
case p is called a twin smooth prime. There are approaches to find such primes
using the extended Euclidean algorithm or polynomials of the form xn − 1,
but in 2021 Costello, Meyer and Naehrig [6] found a new way using solutions
to the Prouhet-Tarry-Escott (PTE) problem and produced integers with lower

smoothness bounds. They used several PTE solutions at once and optimised
for a setting with many solutions. We will only use a single PTE solution at a
time and customise the sieve accordingly. This is advantageous when only a few
suitable solutions are available.

The rest of this paper is structured as follows. First we summarise the main
idea of Costello, Meyer and Naehrig [6]. Then we motivate our optimisation for a
single solution and show how it can be done theoretically. Next we discuss some
caveats for implementation and compare our experimental results to the naive
and the multi-solution tree approach. A Sage as well as a C implementation
are available at https://git.fim.uni-passau.de/ahrens/twin-smooth-integers. The
experimental results are then backed up with an approximation and a bound.
Finally there is a short conclusion including some questions for future work.

2 Sieving with a PTE solution

In this section we shortly present the Prouhet-Tarry-Escott (PTE) problem and
how [6] used it to find twin smooth integers.

2.1 The Prouhet-Tarry-Escott problem

The Prouhet-Tarry-Escott problem of degree1 n and integer k is a set of equa-
tions

aj1 + · · ·+ ajn = bj1 + · · ·+ bjn with {a1, . . . , an} ∩ {b1, . . . , bn} = ∅

for 1 ≤ j ≤ k and ai, bi ∈ Z. A solution A = {a1, . . . , an}, B = {b1, . . . , bn} with
k = n−1 is called an ideal solution. There are several known solutions and even
some parametric solutions, but for n = 11 and n ≥ 13 no ideal solutions are
known [4].

A statement from Borwein and Ingalls [2] using Newton’s identities tells us
that for each ideal solution the difference C = |a(x)− b(x)| of the corresponding
polynomials

a(x) =

n∏
i=1

(x− ai), b(x) =

n∏
i=1

(x− bi) (1)

is an integer constant. Therefore a(x)/C and b(x)/C give us consecutive inte-
gers every time a(x) (or b(x) equivalently) evaluates to a multiple of C and we
hope that 2a(x)/C and 2b(x)/C are smooth with a prime in between. Since the
polynomials already have n factors, chances are high that the evaluations are
smooth. Ideal solutions with small differences C seem to produce a higher rate
of twin smooth integers, but their number is limited (see [6, table 2]) since the
C in parametric solutions often increases fast.

1 Since we will mostly deal with ideal solutions and the polynomials in equation (1),
we deviate from the usual notation of size n and degree k.

The paper [6, table 3] shows heuristically that this approach has a higher
chance of success for a given smoothness bound or rather allows for a lower
smoothness bound for a given probability to find twin smooth integers compared
to previous attempts, e.g. using the extended Euclidean algorithm.2

2.2 The sieve

As we have just seen, we can use solutions of the PTE problem to find twin
smooth integers. So we need an ideal PTE solution and then for different ℓ ∈ Z
check if a(ℓ) and b(ℓ) are smooth and if a(ℓ) ≡ b(ℓ) ≡ 0 mod C. For ease of
notation an ideal PTE solution will only be called a solution in the following.

Some solutions can be found in a database by Shuwen [10] and there are
constructions to find new ones. Costello, Meyer and Naehrig [6, section 3.2]
mention some constructions and give several solutions in their paper and on
GitHub.

To check smoothness we basically use a sieve of Eratosthenes on the interval
I ⊂ Z with different powers of p instead of different primes. We start by initial-
ising an array with (i, 1) for i in I. For all primes p below the smoothness bound
we check if i is divisible by p and if so multiply the second entry of the tuple
with p. Then for all multiples of p2 the second entry is multiplied by p and so
on until pe is bigger than the numbers in the interval. Finally when this is done
for all powers of all p, then the elements where both entries are identical are the
smooth numbers.

The smoothness of a(ℓ) and b(ℓ) is then tested using their factors. Let
{a1, . . . , an, b1, . . . , bn} be the set of roots of a(x) and b(x). Note that these
roots are small compared to ℓ. Then for each integer ℓ in the search interval I
we look up the values {ℓ − a1, . . . , ℓ − an, ℓ − b1, . . . , ℓ − bn}. If all of them are
smooth, then surely their product is smooth and we have two smooth integers
a(ℓ) and b(ℓ) that differ by C. For those smooth integers we finally compute
a(ℓ) mod C (or b(ℓ) mod C) to see if a(ℓ)/C and b(ℓ)/C are integers. If they are,
we have found twin smooth integers and can check if a(ℓ)/C+b(ℓ)/C is a prime.

If there are multiple PTE solutions of the same degree n one may speed up
the search as follows. All PTE solutions can be normalised in a way such that 0
is always in the zero set of the corresponding polynomials and from now on all
solutions are taken to be normalised. So if ℓ− 0 is not smooth, then no solution
will give smooth integers a(ℓ), b(ℓ). Similarly if there are different (normalised)
solutions their corresponding polynomials probably share some zeros. If ℓ− r is
not smooth, we can skip all solutions that share this zero r for this ℓ. Based on
this Costello, Meyer and Naehrig [6] presented a tree structure based on a hitting
set problem with the most common zeros as vertices to test many solutions at
the same time with the minimal number of look-ups in the list produced by
the sieve. When smooth integers a(ℓ), b(ℓ) are found, the residues modulo their
corresponding C are calculated to see if they give twin smooth integers.

2 There has been a recent publication [3] by the same authors with a different ap-
proach.

For n = 6 there are 2438 solutions with C ≤ 250, so if all of them can be
checked by only a few look-ups this is a significant speed-up compared to the
naive approach testing every solution separately. More on their algorithm and a
detailed example can be found in their paper [6] alongside a link to their code
on GitHub.

3 Optimising for single PTE solutions

Since different solutions have different C, the tree approach forbids to do the
modulo calculation first, but for a single solution this is possible. Costello, Meyer
and Naehrig [6] left it as an open question to explore this path. In this section
we will see why this is relevant and how it can be done efficiently. We will also
discuss implementations and some experimental results.

3.1 Motivation and parameters

For primes in the range of 256 bit n = 6 is the sweet spot, but solutions of
higher degree n allow for much lower smoothness bounds for larger primes at
a given probability to find twin smooth integers [6, table 3]. Or put the other
way: when we need a twin smooth integer in the 512 bit range with smoothness
bound below 225 we probably need to test 250 values before we get a hit when
using n = 6 compared to only 230 for n = 8. According to [6, table 3] a search
for twin smooth primes in the range of 512 bits and beyond therefore favours
solutions of higher degree and [6, table 2] shows that only a few solutions with
high degree n and small C are known. Therefore checking them individually is
feasible.

The idea is to calculate the set R of all elements r in [0, C) that solve a(r) ≡
b(r) ≡ 0 mod C. Obviously a(r + C) ≡ a(r) mod C and thus all relevant ℓ ∈ I,
i.e. those solving a(ℓ) ≡ b(ℓ) ≡ 0 mod C, are of the form ℓ = r + kC. Hence,
instead of looking at all ℓ in the search interval I it is sufficient to look at
{r + kC | r ∈ R, k ∈ Z} ∩ I. This subset has size about (|R|/C) · |I| and can be
significantly smaller than I. Table 2 and the heuristic in section 4.3 indicate that
this fraction decreases for larger C. Another improvement is that the modulo
computation only needs to be done once per PTE solution and not for every
smooth integer a(ℓ) (or b(ℓ)) anew.

To see more clearly why we want a larger degree n and a small difference
C (which is specific to every PTE solution) we have to understand how they
influence our search. On the one hand a higher number n of factors improves
the chances of a(ℓ) and b(ℓ) being smooth, on the other hand it decreases the
number of possible values for ℓ. We can approximate p with

p =
a(ℓ) + b(ℓ)

C
≈ 2a(ℓ)

C
≈ 2b(ℓ)

C
≈ 2

ℓn

C
.

For the number of bits log2 p in the range of x ± δ we get log2 ℓ roughly in the
range (x±δ−1+log2 C)/n. We see that C does not really change the size of the

search interval, it is merely a shift, but higher values for n decrease the search
space. This is why some entries in [6, table 3] are greyed out, but this is more
relevant when searching for smaller primes.

As we mentioned above, solutions with larger C for a fixed n in general have
a smaller fraction |R|/C of ℓ ∈ I that satisfy a(ℓ) ≡ b(ℓ) ≡ 0 mod C. This makes
our approach faster compared to the naive one, but not more efficient in absolute
terms. A smaller density |R|/C makes it less likely to find a twin smooth integer,
or a twin smooth prime accordingly, in a given interval I. Increasing I could help
but it has two drawbacks. Firstly calculating smoothness (for more elements) is
costly and secondly the interval could be restricted such that enlargement is not
possible. Thus PTE solutions with n > 6 and small C have a better chance of
finding twin smooth primes of size at least 512 bit.

3.2 Computing congruences

As we have seen, we need to find the set of relevant residues R = {r ∈ Z/CZ |
a(r) ≡ b(r) ≡ 0}. Calculating a(r) mod C (or b(r)) for all 0 ≤ r < C becomes too
slow quite soon. Using the Chinese Remainder Theorem can improve this, but it
also has a downside: the resulting residue classes modulo C have no predictable
order. If we write them in a list we can order it afterwards, but the list can still
get long and this pre-computation might take some time.

As long as C is smaller than |I| one could calculate them separately on the
fly and check one set {r + kC | k ∈ Z} ∩ I at a time. But if we can efficiently
use a look-up table of size |I| for the smoothness, then we can also efficiently
use a table of size |R| ≤ C ≤ |I| for the relevant residue classes. Moreover, we
can pre-compute R and then use it for several intervals, whereas it has to be
computed every time when we do it on the fly and we still need the list of residue
classes modulo all prime power factors of C.

As soon as C and especially when |R| becomes greater than |I|, the advantage
over the naive approach disappears when we still consider all r ∈ R. This would
be the case if we calculated the CRT on the fly. If we have an ordered list
r1 < · · · < r|R| of residues, we can find the smallest representative in the interval
(for example using nested intervals) and then take the next one until we leave the
interval. This way we still only need to check about |R|/C of the whole interval.
Here we need to keep in mind that we could wrap around from r|R| + kC to
r1 + (k + 1)C. To handle this in the implementation we can calculate a number
of relevant steps s such that the difference ri+s − ri (or ri+s−|R| +C − ri in the
case of a wrap-around) is greater than the size of I for all initial elements ri ∈ R.
Then we know in advance if we have to wrap around.

The evaluations a(r), b(r) can become large. Since we know the factorisation
it is useful to compute the individual factors r−ai (or r− bi) and multiply them
reducing modulo C after every step. If we allow C to have 60 bits, then the
intermediate steps can have more than 64 bits. Therefore we need to introduce
128 bit variables in the implementation.

3.3 Sieving for smoothness is still optimal

When using only one solution, we have seen that it suffices to check smoothness
for a(ℓ), b(ℓ) with ℓ ∈ {r + kC | r ∈ R, k ∈ Z} ∩ I. Let Z be the set of roots of
the polynomials a, b. Since we verify smoothness of a(ℓ) by looking at the factors
ℓ− ai, we have to calculate the smoothness of {r + kC − zi | r ∈ R, zi ∈ Z, k ∈
Z} ∩ I. Now there are several options to consider.

There is an algorithm by Bernstein [1] to test smoothness for an arbitrary set.
It computes the product P of all primes below the smoothness bound and then
basically calculates repeated squares of this product modulo ℓ up to P 2e mod ℓ
for each element ℓ of the set where e is the smallest integer such that 22

e ≥ ℓ.
This is only faster than the sieve for small sets and sets of small numbers. For
elements of size 264 one needs to compute up to 6 squares modulo ℓ per element
in the set. So the running time of this test depends on the size of the elements
and the size of the set.

The sieve has a lower bound on the running time that depends solely on
the smoothness bound, because it runs through all relevant powers of all primes
below the bound, so there is a fixed number of loops that have to be executed
at least once. But above this threshold it is linear in the size of the interval and
does not depend on the size of the elements. Since the elements we are interested
in are usually significantly larger than the smoothness bound, we are above this
threshold. The only operations are additions and some multiplications, which
are easy and fast to compute.

The logarithm allows us to replace multiplications with additions and taking
only integer approximations makes the logarithm efficient. The loop for pj has
I/pj iterations. Therefore the smallest pj have the biggest computational im-
pact, while contributing only p or log p to the product or sum, respectively. For
example we have 219 multiplications for 2 in an interval of size 220. If we can
tolerate a non-smooth factor, then we can safely omit a factor of 2 and write it
off as non-smooth part. Since the SQISign protocol tolerates such a non-smooth
factor, the modification to use rounded logarithms and to ignore the smallest
primes or at least their small powers is a good option to speed up this part of
the calculations.

We could also use a polynomial sieve to check the set f(I) instead of an
interval I for any polynomial f ∈ Z[X]. Let r ∈ R, k be an integer and zi ∈ Z as
above, then we can try to test only the relevant elements r + kC − zi ∈ I using
the polynomials in Z[X] defined by fr,zi(x) = Cx+ r− zi. The problem here is,
that the polynomial sieve requires us to solve fr,zi(x) = 0 mod q for every prime
power q, i.e. in every loop. And on top we would need 2n|R| different sieves (one
for every polynomial) or use a(Cx+ r) and b(Cx+ r) instead of fr,zi . But then
we would still have 2|R| sieves and had to solve a polynomial equation of degree
n in a ring with zero divisors in every loop. This is clearly slower than sieving
everything with a regular sieve. More information on sieving can be found in [7].

So we will keep using the standard or the logarithmic sieve to check every
element in the interval for smoothness before applying either the tree, the naive
or our new approach.

3.4 Experimental results

The running times of Sage and C implementations for different PTE solutions
are given in the appendix. The target size of the integers a(ℓ)/C and b(ℓ)/C is
2240 to 2256 for a 256 bit prime, 2370 to 2384 for a 384 bit prime and 2500 to
2512 for a 512 bit prime. The smoothness bounds are taken from [6, table 3]
for a probability of 2−30. The start values depend on the degree n of the PTE
solution, the size of C and the target size (cf. section 3.1). The search interval I
is separated into chunks of size 220 for the sieving. The solutions used for n = 6
all have double roots and the last two only coincidently have the same C value.

For an interval of fixed size the naive algorithm has similar running times for
different solutions and seems to depend more on the number of smooth integers
in the interval. This number is higher for larger smoothness bounds and smaller
start values. This is due to the fact that for every smooth ℓ the other factors
ℓ − ai and ℓ − bi of a(ℓ) and b(ℓ), respectively, have to be checked until one of
them is not smooth or two smooth integers are found.

The optimised algorithm depends heavily on the ratio of relevant residues
|R|/C and there also seems to be a dependency on the number of smooth num-
bers in the interval. It is always significantly faster than the naive approach and
probably even faster than the tree approach for higher degrees n.

Due to memory restrictions for larger R not all PTE solutions for n ≥ 7 have
been tested. For n = 7 we need less than 1/20 of the time of the naive approach
and only 10 solutions3 with C ≤ 60 are known [6, table 2]. So this approach
is definitively faster. For n ≥ 9 there are only one or two solutions with small
C, so the tree is at most twice as fast as the naive algorithm. Judging from
the heuristic in section 4 and the other results, the optimised approach will be
more than twice as fast as the naive approach and therefore faster than the tree
approach.

4 Roots mod pe

In this section we will give a formula to compute the (maximal) number of
roots of a given polynomial modulo prime powers. Let p be a prime and f(x) =∏n

i=1(x− zi) a polynomial with integer roots zi and degree n.
Since all solutions of f(x) ≡ 0 mod pe also have to solve this equation modulo

p, we only need to look at integers that are congruent to one of the roots zi. Let
S = {

∑
j∈N>0

djp
j | dj ∈ Z, 0 ≤ dj < p}, then z+S is the set of all integers that

are congruent to z modulo p. The p-adic valuation νp gives the highest power of
p that divides the argument and νp(0) is infinite by definition.

4.1 For one root

First we will only look at one fixed root z of f . Let me(z) be the number of roots
zi of f that are congruent to z modulo pe. Then 1 ≤ me(z) ≤ n and note that

3 We found two solutions that were not included in [6]. One was found in [10] and the
other is a parametric solution from [5] for m = −3. They are listed online.

m0(z) = n for all roots of f . Recall that νp(z − z) = ∞ and let m∞(z) be the
number of roots that are equal to z. Since we fixed z for this subsection we will
write just me and use vi = νp(z−zi) as shorthand. Without loss of generality let
z = z1 and vi ≥ vj for 1 ≤ i ≤ j ≤ n. For i > m∞ we define δi via pviδi = z− zi,
then νp(δi) = 0.

When we look at the possible solutions x = z + s to f(x) ≡ 0 mod pe above
z with s ∈ S we get

f(z + s) =

n∏
i=1

(
z − zi + s

)
=

m∞∏
i=1

(
0 + s)

m0∏
i=m∞+1

(
pviδi + s

)
= pm1

m∞∏
i=1

(
0 +

∑
j≥1

djp
j−1

) m2∏
i=m∞+1

(
pvi−1δi +

∑
j≥1

djp
j−1

)
·

m1∏
i=m2+1

(
δi +

∑
j≥1

djp
j−1

) m0∏
i=m1+1

(
δi + s

)
≡ pm1

m2∏
i=1

(
d1
) m1∏
i=m2+1

(
δi + d1

) m0∏
i=m1+1

(
δi
)

mod pm1+1.

So for f(z + s) to be zero modulo pm1+1, we need d1 to be either 0 or d1 ≡
−δi mod p for m2 < i ≤ m1. Then z + d1p ≡ z − z + zi = zi mod p2 for
d1 ̸= 0 and we will treat elements z + s with d1 ≡ −δi mod p as belonging to
the corresponding zi. That allows us to set d1 = 0 for all solutions s ∈ S to
f(z + s) ≡ 0 mod pe with e > m1.

For an inductive argument assume we can set d1, . . . , dk−1 to zero for all

solutions above z modulo pe with e >
∑k−1

i=1 mi. Then s ∈ S is of the form
s =

∑
j≥k djp

j and

f(z + s) =

n∏
i=1

(
z − zi + s

)
=

m∞∏
i=1

(
0 + s)

m0∏
i=m∞+1

(
pviδi + s

)
= pkmk

m∞∏
i=1

(
0 +

∑
j≥k

djp
j−k)

mk∏
i=m∞+1

(
pvi−kδi +

∑
j≥k

djp
j−k

)
·

k∏
ℓ=1

p(k−ℓ)(mk−ℓ−mk−ℓ+1)

mk−ℓ∏
i=mk−ℓ+1+1

(
δi +

∑
j≥k

djp
j−k+ℓ

)
≡ pM

mk+1∏
i=1

(
dk

) mk∏
i=mk+1+1

(
δi + dk

) m0∏
i=mk+1

(
δi
)

mod pM+1

where M = kmk +
∑k

ℓ=1(k − ℓ)(mk−ℓ −mk−ℓ+1) =
∑k

ℓ=1 mℓ. The above only
vanishes modulo pM+1 for dk = 0 or dk ≡ −δi mod p with mk+1 < i ≤ mk.
Therefore z + dkp

k ≡ z − z + zi = zi mod pk+1 for dk ̸= 0 and we will again
treat elements z + s with dk ≡ −δi mod p as belonging to the corresponding
zi. As before this allows us to set dk to zero for all solutions modulo pe with
e > M =

∑k
ℓ=1 mℓ. So by induction we can see that this is true for all k ∈ N.

4.2 Number of solutions

In this subsection we will use the results of the previous subsection to calculate
the number of solutions x ∈ Z/peZ of f(x) = 0.

For all z+s ∈ Z/peZ we have s of the form s =
∑e−1

i=1 dip
i and since 0 ≤ di < p

we can have at most pe−1 solutions above z modulo pe. For 1 ≤ e ≤ m1(z) we
found that f(z + s) is always zero modulo pe. Therefore all di are arbitrary and
there are pe−1 solutions above z. Starting from e = m1(z) + 1 we set d1 to zero

and by induction we can set di to zero for all e >
∑i

ℓ=1 mℓ(z). This shows that

there are pe−j solutions above z modulo pe for
∑j−1

ℓ=1 mℓ(z) < e ≤
∑j

ℓ=1 mℓ(z).
If z is a single root then there exists an efin = max{e ∈ N | me(z) > 1}. Let

M =
∑efin

ℓ=1 mℓ(z) then there are pM−efin solutions above z modulo pM . Since
mi(z) = 1 for i > efin we get that there are p(M+k)−(efin+k) = pM−efin solutions
modulo pM+k for all k ∈ N. This shows that there is an upper bound on the
number of solutions in this case. Remark that M and efin depend on z and that
we can compute M − efin directly as

M − efin =

efin∑
ℓ=1

mℓ(z)− efin =

efin∑
ℓ=1

ℓ(mℓ −mℓ+1) =
∑
zi ̸=z

νp(z − zi).

If z is not a single root there is no such bound. Since mℓ(z) ≤ n the most
roots above z exist if all zi are equal, so for mℓ(z) = n for all ℓ ∈ N. Then∑j

ℓ=1 mℓ(z) = nj and the number of solutions above z modulo pe is

pe−⌈ e
n ⌉ ≤ pe

n−1
n .

Up to now we only considered one fixed root z. If we want the total number
of solutions of f(x) = 0 in Z/peZ we have to be a little careful. For νp(zi −
zj) = k we only distinguished between solutions above zi and solutions above zj
modulo pe for e >

∑k
ℓ=1 mℓ(zi) =

∑k
ℓ=1 mℓ(zj) when we set dk to zero. So for∑k−1

ℓ=1 mℓ(zi) < e ≤
∑k

ℓ=1 mℓ(zi) we say the root zi only contributes pe−k/mk(zi)
solutions modulo pe and then we can just sum over all i ∈ {1, . . . , n}. The total
number of solutions modulo pe is therefore

n∑
i=1

pe−ki

mki
(zi)

for ki such that
∑ki−1

ℓ=1 mℓ(zi) < e ≤
∑ki

ℓ=1 mℓ(zi).
So modulo p there can be at most n solutions. This requires zi ̸≡ zj mod p

for i ̸= j. But the highest possible number of solutions above a given z is pe
n−1
n

and this requires all the zi to be equal. Therefore the total number of solutions

to f(x) ≡ 0 mod pe is strictly smaller than npe
n−1
n .

4.3 Bounding |R|

Since |R| is the number of solutions to a(x) ≡ 0 mod C (or b(x) ≡ 0 equivalently)
it is sufficient to find a bound on the number of solutions per prime power

factor of C. By [9] we know that C has log logC different prime factors, at least
asymptotically. Let C =

∏t
i=1 p

ki
i be the prime factorisation of C. Then for each

factor pki
i there are less than np

ki
n−1
n

i solutions and using the Chinese Remainder
Theorem the bound for the number of solutions modulo C is just the product

|R| <
t∏

i=1

(
np

ki
n−1
n

i

)
= nt

(t∏
i=1

pki
i

)n−1
n

= ntC
n−1
n ≈ nlog logCC

n−1
n . (2)

The ratio is therefore bounded by

|R|
C

≤ ntC
n−1
n

C
= ntC− 1

n ≈ nlog logC

n
√
C

−→
C→∞

0.

In practice these values are significantly smaller. For PTE solutions with
n = 7 we find that roughly half the prime power factors of C are square-free and

therefore admit at most n = 7 solutions in contrast to np
n−1
n . For these PTE

solutions the bound (2) is closer to |R|2 than to |R|. More empirical values can
be found in table 2.

5 Conclusion

We have seen that the tree approach presented by Costello, Meyer and Naehrig
[6] is well suited to find twin smooth integers with ideal PTE solutions of degree
n = 6. But for primes in the range of 512 bit and above solutions of higher degree
n ≥ 7 are favourable. Since there are fewer solutions of higher degree and with
small C, this new approach to only look at the relevant residues can be faster.
This is for example the case for n = 7. Our benchmarks and the bounds on |R|
and |R|/C led to believe that this approach is also faster for n ≥ 9. The formula
for the number of zeros of a given polynomial modulo a prime power might be
of independent interest.

Computing benchmarks for n ≥ 8 and doing a proper search over a full
interval and not only for single chunks of size 220 is left for future work. For such
a large search parallelising the search on different chunks might be beneficial.
Regarding implementations this may require adding integers larger than 128 bit
in the C implementation (for log2 C ≥ 64).

One major aspect of this procedure is the sieve of Eratosthenes and an im-
provement of this initial step would speed up the whole search. When focusing on
a single PTE solution, it might be preferable to use a different approach to only
check the relevant residues for smoothness and not every integer in the interval.
Unfortunately no such approach could be found in this paper. As mentioned in
section 3.3, this sieving process can be modified when searching for primes for
SQISign.

Another interesting field are the PTE solutions themselves. On the one hand
there is still the question whether there exist ideal solutions for n = 11 and
n ≥ 13. On the other hand there is the problem of finding solutions with small C.

Even when systematic ways to construct ideal solutions are known, they produce
large differences C most of the time. Investigating this area could especially
facilitate the search for larger numbers.

Acknowledgements

I would like to thank a few people, who supported me during the work on this
paper: Firstly Jens Zumbrägel for his general advice and helpful comments on
my work, secondly John Abbott for our discussions about implementation and
finally Michael Naehrig for making the PTE solutions for n = 7 and n = 8
available.

References

1. Bernstein, D.J.: How to find Smooth Parts of Integers (2004),
https://cr.yp.to/factorization/smoothparts-20040510.pdf

2. Borwein, P., Ingalls, C.: The Prouhet-Tarry-Escott problem revisited. Enseign.
Math. (2) 40(1-2), 3–27 (1994)

3. Bruno, G., Santos, M.C.R., Costello, C., Eriksen, J.K., Naehrig, M.,
Meyer, M., Sterner, B.: Cryptographic smooth neighbors. Cryptology
ePrint Archive, Paper 2022/1439 (2022), https://eprint.iacr.org/2022/1439,
https://eprint.iacr.org/2022/1439

4. Caley, T.: The Prouhet-Tarry-Escott problem. PhD thesis, University of
Waterloo (2012), https://uwspace.uwaterloo.ca/bitstream/handle/10012/7205/
Caley Timothy.pdf

5. Chernick, J.: Ideal Solutions of the Tarry-Escott Problem. Amer. Math. Monthly
44(10), 626–633 (1937), http://doi.org/10.2307/2301481

6. Costello, C., Meyer, M., Naehrig, M.: Sieving for Twin Smooth Integers with So-
lutions to the Prouhet-Tarry-Escott Problem. In: Canteaut, A., Standaert, F.X.
(eds.) Advances in Cryptology – EUROCRYPT 2021. pp. 272–301. Springer Inter-
national Publishing, Cham (2021)

7. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer, 2nd edn. (2005), https://doi.org/10.1007/0-387-28979-8

8. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
Post-quantum Signatures from Quaternions and Isogenies. In: Moriai, S., Wang,
H. (eds.) Advances in Cryptology – ASIACRYPT 2020. pp. 64–93. Springer Inter-
national Publishing, Cham (2020)

9. Hardy, G.H., Ramanujan, S.: The normal number of prime factors of a number n.
Quart. J. 48, 76–92 (1917)

10. Shuwen, C.: The Prouhet-Tarry-Escott Problem. Equal Sums of Like Powers
(2022), http://eslpower.org/TarryPrb.htm

A Running times

n C |R| target size bound start
running times (ms)
Sage C

naive new naive new

6 14,400 5,400

256 16
42 401 279 2.89 1.40
43 363 251 2.71 1.32
44 359 248 2.56 1.26

384 24
64 382 252 2.89 1.35
65 376 249 2.71 1.29
66 375 247 2.58 1.25

512 28
85 353 238 2.08 1.09
86 358 247 2.03 1.06
87 352 244 1.98 1.05

6 705,600 113,400

256 16
43 310 130 2.71 0.81
44 304 130 2.55 0.80
45 297 131 2.41 0.83

384 24
65 364 137 2.68 0.85
66 361 136 2.53 0.83
67 356 135 2.47 0.79

512 28
86 342 130 2.03 0.69
87 342 128 1.97 0.63
88 340 127 1.94 0.63

6 2,822,400 226,800

256 16
43 314 73.2 2.71 0.38
44 304 72.4 2.55 0.36
45 297 71.3 2.41 0.35

384 24
65 368 75.5 2.68 0.52
66 359 74.5 2.55 0.35
67 356 74.6 2.49 0.78

512 28
87 339 70.5 1.98 0.31
88 342 71.0 1.93 0.30
89 342 70.5 1.90 0.30

6 85,377,600 3,742,200

256 16
44 303 42.8 2.56 0.21
45 297 42.1 2.41 0.20
46 291 42.3 2.28 0.19

384 24
66 362 43.3 2.57 0.20
67 359 42.7 2.48 0.19
68 351 42.1 2.38 0.19

512 28
87 344 40.8 1.98 0.19
88 340 40.6 1.93 0.17
89 334 40.7 1.89 0.18

6 85,377,600 3,742,200

256 16
44 306 42.1 2.55 0.21
45 300 41.9 2.41 0.21
46 295 41.7 2.28 0.20

384 24
66 361 42.3 2.59 0.21
67 361 42.0 2.52 0.20
68 359 42.0 2.36 0.19

512 28
87 345 40.2 1.98 0.19
88 345 40.4 1.93 0.18
89 344 40.1 1.90 0.19

Table 1. Running times of the different algorithms for a search interval of size 220

starting at the start value. Target size, smoothness bound and start are all in log2.
More detail in section 3.4.

PTE solution target smooth.
start

running time (ms)
parameters sizes size bound naive new

C 5,145,940,800 C 33 bit 256 17 40 2.436 0.089
|R| 101,879,232 |R| 27 bit 384 25 60 2.056 0.073
ratio 1.98 · 10−2 R 0.8 GB 512 27 80 1.024 0.043

C 13,967,553,600 C 34 bit 256 17 40 2.556 0.075
|R| 238,592,172 |R| 28 bit 384 25 60 2.071 0.082
ratio 1.71 · 10−2 R 1.8 GB 512 27 80 1.024 0.043

C 293,318,625,600 C 39 bit 256 17 40 2.265 0.033
|R| 1,845,811,968 |R| 31 bit 384 25 60 0.837 0.022
ratio 6.29 · 10−3 R 14 GB 512 27 80 0.691 0.021

C 1,037,896,675,200 C 40 bit 256 17 40 2.553 0.020
|R| 3,017,192,640 |R| 32 bit 384 25 60 0.865 0.011
ratio 2.91 · 10−3 R 22 GB 512 27 80 0.717 0.010

C 5,771,633,313,600 C 43 bit 256 17 40 2.807 0.007
|R| 1,670,145,204 |R| 31 bit 384 25 60 0.866 0.005
ratio 2.89 · 10−4 R 12 GB 512 27 80 0.714 0.005

C 1,440,534,083,788,800 C 51 bit 256 17 40
|R| 4,753,277,448,192 |R| 43 bit 384 25 60
ratio 3.30 · 10−3 R 35 TB 512 27 80

C 11,471,328,290,822,400 C 54 bit 256 17 40
|R| 176,264,555,376 |R| 38 bit 384 25 60
ratio 1.54 · 10−5 R 1.3 TB 512 27 80

C 15,256,916,548,473,600 C 54 bit 256 17 40
|R| 113,569,873,872 |R| 37 bit 384 25 60
ratio 7.44 · 10−6 R 0.8 TB 512 27 80

C 106,911,286,818,336,000 C 57 bit 256 17 40
|R| 1,307,456,866,800 |R| 41 bit 384 25 60
ratio 1.22 · 10−5 R 10 TB 512 27 80

C 314,073,647,406,288,000 C 59 bit 256 17 40
|R| 457,609,903,380 |R| 39 bit 384 25 60
ratio 1.46 · 10−6 R 3.3 TB 512 27 80

Table 2. Running times of the different algorithms implemented in C for a search
interval of size 220 starting at the start value. Target size, smoothness bound and start
are all in log2. All PTE solutions have n = 7. More detail in section 3.4.

