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Abstract. Deniable Authentication is a highly desirable property for
secure messaging protocols: it allows a sender Alice to authentically
transmit messages to a designated receiver Bob in such a way that only
Bob gets convinced that Alice indeed sent these messages. In particular,
it guarantees that even if Bob tries to convince a (non-designated) party
Judy that Alice sent some message, and even if Bob gives Judy his own
secret key, Judy will not be convinced: as far as Judy knows, Bob could
be making it all up!

In this paper we study Deniable Authentication in the setting where
Judy can additionally obtain Alice’s secret key. Informally, we want that
knowledge of Alice’s secret key does not help Judy in learning whether
Alice sent any messages, even if Bob does not have Alice’s secret key and
even if Bob cooperates with Judy by giving her his own secret key. This
stronger flavor of Deniable Authentication was not considered before and
is particularly relevant for Off-The-Record Group Messaging as it gives
users stronger deniability guarantees.

Our main contribution is a scalable “MDRS-PKE” (Multi-Designated Re-
ceiver Signed Public Key Encryption) scheme—a technical formalization
of Deniable Authentication that is particularly useful for secure messaging
for its confidentiality guarantees—that provides this stronger deniability
guarantee. At its core lie new MDVS (Multi-Designated Verifier Sig-
nature) and PKEBC (Public Key Encryption for Broadcast) scheme
constructions: our MDVS is not only secure with respect to the new deni-
ability notions, but it is also the first to be tightly secure under standard
assumptions; our PKEBC-—which is also of independent interest—is the
first with ciphertext sizes and encryption and decryption times that grow
only linearly in the number of receivers. This is a significant improvement
upon the construction given by Maurer et al. (EUROCRYPT ’22), where
ciphertext sizes and encryption and decryption times are quadratic in
the number of receivers.

* This is the full version of article 5], @IACR 2023, https://doi.org/10.1007/978-3-
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Erratum

As noted by Maurer et al. in [20], it is not clear how to prove the off-the-record
security of the MDRS-PKE construction given in [21]. Fortunately, also in [20],
Maurer et al. show how to fix their construction so all security proofs, including
off-the-record, go through. In an earlier version of this paper we considered the
original MDRS-PKE construction given by Maurer el al. in [21], and claimed
that the same security proofs with minor adaptations would work for the setting
considered in this paper. While for the most part this is still the case, unfortunately
for (IND + IK)-CCA-2293P security the arguments given in [20] do not seem to
apply for the setting we consider in this paper (where the adversary is given access
to the secret key of honest senders). To fix this issue, in this new (full) version we
introduce a new security notion for MDVS schemes—Message-Bound Validity—
with which we can prove the security of the (modified) MDRS-PKE construction
from [20] in the new setting considered in this paper. We also prove that our
MDVS construction satisfies this new Message-Bound Validity notion.

While these are the main changes in this new full-version, we made other
smaller fixes.



1 Introduction

Motivation. More than 3 billion people currently use messaging appsE| Naturally,
there is a demand for secure messaging which guarantees, e.g., the secrecy
of the transmitted contents, or the authenticity of senders. For point-to-point
connections, combining standard cryptographic building blocks (like digital
signature, public-key, and secret-key encryption schemes) may be sufficient.
However, in particular for group messaging (in which groups of users communicate
in a group chat), additional security properties are desirable. For instance, group
members may want to be sure that all members receive the same messages (a
property that, surprisingly, is not captured by traditional broadcast encryption
definitions [10]).

Another security property that is generally desirable in messaging is deniability.
Intuitively, it should be possible for a sender to deny having sent a message, or
for a receiver to deny having received a particular message. Achieving deniability
is even more challenging when considering that users may store copies of received
(or even sent) messages on their communication device.

Here, we focus on a relatively mild (but still technically quite challenging)
variant of deniability: “Off-The-Record” (OTR) messaging. Informally, with OTR
security, received ciphertexts can be simulated, in the sense that it is easy to
come up with ciphertexts for arbitrary messages that look as if they had been
sent by a particular sender. In this sense, OTR security guarantees that third
parties cannot be convinced of group-internal interactions. Of course, even OTR is
relatively difficult to achieve, and becomes even harder so in the group messaging
setting.

MDRS-PKE schemes. When translating desirable properties of such group
messaging protocols into suitable cryptographic primitives (with associated
properties), we end up with “Multi-Designated Receiver Signed Public Key
Encryption” (MDRS-PKE, [21]). Informally, these protocols function like signed
versions of broadcast encryption schemes with additional integrity properties
(that guarantee, e.g., that all receivers receive the same message). A little more
formally, MDRS-PKE schemes guarantee the following;:

Syntax: A sender can prepare a single broadcast ciphertext ¢ for a set R of
intended receivers. Any intended receiver in R can decrypt ¢ to retrieve the
identity pkg of the sender S, the encrypted message m, and the set R.

Consistency: Not even a maliciously created ¢ should decrypt to different
sender identities, messages, or receiver sets for different intended receivers.
Furthermore, if one receiver decrypts to (pkg,m,R), then all receivers in R
obtain the same (pkg,m,R).

Unforgeability: Nobody except S can produce a ciphertext that decrypts to
sender identity pkg for any receiver.

Anonymity: ¢ does not reveal the sender S or the set R of intended receivers
(only its size |R]).

3 https://www.businessofapps.com/data/messaging-app-market/



Confidentiality: ¢ does not reveal the encrypted message (only its length |m]|).

Off-The-Record: Plausible-looking ciphertexts ¢ can be simulated by any (sub-
set of) intended receivers of that ciphertext. Intuitively, this guarantees that
receivers cannot convince a third party of a received encrypted message.

MDRS-PKE is a complex primitive, and appears to require specific, case-tailored
primitives to realize it. For instance, the combination of a group of designated
receivers and the simulation properties required by OTR prevent the use of
ordinary designated-verifier signatures (or even MACs) [g].

Fortunately, [21] shows how to construct MDRS-PKE schemes from a com-
bination of suitable variants of signature and broadcast encryption schemes.
Specifically, they require the following:

— A type of signature scheme called “Multi-Designated Verifier Signature”
(MDVS [7/8,15]) with suitable consistency, unforgeability, and OTR properties.
(Here, “OTR” means that valid-looking signatures can be simulated by
designated receivers.) State-of-the-art MDVS constructions [§] exist from
algebraic assumptions (like the combination of Diffie-Hellman and Paillier-like
assumptions), and also from generic primitives (like the combination of non-
interactive key exchange (NIKE), non-interactive zero-knowledge (NIZK),
and a few other standard primitives).

— A type of broadcast encryption scheme called “Public-Key Encryption for
Broadcast” (PKEBC |[21]) that essentially has all the properties of an MDRS-
PKE scheme except for authenticity. PKEBC schemes can be instantiated
from a combination of public-key encryption, NIZKs, and commitments.

— Strongly Unforgeable (sSEUF-CMA) One-Time Digital Signature Scheme. Such
schemes can be instantiated from a multitude of standard assumptions.

The current situation. In summary, we do have tools that give meaningful security
and privacy guarantees for group messaging even in face of corruptions. The
current state of the art [8|21] leaves a few questions unanswered, however:

Limited deniability guarantees. The deniability (technically: OTR) guaran-
tees given by the combination of [8]/21] are limited to the case where the secret
keys of honest senders remain secret. In particular, simulated ciphertexts are
only proven to look plausible when the corresponding sender key is unknown.
However, current deniability notions do not provide any guarantees if an
honest sender is forced (or blackmailed) to give away its secret key, in which
case the sender might not be able to plausibly deny having sent a message.

Limited unforgeability guarantees. The MDVS constructions and analyses
from [8] show unforgeability only in a setting in which an adversary has no
verification oracle. (Intuitively, in such designated-verifier settings, signatures
are not publicly verifiable, and hence typically adversaries are given access
to an explicit verification oracle [18,/23].) This is undesirable, in particular
because a constructive modeling of MDVS schemes [19] requires such a



verification oracle. As a result, the resulting combined MDRS-PKE scheme
from [821] suffers from a similarly weak unforgeability guaranteeﬁ

Limited scalability. The combined MDRS-PKE construction of [8,[21] has
ciphertexts whose sizes are quadratic in the number of receivers. This is clearly
undesirable for large groups. Furthermore, while the generic transformation
of [21] itself is tightly secure, i.e., gives security guarantees that do not
incur a loss in the number of parties or ciphertexts, the underlying primitives
from [8}21] are not known to be. In particular, the (known) security guarantees
of the final scheme degrade in the number of ciphertexts and users.

Gaps in some proofs. Unfortunately, some of the proofs in [8] appear incom-
plete. (See |6, Appendix C] for details.)

Our contribution. In this work, we construct a MDRS-PKE scheme that

— enjoys strong deniability guarantees (i.e. a strong OTR notion that takes
into account leaked sender secret keys),

— likewise enjoys strong unforgeability properties (that take into account ad-
versaries with a verification oracle),

— is scalable, in the sense that ciphertext sizes, encryption and decryption times
are linear in the number of receivers, and we can prove it tightly secure based
on primitives for which tightly secure instantiations are known.

Like [21], our MDRS-PKE scheme is based upon suitable MDVS and PKEBC
schemes. In fact, we use the same generic MDRS-PKE construction as [21], but
for more secure and more efficient MDVS and PKEBC schemes (that we also
provide). In particular, we provide

— a conceptually simple MDVS scheme that achieves strong OTR and strong
unforgeability guarantees (as explained above),

— a PKEBC scheme for which ciphertext sizes, and both encryption and de-
cryption times only grow linearly with the number of receivers.

Both of these schemes can be proven tightly secure from primitives that have
tightly secure instantiations from standard computational assumptions. In par-
ticular, unlike [8], we avoid the use of non-interactive key exchange, a primitive
which is known to be difficult to prove tightly secure |2}|14].

2 Technical Overview

We now give an overview of the techniques used to construct our MDRS-PKE
scheme. As aforementioned, our scheme is tightly secure under adaptive corrup-
tions and satisfies the new (stronger) OTR notion considered in this paper. The

4 Tt should be noted that this shortcoming appears to have gone unnoticed. In particular,
[21] explicitly define and assume MDVS schemes that are unforgeable in the presence
of a verification oracle, while [8] simply do not prove this property about their
MDVS schemes. Technically speaking, this means the transformation of [21] cannot
be directly applied to the MDVS schemes from [8].



main building blocks of our construction are: 1. a new MDVS scheme construction
satisfying (the MDVS analogous of) the new OTR security notion which is tightly
secure under adaptive corruptions; and 2. a new PKEBC scheme construction
with linear-size ciphertexts, and linear-time encryption and decryption which is
also tightly secure under adaptive corruptions. By following (a straightforward
generalization of) the transformation given in [21] we then obtain the intended
MDRS-PKE scheme. It is worth noting that, since the MDRS-PKE construction
given in [21] uses the PKEBC scheme to encrypt a message whose size is already
linear in the number of receivers, it is not sufficient for the underlying PKEBC
scheme to have ciphertext sizes, encryption and decryption times that grow lin-
early with the number of receivers times the size of the message: it is necessary for
the PKEBC’s ciphertext sizes, encryption and decryption times to grow linearly
with the number of receivers plus the size of the message. This is exactly what
we achieve: when instantiated with our new MDVS and PKEBC constructions,
the MDRS-PKE construction given in [21] yields the first (MDRS-PKE) scheme
that satisfies the new stronger OTR notion, that has ciphertext size, encryption
and decryption times that grow linearly with the number of receivers, and that
is tightly secure under adaptive corruptions.

2.1 MDVS Construction

We now give an overview of our MDVS scheme construction. As a first step we
consider the case of a single verifier and show how to construct a Designated
Verifier Signature (DVS) scheme. This already conveys the main technical ideas
of our construction. Then we discuss how to generalize the DVS to the case of
multiple verifiers (MDVS), and, finally, we explain how to achieve tight security
under adaptive corruptions. The building blocks of all our (M)DVS constructions
are an IND-CPA secure PKE scheme, a One-Way Function (OWF) F and a
Simulation-Sound (SS) NIZK.

The DVS scheme. Our signature scheme is of the following form: the public
parameters pp consist of a public key pk of the PKE scheme, and a Common
Reference String crs of the NIZK argument system. The secret signing key
ssk is a pre-image xg of the OWF F and the signer’s public key spk is the
corresponding image (i.e. spk = ys = F(xg)). A verifier’s key-pair is similar,
except that it additionally includes a PKE key pair (pky,, sky): the verifier’s
secret key vsk consists of a pre-image xy of F together with the PKE secret
key sky; the verifier’s public key vpk are the corresponding public keys, i.e.
vpk = (pky,yv = F(zy)). To sign a message m (using ssk = zg, and vpk =
(pky, yv)), we first generate two ciphertexts, ¢ and ¢pp: ¢ encrypts the bit 1 under
the verifier’s public key pky, (the role of this will be clear soon); cpp encrypts the
tuple (m, 1, ssk) under the public key pk included in the public parameters pp.
Finally, we generate a NIZK proof 7 that binds the ciphertexts together: 7 proves
that both ¢y, and c are well-formed and encrypt the same bit b, and that if b =1
then ¢yp encrypts a pre-image (under F') of either yg or yy. The signature o then
consists of the tuple (cpp, ¢, 7). To verify a signature the receiver first verifies the



NIZK proof 7 and then decrypts ciphertext ¢ using its PKE secret key sky ; the
signature is valid if 7 is a valid NIZK proof and the decryption of ¢ is 1.

Simulating a signature works as follows: 1. for the case of a dishonest verifier,
to simulate a signature one proceeds just like an honest signer would to generate
a signature, the only difference being that cyp, instead of encrypting xg—the
pre-image of the signer’s public key—encrypts zy—the pre-image of the verifier’s
public key; 2. if the verifier is honest, one forges a signature by having ¢ be an
encryption of 0 under the verifier’s public PKE key pk;,, ¢y be an encryption
of the triple (m,0,0), and 7 be a NIZK proof. Note that, thanks to the NIZK
relation we consider, in both cases one can compute a valid NIZK proof 7: in
the first case this is possible because ¢y encrypts a pre-image of the verifier’s
secret key; for the latter case this is possible because ¢ is an encryption of 0.

To understand why the DVS scheme sketched above is unforgeable note first
that if both the sender and the verifier are honest, by the one-wayness of F
the adversary does not know a pre-image of neither F(xzg) nor F(zy). On a
high level the proof proceeds as follows: we begin by changing both the public
parameter’s crs and each signature’s NIZK proof by simulated ones. We, next,
further modify the signatures the adversary sees by making ¢y, be an encryption
of a “0” string—possible by the IND-CPA security of the underlying PKE scheme.
Note that at this point all the adversary sees is independent of both ssk = zg
and vsk = xvﬂ Now suppose the adversary manages to come up with a forgery
(c;p7 ¢*,m*) corresponding to some message m* whose signature it has never seen:
if the forgery is valid then on one hand ¢* is encryption of bit 1 and on the other
hand 7* is a valid NIZK proof; by (simulation) soundness this means that c;,
encrypts a pre-image of either yg or yy . However, at this point we can use the
PKE secret key corresponding to the public parameter’s public key to extract
the pre-image, contradicting the one-wayness of F.

Understanding why the scheme sketched above satisfies the (stronger) OTR
property is more involved (and refer the reader to the full proof of
for details). For simplicity, below we consider a weaker OTR notion—one where
the adversary is not given access to a signature verification oracle: 1. If the
verifier is dishonest the only differences between real and simulated signatures
are that in the first case cp, encrypts x5 and the NIZK proof 7 is generated
using xg as (part of the) witness, whereas in the latter case cpp encrypts xy and
7 is generated using xy . If an adversary were able to distinguish real signatures
from simulated ones then it would be either breaking the IND-CPA security of
the underlying PKE scheme, or the Zero-Knowledge security of the NIZK (or
both). 2. If the verifier is honest the differences between real signatures and
simulated ones are that in the first case ¢, encrypts xg, ¢ is an encryption of 1
and 7 is generated using xg, while in a simulated signature cy, encrypts a “0”
string, ¢ is an encryption of 0 and 7 is no longer generated using a pre-image
of neither yg nor yy. So, if an adversary were be able to distinguish real and
simulated signatures then it could break the IND-CPA security of the underlying

5 Here, independent is in the sense that all the adversary sees only depends on
ys = F(zs) and yv := F(xv), but not on any pre-image of ys or yy.



PKE scheme—since it could distinguish either the c;, or the ¢ ciphertexts—or
could break the Zero-Knowledge of the NIZK.

Generalizing for multiple verifiers. We now discuss how to extend the previous
construction to the case of multiple designated verifiers. The main difference
is that we additionally need to guarantee consistency—meaning that either all
honest verifiers accept a signature, or they all reject.

Signatures in our MDVS construction consist of a vector of ciphertexts
¢=(c1, -+ ,cn) (one per receiver) and a ciphertext cpp. Each ciphertext ¢; is the
encryption of a bit b; under the i-th receiver’s public key pky,, and the ciphertext
cpp 1s an encryption of the tuple (m, bgiopal, & = (0, - -+ , o)), where o; = (b, z;),
under the public parameter’s public key pk. Similarly to the DVS construction,
signatures also contain a NIZK proof 7 that not only ensures ciphertexts are
well-formed and signatures are unforgeable, but also consistency. In particular, 7
proves: 1. all ciphertexts in ¢ and ciphertext cyp are well-formed—in particular
each ciphertext ¢; of ¢ encrypts the bit b; that is in the a; encrypted in cpp;
2. for each verifier, say the i-th, if b; = 1 then the o; encrypted in ¢y contains a
pre-image of either yg—the signer’s public key—or yy,—the i-th verifier’s public
key—under F' (this guarantees unforgeability); and 3. for each i-th verifier, if
the value z; in «; that is encrypted under cpp is not a pre-image of this verifier’s
public key yy, then b; = bgiobar (this guarantees consistency). Note that, if the
verification of the NIZK proof is deterministic, the NIZK’s soundness implies
that if two verifiers disagree on a signature’s validity, one of them is dishonest.

Achieving tight security under adaptive corruptions. While the MDVS construc-
tion above already satisfies correctness, consistency, unforgeability and OTR, we
do not know how to prove it is tightly secure under adaptive corruptions. Our
problem is that we do not know how a reduction could know in advance which
parties the adversary will corrupt (and thus ask for their secret keys) and which
ones it will not. Suppose for example we are reducing an adversary from breaking
some security property of the MDVS construction to breaking the IND-CPA
game of the underlying PKE scheme, and in particular consider a reduction that
simply guesses whether the adversary will corrupt a party P;: on one hand, if
the reduction guesses incorrectly that P; will be corrupted then it is not taking
advantage of the adversary to win the underlying IND-CPA game; on the other
hand, if the reduction incorrectly guesses P; will not be corrupted—in which
case it would set P;’s public key to be one output by the underlying IND-CPA
game—then we do not know how the reduction could handle a query for the
secret key of P,—and so the reduction would again not be taking advantage
of the adversary to win the underlying IND-CPA game. So although one could
resort to this guessing technique to prove the security of the MDVS scheme under
adaptive corruptions (via a hybrid argument), this leads to a reduction loss that
grows linearly with the number of parties.

To void this reduction loss we follow the “two-key” technique already used
in the context of tightly secure public-key encryption [1]. In the new scheme,
and at a high level, the public key of each party P; is a pair of public keys—say



(pky, pky )—from the previous scheme, and its secret key consists of a bit b—picked
uniformly at random—and the secret key sk; corresponding to pk,. Signatures
then consist of cyp as before, a vector of ciphertexts that includes two ciphertexts
per verifier—one under each of the verifier’s public keys—and the NIZK proof
m—which now proves that cp, encrypts a pre-image of one of the public keys
of a party (rather than a single one as before). This technique allows to come
up with tight security reductions to the underlying building blocks: having the
two keys allows, on one hand, to embed challenges in the part of the public key
whose corresponding secret key is “forgotten”, i.e. pk;_,, where b is the bit in
the party’s secret key, and on the other hand to handle any possible queries the
adversary may make, including ones where the party’s secret key is leaked.

2.2 PKEBC Construction

We now give a high level overview of our PKEBC scheme’s construction. We first
explain how to achieve linear sized ciphertexts and linear time encryption (in the
number of receivers), and then move towards making decryption time also linear.
(We note that the ciphertext size and both the encryption and decryption times
of the only prior PKEBC scheme construction (see [21]) all grow quadratically
in the number of receivers.) Since the technique we use to obtain tight security
reductions under adaptive corruptions is the same one we used in the MDVS
construction, we do not include it in this overview.

As building blocks, we assume an IND-CPA and IK-CPA secure PKE scheme, a
Simulation-Sound NIZK and a (one-time) IND-CPA secure Symmetric Encryption
(SKE) scheme. The public parameters of our PKEBC schemes are the same as for
the MDVS construction—comprising a public key of a PKE scheme and a crs
for a NIZK, i.e. pp = (pk, crs)—and in the two constructions discussed below a
PKEBC key-pair is simply a key-pair of the underlying PKE scheme.

Achieving linear ciphertext size and encryption time. As we now explain, the
main idea to achieve linear ciphertext sizes and encryption time (in the number
of receivers) is to use hybrid encryption.

To encrypt a message m to a vector of receiver public keys ¥ = (pk, ..., pk,,)
we first encrypt (¢, m) under the public parameters’ public key; let ¢, denote the
resulting ciphertext and rp, the sequence of random bits used for this encryption.
Next we generate a symmetric key k for the SKE scheme and for each receiver
public key pk, in ¥ we encrypt k under pk,, resulting in a vector of ciphertexts
(c1,...,¢n). Then we use k to encrypt not only ¢ and m, but also 7pp; let ceyn
denote the resulting (symmetric) ciphertext. (Having cym encrypt ¢, m and rpp
allows receivers to confirm they obtained the correct vector of receivers and
message: since the public parameter’s public key is honestly sampled, cp;, is a
commitment to (v, m), and since cgyy also encrypts ryp, a receiver can simply
recompute cpp; as we will see, this is key to guaranteeing correctness, robustness
and consistency.) Finally, we create a NIZK proof m showing that: 1. cpp is
an encryption of (7,m) under the public parameters’ public key using rpp as
the sequence of random encryption bits; 2. the symmetric key k was correctly



sampled; 3. cgyn is an encryption under k of (rpp, ¥, m); and 4. for each ciphertext
¢; of ¢, ¢; is an encryption of k£ under the i-th public key pk; of #. The final
ciphertext is then the quadruple ¢ = (¢pp, €, Csyn, m). To decrypt a receiver first
checks if 7 is a valid NIZK proof; if 7 is valid the receiver then starts trying to
decrypt each ciphertext ¢; € ¢ for each symmetric key k' the receiver obtains
from successfully decrypting a ciphertext c;, the receiver tries decrypting ceyn.
If the decryption of cgyy is successful, returning a triple (rgp, ¥, m), the receiver
checks if cpp indeed encrypts (7, m) under the public parameters’ public key using
rpp as the random encryption coins, and if it does the receiver outputs (v, m) as
the result of decryption. If it does not (or any of the decryption attempts failed)
the receiver moves on to the next ciphertext c; of ¢, or returns the special error
symbol L if there are no more ciphertexts.

It is easy to see that for a vector of receivers v and message m both the
ciphertext size and the encryption time of the scheme are O(|7] + |m|), exactly
as we needed. Unfortunately, the scheme does not achieve linear time decryption:
in the worst case the decryption of each ciphertext ¢; € ¢ outputs a valid looking
symmetric key kﬁ the decryption of cgyy is successful-—which, given the size of
Csyn 1s linear in the number of receivers, already takes time linear in the number
of receivers—but then the triple (ryp’, 7", m’) resulting from cgyn’s decryption
does not match cpp, i.€. cpp is not the encryption of (7, m’) under the public key
of the public parameters, and using rpp" as the random encryption coins. Given
the number of ciphertexts of ¢ is linear in the number of receivers, the time to
decrypt then grows quadratically in the number of receivers.

Achieving linear decryption time. To achieve linear time decryption receivers
need a fast way of checking if any particular ciphertext c; € ¢ is really meant
for them without having to decrypt cgyn, as this already takes linear time in the
number of receivers. A first idea is adding, for each receiver, an encryption of
a long enough 0 bitstring (and appropriately modifying the NIZK relation): to
decrypt, a receiver would then first check if the decryption of this new ciphertext
would output back the expected 0 bitstring, and if not the receiver would not
have to attempt decrypting the (linear sized) cgyn ciphertext. Unfortunately, this
approach only works for honestly generated ciphertexts. For instance, consider
two key-pairs (pk, sk), (pk’, sk’) of some arbitrary PKE scheme with pk # pk’:
one cannot assume that an adversarially created encryption of a 0 bitstring
under pk does not decrypt, under the non-matching secret key sk’, to the same
0 bitstring (and, more generally, to any particular value). This means that a
dishonest sender could potentially come up with “malformed” ciphertexts that
would pass this first check, thus making a receiver have to decrypt the (large)
Csyn Ciphertext and then recompute ¢y, to ensure consistency.

The way our scheme achieves linear time decryption is by pairing each
ciphertext ¢; € ¢ with: 1. a commitment to the i-th receiver’s public key pk;;
and 2. a ciphertext that encrypts, under pk;, the random coins used to generate

5 For an arbitrary PKE scheme a receiver cannot a priori tell whether a given ciphertext
is intended for itself.
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the commitment. More concretely, in our scheme there are three ciphertexts per
receiver, i.e. ¢ = (c1,...,¢,) with ¢; = (¢;,0, ¢i,1, ¢i,2), where: ¢; o is an encryption,
under the public parameter’s public key, of the i-th receiver’s public key pk;
using some sequence of random bits r; o; ¢; 1 is an encryption, under pk;, of the
random coins r; o; and ¢; 2 is an encryption of the SKE key k used to encrypt
Csyn- As one might note, by appropriately modifying the NIZK statement, we can
ensure that receivers no longer need to recompute cyp to confirm they obtained
the correct pair (v = (pky,...,pk,), m) from the decryption of cgyy: first, note
that the correctness of the underlying PKE scheme together with the soundness
of the NIZK (for the modified NIZK statement) guarantee that ciphertext ¢; o of
each triple ¢; = (¢;,0,¢j.1,¢4,2) of &binds the triple to a single receiver public key
pPk;; second, the PKE scheme’s correctness with the NIZK’s soundness further
imply that ciphertext c; 2 of every triple is an encryption of the same symmetric
key k under the public key pk; bound to the triple; third, the SKE’s (perfect)
correctness again with the NIZK’s soundness imply that the decryption of cgyn
using the aforementioned key k yields the same pair (¥ = (pky,...,pk,), m),
where for each i € {1,...,n}, the triple ¢; € ¢ is bound to the (corresponding)
public key pk, € 17[| Since, as explained above, receivers need not recompute cpp,
in the new scheme cgyn no longer encrypts the random coins rpp. Furthermore, as
each receiver’s public key pk; is already encrypted under the public parameter’s
public key in ¢; g, cpp no longer needs to encrypt vector ¥; in the new scheme cpp
encrypts only the message m.

3 Preliminaries

We denote the arity of a vector & by |Z| and its i-th element by z;. We write
a € T to denote 3i € {1,...,|Z|} with a = x;. We write Set(Z) to denote the set
induced by vector &, i.e. Set(Z) == {z; | z; € &}.

Throughout the paper we frequently use vectors. We use upper case letters
to denote vectors of parties, and lower case letters to denote vectors of artifacts
such as public keys, sequences of random coins, etc. Moreover, we use the
convention that if V is a vector of parties, then ¢ denotes V s corresponding
vector of public keys. For example, for a vector of parties V= (Bob, Charlie),
U = (Pkpop» PRCharlie) 19 Vs corresponding vector of public keys. In particular,
V1 is Bob and v; is Bob’s public key pkg,,,, and V5 is Charlie and vq is Charlie’s
public key pkey ... More generally, for a vector of parties V with corresponding
vector of public keys ¥, V;’s public key is v;, for i € {1,..., |‘7\}

" In [17] Libert et al. introduce “anonymous hint systems”: a type of scheme that can
be seen as an abstraction of the technique that allows receivers to quickly check if a
particular ciphertext is meant for them (and which is key to achieving linear time
decryption).
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4 Multi-Designated Verifier Signature Schemes with
Enhanced Off-The-Record Security

An MDVS scheme [T is a 6-tuple of Probabilistic Polynomial Time Algorithms
(PPTs) IT = (S, Gs, Gv, Sig, Vfy, Forge), where:

— S on input 1*, generates public parameters pp;

— Gg: on input pp, generates a signer key-pair (spk, ssk);

— Gy: on input pp, generates a verifier key-pair (vpk, vsk);

— Sig: on input (pp, ssk, ¥, m), where ssk is the signer’s secret key, ¢ is the

vector of public verifier keys of the designated verifiers and m is the message,

generates a signature o;

Vfy: on input (pp, spk, vsk, ¥, m, o), where vsk is a verifier’s secret key, Vfy

checks if o is a valid signature on message m with respect to signer’s public

key spk and vector of verifier public keys

— Forge: on input (pp, spk, ¥, m, §), where spk is the signer’s public key, ¥ is
the vector of the designated verifiers’ public keys, § is a vector of designated
verifiers’ secret keys—with |§] = |0] and where for i € {1,...,|0]}, either
s; = L or s; is the secret key corresponding to the i-th public key of ¥, i.e.
v;—and m is the message, generates a forged signature o.

In this section we introduce a new (stronger) Off-The-Record security notion
for MDVS schemes capturing the setting where the signer’s secret key can leak
and give a new construction satisfying this stronger notion. (In this
full-version we also introduce a new Message-Bound Validity notion for MDVS
schemes that was not considered in the published version of this paper [5], and
without which we do not know how to prove the (IND + IK)-CCA-2293 security
of the MDRS-PKE scheme from [21].)

4.1 Security Notions

Let IT = (S, Gg, Gy, Sig, Vfy, Forge) be an MDVS scheme. The MDVS secu-
rity games ahead have an implicitly defined security parameter k, and provide
adversaries with access to the following oracles:

Public Parameter Generation Oracle: Opp
1. On the first call to Opp, compute pp + S(1¥); output pp;
2. On subsequent calls, simply output pp.
Signer Key-Pair Generation Oracle: Ogg(A;)
1. On the first call to Ogx on input A;, compute (spk,;, ssk;) < Gs(pp),
and output (spk;, ssk;);
2. On subsequent calls, simply output (spk;, ssk;).
Verifier Key-Pair Generation Oracle: Oy (B;)
1. Analogous to the Signer Key-Pair Generation Oracle.
Signer Public-Key Oracle: Ogspk(A4;)
1. (spk;,ssk;) + Ogk(4;); output spk;.
Verifier Public-Key Oracle: Oy pg(B;)

12



1. Analogous to the Signer Public-Key Oracle.
Signing Oracle: Og(A4;,V,m)
1. (spk;, ssk;) < Ogsx(4;);
2. U= (OVPK(V1)7 ceey OVPK(V|‘7|))§
3. Output o < Sig,,(sski, v, m).
Verification Oracle: Oy (4;, Bj, V,m, o)
1. Spki < OSPK(Ai)§
2. U= (OVPK(V1)7 ooy OVPK(V|‘7|))§
3. (vpk;, vskj) < Ovk(Bj);
4. Output d < Vfy,,(spk;, vsk;, ¥,m, o), where d € {0,1}.

Definition 1 (Correctness). Game system G provides an adversary A with
access to oracles Opp, Osk, Ovk, Ospr, Ovprk, Os and Oy. A wins the
game if there are two queries qs and qy to Og and Oy, respectively, where qg
has input (A;, V,m) and qy has input (A;', B;, V',m/, o), satisfying (A;,V,m) =
(A, 7 m'), B; € V, the input o in qv is the output of the oracle Og on query
qs, and the output of the oracle Oy on the query qv is 0. The advantage of A
in winning the Correctness game, denoted Adv®"(A), is the probability that A
wins game G as described above.

We say an adversary A (g,t)-breaks the (ny, ¢s, gy )-Correctness of IT if A
runs in time at most ¢, queries Oy i, Ovpki, Og and Oy on at most ny different
verifiers, makes at most ¢gs and qy queries to Og and Oy, respectively, and
satisfies Adv“"(A) > e.

Definition 2 (Consistency). Game G provides an adversary A with access
to oracles Opp, Osk, Ovk, Ospk, Ovpi, Os and Oy. We say that A wins
the game if it queries Oy on inputs (Ai,Bj7V,m,a) and (AZ-/7Bj',‘7’,m',J/)
with (A;, V,m, o) =(A/, vV, m, o') and where {B;, B;'} C V, the outputs of the
two queries differ, and there is no Oy k query on either B; or Bj’. The advantage
of A in winning the Consistency game, denoted Adv"(A), is the probability
that A wins game G as described above.

An adversary A (e, t)-breaks the (ny, gy )-Consistency of IT if A runs in time
at most t, queries Oy i, Ovpr, Og and Oy on at most ny different verifiers,
makes at most gy queries to Oy and satisfies Adv©"(A) > e.

Definition 3 (Unforgeability). Game system GU"°'® provides an adversary A
with access to oracles Opp, Osk, Ovik, Ospi, Ovpi, Os and Oy . A wins if it
makes a query Oy (A;*, B;", V*,m*, %) with B;* € V* that outputs 1, for every
query Os(A;, v/, m’), (A;", V*, m*) # (A, V’,m’), and there is no Ogi query
on A;* nor Oy query on B;”. The advantage of A in winning the Unforgeability
game is the probability that A wins GU"€  and is denoted Adv""™8(A).

An adversary A (g,t)-breaks the (ng,ny,gs, qv)-Unforgeability of IT if A
runs in time at most ¢, queries Ogsk, Ospk, Og and Oy on at most ng different
signers, Oy i, Ovpk, Og and Oy on at most ny different verifiers, makes at most
gs and gy queries to Og and Oy, respectively, and satisfies AdvU"™8(A) > e.

13



4.1.1 New Off-The-Record Security Notion. We now present the new
enhanced off-the-record security notion for MDVS schemes. As already mentioned,
the main difference between our new notion and the existing one (see [821]) is
that in our new notion the adversary can query for the secret key of any sender
(and still win the game). This is reflected in in that there is no
restriction on which signer secret keys an adversary may query.

The off-the-record security notion defines two game systems, G§TR and GTR,
which provide adversaries with access to a modified oracle Og whose behavior
varies depending on the underlying game system:

Signing Oracle: Og(type € {sig, sim},Ai,V,m,C)
For game system GYTR, the oracle behaves as follows:
1. (spk;,ssk;) + Ogi(4;);
2. Let U= (v1,...,vp)) and §= (s1,...,sp), where, for i € {1,...,[V[}:
OVK(Vz') ifV,eC
(Ovpk(Vi), L) otherwise;
3. (00,01) < (I1.Sigy,(ssk;, U, m), I1.Forge,,(spk;, U,m, 5));

4. If b = 0, output oy if type = sig and oy if type = sim; otherwise, if
b =1, output ;.

- (Ui,si) =

Definition 4 (Off-The-Record). For b € {0,1}, game GO™R provides an
adversary A with access to oracles Opp, Osk, Ovk, Ospk, Ovpr, Os and
Oy . We say that A wins the game if it outputs a guess bit b’ with ¥’ = b, and for
every query Og(type, A;, v, m,C): 1. C C Set(‘?); 2. there is no query Oy i (B;)
with B; € Set(V) \ C; 3. letting o be the output of the Og query above, there is
no query Oy (4A;, Bj, V,m, o) with B; € V. The advantage of A in winning the
Off-The-Record security game is

Adv°TR(A) = |PrAGS™ = win] + Pr[AGY™R = win] — 1|.

An adversary A (e,t)-breaks the (ny,ds, gs, qv )-Off-The-Record security of
IT if A runs in time at most ¢, queries Oy g, Oy pk, Og and Oy on at most ny
different verifiers, makes at most gg and gy queries to Og and Oy, respectively,
with the sum of the verifier vectors’ lengths input to Og being at most dg, and
satisfies Adv°TR(A) > e.

4.1.2 New Security Notion: Message-Bound Validity. Another guar-
antee the definitions we have introduced so far do not give is that (honestly
generated) MDVS signatures are bound to the single message they were generated
for—in the sense that each MDVS signature only verifies as valid for the message
it was created for—even if the message is chosen by an adversary who knows the
secret key of the signer. Looking ahead, we introduce the Message-Bound Validity
security notion because we do not know how to prove the (IND + IK)-CCA-22d2p
security of our MDRS-PKE construction if the underlying MDVS scheme does
not give this guarantee.
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Definition 5 (Message-Bound Validity). Game GBo"d-Val provides an ad-
versary A with access to oracles Opp,Osk,Ovk,Ospi,Ovpi,0s, and Oy. A
wins the game if there are two queries qs and qy to Og and Oy, respectively,
where qs has input (A;, V,m) and qv has input (A, Bj, v’,m’,a), satisfying
1. (Ai,V) = (AZ-',‘_/"); 2. B; € V:8 m #m/; 4. the input o in qv is Og’s output
on query qs; and 5. the output of Oy on query qv is 1. A’s advantage is the
probability that A wins GBVal " and is denoted Adv®*""V?(A).

An adversary A (e,t)-breaks the (ng,nv,ds,qs, qv)-Message-Bound Validity
of IT if A runs in time at most ¢, queries Ogsg, Ospr, Ogs and Oy on at
most ng different signers, Oy g, Oypg, Og and Oy on at most ny different
verifiers, makes at most gg and gy queries to Og and Oy, respectively, with the
sum of the verifier vectors’ lengths input to Og being at most dg, and satisfies
AdUBound-VaI(A> > e

Finally, we say that IT is

(ECorrs ECons» EUnforgs EOTR, EBound-Val, t, s, Ny, ds, 4s, qv )-secure

if there is no adversary A that: 1. (ecor, t)-breaks II’s (ny, gs, gy )-Correctness;
2. (econs, t)-breaks IT’s (ny, gv)-Consistency; 3. (€unforg, t)-breaks II's (ng, ny,
gs, qv)-Unforgeability; 4. (eoTr, t)-breaks II's (ny,ds, qs, qv )-Off-The-Record;
or 5. (€ound-val, t)-breaks II’s (ng,ny,ds, s, qv )-Message-Bound Validity.

4.2 DVS Construction

We present our MDVS construction incrementallyﬂ We begin by giving a con-
struction of a (single verifier) DVS scheme (see [Algorithm 1)) that is Correct
, Unforgeable and Off-The-Record (Definition 4));
next, we generalize it into an MDVS scheme (which has to additionally satisfy
consistency); finally, we use a technique first introduced by Bader et al. in [1] to
make the scheme tightly secure under adaptive corruptions. The building blocks
for all our constructions are a NIZK scheme IInizx = (G, P, V, S = (S¢, Sp)), a
PKE scheme ITpkg = (G, E, D), and a One Way Function Howr = (S, F).

For modularity, rather than introducing a single language/relation for the
NIZK scheme used by our constructions, we will introduce different relations
and then define the relation/language for our constructions as the intersection of
these relations. For example, in we consider the language induced
by a relation Rpvs = Rpvs-Match N 2DVS-Unforg, Where

® BDvs-Match == {((Pkpp, spk, vpk, m, ¢, cpp), (a, b,7,75p)) |
(cpp = HPKE~EPkpp((mv b,a); rpp)) A (¢ = HpKE-Bupr.px (b; 7”))}3
® RpVS-Unforg = {((pkpp, spk, vpk, m, ¢, ¢pp), (@, b, 7, 7pp)) |
(b=1) > (HowsFla) € {spky, vpky})}.

8 We only prove the security of the final MDVS construction given in [Section 4.4}
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The corresponding language is then defined as Lpvs = {(pk,,, spk, vpk, m, ¢, cpp) |

PP’
E(Ga ba r, ’rpp) : ((pkppa spk, vpk, m, ¢, CPP)) (aa b7 Ty Tpp)) € RDVS}’-

Algorithm 1 DVS scheme construction IIpys = (S, Gs, Gy, Sig, Vfy, Forge).

S(1%)
(pk, sk) < HPKE.G(lk)
return pp := (1%, crs « IInizi.G(1%), pk)

Gs (pp)
z + Howr.S(1%)
return (spk := ITowr.F(z), ssk := (spk, z))

Gv (pp)
(pk7 sk) +— HPKEAG(lk)
T HOWF.S(lk)
return (vpk := (IHowr.F(z), pk), vsk := (vpk, sk, x))

Sig,, (ssk, vpk, m)
C HPKE-Evpk.pk(l; T’)
Cpp < ITPKE - Epp.px (M, 1, s8k.2); 75p)
p < IIN1zK - Pers ((pp.pk, spk, vpk, m, ¢, ¢pp) € Lpvs, (ssk.z, 1,7, 'rpp))
return o = (p, ¢, ¢y

Vi (5K, voE, 10, 0 5= (9, crp))
b <+ IIN1zK - Vers ((pp.pk7 spk, Vpk, m, ¢, Cpp) € LDVSvP)
return b A IIpkg.Dysk.sx(c

Forge,, (spk, vpk, m, vsk)

if vsk # 1 then > Forge using verifier’s secret key.
C < HPKE~Evpk.pk(1§ T)
Cpp HpKE.E‘pp_r,k((m7 1, vsk.z); TPP)
D+ 171\HZK.Pch((1:>p.pk7 spk, vpk, m, ¢, ¢pp) € Lpvs, (vsk.z, 1,7, Tpp))

else > Forge without using verifier’s secret key.
¢ < ITpkE- Eupr px (05 7)
cop = Hpkn-Epp.pc ((m, 0,0); m5p)
P <+ IINizK - Pers ((pp.pk7 spk, vpk, m, c, CPP) € Lpys, (07 o, r, 'I"PP))

return o = (p, ¢, cpp)

In our scheme a signature consists of two ciphertexts, ¢ and cpp, together
with a NIZK proof p which is the key for guaranteeing signature unforgeability.
Informally, IInizk’s soundness guarantees that, on one hand, since Rpysg C
Rpvs-Match, ciphertexts cpp and ¢ encrypt the same bit b, and on the other
hand, since Rpvs € Rpvs.-Unforg, if this bit bis 1 (in which case the signature
verification succeeds), cpp encrypts either the signer’s or the verifier’s secret key.
Regarding Message-Bound Validity, Ilpkg’s correctness together with IInizk’s
soundness guarantee that the ciphertext cp, of each signature is bound to a single
message (and thus so is the signature).

4.3 A Conceptually Simple MDVS Construction

We now show how to generalize the DVS scheme from before into an MDVS
scheme. Our MDVS scheme construction is defined in and is analo-
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gous to the DVS scheme from before, but adapted to the multi-verifier case. The
main difference is that MDVS schemes need to guarantee consistency.

In the following, let @ := ((b1,a1),..., (bja|,@)a))); we assume for simplicity
that all vectors have matching lengths, i.e. |0] = |¢] = |a].

d RMDVSS‘a‘iC—MatCh = { ((pkpp7 Spkv 177 m, 57 Cpp)» (0_27 Fv Tpp> b)) :

/\ (ci = HPKE-Evi.pk(bi;Ti))] }

i€{1,....[]}

—

[Cpp = HPKE.Epkpp ((m7 ba 0_2); TPP)} A

—

i RMDVSS‘a‘iC—Unforg = { ((pkppa spka 77, m, Ev Cpp>7 (aa F7 Tpps b)) :

A (i =1) = (Towe.Fla;) € {spk.y,vi.y}))}

i€{l,...,|V|}

° RMDVSS‘a‘iC—Cons = { ((pkpp7 SPk7 67 m, 57 cpp)v (0_27 Fu Tpops b)) :

/\ ((HOWF~F(ai) #v.y) = (b = b))

i€{1,....[91}

—

Similarly to Rpvs, and for the sake of modularity, we define relation Ry;pygsatc as

RMDVSstatic = RMDVS“““—Match n RMDVS“‘"“—Unforg n RMDVSSIE‘M—COIIS . IIl

we consider the respective induced language Lyipygsetc = {(Pkyp, SPK, U, m, €, Cpp) |

3(a, 7, Tpp> b): ((pkppa spk, U, m, C, Cpp)a (a7, Tpps b)) € Ryppygstatic |-

Note that, since Ryjpygseic © Ryipysstetc Mateh (1 BMDVSstc Unforgs [INIZK'S
soundness guarantees that if for any ¢ € {1,...,|0]}, ¢; is an encryption of 1, then
Ccpp contains either the signer’s secret key or the i-th verifier’s secret key. Similarly,
since Rypygstatic © Ryipyvssetic Mateh [ BMDVSsatic_Cons, 1INT1ZK 'S soundness implies
that every designated verifier B; whose secret key is not in cpp’s underlying
plaintext will agree on whether the signature is valid.

4.4 Achieving Tight Security under Adaptive Corruptions

We now show how to transform the MDVS scheme from before into one that is
tightly secure under adaptive corruptions. The main challenge here is finding a
way to embed the challenges from the security games of the underlying PKE and
OWF building blocks into the reductions (in such a way that the reduction is
tight on the security of the underlying building blocks) while still being able to
answer queries for the secret keys of signers and/or verifiers. To achieve this, we
rely on a technique that was first introduced in [1]. Essentially, for each party
two key-pairs are now sampled; the party’s public key are the public keys of each
of the underlying key-pairs, and the secret key is the secret key of one (and only
one) of these key-pairs. This allows answering secret key queries by the adversary
while still being able to embed challenges from the underlying security games
into reductions.
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Algorithm 2 T3«

S(1%)
(pk, sk) < HPKEG(lk)
return pp := (1%, crs + IIntzi. G(1%), pk)

Gs (pp)
T HOWF.S(lk)
return (spk := ITowr.F(z), ssk := (spk, z))

Gv (pp)
(pk7 Sk) — HPKE.G(lk)

T 4 HOWF.S(lk)
return (vpk := (IIowr.F(z), pk), vsk := (vpk, sk, x))

Sigpp(ssk7 U= (vpky,..., vpk‘ﬁl), m)
for each i € {1,...,|7]} do
c; < IIpkE.-Ey; px(1574)
(E7) < ((c1,- - ¢a))s (T1, -5 T15])
& < (a1 = (1,ssk.x),..., a5 = (1,ssk.x))

Cpp = ITpKE- Epp.pe((m, 1, &); 7pp)
p < IINnizK - Pers ((PP-Pk7 spk, ¥, m, C, CPP) € LMDVSstatic; (62; i Tpp> 1))

return o = (p, ¢, cpp)

nypp(spk, vsk, ¥, m, o = (p, C, ¢pp))
if ITnizk - Vers ((pp.pk, spk, ¥, m, C, ¢pp) € Ly gstatic s p) =1 then
fori=1,...,|7] do
if vsk.vpk = v; then
return ITpkg. Dysk.sx(Ci)

return 0
Forgepp(spk7 v, m, 5= (vski, ..., vskg|))
for each i € {1,...,|7]} do

if s; # L then
¢i + HpkE-Ey; px(1;73)
a; « (1,s;.2)
else
¢i + IIpkg. By, pc(0;571)
< (0,0)
@7+ ((c1y- -5 qa))s (T1, -5 717))
a <+ (al,..‘,a‘m
Cpp 4 ITPKE . Epp.pr((m, 0, @); 7pp)
p < IINizk - Pers ((PP-PK, SPK, T, m, €, ¢pp) € Ly pygstatic s (&, 75 Tpp, 0))
return o = (p, G, ¢pp)
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Let @ = ((b1,a1),...,(bja,aq)); in the following, vectors are assumed to
have matching lengths:

b4 RMDVSadaP—Match = { ((pppk, Spk7 67 m, Ea cpp)7 (62’ 7?7 Tppa b)) :

(Cpp = HPKE'EPP»Pk((m’ b, O_Z)’ TPP)) /\

[ /\ ((Ci,o = IIpxg-Ey, px, (bi;7i0)) A (ci1 = HPKE-Evi.pkl(bi;Ti,l))):| }

L4 RMDVSadap—Unforg = { ((pppk, Spka 177 m, 67 cpp)a (0_27 F7 Tppa b)) :

/\ ((bl =1) = (owr.F(a;) € {spk.yo, spk.yl,vi.yo,vi.yl}))}

L4 RMDVSadaP—Cons = { ((pppka Spkv Ua m, 87 Cpp)7 (O_Z, 7?7 rpp: b)) :

A <(UOWF~F(%) ¢ {viyo, viyr}) = (bi = b)) }

AS in E;ectlon ZE;I, we deﬁne RMDvsadap = RMDVSadap—MatCh N RMDVSadaP—Unforg n
Ryipyssar_cons; in [Algorithm 3} we consider the language Lyjpyg» that is in-
duced by Rypygsse, which is defined as: Lyipygae = {(pp-pk, spk, ¥, m, C, ¢pp) |

3(&7 Fv TPP? b) : ((pppkv SPk7 177 m, Ea Cpp)v (0_27 ’Fv rppv b)) € RMDVSadaP}'

4.4.1 Security Analysis of H;jl?;vs The theorem below gives an informal
summary of our construction’s security properties. The formal security theorems

(and the corresponding full proofs) are in the appendix (see |[Section B.2)).

Theorem 1 (Informal). If I[Ipkg is correct and tightly multi-user and multi-
challenge IND-CPA secure under non-adaptive corruptions, IInizk is complete,
sound, tightly multi-statement adaptive zero-knowledge and tightly multi-statement
simulation sound, and IIowr is tightly multi-instance secure under non-adaptive

corruptions, then Hﬁ/?g'i,s is tightly:

correct (Theorem J));

consistent under adaptive corruptions
unforgeable under adaptive corruptions
off-the-record under adaptive corruptions (Theorem
message-bound validity secure under adaptive corruptions (Theorem &)).

Guds fo do =

4.4.2 On Efficiently Instantiating the NIZK Relations All the relations
we consider consist of checking a number of equations over a pairing-friendly
group, when implemented with suitably algebraic primitives. (For instance, we
can use ElGamal [9] as the PKE scheme, and a pairing with one fixed input as the
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Algorithm 3 The II35%, ¢ MDVS scheme.

S(1%)
(pk, sk) < HPKE.G(lk)
return pp := (1¥, crs « IInizi. G(1%), pk)

Gs(pp)
(zo,x1) + (Howr.5(1%), Howr.S(1%))
(y0,91) + (Howr.F(x0), Howr.F(x1))
b < RandomCoin
return (spk := (Yo, y1), ssk := (spk, z = xp))

Gv (pp)
((pko, sko), (Pky, sk1)) + (Ipxw.G(1%), Tpxr.G(1%))
(Io, zl) < (HOWF.S(lk), HOWFS(lk))
(yo,y1) < (Howr-F(zo), Howr.F(z1))
b <~ RandomCoin
return (vpk := (pkg, Yo, Pk, Y1), vsk := (vpk, b, sk := sky, z = xp))

Sigy,(ssk, U = (vpky, . .., vpk 5 ), m)
for each i € {1,...,|7]} do
(ci,0,¢i,1) + (IIpkE-Eu, pxo (1;74,0), HPKE- By, piy (1574,1))
(& 7) < (((c1,05¢1,1), - -+ (clg),05 ¢15),1))s (1,0, 71,1)5 -+ -5 (T)5],05 T)5],1)))
& <+ (a1 = (1,ssk.x),..., a5 = (1,ssk.x

Cpp < ITpKE-Epp.p((m, 1, &); Tpp)
P + IIN1zK - Pers ((pp-Pk, SPK, ¥, m, T, ¢pp) € Ly pygadaps (&, 7 Tpp, 1))
return o = (p, G, ¢pp)

Vifypp (sPk, vsk, ¥, m, 0 := (p, €, cpp))
if ITnizk - Vers ((pp.pk, spk, U, m, €, cpp) € L]\/IDVSadap’p) =1 then
fori=1,...,|7] do
if vsk.vpk = v; then
return ITpkE. Dysk.sk(Ci vsk.b)

return 0
Forgepp(spk7 v, m, 5= (vski, ..., vskg|))
for each ¢ € {1,...,|7]} do

if s; # L then
(ci,05¢i,1) = (IIpx®-Bu, pxo (1;74,0)s IPKE-Eu, pr; (1;74,1))
a; = (1,s;.2)

else
(ci,05¢i,1) + (IIpKE-Bu, pko (0;74,0)s HTPKE-Eu, pry (0574,1))
Q= (0,0)
(@7) < (((c1,0,e1,1), - -+ (epag,05 ¢w1,1))s ((P1,0,71,0)5 - -+ (P10 751,1))
o — (al,...,a‘m)

Cpp ¢ IIpKE.- Epp p((m, 0, &); 1p)
p < IINnizK - Pers ((PP~Pk, spk, ¥, m, €, cpp) € Ly 1pygadap s (&, 7, Tpp, O))

return o = (p, ¢, cpp)
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One Way Function.) Then, we can use a simulation-sound variant of Groth-Sahai
proofs [12,[13] as a compatible NIZK scheme to prove these relations. This yields
proofs that are only linear-sized in the number of witness variables and equations.
Of course, this will result in an unoptimized solution that may not be quite
practical yet.

5 PKEBC Scheme with Linear Ciphertext Size and
Decryption Time

A PKEBC scheme IT is a quadruple IT = (S, G, E, D) of PPTs, where:

— S: on input 1, generates public parameters pp;

G: on input pp, generates a receiver key-pair (pk, sk);

— E: on input (pp, ¥, m), where ¥ is a vector of public keys of the intended
receivers and m is the message, generates a ciphertext c;

— D: on input (pp, sk, c¢), where sk is the receiver’s secret key, D decrypts ¢
using sk, and outputs the decrypted receiver-vector/message pair (¢, m) (or
L if the ciphertext did not decrypt correctly).

In this section we introduce new security notions capturing the security of
PKEBC schemes under adaptive corruptions and give a new construction of a
PKEBC scheme that not only is tightly secure under these stronger notions, but
also for which both the ciphertext size and the decryption time only grow linearly
with the number of receivers.

5.1 Security Notions for Adaptive Corruptions

The security notions we now introduce are a strengthening of the original ones
introduced by Maurer et al. in [21], but capturing the security of PKEBC schemes
under adaptive corruptions. More concretely, in the Correctness, Robustness and
Consistency notions adversaries are now allowed to query for the secret keys of
any receiver and still win the game; in the (IND + IK)-CCA-229P security games—
a combination of the original IND-CCA-2 and IK-CCA-2 security notions [21]
capturing adaptive corruptions—adversaries can now corrupt parties adaptively.
(Our (IND + IK)-CCA-2292P security notion can also be interpreted as a variant
of the notion introduced by Lee et al. in [16]—which captures the IND-CCA-2
security of PKE schemes under adaptive corruptions—but adapted for PKEBC
schemes and also capturing anonymity.)

We now introduce some oracles that the game systems ahead provide to the
adversaries. In the following, consider a PKEBC scheme IT = (S, G, E, D) with
message space M. The oracles below are defined for a game-system with (an
implicitly defined) security parameter k:

Public Parameters Oracle: Opp
1. On the first call, compute and store pp <+ S(1¥); output pp;
2. On subsequent calls, output the previously generated pp.
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Secret Key Generation Oracle: Ogk(B;)
1. If Osk was queried on B; before, simply look up and return the previously
generated key for Bj;
2. Otherwise, store (pk;, sk;) <— G(pp) as B;’s key-pair, and output (pk;, sk;).
Public Key Generation Oracle: Opg(B;)
1. (pk;,sk;) < Osk(B;);
2. Output pk;.
Encryption Oracle: OE(V,m)
2. Create and output a fresh encryption ¢ < Eyp #(m).
Decryption Oracle: Op(Bj,c)
1. Query Osi(B;) to obtain the corresponding secret-key sk;;
2. Decrypt c using skj, (¢, m) <= Dyp ex; (c), and then output the resulting
receivers-message pair (¥, m), or L (if (¥,m) = L, i.e. the ciphertext is
not valid with respect to B;’s secret key).

Definition 6 (Correctness). Game G°" provides an adversary A with access
to oracles Opp, Osk, Opk, Op and Op. A wins the game if there are two
queries qg and qp to O and Op, respectively, where qg has input (V,m) and
gp has input (Bj,c), satisfying B; € \7, the input ¢ in qp is the output of qg,
and the output of qp is either L or (¥, m') with (0, m) # (v',m’). The advantage
of A in winning the Correctness game, denoted Adv=""(A), is the probability
that A wins game G as described above.

An adversary A (ecorr, t)-breaks the (n,dg, ¢g, qp)-Correctness of a PKEBC
scheme I7 if A runs in time at most ¢, queries Osi, Opk, O and Op on at most
n different parties, makes at most qg and gqp queries to O and Op, respectively,
with the sum of lengths of the party vectors input to Og being at most dg, and
satisfies Advcc’"(A) > ECorr-

Definition 7 (Robustness). Game GR provides an adversary A with access
to oracles Opp, Osk, Opk, O and Op. A wins the game if there are two
queries qg and qp to O and Op, respectively, where qg has input (V,m) and
qp has input (Bj, c), satisfying B; & ‘7, the input ¢ in qp is the output of qg, and
the output of qp is (U',m') with (¥',m’) # L. The advantage of A in winning the
Robustness game is the probability that A wins game GR® as described above,

and is denoted Adv®°(A).

An adversary A (erop, t)-breaks the Robustness of a PKEBC scheme IT if A
runs in time at most ¢ and satisfies AdvRob(A) > ERob-

Definition 8 (Consistency). Game G provides an adversary A with access
to oracles Opp, Osk, Opk and Op. A wins the game if there is a ciphertext c
such that Op is queried on inputs (B;,c) and (B;, ¢) for some B; and B; (possibly
with B; = Bj), query Op(B;,c) outputs some (U, m) satisfying (U,m) # L
with pk; € U (where pk; is B;’s public key), and query Op(Bj,c) does not
output (U, m). The advantage of A in winning the Consistency game is denoted
Adv®"(A) and corresponds to the probability that A wins game G,
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We say that an adversary A (econs, t)-breaks the (n, ¢p)-Consistency of IT
if A runs in time at most t, queries Ogg, Opg and Op on at most n different
parties, makes at most gp queries to Op and satisfies AdeO"S(A) > ECons-

Below we present the definition of (IND + IK)-CCA-229 security. This notion
is a combination of the original IND-CCA-2 and IK-CCA-2 security notions in-
troduced in [21] that captures adaptive security (i.e. the adversary is allowed
to corrupt parties adaptively). The games defined by this definition provide
adversaries with access to the oracles Opp, Ogsk and Opg defined above, as well
as to oracles O and Op defined below:

Encryption Oracle: OE((VO,mO), (Vl,ml))

ada
1. For game system GSND +1K)-CCA-2 ,,7 encrypt myp, under o, the vector of

public keys corresponding to Vb; output c.
Decryption Oracle: Op(Bj,c)
1. If ¢ was the output of some query to O, output test;
2. Otherwise, compute and output (7, m) < Dyp sx; (), where sk; is B;’s
secret key.

Definition 9 ((IND + IK)-CCA-229P Security). For b € {0,1}, game system

IND + IK)-CCA-22%p . )
G{) +1K provides an adversary A with access to oracles Opp, Osk,

Oprk, O and Op. A wins the game if it outputs a guess bit b satisfying b’ = b
and for every query OE((VO,mO), (Vl,ml)): 1. |Vo| = [Val; 2. |mo| = |ma]; and
3. there is no query to Ogi on any B; € Set(Vy) U Set(Vy) at any point during
the game. We define the advantage of A in winning the (IND + IK)-CCA-2392p
game as

Ady(ND + IK)-CCA-22d2p (A) =
Pr[AG(()lND + |K)—CCA—2adap _ win] 4 PI‘[AG(llND + IK)—CCA_zadap _ win] 1l

We say that an adversary A (e,t)-breaks the (n,dg,qg,qp)-(IND + IK)-
CCA-2292P gecurity of IT if A runs in time at most t, queries the oracles it
has access to on at most n different parties, makes at most gg and qp queries
to oracles O and Op, respectively, with the sum of lengths of all the party
vectors input to Og being at most dg, and satisfies Ady(INP + IK)‘CC’/\_ZMW(A) > e,
Finally, we say that IT is

(ECorrsERobs EConss € (IND+IK)-CCA-22¢0 s £, 1, A, G, G, adap)-secure,

if there is no adversary A that: 1. (ecorr, t)-breaks IT’s (n, dg, qr, gp)-Correctness;
2. (€Rob, t)-breaks IT’s Robustness; 3. (econs, t)-breaks II’s (n, ¢p)-Consistency; or
4. (E(IND+IK)-CCA-2%40, t)-breaks IT’s (n,dg, qr,qp)-(IND + IK)-CCA-2292P gsecurity.

5.2 Achieving Linear Ciphertext Size

As before, we present our PKEBC construction incrementally (and only prove the
security of the final PKEBC construction given [Section 5.4]). Our first PKEBC
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scheme is defined in[Algorithm 4] Like Maurer et al.’s scheme [21], our construction
is a generalization of Naor-Yung’s PKE scheme for multiple receivers (see [22]).
However, while Maurer et al.’s scheme encrypts, for each receiver, the vector
of all receivers’ public keys plus the message—leading not only to quadratic
sized ciphertexts but also to quadratic encryption and decryption time—our
scheme instead relies on a SKE scheme ITskg to encrypt the vector of all receivers
plus the message under a key k that is then encrypted under each receiver’s
public key, resembling the hybrid encryption technique [25]. Furthermore, while
Maurer et al.’s construction relies on a binding commitment scheme in order
to achieve consistency, our scheme instead uses a PKE scheme: note that as
long as a PKE key-pair (pk,sk) is sampled honestly, by the correctness of
the PKE scheme, the encryption of any message m under pk also works as a
commitment to mﬂ The building blocks of this first scheme consist of a PKE
scheme ITpkg = (G, E, D), a SKE scheme IIskg = (G, F, D) and a NIZK scheme
IInizx = (G, P, V, S = (Sg, Sp)). In the following, vectors are assumed to have
matching lengths; consider relation Rpgppcin-ax defined as

‘RPKEBC“"’CtXt = { ((1k7 Pkpp7 CPPa Ea csym)a (777 m, rPP? Fv Tsyma rsym/)) : (51)
(ksym = HSKEG(1k7 7nsym)) A (Csym = HSKE~E(ksym7 (rppa 67 m)7 Tsym/)) A

[ /\ (¢j = Hekn-Bu, (ksyn; 75)) | A (cpp = Hpke- B, (7, m)”m)))}'
Je{1,....|a}

In we consider the language Lpgppcinee that is induced by relation
. . i — k = = = AN
RPKEBC""'C‘X‘ : LPKEBC"“‘““ = {(1 s Pkpp’ cppa C, csym) | 3(’1)7 m, rpp7 r, Tsyma rsym ) :
k = - _, /
((]— s Pkppa Cpp; Gy Csym)7 (U, M, Tepy T’y T'symy T'sym )) S RPKEBclin-ctxt}~

5.3 Achieving Linear Time Decryption

As discussed in [Section 2.2] while the scheme given in already achieves

linear size ciphertexts and linear time encryption, it does not achieve linear

time decryption. We now show how to modify ITER$X, to achieve linear time

decryption. The new scheme, denoted ng};dEeéC, is defined in |Algorithm 5| and
uses the same building blocks as ITI:$¢ .. In the following, vectors are assumed

to have matching lengths; furthermore, to simplify the definition of the relations
below, we introduce the following predicate:

CtxtMatch(pk, pk’, 79, 71, 72, @, k, co, 1, ¢2) == ((co, €1, ¢2) = (5.2)
(IpxE.Eox(a;10), HpkE-Esx (ro; 1), Hpke. Epe (k3 72))) .-

9 At a more technical level, replacing the binding commitment scheme of Maurer et
al.’s PKEBC construction by a PKE scheme also serves the purpose of allowing the
(IND + IK)-CCA-2 security reductions to handle decryption queries.
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Algorithm 4 Construction of PKEBC scheme IR = (S, G, E, D).

S(1%)
(pk7 Sk) < HPKE.G(lk)
return pp = (1’“7 crs HNIZK.G(lk),pk)

G(pp)
(pk/, Sk/) — HPKE.G(lk)
return (pk := pk’, sk := (pk, sk’))

Epp (7= (pkys- - - PK|5), ™)
Cop + TPKE- Epp.pic (7, m); 75p)
k'sym < HSKE.G(lk; 'r‘sym)
Csyn = IISKE. Ergy ((rops T, m); Toyn’)
for each j € {1,...,|7]} do
Cj HPKE'E’UJ‘ (ksym§ 7“.7‘)
(7 &) = ((r1,- -, m5)), (C1s -5 cpg))
P+ IIN1ZK - Pers ((lk , PP-PK, Cpp, &, Csyn) € Lpyppalin-cxts (T, M, Tpp, 75 Tsyn, rsym'))
return (p, ¢pp, &, Csyn)

Dyp(sk, ¢ := (P, cpp; €, Csyn))
if IInizk- Vers ((1k7PP~ka Cpps Cs Csyn) € LPKEBCnn»cm,p) = valid then
for j=1,...,|¢l do
ksyn < ITpkm- Dy g (¢5)
(Tpps T, m) Hske-Digyy (Csyn)
if (rpp, ¥, m) # L A sk.pk = v; then
if cpp = HPKE.EPP_pk((U, m); TPP) then
return (¥, m)
return L

Consider relation Rpggpgin-dc defined as

Rpgppcinac = { ((1ka pkppa Cpp» G, Csym)7 (v, m, Tpps T T'sym; rsym/)) : (5.3)
(ksym = HSKE'G(]-k§ 71sym)) A (Csym = HSKE“E(ksyma (777 m); rsym/)) A

|: /\ CtX’EME]tCh(kaP7 Vj,735,0,75,1,75,2, Vs, k‘sym, €4,0,C4,1, Cj72) A\
JE{1,....|1el}

(Cpp = HPKE~Epkpp(m5 TPP)) }
In we consider the language Lpgppcindec that is induced by relation
RPKEBclin»decZ LPKEBclin-dec = {(1k, pkpp, cpp7 E, Csym) | 3(’(7, m, rPP’ ’F’, Tsym Tsyml)
((119’ pkpp, Cpp> C, Csym)v (77, m, T'pp, 7, Tsym, Tsym/)) € RPKEBC“""‘“}'
5.4 Achieving Tight Security under Adaptive Corruptions

Finally, we modify H{;’};‘}jféc to get a PKEBC scheme that is tightly security under
adaptive corruptions. Informally, we use the same two-key technique that we used
for our MDVS scheme construction [1,[22]. In other words, in our scheme each
party generates two key-pairs, (pk, sko) and (pk,, sky), and then discards one
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Algorithm 5 Construction of PKEBC scheme JTJ9s .

S(1%)
(pk7 Sk) < HPKE.G(lk)
return pp = (1’“7 crs HNIZK.G(lkka)

G(pp)
(pk/, Sk/) — HPKE.G(lk)
return (pk := pk’, sk := (pk, sk’))

Epp (7= (pkys- - - PK|5), ™)

cop ¢ HIPKE- Epp.pk (115 7pp)

k'sym < HSKE.G(lk;T‘SyE)

Coyn 4 TTSKE- By ((T,m); Toyn”)

for each j € {1,...,|7]} do

(¢j,0,¢5,1,¢5,2) < (IIpkE-Epp.px(v5375,0), lpxe. By, (r5,0574,1), HPKE-Euj(ksym;Tj,2))
= ((r1,0,71,1,71,2), - (75,0, T)5],1> 7| 5],2))
= ((c1,0,¢1,1,¢1,2), - - -5 (€13],0: €|5),15 €| 5,2)

k — — — ’
p < IIN1zK - Pers (17, PP.PK, Cpp, €, Csyn) € Lpyeppclin-decs (T M, Tpp, 7 Tsym, Tsyn”))
return (p, cpp, G, Coyn

oL

Dyp(sk, ¢ == (p, Cpp, C; Csyn))
if ITn1zic- Vers (1%, PP-PK, cpp, &, Coyn) € Lpygppcindec, P) = valid then
for j=1,...,|cl do
T 4 HPKE-Dsk.sk’ (Cjﬁ])
if r # L A IIpki.FEpp.px(sk.pk; 7) = ¢j,0 then
ksyn < IPKE. Dy g (¢j,2)
return HSKE-Dksym(Csym)

return L

of the secret keys sk picked uniformly at random. The new scheme is denoted
II328 L and is defined in Algtotrithm 6| Similarly to ITjdec | I1352P . uses the
1IN-CTX

same building blocks as IIp}; 55 Consider relation Rpygppcwer defined as

Rpkepcas = {((1ka PKpp» Cpp: C; Csyn); (U, 110, Tpp, T, T'sym, Tsym/)) | (5.4)
(ksym = HSKE-G(lk; Tsym)) A (Csym = HSKE~E(ksyma (177 m); Tsym/))
A (cpp = HPKE.Epkpp(m;er)) A { /\

j€{1,...,|€]}, be{0,1}

CtxtMatch(kaP, V5. DKy, 75,05 T5,6,15 T5,6,25 Vg, Ksymy C4,05 Cj,b,15 Cj,b72)} }v

where CtxtMatch is as in [Equation 5.2 In [Algorithm 6, we consider the fol-
lowing language: Lpgppcr = {(1k,pkpp,cpp,5,csym) | 3(T, m, Tpp, T Tsyms Tsyn’)

((1k’ PKyp: Cops G csym)7 (T, M, Tpp, T Tsym, Tsym/)) € Rpgppcan |-

5.4.1 Security Analysis of H;d;;BC The following theorem gives an in-
formal overview of the security properties of our PKEBC scheme construction.

The formal theorems and corresponding full proofs are in the appendix (see

[Section B.3).
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Algorithm 6 Construction ITa3p .

S(1%)
(pk, sk) < HPKEG(lk)
return pp := (1¥, crs « IInrzi. G(1%), pk)

G(pp)
(pko7 Sko) — HPKE.G(lk)
(pkl, Skl) — HPKE.G(lk)
b <~ RandomCoin
return (pk := (pkg, pk, ), sk := (pk, b, sk;))

Epp (T = (pkys -, Pyg), )
cop = ITPKE- Epp.pic (M Tpp)
kegn <+ Hsxe.G(1F; 7o)
Csyn < IISKE - Eggyy ((@,m); reyn’)
for each j € {1,...,|7]} do
¢j,0 < IpkE. Ep.pe(v;;75,0)
for each b € {0,1} do
(¢jb,1,Cj,b,2) (HPKBEuj.pkb(Tj,o;Tj,b,1), Hpke. By py, (Keyn; 75,,2))
(rj,c5) <= ((14,0,75,0,1,75,0,2,T4,1,1,75,1,2)5 (€4,0,C5,0,15 €5,0,2, C4,1,1,Cj,1,2))
(7,0) = ((T17"‘7T\6\)a (c1y-- -70\5\))
P+ IIN1zK - Pers ((lk , PP-PK, Cpp, c, Csym) S LPKEBCadam (¥, m, Tpps I T'syms ""sym/))
return (p, ¢pp, G, Coyn)

Dpp(Sks Cc = (Pa Cpps c, Csym))
if Inizk. Vcrs((lk,pp.pk, Cpps @ Csyn) € Lipgppoadap, P) = valid then
for j=1,...,|¢l do
r 4= IIpxE.Dsk.sx(Cj,sx.5,1)
if » # L A IIpkg.Epp.px(sk.pk; ) = ¢;j,0 then
ksyn < HpKE-Dsk.sx(Cj,sx.5,2)
return HSKE~Dk5ym(Csym)

return L

Theorem 2 (Informal). If I[Ipkg is correct and tightly multi-user and multi-
challenge IND-CPA and IK-CPA secure under non-adaptive corruptions, IINizk
is complete, sound, tightly multi-statement adaptive zero-knowledge and tightly
multi-statement simulation sound, and Ilskg s correct and tightly multi-instance
IND-CPA secure, then IT13305 is:

1. tightly correct
2. tightly robust
8. tightly consistent ;
4. tightly (IND + IK)-CCA-229P secure under adaptive corruptions .

6 Multi-Designated Receiver Signed Public Key
Encryption Schemes

An MDRS-PKE scheme is a 6-tuple of PPTs IT = (S, Ggs, Gg, E, D, Forge), where:

— S on input 1*, generates public parameters pp;
— Gg: on input pp, generates a sender key-pair (spk, ssk);
— Gg: on input pp, generates a receiver key-pair (rpk, rsk);
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— F: on input (pp, ssk, ¥, m), where ssk is the secret sending key, ¥ is a vector
of public keys of the intended receivers, and m is the message, generates a
ciphertext c;

— D: on input (pp, rsk,c), where rsk is the receiver’s secret key, D decrypts ¢
using rsk, obtaining a triple sender/receiver-vector/message (spk, 7, m) (or
L if decryption fails) which it then outputs;

— Forge: on input (pp, spk, U, m, §), where spk is the sender’s public key, 7 is
a vector of public keys of the intended receivers, m is the message and § is
a vector of designated receivers’ secret keys—with |§] = |U| and where for
1€ {1,...,|9|}, either s; = L or s; is the secret key corresponding to the i-th
public key of v, i.e. v;—generates a ciphertext c.

Analogously to in this section we introduce new (stronger) security
notions for MDRS-PKE schemes (see Definitions [13] and [14). Then, we briefly
describe how one can use the MDVS and PKEBC constructions from before,
together with a strongly unforgeable one-time Digital Signature Scheme to obtain
an MDRS-PKE scheme with the desired properties (by following the construction
given by Maurer et al. in [20}21]), and argue why the scheme is secure with respect
to our new stronger MDRS-PKE security notions. In particular, we will formally
prove that the construction given by Maurer et al. in [20] is (IND + 1K)-CCA-23d2p
secure.

6.1 Security Notions

Below we state the notions of Correctuness, Consistency, Unforgeability, (IND + IK)-
CCA-2292P and Off-The-Record for MDRS-PKE schemes. Analogously to the new
MDVS Off-The-Record security notion we introduced in|Section 4.1| (Definition 4),
the (IND + IK)-CCA-2292P and Off-The-Record security notions we now present
(Definitions [13] and [T4] respectively), allow the adversary to obtain the sender’s
secret key; and analogously to the new PKEBC security notions we introduced

in [Section 5.1| (in particular [Definition 9|), our new MDRS-PKE security notions

capture the setting where the adversary can adaptively corrupt parties (see
. The security notions we now present are thus an enhancement
over the original ones given in [21].

Let IT = (S, Gs, Gy, E, D, Forge) be an MDRS-PKE scheme with message
space M. The oracles below are defined for a game-system with (an implicitly
defined) security parameter k:

Public Parameter Generation Oracle: Opp
1. On the first call, compute pp <+ S(1¥); output pp;
2. On subsequent calls, simply output pp.
Sender Key-Pair Oracle: Ogg(A;)
1. On the first call on input A;, compute and store (spk;, ssk;) < Gs(pp);
output (spk;, ssk;);
2. On subsequent calls, simply output (spk;, ssk;).
Receiver Key-Pair Oracle: Ogg(B,)
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1. Analogous to the Sender Key-Pair Oracle.
Sender Public-Key Oracle: Ogpk(A;)

1. (spk;,ssk;) - Ogk(4;); output spk;.
Receiver Public-Key Oracle: ORPK(Bj)

1. Analogous to the Sender Public-Key Oracle.
Encryption Oracle: Og(A;,V,m)

1. (spk;,ssk;) < Osi(4;);

2. U+ (ORPK(‘/l); ey ORPK(‘/“'/’Q);

3. Output ¢ + Epy(ssk;, ¥, m).
Decryption Oracle: Op(Bj,c)

1. (rpk;,rsk;) < Ork(Bj);

2. (spk;, ¥ = (rpky, ..., TPkz), m) < Dyp(rsk;, c);

3. If, for each party A; previously input to either Ogg, Ospr or Og,

spk; # Ospx(4;), then output L;

4. If, for some [ € {1,..., |‘7|}, there is no party B, that was previously
input to either Orgx, Orpr, O or Op such that v; = ORPK(VI), then
output L;

5. Output (spk, @, m).

Definition 10 (Correctness). Game system G provides an adversary A
with access to oracles Opp, Osk, Ork, Ospix, Orrr, O and Op. A wins the
game if there are two queries qg and qp to O and Op, respectively, where qg
has input (A;, v, m) and qp has input (Bj,c), satisfying B; € V, the input ¢ in
qp is the output of qg, the output of qp is (spk,’, v, m’) with (spk,’,v",m') = L
or (spk,’,v',m’) # (spk,, ¥, m)—uwhere spk; is A;’s public key and ¥ is the
corresponding vector of public keys of the parties of V. The advantage of A in
winning the Correctness game, denoted Adv®" (A), is the probability that A wins
game G as described above.

Definition 11 (Consistency). Game system G provides an adversary A
with access to oracles Opp, Osk, Ork, Ospk, Orprx, O and Op. A wins
the game if there is a ciphertext ¢ such that Op is queried on inputs (B;,c) and
(Bj,c) for some B; and B; (possibly with B; = B;), there is no prior query on
either B; or Bj to Ork, query Op(B;,c) outputs some (spk;, U, m) satisfying
(spk;, U,m) # L, spk; is some party A;’s public sender key (i.e. Ospr(A;) =
spk;) and rpk; € U (where rpk; is B;’s public key), and query Op(Bj,c) does
not output the same triple (spk;,v,m). The advantage of A in winning the
Consistency game is denoted Advcons(A) and corresponds to the probability that
A wins game G as described above.

Definition 12 (Unforgeability). Game system GU"'® provides an adversary
A with access to oracles Opp, Osk, Ork, Ospi, Orprx, Or and Op. A wins
if it makes a query Op(Bj,c) that outputs (spk;, v, m) # L, there is a sender
A; and a vector of receivers V such that spk; is A;’s sender public key (i.e.
Ospk(A;) = spk;) and T is the vector of receiver public keys corresponding to 1%
(i.e. |V| = || and for each 1 € {1,...,|7|}, Orpx (Vi) = v,), there was no query
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OE(A/,‘_/”,m’) with (Ai,V,m) = (A/,V’,m’), and neither Ogx was queried
on input A; nor Ork was queried on input B;. The advantage of A in winning
the Unforgeability game is the probability that A wins game GY™8 s described
above, and is denoted Adv""™8(A).

We say that an adversary A (g, t)-breaks the (ng, ng, dg, ¢g, ¢p)-Correctness,
Consistency, or Unforgeability of IT if A runs in time at most t, queries Ogg,
Ospr, O and Op on at most ng different senders, queries Ork, Orpk, OF
and Op on at most ng different receivers, makes at most gg and gp queries to
Op and Op, respectively, with the sum of lengths of the party vectors input to
Op being at most dg, and A’s advantage in winning the (corresponding) security
game is at least €.

6.1.1 New (IND + IK)-CCA-22%P and Off-The-Record Notions. Analo-
gously to in this section we present the new enhanced OTR and
(IND + IK)-CCA-2392P security notions for MDRS-PKE schemes. As already men-
tioned, the main difference between our new notions and existing ones (see [21])
is that in our new notions the adversary can query for the secret key of any
sender (see Definitions 13| and and can corrupt parties adaptively.

The games defined by these notions provide adversaries with access to the
oracles from before as well as to the oracles Og and Op defined below:

Encryption Oracle: Og((A;.0, Vo, mo), (Ai1, Vi, m1))

ada
1. For game system GSND"’ IK)-CCA-2%

, encrypt myp, under ssk; p (A;p’s
sender secret key) and vy, (V;,’s corresponding vector of receiver public
keys); output c.
Decryption Oracle: Op(Bj,c)
1. If ¢ was the output of some query to O, output test;
2. Otherwise, compute (spk;, ¥, m) < Dyp ek, (c), where sk; is Bj;’s secret
key; output (spk;, ¥, m).

Definition 13 ((IND + IK)-CCA-229P Security). For b € {0,1}, game system

IND + IK)-CCA-22%p . .
Gé +1K) provides an adversary A with access to oracles Opp, Ogk,

Ork, Ospr, Orpr, O and Op. A wins the game if it outputs a guess bit b’
with b’ = b and for every query OE((Ai,o, ‘%,mo), (Aiq, Vi,ml)): 1. |mo| = |mal;
2. [Vo| = [Vil; and 3. there is no query to Org on any B; € Set(Vy) U Set(Vy)
at any point during the game. We define the advantage of A in winning the
(IND + IK)-CCA-229P game as

Ady(IND + IK)-CCA-T"EP(A) —

ada ada
Pr[AG(()'ND+ IK)-CCA-2%P _ win] + Pr[AG:(LIND+ IK)-CCA-22%P win] —1).

An adversary A (g,t)-breaks the (ng,dg, ¢z, qp)-(IND + IK)-CCA-2293P security
of IT if A runs in time at most ¢, queries Ork, Orpr, O and Op on at most ng
different receivers, makes at most qg and gp queries to O and Op, respectively,
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with the sum of lengths of the party vectors input to Og being at most dg, and
satisfies AdpNP+ IK)'CCA_zadap(A) > €.

The following notion defines two game systems, G§'R and G9TR which
provide adversaries with access to an oracle O, whose behavior varies depending
on the underlying game system. For b € {0,1}, O behaves as follows:

Encryption Oracle: Og(type € {sig, sim}, 4;, V,m,C)
For game system GgTR, the oracle behaves as follows:
L. Let o= (v1,...,vp) and §'= (s1,...,5y), where, for i {L,...,|V]}:

Orrx (Vi) ifV;eC

(Orpr(V;), L) otherwise;
2. (co,c1) < (I.Epy(sski, v, m), II. Forge,, (spk;, U, m, 5));
3. If b = 0, output ¢ if type = sig and c; if type = sim; otherwise, if
b =1, output c;.

= (viy8i) =

Definition 14 (Off-The-Record). For b € {0,1}, game system GOTR provides
an adversary A with access to oracles Opp, Osk, Ork, Ospi, Orpr, O and
Op. A wins the game if it outputs a guess bit b’ with b’ = b and for every query
(type,Ai,V,m,C) to O, and letting ¢ be the output of O, all of the following
hold: 1. C C Set(V); 2. for every query Bj to Oyk, Bj & Set(V) \C; 3. for all
queries Op(Bj,c’), ¢ # c. A’s advantage in winning the Off-The-Record security
game is

Adv°™R(A) == [Pr[AGJ™® = win] + PrlAG{™R = win] — 1|.

We say that an adversary A (eotr,t)-breaks the (ng,ng,dg,qg,qp)-Off-The-
Record security of IT if A runs in time at most ¢, queries Ogk, Ospr, Op and
Op on at most ng different senders, queries Ork, Orpr, O and Op on at
most ng different receivers, makes at most qg and gp queries to O and Op,
respectively, with the sum of lengths of the party vectors input to O being at
most dg, and satisfies AdeTR(A) > eoTr. Finally, we say that IT is

(€cOm €Cons; EUnforg s €(IND+IK)-CCA-22d2 ; EOTR
t? ns,ngr, dE7 qE, qD)—secure,
if no adversary A: 1. (ecor, t)-breaks the (ng,ng,dg, qg, ¢p)-Correctness of IT;
2. (£cons, t)-breaks the (ng,nr, dg, ¢, gp)-Consistency of IT; 3. (€unforg, t)-breaks
the (ns,nr,dEg, qr, qp)-Unforgeability of IT; 4. (€npik)-cca-own, t)-breaks the

(nr,dg, qE,qp)-(IND + IK)-CCA-2293P security of IT; or 5. (¢oTR,t)-breaks the
(ns,nr,dE, 98, ¢p)-Off-The-Record security of IT.

6.2 Construction of MDRS-PKE with Short Ciphertexts

Maurer et al. give a black-box construction of an MDRS-PKE scheme from a
PKEBC scheme, an MDVS scheme, and a strongly unforgeable one-time Digital
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Signature Scheme [20},21]. At a high level, the construction |21, Algorithm 2]
consists of using the MDVS scheme to sign messages and the PKEBC scheme
to encrypt messages and their MDVS signatures; the digital signature scheme
is used to tie MDVS signatures and PKEBC ciphertexts together (in the sense
that modifying either of them results in an invalid ciphertext). More concretely,
in their construction a sender key-pair consists of an MDVS signer key-pair,
whereas a receiver key-pair consists of an MDVS verifier key-pair and a PKEBC
key-pair. To encrypt a message m, a sender first samples a fresh DSS key-pair
(vk, sk) and then uses the MDVS scheme to sign the message, the vector of
PKEBC public keys of the receivers, and the verification key vk; next, it uses the
PKEBC scheme to encrypt the message, the MDVS signature, its own MDVS
public key and the vector of public MDVS verifier keys of the receivers; finally
the signer signs the resulting (PKEBC) ciphertext using the initially sampled
DSS secret key. The final ciphertext ¢ is then a triple consisting of the DSS
verification key vk, the PKEBC ciphertext ¢’ and the DSS signature ¢’ on ¢, so
¢ = (vk,o’,c'). Conversely, to decrypt an MDRS-PKE ciphertext ¢, a receiver
first verifies the validity of the DSS signature ¢’ on the PKEBC ciphertext ¢
with respect to the DSS verification key vk included in ¢; if the verification is
successful, the receiver then decrypts the PKEBC ciphertext, obtaining not only
the vector of PKEBC public keys of the receivers, but also a signer’s MDVS
public key (of the sender), a vector of MDVS verifier public keys (of each of
the receivers), a message m, and an MDVS signature o; then, it uses its MDVS
secret verification key to check if o is a valid MDVS signature on the message m,
vector of PKEBC public keys obtained from decryption and the DSS verification
key vk, with respect to all the MDVS public keys obtained from decrypting the
PKEBC ciphertext. For completeness, we present Maurer et al.’s MDRS-PKE

construction in [Algorithm

Security of the Resulting MDRS-PKE Scheme. The MDRS-PKE notions intro-
duced in this paper capture the security of MDRS-PKE schemes in the setting
where the adversary is allowed to corrupt parties (obtaining their secret keys)
adaptively. While this is not the case for the analogous notions considered in [21],
we note that, apart from the IND-CCA-2 and IK-CCA-2 security notions |21, Defi-
nitions 9 and 10] and corresponding security proofs, the remainder of the security
notions they consider (or their security proofs) do allow the adversary to corrupt
parties adaptively.

On the other hand, and in contrast to the (IND + IK)-CCA-2242P and OTR
security notions for MDRS-PKE schemes considered in this paper, the original
notions from [21] do not capture the setting where the adversary is given access
to the secret keys of senders (see [21, Definitions 9, 10 and 11]). Regarding
Off-The-Record, and as noted in [20, Remark 12], if one assumes the underlying
MDVS scheme satisfies the stronger off-the-record notion we consider in this
paper—wherein the adversary is given access to the sender’s secret key, see [Defi]
[nition 4}then the resulting MDRS-PKE scheme also satisfies the corresponding
stronger Off-The-Record notion (i.e. the one we consider in this paper, see

32




Algorithm 7 Construction of IIyjprs-PKE-

S(1%)
PPypvs — Hupvs.S(1%)
PPrkenc — ITPkEBC-S(17)
return pp := (PPypys: PPriEBc: 1)

Gs(pp)
(sPkypvs, sskmpvs) < ITmpvs. Gs (PPypvs)
return (spk := spky;pyg, S5k = (spk, sskmpvs))

Gr(pp)
(vPkypvs, vskmpvs) < IIvpvs.Gv (PPypvs)
(PkpkEpC) skpKEBC) < ITPKEBC- G(PPPKEBC
return (rpk := (vpkypvs, PhpkEpc), ISK = (rpk, (vskmpVvs, SkPKEBC)))

Epp(ssk, U = (rpky, ..., 1Pk 5), m)
UpkeBC = (TPK; -PhprEpc: - - - » TPK| 7| -PhprEBRC)
vpvs = (rpky . VPK\pyss - - - TPK 5] - VPEMDys)

(vk, sk) < ITpss. G(pp.1%)

o < IImpvs . Sigy,, o« (sskmpvs, Mbpvs, (UPKEBC, M, VK))
¢ + MpkeBC-Eppppc (FPKEBC, (SPRypys, TMDVS; ™, 7))
o’ +— HDss.Sigsk(C)

return (vk,o’,c)

Dy (rsk, ¢ := (vk, o', c))
if ITpss. Vfy,(c’,o’) = 0 then
return L
(TpkEBC, (SPK = sPkypyss MDVS, M, 0)) < HpkeBc-Deppyppo (Tsk.skpkesc, ¢)
if (UpkmBC, (SPK, DMDVS, m,0)) = LV |TpkeBc| # |OMpvs| then

return L

v = (('UMDV317 VPKEBC1), - - - (UMDVSWPKEBCpUPKEBC\EPKEBC\))

if rsk.rpk ¢ U then
return L

if IInvovs - Vivge oy (spk, vskmDVs, UMDVS, (VPKEBC, ™M, VK), 0) # valid then
return L

return (spk, ¥, m)

Forgepp(spk, U= (rpky, ..., rpk‘ﬁl), m, 5= (rski,...,rskyz))
UpKEBC = (rPk; -PkprEBC) - - - » TPK| 5| -PhpkEBC)
Umpvs ‘= (rpky .vPRypygs - - -
SMDVS == (rskl.vskMDVS, e
(Vk7 Sk) <+~ HDss.G(pp.lk)
o < IImpvs.Forgey,, oo (spkypyss UMDVS, (FPKEBC, M, VK), SMDVS)

C HPKEBC'EPPPKEBC (ﬁPKEBC7 (SpkMDVS7 UMDVS, M, C"))
0'/ < HDss.Sigsk(c)
return (vk, o', c)
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. In particular, the same argument used in the OTR security proof of
the MDRS-PKE construction (see [20, Section I.6]) also applies.

Putting things together, this means that all we need to prove is that Maurer
et al.’'s MDRS-PKE construction [20] is (tightly) (IND + IK)-CCA-224P gecure.
The following theorem gives an informal overview of the security properties of
Maurer et al.’s MDRS-PKE construction [20] in the setting where the signer’s
secret key leaks.

Theorem 3 (Informal). If

— ITpkggc is tightly correct, completely robust, consistent and is also (IND + IK)-
CCA-229P secure under adaptive corruptions;

— IIvipys s tightly correct, consistent, unforgeable, off-the-record, forgery inva-
lidity secure and message-bound validity secure (all under adaptive corrup-
tions) and has unique keys; and

— IIpss is tightly correct and 1-sEUF-CMA secure

then II\iprs.pKE 1S tightly:

. correct (see (20, Theorem 6, Remark 10, Section 1.1]);

. consistent under adaptive corruptions (see [20, Theorem 7, Section 1.2]);

. (IND + IK)-CCA-2292P secure ;

. unforgeable under adaptive corruptions (see [20, Theorem 8, Section I.3]);
and

5. off-the-record under adaptive corruptions (see [20, Theorem 11, Remark 12,
Section 1.6]).

B LW O~

We prove the (IND + IK)-CCA-2292P security of the MDRS-PKE scheme in
Appendix (Section B.4.1)).
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Appendix
A Game-Based Security Definitions

A.1 One Way Function Schemes

A One Way Function (OWF) IT is a pair IT = (S, F), where S is a Probabilistic
Polynomial Time Algorithm (PPT) and F'is a Polynomial Time Algorithm (PT).
The role of S is sampling values from F’s domain, whereas the role of F'is to
actually compute the function. which captures the security of OWF
schemes, makes use of oracles Oy and Og, which, for an OWF IT = (S, F) are
defined as:

Image Generation Oracle: Oy (i € N)
1. On the first call on index i € N, compute x <+ S(1*) and store (i, x,y =
F(z)); output y;
2. On subsequent calls, simply output y.
Submission Oracle: Og(i € N, z)
1. On the first call on i (to either this oracle or to Oy), compute x + S(1¥)
and store (i, x,y = F(x)); the oracle does not give any output;
2. On subsequent calls, the oracle simply does not perform any action nor
give any output.

Definition 15. Consider the following game played between an adversary A and
game system GOWF:

1. A9y :Os,

A wins the game if it makes a query to Og on an input (i,z) such that F(x) =
Oy ().

A’s advantage in winning the One Way Function security game is defined as
Adv®VF(A) == Pr]AGOWY = win].

An adversary A (eowr, t)-breaks the (n)-One-Wayness of OWF IT if it runs
in time ¢, queries oracles Oy and Og on at most n different indices ¢ € N, and
satisfies AdeWF(A) > cowr. We say IT is (eowr, t, n)-secure if there is no such
adversary.

A.2 Public Key Encryption Schemes

A Public Key Encryption (PKE) scheme IT with message space M is a triple of
PPTs IT = (G, E, D). Below we state the multi-user multi-challenge variants of
Correctness and IND-CPA and IK-CPA security for PKE schemes (first introduced
in [11] and [3], respectively). Throughout the rest of this section, let IT = (G, E, D)
be a PKE scheme with message space M. As before, we assume the game systems
of the following definitions have (an implicitly defined) security parameter k.

Definition 16| which captures the correctness of PKE schemes, provides
adversaries with access to oracles Opg, O and Op:
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Secret Key Generation Oracle: Ogk(B;)

1. On the first call on B;, compute and store (pk;, sk;) < G(1%); output
(ija Skj);

2. On subsequent calls, simply output (pk;, sk;).

Public Key Generation Oracle: Opg(B;)

1. (pk;, sk;) <= Osk(Bj); output pk;.

Encryption Oracle: Og(B;,m;r)

1. If r is given as input, encrypt m under pPk; (B;’s public key, as generated
by Opk) using r as random tape; if r is not given as input create a fresh
encryption of m under pk;

2. Output the resulting ciphertext back to the adversary.

Decryption Oracle: Op(Bj,c)

1. Decrypt c using sk; (B;’s secret key, as generated by Opk);

2. Output the resulting plaintext back to the adversary (or L if decryption
failed).

Definition 16. Consider the following game played between an adversary A and
game system GO

— AO9sk,0pk,0g,0p

A wins the game if there are two queries qg and qp to O and Op, respectively,
where qg has input (B, m;r) and qp has input (B;',c), the input ¢ in qp is the
output of qg, Bj = B;’, and the output of qp is not m.

The advantage of A in winning the Correctness game, denoted Adv®™ (A),
is the probability that A wins game G as described above.

A (computationally unbounded) adversary A (ecorr)-breaks the (n)-Correctness
of a PKE scheme IT if A queries Opg, O and Op on at most n different parties
and satisfies AdeO"(A) > ecorr-

The IND-CPA game systems provide adversaries with access to oracle Opg
described above, and to an additional oracle O which behaves as follows:

Encryption Oracle: Og(B;, mg, m1)
1. For game system Gg\'D'CPA, the oracle encrypts my, under B;’s public key,
pPk;, creating a fresh ciphertext c;
2. The oracle outputs the resulting ciphertext ¢ back to the adversary.

Definition 17. For b € {0, 1}, consider the following game played between an
adversary A and game system GND-CPA;

— b « A9Pk,0Or

A wins the game if b’ = b and for every query Og(B;, mo,m1), |mo| = |ma|.
We define the advantage of A in winning the IND-CPA security game as

AdvIND'CPA(A) = Pr[AG:)ND'CPA = win| 4+ Pr[AGND-CPA — yin] — 1|
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Similarly to the IND-CPA game systems, the IK-CPA game systems provide
adversaries with access to oracle Opx and to an oracle O which behaves as
follows:

Encryption Oracle: Og(B;,Bj1,m)
1. For game system G{')"CPA, encrypt m under B;y’s public key, pk;,
creating a fresh ciphertext c;
2. Output the resulting ciphertext ¢ back to the adversary.

Definition 18. Consider the following game played between an adversary A and
game system GY<-CPA with b € {0, 1}

— ) «— AOPk,Or

A wins the game if b’ = b.
We define the advantage of A in winning the IK-CPA security game as

Ado" " PA(A) == |Pr[AGE ™ = win] + Pr[AGY“™ = win] — 1|,

We say A (einp.cpa, t)-breaks (resp. (€ik.cpa, t)-breaks) the (n,gg)-IND-CPA
(resp. (n,qg)-IK-CPA) security of a PKE scheme IT if A runs in time at most
t, queries the oracles it has access to on at most n different parties, makes
at most gg queries to oracle O, and satisfies Adv'ND'CPA(A) > einp-cpa (Tesp.
Adv"™PR(A) > eicpn).-

Finally, IT is (€corr, EIND-CPA, EIK-CPA, T, 1, ¢ )-secure if no adversary A (ejnp-cpa,
breaks the (n, gg)-IND-CPA security of IT nor (eik.cpa,t)-breaks the (n, ¢g)-IK-
CPA security of II, and no (possibly computationally unbounded) adversary
(ecorr)-breaks the (n)-Correctness of II.

A.3 Symmetric Encryption Schemes

A Symmetric Encryption (SKE) scheme IT with message space M is a triple of
PPTs II = (G, E, D). Below we state the (Perfect) Correctness notion and the
IND-CPA security notion for SKE schemes. Throughout the rest of this section,
let IT = (G, E, D) be an SKE scheme. As before, we assume the game systems of
the following definitions have (an implicitly defined) security parameter k.

Definition 19. Consider a SKE scheme II = (G, E, D) with message space M.
We say II is correct if for every m € M and every key keyn € Supp( G(1%)):

Pr[D(ksyn, E(ksyn,m)) = m] = 1.

The (One Time) 1-IND-CPA game systems provide adversaries with access
to oracle Ok described above, and to an additional oracle O which behaves as
follows:

Encryption Oracle: Og(i € N,mg, my)
1. For game system G%)"ND‘CPA, the oracle encrypts myp under the i-th key,
k;, creating a fresh ciphertext c;
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2. The oracle outputs the resulting ciphertext c.

Definition 20. For b € {0, 1}, consider the following game played between an

adversary A and game system G 'ND-CPA;
— U« A%"
A wins the game if b’ = b and for every query Og(i,mo,m1), |mo| = |m1| and

there is no other query to Og on the same indez i.
A’s advantage in winning the (One Time) 1-IND-CPA security game is defined
as

Ady!ND-CPA(A ) |Pr[AGIIND-CPA — yin] 4 P{AGIND-CPA — yin) 1.

We say A (£1.IND-cPa, t)-breaks the (¢g)-1-IND-CPA security of an SKE scheme
IT if A runs in time at most ¢, makes at most gg queries to oracle O and satisfies
Adv™™NP-PACAY) > 1 inpocpa.

Finally, we say IT is (e1.nD.cpa, t, gr)-secure if IT is perfectly correct (see

Definition 19) and no adversary A (e1.np.cpa,t)-breaks the (gg)-1-IND-CPA

security of I7.

A.4 Non Interactive Zero Knowledge Schemes

For a binary relation R, let Ly be the language Lr = {z | 3w, (z,w) € R}
induced by R. A Non Interactive Proof System (NIPS) for Lg is a triple of PPT
algorithms I = (G, P, V) where:

— G(1%): given security parameter 1%, outputs a common reference string crs;

— Pers(z,w): given a common reference string crs and a statement-witness
pair (z,w) € R, outputs a proof p;

— Vers(z,p): given a common reference string crs, a statement x and a proof p,
either accepts, outputting valid (= 1) or rejects, outputting invalid (= 0).

In the following definitions, let IT = (G, P, V) be a NIPS for a relation R,
and let k be the security parameter. The security notions below (Definitions
and provide adversaries with access to oracles Og and Oy, defined as:

CRS Generation Oracle: Og
1. On the first call, compute and store crs < G(lk); output crs;
2. On subsequent calls, output the previously generated crs.
Verify Oracle: Oy (z,p)
1. Compute b = Vers(x, p); output b.

additionally provides adversaries with access to an oracle Op:

Prove Oracle: Op(z,w)
1. Compute p = Peps(x,w); output p.

Definition 21. Consider the following game played between an adversary A and
game system G Complete .
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— AU9s,0p,0v

A wins the game if there are two queries qp and qy to Op and Oy, respectively,
where qp has input (x,w) and qv has input (z',p), satisfying x = x’, the input p
in qy is the output of qp, the output of qv is invalid, and (z,w) € R.

The advantage of A in winning the Completeness game, denoted Adv“™P*(A),
corresponds to the probability that A wins game GCO™Plete 45 described above.

We say that an adversary A (€complete, t)-breaks the (¢p, gy )-Completeness of
a NIPS scheme [T if A runs in time at most ¢, makes at most ¢p and gy queries
to oracles Op and Oy, respectively, and satisfies Advcomplete(A) > EComplete-

Definition 22. Consider the following game played between an adversary A and
game system G3°und:

— A9s,0v

A wins the game if there is a query to Oy on input (z,p), satisfying x ¢ Lg,
such that the oracle outputs valid.

The advantage of A in winning the Soundness game corresponds to the prob-
ability that A wins game G5 qs described above and is denoted Adv>°""(A).

An adversary A (esound, t)-breaks the (qy)-Soundness of a NIPS scheme IT
if A runs in time at most ¢, makes at most gy queries to Oy and satisfies
Adeound(A) > €Sound-

A NIZK scheme IT = (G, P, V,S = (Sg,Sp)) for a relation R consists of a
NIPS scheme IT' = (G, P, V) for R and a simulator S = (Sg, Sp), where:

— Sc(1%): given security parameter 1%, outputs a pair (crs, 7);
- Sp(ch,T) (w) given a pair (crs,T) and a statement z, outputs a proof p.

Consider a NIZK scheme IT = (G, P, V, S = (Sg, Sp)). The following security
notion, which defines game systems G&X and G4X, provides adversaries with
access to two oracles, Og and Op, whose behavior depends on the underlying
game system. For G£K (with b € {0,1}):

CRS Generation Oracle: Og
1. On the first call, compute and store crs < G(1¥) if b = 0 , and
(crs,T) + Sg(1¥) if b = 1; output crs;
2. On subsequent calls, output the previously generated crs.
Prove Oracle: Op(z,w)
— If b =0, output 7  Peys(z,w);
— If b =1, output 7 <= Sp(crs,r)(2)-

Definition 23. For b € {0,1}, consider the following game played between an
adversary A and game system G£K:

— b « A9s:0p
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A wins the game if b = b and every query Op(x,w) satisfies (x,w) € R.
The advantage of A in winning the Zero-Knowledge security game for II is

Adv™(A) =|Pr[AG3" = win] + Pr[AG3X = win] — 1|.

We say that an adversary A (ezk,t)-breaks the (¢p)-ZK security of a NIZK
scheme [T if it makes at most gp queries to Op and satisfies AdUZK(A) > 7K.
We now introduce Simulation Soundness for NIZK [24]. The game system

defined by this notion provides adversaries with access to oracles Og, Op and
Oy defined as:

CRS Generation Oracle: Og
1. On the first call, compute and store (crs,7) < Sg(1¥); output crs;
2. On subsequent calls, output the previously generated crs.
Prove Oracle: Op(z)
1. Compute p = Sp(crs,r)(7); output p.
Verify Oracle: Oy (z,p)
1. Compute b = Virs(z, p); output b.

Definition 24. Consider the following game played between an adversary A and
game system GSS:

— A9s,0p,0v

A wins the game if it makes a query Oy (x,p) with x € Lg that outputs valid
and no query Op(x) output p.

The advantage of A in winning the Simulation Soundness game, denoted
AdeS(A), is the probability that A wins game G as described above.

An adversary A (ess,t)-breaks the (¢p, gy )-Simulation Soundness of a NIZK
scheme [T if it makes at most ¢p and gy queries to Op and Oy, respectively,
and satisfies Adv>®(A) > ess.

Finally, we say that a NIZK scheme IT is (€complete, ESounds EZK, €SS &5 Py GV )-
secure if no adversary A (Ecomplete, t)-breaks the (¢p, gy )-Completeness of IT,
(Esound; t)-breaks the (qy )-Soundness of 1T, (ezk, t)-breaks the (gp)-Zero-Knowledge
of IT, or (ess, t)-breaks the (gp, gy )-Simulation Soundness of IT.

B Full Proofs

B.1 Helper Claims

We now establish two (straightforward) results that allow to simplify the MDVS
and PKEBC security proofs ahead.
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B.1.1 One Way Function Image Collision Resistance

Definition 25 (n-Instance e-Image Collision-Resistance). A OWF II =
(S, F) is n-Instance e-Image Collision-Resistant if

T < HS(lk)
Pr | |{II.F(z1),...,I1.F(z,)}| <n <e.
T, + I.5(1F)

Lemma 1. If IT is (eowr,t,n)-secure, with t Z n - (tg + tp)—where tg and
tr are, respectively, the times to run S and F—then Il is n-Instance -Image
Collision-Resistant, with € < 2 - eowp.-

Proof. To prove this result we give an adversary A" such that Q-AdeWF(A") > e.
Since Adv®WVF (A™) < eowr, it then follows that € < 2 - eowr.

Consider the following adversary A™. First, A™ samples an n bit long vector
5, each bit being picked independently and uniformly at random. For each index
i €{l,...,n}, if b; = 0 then A™ queries Oy on input 4, and sets y; = Oy (i),
and if b; = 1 then A™ samples an element x; from the domain of the one way
function I7.5(1%), saves z;, and sets y; = I1.F(z;). If there are no two indices
i,j € {1,...,n} such that b; # b; and y; = y;, A™ aborts. Otherwise, for the
least ¢ € {1,...,n} for which b; = 0 and there exists j € {1,...,n} with b; =1
and y; = y;, A™ makes a query Og(i, x;). Since algorithm F is deterministic, it
follows that I1.F(x;) = y; = y;, and so A™ wins the game.

Note that if there are two indices i, j € {1,...,n} with y; = y;, the only case
where A™ does not win the game is if b; = b;. Given this only happens with
probability at most % and this event is independent from the existence of two
indices ¢,j € {1,...,n} such that y; = y;, it follows 2 - AdeWF(A") >e. O

B.1.2 Public Key Collision Resistance
Definition 26 (n-Party ¢-Public Key Collision-Resistance). PKE scheme
IT = (G, E, D) is n-Party e-Public Key Collision-Resistant if
(pk,, ski) « I1.G(1%)
Pr | |{pky,....pk,}| <n <e.
(pk,,, sky,) + I1.G(1%)
Lemma 2. If IT is (Ecorr, EIND-CPA, EIK-CPA, T, 1, G ) -secure, with t Zn-tg+tp—

where tg and tp are, respectively, the times to run II.G and II.D—then II is
n-Party e-Public Key Collision-Resistant, with € < 2 - e\np-cpa + ECorr-

Proof. To prove this result we give two adversaries—A |5 ¢pa for the IND-CPA
security games and A& for the Correctness game—such that for these
adversaries

IND-CPA n,mo,mi Corr n,mo,mi
2. Adv (ANDcpa ) + Adv=" (ALTO™) > €.
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Since AdU'ND‘CPA(AmgL_‘EgE) < enp-cpa and Advco"(Ag(’:f"’ml) < €corr, it then
follows that € < 2 - inD-cPA + ECorr-
Consider the following adversary A g ¢pa" for the IND-CPA game of II. First,

Aot samples an n bit long vector b, each bit being picked independently and
uniformly at random. Next, A|N5'%pa queries Opg on each party B; for which
b; = 0 and sets pk; = Opg(B;). Similarly, A5 ¢ps samples a key pair using
I1.G for each party B; for which b; = 1 and sets (pk;,sk;) < G(1¥) (where k is
the security parameter). If there are no two indices 7,5 € {1,...,n} such that
bi # bj and pk; = pk;, A|N0"¢pa" aborts. Otherwise, for the least i € {1,...,n} for
which b; = 0 and there exists j € {1,...,n} with b; = 1 and pk; = pk;, A|i5 Cpa
makes a query Og(B;, mo, m1); letting ¢ be the output of this query, A5 Cpa
tries decrypting ¢ using sk; (here, j is assumed to be the least j € {1,...,n}
such that b; = 1 and pk; = pk;). Finally, A5 ¢ps outputs 0 if the decryption
resulted in mg, 1 if the decryption resulted in mq, and otherwise aborts.

The adversary Ag "™ for the Correctness game of IT uses oracle Opg
to sample all the n parties’ public keys. For each party B; and each possible
sequence r of random coins used by I1.E, AZ,*"™" makes queries Op(B;, mo;r)
and Og(B;, m1;r). Letting ¢y and ¢; be the respective outputs of the two oracle
queries above, A% makes queries Op(B;, ¢o) and Op(B;, ¢1).

Note that if there are two parties B; and B; with equal public keys, the only
case where A D ¢pa- may not win the IND-CPA games is when either b; = b; or

the scheme does not work correctly. Given Pr[b; = b;] < % and the probability
that the scheme does not work correctly is bounded by Adv®™ (AZ™0™1) it

Corr
follows 2 - Adv"™PPAATCI) + Adv T (AL > €. O

B.2 MDVS Construction Security Proofs

In this section we give the formal security theorems and the (corresponding) full

proofs for the MDVS construction given in

B.2.1 Proof of Correctness
Theorem 4. If IIpkg is
(EPKE-Corr EPKE-IND-CPA, EPKE-IK-CPA,
LPKE, N"PKE, (EPKE)-SECUTE,
and HNIZK 8
(ENIZK—CompIetey ENIZK-Sound; ENIZK-ZK, ENIZK-SS)
INIZK s QPN1ZK > 4V N1ZK ) -SECUTe,

then no adversary A (e, t)-breaks IT’s

(ny = npKE, qs = ¢rPNizk: v = qvNizk)-Correctness,

with € > ENIZK-Complete + EPKE-Corr and with INzk =t + tCorry where tcorr 18 the
time to run IT’s G game.

Proof. This proof proceeds in a sequence of games |4}[26].
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G s GI: G is just like the original game G except that in GT for each
signature o = (p,C, ¢pp) output by a query Og(A;, V,m), if Oy is queried on
any input (4, B;, V’,m’,a’) with (Ai,v,m,a) = (A, V’,m’,o’) and B; € v,
it no longer verifies p’s validity and simply proceeds as if it were valid.

Note that one can reduce distinguishing G and GZ to breaking IInizk’s
completeness: since the reduction holds the secret keys of every signer and of every
verifier, it can trivially handle any oracle queries. Furthermore, the reduction
makes at most one IINizk-Op query for each Og query, and at most one IInizk-
Oy query for each Oy query. Since A only makes up to ¢s < gpnizx queries

to Og and gy < qvnizk queries to Oy, it follows from that no

adversary (ENIZK-Complete; tN1zK )-breaks the (gpnizic; v N1z )-Completeness of
IIxizk, implying

1:)1'[_AG}|II = Win] - PI‘[JAG}COrr = win]’ S ENIZK-Complete-

GT « G2. Game GZ is just like GH, except that now for each signature
o = (p,, cpp) output by a query Og(4;, V,m), if Oy is queried on any input
(A, Bj, V'om!, a'), with (4;, V,m,a) = (A}, ‘_/",m’,a') and B; € V, and letting
I € {1,....|V]} be the least index such that B; = Vi, Oy no longer tries
decrypting ciphertext ¢, € (¢ 0,¢1,1)—where b is the secret bit in B;’s secret
key and (¢;,0,¢1,1) € ¢—and instead simply outputs 1 as if the decryption of ¢; 4
had output 1.

It is easy to see that one can reduce distinguishing these two games to
breaking Ilpkg’s correctness: since the reduction holds all secret keys, it can
handle any oracle queries. Noting that an adversary A can only query for the
verifier public keys of at most ny < npkg parties and since the reduction only has
to rely on ITpkp-Ogk oracle to generate at most one key-pair per party (namely,

(pky, skp)), it follows from [Equation B.1|that no adversary (epkg-corr)-breaks the

(npkg)-Correctness of ITpkg, implying
‘Pr[AG = win] — F’r[AGIII = win]‘ < EPKE-Corr-

To conclude, since no adversary can win game G2, Pr[AGZ = win] = 0. O

B.2.2 Proof of Consistency
Theorem 5. If IIpkg is

(EPKE—COrHEPKE—|ND—CPA7 EPKE-IK-CPA;

tPKE; "PKE, EpKE)-S€CUTE,
with npxe > 1, IINizk s

(5NIZK—Comp|ete7 ENIZK-Sound; ENIZK-ZK, ENIZK-SS)

INIZK  ¢PNIZK s 4V NIZK ) -SECure,
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HOWF 8

(EQWF, tOWFa ’IlOWF)—SGCUTe, (B5)

and Inizk-V is a deterministic algorithm, then no adversary A (e,t)-breaks IT’s
(ny = min(npkgr, NoWF), ¢v ‘= qvnizk ) - Consistency,

with € > 3 + EPKE-Corr + ENIZK-Sound + 2 - €owF and with tnizk, towr =t + tcons,
where tcons 45 the time to run IT’s GCons game.

Proof. We proceed via game hopping.

GCons o, GO G0 just like G°™ except that in Go the pkg key pair (pky, sko)
sampled for each party B; is assumed to be a correct one.

Note that one can reduce distinguishing these two games to breaking ITpkg’s
correctness: since the reduction holds all secret keys it can handle any oracle
queries. Furthermore, given an adversary A can only query for the verifier
public keys of at most ny < npkg parties and given the reduction only has to
rely on ITpkg-Ogk oracle to generate at most one key-pair per party—namely,

(pky, sko)—it follows from [Equation B.3|that no adversary (epkg-corr)-breaks the

(npkg)-Correctness of ITpkg, implying

’Pr[AGm = win] — Pr[AGC" = win]‘ < EPKE-Con-

GT +» G2: This game hop is just like the previous one (i.e. G ~» GO the
only difference being that the key-pair which is assumed to be a correct one is
now (pk,,sk;). Hence,

Pr[AG = win] — PI"[AGIII = win]| < epKkE-Corr-

G2« GB: This step is similar to the previous ones, except that this time the
key pair that is assumed to be a correct one is the public parameters’ public key
and the corresponding secret key (i.e. the key pair sampled by II.5).

One can, once again, reduce distinguishing these games to breaking IIpkg’s
correctness: the reduction has all secret keys so it can handle any oracle queries.
In contrast to the previous reductions, this one only has to rely on the Ilpkg-
Opk oracle to generate a single key-pair. Since npxg > 1, it then follows from

Equation B.3|that no adversary (epkg-corr)-breaks the (1)-Correctness of IIpkg,

implying
‘Pr[AGB] = win] — Pr[AG = win]| < epKkE-Corr-
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GH s GB: Game GHis just G2 except that for each query Oy (4;, Bj, 17, m,o =
(p, G, cpp)) in GH it is assumed that if the NIZK proof p verifies as being valid
then (pp.pk, spk, ¥, m, G, ¢pp) € Lyipygade.

Once again, the reduction holds all secret keys and thus it can handle any
oracle query. Moreover, because the reduction has a witness for every statement it
has to produce a NIZK proof for, it can simply use IInizk.P to generate the NIZK
proofs. Regarding Oy queries, however, the reduction now relies on oracle IInizk-
Oy to verify the validity of each signature’s the NIZK proof. Given the reduction
only verifies at most one NIZK proof for each Oy query and since qv < qv Nz,
it follows from that no adversary (eN1zK-Sound; tN1ZK )-breaks the

(qv n1zK )-Soundness of ITNizk, and so

Pr[AGZ = win] — Pr[AGE = win]| < enizk_sound-

To conclude we now prove the following claim:
Claim. Pr[AGH = win] < 2- eowr.

Proof. An adversary A can only win G2 if it makes two queries to Oy on inputs
(A,Bj,v,m,a = (p, €, cpp)) and (A’,Bj’,f/”,m’,o”) satisfying (A,V,m,a) =
(A, V'.om/, o') and B;,B;' € V, and one of the queries outputs 1 while the other
outputs 0.

Given IINizk.V is a deterministic algorithm and one of the queries outputs
1, the NIZK proof p in the signature input to the Oy queries verifies as being
valid both times. Furthermore, for the least i,i’ € {1,...,|V|} such that V; = B;
and Vi;r = Bj’, by the correctness of B;’s and B;"’s key pairs, ¢;, and ¢;/ p are
encryptions of two different bits—b being the bit in B;’s secret key, and b’ the bit
in B;"’s secret key. By the soundness of ITnizk it follows (pp.pk, spk, 7, m, G, ¢pp) €
Lyipygae. On one hand, this implies ¢y is an encryption of a plaintext of the
form (m,b"”, ((b1,z1),...,(b;,x;))), and on the other hand, since Rypygatar <
Ryipvgedee_cons and ¢, and ¢y are encryptions of two different bits, either
x; is such that Howr.F(x;) € {v;.yo,vi-y1} or xy is such that Howr.F(zy) €
{vir.yo,vir.y1} (or both). The correctness of pp.pk implies that decrypting cyp
results in the plaintext above.

By if the adversary wins the game then it did not query Oy
on either B; or B;’. This in particular means that everything the adversary
sees is independent of B;’s and B;"’s secret key bits. Thus, if it is the case that
Howr - F(xi) € {vi-yo,vi-y1}, with probability at least %, Howr. F(x;) = vy,
where b :=1 — b and b is the bit in B;’s secret key. Otherwise, if Towr.F(zy) €
{vir.yo, vi.y1 }, with probability at least %7 Howr.F(zy) = vy .y, where b :=1—b
but this time b being the bit in B;"’s secret key. It is easy to see that one
can then reduce winning game G2 to breaking the security of the underlying
Ilowr by decrypting the ciphertext ¢y, of signature o. For each verifier B;, and
letting b be the bit in B;’s secret key, the yz image in B;’s public key is now
obtained via a query Iowr-Oy. Given ny < nowr, it follows from
that no adversary (eowr, towr)-breaks the (nowr)-security of ITowr, implying
PI"[AG]ZI = win] < 2-eowr. O
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B.2.3 Proof of Unforgeability
Theorem 6. If IIpkg is

(EPKE—COFI’75PKE—|ND—CPA7 EPKE-IK-CPA,

(B.6)
tPKE, "PKE, (EPKE)-SECUTE,
with npxe > 1, IINizk s
(ENIZK—CompIetm ENIZK-Sound) ENIZK-ZK; ENIZK-SS (B 7)
INI1ZK ;s ¢PNIZK > 4V NTZK ) -SECuTe,
and Iowr is
(eowF, toOwF, TOWF ) -Secure, (B.8)

with towr & nowr - (ts+tr) (where tg and ty are, respectively, the times to run
Howr.S and Howr.F) and with nowr > 1, then no adversary A (g,t)-breaks
II’s

(ns = max(nowr — nv,0),ny = min(npkg, max(nowr — ns,0)),

gs = min(gpnizk: 4EpKE), IV = qvNizk)-Unforgeability,

with € > (3 - €PKE-Corr T EPKE-IND-CPA) + ENIZK-zK + ENIZK-SS + 4 - owF, with
tPKE, towF A t + tunforg + ¢s " tsp + tse and with tnizk ~ t + tunforg, where
tUnforg 5 the time to run II’s GUrfere game and ts, and ts, are, respectively, the
runtime of IInizk-Sp and IINizk-Sa-

Proof. We proceed via a sequence of games [4126].

GUfere ., GI: GO is just like GU'8 except that in GH the pke key pair
(pky, sko) sampled for each party B; is assumed to be a correct one.

Note that one can reduce distinguishing these two games to breaking ITpkg’s
correctness: since the reduction holds all secret keys it can handle any oracle
queries. Furthermore, if an adversary A only queries for the verifier public keys
of at most ny < npkg parties and given the reduction only has to rely on Ilpkg-
Ogsk oracle to generate at most one key-pair per party—namely, (pk,, sko)—since

from [Equation B.6| no adversary (epkg.corr)-breaks the (npkg)-Correctness of

IIpkE, it follows

‘Pr[AGm = win] — Plr[AGrU”fOIrg = win|| < epkE-Corr-

GO s GZ: This game hop is just like the previous one (i.e. GUnforg Gm)7 the
only difference being that the key-pair which is assumed to be a correct one is
now (pk,,sk;). Hence,

Pr[AG = win] — Pr[AGI:l:I = win]| < epKkE-Corr-
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GZ «» GB: Game G is just like GZ except that in GB both the crs and the
NIZK proofs in the signatures output by Og are simulated (i.e. the crs is now
generated by IINizk.S¢ and the NIZK proofs are now generated by IINizk.Sp).

It is easy to see that one can reduce distinguishing these two games to breaking
IIntzk'’s Zero-Knowledge property, as the reduction holds all secret keys and
thus can handle any oracle queries. (Although the reduction does not have the
trapdoor for the crs, in case the crs is a simulated one, since it only has to prove
true statements it can rely on oracle IInizx-Op for generating the necessary
NIZK proofs.) Noting the reduction only has to generate at most one NIZK

proof for each Og query, since gs < gpyizx it follows from [Equation B.7) that no
adversary (enizk-zk, tnizk )-breaks ITnizk’s (¢pnizi)-ZK security, implying

PI‘[;&G}E = win] — PI‘[AG = win]’ S ENIZK-ZK -

G2 s G2: The only difference between games GH and G is that in game G2
ciphertext cyp is an encryption of m followed by a 0-bitstring of appropriate
length.

As before the reduction holds all secret keys and thus it can handle any
oracle queries (note that the secret key corresponding to the public parameters’
public key is never used by the scheme). Note that the reduction only relies
on the IIpkg-Opk oracle to generate one key-pair and only queries IIpkg-Og
at most once for each Og query. Hence, as npkg > 1 and gs < qppkg, it

follows from |[Equation B.6| that no adversary (epkg.inp-cpa,tpkE)-breaks the

(npKkE, ¢Epkg)-IND-CPA security of ITpkg, implying

‘Pr[AGIZI = win] — Pr[AGI:J’:I = win]| < epKE.IND-CPA.

GA s GB: This step is similar to steps GU"og o G and GT ~ G2, except that
this time the key pair that is assumed to be a correct one is the public parameters’
public key and the corresponding secret key (i.e. the key pair sampled by II.5).

Once again one can reduce distinguishing these games to breaking IIpkg’s
correctness: the reduction has all secret keys so it can handle any oracle queries.
In contrast to the reductions for the previous steps, however, this time the
reduction only has to rely on ITpkg-Opg oracle to generate a single key-pair.

Since npkg > 1, it then follows from [Equation B.6|that no adversary (epkg-corr)-
breaks the (1)-Correctness of IIpkg, implying

Pr{AGE = win] — Pr[AGHE = win]‘ < epKE.Con-
GH «» GB: Game G¥ is just like GZ except that now it is assumed that the OWF

image yo in each party’s public key is unique. From [Lemma 1| and [Equation B.§|
it then follows

‘Pr[AG = win] — Pr[AG = win}‘ < 2-e0WF.
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GE . GO Game GO is just like game G except that in GE, for each query
Ov(A;, Bj,V,m,0 = (p,C, cpp)), if the NIZK proof p verifies as valid and was

not output by a query Og(A;,V,m) it is assumed that

(Pppk7 SPk7 177 m, E’ Cpp) S LMDVSadap .

One can reduce distinguishing G& and G to breaking the simulation sound-
ness of IInizk. On one hand, since the reduction holds all secret keys, it can
handle any query to oracles Opp, Osk, Ovk, Ospk, Ovpk and Oy . Regarding
queries to Og, the reduction can rely on the IInizx-Op oracle to generate a
simulated NIZK proof (even though the NIZK proof is for a false statement,
see . On the other hand, each query to Oy is handled by using
the IInizk-Oy oracle to verify the validity of NIZK proof p. We now argue
that if there is a query Oy (A4,, B, V,m,o = (p, C, cpp)) such that the NIZK
proof p of o verifies as valid for statement (pp.pk, spk, ¥, m, ¢, cpp) € Lypygeder,
then either (pp.pk,spk,?,m,¢é, ¢pp) € Lypysaw, Or 0 was output by a query
Os(A/, V', m') with (A;/, V', m') = (A, v, m): if NIZK proof p in o was not out-
put by Og as part of a signature, then either (pp.pk, spk, ¥, m, ¢, ¢pp) € Lyipygue
or the reduction would win the simulation soundness game of the underly-
ing IInizk; if p was output as part of a signature o’ = (p,c,cpp’) by some
query Og(A;', V', m’) such that (Ai’,V',m’,E',cpp’) =+ (Ai,‘?,m,é',cpp) then p
was not generated for the same NIZK statement—in particular, note that we
are assuming all parties have a distinct OWF image yg in their public key—
implying that either (pp.pk, spk, ¥, m, ¢, ¢pp) € Lypys» Or once again the re-
duction would win the simulation soundness game of the underlying IINizk; it
is easy to see it only remains the case where some query Og(A;’, vV',m ) with
(A, V', m’) = (A;, V,m) output signature . Note that the reduction generates at
most one proof for each Og query and verifies one NIZK proof for each Oy query.
Because ¢s < ¢pnizix and qv < qvnizk, it follows from that no
adversary (enizk-ss, tnizk )-breaks the (¢pnizk, @v nizk)-Simulation Soundness
of IlNizk, and so

Pr[AGm = win] — Pr[AG = win]’ < ENIZK-SS-

To conclude we now prove the following claim:
Claim. Plr[AG]:ZI = win] < 2-eowr-

Proof. Recall that an adversary A can only win game GZ if it makes a query
Ov (4;, B, V.m,o = (p,é cpp)) that outputs 1, and A did not make any
query OS(Ai,V,m), Osk(Ai) nor any query Oyk(B;) for B; € V. This im-
plies that an adversary can only win GX if it forges a signature o such that
Ov(A;, Bj, V,m,o = (p, €, cpp)) outputs 1 and it did not query Og on (A;, v, m).
In other words, for every query Og(A;’, v/, m’), we have (4;, v, m) # (A, v/, m').
Note that all parties are assumed to have distinct public keys—since, as men-
tioned above, the OWF image 1, in each party’s public key is unique—and so
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for the adversary to win the game, the NIZK proof p in ¢ will have to verify
as being valid with respect to a NIZK statement that was never proven by
the Og oracle. From the simulation soundness of IInrzk it then follows that
(pp-pk, spk;, ¥, m, G, cpp) € Lypygae, Where spk; is A;’s signer public key and ¢/
is the vector of verifier public keys corresponding to vector of parties V. Taking
this one step further, note that Oy only outputs 1 if, in addition to the NIZK
proof p being valid, for the least i € {1,..., |‘7|} such that V; = By, ¢; is an
encryption of 1 (by correctness, where b is the bit in B;’s secret key). Since by
definition Rypygae C Rypysader mMatch [ BMDVS* o Unforgs this implies ¢pp is an
encryption of a plaintext (m/, b, (b1, 27),. .., (b},2]))) with z being such that

HOWFF(.’L';) S {Spk.yo7 Spk.yl7 V;-Y0, Ui-yl}-

The correctness of pp.pk further implies that decrypting cy, results in this
plaintext. By since the query is a winning one, the adversary could
not have queried Ogg on A; nor Oy g on Bj. This implies that everything the
adversary sees is now completely independent of A;’s bit b in its secret key and
Bj;’s bit b in its secret key; thus, the probability that either ITowr. F(z]) = spk.y;—
with b := 1—b, b being the secret key in A;’s secret key—or ITowr.F(x}) = v;.y5—
with b this time being the complement of the bit in the secret key in B;—is %
Given the correctness of pp.pk, one can then reduce winning G2 to breaking
the security of the underlying ITowr. For each signer and each verifier, letting
b be the bit in the party’s secret key, the y; image in the party’s public key is
now obtained via a query ITowr-Oy . Given ng < max(nowr — nv,0) and ny <

max(nowr — ns,0), it follows by [Equation B.8| that no adversary (eowr, towr)-

breaks the (nowr)-security of ITowr, implying Pr[AGE = win] < 2-eowp. O

B.2.4 Proof of Off-The-Record Security
Theorem 7. If Ilpkg is

(EPKE-CorryE PKE-IND-CPA; EPKE-IK-CPA,

(B.9)
LPKE, N"PKE, (EPKE ) -SECUTE,
with npxe > 1, INizk 8
(ENIZK—CompIetm ENIZK-Sound; ENIZK-ZK, ENIZK-SS) (B 10)
ENIZK , P N1ZK > 4V N1ZK ) -SECUTe,
and HOWF 8
(eowr, towF, nowF ) -secure, (B.11)

with towr 2 nowr - (ts +tr) (where tg and ty are, respectively, the times to run
Howr.S and Iowr.F) and with nowr > 1, then no adversary A (g,t)-breaks
II'’s

(nv = npkE, ¢s = min(¢epkr, ¢PNIZK )
av = qvNizk, v = qepkE)-Off- The-Record security,
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with € > 10 - epKE-Corr + 6 - EPKE-IND-cPA + 2 - (EN1ZK-ZK + ENIzZK-SS) + 4 - €OWF,
with tpkg ~ t + toTr + ¢s - tsp +1tsq, and with tNizk =~ t + toTr, where toTr 18
the time to run II’s GgTR game experiment (with § € {0,1}), and ts, and tg,
are, respectively, the runtime of Sp and Sg.

The proof of relies on an alternative signature verification procedure
that is defined in

Algorithm 8 Alternative signature verification algorithm for the OTR security
reductions. Below, skpp is the secret key corresponding to the public parameter’s
public key pp.pk.

Vifypp (sPK, VPK, Skpp, T, m, 0 := (p, &, Cpp))
if TNz - Vers ((pP-Pk, spk, ¥, m, C, Cpp) S L]ﬂD\/Sadap ; P) =1 then
(m’,b", (b1, @), - -+, (b, 1)) <= Ik Doy (Cpp)
fori=1,...,1l do
if vpk = v; then
return b

return 0

Proof. As before, we proceed in a sequence of games.
For any given adversary A, we bound A’s advantage

Adv°™R(A) = |PrAGS™ = win] + PrAGY™® = win] — 1],

by bounding, for 5 € {0,1}, the difference between the probability of A winning
GgTR and winning Gfg, and, for ¢ € {1,...,12}, the difference between the
probability of A winning G% and winning Giﬁﬂ. In other words, for 5 € {0, 1},
we bound

b

Pr{AGY™® = win] — Pr[AGY = win|

and bound, for i € {1,...,12},

Pr[AG% = win] — Pr[AG?l = win]

As we will see, games G%:ﬂ and Gq:ﬂ are perfectly indistinguishable; it follows

‘Pr[AGEOB] = win] + Pr]AGE = win] — 1‘ =0,
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implying
AdoOT(A) = [PIAGE™ = win] + PIIAGS™® = win] - 1]

< [Pr[AGY™ = win] — Pr[AGH = yin)

Ly

i=1,...,12

p>

i=1,...,12

Pr[AG{ = win] — Pr[AG,"™ = win]

Pr[AGil = win] — Pr[AG‘ril+1 = win]

+ .

Pr[AGO™R = yin] — Pr[AGY = win]

For 8 € {0,1}, game hops GgTR ~ G]:E7 GEE ~ G% G%l ~ G%, G%] ~ G%,
G% ~ G% and G% ~ G% are analogous to the ones given in the proof of
[Theorem 6| (see [Section B.2.3)), the only difference being that OTR game systems
now give the adversary access to the modified Og oracle instead of giving access
to the original one. Nevertheless, it is trivial to adapt the reductions given in the
proof of to this proof. We now proceed with the remaining ones.

G% ~ G%‘: Game G%l is just like game G% except that in G%‘, for each Oy query
where NIZK proof p in the input signature verifies as valid for the corresponding
statement, it is assumed that (pp.pk, spk, v/, m, €, cpp) € Lypysadar-

One can reduce distinguishing G%' and G%‘ to breaking the simulation sound-
ness of IInizk. On one hand, since the reduction holds all secret keys, it can
handle any query to oracles Opp, Osk, Ovk, Ospk, Ovpk and Oy . Regarding
queries to Og, the reduction can rely on the IInizx-Op oracle to generate a
simulated NIZK proof (even though the NIZK proof is for a false statement, see
. On the other hand, each query to Oy is handled by using the
IINizk-Oy oracle to verify the validity of NIZK proof p. At this point, it only
remains to show that distinguishing G% and G%‘ implies the reduction would win
the simulation soundness game for the underlying ITnizk scheme.

For every query Oy (4;, Bj, V,m,o = (p, G, cpp)) Where p verifies as a valid
NIZK proof (for the corresponding statement), we will assume from now on
that signature o was not output by a query Og(type, A;, ‘Zm,C) (as other-
wise by definition the adversary does not win the game). In case p was not
output as part of any signature output by Og then it was not output by the
underlying IInizx-Op oracle, and so, since it verifies as valid, either indeed
(pp-Pk, spk, U, m, C, ¢pp) € Lyipygaer OF the adversary breaks the simulation sound-
ness of IInizk. In case p was output as part of a signature o’ = (p, @, cpp’)
generated by a query OS(type,Ai/,V’7m’,C), then by assumption we have
(A, V’7m’,é*,cpp’) =+ (Ai,V,m,E',cpp). Given all parties have a distinct OWF
image yo in their public key, it follows that if (A;", V') # (A;, V) then either
spk; # spk,, or U # ¢'. However, in this case the NIZK proof p verified as valid
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for a statement that is different from the one proven by Og—and thus also dif-
ferent from any statement proven by the underlying IInizk-Op oracle—and thus
either (pp.pk, spk, ¥, m, C, ¢pp) € Lyipygsee OF the adversary breaks the simulation
soundness of IInizk. If (m/, &, cpp’) # (m, €, cpp) then once again the NIZK proof
p verified as valid for a statement that is different from the one proven by Og
(and thus either (pp.pk, spk, ¥, m, ¢, cpp) € Lypygaw or the adversary breaks the
simulation soundness of ITNizk).

To conclude, noting that the reduction only generates at most one NIZK
proof for each query to oracle Og and verifies at most one NIZK proof for
each query to Oy, it follows that since ¢s < gpnizx and ¢v < qvNizk, PY

Equation B.10|no adversary (enizk-ss, tnizk )-breaks IInizk’s (¢pnizis 4V NizZK )-

Simulation Soundness, implying

’Pr[AG = win] — PI“[AG%‘ = win]‘ < ENIZK-SS-

G%‘ ~ G%: While in game G%‘ queries to oracle Oy are handled by following the
normal signature verification procedure, in game G% these queries are handled by
following the alternative signature verification procedure given in

Since at this point we are assuming the perfect correctness of all ITpkg
key-pairs sampled by the game—which includes the public parameters public
key (and corresponding secret key) as well as the two IIpkg pairs sampled for
each party—and furthermore are assuming that if a NIZK proof p verifies as
valid for a statement (pp.pk,spk, ¥, m,¢,cpp) then it must indeed be the case
that (pp.pk, spk, ¥, m, €, ¢pp) € Lypygeser, it follows that G%‘ and G% are perfectly
indistinguishable:

|Pr[AG%| = win] — Pr[AG% = win]| = 0.

G% ~ G%: G]% is just like G% except that in G]% the ITpkg key pair (pky, sko)
sampled for each party B; is assumed to be sampled according to the original
IIpkg’s key-pair distribution.

Note that one can reduce distinguishing these two games to breaking IIpkg’s
correctness: since the reduction holds all secret keys it can handle any oracle
queries. If an adversary A only queries for the verifier public keys of at most
ny < npgg parties, and given the reduction only has to rely on IIpkg-Ogsk
oracle to generate at most one key-pair per party—namely, (pk07 sko)—since

from [Equation B.9[no adversary (epkg-corr)-breaks the (npkg)-Correctness of

IIpkE, it follows

‘Pr[AG% = win| — Pr[AG = win]’ < EPKE-Corr-

GJ% ~~ G%Iﬂ: This game hop is just like the previous one (i.e. G% ~ GJ%), the
only difference being that the key-pair which is assumed to be sampled according
to the original ITpkg’s key-pair distribution is now (pk,, sk;). Hence,

’Pr[AG — win] — Pr[AGTI — win]‘ < EPKE-Con-
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G%Iﬂ ~ GEEJ: The only difference between games G%Iﬂ and GDB:D is that in Gﬂﬁ:u
each signature o = (p,C, ¢pp) output by a query Og(type, A;, V,m,C) is such
that for all i € {1,...,|V|}, ciphertext ¢; p in the vector of ciphertexts ¢—where
b:=1—b, b being the secret bit of party V;—is an encryption of bit 0.

Once again, one can reduce distinguishing the two games to breaking the IND-
CPA security of the underlying scheme ITpkg: since the reduction holds exactly
the same secret information as it did in the last game, it can handle all queries
as before. Furthermore, as for each verifier the reduction only has to rely on
Ipkr-Opk to generate one public key and for each query Og(type, A;, 17, m,C)
the reduction queries IIpkg-Of at most |‘7| times, given ny < npkxg and dy <

qEpkE, it follows by [Equation B.9|that no adversary (epkg.iND-cPA, tPKE)-breaks
ITpkg’s (npkE, ¢Epky)-IND-CPA security, implying

’PY[AG%IH = win} — PI‘[AG%I' = win” < EPKE-IND-CPA-

G%Il ~ G%Z: The difference between games GDB:EI and GDB:ZI is that in G%Z each
signature o = (p,C, ¢pp) output by a query Os(type, A;, V,m,C) is such that
for all i € {1,...,|V|}, ciphertext ¢, ; in the vector of ciphertexts ¢ returns to
being an encryption of the same bit as it was in GEED, whereas c¢; ; becomes an

encryption of bit 0. -
Note that for any party B; the existence of a query Ogs(type, 4;,V,m,C)

with B; € 1% implies there is no query to Oy x on B; (and vice-versa). Thus all
the adversary sees is independent of B;’s secret key bit. It then follows that G%Il

is perfectly indistinguishable from G%Z, and hence
|Pr[AG5 = win] — Pr[AG = winH = 0.

GE2 s GI3: This step is analogous to step GO . GII, except that this time
B B B B
cip is an encryption of bit 0. It follows

PI“[AG = win} — Pr[AG%m = win] < EPKE-IND-CPA-

To conclude the proof, note that GDO:"ZI is perfectly indistinguishable from Gq:ﬂ,
as everything an adversary sees when interacting with either game is exactly the
same (independently of which game the adversary is actually interacting with).
Also, note that each intermediate game simply has to emulate the original game
towards A—with a few tweaks that, apart from the generation of a simulated
crs and the generation of simulated NIZK proofs, do not affect the time for
emulating the game. Letting totr be the time to run II’s GJ™ game experiment
(with g € {0,1}), ts, be the runtime of Sp and tg, be the runtime of Sg, it
follows

tpke ~ t +toTR +qs - tsp +tss,

tnizk =~ ¢+ toTrR-
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B.2.5 Proof of Message-Bound Validity
Theorem 8. If Ilpkg is

(€PKE-Corr7€PKE—|ND-CPA7 EPKE-IK-CPA, (B 12)

LPKE, NPKE, (EPKE)-SECUTE,

with NPKE 2 1, and HNIZK 8

(5NIZK—CompIete7 ENIZK-Sound; ENIZK-ZK, ENIZK-SS (B 13)

tN1ZK, 4P N1ZK > IV N1ZK ) ~SECUTe,
then no adversary A (e, t)-breaks IT’s
(qv = qvnizk)-Message-Bound Validity,

with € > EPKE-Corr + ENIZK-Sound aNd with tN1zK ~ t + tBound-Val, Where tBound-val
is the time to run IT’s GBound-Val game.

Proof. We proceed in a sequence of games.

GBound-Val _, G G js just like the original game GBound-Val "except that in GI
the key-pair consisting of the public parameters’ public key and the corresponding
secret key (i.e. the key-pair sampled by I1.5) is assumed to be a correct one. One
can reduce distinguishing GBond-Val and G to breaking ITpkg’s correctness: the
reduction has all secret keys so it can handle any oracle queries. Since npkxg > 1,
it then follows from [Equation B.12

’PI"[AGBO”"d'VaI = win] — Plr[AGIII = win]| < epKkE-Corr-

GO G2 s just like Gm, except that in G2 for each query
OV(Ainj7v7m7U = (p, €, cpp)),
if the NIZK proof p verifies as valid then it is assumed that
(pp-Pk, spk, U, m, €, Cpp) € Lypygader-

One can reduce distinguishing these two games to breaking IInizk’s soundness
because a reduction holds all secret keys and thus can handle any oracle queries.
Since each Oy query only requires the reduction to make one NIZK proof
verification query and because the adversary only makes up to qv < qvyNizk

signature verification queries, by it follows
Pr[AG? = win] — Pr[AGE = win]’ < ENIZK-Sound-

To finish the proof we now prove the following claim:
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Claim. For any adversary A
Pr[AG = win] = 0.
Proof. An adversary can only win G2 if it makes a query
Ov(Ai, Bj,V,m/,0 = (p, & cpp))

that outputs 1 and o was output by a query Og(4,, V,m) satisfying B; € Vv
and m’ # m. By the definition of II’s Sig algorithm (Algorithm , Cpp is an
encryption of a tuple (m, 1, &). The correctness of the public parameters public
key (and corresponding secret key) then implies that there is no sequence of
random coins 7’ such that cpp is an encryption of a (different) tuple (m’,v’, @")
(since m’ # m the tuples are different). But then this implies

(pp-pk, spk, T, m', €, ¢pp) & Lypysacss,

and because signature verification oracles in G2 are assumed to output 0 in such
casd™¥} it follows that no adversary can win G2. O

B.3 PKEBC Construction Security Proofs

In this section we give the formal security theorems and corresponding full proofs

for the PKEBC construction given in

B.3.1 Proof of Correctness
Theorem 9. If Ilpkg is

(SPKE—COFI'7€PKE—|ND—CPA7 EPKE-IK-CPA;

(B.14)
tpKE, NPKE, {EpKE, COIT)-secure,

with tpke £ NPKE - ta +tp (where tg and tp are, respectively, the times to run
IIpks.G and HPKE.D) and with npxg > 1, IINzk 18

(ENIZK-complete, ENIZK-Sound; ENIZK-ZK, ENIZK-SS) (B 15)

tNIZK, 4P NIZK > 9V N1ZK ) ~SECUTE,
and sy is
(ESKE—l—IND—CPA; tSKEa JESKE> COI’I’) -Secure, (BlG)
then no adversary A (e, t)-breaks I1’s
(n = npKE, ¢E = qPNIZK> 9D = Qv NizK )-CoTrectness,

with € > ENIZK-Complete T 2 - EPKE-IND-CPA + 3 * EPKE-Corr; With tN1zK & t+tcor—
where tcoy is the time to run IT7s GO game—and with t < tpkg.

Proof. We proceed in a sequence of games.

10 See the definition of IT’s Vfy algorithm: Algorithm
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G s GI: Game GT is just like the original game G, except that in GI
for each ciphertext ¢ := (p, ¢pp, G, Csyn) OUtput by a query OE(V,m), if Op is
queried on input (Bj, ¢) it no longer verifies p’s validity and simply proceeds as
if p would verify as being valid.

Games G and GZ are perfectly indistinguishable unless there is a query
Op(Bj,c) where ¢ was output by some query Og (‘7, m) such that B; € V, and
the verification of the NIZK proof p in ¢ fails. One can then reduce distinguishing
these games to breaking IInizk’s completeness: the reduction holds the secret
keys of every party, and so it can trivially handle any oracle queries. Noting the
reduction makes at most one IInizx-Op query for each Og query and at most one
IINzk-Ovy query for each Oy query, as A only makes up to qg < qpNzx queries
to Op and ¢p < qvnizk queries to Op, it follows from that
no adversary (€NIZK-Complete; IN1zK )-breaks the (¢pnizk, ¢v nzk )-Completeness
of IlN1zk, implying

Plr[AGrl:EI = win] — Plr[AGrCOrr = win]‘ < ENIZK-Complete-

GO s G2: G2is just like GI except that now there are no two parties with the
same public key. It follows from [Lemma 2| and [Equation B.14|that

Pr[AG2 = win] — Pr[AGT = win]| < 2 - epkE.IND-cPA + EPKE-Corr-

G2 s GB: GBis just like G2, except that now Op behaves differently. For each
query (Bj,c) to Op, where ¢ := (p, cpp, G, Csyn) is the output of a query (’)E(V, m),
Op now skips decryption attempts for every index i € {1,..., |‘7|} such that
Vi # B;.

Games GF and G2 are perfectly indistinguishable unless there is a decryption
query Op(Bj,c) where ¢ = (p, cpp, G, Csyn) Was the output of a query OE(V, m)
and for some i € {1,...,|¢]}, ciphertext ¢; o € ¢is an encryption of two different
values under pp.pk—one being pk; and the other being the public key pk; of
party V; € V. Note that one can reduce distinguishing these two games to
breaking ITpkg’s correctness. More concretely, the reduction only has to rely on
the underlying oracle IIpkr-Opk to generate a single public key (pp.pk), but
otherwise can handle any oracle queries since it holds all necessary secret keys.

Putting things together, since by [Equation B.14 no adversary (epkg-corr)-breaks
the (1)-Correctuness of ITpkg, implying

Pr[AGH = win] — Pr[AGE = win]’ < EpKE-Con-
GE « G2 Game GZ is just like G2 except that once again Op behaves

differently. Again, let ¢ == (p, cpp, G, Csyn) be the output of O when queried
on some input (V,m). If Op is queried on input (Bj,c) such that B; € V
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and letting i € {1,...,|V|} be the least index such that V; = B, and letting b
be the bit in B;’s secret key, Op no longer follows the procedure of trying to
decrypt c¢;p,1, reconstructing c; o and then decrypting c; 52 to obtain kgyn—the
IIskg’s symmetric key that was generated in the Og query. Instead, Op simply
proceeds as if this check (i.e. reconstructing ¢; o) succeeded for index ¢, and ¢; p 2’s
decryption resulted in kgyn.

It is easy to see one can reduce distinguishing these two games to breaking the
correctness of the underlying PKE scheme, similarly to the previous game hop (i.e.
G2 GE) The main difference is that now the reduction relies on ITpkr-Osi
to generate a key-pair for each party: for each party Bj, the reduction uses IIpkg-
Osk to generate key-pair (pk,, sky), where b is the bit in B;’s secret key. As
before, the reduction has access to all the secret keys, and thus it can handle any
oracle queries. Since A queries on at most n < npkg different parties, it follows

from [Equation B.14|that no adversary (epkg.corr)-breaks the (npkg)-Correctness

property of ITpkg, implying

‘Pr[AGE' — win] — Pr{AGP = win]| < epkr con

G2 s GB: GE s just like G® except that again Op behaves differently. Let
¢ = (p, cpp G, Csym) be the output of O when queried on some input (17, m). If
Op is queried on input (B, ¢) such that B; € V and letting i € {1,...,|V]|} be
the least index such that V; = Bj, Op no longer tries decrypting cgy, using Kgyn,
and instead simply proceeds as if the decryption had output the (¥, m) pair that
was encrypted by the Og query.

As before, one can reduce distinguishing the two games to winning the

correctness game of Iskg. It follows from that Ilskg is perfectly

correct, which implies
Pr[AGE = win] — Pr[AGE = win]’ =0.

Finally, noting that in GH any query Op(Bj,c)—where ¢ was output by a
query OE(V, m) with B; € V—must output (¥, m)— being the vector of public
keys corresponding to the vector of parties V—it follows

Pr[AGH = win] = 0.

O
B.3.2 Proof of Robustness
Theorem 10. If IIpkg is
€ -Corrs€ - - )€ -IK- )
(EPKE-Corr,EPKE-IND-CPA, EPKE-IK-CPA (B.17)

tPKE, NPKE, (EPKE)-SECUTE,

with tpkr L, npkE " tg +tp (where tg and tp are, respectively, the times to run

~

Ipkg.G and Ilpkg.D) and npxg > 1, then no adversary A (e,t)-breaks II’s
(n == nppkg)-Robustness, with € > 2 - epkg-IND-cPA + 2 * EPKE-Conr and t < lpKE.
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Proof. This result can be proven by following (some of) the arguments given in
the proof of [Theorem 9| (see [Section B.3.1)). More concretely, one would first hop
from the original GR® Robustness game to one where all parties are assumed
to have distinct public keys (see Gm), and then to one where decryption queries

for ciphertexts not meant for the decrypting party would simply output L (see
GH). 0

B.3.3 Proof of Consistency
Theorem 11. If IIpkg is

(€PKE—COrr7€PKE—|ND—CPA7 EPKE-IK-CPA,

(B.18)
LPKE, NPKE, (EPKE)-S€CUTE,
with npxe > 1, INizk 8
(ENTZK -Complete ENTZK -Sound , ENTZK-ZK » ENTZK-SS 5 (B.19)
IN1ZK s ¢PNIZK > 4V NIZK ) -SECUTE,
Iskr s
(ESKE-1-IND-CPA, ISKE, (ESKE ) -Secure, (B.20)

and Inizk -V is a deterministic algorithm, then no adversary A (e,t)-breaks IT’s

(n = npKE, 40 = qvNizK ) -Consistency,

with € > eN1ZK-Sound + 3 * EPKE-Corr aNd with tN1zk & t + tcons, where teons 1S the
time to run IT’s G game.

Proof. We prove this result via game hopping.

GCors o GI: Game G is just like the original game G, except that when-
ever Op is queried on an input (Bj,c), with ¢ = (p, cpp, G, Csyn) such that
(1%, pp-PK, Cpps €, Csyn) & Lpppcasr, the oracle outputs L.

It is easy to see that G¥ is perfectly indistinguishable from G unless
A makes a decryption query on a ciphertext ¢ = (p,cpp,C, Csyn) such that
the NIZK proof p verifies as being valid but the statement is not true (i.e.
(1%, pp.PK, Cpp; €, Csyn) & Lpkmpcedn). One can then reduce distinguishing these
two games to breaking the soundness of ITNizk, as the reduction holds the secrets
of all parties, and thus it can handle any oracle queries. Since the reduction only
has verify the validity of a NIZK proof for each query the adversary makes to
Op—which it does using the ITNizx-Oy oracle of the underlying security game—
and since the adversary can only make up to gp < gy nizx decryption queries,

it follows from [Equation B.19|that no adversary (en1zK-sound, tN1zK )-breaks the

(qv n1zK )-Soundness of ITNizk, implying

‘Pr[AGm = win] — Pr[AG®" = win]| < eN1zK-Sound-
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GT «» GZ: The only difference between G2 and GT is that in GZ the public
key of the public parameters (pp.pk) and the corresponding secret key skp, are
assumed to be correct.

It is easy to see that one can reduce distinguishing the two games to breaking
the correctness of IIpky: since the reduction holds all secret keys, it can handle any
oracle queries. Noting that the reduction only queries the underlying game for the
public key of a single party (which it does via the [Ipkgr-Opk oracle), it follows
from that no adversary (epkg-corr)-breaks the (1)-Correctness of

IlpkE, implying

‘Pr[AG — win] — Pr[AGP = win]| < epkE. conr

G2 GB: Game G2 only differs from G2 in that the key pair (pky, sko) of each
party B; is assumed to be correct.

Similarly to the previous step, one can reduce distinguishing the two game
systems to winning the correctness game of the underlying Ilpkg. Given the
reduction queries for at most one key for each party, since n < npkg it follows

from [Equation B.18|that no adversary (epkg.corr)-breaks the (npkg)-Correctness

of ITpkg, implying

‘Pr[AGB] = win] — Pr[AG = win]| < epKE-corr-

G2 s GZ: This game hop is analogous to the previous one (G]ZI ~ GB]) except
that now the key-pairs that are assumed to be correct are each party’s (pk,, sky)
key-pair.

GH . GB: GB differs from G in that in GH it is assumed that ITskp is perfectly
correct. It then follows from that

’Pr[AG = win] — Pr[AGH = win]’ =0.

To conclude this proof it only remains to prove the following claim:
Claim. For any adversary A, Pr[AG]E = win] = 0.

Proof. A wins G if it queries Op on inputs (B;,c) and (Bj,c) for some B;
and B; and some ciphertext ¢, and the first query outputs (¢,m) # L with
pk; € ¥ (where pk; is Bj’s public key) whereas the second outputs either L
or some (¢',m’) with (¢',m’) # (¢, m). Consider any two queries ¢p ; and ¢p ;
that A makes to Op on inputs (B;,¢) and (Bj, ¢), respectively, such that ¢p ;
outputs (v,m) with (¢,m) # L and pk; € 9. (If A does not make any two
queries satisfying these conditions, it does not win GE’]) In the following, let
¢ = (P, Cpp, G, Csym) be the input ciphertext of both ¢p; and ¢p ;.

To prove this claim we will first show that since ¢p ; outputs a pair (¥, m) # L
then cpp must be an encryption of m under pp.pk—i.e. for some sequence of
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random coins rp, we have cpp = Ipkr. E(pp.pk, m; 1pp)—and for 1 € {1,..., |7}
each ciphertext ¢; ¢ is an encryption of v; under pp.pk—i.e. for some sequence
of random coins 19, we have ¢; o0 = Ipke.E(pp.pk, vi; r1,0). Then, we will show
that if gp ; outputs some pair (',m’) # L, then it must be the case that
(v',m') = (¥,m). Finally, we will show that ¢p ; does not output L, implying
that it must output the same pair (¥, m) that was output by ¢p; (and so the
adversary cannot win the game).

First, since query ¢p ; does not output L, NIZK proof p verified as being
valid; the soundness of IIxizk implies (1%, pp.pk, cpp, €, Csyn) € Lpggpcasee. By the
definition of the decryption algorithm, it follows that for some [ € {1,...,|d},
the oracle decrypted ¢; 5,1 obtaining a sequence of random coins r; g such that
¢1.0 = Hpke.E(pp.pk, p;; 71,0)- By the correctness of pp.pk, there is no sequence
of random coins r such that ¢; 0 = IIpkg. E(pp.pk, pk’; ), for any pk’ # pk,. Since
(1%, pp.pk, Cpp, G, Csyn) € Lpgppcass, it then follows there are sequences of random
coins 752 and 7gym such that ¢;p0 = HPKE.E(ka-7HSKE.G(lk,rsym);rl,b’g). In
the following, let kegyn = IIskg. G(1F ,Tsym)- By the correctness of each party’s
(pky, sky) key-pair (where b is the bit in the party’s secret key) the decryp-
tion of ¢ 2 outputs kgy,. By the definition of the decryption algorithm, since
qp,; outputs (v,m), then the decryption of cgyy resulted in this same pair
(#,m). Again since (1%, pp.pk, ¢pp, €, Csyn) € Lpkppceer, and by the correctness
of IIskg it follows that there is a sequence of random coins rgy’ such that
Csyn = sk E(ksyn, (U, m); rsyn’). To conclude the first step of the claim’s proof,
once again since (1%, pp.pk, cpp, €, Csyn) € Lpkppcsir, Cpp 1S an encryption of m
under pp.pk and for k € {1,..., ||} each ciphertext ¢y ¢ is an encryption of vy
under pp.pk.

Recall that by assumption the output (¥, m) of query gp ; is such that Pk; € U.
Consider any [ € {1,...,|d]} with v, = pk;. Given (1%, pp.pK, Cpp. C; Csyn) €
Lpkgpow and letting kgyn be the same as above, it follows from the correctness
of each party’s (pk,, skp) key-pair (where b is the bit in the party’s secret key) that
if the oracle tries to decrypt c; 2 using B;’s secret key, the decryption will yield
ksyn- By the correctness of IIsky and since (1%, pp.pk, pp, €, Csyn) € Lprppcase
any decryption of ¢y under kg results in the same pair (¢, m). Noting that
the correctness of pp.pk implies that the oracle will not attempt to decrypt
any ciphertext cgp2 with vy # pk; (where k € {1,...,|t]})—since there is no
sequence of coins 7 such that ¢i o = ITpkgr.E(pp.pk, Pk;; r)—it then follows that
if gp ; does not output L, then it outputs the same pair as query ¢p ;.

To conclude the proof it only remains to show that query ¢p ; does not
output L. Since IInizk’s proof verification algorithm V is deterministic and
because query gp ; does not output L, the NIZK proof p in ciphertext ¢ also
verifies as being valid in query ¢p ;. Furthermore, on one hand, and as argued
above, the correctness of pp.pk implies the oracle will skip decryption attempts
for every index k € {1,...,|v]} such that pk; # vx. On the other hand, since
(1%, pp.pK, Cpp; € Csyn) € Lprppces and due to the correctness of B;’s (pk,, skp)
key-pair (where b is the bit in the Bj’s secret key), for each | € {1,...,|7]}
such that v; = pk;, decrypting ¢;p,1 would result in a sequence r such that
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ci,0 = Ilpke.E(pp-pk, pk;; 7). This means that for the least [ € {1,...,|v]} such
that v; = pk; the oracle will attempt to decrypt c;p2; as argued above, this
implies that on query ¢p ; the oracle will output the same pair (¥, m) as it did
on query ¢p ;, which concludes the proof of this claim. a

B.3.4 Proof of (IND + IK)-CCA-23%P Security
Theorem 12. If Ilpkg is

(5PKE—Corr75PKE-IND-CPAa EPKE-IK-CPA,

(B.21)
tPKE; "PKE, EpKE)-S€CUTE,
with npxe > 1, IINizk s
(5NIZK-CompIete75NIZK-Sound7 ENIZK-ZK; ENIZK-SS) (B 22)
INIZK  ¢PN1ZK s 9V NIZK ) -Secure,
and Ilskg 1s
(€SKE-1-IND-CPA, tSKE, ESKE) -S€cure, (B.23)

then no adversary A (e,t)-breaks HECEEBC s

(n = npxe — 2,dr = qepkg: ¢F = MiN(¢pPNzK, IESKE):
4D = qvnizi)-(IND + IK)-CCA-22%P security,

with

€ > (16 - epkB-Cor + 12 - epKE-IND-cPA + 8 - EPKE-IK-CPA)
+2 - (eN1zK-zK + ENIZK-Sound + ENIZK-SS)
+ 2 - ESKE-1-IND-CPA;
tPKE, ISKE R T+ tunD+iK)-cca-2x + B L5, + 15,

INTZK R~ T + L(IND1IK)-CCA-20020

ada

where (ND4IK)-CCA-2:0e0 1S the time to run the G(BINDJFIK)_CCA_2 ’ game experiment

of ITZEP . s (for any B € {0,1}), tg, is the runtime of IInxizk ’s Sp algorithm,
PKEBC P

and ts is the runtime of IIntzk ’s Sa algorithm.

The proof of relies on an alternative decryption procedure that
is defined in
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Algorithm 9 Alternative decryption algorithm for the (IND + IK)-CCA-2 security
reductions. Below, skpp is the secret key corresponding to the public parameter’s
public key (i.e. pp.pk) and pk is the public key of the party who is supposed to
decrypt c.

Dy (skpp, Pk, ¢ i= (P, Cpps C Csyn))
if IIN1zK - Vers ((lk»PPka Cpp» €, Coyn) € LPKEBCadamI)) = valid then
m <— HPKE-Dska Cpp)
for j=1,...,|¢l do
vj + ITpkE.-Dsiy, (cj,0)
¥ = (v1, ..., v7))
if pk € ¥ then > By IIpkg’s Correctness and ITnizk’s Soundness, (7, m) # L
return (¢, m)
return L

64



VA MI-ENds S Iyd

VdD-aNIFEMd s S 0

VdD>-aNI-T-EMS3
> 0

VA MIENds S Iyd

VdDI-aNIFdMd3 S 0

0= Ixd-"0a| uhsy fﬁi oi

VI MI-ENds S Iyd

VdD-aNIFEMd s S

1OD-EMd3 S [eUWLION]

H03-HMd 3 S |[RULION

MZ-MZING 5 wrs

PuUnoS-3ZINz < dd,

1oD-TMd3 S 199110))

0= 199110))

Hod-HMd3 S 199110))

FEEEEEEEEREEERES B

HO37HMd 3 % 11091100

[euttoN |feurioN | [ewioN [feutioN Txd-*da| ey |ixd-*oa| whsy|ixd-'da| O0ru|iyd-'da| 0| da|(dw‘da)|  dwu|"eH| reoy <qu

sd|enyep sd|enyep sd|enyep wd|onyep |[oneA | onfeA [onfep
Tyd-fxd|0xd-fxd| @Isy7| wd-dd oty p Qe @ ‘ uk d
. T9, 29 T'a's, 'ty 05 0 Y| ap| szIN|PHasH

SSOUIDDLION) QHEQNC ‘(O :WCVQQ

“(fus‘da) se ySus] aures oY) JO 9q 0} PIWNSSE ST () @ﬁ% ur pue ‘“™sy se yjguey oures oy
JO 9q 0} pawmnsse SI () oY} mm_mu ur ‘ooue)sul 10 ‘Y33ud] oyeridordde oAy 0) poWINSSE 9I8 dN[BA SUWIN[0D IOPUN () SAT[RA [[e ‘A[[eUl] "SUOI}onpal
A£91IM098 YdD-M| 9Y2 10] pasn AJuo axe s£oy orqnd aseyy ¥d'dd wogy Appuepuadepur pue sioy oryqnd serpred re wodj Apuepuadepur pajdures
(Aysouoy)) oxe yeyy s£oy orgqud @Iy omy oxe 'std pue Oxd ‘o[qe} oy Uy |q¢ — | =: q 91 ‘q Jo juowE[dWIOd O} SAIOUAP q pue ‘g4 jo Loy
101098 D1} JO 1Iq A1) SAYOULD q ‘A () Topun &% pue 1'% T'4%) T'0'% suumioo uy 1001100 A[3oojtad oq 0} powmsse st EMSJ IDYIOYM SOIBOTPUIL
HMSJT umnjoo (9091100 a1k (Ao orqnd suwmmod oY) 03 Surpuodsel10d) sired Aoy @My oY) IaT)oyM 9)BITPUIL Iyd-‘sd pue Oxd ‘wd ‘yd-dd
SUMWIM[0D :SSOUPDRII0)) {(UWN(od ey} 01 Furpuodsar1od 1x01107d o1y] Jo jred oty Aq) posn st Aoy orqnd jeym ojedrpul ¥d poureu SUWN[OD
pue ‘(umnjod yer) o3 Surpuodsor1od 1xo11Ydod o) Jo 4red o) Aq) poydAIous ST oN[eA JRYM 9)RIIPUL ON[RA POUIRU SUIN[0D—PO[PURY oIe
sortonb &) mor| sejeorpur 4 () m@ WILIOS[Y 098) oIMpoadold UorIdAIdep oAIIRILIOYR ST} SUIMO[[0] AQ Solienb UordAIoep se[puer] oures oY)
ety sojeorpur 99 searoym ‘empooord uordA10op rewIou oY) SUIMOTO] Aq sorrenb uorydA100p sorpuey owres oy ey} soyeorpur Hs—sorrenb
uor)dAI00p so[puey owres oY) Mo1] sajedipul :d() {(WIG) SO0 Paje[NUIS 10 ([eaY]) SOUO [eal are salienb () Aq yndino sjooxd o1y pue dd()
Aq mdino s> oY} IOYJOYM SOJRIIPUI :M7ZIN :SUWN[0)) .?um.@ soyads YOI M ‘MOI 9811 91} 0] 1dooxo) omred snotaold o) W01} SIOPIP
PLIQAY o3 MOy AJ0ads MOI DR JO S[[9D POPRIS-UOU ST, "dUIRS S, MOI snotadId o) pue owes s, MOI JRY} U0oMId( SUIYSIMSUNISIP Ul dSRIJURAPR
s ATesIoApe Ue ul punoq Ioddn ue ‘mol yors I0j ‘sejedipul uwnjod 3 o, ‘{1 ‘0} 2 ¢ ysm ‘&) owred prgAy © seyads smol Surmo[o] oy)

Jo yoeo Jum@ 410} 2 ¢ 107 ‘sogads MOI JSIY ST, "dWAYDS INO JO AJIMI0S g-yDD-(M| + ANI) 212 Suraoid 105 spriq4y jo eouenbag :T o[qe],




VdO-aNI-EMd 2 S 0 _mNm_U
Vdd-aNIFENd3 S _Mmmu
HodEMds S fmgioz =
SSMZINZ S ufs, &O
HOD-IMd3 S Qowiooi _HWU
HO>-IMd3 S (100110)) )
VdDMISENds S 7 Iyd _um_nu
VdO-aNI-EMd 3 0 &U
0= ?m;% 0'q’ fi 3 )




Proof. This proof proceeds in a sequence of game hops.

ada
For simplicity of notation, we will refer to G NDHIK)-CCA-2" g GgCA, for

B € {0,1}. For any given adversary A, we bound A’s advantage
Adp(IND +1K)-CCAZZ (7 - | PrAGS = win)]
+ Pr[AG§? = win] — 1|,

by bounding, for 5 € {0, 1}, the difference between the probability of A winning
GECA and winning G%l, and, for ¢ € {1,...,24}, the difference between the
probability of A winning Gg and winning G?l. In other words, for 8 € {0,1},
we bound

Pr[AG%CA = win] — PI“[AGEE = win]

b

and bound, for i € {1,...,24},

Pr[AGj; = win] — Pr[AG}"' = win|

Since G%E is perfectly indistinguishable from G%E,
‘Pr[AG — win] + Pr[AG® = win] — 1‘ ~0.

This then implies

AdyND + IK)-CCA-22%° (A) =

Pr[AGSCA = win] + Pr[AG%CA = win] — 1‘

Pr[AGSCA = win] — Pr[AGEl):I = win]

p>

<

Pr[AGf) = win] — Pr[AG6+1 = win]

i=1,...,24

+ Pr[AG{ = win] — Pr[AG™ = win]
i=1,...,24

+ [Pr[AGS? = win] — Pr[AGY = win]|.

The sequence of games is given in by summing up the differences of

the winning probabilities, one obtains
ada
Ady(ND +IK-CCAZ (A ) < 9. eqrp 1 iND-cPA

+ (16 - epKE-Corr + 12 - €PKE-IND-CPA + 8 - EPKE-IK-CPA)

+ 2 - (en1zK-zK + ENIZK-Sound + 2 - ENTZK-SS)-

We now justify each game hop in
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GECA ~ G%l: For g € {0,1}, one can reduce distinguishing GEE and GgCA to
breaking IIpkg’s correctness: the reduction holds the secret key of every party
and so it can trivially handle any oracle queries. Noting that the reduction only
has to query oracle IIpkxg-Osk on at most n < npgg key-pairs, since from

Equation B.21| no adversary (epkg-corr)-breaks IIpkg’s (npkg)-Correctness, it
follows

|Pr[AG§CA = win] — Pr[AGrl:EI = win” < EPKE-Corr-
GEE >

GZ

Analogous to GgCA ~ GEE

G%l:
G%l: By [Equation B.23| IIskg is perfectly correct, implying

|Pr[AGZ = win| — Pr[AGH = win]| = 0.

G% > G%: Similar to GgCA ~ GEE, except that this time the reduction only
has to query oracle IIpkp-Ogk on at most one key-pair; since npgg > 1 it then

follows by that
|Pr[AG%] = win] — Pr[AG% = win]’ < EPKE-Corr-

G2 GJ%]: Note that, for § € {0,1}, one can reduce distinguishing G% and
Gé to breaking the soundness of the underlying ITnizk: since at this point we
are assuming perfect correctness of both IIskg and Ilpkg, an adversary can
only distinguish G% from G% if it submits a decryption query for a ciphertext
¢ = (P, Cpp; C, Csym) such that the NIZK proof p verifies as being valid but the
corresponding statement is not true (i.e. (1%, pp.pk, cpp, €, Coyn) & Lpkppcsdn)- In
particular, since the reduction holds the secret key of every party B;—which
consists of B;’s public key pk;, the secret bit b; and the secret key sk,,—it can
handle any secret key queries. Moreover, it also holds the secret key corresponding
to the public parameter’s public key, it can handle any decryption oracle queries
by using the alternative decryption procedure defined in Noting
that the reduction queries the underlying IINizk-Oy oracle only once for each
Op query, if adversary A makes at most ¢p < qvnzx queries to Op, it follows
from [Equation B.22

’Pr[AG% = win] — Pr[AG = win” < ENTZK-Sound-

GL;" > G%: It is easy to see that one can reduce distinguishing these two games
to breaking IInizk’s Zero-Knowledge, as the reduction holds all secret keys
(including the secret key corresponding to pp.pk) and thus can handle any oracle
queries. (Although the reduction does not have the trapdoor for the crs, in case
the crs is a simulated one, since it only has to prove true statements it can rely on
oracle ITnizk-Op for generating the necessary NIZK proofs.) Noting the reduction
only has to generate at most one NIZK proof for each O query, if ¢r < gpnizK

then, since from [Equation B.22|no adversary (enizk.zk, tnizk )-breaks ITNizk’s

(gpNizKk )-ZK, it follows
’Pr[AG = win] — Pr[AG = Win” < ENIZK.ZK-
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G% ~~ G%l: Analogous to GECA ~ G%l, but the (pky,ski) key-pair of each
party is now assumed to be sampled according to the original ITpkg’s key-pair
distribution (induced by IIpkg.G), instead of being assumed to be correct; it
follows

|Pr[AGY = win| — Pr[AGH = win]| < epke cor-
G%‘ ~ G%: Analogous to G% > G%

G% ~ G%: One can reduce distinguishing G% and G% to breaking the IND-CPA
security of ITpkg. In contrast to prior reductions, this time the reduction does
not have, for each party Bj, both skg and sk;. However, since the scheme itself
discards one of the secret keys, namely sk; (with b := 1 — b, b being the bit in
the party’s secret key), the reduction can still handle Ogx queries by generating
itself the key-pair (pk,, skp) of each party and relying on the underlying oracle
ITpkE-Opk to generate public key pk;. This means the reduction can still handle
queries to Ogk. Regarding queries to Op, the reduction relies on the secret key
skpp corresponding to the public parameters public key as before. Regarding O
queries, note that although the reduction now has to prove NIZK statements that
it either does not have a witness for (in G%) or are even false (in G[%), since the
NIZK’s crs is a simulated one generated by the reduction, the reduction holds
the crs trapdoor 7 that allows it to simulate NIZK proofs without a witness.
Finally, if A only queries on at most n < npgkg different parties and queries

HIpkE-OF at most dg < qppky times, since from [Equation B.21|no adversary

(<‘5PKE-IND-CPA, tpKE)—breaks IIpkg’s (npKE, qEPKE)—”\ID—CPA security, it follows

|PI‘[AG% = win] - PT[AG = win]| S EPKE-IND-CPA -

G% ~ G%n: One can reduce distinguishing games G%m and G% to breaking
the IK-CPA security of ITpkg in a very similar way to the previous step (i.e.
G% ~ G%) The only difference is in how to handle Og queries: since now
we have to swap the public key used for encryption, we cannot simply swap
it with another party’s public key: on one hand it is crucial the reduction has
each party’s secret key in order to handle Ogk queries as before—and thus the
reduction cannot simply rely on ITpkp-Opk to create all public keys—and on
the other hand, note that when reducing to the IK-CPA security of the underlying
IIpkg scheme, if two parties, say B; and Bj/ have, respectively, bits b; and bj'
in their secret keys, and these bits are such that b; # b;’, then the reduction
cannot simply change the encryption public key of a IIpkg ciphertext from B;’s
public key pk;, to B;"’s public key Pk To avoid this issue we instead use two
additional public keys, pk, and pk; in the reduction, that are generated by the
underlying ITpkgr-Opk oracle and which become the new encryption keys. Since
the reduction queries on at most n < npkg — 2 different parties and queries
IIpkE-Op at most dg < qepgg times, it follows from that no
adversary
‘PI‘[AG = win] — PI‘[_AG}I%III = winH < EPKE-IK-CPA-
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G%Iﬂ ~ Gﬂﬁ:u: Note that, for any party B;, if the adversary makes a query

OE((%,mO) (V},ml)) where B; € Set(Vp) U Set(V;), then it cannot make any
query to Ogk on Bj, implying the adversary can never learn the secret bit in
B;’s secret key. This implies that G]:D:I is perfectly indistinguishable from G]ﬂII
Hence

|Pr [HII = win] — 1"[A(}|3|@:II = winH =0.

G%Il ~ G]IBZ: Analogous to G% ~ G%
G%Z ~ GDE’]: Analogous to G2 ~ GﬂﬁZII

®

GEE'] > G%Z': Note that one can reduce distinguishing these two games to breaking
the 1-IND-CPA security of the underlying IIskg scheme: since the reduction holds
exactly the same information as it did in the last few games, it can handle both
decryption oracle queries and secret key queries as before. Given that for each

query to Op the reduction queries IIskp-OF at most once, by it

follows

]Pr |I3] = win] — Pr[AGIBjZI = win]| < ESKE-1-IND-CPA-

5 5 % i% t 4
IR IR AR

$

: Analogous to GE

m%

§

: Analogous to G]EI ~ G%m

$

: Analogous to GEEI' ~ Gﬂﬂ:EI

: Analogous to G% ~

&3
: Analogous to G]% ~ GﬂﬁzII

$

§

: Analogous to GCCA ~ GEE
GCCA

: Analogous to ~

E%

G%Il > G%Zl: This step is similar to G% > G%, except that now the reduction
has to prove a false NIZK statement each time Op is queried. Although the
reduction does not have the trapdoor to the simulated crs, it can rely on the
IIn17-Op oracle to obtain these proofs. As before, since the reduction holds the
secret key of every party, it can handle any oracle queries. Given the reduction
only has to generate one NIZK proof for each Op query, and only has to verify
one NIZK proof for each Op query, since there are at most qg < gpnizi queries

to O and qp < qvnizk queries to Op, it follows by

|Pr %ﬂ = win] — r[AG = winH < ENIZK-SS-

Glﬁm ~ G%ﬂ: Analogous to G%l ~ G%
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G%ﬂ ~ G%Zl: Note that one can reduce distinguishing G%Zl and G%%] to breaking the

IND-CPA security of IIpkg. Noting that the reduction only queries the underlying

security game for one public key—mnamely pp.pk—and since the reduction queries

the underlying IIpkr-Of oracle at most dp < ¢ppgg times, it follows from
quation B.21

|PI‘[AG%E = win] - PI[AG = win]’ S EPKE-IND-CPA-

G%Zl ~ G%H: Analogous to G%ﬂ > G%Zl, except that the reduction only queries
the underlying IIpkg-OF oracle at most qp < qppky times.

To conclude the proof, note that each reduction simply has to emulate the
original game towards A—with a few tweaks that, apart from the generation of
a simulated crs and the generation of simulated NIZK proofs, do not affect the
time for emulating the game. Letting ¢ np4ik)-cca-2x=» be the time to run II’s
GgCA game experiment (with 8 € {0,1}), ts, be the runtime of IInizk’s Sp and
ts, be the runtime of IInizk’s Sg, it follows

lpKE, IskE = t + LunD+1K)-ccamw + B “tsp + 154,

INIZK T + L(IND+IK)-CCA-22d0 -

B.4 MDRS-PKE Construction Security Proofs

Below we give the (IND 4 1K)-CCA-2292P security proof of Maurer et al.’s MDRS-PKE
construction [20] for the new setting considered in this paper.

B.4.1 Proof of (IND + IK)-CCA-23%P Security

Theorem 13. If IIpkgpc is

(EPKEBC-Corr, EPKEBC-Rob; EPKEBC-Conss EPKEBC-(INDIK)-CCA-224% (B.24)

tPKEBC; "PKEBC, d EPKEBC: {EPKEBC» {DPKEBC ) -SECUTe,
IIvipvs is

(EMDVS-Corry€MDVS-Conss EMDVS-Unforg s EMDVS-OTR» EMDVS-Bound-Val s

IMDVS, RSMDVS: MV MDVS > ASMDVS > ISMDVS > 4V MDVS ) -SECUre,
(B.25)

and UDSS 18

(EDSS-Corr» EDSS-1-sEUF-CMA; tDSS; MDSS s S DSs > 4V pss ) -Secure, (B.26)
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then no adversary A (e, t)-breaks I1’s

(ns ‘= NSMDVS>

ng = min(npkEBC, MV MDVS),
dp = min(dppkesc, dsMpVs )

qdE = mln((IEPKEBC y dSMDVS> MDSS; 4SDss ),

¢p = min(¢pprERc: IV MDVS> quSS)) -(IND + IK)—CCA—2adap security,
with

€ > 2 (€DSS-1-EUF-CMA + EMDVS-Bound-Val + EPKEBC-Rob)

+ 4 - EPKEBC-Corr T EPKEBC-(IND+IK)-CCA-25

and with tpss, tMDVs, tPKEBC A T+ L(IND4+1K)-CCA-2260 , WHETE E(IND1IK)-CCA-220p S
. ada|
the time to run IT’s GUND +1K)-CCA-Z*Z 0 es.

Proof. Ciphertexts of our MDRS-PKE scheme are triples ¢ := (vk, o', ¢') where
vk and o’ are, respectively, a verification key and a signature of the underlying
IIpss, and ¢ is a ITpkgpc ciphertext. At a high level, our goal is to reduce an
adversary from distinguishing MDRS-PKE’s GSNDHK)_CCAQ and G(ll'\“:)JrIK)_CCA_2
games to one distinguishing the analogous games for (the underlying) ITpkgpc.
If the adversary makes a decryption query

Op(Bj,c = (vk,o',c)

where ¢ was output by a challenge query to O the reduction can simply output
test as this is a disallowed query; if ¢ was not output by a query to Og and the
PKEBC ciphertext ¢’ of ¢ was also not output (as part of any ciphertext output
by Of) then we can use the decryption oracle Op of the (IND + IK)-CCA-23¢2p
games of IIpkgpc. However there is a problem when ¢ was not output by any
challenge query but its ¢’ component was because this disallows us from using the
decryption oracle Op of ITpkgsc’s (IND 4+ IK)-CCA-2292P security games. To get
around this we will show—via a sequence of hybrids starting from GgNDHK)'CCA_z
and ending in Gﬂ, for 8 € {0, 1}—that such queries can be handled by simply
outputting |, thus enabling a reduction to the (IND + IK)-CCA-2293P security
of the underlying ITpkgpc scheme. Consider any query Op(B;,c = (vk,0’,))
such that ¢ was not output by a challenge query to Og but ¢ was (in the sense
above); the following hybrids highlight the main steps of the proof:

G%l: if any Op query output ¢* = (vk*,o’", ¢’™) with vk = vk*, Op outputs L;

G%: if any query OE((ALO,VE),mO), (Ai,l,v'l,ml)) output c* (vk*,0'", ")
with B; € V3 (and vk # vk*), Op outputs L;

G]%: if any query OE((AZ»’O,VO,mO),(Ai’l,le,ml)) output c¢* = (vk*,o’", ")
with B; € V3 and vk # vk*, Op outputs L.
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In G% we know how to handle any decryption queries for ciphertexts that were not
output by O but whose PKEBC component was, and hence we are (essentially)
set to make the final reduction to the (IND + IK)-CCA-229P security of ITpkgpc.
In the following, let 8 € {0,1}.

GUNDHIK-CCA-2 | G%l: The difference between Gnﬁ:I and GSNDHK)'CCAQ is that in
Gé some decryption queries are handled differently: when Op is queried on an in-
put (Bj, ¢ := (vk,0’, ) such that there is a query O ((A; 0, Vo, mo), (Aiq, Vi, my))
that output ¢* := (vk*,0’", ™) with ¢ # ¢*, ¢ = ¢’* and vk = vk*, Op simply
outputs L.

One can reduce distinguishing the two games to breaking the 1-seUF-CMA
security of IIpgs: since the reduction holds all MDVS and PKEBC secret keys
and can sign ciphertexts using oracle Qg from ITpgg’s GSEUF-CMA game it can
handle any oracle queries. If A only makes at most ¢g < min(npgss, gspsg) and

gp < qvpsg queries to O and Op, respectively, since from [Equation B.26| no

adversary (tpss, EDss-1-sEUF-cMa )-breaks the

(nDSS7 4sDss QVDss)-l-SEUF-CMA

of Ilpss, it follows

’Pr[AGEE = win] — Pr[AGE'\”)JF”Q'CCA'2 = win]| < €pss-1sEUF-CMA-

Gﬂﬂ:I > G%': In G%' some decryption queries are once again handled differently;
when Op is queried on an input (Bj,c¢ = (vk,0’,c’)) and there is a query
OE((Ai,Oa%amO)a(Ai,l;‘?l,ml)) that output c¢* := (vk*,o’", ™) with ¢ # c*,
d =", vk # vk*, and B; ¢ V_'Z;, Op outputs L.

One can reduce distinguishing G%l and GEE to breaking IIpkgpc’s robustness

(as defined in [Definition 7). The main things to note are:

1. a reduction to IIpkgpc’s robustness can access the secret keys of any party,
and so it can handle any oracle queries that an adversary may make;

2. for a query Og ((Ai,o, V%, mo), (A1, ‘7'17 ml)), the reduction can make a query
Ogr(A; g, ‘/_',;3, mg) to the robustness game of IIpkgpc; and

3. if a query Op(Bj, ¢ := (vk,0’,¢")) does not output L, then the decryption by
B, of the PKEBC ciphertext ¢ (that is part of ¢) did not result in L either.

If A only queries for at most ng < npkgpc different receivers, the sum of lengths
of the vectors input to Op is at most dg < dgppkepc, and A makes at most
de < ¢epkeac and ¢p < ¢ppkmpce queries to oracles O and Op, it follows

PI‘[AG = win] — PI‘[AG%] = Win] S EPKEBC-Rob-
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G%] ~ G%: In G% some decryption queries are handled differently: when
Op is queried on an input (Bj,c¢ = (vk,0’,c)) such that there is a query
OE((ALO,VE),mO),(Ai,l,‘?l,ml)) that output c¢* = (vk*,o'", ") with ¢ # c*,
vk # vk*, ¢ = ¢*, and B; € Vi, Op works as follows: let

(Spki,ﬁav_éMDvsvmﬁvJ)

be the plaintext that was encrypted by Ilpkgpc. £ under U_BPKEBC (which resulted
in ciphertext ¢’), where spk; 5 is A; 3’s public key,

Ubnpvs = (VPEMDVS1 g0 - - > VPEMDYS|7,)> and
Ubpkenc = (PKpkEBC18: - - 7kaKEBC|17|,ﬁ)

are, respectively, the vectors of _public MDVS verifier keys and public PKEBC
receiver keys corresponding to V3, and where

g HMDVS'SZ"qPPMDVS (SSkMDVSiﬁa VBMDVS? (U/BPKEBC7 mg, Vk)),

is an MDVS signature on (V3pkppc, Mg, VK), with ssknpvs; g being A; g's secret
MDVS signing key and vk being the DSS verification key in ¢; if the signature
o’ verifies as valid for ¢’ under verification key vk, oracle Op no longer decrypts
¢’ using IIpkgpc.D with B;’s PKEBC secret key, and instead simply assumes
decryption outputs

(VBpkERC: (SPK; 8, UBMpys: M8, T))-

One can reduce distinguishing the two games to breaking the correctness of
Ilpkgpc: since the reduction holds all MDV'S and DSS secret keys and has access
to all PKEBC secret keys (through the Ogk oracle of ITpkgpc’s Correctness
game), it can handle any oracle queries; for each Og ((Ai’o, Vo, mo), (Ai1, Vi, ml))
query, the reduction makes a query Og(4; s, V%, mg) to IIpkepc’s Correctness
game. If A only queries for at most ng < npkgpc different receivers, the sum
of lengths of the vectors input to O is at most dg < dgpkgrpc, and A makes
at most ¢gr < ¢rpkrpc and ¢p < g¢ppkgpc queries to oracles O and Op,

respectively, since from [Equation B.24{no adversary (tpkEBC, EPKEBC-Corr)-breaks

the (npKEBC, dEPKEBCv JEPKEBC» QDPKEBC)-COIIQCtneSS of HPKEB07 we have

’PI‘[AG% = Win] - PI‘[AG = win}‘ § EPKEBC-Corr-

G% ~ G%: In G% some decryption queries are handled differently: when
Op is queried on an input (Bj,c¢ = (vk,o’,¢')) such that there is a query
OE((Ai’O717E),m0),(Ai,l,ﬁ,ml)) that output ¢* := (vk*,o’", ™) with ¢ # ¢,
d =", vk # vk*, and B; € V,Zg, Op simply outputs L. Before moving to showing
that

’PI‘[AG% = win] — PI‘[AG% = Win] < EMDVS-Bound-Val
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(by explaining why one can make a reduction to the Message-Bound Validity
notion of the underlying ITypys scheme), we want to note that, at this point,
for any Op(Bj,c = (vk,o',¢')) query the adversary makes such that there
is a query to Og that output c¢* := (vk*,0'",¢") with ¢ # ¢* and ¢ = 7,
Op simply outputs L (i.e. we are essentially set to make the reduction to the
(IND + IK)-CCA-2342P security of the underlying ITpxgpc scheme).

G%] already outputs L for any query Op(Bj,c = (vk,o’,c’)) such that:

— there was a query (’)E((Aw, Vo, mo), (Aiq, Vi, ml)) that output ¢* == (vk*, o', ™)
with ¢ # ¢*, ¢ = ¢ and vk = vk* (see GgNDHK)_CCAQ ~ GJ:E)7 or

— there was a query (’)E((Aw, Vo, mo), (Aiq, Vi, ml)) that output ¢* == (vk*, o', ™)
with ¢ # ¢*, ¢ = ", vk # vk* and B; ¢ V[} (see GEE ~ G%])

Thus we only have to make sure that we can use the adversary to break the
message-bound validity of ITypys for the remainder of the queries, i.e. queries
to Op(Bj,c:= (vk,o’,c)) such that:

1. thereisno query Og ((Ai,o, ‘70, mo), (A1, Vi, ml)) that output c* == (vk*,o’", ")
with ¢ # ¢*, ¢ = ¢* and vk = vk*; and

2. there is no query Og ((Ai,07 Vo, mo), (Ai1, Vi, ml)) that output ¢* = (vk*,o'", ™)
with ¢ # ¢*, ¢ = ", vk # vk* and B; ¢ \/?/3; and

3. thereis a query Op ((As o, Vo, mo), (Aix, Vi, my1)) that output ¢* := (vk*,o’", ")
with ¢ # ¢*, ¢ =", vk # vk* and B; € 175

Note that since B; € V_';g and because we are assuming the correctness of IIpkggc,
the reduction does not need to attempt to decrypt ¢’, and instead can simply
assume that the decryption is

(U%PKEBC ) (Spki,67 U MDVS: M85 7)),

as explained in step G%] ~ G%—this is necessary because we need the MDVS
keys the reduction obtains from the decryption of ¢’ to match the ones from
the underlying GBound-Val " a9 otherwise we cannot win ITypys’s message-bound
validity gameﬂ on the other hand we are also assuming there was no query to
Op that output the same verification key vk. Since the ITpgg verification key
is part of the messages that are signed and/or verified using ITypvs, then if o
verifies as being a valid signature on (Upyppc: Ms, vk) with respect to sender
public key spk; ; and vector of verifier public keys v3ynyg using B;’s secret
verification key rsk;.vsk, the reduction wins the Bound-Val game of Ilyipvs
(see [Definition 5)). Finally, if A only queries for at most ng < ngypys (resp.
nr < nyupvs) different sender keys (resp. different receiver keys), makes up to
ge < gsmpys queries to O and up to gp < qyvypyg queries to Op, and the

1 Recall that an adversary can only win GB"-Va! if it makes a query to Oy on an input
(A;, B;j,V,m,o) where A; and B; are parties and where V is a vector of parties.
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sum of lengths of the party vectors input to O is at most dg < dgumpyg, since

from [Equation B.25|no adversary (empvs-Bound-val, tMDVs )-breaks the
(nsmpvs, v MDVS, dSMDVS: 4SMpvs» v vpvs )-Message-Bound Validity

of Ilyipvs, it follows

‘PI‘[AG% = win] — Pr[AG%l = win|| < eMDVS-Bound-Val-

G% ~ G%: The only difference between these games is that in G% the distribution
of PKEBC key-pairs returns to being the distribution induced by ITpkgpc’s G
algorithm. (This step is necessary to allow us to reduce an adversary distinguishing
G%] and G@ to one distinguishing IITpkgpc’s (;‘wgl\lDJrlK)_CCA'2 and G(IINDJFIK)_CCA_2
games.) It then follows

Pr[AGE = win] — Pr[AGH = win|| < epkrpc-con-

Finally, we can now reduce an adversary distinguishing G% and G]? to one
distinguishing the C%f)"\‘DJrIK)_CCA'2 and C%z(l"\‘D’LIK)'CCA'2 games of the underlying
IIpkepc scheme because we can handle all decryption queries—either by using
the Op oracle of ITpggpc’s (IND + IK)-CCA-229P games, or by outputting L. So,
if A only queries for at most ng < npggpc different receivers, the sum of lengths
of the vectors input to Op is at most dg < dgpkgrsc, and A makes at most
de < ¢epkerc and ¢p < gppgrpc queries to oracles O and Op, respectively,

since from [Equation B.24]that no adversary (tpKEBC, EPKEBC-(IND+IK)-CCA-2%0 )-
breaks the

(npkEBC, dEPKEBC: (EPKEBC: dDpKEBC)-(IND + IK)-CCA-22%P security

of HPKEBC, it follows

Pr[AGY = win] — Pr[AGH = win]| < EPKEBC-(IND+IK)-CCA-23d -

C Gaps in Security Proofs of Prior Work

In [8], Damgard et al. introduce an intermediate type of scheme, Provably
Simulatable Designated Verifier Signature (PSDVS) schemes, from which they
then construct a full-fledged MDVS scheme (see [8, Construction 1]). In this
section we provide details on two proof gaps: one in the proof of |8, Theorem 2]—
the theorem establishing the security of their PSDVS-based MDV'S construction—
and one in the proof of |8 Theorem 3]—the theorem establishing the security of
their PSDVS construction based on standard primitives.
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Issue with Consistency Proof of MDVS Construction from Standard Primitives.
The Consistency security notion given in |8} Definition 2] provides adversaries with
access to a signature verification oracle. Unfortunately, in the proof of [8, Theorem
2]—the security proof establishing the security of their MDV'S scheme construction
from PSDVS schemes (see [8 Construction 1])—it is not mentioned how the
reduction could handle signature verification queries. Furthermore, it is also not
clear how such queries could be handled, as the security notions for the PSDVS
scheme on which the consistency proof relies (see 8 Definitions 10, 13 and 15])
do not themselves provide an adversary with access to a verification oracle either.
Finally, we would like to note that it is desirable to provide the adversary with
access to such an oracle since signatures are not publicly verifiable; in particular,
the composable treatment of MDV'S schemes given in [19] requires the consistency
game to provide access to a signature verification oracle.

Issue with Verifier Signature Simulation Indistinguishability Proof of the PSDVS
Construction from Standard Primitives. In the proof of [8, Theorem 3]—which
establishes the security of |8, Construction 2], the PSDVS construction from stan-
dard primitives—and in particular in paragraph “VerSigSim Indistinguishability,
(Definition 11)”, it is argued that verifier simulated signatures are indistinguish-
able from real signatures generated by the signer due to the pseudorandomness of
the PRF underlying their construction. Unfortunately, the PRF’s secret seed is
part of the verifier’s secret key, and, according to [8 Definition 11}, the adversary
has access to the verifier’s secret key, making it unclear how one could actually
make a reduction to the pseudorandomness of the underlying PRF.
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