
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.46586/tosc.v0.i0.0-0

SAT-aided Automatic Search of Boomerang
Distinguishers for ARX Ciphers (Long Paper)

Dachao Wang1, Baocang Wang1� and Siwei Sun2,3

1 State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China,
mr.ongor@gmail.com, bcwang79@aliyun.com

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China,
sunsiwei@ucas.ac.cn

3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, China

Abstract. In Addition-Rotation-Xor (ARX) ciphers, the large domain size obstructs
the application of the boomerang connectivity table. In this paper, we explore the
problem of computing this table for a modular addition and the automatic search
of boomerang characteristics for ARX ciphers. We provide dynamic programming
algorithms to efficiently compute this table and its variants. These algorithms are
the most efficient up to now. For the boomerang connectivity table, the execution
time is 42(n − 1) simple operations while the previous algorithm costs 82(n − 1)
simple operations, which generates a smaller model in the searching phase. After
rewriting these algorithms with boolean expressions, we construct the corresponding
Boolean Satisfiability Problem models. Two automatic search frameworks are also
proposed based on these models. This is the first time bringing the SAT-aided
automatic search techniques into finding boomerang attacks on ARX ciphers. Finally,
under these frameworks, we find out the first verifiable 10-round boomerang trail
for SPECK32/64 with probability 2−29.15 and a 12-round trail for SPECK48/72
with probability 2−44.15. These are the best distinguishers for them so far. We
also perceive that the previous boomerang attacks on LEA are constructed with an
incorrect computation of the boomerang connection probability. The result is then
fixed by our frameworks.
Keywords: ARX · Boomerang · Automatic Search · SAT

1 Introduction
Differential cryptanalysis [BS91] is one of the most fundamental cryptanalytic technique
in symmetric cryptography. It studies the propagation of difference of the plaintexts, and
establishes the relation between the difference of plaintexts and that of ciphertexts. For
iterated ciphers based on S-boxes, the propagation through the S-box mainly determines the
security against differential cryptanalysis. The propagation for an n-bit S-box is typically
depicted by a 2n × 2n table Tddt, named the Differential Distribution Table (DDT).
For any pair (∆in, ∆out), the entry Tddt(∆in, ∆out) stores the number of x ∈ Fn

2 such
that S(x) ⊕ S(x ⊕ ∆in) = ∆out holds. The entry Tddt(∆in, ∆out) in Tddt means that
the input difference ∆in of S propagates to the output difference ∆out with probability
Tddt(∆in, ∆out) · 2−n. The whole table Tddt is constructed directly by enumerating all
possible values of ∆in and x.

In many cases, there is no differential characteristic with a high probability for the
entire cipher. The boomerang attack framework [Wag99] could be more suitable to the
cipher. This technique aims to concatenate two short differential characteristics to form
a distinguisher covering more rounds. In a boomerang attack, the target cipher E is

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.46586/tosc.v0.i0.0-0
mailto:mr.ongor@gmail.com
mailto:bcwang79@aliyun.com
mailto:sunsiwei@ucas.ac.cn
http://creativecommons.org/licenses/by/4.0/

Dachao Wang, Baocang Wang� and Siwei Sun 1

X1 X2

E0 E0

E1 E1

Y1 Y2

X3 X4

E0 E0

E1 E1

Y3 Y4

∆in

∆in

∇out ∇out

∆out

∆out

∇in ∇in

(a) Original attack.

X1 X2

E0 E0

E1 E1

Em Em

Y1 Y2

X3 X4

E0 E0

E1 E1

Em Em

Y3 Y4

∆in

∆in

∇out ∇out

∆out

∆out

∇in ∇in

(b) Sandwich attack.

Figure 1: Diagrams of boomerang attacks.

decomposed into E0 and E1, i.e., E = E1 ◦ E0, showed in Figure 1a. Suppose that
there is a differential characteristic (∆in, ∆out) with probability p for E0, and another
one (∇in,∇out) with probability q for E1. Meanwhile, the characteristics cover r0 and r1
rounds respectively. Then, under the assumption that these characteristics are independent,
the expected probability of the boomerang distinguisher is

Pr[E−1(E(X1)⊕∇out)⊕ E−1(E(X1 ⊕∆in)⊕∇out) = ∆in] = p2q2.

The number of rounds covered is r0 + r1.
However, pointed out by Murphy, this simple concatenation may result in an invalid

distinguisher [Mur11]. Several works have studied the compatibility of two character-
istics [BDD03, BK09, DKS14, Leu12]. Most of the observations are captured by the
sandwich attack framework proposed in [DKS14]. In this framework, the cipher is regarded
as a composition of three parts, i.e., E = E1 ◦ Em ◦ E0, where Em typically contains
short transformations, depicted in Figure 1b. Two short differential characteristics are
still needed for E0 and E1. For Em, a short boomerang characteristic is applied whose
probability is

pm = Pr
[
E−1

m (Em(X1)⊕∇in)⊕ E−1
m (Em(X1 ⊕∆out)⊕∇in) = ∆out

]
.

For ciphers based on S-boxes, the computation of this probability is reduced to that of a
single S-box when Em is a single round. This idea was proposed in [CHP+18], where the
switching effect was described by a new table of size 2n×2n, called Boomerang Connectivity
Table (BCT). It further enables the automatic search of boomerang characteristics. Similar
to DDT, BCT can also be constructed by enumerating. Later, Orr Dunkelman provided
an improved algorithm to construct the table in O

(
22n
)

time for an n× n S-box [Dun18].
When BCT meets the Addition-Rotation-Xor (ARX) ciphers, everything become

difficult. ARX ciphers are composed of only three operations: additions modulo 2n,
rotations and XOR operations. The rotation and XOR operation are linear operations,
while the modular addition is a nonlinear operation. Following the sandwich attack
framework, the simplest case is that Em consists of a single modular addition. Under
this circumstance, the modular addition could be regarded as a 2n× 2n S-box, and again
described by the corresponding BCT. In most cases, n is greater than or equal to 16,
leading to a large S-box. Even if the value of n is 16 (a 32 × 32 S-box), the resulting

2 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

Table 1: Comparison of our distinguishers with previous ones.
Cipher Rounds Type Prob. Reference

SPECK32/64 9 Differential 2−30 [SWW21]
10* Differential 2−30.39 [LKK+18]
10 Boomerang 2−29.15 Section 5.1

SPECK48/72 11* Differential 2−44.31 [SHY16]
11 Differential 2−45 [SWW21]
12* Differential 2−46.8 [LKK+18]
12 Boomerang 2−44.15 Section 5.1

* The key-recovery attacks in [SHY16, LKK+18] cover more rounds, but this
paper focuses on the distinguishers on SPECK. Thereby, this table only lists the
best distinguishers.

execution time of computing the whole BCT would be 264 simple operations which is
infeasible. The BCT of a modular addition was first mentioned in [CHP+18], but no
efficient algorithm was given. To the best of our knowledge, only one related work [KKS20]
was published. This work proposed the first practical algorithm, following the differential
analysis of S-functions [MVDP11]. However, the authors of [KKS20] did not merge the
BCT of the modular addition into the Boolean Satisfiability Problem (SAT) models or
Mixed Integer Linear Programming (MILP) models. They selected several differential
characteristics, trying all combinations of them, and checked the validity by their algorithm.
Beyond the idea of the BCT, another tool called ARXtools [Leu12] was proposed based
on the theory of S-functions to study ARX constructions. This tool can be used to detect
incompatibility or compute the probability of a differential characteristic as well as a
boomerang characteristic, but it cannot automate the search of the characteristics.

Our contributions. In this paper, we focus on the computation of BCT, as well as its
variants, and the automatic search of boomerang distinguishers on ARX ciphers. First, we
notice that the entries of BCT can be computed by a dynamic programming algorithm
without using the S-functions. This provides us a new perspective on the computation.
We then extend our new algorithm to efficiently compute the variants of BCT, i.e., Upper
BCT (UBCT), Lower BCT (LBCT), and Extended BCT (EBCT), defined by Delaune
et al. [DDV20]. The time complexities are all linear to the size of the modular addition
(bit-length of an addend). Second, we transform our algorithms into new computations so
that they can be described by the language of SAT. Nonetheless, the existing modelling
methods either target specific ciphers [CHP+17] or require computing the whole BCT
and encode it in the models [LS19], which are not workable for the huge BCT of an
addition. We borrow the idea from [BV14] to overcome this difficulty. Based on the new
computations and their SAT models, we propose two automatic search frameworks to
find out boomerang distinguishers with high probabilities. Finally, to verify the power
of the proposed technique, we apply it to the ARX-based block ciphers SPECK and
LEA. Consequently, we find out several new boomerang distinguishers on SPECK. Table 1
compares our distinguishers with previous ones. For SPECK32/64, ours is the first 10-round
distinguisher verified with experiments. The experimental evaluation showed that the
probability is about 2−27.31. We also discuss our results on LEA and those from [KKS20].
Although no improved characteristic was found, a new result is obtained on the previous
one. For the same boomerang switch, the estimation of the probability is 0.710802 from
our framework, while the experimental evaluation gives about 0.71. It is more precise,
compared with 0.661755 in [KKS20]. Furthermore, the comparison of our technique with
ARXtools is carried out, showing that ARXtools performs better in computing probabilities
while ours is more suitable for searching characteristics.

Dachao Wang, Baocang Wang� and Siwei Sun 3

2 Preliminaries
2.1 Addition and Subtraction Modulo 2n

In this paper, most of the integer values during the analysis are represented as binary
numbers with a fixed bit length which can contain some leading zeros. For such a binary
number x, the i-th bit is denoted as x[i] and x[0] is the least significant bit. The one’s
complement of it is denoted as x whose length is the same as x’s. For example, the binary
number x = 00101 has a least significant bit x[0] = 1, and x is 11010.

We use ⊞n to denote an addition modulo 2n and ⊟n to refer to a subtraction modulo
2n. When an addition or subtraction is applied to two binary strings, it means respectively
the addition or subtraction of these two binary numbers. For instance, the addition of 001
and 101 modulo 23 is 001 ⊞3 101 = 1 ⊞3 5 = 6 = 110. For the convenience of differential
analysis, the following property is widely used.

x ⊞n y = x⊕ y ⊕ carry0n(x, y)

For the subtraction modulo 2n, a trick is applied to derive a similar property:

x ⊟n y = x ⊞n ȳ ⊞n 1 = x⊕ ȳ ⊕ carry1n(x, ȳ).

The functions carry0n and carry1n are defined in Definition 1 and Definition 2. The only
difference lies where i is 0.

Definition 1. The carry c = carry0n(x, y) is an n-bit number computed from two n-bit
number x and y. It is defined recursively as follows.

c[i] =
{

0 i = 0
(x[i− 1] ∧ y[i− 1])⊕ (x[i− 1] ∧ c[i− 1])⊕ (y[i− 1] ∧ c[i− 1]) i > 0

Definition 2. The special carry b = carry1n(x, y) is an n-bit number computed from two
n-bit number x and y. It is defined recursively as follows.

b[i] =
{

1 i = 0
(x[i− 1] ∧ y[i− 1])⊕ (x[i− 1] ∧ b[i− 1])⊕ (y[i− 1] ∧ b[i− 1]) i > 0

We note that the (i + 1)-th bit of carry0n(x, y), resp. carry1n(x, y), only depends on
three bits—the i-th bits of x, y and carry0n(x, y), resp. carry1n(x, y). A function is then
defined for carry0n and carry1n which concentrates on the bits.

Definition 3. Define a function carry : F2 × F2 × F2 → F2 which is

carry(x, y, c) = (x ∧ y)⊕ (x ∧ c)⊕ (y ∧ c).

This function directly comes from Definition 1 and Definition 2. It takes two bits, x
and y, as well as a carry bit, and outputs the next carry bit.

2.2 Boomerang Connectivity Table and Its Variants
For an n-bit to n-bit S-box, the diagram of how the difference propagates through the
boomerang switch is shown in Figure 2. Let S−1 be the inverse of S. The BCT is defined
as

BCT(∆,∇) = #
{

x ∈ Fn
2

∣∣∣∣ S−1(S(x)⊕∇)⊕ S−1(S(x⊕∆)⊕∇) = ∆
}

.

Given a pair of (∆,∇), the probability that a right quartet is generated in S is given by
BCT(∆,∇) · 2−n.

4 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

The BCT tool considers the scenario in which the boomerang switch contains only
one S-box layer. However, many works [WP19, DDV20, BHL+20] have shown that a
boomerang switch with multiple rounds is possible which has more than one S-box layers.
Such a switch often results in a better boomerang characteristic. In order to analyse the
switching effect, variants of BCT are used in these works. These variants consider more
differences besides those required by the BCT in the switch. We use the same definitions
from [DDV20] which defines the variants as follows.

Definition 4 ([DDV20]). Three variants of BCT are defined respectively as

UBCT(∆, ∆′,∇) = #
{

x ∈ Fn
2

∣∣∣∣∣ S(x)⊕ S(x⊕∆) = ∆′

S−1(S(x)⊕∇)⊕ S−1(S(x⊕∆)⊕∇) = ∆

}
,

LBCT(∆,∇′,∇) = #
{

x ∈ Fn
2

∣∣∣∣∣ S(x)⊕ S(x⊕∇′) = ∇
S−1(S(x)⊕∇)⊕ S−1(S(x⊕∆)⊕∇) = ∆

}
,

EBCT(∆, ∆′,∇′,∇) = #

x ∈ Fn
2

∣∣∣∣∣
S(x)⊕ S(x⊕∆) = ∆′

S(x)⊕ S(x⊕∇′) = ∇
S−1(S(x)⊕∇)⊕ S−1(S(x⊕∆)⊕∇) = ∆

 .

The BCT table was generalized to the case where S is a modular addition by Cid
et al. in [CHP+18]. They considered the modular addition as a 2n-bit to n-bit mapping,
and redefined a BCT table for it. In this paper, we instead regard it as an S-box which
maps 2n-bit input to 2n-bit output. Illustrated in Figure 3, the input consists of two n-bit
values corresponding to two addends, where ∥ is the concatenation. The left half of the
output is the modular addition of the addends, and the right half is still the second addend.
Formally, this S-box is defined as S(L∥R) = (L + R)∥R. Differences are represented in the
same form. For example, the difference between X1 and X2 is ∆l∥∆r, which means that
X2 = X1 ⊕∆ = L⊕∆l∥R⊕∆r.

Thus, the definition of BCT for an S-box still works for modular addition. In the
definition, we can substitute S with its actual computation, i.e., the modular addition.
The result is

BCTn(∆l, ∆r,∇l,∇r)

= #
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ (((L ⊞n R)⊕∇l

)
⊟n (R⊕∇r)

)
⊕
(((

(L⊕∆l) ⊞n (R⊕∆r)
)
⊕∇l

)
⊟n (R⊕∆r ⊕∇r)

)
= ∆l

}
.

(1)

X1

X2

S

S

Y1

Y2

X3

X4

S

S

Y3

Y4

∆ ∆

∇′

∇′

∇

∇

∆′ ∆′

Figure 2: An S-box in the boomerang switch.

Dachao Wang, Baocang Wang� and Siwei Sun 5

∥X1 = L R

X2

n n

∥Y1 = (L + R) R

Y2

X3

X4

Y3

Y4

∆ = ∆l∥∆r ∆l∥∆r

∇′l∥∇′r

∇′l∥∇′r

∇l∥∇r

∇l∥∇r

∆′l∥∆′r ∆′l∥∆′r

Figure 3: A boomerang switch on a modular addition.

The subscript n denotes that the modulus is 2n. This equation is the same as the one
provided in [CHP+18], but the idea can be easily extended to all variants of BCT.

3 Computing Boomerang Tables for A Modular Addition
In this section, we propose dynamic programming algorithms for computing the entries
of BCT and its variants. Dynamic programming is a classical but significant method in
algorithms. The word ‘programming’ refers to a tabular method [CLRS09]. A dynamic
programming algorithm starts by partitioning the problem into subproblems. The sub-
problems can share some subsubproblems. Each subsubproblem is solved just once, and
the solution is saved in a table for the next occurrence of the same subsubproblem. The
algorithm then combines the solutions in the table to form a solution to each subproblem
and finally to the original problem.

In most of the time, to avoid repeating similar contents, we only illustrate our detailed
idea on BCT. However, we would like to stress that it is not limited to BCT but applicable
to all the variants. The details for the variants are provided in the appendix. Our
explanations use the symbols in Figure 3.

3.1 Computation of BCT
3.1.1 Construct the Dynamic Programming Algorithm

The definition of BCT for modular addition is given in Equation (1). To simplify the
equation, we use c1, c2, b1 and b2 to refer to carry0 and carry1 in the equation which are
defined as follows.

c1 = carry0n(L, R)
b1 = carry1n(L⊕R⊕ c1 ⊕∇l, R⊕∇r)
c2 = carry0n(L⊕∆l, R⊕∆r)
b2 = carry1n(L⊕∆l ⊕R⊕∆r ⊕ c2 ⊕∇l, R⊕∆r ⊕∇r)

Note that, similar to Definition 1 and Definition 2, the values of c1[i + 1], b1[i + 1], c2[i + 1],
and b2[i + 1] only depend on L[i], R[i], ∆l[i], ∆r[i], ∇l[i], ∇r[i], c1[i], b1[i], c2[i], and b2[i].
By using the properties of the modular addition and subtraction, Equation (1) can be

6 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

rewritten to a simpler form:

BCTn(∆l, ∆r,∇l,∇r) = #
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ c1 ⊕ b1 ⊕ c2 ⊕ b2 = 0
}

or

BCTn(∆l, ∆r,∇l,∇r)

= #
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ ∀i ∈ [0, n− 1], c1[i]⊕ b1[i]⊕ c2[i]⊕ b2[i] = 0
}

.
(2)

That is, given the values of ∆l, ∆r, ∇l, and ∇r, computing the BCT entry is equiv-
alent to counting the number of (L, R) that satisfies c1[i] ⊕ b1[i] ⊕ c2[i] ⊕ b2[i] = 0
for all i ∈ [0, n − 1]. Next, we concentrate on these values of (L, R). Because of the
requirement, the tuple (c1[i], b1[i], c2[i], b2[i]) can take only 8 possible values. We use
a 4-bit string c1[i]∥b1[i]∥c2[i]∥b2[i] to represent the value of the tuple. For example,
(c1[i], b1[i], c2[i], b2[i]) = 1100 means c1[i] = 1, b1[i] = 1, c2[i] = 0, and b2[i] = 0. Define a
set SBCT whose elements are only these 8 values:

SBCT = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}.

Note that this is the only restriction on (L, R). It leads to a special property claimed in
Lemma 1.

Lemma 1. The most significant bits (MSB) of L and R, i.e., L[n− 1] and R[n− 1], can
take arbitrary values.

Lemma 1 is a direct result from Equation (2). For i = 0, c1[0]⊕ b1[0]⊕ c2[0]⊕ b2[0] = 0
always holds according to Definition 1 and Definition 2. For i > 0, as the aforementioned
statement, c1[i]⊕ b1[i]⊕ c2[i]⊕ b2[i] = 0 only restricts the values of L[i− 1] and R[i− 1].
It should be emphasized that L[n− 1] and R[n− 1] are free, since there is no equation on
c1[n], b1[n], c2[n], and b2[n], which gives the lemma.
Remark 1. This property was first used by the boomerang attacks in [BDD03]. It was
observed again in [CHP+18] where it was facilitated in the MSB switch. However, the
MSB switch only considered the MSB of L. Our lemma claims that the MSB of R can
also be taken into account.

Then, the values of (L, R) are classified by c1[n − 1]∥b1[n − 1]∥c2[n − 1]∥b2[n − 1].
Formally and generally, for any bit length i, define a function f(i, v) = #Si(v) where

Si(v) =
{

(Li, Ri) ∈ Fi
2 × Fi

2

∣∣∣∣∣ c1[i]∥b1[i]∥c2[i]∥b2[i] = v

∀j ∈ [0, i− 1], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0

}
.

Here, the i-bit carry0 and carry1 are extended by 1 bit following the definitions of them
respectively. The superscript i of (Li, Ri) is just to denote that Li and Ri are i-bit strings.
Thus, we derive a new computation of Equation (2):

BCTn(∆l, ∆r,∇l,∇r)

= 4×
∑

v∈SBCT

#
{

(Ln−1, Rn−1)
∈ Fn−1

2 × Fn−1
2

∣∣∣∣∣ c1[n− 1]∥b1[n− 1]∥c2[n− 1]∥b2[n− 1] = v

∀j ∈ [0, n− 2], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0

}
= 4×

∑
v∈SBCT

#Sn−1(v)

= 4×
∑

v∈SBCT

f(n− 1, v).

(3)

Dachao Wang, Baocang Wang� and Siwei Sun 7

The constant 4 comes from Lemma 1. Because, for every (Ln−1, Rn−1), there are 4
difference choices of (L[n− 1], R[n− 1]) to form the values of (Ln, Rn) and every one of
them is valid.

In the remaining part of this section, we present a dynamic programming algorithm
to compute Equation (3). Based on the idea of dynamic programming [CLRS09], it is
necessary to find out a recursive expression for function f . As a base case, it is already
known that

f(0, v) =
{

1 v = 0101
0 otherwise

since c1[0] = 0, b1[0] = 1, c2[0] = 0 and b2[0] = 1, and there is only one (L0, R0) ∈ F0
2 × F0

2,
i.e., L0 and R0 are bit strings of length 0.

For all (Li+1, Ri+1) ∈ Si+1(v) with i ≥ 0, we again partition them into several subsets
according to c1[i]∥b1[i]∥c2[i]∥b2[i]. The value c1[i]∥b1[i]∥c2[i]∥b2[i] can take only 8 values
in SBCT, since every (Li+1, Ri+1) ∈ Si+1(v) must satisfy c1[i] ⊕ b1[i] ⊕ c2[i] ⊕ b2[i] = 0.
The number of the subsets is 8. Moreover, these subsets are mutually exclusive. This is
because the bits c1[i], b1[i], c2[i], and b2[i] are uniquely determined by each (Li+1, Ri+1).

We define a function g to denote the relation among consecutive bits of carries and the
corresponding bits of L, R, ∆l, ∆r, ∇l, and ∇r. This function also shows the dependences
among subproblems in dynamic programming.

Definition 5. Define a function g(u, v, x, y, δl, δr, γl, γr) ∈ F2, where u, v ∈ F4
2, x, y ∈ F2,

and δl, δr, γl, γr ∈ F2. Given the forms u = u0∥u1∥u2∥u3 and v = v0∥v1∥v2∥v3, then
g(u, v, x, y, δl, δr, γl, γr) = 1 if and only if:

v0 = carry(x, y, u0);
v1 = carry(x⊕ y ⊕ v0 ⊕ γl, y ⊕ γr, u1);
v2 = carry(x⊕ δl, y ⊕ δr, u2);
v3 = carry(x⊕ δl ⊕ y ⊕ δr ⊕ v2 ⊕ γl, y ⊕ δr ⊕ γr, u3).

Otherwise, g(u, v, x, y, δl, δr, γl, γr) = 0.

Then, the recursive expression of function f comes out:

f(i + 1, v)
= #Si+1(v)

=
∑

u∈SBCT

#

(Li+1, Ri+1)
∈ Fi+1

2 × Fi+1
2

∣∣∣∣∣
c1[i + 1]∥b1[i + 1]∥c2[i + 1]∥b2[i + 1] = v

c1[i]∥b1[i]∥c2[i]∥b2[i] = u

∀j ∈ [0, i], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0


=

∑
u∈SBCT

∑
L[i],R[i]∈F2

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i])

×#
{

(Li, Ri)
∈ Fi

2 × Fi
2

∣∣∣∣∣ c1[i]∥b1[i]∥c2[i]∥b2[i] = u,

∀j ∈ [0, i− 1], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0

}
=

∑
u∈SBCT

∑
L[i],R[i]∈F2

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u)

=
∑

u∈SBCT

f(i, u)
∑

L[i],R[i]∈F2

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i]).

It is feasible to enumerate all possible inputs of the function g and compute its outputs,
which can be stored in a table of size 214 × 1. The cost to construct such a table is cheap.

8 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

To keep simplicity, we define a new function

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i]) =
∑

L[i],R[i]∈F2

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i]).

It is also computed in advance.
The final expression of f becomes

f(i + 1, v) =
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u). (4)

In the language of dynamic programming, the problem f(i + 1, v) is partitioned into
8 subproblems: f(i, u) for all u ∈ SBCT. There are two ways to construct a dynamic
programming algorithm. The direct way is computing f(i + 1, v) recursively while storing
each value of f in a table for later use. We adopt the other way, starting from the base case
and constructing the solution to a ‘bigger’ problem from its subproblems until reaching
f(i + 1, v), listed in Algorithm 1.

Algorithm 1 A dynamic programming algorithm to compute f .
1: procedure DP(n, v, ∆l, ∆r,∇l,∇r) ▷ The value of f(n, v) where v ∈ SBCT
2: Initialize a hash table Tdp such that, for all u ∈ SBCT, Tdp[u] = 0 except that

Tdp[0101] = 1;
3: for all i ∈ {0, 1, 2, . . . , n− 1} do
4: Initialize a hash table T ′

dp such that T ′
dp[u] = 0 for all u ∈ SBCT;

5: for all u ∈ SBCT do
6: for all u′ ∈ SBCT do
7: Look up the value T (u′, u, ∆l[i], ∆r[i],∇l[i],∇r[i]). Assume that it is t;
8: T ′

dp[u]← T ′
dp[u] + t× Tdp[u′];

9: Tdp ← T ′
dp;

10: return Tdp[v];

Theorem 1. In Algorithm 1, assume Lines 7 to 8 are a simple operation. Then the time
complexity is O (n). In particular, the algorithm requires 82n simple operations.

This algorithm contains three loops which loop n, 8, and 8 times respectively. The table
look-up in line 7 costs just constant time in modern computers. Thus, the time complexity
is shown as Theorem 1. In fact, this algorithm computes all f(n − 1, v) for v ∈ SBCT.
While the fourfold sum of them is BCTn(∆l, ∆r,∇l,∇r), we can simply modify line 10 of
the algorithm to obtain the algorithm for computing entries of BCT. The execution time
of the resulting algorithm is 82(n− 1) simple operations.

3.1.2 Optimize the Algorithm

So far, BCTn(∆l, ∆r,∇l,∇r) is computed bit by bit. Given a bit-length n, the top level
for loop in Algorithm 1 is fixed. We focus on the inner loops and improve them with
another property of the function g.

In the beginning, we provide Lemma 2 revealing an important property of the carry.
The correctness is verified directly from Definition 3. This lemma leads to the result that
f(i, v) and f(i, v) can be ‘merged’, formally stated in Theorem 2.

Lemma 2. For x, y, c ∈ F2, the carry has the following equation.

carry(x, y, c) = carry(x, y, c)

Dachao Wang, Baocang Wang� and Siwei Sun 9

Theorem 2. Let S′
BCT = {0000, 0011, 0101, 0110}. For u, v ∈ S′

BCT, denote

f ′(i, v) = f(i, v) + f(i, v)

and

T ′(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])
= T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i]) + T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i]).

Then, Equation (4) implies

f ′(i + 1, v) =
∑

u∈S′
BCT

T ′(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f ′(i, u). (5)

Proof. A direct result from Definition 5 and Lemma 2 is

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i]) = g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i]).

Then, for function T ,

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])

=
∑

L[i],R[i]∈F2

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i])

=
∑

L[i],R[i]∈F2

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i])

=
∑

L[i],R[i]∈F2

g(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i])

= T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i]).

Note that S′
BCT is a special subset selected from SBCT. On one hand, for every

x ∈ S′
BCT, x and x are both in SBCT. On the other hand, for every x ∈ SBCT, either x

or x is in S′
BCT. Therefore, S′

BCT is a half of SBCT and its elements are not the one’s
complement of each other. This gives us the following derivation.

f(i + 1, v) + f(i + 1, v) =
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u)

+
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u)

=
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u)

+
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u)

=
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u)

+
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f(i, u)

=
∑

u∈SBCT

T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])
(
f(i, u) + f(i, u)

)
=

∑
u∈S′

BCT

(
T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])

+ T (u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])
)(

f(i, u) + f(i, u)
)
.

10 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

That is,

f ′(i + 1, v) =
∑

u∈S′
BCT

T ′(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f ′(i, u).

The forms of Equation (4) and (5) are identical. The Algorithm 1 still works for
Equation (5) by replacing the set and the functions with the new ones. In addition,
Equation (3) turns into

BCTn(∆l, ∆r,∇l,∇r) = 4×
∑

v∈S′
BCT

f ′(n− 1, v). (6)

Since the set S′
BCT is smaller, the execution time of computing one entry of BCT is reduced

to 42(n− 1) simple operations.

3.2 Computation of Other Tables
At first, we provide the definitions of UBCT, LBCT, and EBCT for a modular addition,
following the counterparts for an S-box.

UBCTn(∆l, ∆r,∇l,∇r, ∆′
l)

= #
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ (((L ⊞n R)⊕∇l

)
⊟n (R⊕∇r)

)
⊕
(((

(L⊕∆l) ⊞n (R⊕∆r)
)
⊕∇l

)
⊟n (R⊕∆r ⊕∇r)

)
= ∆l,

(L ⊞n R)⊕
(
(L⊕∆l) ⊞n (R⊕∆r)

)
= ∆′

l

}
.

(7)

LBCTn(∆l, ∆r,∇l,∇r,∇′
l)

= #
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ (((L ⊞n R)⊕∇l

)
⊟n (R⊕∇r)

)
⊕
(((

(L⊕∆l) ⊞n (R⊕∆r)
)
⊕∇l

)
⊟n (R⊕∆r ⊕∇r)

)
= ∆l,(

(L⊕∇′
l) ⊞n (R⊕∇r)

)
⊕ (L ⊞n R) = ∇l

}
.

(8)

EBCTn(∆l, ∆r,∇l,∇r, ∆′
l,∇′

l)

= #
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ (((L ⊞n R)⊕∇l

)
⊟n (R⊕∇r)

)
⊕
(((

(L⊕∆l) ⊞n (R⊕∆r)
)
⊕∇l

)
⊟n (R⊕∆r ⊕∇r)

)
= ∆l,

(L ⊞n R)⊕
(
(L⊕∆l) ⊞n (R⊕∆r)

)
= ∆′

l,(
(L⊕∇′

l) ⊞n (R⊕∇r)
)
⊕ (L ⊞n R) = ∇l

}
.

It is clear to see that these tables are based on BCT and have one or two more restrictions
on (L, R). Actually, with a little modification on the dynamic programming algorithm for
BCT, we hence have similar algorithms for computing the entries of these tables. Due to
the limited space, we only take LBCT as an example, showing how to modify the previous
algorithm. The algorithms for UBCT and EBCT can be constructed in the same way.

Dachao Wang, Baocang Wang� and Siwei Sun 11

After comparing Equation (8) and (1), the new restriction is
(
(L⊕∇′

l)⊞n (R⊕∇r)
)
⊕

(L ⊞n R) = ∇l. Define the carry of (L⊕∇′
l) ⊞n (R⊕∇r) as

c3 = carry0n(L⊕∇′
l, R⊕∇r).

The (i + 1)-th bit of c3 still only depends on the previous bits of L, R, ∇′
l, and ∇r. This

implies the existence of a recursive expression for LBCT like the one for BCT. Then, the
restriction is rewritten to c3 ⊕ c1 = ∇l ⊕∇′

l ⊕∇r. Together with c1 ⊕ b1 ⊕ c2 ⊕ b2 = 0,
there are only two restrictions on the value of (L, R). For all i ∈ [0, n − 1], the tuple
(c1[i], b1[i], c2[i], b2[i], c3[i]) can take only a few values which form a set:

SLBCT = {00000, 00110, 01010, 01100, 10010, 10100, 11000, 11110,

00001, 00111, 01011, 01101, 10011, 10101, 11001, 11111}.

This set is constructed by extending every element in SBCT by one bit represented for c3
and taking any value of this bit.

During the same derivation of a recursive expression like Equation (4), we define a
function gLBCT, similar to function g but specific to LBCT.

Definition 6. Define gLBCT(u, v, x, y, δl, δr, γl, γr, γ′
l) ∈ F2, where u, v ∈ F5

2, x, y ∈ F2,
and δl, δr, γl, γr, γ′

l ∈ F2. Given the forms u = u0∥u1∥u2∥u3∥u4 and v = v0∥v1∥v2∥v3∥v4,
gLBCT(u, v, x, y, δl, δr, γl, γr, γ′

l) = 1 if and only if:

v0 = carry(x, y, u0);
v1 = carry(x⊕ y ⊕ v0 ⊕ γl, y ⊕ γr, u1);
v2 = carry(x⊕ δl, y ⊕ δr, u2);
v3 = carry(x⊕ δl ⊕ y ⊕ δr ⊕ v2 ⊕ γl, y ⊕ δr ⊕ γr, u3);
u4 ⊕ u0 = γl ⊕ γ′

l ⊕ γr;
v4 = carry(x⊕ γ′

l, y ⊕ γr, u4).

Otherwise, gLBCT(u, v, x, y, δl, δr, γl, γr, γ′
l) = 0.

As the counterpart of the function T in the previous subsection, a new function
TLBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′

l[i]) is also defined. Note that we are still able to go
through all possible inputs and compute TLBCT in advance. Therefore, following the same
idea in Section 3.1.1, the dynamic programming algorithm for LBCT comes out, listed in
Algorithm 2.

Since the rest of the idea and the optimization are almost the same as those in
Section 3.1, the detailed procedure is not explained again here. We only point out that the
size of SLBCT decreases to 8. The execution time of the optimized algorithm is 82(n− 1)
simple operations. Moreover, for UBCT and EBCT, the corresponding sets are of size 4
and 8, respectively. The numbers of simple operations that the optimized algorithms spend
are 42(n− 1) for UBCT and 82(n− 1) for EBCT. For more details, please see Appendix A.

3.3 Observations on the Computations
This subsection presents three observations on the computations of BCT and its variants.
The observations illustrate the relation between previous results and ours as well as basic
properties for constructing models in the next chapter. We only explain the observations
on BCT. For LBCT, UBCT, and EBCT, they have identical results as well.

The first observation is that Equation (4) and (5) can be written as matrix multipli-
cations. Take Equation (5) as an example here. When all the equations for f ′(i + 1, v)

12 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

Algorithm 2 A dynamic programming algorithm to compute entries of LBCT.
1: procedure DPLBCT(n, ∆l, ∆r,∇l,∇r,∇′

l)
2: Initialize a hash table Tdp such that, for all u ∈ SLBCT, Tdp[u] = 0 except that

Tdp[01010] = 1;
3: for all i ∈ {0, 1, 2, . . . , n− 2} do
4: Initialize a hash table T ′

dp such that T ′
dp[u] = 0 for all u ∈ SLBCT;

5: for all u ∈ SLBCT do
6: for all u′ ∈ SLBCT do
7: Look up the value TLBCT(u′, u, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′

l[i]). Assume
that it is t;

8: T ′
dp[u]← T ′

dp[u] + t× Tdp[u′];
9: Tdp ← T ′

dp;
10: sum← 0;
11: for all u ∈ SLBCT do
12: Let u be u0∥u1∥u2∥u3∥u4;
13: if u4 ⊕ u0 = ∇l[n− 1]⊕∇′

l[n− 1]⊕∇r[n− 1] then
14: sum← sum + Tdp[u];
15: return 4× sum;

for v ∈ S′
BCT combine, they can be replaced with a single matrix multiplication as the

following equation. f ′(i+1,0000)
f ′(i+1,0011)
f ′(i+1,0101)
f ′(i+1,0110)

 =

 T ′(0000,0000) T ′(0011,0000) T ′(0101,0000) T ′(0110,0000)
T ′(0000,0011) T ′(0011,0011) T ′(0101,0011) T ′(0110,0011)
T ′(0000,0101) T ′(0011,0101) T ′(0101,0101) T ′(0110,0101)
T ′(0000,0110) T ′(0011,0110) T ′(0101,0110) T ′(0110,0110)


w[i]

 f ′(i,0000)
f ′(i,0011)
f ′(i,0101)
f ′(i,0110)

 (9)

∆l[i], ∆r[i], ∇l[i], and ∇r[i] are ignored here because of the limited space. We should
emphasize that each value of function T ′ depends on these four bits. The 4 × 4 matrix
is determined by a 4-bit string w[i] = ∆l[i]∥∆r[i]∥∇l[i]∥∇r[i], which is denoted by Aw[i].
The total number of different matrices is 16. By rearranging the precomputed table for
function T ′, a table storing these matrices is obtained. Recall that, for i = 0, we have f ′(0,0000)

f ′(0,0011)
f ′(0,0101)
f ′(0,0110)

 =
[0

0
1
0

]
.

Therefore, the computation of BCTn(∆l, ∆r,∇l,∇r) can use a chain of matrix multiplica-
tions, showed as Equation (10).

BCTn(∆l, ∆r,∇l,∇r) = 4×


1
1
1
1


T (

n−2∏
i=0

Aw[i]

)
0
0
1
0

 (10)

In Algorithm 1, Lines 2 to 9 can then use a multiplication of a matrix and a vector
instead, while the time complexity remains unchanged. This formula is almost identical to
Kim et al.’s result [KKS20], except that their matrices are of size 8× 8, larger than ours.
Consequently, the execution time of their algorithm is 82(n− 1) simple operations. The
smaller matrices not only result in a lower time complexity, but also reduce the size of the
SAT models, which is detailed in Section 4.1.

The second observation is stated in Theorem 3. Before proving this theorem, we provide
2 lemmas on the properties of g as well as prove them.

Dachao Wang, Baocang Wang� and Siwei Sun 13

Theorem 3. Given the boolean values δl, δr, γl, and γr, for any u ∈ S′
BCT, the sum∑

v∈S′
BCT

T ′(u, v, δl, δr, γl, γr) is either 0 or 4.

Lemma 3. Given a u ∈ SBCT and the values of δl, δr, γl, and γr, if there exists values
w ∈ SBCT and a, b ∈ F2 such that g(u, w, a, b, δl, δr, γl, γr) = 1, then, for any boolean values
x and y, there exists a v ∈ SBCT such that g(u, v, x, y, δl, δr, γl, γr) = 1.

Proof. Let u = u0∥u1∥u2∥u3 and v = v0∥v1∥v2∥v3. Because of the premise that u, v ∈
SBCT, it means that u0 ⊕ u1 ⊕ u2 ⊕ u3 = 0 and v0 ⊕ v1 ⊕ v2 ⊕ v3 = 0. According to
Definition 5, the equation for v can be rewritten as

carry(x, y, u0)⊕ carry(x⊕ y ⊕ v0 ⊕ γl, y ⊕ γr, u1)
⊕ carry(x⊕ δl, y ⊕ δr, u2)⊕ carry(x⊕ δl ⊕ y ⊕ δr ⊕ v2 ⊕ γl, y ⊕ δr ⊕ γr, u3)

= 0.

(11)

It can be further expanded with Definition 3. The resulting equation is very long, so we
are not able to put it here. It is only composed of boolean variables and logical operations,
which can be analysed by tools of boolean functions.

With the help of the BooleanFunction module in the SageMath computer algebra
system [Sag20], we simplify the left side of Equation (11) to x(u0 + u1 + u2 + u3) plus a
boolean polynomial without variables x and y. Since u0 + u1 + u2 + u3 is 0, all the x and
y are cancelled in the equation. It means that x and y have no impact on the satisfiability
of Equation (11). Thus, if there exists x = a and y = b such that Equation (11) satisfies,
then, for any boolean values x and y, it remains satisfied. Note that the satisfiability of
Equation (11) implies a value of v ∈ SBCT. Then the lemma is proved.

Lemma 4. Given a u ∈ SBCT and the values of x, y, δl, δr, γl, and γr, for any two
values v, v′ ∈ SBCT such that v ̸= v′, g(u, v, x, y, δl, δr, γl, γr) and g(u, v′, x, y, δl, δr, γl, γr)
cannot be 1 simultaneously.

This lemma is trivial. Let u be u0∥u1∥u2∥u3, v be v0∥v1∥v2∥v3 and v′ be v′
0∥v′

1∥v′
2∥v′

3.
Since v ̸= v′, there must be a different bit. Without loss of generality, assume that v0 ≠ v′

0.
In contrast, according to Definition 5, we have v0 = carry(x, y, u0) and v′

0 = carry(x, y, u0).
However, this is impossible.

Based on Lemma 3 and Lemma 4, Theorem 3 is proved.

Proof. (Theorem 3) The proof starts by expanding the sum to an expression about g.∑
v∈S′

BCT

T ′(u, v, δl, δr, γl, γr)

=
∑

v∈S′
BCT

(
T (u, v, δl, δr, γl, γr) + T (u, v, δl, δr, γl, γr)

)
=

∑
v∈S′

BCT

(
T (u, v, δl, δr, γl, γr) + T (u, v, δl, δr, γl, γr)

)
=

∑
v∈SBCT

T (u, v, δl, δr, γl, γr)

=
∑

v∈SBCT

∑
x,y∈F2

g(u, v, x, y, δl, δr, γl, γr)

=
∑

x,y∈F2

∑
v∈SBCT

g(u, v, x, y, δl, δr, γl, γr)

Due to Lemma 4, ∑
v∈SBCT

g(u, v, x, y, δl, δr, γl, γr) ∈ F2. (12)

14 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

If there exists x = a and y = b such that this sum equals 1, then it means that there
must be one and only one v ∈ SBCT such that g(u, v, a, b, δl, δr, γl, γr) = 1. Then, with
Lemma 3, we would know that, for any values of x and y,∑

v∈SBCT

g(u, v, x, y, δl, δr, γl, γr) = 1.

Therefore, the sum
∑

v∈S′
BCT

T ′(u, v, δl, δr, γl, γr) would be 4. Otherwise, for any values of
x and y, if the sum in Equation (12) is always 0, then

∑
v∈S′

BCT
T ′(u, v, δl, δr, γl, γr) would

be 0.

The last observation is that, given a u ∈ SBCT and the values of δl, δr, γl, and γr, if∑
v∈S′

BCT
T ′(u, v, δl, δr, γl, γr) is 4, then T ′(u, u, δl, δr, γl, γr) must be larger than 0. This

is directly observed from the table of T ′.
Furthermore, when considering the sum si =

∑
v∈S′

BCT
f ′(i, v),

si =
∑

v∈S′
BCT

f ′(i, v)

=
∑

v∈S′
BCT

∑
u∈S′

BCT

T ′(u, v, ∆l[i− 1], ∆r[i− 1],∇l[i− 1],∇r[i− 1])f ′(i− 1, u)

=
∑

u∈S′
BCT

∑
v∈S′

BCT

T ′(u, v, ∆l[i− 1], ∆r[i− 1],∇l[i− 1],∇r[i− 1])f ′(i− 1, u)

=
∑

u∈S′
BCT

f ′(i− 1, u)
∑

v∈S′
BCT

T ′(u, v, ∆l[i− 1], ∆r[i− 1],∇l[i− 1],∇r[i− 1]).

If, for all u ∈ S′
BCT, we have T ′(u, u, ∆l[i− 1], ∆r[i− 1],∇l[i− 1],∇r[i− 1]) ̸= 0, then

si =
∑

u∈S′
BCT

f ′(i− 1, u)× 4

= 4×
∑

u∈S′
BCT

f ′(i− 1, u)

= 4si−1.

Otherwise, si is less than 4si−1. Whether this happens or not depends on the values of
∆l[i − 1], ∆r[i − 1], ∇l[i − 1], and ∇r[i − 1]. For those entries in BCT with the largest
value, i.e., 4n, they must have si = 4si−1 for all i ∈ [1, n− 1].

4 Automatic Search of Boomerang for ARX Ciphers
In this section, we propose the automatic search technique for boomerang distinguishers
on ARX ciphers. We start from modelling the switch effect on a single modular addition.
The key problem is how to construct SAT/SMT models for BCT and its variants.

A natural approach would be using an SMT model describing Algorithm 1. The power
of SMT makes this possible. However, the value of an entry can be very large, exceeding
the limitation of most of the SMT solvers. If one tries to take the binary logarithm of the
value, he/she would encounter that it seems impossible, since the corresponding formula
(Equation (10)) is a chain of matrix multiplications. Moreover, the possible values form an
extremely large subset of {0, 1, 2, . . . , 4n}. Thus, it is impractical to list all the possible
values and encode them like any other models of ciphers based on S-boxes.

As a result, it requires us to develop new models. In the beginning, a model is proposed
to describe all non-zero entries in the tables. With a heuristic strategy, this model is

Dachao Wang, Baocang Wang� and Siwei Sun 15

Algorithm 3 A dynamic programming algorithm to check an entry in BCT.
1: procedure isZero(n, ∆l, ∆r,∇l,∇r)
2: Initialize a hash table Tdp such that, for all u ∈ SBCT, Tdp[u] = False except that

Tdp[0101] = True;
3: for all i ∈ {0, 1, 2, . . . , n− 1} do
4: Initialize a hash table T ′

dp such that T ′
dp[u] = False for all u ∈ SBCT;

5: for all u ∈ S′
BCT do

6: for all u′ ∈ S′
BCT do

7: Look up the value T ′
b(u′, u, ∆l[i], ∆r[i],∇l[i],∇r[i]). Assume that it is t;

8: T ′
dp[u]← T ′

dp[u] ∨ (t ∧ Tdp[u′]);
9: Tdp ← T ′

dp;
10: sum← False;
11: for all u ∈ S′

BCT do
12: sum← sum ∨ Tdp[u];
13: return sum; ▷ sum is True if the entry is non-zero and False if it is zero.

improved. We should emphasize that our new models give us neither the value of the
entry nor the probability. They just encode the information: ‘non-zero’. That is, they
merely restrict a boomerang switch to a valid switch. We then merge these models into
our automatic search frameworks to find out boomerang distinguishers.

4.1 SAT Models for Any Non-zero Entries
We still consider the case for BCT, but the idea can also be applied to LBCT, UBCT, and
EBCT. According to Equation (6), BCTn(∆l, ∆r,∇l,∇r) ̸= 0 implies that there exists a
v ∈ S′

BCT such that f ′(n− 1, v) ̸= 0. On account of the recursive expression of function f ′,
it further requires that, for any i ∈ [0, n− 1], there exists a v ∈ S′

BCT such that f ′(i, v) ̸= 0.
Formally, the propagation of this property is computed by

f ′
b(i + 1, v) = max

u∈S′
BCT

T ′
b(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i])f ′

b(i, u),

where f ′
b(i, u), T ′

b(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i]) ∈ F2 and f ′
b(i, u) equals 1 if and only

if f ′(i, u) is not zero, and T ′
b(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i]) is equal to 1 if and only if

T ′(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i]) is not zero as well. The algorithm to check whether an
entry in BCT is zero or not is listed in Algorithm 3.

Since Algorithm 3 only contains boolean variables and bit operations, it is convenient to
construct the corresponding SAT model. Lines 4 to 9 are transformed into four expressions
as follows.

∀u ∈ S′
BCT, T ′

dp[u] =
∨

u′∈S′
BCT

(
T ′

b(u′, u, ∆l[i], ∆r[i],∇l[i],∇r[i]) ∧ Tdp[u′]
)

Note that, the bigger the set S′
BCT is, the more expressions are created in the model.

Meanwhile, the size of S′
BCT matches the size of the square matrix in Equation (9), and

thereby the smaller matrices are better. Finally, the model is supposed to include the
non-zero entries, so Lines 10 to 13 are modelled by

f ′
b(n− 2, 0000) ∨ f ′

b(n− 2, 0011) ∨ f ′
b(n− 2, 0101) ∨ f ′

b(n− 2, 0110) = True.

4.2 A Heuristic Strategy
One of the disadvantages of the model in Section 4.1 is that it contains too many entries
with small values. In cryptanalysis, an attack with high probability is expected. We then

16 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

Table 2: Initial values of klb.
bit length (n) BCT LBCT, UBCT, EBCT

16 8 6
24 16 12
32 20 16
48 34 30
64 48 44

decide to make the model to describe only the entries with sufficiently large values. This
idea comes from the concept of a partial differential distribution table in [BV14]. Here,
our model in this subsection can be regarded as a SAT model for a partial boomerang
connectivity table.

As we have already explained in Section 3.3, the largest entries in BCT require that
si = 4si−1 for all i ∈ [1, n− 1]. Conversely, if we restrict k out of n− 1 these equations to
be satisfied, the resulting entry would be 4k+1 multiplying some value q. In other words,
the value of the entry would have the form of 4k+1q where q is unknown. Currently, we do
not have enough knowledge about q. However, our experiments show that this restriction
always forced the model to return an entry with a value around 4k+1. The research on q is
left to future work.

Note that, based on the second and third observations in Section 3.3, si = 4si−1 is
equivalent to T ′(u, u, ∆l[i−1], ∆r[i−1],∇l[i−1],∇r[i−1]) ̸= 0 for all u ∈ S′

BCT. Therefore,
based on the model in Section 4.1, we add 4(n − 1) more boolean variables to indicate
whether T ′

b(u, u, ∆l[i− 1], ∆r[i− 1],∇l[i− 1],∇r[i− 1]) is 0 or not for all u ∈ S′
BCT and

i ∈ [1, n − 1]. For a bit-position i ∈ [0, n − 2], si+1 = 4si is satisfied if and only if the
four corresponding boolean variables are set to True. The parameter k is configurable. It
depends on which cipher one is analysing.

During the automatic search, we do not directly set the value of k but restrict its lower
bound. That is, an integer variable is created for k and a new constraint k ≥ klb is added.
The larger klb is, the smaller part of BCT is contained in the model. However, if klb is too
small, the model often returns a small entry in BCT, which is observed in our experiments.
While klb is too large, the model may not contain an appropriate entry. It then implies
that there exists an optimal klb. klb now replaces k, becoming the tweakable parameter.
It is set to be a small value and increases steadily until a desired BCT entry is found. For
LBCT, UBCT, and EBCT, the above idea still works. Our suggestion on initial values of
the lower bounds are listed in Table 2.

4.3 Our Automatic Search Frameworks
Recall that, in boomerang attacks, a cipher E is decomposed as E1 ◦Em ◦E0. The models
for E0 and E1 are identical to the differential models. In ARX ciphers, Em is made up of
only modular additions, rotations and XOR operations. Each modular addition is regarded
as a special S-box. Constructing the model of Em is similar to constructing that for ciphers
based on S-boxes. It is feasible to handle dependences between modular additions with
our models of BCT and its variants. We do not elaborate the model of Em here, since it
relies on the specification of the cipher. The details are left to the next chapter. In this
subsection, our main concentration is how to utilize the models in Section 4.2, although
they lack the exact probabilities. We propose two frameworks.

The first one is to search for a boomerang characteristic with a high probability. For
ciphers based on S-boxes, the objective function can be the product of the probabilities

Dachao Wang, Baocang Wang� and Siwei Sun 17

of E0, E1, and Em (or the sum of their binary logarithms). By optimizing it, the model
returns a boomerang characteristic with the optimal probability. However, our model for
Em only tells us that the probability is probably high according to Section 4.2. To make
use of this information, we propose a two-step framework:

1. Set the product of the probabilities of E0 and E1 as the objective function and
maximize it;

2. Compute the probability of Em according to the information provided by the
boomerang characteristic and then obtain the total probability.

The parameter klb is tweaked to find a better boomerang characteristic. For every
different klb, the above two steps are repeated. Specifically, klb = n−1 gives us an Em with
probability 1. If klb = 0, the model returns any valid boomerang characteristic. Note that,
when klb is approaching to n− 1, the limited choices of Em could cause E0 and E1 away
from the optimal ones. This is another reason why we recommend to start from a small
klb in the previous subsection. This framework is suitable for searching long boomerang
characteristics or for ciphers with a complicated Em. In this paper, we show an example
on LEA [HLK+14].

The second framework aims to take advantage of the clustering effect. The complete
model is the same as the one in the first framework. It has three stages, listed below.

1. The objective function is still the product of the probabilities of E0 and E1. Set klb

to 0 and maximize the objective function to obtain a boomerang characteristic. Let
the optimized value of the objective function be pmax. It is an upper bound on the
probabilities of boomerang characteristics in this framework.

2. Set klb to a proper value and the value of the objective function to be pmax − t.
Let the SAT solver to enumerate all solutions in this model. With the help of a
hash table, it is easy to count the solutions by the input difference of E0, ∆in, and
the output difference of E1, ∇out. In other words, the index of the hash table is
(∆in,∇out), and the value is the number of boomerang characteristics in accordance
with these differential values.

3. Take the record with the largest value in the hash table. This record means that,
given klb and t, the largest cluster has input difference ∆in for E0 and output
difference ∇out for E1. Set klb to 0 or a smaller value than the one at Stage 2. Set
the value of the objective function to be in [pmax − tp, pmax], where tp is a value less
than or equal to the t at Stage 2. Then, let the SAT solver to enumerate all solutions
again under the given ∆in and ∇out. This will give us the probability of the cluster.

The parameters klb and t are supposed to be tweaked to obtain a better cluster, while
the parameter tp only affects the precision of the probability. At Stage 2, they affect
the total number of solutions to be enumerated. More solutions lead to a more accurate
result. Nonetheless, more solutions also cause a higher cost of time. Thus, they should be
configured with proper values which are suitable to the hardware and the target cipher. At
Stage 3, the model is given the exact values, ∆in and ∇out. This offers more information
about the model to the SAT solver and allows the solver to enumerate much more solutions.
Therefore, we are able to use a smaller klb and tp, which leads to a more precise estimation
of the probability. The precision of the estimation is the advantage over the first framework.

Because of the enumerations, this framework requires more time. Thus, it is applicable
to short boomerang trails or ciphers with a simple Em. In this paper, we apply it to
SPECK [BSS+13].

18 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

4.4 Comparing the Technique with S-functions
This subsection compares our technique with those based on S-functions since they are
very similar. The concept of S-functions was proposed by Mouha et al. [MVDP11] to
describe several operations in ARX constructions, which is the core part of their general
framework for analysing the ARX-based ciphers.

The boomerang characteristics of ARX-based ciphers can indeed be analysed by the
original technique of S-functions, as Kim et al. have already shown [KKS20]. This
technique requires graph theory, representing the S-functions as a graph, and counting
the paths by matrix multiplications. Appendix C shows an example of this process. In
contrast, the idea in Section 3.1 directly constructs the algorithm from the perspective of
dynamic programming, although it starts from the same property used by S-functions—the
(i + 1)-th state only relies on the i-th state. Our idea is a new view of the property and
can be easily extended to the variants of BCT. Furthermore, this approach is natural,
because the property perfectly matches the key ingredients in dynamic programming, i.e.,
optimal substructure and overlapping subproblems [CLRS09]. This dynamic programming
algorithm also has a graph representation [CLRS09] similar to the S-functions’ where the
function g (Definition 5) is the same as the transition function in S-functions. But our
function g presents how subproblems depend on one another in the algorithm. Thus,
these two approaches are from two different perspectives while reaching the same result.
Moreover, to reduce the sizes of the matrices, Mouha et al. proposed a new algorithm to
find out equivalent states, while ours reveals mathematical properties behind the matrices
and then generates smaller matrices. These properties were not published before.

In addition, it should be pointed out that the property stated in Lemma 2 can explain
more observations about the modular addition. We take the result of the Finite State
Machine (FSM) reduction algorithm from Mouha et al. [MVDP11] as an example. The
key equations in the differential analysis are

c1 ⊕ c2 = ∆x ⊕∆y ⊕∆z,

c1 = carry0(x, y),
c2 = carry0(x⊕∆x, y ⊕∆y),

where all the variables are represented in n-bit strings. Then, it can be derived that

carry(x[i], y[i], c1[i])⊕ carry(x[i]⊕∆x[i], y[i]⊕∆y[i], c2[i])
=∆x[i + 1]⊕∆y[i + 1]⊕∆z[i + 1]

(13)

for all i ∈ [0, n−1). Following S-functions technique, the state is defined as S = (c1[i], c2[i])
and the FSM reduction algorithm outputs two equivalence classes, i.e., {(0, 0), (1, 1)}
and {(0, 1), (1, 0)}. This fact is explainable with Lemma 2. For any values x[i] and y[i]
satisfying Equation 13, Lemma 2 implies that

carry(x[i], y[i], c1[i])⊕ carry(x[i]⊕∆x[i], y[i]⊕∆y[i], c2[i])
=carry(x[i], y[i], c1[i])⊕ carry(x[i]⊕∆x[i], y[i]⊕∆y[i], c2[i])

=carry(x[i], y[i], c1[i])⊕ carry(x[i]⊕∆x[i], y[i]⊕∆y[i], c2[i])
=carry(x[i], y[i], c1[i])⊕ carry(x[i]⊕∆x[i], y[i]⊕∆y[i], c2[i])
=∆x[i + 1]⊕∆y[i + 1]⊕∆z[i + 1].

Thus, the number of pairs of x[i] and y[i] connecting states (c1[i], c2[i]) and (c1[i+1], c2[i+1])
is equal to that connecting states (c1[i], c2[i]) and (c1[i + 1], c2[i + 1]). The indistinguishable
states are (c1[i], c2[i]) and (c1[i], c2[i]), which forms the equivalence classes.

Rooted in S-functions, ARXtools is an improved and automatic tool to study the
differential properties in ARX constructions. The previous work [Leu12] demonstrates

Dachao Wang, Baocang Wang� and Siwei Sun 19

the power of this tool in detecting incompatibility and computing the probability of a
characteristic but also points out that it cannot automate the search of the characteristics.
Specifically, several incompatible boomerang attacks are detected automatically, while the
search of boomerang characteristics with high probabilities is absent. Later, another work
by Leurent [Leu13] presents a rebound-like approach to construct differential characteristics
with the help of the ARXtools. However, to the best of our knowledge, this approach
cannot be adapted for boomerang characteristics. On the other hand, when computing the
probability of a complicated boomerang switch, ARXtools has some advantages over ours.
For example, according to [Leu12], the time of solving an S-function is proportional to the
word length. Nonetheless, solving with SAT solvers could be much slower, since SAT is
NP-complete. ARXtools is able to count all the solutions while ours have to discard a lot
of possible solutions following the partial tables due to the speed of SAT solvers. Moreover,
S-functions and ARXtools can be generalized to more cases, but currently our modelling
technique is specific to BCT and its variants.

The automatic search technique in this paper creates SAT models in the benefits of
the hidden properties within the matrices. Although the S-functions analysis gives the
same result as Equation (10) and ARXtools is able to generate the corresponding finite
automaton, they both ignore the properties in Section 3.3. In Appendix D, we provide the
results generated by ARXtools to demonstrate this claim. Therefore, at this moment, we
have not found a way to combine these techniques, which is left to future work.

5 Applications
In this section, we apply our technique in Section 4 to SPECK [BSS+13] and LEA [HLK+14].
SPECK is the simplest ARX cipher but still secure up until now. LEA is an ARX cipher
approved by the Korean Cryptographic Module Validation Program, and has a more
complicated structure. Boomerang attacks have been considered by the designers of LEA.
Thereby LEA is a proper target for showing the advantage of our technique.

We briefly describe the specifications of the ciphers. Since we do not facilitate properties
of the key schedules, their details are omitted. Then, we explain the SAT models of them
and provide the results of the automatic search. In all our experiments, the CPU is
Intel® Xeon® Silver 4110 CPU @ 2.10GHz, the SAT solver is OR-Tools [Goo21], and the
programming language is C++. OR-Tools has ranked first in most of the categories in
the MiniZinc Challenge1 since 2018. Its C++ library is easy to use. We can conveniently
control the number of threads, parameters, and various conditions in the code. Besides, it
is not necessary to transform logical expressions into their algebraic normal forms. All the
source codes are available at https://github.com/0NG/boomerang_search.

5.1 Applications on SPECK
SPECK is a family of lightweight block ciphers which are all ARX ciphers. For word size
n ∈ {16, 24, 32, 48, 64}, each variant is identified by SPECK2n/mn, where 2n is its block
size and mn is the key size. The value m depends on n. The round function of SPECK is
shown in Figure 4. The rotation constants are α = 7 and β = 2 for SPECK32/64, while
α = 8 and β = 3 for the others.

The application on SPECK is straightforward. SPECK is decomposed into three parts,
such that the middle part, Em, only contains a modular addition. The other parts are
described by the differential models. The model of Em corresponds to the model for the
BCT in Section 4.2. Nevertheless, we notice that it is feasible to add one more round to
Em, that is, a 2-round switch, see Figure 5. It gives us a much better result than the
1-round switch. For ciphers based on S-boxes, the probability for switches with multiple

1https://www.minizinc.org/challenge.html

https://github.com/0NG/boomerang_search
https://www.minizinc.org/challenge.html

20 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

xi yi

≫ α

≪ β

xi+1 yi+1

ki

Figure 4: SPECK round function.

∆xi ∆yi

γ

ki ≪ β

∆xi+1 ∆yi+1

≫ α

δ

∆xi+2 ∆yi+2

(a) Forward direction.

∇xi ∇yi

γ′

ki ≪ β

∇xi+1 ∇yi+1

≫ α

δ′

∇xi+2 ∇yi+2

(b) Backward direction.

Figure 5: A 2-round switch of SPECK.

rounds is fully studied in [WP19, BHL+20]. Since the modular addition is viewed as an
S-box and each round of SPECK has only one addition, the results on S-boxes are still
correct here. Namely, the probability of the 2-round switch in Figure 5 is∑

∆xi+1∈Fn
2

∇xi+1∈Fn
2

2−2nUBCT(∆xi, ∆yi, γ′,∇yi, γ) · 2−2nLBCT(δ, ∆yi+2,∇xi+2,∇yi+2, δ′),

where γ, δ, γ′, and δ′ are determined by ∆xi+1 and ∇xi+1. In other words, the property
of the first modular addition is described by the UBCT, and the second one is described by
LBCT, since they perfectly match Equation (7) and Equation (8). When the SAT model
is constructed, variables are created for ∆xi+1 and ∇xi+1 without fixing their values. This
allows the SAT solver to enumerate valid values of them, i.e., to do the summation during
searching. Later, the complete model is simply the concatenation of two differential models
and the models for the UBCT and LBCT with dealing the linear operations among them.
We then apply the second framework in Section 4.3 to search for boomerang distinguishers
using the parameters in Table 3.

Specifically, in the first step, SPECK32/64 has pmax = 2−20, and SPECK48/72 has
pmax = 2−40. This step is very fast with 10 threads, costing 4 seconds and 34 seconds

Dachao Wang, Baocang Wang� and Siwei Sun 21

Table 3: Parameters for SPECK.

Cipher Rounds
of E0

Rounds
of E1

klb

(Step 2)
klb

(Step 3)
SPECK32/64 4 4 8 0
SPECK48/72 5 5 16 0

Table 4: Boomerang distinguishers on SPECK.

Cipher Rounds − log2 Prob. Input difference
of E0 (hex)

Output difference
of E1 (hex)

Time
(Step 3)EST. EXP.

SPECK32/64 10
29.15 27.34 2800 ∥ 0010 8102 ∥ 8108 260s
29.17 27.39 0014 ∥ 0800 8000 ∥ 840a 77s
29.78 28.43 2800 ∥ 0010 0040 ∥ 0542 498s

SPECK48/72 12
44.15 - 020082 ∥ 120200 0080a0 ∥ 2085a4 494s
46.41 - 820200 ∥ 001202 800084 ∥ 8400a0 816s
47.93 - 820200 ∥ 001202 008400 ∥ 00a084 416s

EST.: The estimation of the probability from our automatic search.
EXP.: The probability observed in our experiments.

for SPECK32/64 and SPECK48/72 respectively. In the second step, we find out that
pmax − t = pmax is not sufficient to provide good trails in both ciphers. Then, the values
of pmax − t are set to 2−22 for SPECK32/64 and 2−42 for SPECK48/72. The running
time in this step is much longer, since OR-Tools does not allow enumerating with multiple
threads. For SPECK32/64, it costs about 1417 seconds. Meanwhile, one more trick is
applied to SPECK48/72. After 10 hours, the solver cannot find out more characteristics,
and in the next 24 hours, no new characteristic is output. Thus, we just stop the solver
and take the current hash table. During the last step, we notice that there are several
large clusters in the hash table and the time of computing one probability is short, so we
decide to compute and compare the top three of them. For SPECK32/64, pmax − tp is
2−36, and, for SPECK48/72, it is 2−46. The results are listed in Table 4. Two examples of
the boomerang characteristics are also listed in Appendix B. Finally, we choose the best
ones of them as our main results. However, these improved distinguishers could not result
in better key-recovery attacks than previous results. It is because that the 2-round attack
from Dinur [Din14] can turn an n-round differential distinguisher into a (n + 2)-round
key-recovery attack while, to the best of our knowledge, a powerful attack like this is
absent for boomerang distinguishers. Thus, the differential distinguishers in Table 1 still
lead to better key-recovery attacks than ours.

The distinguisher on SPECK32/64 is practical, so we implement it to verify the
correctness. The program randomly selects a pair of plaintexts, following the boomerang
trail to obtain a new pair of plaintexts. Then, it checks the difference of the new pair.
The key of SPECK is also randomly selected. We ran the experiments 2000 times for each
characteristic. As a result, it reported that all the probabilities are slightly larger than the
estimations from our automatic search.

5.2 Applications on LEA
LEA is a block cipher with a 128-bit block, whose key size is 128, 192 or 256. It is an ARX
cipher with a Feistel structure. The states of LEA are separated into four 32-bit words.
Meanwhile, the operations are 32-bit operations. Figure 6 is the diagram of the round
function of LEA.

Let Em be 1-round LEA, see Figure 7. Since the XOR of the round keys has no impact

22 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

Xi[0] Xi[1] Xi[2] Xi[3]

Xi+1[0] Xi+1[1] Xi+1[2] Xi+1[3]

≪ 9 ≫ 5 ≫ 3

RKi[0] RKi[2] RKi[4]

RKi[1] RKi[3] RKi[5]

Figure 6: LEA round function.

∆Xi[0](∇Xi[0]) ∆Xi[1](∇Xi[1]) ∆Xi[2](∇Xi[2]) ∆Xi[3](∇Xi[3])

∆Xi+1[0](∇Xi+1[0]) ∆Xi+1[1](∇Xi+1[1]) ∆Xi+1[2](∇Xi+1[2]) ∆Xi+1[3](∇Xi+1[3])

(δ1) (δ2) (δ3)

≪ 9 ≫ 5 ≫ 3

Figure 7: A 1-round switch of LEA. (The symbols for the backward direction are given in
the parentheses.)

on the differences, the round keys are omitted to simplify the diagram. Meanwhile, the
linear operations are simple transformations on the differences, so the focus is how to
model the modular additions. We regard the additions as three parts separated by the
red lines. It is clear that the modular additions share some addends. Thus, we should
carefully construct the model.

Firstly, given the input difference and output difference of the switch, ∆Xi[0], ∆Xi[1],
∆Xi[2], ∆Xi[3], ∇Xi+1[0], ∇Xi+1[1], ∇Xi+1[2], and ∇Xi+1[3] are known, which also
determines δ1, δ2, and δ3. Assume that ∇Xi[1] and ∇Xi[2] are also fixed. Then, the right
most addition conforms to what the BCT describes (Equation (1)). The probability is
2−64BCT(∆Xi[3], ∆Xi[2], δ3,∇Xi[2]). For the middle one, since the difference ∇Xi[2] in
the backward direction is given besides the other values needed by the BCT, the LBCT is
suitable for it, which has probability 2−64LBCT(∆Xi[2], ∆Xi[1], δ2,∇Xi[1],∇Xi[2]). For
the same reason, the addition on the left is also described by the LBCT with probability
2−64LBCT(∆Xi[1], ∆Xi[0], δ1,∇Xi+1[3],∇Xi[1]). Finally, the model for the switch com-
prises the models for the BCT and the LBCT. If we regard the values of ∇Xi[1] and ∇Xi[2]
are independent for the additions, the probability is the sum over all possible values of
∇Xi[1] and ∇Xi[2] of the product of the above three probabilities. Similar to the 2-round
switch of SPECK in Section 5.1, variables are created for ∇Xi[1] and ∇Xi[2]. Later, The
SAT solver will select valid values for them. When we set the solver to the enumeration
mode, it will go through all possible values of them and give us the probability.

Dachao Wang, Baocang Wang� and Siwei Sun 23

Table 5: The Estimated Probabilities of the Switch in LEA
Method Prob. Time*

[KKS20] 0.661755 221 milliseconds
ARXtools 0.710850 34 seconds

Our SAT-aided Method 0.708521 17 hours
Experimental Evaluation 0.71 17 hours

* All the execution time contain the precomputation phase, e.g.,
computing some tables.

In [KKS20], the authors claimed that the probability can be computed from three
BCTs. However, as our diagram shows, it is impossible to compute such a switch with
three BCTs, due to the missing information about ∇Xi[1] and ∇Xi[2]. To demonstrate
our computation, we set up a SAT model to compute the probability following our idea
above. Note that it is infeasible to directly enumerate all possible values of ∇Xi[1] and
∇Xi[2]. Thanks to our heuristic strategy in Section 4.2, the parameter klb can be set to
some value larger than 0, which can eliminate a lot of negligible probabilities to speed up
the computation.

The target switch in the comparison is a boomerang switch reported in their work.
The input difference of the switch is ∆ = 28000200∥0002a000∥00080000∥00000001, and the
output difference is ∇ = 80000004∥80400004∥80400014∥80400010. By setting klb = 16, the
SAT solver returned the probability 0.708521 in about 17 hours. We then tried klb = 8,
and received the result 0.710802, which is only a slight improvement but costs around 33
hours, so klb = 16 is enough. To compare the results, we also implemented a program to
get the approximating probability of the same switch by randomly selecting 230 plaintexts.
The program showed that the probability is about 0.71. Thereby, we believe our model
and computation are correct. In contrast, the estimation in [KKS20] is 0.661755. Thus,
the boomerang distinguishers reported in this work need to be checked carefully. The
security of LEA against boomerang attacks is supposed to be further studied.

In fact, the 1-round switch of LEA is an S-function, which can also be analysed by
ARXtools. The detailed analysis is explained in Appendix C. The results of the experiments
are listed in Table 5. As expected, ARXtools returned the result in a much shorter time
than the SAT solver, which is consistent with the discussion in Section 4.4. This is the
main advantage of ARXtools over our techniques in practical analysis. However, when it
comes to the search of a characteristic, our techniques still work, but ARXtools cannot.
The last but important observation is that our technique can reach a good estimation
approaching the result of ARXtools in a practical time, which indicates the reliability of
the technique.

To search for a boomerang distinguisher for LEA, the first framework in Section 4.3
is chosen. We have also tried the second framework, but the complexity of LEA made it
infeasible to enumerate all the characteristics. The best 15-round boomerang distinguisher
found is exactly the one reported in [KKS20]. However, for 16-round LEA, no boomerang
trail with probability higher than 2−128 was found. When the model takes the differences
given by [KKS20], the upper bound pmax is only 2−132.

6 Conclusion
In this paper, we concentrate on the automatic search of boomerang distinguishers on
ARX ciphers. We study the computation of the boomerang connectivity table and its
variants from the perspective of dynamic programming. Based on the algorithms, we use
boolean variables and logical expressions to describe the tables. Then several models for
the propagations in boomerang switches of ARX ciphers are provided. We further propose

24 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

two frameworks powered by SAT solvers, facilitating our models of the tables. These
frameworks for the first time provide the methods to search for boomerang distinguishers
on ARX ciphers. We take SPECK and LEA as the targets in our applications. Several
boomerang distinguishers for SPECK are found, which have not been reported before.
Although no new boomerang distinguisher on LEA is found, we compare our result with
the previous result, showing that our method is more precise.

However, there are some disadvantages of our techniques. First, the computations of
BCT and its variants are not convenient to be modelled. Second, the model for a switch
with more than 2 rounds are too large, even for SPECK. It is infeasible to handle this huge
model in SAT solvers. Third, we can only find out distinguishers with large probability
by our heuristic strategy. The optimal distinguishers are still unknown. These are left to
future work. Finally, computing the probability of a boomerang switch is much slower
than ARXtools. How to combine both of the these tools/techniques is a challenging work.

7 Acknowledgement
We would like to thank the reviewers for their constructive comments and suggestions,
which helped us improve the quality of the paper. In particular, one of the anonymous
reviewers reminded us that ARXtools can compute the probability of the 1-round switch in
LEA very efficiently. This not only drove us to improve the experiments but also helped us
better understand the differences between these techniques. Meanwhile, another researcher
Zhongfeng Niu noticed the wider applications of Lemma 2 beyond BCT. We want to thank
him for helping us improve the comparison in Section 4.4 and the editorial quality of the
paper. This work is supported by the National Key Research and Development Program of
China (2022YFB2701900), the Natural Science Foundation of China (62272362, U19B2021,
62032014), and the Fundamental Research Funds for the Central Universities.

References
[BDD03] Alex Biryukov, Christophe De Cannière, and Gustaf Dellkrantz. Cryptanalysis

of SAFER++. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 195–211. Springer, Heidelberg, August 2003.

[BHL+20] Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and
Marine Minier. On the Feistel counterpart of the boomerang connectivity table
(long paper). IACR Trans. Symm. Cryptol., 2020(1):331–362, 2020.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume
5912 of LNCS, pages 1–18. Springer, Heidelberg, December 2009.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume
537 of LNCS, pages 2–21. Springer, Heidelberg, August 1991.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. https:
//eprint.iacr.org/2013/404.

[BV14] Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails
in ARX ciphers. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS,
pages 227–250. Springer, Heidelberg, February 2014.

https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404

Dachao Wang, Baocang Wang� and Siwei Sun 25

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of Deoxys and its internal tweakable block ciphers. IACR Trans.
Symm. Cryptol., 2017(3):73–107, 2017.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 683–714. Springer, Heidelberg, April / May 2018.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

[DDV20] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the
fastest boomerangs application to SKINNY. IACR Trans. Symm. Cryptol.,
2020(4):104–129, 2020.

[Din14] Itai Dinur. Improved differential cryptanalysis of round-reduced Speck. In
Antoine Joux and Amr M. Youssef, editors, SAC 2014, volume 8781 of LNCS,
pages 147–164. Springer, Heidelberg, August 2014.

[DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key
attack on the KASUMI cryptosystem used in GSM and 3G telephony. Journal
of Cryptology, 27(4):824–849, October 2014.

[Dun18] Orr Dunkelman. Efficient construction of the boomerang connection table.
Cryptology ePrint Archive, Report 2018/631, 2018. https://eprint.iacr.
org/2018/631.

[Goo21] Google. OR-Tools (Version 9.1), 2021. https://developers.google.com/
optimization/.

[HLK+14] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho
Ryu, and Dong-Geon Lee. LEA: A 128-bit block cipher for fast encryption on
common processors. In Yongdae Kim, Heejo Lee, and Adrian Perrig, editors,
WISA 13, volume 8267 of LNCS, pages 3–27. Springer, Heidelberg, August
2014.

[KKS20] Dongyeong Kim, Dawoon Kwon, and Junghwan Song. Efficient computation of
boomerang connection probability for ARX-based block ciphers with applica-
tion to SPECK and LEA. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 103(4):677–685, 2020.

[Leu12] Gaëtan Leurent. Analysis of differential attacks in ARX constructions. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 226–243. Springer, Heidelberg, December 2012.

[Leu13] Gaëtan Leurent. Construction of differential characteristics in ARX designs ap-
plication to Skein. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 241–258. Springer, Heidelberg, August
2013.

[LKK+18] HoChang Lee, Seojin Kim, HyungChul Kang, Deukjo Hong, Jaechul Sung,
and Seokhie Hong. Calculating the approximate probability of differentials for
arx-based cipher using sat solver. Journal of the Korea Institute of Information
Security & Cryptology, 28(1):15–24, 2018.

https://eprint.iacr.org/2018/631
https://eprint.iacr.org/2018/631
https://developers.google.com/optimization/
https://developers.google.com/optimization/

26 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

[LS19] Yunwen Liu and Yu Sasaki. Related-key boomerang attacks on GIFT with
automated trail search including BCT effect. In Julian Jang-Jaccard and
Fuchun Guo, editors, ACISP 19, volume 11547 of LNCS, pages 555–572.
Springer, Heidelberg, July 2019.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Transactions
on Information Theory, 57(4):2517–2521, 2011.

[MVDP11] Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Preneel.
The differential analysis of S-functions. In Alex Biryukov, Guang Gong, and
Douglas R. Stinson, editors, SAC 2010, volume 6544 of LNCS, pages 36–56.
Springer, Heidelberg, August 2011.

[Sag20] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.2), 2020. https://www.sagemath.org.

[SHY16] Ling Song, Zhangjie Huang, and Qianqian Yang. Automatic differential analysis
of ARX block ciphers with application to SPECK and LEA. In Joseph K. Liu
and Ron Steinfeld, editors, ACISP 16, Part II, volume 9723 of LNCS, pages
379–394. Springer, Heidelberg, July 2016.

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential
and linear characteristics with the SAT method. IACR Trans. Symm. Cryptol.,
2021(1):269–315, 2021.

[Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE’99,
volume 1636 of LNCS, pages 156–170. Springer, Heidelberg, March 1999.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds.
IACR Trans. Symm. Cryptol., 2019(1):142–169, 2019.

https://www.sagemath.org

Dachao Wang, Baocang Wang� and Siwei Sun 27

A Dynamic Programming Algorithms for The Variants of
BCT

In this section, we provide the details about the dynamic programming algorithms for the
variants of BCT and their optimization.

A.1 LBCT

The definition of LBCT of a modular addition is

LBCTn(∆l, ∆r,∇l,∇r,∇′
l)

=#
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ ((L ⊞n R)⊕∇l ⊟n (R⊕∇r)
)

⊕
((

(L⊕∆l) ⊞n (R⊕∆r)
)
⊕∇l ⊟n (R⊕∆r ⊕∇r)

)
= ∆l,(

(L⊕∇′
l) ⊞n (R⊕∇r)

)
⊕ (L ⊞n R) = ∇l

}
.

Compare with the definition of BCT, the additional restriction is
(
(L⊕∇′

l)⊞n (R⊕∇r)
)
⊕

(L⊞n R) = ∇l. Define the carry of (L⊕∇′
l)⊞n (R⊕∇r) as c3 = carry0n(L⊕∇′

l, R⊕∇r).
It can also be rewritten as c3 ⊕ c1 = ∇l ⊕∇′

l ⊕∇r. Therefore, for all i ∈ [0, n− 1], the
tuple (c1[i], b1[i], c2[i], b2[i], c3[i]) can only take the values in

SLBCT = {00000, 00110, 01010, 01100, 10010, 10100, 11000, 11110,

00001, 00111, 01011, 01101, 10011, 10101, 11001, 11111}.

Denote the counterparts of functions g, T , and f for LBCT as gLBCT, TLBCT, and
fLBCT, respectively. Their formal definitions are listed below. Note that definition of
gLBCT is already given in Definition 6.

Definition 7. Define a function TLBCT as

TLBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i])

=
∑

L[i],R[i]∈F2

gLBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i]).

Definition 8. Define a function fLBCT as

fLBCT(i, v)

=#

(Li, Ri) ∈ Fi
2 × Fi

2

∣∣∣∣∣
c1[i]∥b1[i]∥c2[i]∥b2[i]∥c3[i] = v

∀j ∈ [0, i− 1], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0
∀j ∈ [0, i− 1], c3[j]⊕ c1[j] = ∇l[j]⊕∇′

l[j]⊕∇r[j]

 .

Note that some elements in SLBCT may not satisfy c3[i]⊕ c1[i] = ∇l[i]⊕∇′
l[i]⊕∇r[i]

for i ∈ [0, n− 1]. We define a new set QLBCT for the given values of ∇l[n− 1], ∇r[n− 1],
and ∇′

l[n− 1].

QLBCT =
{

v0∥v1∥v2∥v3∥v4 ∈ SLBCT
∣∣ v0 ⊕ v4 = ∇l[n− 1]⊕∇′

l[n− 1]⊕∇r[n− 1]
}

28 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

Then, since Lemma 1 still holds here, we have

LBCTn(∆l, ∆r,∇l,∇r,∇′
l)

=4

×
∑

v∈QLBCT

#

(Ln−1, Rn−1)
∈ Fn−1

2 × Fn−1
2

∣∣∣∣∣
c1[n− 1]∥b1[n− 1]∥c2[n− 1]∥b2[n− 1]∥c3[n− 1] = v

∀j ∈ [0, n− 2], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0
∀j ∈ [0, n− 2], c3[j]⊕ c1[j] = ∇l[j]⊕∇′

l[j]⊕∇r[j]


=4×

∑
v∈QLBCT

fLBCT(n− 1, v).

Similar to the recursive expression of the function f , the expression of fLBCT is

fLBCT(i + 1, v)

=
∑

u∈SLBCT

#


(Li+1, Ri+1)
∈ Fi+1

2 × Fi+1
2

∣∣∣∣∣
c1[i + 1]∥b1[i + 1]∥c2[i + 1]∥b2[i + 1]∥c3[i + 1] = v

c1[i]∥b1[i]∥c2[i]∥b2[i]∥c3[i] = u

∀j ∈ [0, i], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0
∀j ∈ [0, i], c3[j]⊕ c1[j] = ∇l[j]⊕∇′

l[j]⊕∇r[j]


=

∑
u∈SLBCT

∑
L[i],R[i]∈F2

gLBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i])

×#

(Li, Ri)
∈ Fi

2 × Fi
2

∣∣∣∣∣
c1[i]∥b1[i]∥c2[i]∥b2[i]∥c3[i] = u,

∀j ∈ [0, i− 1], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0
∀j ∈ [0, i− 1], c3[j]⊕ c1[j] = ∇l[j]⊕∇′

l[j]⊕∇r[j]


=

∑
u∈SLBCT

∑
L[i],R[i]∈F2

gLBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i])fLBCT(i, u)

=
∑

u∈SLBCT

fLBCT(i, u)
∑

L[i],R[i]∈F2

gLBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i]).

This result has the same form as the one for BCT, but the functions are replaced with
the new ones. In fact, during this derivation, the only impact of the new restrictions is
changing the symbols of the functions and the set. This allows us quickly writing down
the expressions for UBCT and EBCT.

Next, with Lemma 2, we also have gLBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i]) =

gLBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i]). It leads to

f ′
LBCT(i + 1, v) =

∑
u∈S′

LBCT

T ′
LBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′

l[i])f ′
LBCT(i, u)

where S′
LBCT = {00000, 00110, 01010, 01100, 00001, 00111, 01011, 01101}, f ′

LBCT(i, v) =
fLBCT(i, v) + fLBCT(i, v), and

T ′
LBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′

l[i])
=TLBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′

l[i]) + TLBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i]).

This is because that Theorem 2 only relies on the invariant of the function g under the
one’s complement of u, v, L[i], and R[i], and this invariant still holds for gLBCT. Again, it
enables us to quickly obtain the optimization for UBCT and EBCT.

Finally, the dynamic programming algorithm for LBCT is listed below. The difference
between this algorithm and the one for BCT is the last code about summing up Tdp[u].
It is due to the special subset QLBCT. For UBCT and EBCT, this code conforms to the
corresponding special subset and the others remain almost unchanged.

Dachao Wang, Baocang Wang� and Siwei Sun 29

Algorithm 4 An optimized dynamic programming algorithm to compute entries of LBCT.
1: procedure DPLBCT(n, ∆l, ∆r,∇l,∇r,∇′

l)
2: Initialize a hash table Tdp such that, for all u ∈ S′

LBCT, Tdp[u] = 0 except that
Tdp[01010] = 1;

3: for all i ∈ {0, 1, 2, . . . , n− 2} do
4: Initialize a hash table T ′

dp such that T ′
dp[u] = 0 for all u ∈ S′

LBCT;
5: for all u ∈ S′

LBCT do
6: for all u′ ∈ S′

LBCT do
7: Look up the value T ′

LBCT(u′, u, ∆l[i], ∆r[i],∇l[i],∇r[i],∇′
l[i]). Assume

that it is t;
8: T ′

dp[u]← T ′
dp[u] + t× Tdp[u′];

9: Tdp ← T ′
dp;

10: sum← 0;
11: for all u ∈ S′

LBCT do
12: Let u be u0∥u1∥u2∥u3∥u4;
13: if u4 ⊕ u0 = ∇l[n− 1]⊕∇′

l[n− 1]⊕∇r[n− 1] then
14: sum← sum + Tdp[u]
15: return 4× sum;

A.2 UBCT
The definition of UBCT of a modular addition is

UBCTn(∆l, ∆r,∇l,∇r, ∆′
l)

=#
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ ((L ⊞n R)⊕∇l ⊟n (R⊕∇r)
)

⊕
((

(L⊕∆l) ⊞n (R⊕∆r)
)
⊕∇l ⊟n (R⊕∆r ⊕∇r)

)
= ∆l,

(L ⊞n R)⊕
(
(L⊕∆l) ⊞n (R⊕∆r)

)
= ∆′

l

}
.

Compare with the definition of BCT, the additional restriction is (L⊞n R)⊕
(
(L⊕∆l)⊞n

(R⊕∆r)
)

= ∆′
l. The carries in this equation are already defined, so no new definition is

needed. For all i ∈ [0, n− 1], the tuple (c1[i], b1[i], c2[i], b2[i]) can still take the values in
SBCT. In order to keep the consistency of the symbols, we still defined a new set SUBCT
which is identical to SBCT. Like LBCT, a special subset QUBCT is defined as follows.

QUBCT =
{

v0∥v1∥v2∥v3 ∈ SUBCT
∣∣ v0 ⊕ v2 = ∆[n− 1]⊕∆′

l[n− 1]⊕∆r[n− 1]
}

Denote the counterparts of functions g, T , and f for UBCT as gUBCT, TUBCT, and
fUBCT, respectively. Their formal definitions are listed below.

Definition 9. Define gUBCT(u, v, x, y, δl, δr, γl, γr, δ′
l) ∈ F2, where u, v ∈ F4

2, x, y ∈ F2,
and δl, δr, γl, γr, δ′

l ∈ F2. Given the forms u = u0∥u1∥u2∥u3 and v = v0∥v1∥v2∥v3,
gUBCT(u, v, x, y, δl, δr, γl, γr, δ′

l) = 1 if and only if:

v0 = carry(x, y, u0);
v1 = carry(x⊕ y ⊕ v0 ⊕ γl, y ⊕ γr, u1);
v2 = carry(x⊕ δl, y ⊕ δr, u2);
v3 = carry(x⊕ δl ⊕ y ⊕ δr ⊕ v2 ⊕ γl, y ⊕ δr ⊕ γr, u3);
u2 ⊕ u0 = δl ⊕ δ′

l ⊕ δr.

Otherwise, gUBCT(u, v, x, y, δl, δr, γl, γr, δ′
l) = 0.

30 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

Definition 10. Define a function TUBCT as
TUBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′

l[i])

=
∑

L[i],R[i]∈F2

gUBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i]).

Definition 11. Define a function fUBCT as

fUBCT(i, v)

=#

(Li, Ri) ∈ Fi
2 × Fi

2

∣∣∣∣∣
c1[i]∥b1[i]∥c2[i]∥b2[i] = v

∀j ∈ [0, i− 1], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0
∀j ∈ [0, i− 1], c2[j]⊕ c1[j] = ∆l[j]⊕∆′

l[j]⊕∆r[j]

 .

Then, according to Lemma 1, we have

UBCTn(∆l, ∆r,∇l,∇r, ∆′
l) = 4×

∑
v∈QUBCT

fUBCT(n− 1, v).

Similar to the recursive expression of the function f , the expression of fUBCT is

fUBCT(i + 1, v)

=
∑

u∈SUBCT

fUBCT(i, u)
∑

L[i],R[i]∈F2

gUBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i]).

Next, with Lemma 2, we have gUBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i]) =

gUBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i]). It leads to

f ′
UBCT(i + 1, v) =

∑
u∈S′

UBCT

T ′
UBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′

l[i])f ′
UBCT(i, u)

where S′
UBCT = S′

BCT, f ′
UBCT(i, v) = fUBCT(i, v) + fUBCT(i, v), and

T ′
UBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′

l[i])
=TUBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′

l[i]) + TUBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i]).

Finally, the dynamic programming algorithm for UBCT is listed in Algorithm 5.

A.3 EBCT
For EBCT, all the definitions and the algorithm can be viewed as the combination of those
for LBCT and UBCT. They are listed below.

The definition of EBCT of a modular addition is
EBCTn(∆l, ∆r,∇l,∇r, ∆′

l,∇′
l)

=#
{

(L, R) ∈ Fn
2 × Fn

2

∣∣∣ ((L ⊞n R)⊕∇l ⊟n (R⊕∇r)
)

⊕
((

(L⊕∆l) ⊞n (R⊕∆r)
)
⊕∇l ⊟n (R⊕∆r ⊕∇r)

)
= ∆l,

(L ⊞n R)⊕
(
(L⊕∆l) ⊞n (R⊕∆r)

)
= ∆′

l,(
(L⊕∇′

l) ⊞n (R⊕∇r)
)
⊕ (L ⊞n R) = ∇l

}
.

The set SEBCT is identical to SLBCT. The subset QEBCT is defined as follows.

QEBCT =
{

v0∥v1∥v2∥v3∥v4 ∈ SEBCT

∣∣∣ v0 ⊕ v4 = ∇l[n− 1]⊕∇′
l[n− 1]⊕∇r[n− 1]

v0 ⊕ v2 = ∆[n− 1]⊕∆′
l[n− 1]⊕∆r[n− 1]

}
The functions gEBCT, TEBCT, and fEBCT are respectively defined as follows.

Dachao Wang, Baocang Wang� and Siwei Sun 31

Algorithm 5 An optimized dynamic programming algorithm to compute entries of UBCT.
1: procedure DPUBCT(n, ∆l, ∆r,∇l,∇r, ∆′

l)
2: Initialize a hash table Tdp such that, for all u ∈ S′

UBCT, Tdp[u] = 0 except that
Tdp[0101] = 1;

3: for all i ∈ {0, 1, 2, . . . , n− 2} do
4: Initialize a hash table T ′

dp such that T ′
dp[u] = 0 for all u ∈ S′

UBCT;
5: for all u ∈ S′

UBCT do
6: for all u′ ∈ S′

UBCT do
7: Look up the value T ′

UBCT(u′, u, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i]). Assume

that it is t;
8: T ′

dp[u]← T ′
dp[u] + t× Tdp[u′];

9: Tdp ← T ′
dp;

10: sum← 0;
11: for all u ∈ S′

UBCT do
12: Let u be u0∥u1∥u2∥u3;
13: if u2 ⊕ u0 = ∆[n− 1]⊕∆′

l[n− 1]⊕∆r[n− 1] then
14: sum← sum + Tdp[u]
15: return 4× sum;

Definition 12. Define gEBCT(u, v, x, y, δl, δr, γl, γr, δ′
l, γ′

l) ∈ F2, where u, v ∈ F5
2, x, y ∈ F2,

and δl, δr, γl, γr, δ′
l, γ′

l ∈ F2. Given the forms u = u0∥u1∥u2∥u3∥u4 and v = v0∥v1∥v2∥v3∥v4,
gEBCT(u, v, x, y, δl, δr, γl, γr, δ′

l, γ′
l) = 1 if and only if:

v0 = carry(x, y, u0);
v1 = carry(x⊕ y ⊕ v0 ⊕ γl, y ⊕ γr, u1);
v2 = carry(x⊕ δl, y ⊕ δr, u2);
v3 = carry(x⊕ δl ⊕ y ⊕ δr ⊕ v2 ⊕ γl, y ⊕ δr ⊕ γr, u3);
u4 ⊕ u0 = γl ⊕ γ′

l ⊕ γr;
v4 = carry(x⊕ γ′

l, y ⊕ γr, u4);
u2 ⊕ u0 = δl ⊕ δ′

l ⊕ δr.

Otherwise, gEBCT(u, v, x, y, δl, δr, γl, γr, δ′
l, γ′

l) = 0.

Definition 13. Define a function TEBCT as

TEBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i],∇′

l[i])

=
∑

L[i],R[i]∈F2

gEBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i],∇′

l).

Definition 14. Define a function fEBCT as

fEBCT(i, v)

=#

(Li, Ri) ∈ Fi
2 × Fi

2

∣∣∣∣∣
c1[i]∥b1[i]∥c2[i]∥b2[i]∥c3[i] = v

∀j ∈ [0, i− 1], c1[j]⊕ b1[j]⊕ c2[j]⊕ b2[j] = 0
∀j ∈ [0, i− 1], c3[j]⊕ c1[j] = ∇l[j]⊕∇′

l[j]⊕∇r[j]
∀j ∈ [0, i− 1], c2[j]⊕ c1[j] = ∆l[j]⊕∆′

l[j]⊕∆r[j]

 .

The formula for EBCTn(∆l, ∆r,∇l,∇r, ∆′
l,∇′

l) is

EBCTn(∆l, ∆r,∇l,∇r, ∆′
l,∇′

l) = 4×
∑

v∈QEBCT

fEBCT(n− 1, v).

32 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

We still have the following optimization.

f ′
EBCT(i + 1, v) =

∑
u∈S′

EBCT

T ′
EBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′

l[i],∇′
l[i])f ′

EBCT(i, u)

where S′
EBCT = S′

LBCT, f ′
EBCT(i, v) = fEBCT(i, v) + fEBCT(i, v), and

T ′
EBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′

l[i],∇′
l[i])

=TEBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i],∇′

l[i])
+ TEBCT(u, v, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′

l[i],∇′
l[i]).

The recursive expression of fEBCT is

fEBCT(i + 1, v)

=
∑

u∈SEBCT

fEBCT(i, u)
∑

L[i],R[i]∈F2

gEBCT(u, v, L[i], R[i], ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i],∇′

l[i]).

The dynamic programming algorithm for UBCT is listed in Algorithm 6.

Algorithm 6 An optimized dynamic programming algorithm to compute entries of EBCT.
1: procedure DPEBCT(n, ∆l, ∆r,∇l,∇r, ∆′

l,∇′
l)

2: Initialize a hash table Tdp such that, for all u ∈ S′
EBCT, Tdp[u] = 0 except that

Tdp[01010] = 1;
3: for all i ∈ {0, 1, 2, . . . , n− 2} do
4: Initialize a hash table T ′

dp such that T ′
dp[u] = 0 for all u ∈ S′

EBCT;
5: for all u ∈ S′

EBCT do
6: for all u′ ∈ S′

EBCT do
7: Look up the value T ′

EBCT(u′, u, ∆l[i], ∆r[i],∇l[i],∇r[i], ∆′
l[i],∇′

l[i]). As-
sume that it is t;

8: T ′
dp[u]← T ′

dp[u] + t× Tdp[u′];
9: Tdp ← T ′

dp;
10: sum← 0;
11: for all u ∈ S′

EBCT do
12: Let u be u0∥u1∥u2∥u3∥u4;
13: if u2 ⊕ u0 = ∆[n− 1]⊕∆′

l[n− 1]⊕∆r[n− 1] then
14: if u4 ⊕ u0 = ∇l[n− 1]⊕∇′

l[n− 1]⊕∇r[n− 1] then
15: sum← sum + Tdp[u]
16: return 4× sum;

Dachao Wang, Baocang Wang� and Siwei Sun 33

B Examples of Boomerang Characteristics in SPECK
Two characteristics output by the SAT solver are listed below for SPECK32/64 and
SPECK48/72, respectively.

Table 6: A Boomerang Characteristic for SPECK32/64.
Round Part Left Difference (hex) Right Difference (hex)

1

E0

2800 0010
2 0040 0000
3 8000 8000
4 8100 8102
5

Em
8000 840a

6 - -
7

E1

0a04 0804
8 0010 2000
9 0000 8000
10 8000 8002
11 8102 8108

Table 7: A Boomerang Characteristic for SPECK48/72.
Round Part Left Difference (hex) Right Difference (hex)

1

E0

020082 120200
2 900000 001000
3 008000 000000
4 000080 000080
5 800080 800480
6

Em
008480 00a084

7 - -
8

E1

009000 000010
9 000080 000000
10 800000 800000
11 808000 808004
12 800084 8400a0
13 0080a0 2085a4

34 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

C Analysis by S-function
In this section, we present the S-functions analysis of the 1-round switch of LEA in
Section 5.2. To simplify the explanation, the linear operations are ignored as Figure 8
shows.

∆[0](∇′[0]) ∆[1](∇′[1]) ∆[2](∇′[2]) ∆[3](∇′[3])

∆′[0](∇[0]) ∆′[1](∇[1]) ∆′[2](∇[2]) ∆′[3](∇[3])

Figure 8: A simplified 1-round switch of LEA. (The symbols for the backward direction
are given in the parentheses.)

C.1 Definition of the Probability
Let Em be the short cipher in Figure 8. The probability of this switch is

pm = Pr
[
E−1

m (Em(X1)⊕∇)⊕ E−1
m (Em(X1 ⊕∆)⊕∇) = ∆

]
,

where X1 = X1[0]∥X1[1]∥X1[2]∥X1[3], ∆ = ∆[0]∥∆[1]∥∆[2]∥∆[3], and∇ = ∇[0]∥∇[1]∥∇[2]∥∇[3].
To use the S-functions technique, this formula should be rewritten in detail. Given X1, ∆,
and ∇, we calculate ∆Z using

X2 ← X1 ⊕∆, (14)
T1 ← X1[0]∥(X1[1] + X1[0])∥(X1[2] + X1[1])∥(X1[3] + X1[2]), (15)
T2 ← X2[0]∥(X2[1] + X2[0])∥(X2[2] + X2[1])∥(X2[3] + X2[2]), (16)
U1 ← T1 ⊕∇, (17)
U2 ← T2 ⊕∇, (18)
Z1 ← U1[0]∥(U1[1]− U1[0])∥ (19)

(U1[2]− (U1[1]− U1[0]))∥(U1[3]− (U1[2]− (U1[1]− U1[0]))), (20)
Z2 ← U2[0]∥(U2[1]− U2[0])∥ (21)

(U2[2]− (U2[1]− U2[0]))∥(U2[3]− (U2[2]− (U2[1]− U2[0]))), (22)
∆Z ← Z1 ⊕ Z2. (23)

Then, the probability of the switch is redefined as

pm = 2−128 ·#
{

X1 ∈ F128
2 | ∆Z = ∆

}
.

C.2 Constructing the S-Function
Equations (14)-(23) are rewritten on a bit level:

X2[j][i]← X1[j][i]⊕∆[j][i], for j ∈ [0, 3], (24)
T1[0][i]← X1[0][i], (25)
T1[1][i]← X1[1][i]⊕X1[0][i]⊕ c1[0][i], (26)

Dachao Wang, Baocang Wang� and Siwei Sun 35

T1[2][i]← X1[2][i]⊕X1[1][i]⊕ c1[1][i], (27)
T1[3][i]← X1[3][i]⊕X1[2][i]⊕ c1[2][i], (28)

c1[0][i + 1]← (X1[1][i] + X1[0][i] + c1[0][i])≫ 1, (29)
c1[1][i + 1]← (X1[2][i] + X1[1][i] + c1[1][i])≫ 1, (30)
c1[2][i + 1]← (X1[3][i] + X1[2][i] + c1[2][i])≫ 1, (31)

T2[0][i]← X2[0][i], (32)
T2[1][i]← X2[1][i]⊕X2[0][i]⊕ c2[0][i], (33)
T2[2][i]← X2[2][i]⊕X2[1][i]⊕ c2[1][i], (34)
T2[3][i]← X2[3][i]⊕X2[2][i]⊕ c2[2][i], (35)

c2[0][i + 1]← (X2[1][i] + X2[0][i] + c2[0][i])≫ 1, (36)
c2[1][i + 1]← (X2[2][i] + X2[1][i] + c2[1][i])≫ 1, (37)
c2[2][i + 1]← (X2[3][i] + X2[2][i] + c2[2][i])≫ 1, (38)

U1[0][i]← T1[0][i]⊕∇[0][i], (39)
U1[1][i]← T1[1][i]⊕∇[1][i], (40)
U1[2][i]← T1[2][i]⊕∇[2][i], (41)
U1[3][i]← T1[3][i]⊕∇[3][i], (42)
U2[0][i]← T2[0][i]⊕∇[0][i], (43)
U2[1][i]← T2[1][i]⊕∇[1][i], (44)
U2[2][i]← T2[2][i]⊕∇[2][i], (45)
U2[3][i]← T2[3][i]⊕∇[3][i], (46)
Z1[0][i]← U1[0][i], (47)
Z1[1][i]← U1[1][i]⊕ Z1[0][i]⊕ b1[0][i], (48)
Z1[2][i]← U1[2][i]⊕ Z1[1][i]⊕ b1[1][i], (49)
Z1[3][i]← U1[3][i]⊕ Z1[2][i]⊕ b1[2][i], (50)

b1[0][i + 1]← (U1[1][i] + Z1[0][i] + b1[0][i])≫ 1, (51)
b1[1][i + 1]← (U1[2][i] + Z1[1][i] + b1[1][i])≫ 1, (52)
b1[2][i + 1]← (U1[3][i] + Z1[2][i] + b1[2][i])≫ 1, (53)

Z2[0][i]← U2[0][i], (54)
Z2[1][i]← U2[1][i]⊕ Z2[0][i]⊕ b2[0][i], (55)
Z2[2][i]← U2[2][i]⊕ Z2[1][i]⊕ b2[1][i], (56)
Z2[3][i]← U2[3][i]⊕ Z2[2][i]⊕ b2[2][i], (57)

b2[0][i + 1]← (U2[1][i] + Z2[0][i] + b2[0][i])≫ 1, (58)
b2[1][i + 1]← (U2[2][i] + Z2[1][i] + b2[1][i])≫ 1, (59)
b2[2][i + 1]← (U2[3][i] + Z2[2][i] + b2[2][i])≫ 1, (60)

∆Z[j][i]← Z1[j][i]⊕ Z2[j][i], for j ∈ [0, 3]. (61)

36 SAT-aided Automatic Search of Boomerang Distinguishers for ARX Ciphers

Figure 9: A bipartite graph from the S-function.

where carries c1[j][0] = c2[j][0] = 0 and b1[j][0] = b2[j][0] = 1 for j ∈ [0, 2]. Let the states
be

S[i]← (c1[0][i], c1[1][i], c1[2][i],
b1[0][i], b1[1][i], b1[2][i],
c2[0][i], c2[1][i], c2[2][i],
b2[0][i], b2[1][i], b2[2][i]),

S[i + 1]← (c1[0][i + 1], c1[1][i + 1], c1[2][i + 1],
b1[0][i + 1], b1[1][i + 1], b1[2][i + 1],
c2[0][i + 1], c2[1][i + 1], c2[2][i + 1],
b2[0][i + 1], b2[1][i + 1], b2[2][i + 1]).

Then, Equations (24)-(61) corresponds to the S-function for the probability of the 1-round
switch, as Equation 62.

(∆Z[0][i], ∆Z[1][i], ∆Z[2][i], ∆Z[3][i], S[i + 1]) = f(X1, ∆,∇, S[i]), 0 ≤ i < 32 (62)

C.3 Computing the Probability
In order to derive the formula for computing the probability, a graph is generated from
the S-function (Equation (62)). For 0 ≤ i ≤ 32, every state S[i] is represented as a vertex
in the graph. Each edge is drawn according to Equation (62). Specifically, for every pair
of states, S[i] and S[i + 1], if there are values of X1[0][i], X1[1][i], X1[2][i], X1[3][i], ∆[0][i],
∆[1][i], ∆[2][i], ∆[3][i], ∇[0][i], ∇[1][i], ∇[2][i], and ∇[3][i] such that ∆Z[j][i] is equal to
∆[j][i] for j ∈ [0, 3], then an edge is drawn between vertices S[i] and S[i + 1]. The resulting
graph consists of bipartite graphs each of which contains the vertices S[i] and S[i + 1].
Figure 9 shows an example of a bipartite graph. Note that, for any bit position i, there
are 212 values for S[i], which generates 212 different vertices.

According to [MVDP11], the probability is equal to 2−128 times the number of the
paths from a state whose values are all zero to any of the 212 vertices S[32]. Let w[i] be

∆[0][i]∥∆[1][i]∥∆[2][i]∥∆[3][i]∥∇[0][i]∥∇[1][i]∥∇[2][i]∥∇[3][i].

Thanks to the nice properties of a bipartite graph, we can use a matrix Aw[i] = [xkj] to
describe it, where xkj is the number of edges that connect vertices j = S[i] and k = S[i+1].

Dachao Wang, Baocang Wang� and Siwei Sun 37

Define a 1× 212 matrix L = [1 1 . . . 1] and a 212 × 1 matrix C = [1 0 . . . 0]T . Then, the
formula of the probability is

pm = 2−128 · LAw[31]Aw[30] · · ·Aw[0]C. (63)

Finally, the FSM reduction algorithm in [MVDP11] helps to reduce the number of states.
ARXtools can automate the above process following [Leu12] and the instructions on

its webpage (https://who.rocq.inria.fr/Gaetan.Leurent/arxtools.html). Our code
is available at https://github.com/0NG/boomerang_search. The program successfully
obtained the probability of the switch in Section 5.2 in 34s, and reported that the exact
probability is about 0.710850.

D Results from the ARXTools
In this section, we present the results from ARXtools to show that it cannot provide the nec-
essary information needed by our technique. The first graph is generated from the command:
“build_fsm -e ‘(((V0+V1)ˆP2)-(V1ˆP3))ˆ((((V0ˆP0)+(V1ˆP1))ˆP2)-(V1ˆP1ˆP3))==P0’
-t -g”. The second graph is generated from the command: “build_fsm -e ‘(((V0+V1)ˆP2)-
(V1ˆP3))ˆ((((V0ˆP0)+(V1ˆP1))ˆP2)-(V1ˆP1ˆP3))==P0’ -d -g”. Please see the next two
pages for the results.

https://who.rocq.inria.fr/Gaetan.Leurent/arxtools.html
https://github.com/0NG/boomerang_search

0

110110
110101
110010
110001
101010
101000
100010
100000
011101
011100
010001
010000
001101
001100
001010
001000
000110
000101
000010
000001
000000

1

110000
100001
010010

2

111111
111110
111101
111100
111011
111010
111001
111000
101111
101110
101101
101100
100111
100110
100101
100100
011011
011010
011001
011000
010111
010110
010101
010100

3

001110
001001
000100

4

110100
101001
011110

5

000011

6

110011
100011
010011

7

001111
001011
000111

8

110111
101011
011111

100010
010001
000000

111101
111100
111010
111000
110110
110101
110010
110001
110000
101101
101100
100001
100000
011010
011000
010010
010000
000110
000101
000010
000001

101011
101010
101001
101000
100111
100110
100101
100100
011111
011110
011101
011100
010111
010110
010101
010100
001111
001110
001101
001100
001011
001010
001001
001000

101110
011001
000100

111110
111001
110100

100011
010011
000011

110011

101111
011011
000111

111111
111011
110111

001000
000101
000010

111000
100101
010010

110111
110110
110101
110100
110011
110010
110001
110000
101011
101010
101001
101000
100011
100010
100001
100000
011011
011010
011001
011000
010111
010110
010101
010100

111110
111101
111010
111001
101110
101100
100110
100100
011101
011100
010001
010000
001110
001101
001100
001010
001001
000110
000100
000001
000000

111100
101101
011110

001011
000111
000011

111011
100111
010011

001111

111111
101111
011111

100010
010101
001000

111000
110101
110010

101011
101010
101001
101000
100111
100110
100101
100100
011011
011010
011001
011000
010011
010010
010001
010000
000111
000110
000101
000100
000011
000010
000001
000000

101110
011101
001100

111110
111101
111100
111010
111001
110110
110100
110001
110000
101101
101100
100001
100000
011110
011100
010110
010100
001110
001101
001010
001001

100011
010111
001011

111011
110111
110011

101111
011111
001111

111111

000000

110000
100000
010000 111111

111110
111101
111100
111011
111010
111001
111000
101111
101110
101101
101100
100111
100110
100101
100100
011011
011010
011001
011000
010111
010110
010101
010100

001100
001000
000100

110100
101000
011100

110110
110101
110010
110001
101011
101001
100011
100001
011111
011110
010011
010010
001111
001110
001011
001001
000110
000101
000011
000010
000001

110011
100010
010001

001101
001010
000111

110111
101010
011101

100000
010000
000000

110000

101011
101010
101001
101000
100111
100110
100101
100100
011111
011110
011101
011100
010111
010110
010101
010100
001111
001110
001101
001100
001011
001010
001001
001000

101100
011000
000100

111100
111000
110100

100001
010010
000011

111111
111110
111011
111001
110110
110101
110011
110010
110001
101111
101110
100011
100010
011011
011001
010011
010001
000110
000101
000010
000001

101101
011010
000111

111101
111010
110111

001000
000100
000000

111000
100100
010000

110111
110110
110101
110100
110011
110010
110001
110000
101011
101010
101001
101000
100011
100010
100001
100000
011011
011010
011001
011000
010111
010110
010101
010100

001100

111100
101100
011100

001011
000110
000001

111011
100110
010001

111110
111101
111010
111001
101111
101101
100111
100101
011111
011110
010011
010010
001111
001110
001101
001010
001001
000111
000101
000011
000010

111111
101110
011101

100000
010100
001000

111000
110100
110000

101011
101010
101001
101000
100111
100110
100101
100100
011011
011010
011001
011000
010011
010010
010001
010000
000111
000110
000101
000100
000011
000010
000001
000000

101100
011100
001100

111100

100001
010110
001011

111011
110110
110001

101101
011110
001111

111111
111110
111101
111010
111001
110111
110101
110011
110010
101111
101110
100011
100010
011111
011101
010111
010101
001110
001101
001010
001001

0

0000

1

0011
0010
0001

2

1100
1000
0100

3

1111
1110
1011
1001
0110
0101

4

1101
1010
0111

0011
0010
0001
0000

1100
1000

0110
0101

1101
1010

5

0100

6

0111

7

1110
1001

8

1111
1011

0011
0010

1100
1000
0100
0000

1001
0101

1010
0111

0001

1011
0110

9

1101

10

1111
1110

0000

0001

0100

1001
0110

1010
0101

0111
0011
0010

1011

1101
1100
1000

1110

11

1111

0011
0010

1100
1000

0101

1010

0100
0001
0000

0111

1001
0110

1101

12

1111
1110
1011

0001
0000

0110

1010
0101

0100

0111
0011
0010

1001

1111
1011

1101
1100
1000

1110

0010

1000

1010
0101

0100
0001
0000

1001
0110

0111

1101

1111
1110
1011

13

0011

14

1100

0001
0000

1010
0110

1000
0101

0010

1001
0100

1111
1011
0111
0011

1101
1100

1110

0100
0000

1001

1010
0101

0001

0111
0011
0010

0110

1101
1100
1000

1111
1110

1011

0100
0000

1010
1001

0101
0010

0110
0001

0111
0011

1000

1111
1110
1101
1100

1011

1010
1001
0110
0100
0001
0000

1000
0101
0010

1011
0111
0011

1110
1101
1100

1111

1010

0101

0100
0001
0000

0010

1001
0110

0111
0011

1000

1101
1100

1111
1110
1011

0010
0001
0000

1101
1100
1010
1000
0110
0101

1110
1001
0100

1111
1011
0111

0011

1000
0100
0000

1010
1001
0111
0101
0011
0010

1011
0110
0001

1111
1110
1101

1100

	Introduction
	Preliminaries
	Addition and Subtraction Modulo 2n
	Boomerang Connectivity Table and Its Variants

	Computing Boomerang Tables for A Modular Addition
	Computation of BCT
	Computation of Other Tables
	Observations on the Computations

	Automatic Search of Boomerang for ARX Ciphers
	SAT Models for Any Non-zero Entries
	A Heuristic Strategy
	Our Automatic Search Frameworks
	Comparing the Technique with S-functions

	Applications
	Applications on SPECK
	Applications on LEA

	Conclusion
	Acknowledgement
	Dynamic Programming Algorithms for The Variants of BCT
	LBCT
	UBCT
	EBCT

	Examples of Boomerang Characteristics in SPECK
	Analysis by S-function
	Definition of the Probability
	Constructing the S-Function
	Computing the Probability

	Results from the ARXTools

