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Abstract

Hecht and Scolnik proposed key agreement using rectangular ma-
trices and determinants. This report describes an attack.

1 Introduction

Hecht and Scolnik, in IACR eprint 2022/1370 on 2022 Oct 12, proposed
key agreement where the private keys are pairs of rectangular matrices, the
public keys are square matrices, and the shared secrets are computed using a
determinant of the products of the private key matrices and the peer’s public
key matrix.

This report describes an attack on a crucial step of the proposed key
agreement. This attack was communicated privately to Hecht and Scolnik,
who then removed this particular proposal from their IACR eprint 2022/1370,
and kindly acknowledged me.

1.1 Related previous work

To be completed.

2 Summary of the proposed key agreement

This section paraphrases the main part of the proposed key agreement.
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1. Alice’s private key a = (a1, a2) consists of a pair of two rectangular
r× c matrices, where r > c. The matrix entries of a1 and a2 should be
selected uniformly at random from a fixed finite field, such as the ring
of integers modulo a 32-bit prime.

2. Alice’s public key is the square r × r matrix:

A = a1a
t
2, (1)

where at2 is the matrix transpose of a2, and all arithmetic is done with
the chosen finite field.

3. Bob does the same steps as Alice, with private key (b1, b2) and public
key B = b1b

t
2.

4. Alice receives Bob’s public key B, she computes a shared secret key:

ka,B = det(at1Ba2), (2)

using her private key a and Bob’s public key B.

5. Bob similarly computes a shared secret key kb,A = det(bt1Ab2).

Hecht and Scolnik proved that the two shared secret keys are equal, and the
proof is repeated here for convenience:

Lemma 1. Alice’s and Bob’s shared secret keys are equal:

ka,B = kb,A. (3)

Proof. Calculate as follows:

ka,B = det(at1Ba2)

= det(at1b1b
t
2a2)

= det((at1b1)(b
t
2a2))

= det(at1b1) det(b
t
2a2)

= det((at1b1)
t) det((bt2a2)

t)

= det(bt1a1) det(a
t
2b2)

= det(bt1a1a
t
2b2)

= det(bt1Ab2)

= kb,A.

(4)
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3 An attack

We show how to compute shared secret key ka,B from the two public keys A
and B. The attack involves computing the characteristic polynomial of AtB.

Lemma 2. Let x be an indeterminate variable. Then

det(xIr − AtB) = xr + · · ·+ (−1)cka,Bx
r−c. (5)

In particular, the shared secret ka,B can be obtained by multiplying the co-
efficient of xr−c in the characteristic polynomial of the publicly computable
square matrix AtB by (−1)c.

Proof. Let a′1 be the square r×r matrix obtained from a1 by padding it with
r − c columns of all zeros on the right. Define matrices a′2 and b′1 and b′2
similarly. Notice that:

A = a′1(a
′
2)

t, (6)

so, the padded private key can be considered equivalent to the original private
key, at least for the purpose of the computation of the public key.

However, for the computing the secret key, the padded columns create
extra columns rows, making a block decomposition like this:

M = (a′1)
tBa′2 =

(
at1Ba2 0

0 0

)
. (7)

Alice’s shared secret is obtained by computing the determined of the upper
left block of M . The matrix M is not public.

The determinant of M is 0, because, for example, of the lower right block
of all zeros. But it has a nonzero characteristic polynomial that contains the
Alice’s shared secret, because of the following calculation:

pM(x) = det(xIr −M)

= det(xIr − (a′1)
tBa′2)

= det

(
xIc − at1Ba2 0

0 xIr−c

)
= det(xIc − at1Ba2) det(xIr−c)

= (xc + · · ·+ (−1)c det(at1Ba2))(x
r−c)

= xr + · · ·+ (−1)cka,Bx
r−c.

(8)
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The matrix M is not public. However, we next show that M has the same
characteristic polynomial as a publicly computable matrix.

Characteristic polynomials of matrices obey the following interesting com-
mutation rule pUV (x) = pV U(x). Using this commutation rule in the following
calculation

pM(x) = p((a′1)tB)a′2
(x)

= pa′2((a′1)tB)(x)

= p((a′2)(a′1)t)B(x)

= pAtB(x).

(9)

So, now we can compute the characteristic polynomial of M , using that of
AtB, in this way extract the shared secret key ka,B.

4 A small example

In this example, we use integers modulo the prime p = 283 as the finite field
to which all matrix entries belong.

4.1 A key agreement session

Let Alice’s private key be:

(a1, a2) =



226 197
107 43
21 192
144 172

 ,


184 101
21 247
249 227
120 1


 , (10)

which was chosen somewhat randomly. Then, Alice’s public key is:

A = a1a
t
2 =


70 201 245 149
259 133 180 148
50 38 137 165
3 228 188 189

 . (11)

For example, the lower right entry of matrix A can be computed, by standard
matrix definitions, by taking the dot product of the last row of a1 with last
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row of a2:(
144 172

)(120
1

)
= 144× 120 + 172× 1

= 17280 + 172

= (283× 61 + 17) + 172 = (283× 61) + 189

≡ 189 mod 283.

Similarly, let Bob’s private key and public key be:

(b1, b2) =



139 83
223 84
159 25
115 29

 ,


144 148
59 266
124 267
65 265


 , (12)

B = b1b
t
2 =


38 281 60 183
113 126 272 248
277 183 72 263
193 66 212 161

 . (13)

Alice computes her copy of the shared secret key by the computation:

ka,B = det(at1Ba2)

= det

(
173 119
178 78

)
= −7688

= (283× (−27)) + 236

= 236.

(14)

4.2 Attacking the session

The characteristic polynomial of matrix AtB is:

det(xI4 − AtB) = x4 + 32x3 + 236x2, (15)

with all computations done modulo p = 283.
The coefficient of xr−c = x4−2 = x2 is 236. Multiplying this by (−1)c =

(−1)2 = 1 gives 236, which is ka,B.
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5 Cost analysis

Several well-known methods are available to compute a characteristic poly-
nomial. The example above was computed using a variant of Lagrange inter-
polation. First, the determinant was evaluated at some specific values of x.
Each such specific determinant provides a linear equation on the unknowns,
namely the coefficients of the characteristic polynomial. With sufficiently
many equations, this system of equations can be solved.

An alternative approach would be to use the Cayley-Hamilton theorem.
This approach uses the fact that p(AtB) = 0 where p(x) is the characteristic
polynomial of AtB. Computing the powers (AtB)j for 0 ≤ j ≤ r, renders the
single matrix equation p(AtB) = 0 into a system of linear equations about
our unknowns, namely the coefficient of the characteristic polynomial p(x).

There are only really c unknown coefficients in the characteristic polyno-
mial. Cramer’s rule shows that, solving of one of the unknowns, for us, the
coefficient of xr−c, generally costs roughly two computation of c× c determi-
nants, and a division in the field. (The exception to this generality is that,
sometimes, Cramer’s would involve division by zero.)

So, with this approach, the attacker’s computational cost is approxi-
mately:

1. the combined computational cost of Alice and Bob,

2. a field division, and

3. r multiplications of r × r matrices,

Usually, the majority of the attack cost would be this third part, which is
to compute the matrix AtB and its r powers. This latter part costs at most
2r4 field operations.
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