
Towards Modular Foundations for
Protocol Security
Lúcás Críostóir Meier

lucas@cronokirby.com
February 24, 2023

Abstract

Universally composable (UC) security [Can00] is themost widely used
framework for analyzing the security of cryptographic protocols. Many
variants and simplifications of the framework have been proposed and de-
veloped, nonetheless, many practitioners find UC proofs to be both diffi-
cult to construct and understand. We remedy this situation by proposing a
new framework for protocol security. We believe that our framework pro-
vides proofs that are both easier to write, but alsomore rigorous, and easier
to understand. Our work is based on state-separable proofs [BDF+18], al-
lowing for modular proofs, by decomposing complicated protocols into
simple components.

1 Introduction
Universally composable (UC) security [Can00] has seen widespread success
since its introduction over two decades ago, becoming the dominant framework
for analyzing the security of cryptographic protocols.

This success is understandable, because the guarantees the framework provides
are very useful. In essence, when a protocol is proved secure in the UC frame-
work, then arbitrary instances of that protocol can be used concurrently in the
context of a larger system, without modifying the behavior of these protocols.
This allows the study of isolated components to be used to guarantee the secu-
rity of a system as a whole; this modular approach is essential to being able to
scale formal analysis to larger systems.

However, the framework is not ubiquitous. For many cryptographic schemes,
standalone security with games is a more suitable approach. Even for some pro-
tocols, the use of game-based security remains popular. The analysis of thresh-
old signatures andmessaging protocols has seen the development of increasingly
intricate games, which describe all the ways in which an adversary can attack a
protocol. This is the main disadvantage of game-based security for protocols:
it’s not always clear what the “right” game is to analyze the security of a pro-

1

tocol, and these games often need to provide explicit capabilities to the adver-
sary.

This problem is alleviated somewhat in UC security. The security goals of a pro-
tocol are described by an “ideal functionality”, which represents how the proto-
col could function if one had access to a perfectly trusted third party. This makes
it easier to determine if a given notion of security reflects the kinds of attacks
that need to be analyzed.

The game-based approach is still sometimes preferred because of its perceived
ease of use as compared to UC proofs. Some of these difficulties are inherent:
because UC security provides stronger guarantees than standalone security, it’s
not surprising that proofs would involve more “work”.

Some of these difficulties don’t seem to be inherent though, which is why a series
of works have provided improvements, simplifications, and variants of UC secu-
rity. GNUC [HS15] was an early variant, simplifying many aspects of UC, and
also patching several foundational gaps present in the paper at the time.

One disadvantage of developing a new framework is that proofs in one frame-
work may not necessarily or automatically translate to UC proofs. One approach
to addressing this is to develop a “higher level” language for simpler proofs,
which is then compiled down to an actual UC proof. This was done in [CCL15],
which provided a simplified version of UC, suitable for the common setting
of multiparty computation, but also a way to interpret proofs in this simplified
model as actually being UC proofs.

Another interesting alternative to UC is that presented in [CD+15]. This ap-
proach defines a kind of UC security in terms of a calculus for interactive sys-
tems, and their composition. This is an interesting departure from the interactive
Turing machine foundations, and does away with many inessential details. This
approach is the most similar one to the framework we develop in this work.

In practice, UC proofs are often quite informal, without explicitly mentioning
the various details that the formalism might require. For example, the frame-
work might specify protocols in terms of interactive Turing machines, but in
practice, proofs are written with an informal description of what the protocol
does. We think that this informality actually makes proofs harder to write and
understand, because it isn’t clear what exactly a proof can consist of, nor what
certain informal patterns mean precisely.

In this work, we propose a new framework for analyzing the security of protocols,
which we believe to be both less informal, but also simpler to understand and
use.

2

1.1 Our Framework
Our framework—whichwe call, “modular protocol security”, or “MPS”—attempts
to provide a simple, high-level language for reasoning about protocol security,
while also having a well-defined formal model that is close to how proofs are
actually written.

MPS tries to be modular, in the sense that large proofs for complicated protocols
can be built up from smaller proofs for simpler protocols.

The first waywe try and achieve this is by allowingmodular specifications of pro-
tocols: being able to describe a protocol as the composition of other protocols.
The two fundamental operations we have are:

1. tensoring, written 𝒫 ⊗ 𝒬, which allows writing a protocol as involving
two distinct protocols running at the same time,

2. composition, written𝒫◁𝒬, which allows the participants in one protocol
to use another as a kind of “sub-protocol”, in which each player may play
several roles.

These operations can simplify proofs by allowing large protocols to be decom-
posed into smaller components, and then for security to be argued component
by component.

The second approach is to have the notion of simulation be between protocols,
rather than between a protocol and an ideal functionality, as in UC security. The
ultimate goal is to prove that a protocol can be simulated by some clear ideal
functionality, but this often requires writing a complicated simulator which can
achieve this large jump all at once. By allowing protocols to be simulated by
other protocols, we can transform this jump into several smaller hops, which are
then composed together. This can help break down a large proof into a series of
simpler proofs.

MPS builds on state-separable proofs [BDF+18], a recent framework for stan-
dalone security with games. Our work can be seen as an attempt to lift the mod-
ular properties of this framework for games into a modular framework for pro-
tocol security. Ultimately, the semantics of protocols will be defined in terms of
state-separable games.

This provides an interesting advantage, in that proofs and techniques using games
can be used to reason about the security of protocols. This can also help motivate
complicated games used in the analysis of protocols, which can be seen as being
related to protocols written in this framework.

We also take the opportunity to present state-separable proofs in a more formal
way, filling in several proofs left as sketches in the original paper. Instead of using
interactive Turing machines as our foundational object, like in UC security, we

3

instead simply assume the existence of computable randomized functions, and
some pseudo-code to describe them.

1.2 Overview
Here we provide a basic overview of the rest of this work.

In Section 2, we develop the framework of state-separable proofs for standalone
security from scratch, filling some gaps left in the original paper, and proving a
few additional properties that we’ll be needing in the rest of this work.

In Section 3, we generalize state-separable games into systems, which are a kind
of game that has the ability to communicate with other games by sending and
receiving messages along a channel. We also need to develop a notion of asyn-
chronous games in this section, allowing us to model games which can delay
answers to queries, if they’re not yet ready to provide them. This arises naturally
with channels, since a gamemay be waiting to receive a message along a channel
before being able to respond.

In Section 4, we use the newly developed notion of systems to define proto-
cols. We then define various ways to compose protocols together, then notions
of equality and simulation for protocols, before showing that the various ways
of composing protocols behave well with respect to equality and simulation, al-
lowing us to decompose proofs in a modular fashion. We also describe how to
incorporate global functionalities, such as a common random oracle, into our
framework.

In Section 5, we provide a couple of examples of proofs written in our frame-
work. Our first example constructs a private channel from one that leaks all
messages sent over it, by using a public key encryption scheme. Our second ex-
ample constructs a protocol for sampling an unbiased random value, using the
common “commit reveal” paradigm.

In Section 6, we compare the MPS framework we’ve developed with that of UC
security, illustrating several differences between the two approaches.

2 State-Separable Proofs
Our framework for describing protocols is based on state-separable proofs [BDF+18].
The security notions we develop for protocols ultimately find meaning in analo-
gous notions of security for packages, the main object of study in state-separable
proofs.

This section is intended to be a suitable independent presentation of this formal-
ism. In that spirit, we develop state-separable proofs “from scratch”. Our starting

4

point is merely that of computable randomized functions. This is in contrast to
other protocol security frameworks like UC, whose foundational starting point
is usually the more concrete notion of interactive Turing machines.

We also take the opportunity to solidify the formalism of state-separable proofs,
providingmore complete definitions of various objects, completing several proofs
left as mere sketches in the original paper, and proving a few additional prop-
erties we’ll need later. This makes this section of interest to readers who are
already familiar with state-separable proofs.

2.1 Some Notational Conventions
We write [𝑛] to denote the set {1, . . . , 𝑛}.

We write 01 to denote the set {0, 1}, and 01∗ to denote binary strings. We write
• to denote the empty string, which also serves as a “dummy” value in various
contexts.

By 𝑥 ↦→ 𝑓 (𝑥), we mean a function taking in an input 𝑥, and returning the value
𝑓 (𝑥). Sometimes we’ll need to extend this syntax to more complicated expres-
sions, writing:

𝑥 ↦→ 𝑦 ← 𝑓 (𝑥); 𝑔(𝑥, 𝑦)
to mean a function taking in an input value 𝑥, then calling 𝑓 to produce a value
𝑦, before then using both 𝑥 and 𝑦 to return the value 𝑔(𝑥, 𝑦).

2.2 Probabilistic Functions
Our starting point is the notion of randomized computable functions. This is a
notionwe assume can be defined in a rigorous way, but whose concrete semantics
we don’t assign. We write 𝑓 : 01∗ $−→ 01∗ to denote such a function (named 𝑓).
Intuitively, this represents a function described by some algorithm, which takes
in a binary string as an input, and produces a binary string as output, and is
allowed to make randomized decisions to aid its computation.

We mainly consider families of functions, parameterized by a security parameter
𝜆. Formally, this is in fact a function 𝑓 : N → 01∗ $−→ 01∗, and we write
𝑓𝜆 : 01∗ $−→ 01∗ to denote a particular function in the family. In most cases, this
security parameter is left implicit. In fact, all of the objects we consider from
here on out will implicitly be families of objects, parameterized by a security
parameter 𝜆, but we will invoke this fact only as necessary.

Definition 2.1 (Efficient Functions). We assume that a function family 𝑓 has
a runtime, denoted 𝑇 (𝑓 , 𝑥), measuring how much time each function takes to
execute on a family of inputs 𝑥 : N→ 01∗, as a function of 𝜆.

5

We say that a function family is efficient if:

∀𝑥, |𝑥 | ∈ O(poly(𝜆)). 𝑇 (𝑓 , 𝑥) ∈ O(poly(𝜆))

In other words, the runtime is always polynomial in 𝜆, regardless of its random
choices, or its input (as long as that input is of a reasonable size).

□

Functions which are not necessarily efficient are said to be unbounded.

Considering efficient functions is essential for game-based security, because the
vast majority of cryptographic techniques depend on assuming that some prob-
lems are “hard” for adversaries with bounded computational resources. Ironi-
cally, for protocol security, many protocols can be proven secure without this
restriction.

Another crucial notion we need to develop is that of a distance, measuring how
different two functions behave. This will underpin our later notion of security
for games, which is based on saying that two different games are difficult to tell
apart.

Definition 2.2 (Distance Function). Given a function 𝑓 : • $−→ 01, we let
𝑃[𝑓 → 1] denote the probability of the function returning 1 on the input •.

Given two functions 𝑓 , 𝑔, we define their distance 𝜀(𝑓 , 𝑔) as:

𝜀(𝑓 , 𝑔) := |𝑃[𝑓 → 1] − 𝑃[𝑔 → 1] |

□

In other words, the distance looks at how often one function returns 1 compared
to the other. If the functions agree most of the time, then their distance will
be small, whereas if they disagree very often, their distance will be large. This
definition is actually quite natural. Since 𝑃[𝑓 → 1] = (1 − 𝑃[𝑓 → 0]), 𝜀
is actually just the total variation—or statistical—distance. This immediately
implies that this distance has some nice properties, in particular that it forms a
metric.

Lemma 2.1 (Distance is a Metric). 𝜀 is a valid metric, in particular, it holds
for any functions 𝑓 , 𝑔, ℎ, that:

1. 𝜀(𝑓 , 𝑓) = 0,

2. 𝜀(𝑓 , 𝑔) = 𝜀(𝑔, 𝑓),

3. 𝜀(𝑓 , ℎ) ≤ 𝜀(𝑓 , 𝑔) + 𝜀(𝑔, ℎ).

6

Proof:
1. Follows from the fact that 𝑃[𝑓 → 1] = 𝑃[𝑓 → 1], so 𝜀(𝑓 , 𝑓) = 0.

2. Follows from the fact that |𝑎 − 𝑏 | = |𝑏 − 𝑎 |.

3. Follows from the triangle inequality for R and the fact that:

|𝑃[𝑓 → 1]−𝑃[ℎ→ 1] | = | (𝑃[𝑓 → 1]−𝑃[𝑔 → 1])+ (𝑃[𝑔 → 1]−𝑃[ℎ→ 1]) |

■

Another property not included in our proof that 𝜀 is a valid metric requires that
if 𝑓 ≠ 𝑔, then 𝜀(𝑓 , 𝑔) > 0. We omitted this property, because we haven’t yet
defined what = should mean for functions. Since we’d like this property to hold,
we can simply define equality in such a way that it does.

Definition 2.3 (Function Equality). Two functions, 𝑓 and 𝑔, are equal, written
𝑓 = 𝑔, when:

𝜀(𝑓 , 𝑔) = 0

□

It’s easy to see that this is an equality relation, satisfying reflexivity, symmetry,
and transitivity.

We can also generalize this to arbitrary functions, rather than just 𝑓 : • $−→ 01,
by defining:

𝜀(𝑓 , 𝑔) := sup𝑥,𝑦∈01∗ |𝑃[𝑓 (𝑥) → 𝑦] − 𝑃[𝑔(𝑥) → 𝑦] |

In other words, we look at the maximum difference across all possible inputs and
outputs.

However, we will not really be needing this general definition, outside of a tech-
nical and very strong notion of equality for packages used in the following sub-
section.

While the functions we’ve considered so far only manipulate binary strings, it’s
useful to allow typed functions, with richer input and output types. This could be
defined in several ways, but the end result means that a typed function 𝑓 : 𝐴 $−→ 𝐵
can be interpreted as a function over binary strings, using a suitable encoding and
decoding mechanism, as well as perhaps having a special output value that 𝑓 can
return if it fails to decode its input successfully.

Being able to quantify types is also useful for the formalism itself, and poten-
tially even for some packages. As an example, consider the function id(𝑥) which

7

immediately returns 𝑥. This function is valid regardless of what type 𝑥 has. Be-
cause of this, we might write this function formally as:

id : ∀𝑠. 𝑠→ 𝑠

id = 𝑥 ↦→ 𝑥

assigning it the type ∀𝑠. 𝑠 → 𝑠. In this type, 𝑠 is a quantified type variable, as
indicated by the ∀𝑠. Formally, we can see id as a function parameterized by a
type, with id𝑆 being a concrete function, after having chosen this type.

2.3 Defining Packages
Our next goal is to define the central object of state-separable proofs: the pack-
age. Intuitively, a package has some kind of state, as well as functions which
manipulate this state. You can interact with a package by calling the various out-
put functions it provides. This makes packages a natural fit for security games.
What distinguishes packages from games is that they can have input functions.
A package can depend on another package, with each of its functions potentially
using the functions provided by this other package. This modularity makes the
common proof technique of “game-hopping” much more easily usable, and is
the core strength of the state-separable proof formalism.

Before we get to packages, we first need to define a few convenient notions for
functions manipulating a state, and parameterizing functions with other func-
tions.

Our first definition will be a little bit of shorthand.

Definition 2.4 (Stateful Function). A stateful function is simply a function 𝑓
of the form:

𝑓 : (𝑆, 01∗) $−→ (𝑆, 01∗)
𝑆 represents the state being used and modified by the function. As a convenient
shorthand, we write:

𝑓 :⟲⟲𝑆

□

It’s useful to have a bit of typing to separate the state from the rest of the input
and output, since it allows us to avoid defining inessential padding details inside
the formalism itself.

We’ll also want a notion of equality for these functions.

Definition 2.5 (Stateful Function Equality). Two stateful functions 𝑓 :⟲⟲𝑆 and
𝑓 :⟲⟲𝑆′ are equal, written 𝑓 = 𝑓 ′, if there exists an isomorphism 𝜑 : 𝑆 � 𝑆′, such
that:

𝑓 = (𝑠, 𝑖) ↦→ (𝑠′, 𝑜) ← 𝑓 ′(𝜑(𝑠), 𝑖); (𝜑−1(𝑠′), 𝑜)

8

□

Basically, the states don’t have to be literally the same, as long as they’re iso-
morphic, and the natural way of making the two types match up produces equal
functions. One can verify that this forms a valid equality relation. Note that this
reduces to the standard notion of equality of functions by considering appropriate
binary encodings of the two states.

We also need to consider functions parameterized by other functions. Intuitively,
this arises when one function calls another. For example, consider:

𝑓 (𝑥) := 𝑔(𝑥) ⊕ 𝑔(𝑥)

which is well defined regardless of what 𝑔 is. Here 𝑓 is implicitly parameterized
by 𝑔, but we could write this explicitly as 𝑓 (𝑥) := 𝑔 ↦→ 𝑔(𝑥) ⊕ 𝑔(𝑥). We could
write 𝑓 : (01∗ $−→ 01∗) → (01∗ $−→ 01∗) as a potential type in this example.
We write 𝑓 [𝑔] for the instantiation of a parameterized function 𝑓 with an input
function 𝑔. It might also be the case that 𝑔 is itself parameterized, in which case
𝑓 [𝑔] is defined as:

𝑓 [𝑔] := ℎ ↦→ 𝑓 [𝑔[ℎ]]

We can define a natural, albeit very strong, notion of equality for parameterized
functions, saying that:

𝑓 = 𝑔 ⇐⇒ ∀ℎ1, . . . , ℎ𝑛. 𝑓 [ℎ1, . . .] = 𝑔[ℎ1, . . .]

In other words, the two functions must be equal regardless of how we instantiate
them.

We’ve now developed enough tools to define packages.

Definition 2.6 (Package). A package 𝐴 consists of:

• a type 𝑆, for its state,

• a set of input names In(𝐴), of size 𝑚,

• a permutation 𝜋in : In(𝐴) ↔ [𝑚],

• a set of output names Out(𝐴), of size 𝑛,

• a permutation 𝜋out : [𝑛] ↔ Out(𝐴),

• a set of parameterized functions 𝑓1, . . . , 𝑓𝑛 : ∀𝑠. ⟲⟲𝑚
𝑠→⟲⟲(𝑆,𝑠) , each of

which has a distinct name 𝑛𝑖 ∈ Out(𝐴).

We also only consider a package to be defined up to potentially renaming its
input and output functions injectively.

■

9

Note that here⟲⟲𝑚
𝑠 denotes a tuple type containing m values of type⟲⟲𝑠.

We’ll often use In(𝐴) or Out(𝐴) to talk about the input and output functions of
a package. As a bit of a short hand notation, we write In(𝐴, 𝐵, . . .) for the union
In(𝐴) ∪ In(𝐵) ∪ . . ., and similarly for Out(. . .).

The motivation behind this definition is that a package has an internal state
𝑆, which gets manipulated by each of the functions it exports. These func-
tions, in turn, can depend on other input functions. If a stateful function 𝑓 :
∀𝑠. ⟲⟲𝑠→⟲⟲(𝑆1,𝑠) uses a stateful function 𝑔 :⟲⟲𝑆2 , then the result is a stateful
function 𝑓 [𝑔] :⟲⟲(𝑆1,𝑆2) manipulating both the state of 𝑓 , and the state of 𝑔. Fur-
thermore, 𝑓 is defined in such way agnostic to what the state manipulated by 𝑔
happens to be, which is why we use a quantified type instead: to allow instanti-
ation with functions manipulating different kinds of state. If 𝑔 used a state type
𝑆′2, then 𝑓 [𝑔] would have type⟲⟲(𝑆1,𝑆

′
2) instead.

In practice, each function in a package is unlikely to use all of the input functions
of the package, but it is much simpler to have each function parameterized by all
the possible inputs, even if some are left unused. It’s also much simpler to define
an ordering of the input functions 𝜋, so that we can use⟲⟲𝑚

𝑠 as the input type for
the parameterized functions.

The semantics of a package without inputs are intuitively that of a stateful com-
puter program or machine you can interact with. The machine has some kind of
state, represented by 𝑆, along with various functions you can call, represented by
𝑓1, . . . , 𝑓𝑛. Each of these will use the input you provide, along with the current
state of the machine, in order to supply you with an output, potentially modify-
ing the state along the way. The input functions allow a package to interact with
other packages itself.

We describe this kind of interaction using the formal notion of package compo-
sition.

Definition 2.7 (Package Composition). Given two packages 𝐴, 𝐵with In(𝐴) ⊆
Out(𝐵), we define their composition 𝐴 ◦ 𝐵 as a package characterized by:

• a state type (𝐴.𝑆, 𝐵.𝑆),

• input names In(𝐵),

• output names Out(𝐴),

• 𝜋in := 𝐵.𝜋in,

• 𝜋out := 𝐴.𝜋out,

• output functions 𝐴. 𝑓1 [𝜑(𝐵. 𝑓1), . . . , 𝜑(𝐵. 𝑓𝐵.𝑛)],

In more detail, these functions have type ∀𝑠. ⟲⟲𝐵.𝑚
𝑠 →⟲⟲((𝐴.𝑆,𝐵.𝑆),𝑠) , and are of

10

the form:

(ℎ1, . . . , ℎ𝐵.𝑚) ↦→ 𝐴. 𝑓𝑖 [𝜑𝐴 (𝐵. 𝑓1) [ℎ1, . . .], . . . , 𝜑𝐴 (𝐵. 𝑓𝐵.𝑛) [ℎ1, . . .]]

where 𝜑𝐴 assigns each function 𝐵. 𝑓𝑖 to a slot in [𝑚] using 𝐴.𝜋in on the name of
that function, 𝐵.𝑛𝑖. The same input functions ℎ 𝑗 are given to all the functions
used by 𝐴. 𝑓𝑖.

□

Package composition formally defines the intuitive notion of one package “us-
ing” the functions provided by another package. The result is a package provid-
ing the functions defined in 𝐴, and requiring the functions needed by 𝐵, but with
the functions inside 𝐵 itself now effectively inlined inside of 𝐴 ◦ 𝐵.

Next we’d like to prove that package composition satisfies some nice properties.
For example 𝐴 ◦ (𝐵 ◦ 𝐶) is the same as (𝐴 ◦ 𝐵) ◦ 𝐶. Before we can prove
such properties, we need to define what it means for two packages to be “the
same”.

Definition 2.8 (Literal Equality). We say that two packages 𝐴, 𝐵 are literally
equal, written 𝐴 ≡ 𝐵, when:

• 𝐴.𝑆 � 𝐵.𝑆,

• In(𝐴) = In(𝐵),

• Out(𝐴) = Out(𝐵),

• There exists a permutation 𝜋 : [𝑛] ↔ [𝑛] such that

∀𝑖 ∈ [𝑛] . 𝐴. 𝑓𝑖 = 𝐵. 𝑓𝜋(𝑖) ∧ 𝐴.𝑛𝑖 = 𝐵.𝑛𝜋(𝑖)

□

We require strict equality for the input and output names, to avoid spurious com-
parisons between two packages with completely different names, although it
should be noted that packages are only really defined up to renaming anyways, so
this is essentially an isomorphism constraint. For the type of state, we consider
an isomorphism directly, mainly so that (𝐴.𝑆, (𝐵.𝑆, 𝐶.𝑆)) is considered to be the
same state type as ((𝐴.𝑆, 𝐵.𝑆), 𝐶.𝑆), which might already be the case depending
on how one defines equality for sets. The final condition also implies that 𝜋in is
the same for both packages.

This notion of equality is very strong, especially because of the equality it im-
poses on the functions defined in each package. While it suffices to explore basic
properties of composition for packages, we’ll want to abandon it quite quickly
for a looser and more easily used notion of equality.

11

The first propertywe prove using this new definition is the one used as an example
before.

Lemma 2.2 (Associativity of Composition). Given packages 𝐴, 𝐵, 𝐶, it holds
that:

𝐴 ◦ (𝐵 ◦ 𝐶) ≡ (𝐴 ◦ 𝐵) ◦ 𝐶
provided these expressions are well defined.

Proof: The input and output names are clearly equal on both sides. Furthermore,
the state on the left is (𝐴.𝑆, (𝐵.𝑆, 𝐶.𝑆)), and ((𝐴.𝑆, 𝐵.𝑆), 𝐶.𝑆) on the right, and
so the two states are isomorphic. All that’s left is the final condition, talking
about the equality of the functions defined in each package.

Now, for the equality of functions, we’ll expand the functions of the package on
the left, and then on the right, before comparing the results we get.

The functions in 𝐵 ◦ 𝐶 are of the form:

(ℎ1, . . .) ↦→ 𝐵. 𝑓𝑖 [𝜑𝐵 (𝐶. 𝑓1) [ℎ1, . . .], . . .]

And then the functions in 𝐴 ◦ (𝐵 ◦ 𝐶) are of the form:

(ℎ1, . . .) ↦→ 𝐴. 𝑓𝑖 [𝜑𝐴 (𝐵. 𝑓1) [𝜑𝐵 (𝐶. 𝑓1) [ℎ1, . . .]], . . .]

From the other side, the functions in 𝐴 ◦ 𝐵 are of the form:

(ℎ1, . . .) ↦→ 𝐴. 𝑓𝑖 [𝜑𝐴 (𝐵. 𝑓1) [ℎ1, . . .], . . .]

This makes the functions in (𝐴 ◦ 𝐵) ◦ 𝐶 of the form:

(ℎ1, . . .) ↦→ 𝐴. 𝑓𝑖 [𝜑𝐴 (𝐵. 𝑓1) [𝜑𝐴◦𝐵 (𝐶. 𝑓1) [ℎ1, . . .]], . . .]

The main difference is that we end up with 𝜑𝐴◦𝐵 as our means of assigning the
functions in 𝐶 to the slots of 𝐵. However, 𝜑𝑋 only depends on 𝑋.𝜋in, and by
definition (𝐴 ◦ 𝐵).𝜋in = 𝐵.𝜋in, so 𝜑𝐴◦𝐵 = 𝜑𝐵.

Another smaller difference is that the resulting stateful functions have different,
but isomorphic states, which is allowed by stateful function equality.

So, in both cases, we end up with the same functions, concluding our proof.

■

This property is useful, since it lets us simply write 𝐴 ◦ 𝐵 ◦𝐶, without worrying
about the order in which packages are composed.

Another more technical property we want composition to satisfy is that of equal-
ity preservation. If 𝐵 ≡ 𝐵′, then it should be the case that 𝐴 ◦ 𝐵 ≡ 𝐴 ◦ 𝐵′, or that

12

𝐵 ◦𝐶 ≡ 𝐵′ ◦𝐶. If that weren’t the case, then that would indicate that something
is wrong with our definition of either equality or composition. The property we
want for literal equality is that 𝐴 and 𝐴′ are completely interchangeable, and so
one can always be replaced with the other, no matter the context, to the point that
we can think of them as literally being the same package.

Thankfully, it turns out that composition and literal equality do in fact get along.

Lemma 2.3 (Composition Preserves Equality). Given any packages 𝐴, 𝐵, 𝐵′, 𝐶
it holds that:

• 𝐵 ≡ 𝐵′ =⇒ 𝐴 ◦ 𝐵 ≡ 𝐴 ◦ 𝐵′,

• 𝐵 ≡ 𝐵′ =⇒ 𝐵 ◦ 𝐶 ≡ 𝐵′ ◦ 𝐶,

provided these expressions are well defined.

Proof: In one case the state type is (𝐴.𝑆, 𝐵.𝑆) or (𝐴.𝑆, 𝐵′.𝑆), which are iso-
morphic if 𝐵.𝑆 � 𝐵′.𝑆. Similarly, in the other case, we have (𝐵.𝑆, 𝐶.𝑆) vs
(𝐵′.𝑆, 𝐶.𝑆), and the same observation holds.

Now, remember that In(𝑋 ◦𝑌) = In(𝑌), and Out(𝑋 ◦𝑌) = Out(𝑋). Thus, since
both In(𝐵) = In(𝐵′) and Out(𝐵) = Out(𝐵′) hold, we conclude that In and Out
match up in both cases.

The trickier part is the 4th condition for equality.

In the first case, the functions are of the form:

𝐴.f𝑖 [𝜑𝐴 (𝐵. 𝑓1), . . .]

Now, 𝜑𝐴 orders the functions in 𝐵 based only on their names. In particular, the
ordering does not matter. Since the functions in 𝐵′ are the same as 𝐵 up to their
ordering, including their names, 𝜑𝐴 will order them in the same way. Thus, the
functions in 𝐴 ◦ 𝐵 and 𝐴 ◦ 𝐵′.

In the second case, the functions are of the form:

𝐵.f𝑖 [𝜑𝐵 (𝐶. 𝑓1), . . .]

Now, 𝜋in is the same for both 𝐵 and 𝐵′, as we’ve remarked before. Thus, 𝜑𝐵 and
𝜑𝐵′ are the same. Thus, the functions in 𝐵 ◦ 𝐶 are the same as 𝐵 ◦ 𝐶′, up to
reordering, as required.

Having noted all of these points, we can conclude our proof.

■

Now, we look at the other kind of composition for packages: tensoring. The
intuitive idea is that tensoring allows us to run two packages “in parallel”. The
result of tensoring two packages is a new package with the functions in both

13

packages, allowing us to interact with one package or the other at will. We’ll
discuss the semantics a bit more after the formal definition.

Definition 2.9 (Package Tensoring). Given two packages 𝐴, 𝐵, with Out(𝐴) ∩
Out(𝐵) = ∅, we can define their tensoring 𝐴 ⊗ 𝐵 as a package characterized by:

• a state type (𝐴.𝑆, 𝐵.𝑆),

• input names In(𝐴) ∪ In(𝐵),

• output names Out(𝐴) ∪ Out(𝐵),

• an output name assignment defined by:

𝜋out(𝑖) :=

{
𝐴.𝜋out(𝑖) 𝑖 ≤ 𝐴.𝑛

𝐴.𝑛 + 𝐵.𝜋out(𝑖 − 𝐴.𝑛) 𝑖 > 𝐴.𝑛

• an input index assignment 𝜋in(𝑛) which returns the index of 𝑛 in the list
of names In, sorted in lexicographic order.

Then, for the functions, we have two cases. We use a common helper function:

lift1(𝑓) := (((𝑠1, 𝑠2), 𝑠), 𝑖) ↦→ (𝑠′1, 𝑜) ← 𝑓 (𝑠1, 𝑖); (((𝑠′1, 𝑠2), 𝑠), 𝑜)
lift2(𝑓) := (((𝑠1, 𝑠2), 𝑠), 𝑖) ↦→ (𝑠′2, 𝑜) ← 𝑓 (𝑠2, 𝑖); (((𝑠1, 𝑠

′
2), 𝑠), 𝑜)

for 𝑖 ∈ 1, 2 to lift a function operating on one side of the state to operate on the
whole state.

For 𝑖 ∈ [1, . . . , 𝐴.𝑛], we have:

𝑓𝑖 := (ℎ1, . . . , ℎ𝑚) ↦→ lift1(𝐴. 𝑓𝑖 [ℎ𝜋in (𝐴.𝜋−1
in (𝑗))

| 𝑗 ∈ [𝐴.𝑚]])

Then, for 𝑖 ∈ [𝐴.𝑛 + 1, . . . , 𝐴.𝑛 + 𝐵.𝑛], we have:

𝑓𝑖 := (ℎ1, . . . , ℎ𝑚) ↦→ lift2(𝐵. 𝑓𝑖 [ℎ𝜋in (𝐵.𝜋−1
in (𝑗))

| 𝑗 ∈ [𝐵.𝑚]])

□

The state of 𝐴 ⊗ 𝐵 is just the state of both packages, and 𝐴 ⊗ 𝐵 also takes in the
inputs of both packages, which may overlap, and produces the output functions
of both packages. We require that these output functions do not overlap, to make
it clear which function belongs to which “side” of the package.

Defining the output functions requires a little bit of technical juggling. One de-
tail is that we start with functions expecting to receive just their state, but need to
augment them to receive both states, and then place the result on the correspond-
ing side. Another technical detail of our formalism shows up here as well, since
𝐴. 𝑓𝑖 and 𝐵. 𝑓𝑖 are parameterized functions, which pick up an extra state term 𝑠

14

after being instantiated with their inputs, and so lift𝑖 needs to also carry this term
around. We also choose to arrange the output functions by 𝐴 first, and then 𝐵,
but the order we’ve chosen is arbitrary.

Now, the trickier details relate to the input functions. The basic issue is that we
need to change the functions so that they technically accept all the input functions
of 𝐴 ⊗ 𝐵, but ignore the ones irrelevant to either 𝐴 or 𝐵. We do this by choosing
an “arbitrary” permutation for 𝜋in, and then pass in the right inputs to 𝐴 or 𝐵
by using their input permutations backwards, allowing us to look up the name
associated with a given index, which we then use to figure out the right index
according to 𝜋in.

We choose 𝜋in to be the lexicographic ordering, because it’s a consistent order-
ing which does not depend on either 𝐴 or 𝐵, and also doesn’t care about the
order in which packages are composed. This technically introduces a new as-
sumption about names, since we haven’t assumed anything about what a name is
yet. However, assuming that names can be sorted alphabetically is not a strong
assumption.

Continuing our analogy of machines, we can see the tensoring of 𝐴⊗𝐵 as having
two independent machines, side-by-side, that one can interact with at will. The
state of one machine doesn’t interfere with the state of the other, although both
machines might be connected to some commonmachine “behind” them, through
composition.

Like with composition, tensoring is also associative.

Lemma 2.4 (Tensoring is Associative). Given packages 𝐴, 𝐵, 𝐶, it holds that:

𝐴 ⊗ (𝐵 ⊗ 𝐶) ≡ (𝐴 ⊗ 𝐵) ⊗ 𝐶

provided these expressions are well defined.

Proof: The state types are (𝐴.𝑆, (𝐵.𝑆, 𝐶.𝑆)) and ((𝐴.𝑆, 𝐵.𝑆), 𝐶.𝑆), which are
isomorphic.

The input names are In(𝐴) ∪ In(𝐵) ∪ In(𝐶) on both sides, and the output names
are Out(𝐴) ∪ Out(𝐵) ∪ Out(𝐶) for both sides as well.

Next, we get to the crux of the proof, which looks at the functions.

First, some observations about lift𝑖 (lift 𝑗 (𝑓)). These compositions can always be
written in terms of a tuple with 3 elements:

lift′𝑗 (𝑓) := (((𝑠1, 𝑠2, 𝑠3), 𝑠), 𝑖) ↦→ (𝑠 𝑗 , 𝑜) ← 𝑓 (𝑠 𝑗 , 𝑖); (((𝑠1, 𝑠2, 𝑠3), 𝑠), 𝑜)

15

The relation between them is that:

lift1(lift1(𝑓)) = lift′1(𝑓)
lift1(lift2(𝑓)) = lift′2(𝑓)
lift2(lift1(𝑓)) = lift′2(𝑓)
lift2(lift2(𝑓)) = lift′3(𝑓)

So, in both 𝐴 ⊗ (𝐵 ⊗ 𝐶), and (𝐴 ⊗ 𝐵) ⊗ 𝐶, the functions will be of one of three
forms:

1. lift1(𝐴. 𝑓𝑖 [. . .]),

2. lift2(𝐵. 𝑓𝑖 [. . .]),

3. lift3(𝐶. 𝑓𝑖 [. . .]).

The order of the functions will actually be the same in both cases.

The only remaining difference, potentially, is the instantiation. But, our defini-
tion ensures that the instantiation depends only on the names of the functions,
and these are the same in both cases, so we conclude that the functions are equal.

■

Like with composition, associativity lets us forget about the way we group mul-
tiple tensorings together, letting us simply write 𝐴 ⊗ 𝐵 ⊗ 𝐶.

Tensoring also satisfies an additional property compared to composition. Be-
cause tensoring just provides the functions of both packages, it shouldn’t actually
matter which order we tensor packages together, since the resulting functions are
the same.

Lemma 2.5 (Tensoring is Commutative). Given packages 𝐴, 𝐵, it holds that:

𝐴 ⊗ 𝐵 ≡ 𝐵 ⊗ 𝐴

provided these expressions are well defined.

Proof: The state on the left is (𝐴.𝑆, 𝐵.𝑆), and (𝐵.𝑆, 𝐴.𝑆) on the right. These
states are isomorphic, as we’ve seen before.

Similarly, since ∪ is commutative, In and Out will match on both sides.

The inputs to each of the functions depend only on the set of names of the input
functions, which are identical for both sides. The ordering is different though,
but it suffices to swap 𝑓𝑖 with 𝑓𝑖+𝐴.𝑛 to make the ordering match.

Thus, we conclude that the two packages are the same.

■

16

So far, we’ve treated composition and tensoring as two separate operations, but
very often we want to use them together: this allows us to decompose a large
package into smaller components, using tensoring and composition. Then we’ll
rearrange these components around tomake proving certain properties easier.

One key observation making this kind of rearrangement easier is related to how
tensoring and composition interact with each other.

Lemma 2.6 (Interchange Lemma). Given packages 𝐴,𝐵,𝐶, 𝐷, such that In(𝐴)∩
Out(𝐷) = ∅ and In(𝐶) ∩ Out(𝐵) = ∅

©­«
𝐴
⊗
𝐶

ª®¬ ◦ ©­«
𝐵
⊗
𝐷

ª®¬ ≡
(𝐴 ◦ 𝐵)
⊗

(𝐶 ◦ 𝐷)

Proof: The state on the left is ((𝐴.𝑆, 𝐶.𝑆), (𝐵.𝑆, 𝐷.𝑆)), while the state on the
right is ((𝐴.𝑆, 𝐵.𝑆), (𝐶.𝑆, 𝐷.𝑆)). These states are isomorphic, of course.

Now, let’s look at In and Out. On the left, we have:

In ©­«©­«
𝐴
⊗
𝐶

ª®¬ ◦ ©­«
𝐵
⊗
𝐷

ª®¬ª®¬ = In ©­«
𝐵
⊗
𝐷

ª®¬ = In(𝐵) ∪ In(𝐷)

On the right, we have:

In ©­«
(𝐴 ◦ 𝐵)
⊗

(𝐶 ◦ 𝐷)
ª®¬ = In(𝐴 ◦ 𝐵) ∪ In(𝐶 ◦ 𝐷) = In(𝐵) ∪ In(𝐷)

For Out, on the left we have:

Out ©­«©­«
𝐴
⊗
𝐶

ª®¬ ◦ ©­«
𝐵
⊗
𝐷

ª®¬ª®¬ = Out ©­«
𝐴
⊗
𝐶

ª®¬ = Out(𝐴) ∪ Out(𝑐)

On the right, we have:

Out ©­«
(𝐴 ◦ 𝐵)
⊗

(𝐶 ◦ 𝐷)
ª®¬ = Out(𝐴 ◦ 𝐵) ∪ Out(𝐶 ◦ 𝐷) = Out(𝐴) ∪ Out(𝐶)

Now, we look at the functions.

On the left, we start with functions of the form:

(ℎ1, . . .) ↦→ lift1(𝐴. 𝑓𝑖 [ℎ(𝐴⊗𝐶).𝜋in (𝐴.𝜋−1
in (𝑗))

| 𝑗 ∈ [𝐴.𝑚]])
(ℎ1, . . .) ↦→ lift2(𝐶. 𝑓𝑖 [ℎ(𝐴⊗𝐶).𝜋in (𝐶.𝜋−1

in (𝑗))
| 𝑗 ∈ [𝐶.𝑚]])

17

then, after composing with 𝐵 ⊗ 𝐷, using our assumption that 𝐴 uses only func-
tions from 𝐵, and 𝐶 only functions from 𝐷, we get:

(ℎ1, . . .) ↦→ lift1(𝐴. 𝑓𝑖 [lift1(𝜑𝐴 (𝐵. 𝑓1) [ℎ(𝐵⊗𝐷).𝜋in (𝐵.𝜋−1
in (𝑗))

| 𝑗 ∈ [𝐵.𝑚]]), . . .])
(ℎ1, . . .) ↦→ lift2(𝐶. 𝑓𝑖 [lift2(𝜑𝐶 (𝐷. 𝑓1) [ℎ(𝐵⊗𝐷).𝜋in (𝐵.𝜋−1

in (𝑗))
| 𝑗 ∈ [𝐷.𝑚]]), . . .])

This is because in 𝐴 ⊗ 𝐶, the order parameters are instantiated depends only on
the names of the function, and so the order will correspond with that of 𝜑𝐴 or
𝜑𝐶 , respectively.

From the right, the functions will be of the forms:

(ℎ1, . . .) ↦→ lift1(𝐴. 𝑓𝑖 [𝜑𝐴 (𝐵. 𝑓1) [ℎ𝜋in ((𝐴◦𝐵).𝜋−1
in (𝑗))

| 𝑗 ∈ [(𝐴 ◦ 𝐵).𝑚]]])
(ℎ1, . . .) ↦→ lift2(𝐶. 𝑓𝑖 [𝜑𝐶 (𝐷. 𝑓1) [ℎ𝜋in ((𝐶◦𝐷).𝜋−1

in (𝑗))
| 𝑗 ∈ [(𝐶 ◦ 𝐷).𝑚]]])

Now, (𝐴 ◦ 𝐵).𝑚 = 𝐵.𝑚, and ditto for 𝐶 ◦ 𝐷. Furthermore, the 𝜋in used here is
the same as (𝐵 ⊗ 𝐷).𝜋in, since the function only depends on In(𝐵) ∪ In(𝐷).

The remaining difference is about

(𝐴 ⊗ 𝐶).lift𝑖 (𝑓 [(𝐵 ⊗ 𝐷).lift𝑖 (𝑔)])
?
= ((𝐴 ⊗ 𝐶) ◦ (𝐵 ⊗ 𝐷)).lift𝑖 (𝑓 [𝑔])

Expanding the right hand side, for 𝑖 = 1, we get:

(((𝑠𝐴, 𝑠𝐵, 𝑠𝐶 , 𝑠𝐷), 𝑠), 𝑖) ↦→ (𝑠𝐴, 𝑠𝐵, 𝑜) ← 𝑓 [𝑔] (((𝑠𝐴, 𝑠𝐵), 𝑠), 𝑖); (((𝑠𝐴, 𝑠𝐵, 𝑠𝐶 , 𝑠𝐷), 𝑠), 𝑜)

An equivalent way of writing this would be:

((((𝑠𝐴, (𝑠𝐵, 𝑠𝐷)), 𝑠𝐶), 𝑠), 𝑖) ↦→
((𝑠𝐴, (𝑠𝐵, 𝑠𝐷)), 𝑜) ← 𝑓 [lift1(𝑔)] (((𝑠𝐴, (𝑠𝐵, 𝑠𝐷)), 𝑠), 𝑖)
((((𝑠𝐴, (𝑠𝐵, 𝑠𝐷)), 𝑠𝐶), 𝑠), 𝑜)

But this is just lift1(𝑓 [lift1(𝑔)]). A similar argument works for 𝑖 = 2 as well.

Having eliminated all differences between the functions for the packages we’re
comparing, we conclude our proof.

■

This proof marks the last very technical proof using the formal definition of
packages. We’ve now developed almost all of the machinery we need to start
reasoning about packages syntactically, using the fundamental operations and
properties we’ve just defined.

We do need one more gadget though, which allows us to easily thread functions
around.

18

Definition 2.10 (Identity Packages). Given a set of names 𝑁 , we can define the
identity package 1(𝑁) as a package characterized by:

1. A state 𝑆 := ∅,

2. In = 𝑁 ,

3. Out = 𝑁 ,

4. 𝜋in = 𝜋−1
out, based on a lexicographical ordering of 𝑁 ,

5. Functions 𝑓1, . . . , 𝑓|𝑁 | defined via:

𝑓𝑖 := (ℎ1, . . . , ℎ𝑚) ↦→ ℎ𝑖

□

In other words, the identity package 1(𝑁) simply uses some functions, and pro-
vides themwithout any changes whatsoever. This means that 1(Out(𝐴))◦𝐴 ≡ 𝐴,
and 𝐵 ◦ 1(In(𝐵)) = 𝐵, which is why we call this an identity package.

On its own, this might not seem all that useful, but it becomes essential when
combined with tensoring, allowing us to define packages such as:

©­«
𝐴
⊗

1(Out(𝐵))
ª®¬ ◦ 𝐵

Here, 𝐵 is used both by 𝐴, but its functions are also forwarded further. This kind
of arrangement is very useful when defining packages.

We also have a few pieces of shorthand that are useful for identity packages. We
write 1(𝐴, 𝐵, . . .) for 1(𝐴 ∪ 𝐵 ∪ . . .), and we also sometimes abuse notation to
write 1(𝑃) where 𝑃 is a package, to mean 1(Out(𝑃)), since forwarding the entire
output of a package is a very common operation.

2.4 Indistinguishability and Reductions
The goal of this subsection is to define more useful notions of equality. Literal
equality is far too strict, since it will not allow for many modifications which
yield packages that are effectively the same. Furthermore, in many situations,
we want to consider packages that are hard to tell apart with limited compu-
tational resources; such “hard problems” are the basis of many cryptographic
schemes. Furthermore, we want to relate the hardness of distinguishing one pair
of packages to the hardness of distinguishing another pair: this is the notion of
reduction.

First, we need to extend our notion of efficiency from functions to packages.

19

Definition 2.11 (Efficient Packages). A package 𝑃 is said to be efficient if all
of its functions are efficient.

In turn, a parameterized function 𝑓 is efficient if for any efficient functions ℎ1, . . .,
the instantiation 𝑓 [ℎ1, . . .] is also efficient.

□

This is a very natural definition of efficiency, and one can verify that efficiency
is preserved under both tensoring and composition.

The next notion we define is that of the game.

Definition 2.12 (Game). A game 𝐺 is a package with In(𝐺) = ∅.

□

This is a very simple distinction, but it’s important, because when a package
has no input functions, then one can interact with it as a complete machine al-
ready, there’s nothing that needs to be plugged in before the machine can actually
“run”.

The next fundamental notion we define is that of the adversary. Intuitively, ad-
versaries are trying to distinguish games with the same interface apart. A “hard”
problem can be characterized by a pair of games that no efficient adversary can
tell apart.

Definition 2.13 (Adversaries). An adversary A for a package 𝑃, is a package
with no state, In(A) = Out(𝑃), and Out(A) = {run}, where run : • $−→ 01.

□

We’ll use adversaries to define some notions of indistinguishability for games
first, but we already define adversaries as being for packages, to be ready for
when we extended these notions later.

We can think of an adversary as playing a “game” of distinguishing between two
packages. The goal of an adversary is to separate the two packages, by returning
0 in one case, and 1 in the other. The success of an adversary will be measured
by how often it’s able to distinguish the two packages.

Another point of view is that an adversary A is actually a mapping from games
with a given interface to functions of type • $−→ 01. Each game we feed to the
adversary yields a different function. This is particularly convenient because
we’ve already developed notions of equality and distance for functions, and we
can use this mapping to lift the notions to packages as well.

This leads to our next definition:

20

Definition 2.14 (Adversarial Distance). Given two games𝐺, 𝐻 with Out(𝐺) =
Out(𝐻), and an adversary A for 𝐺 or 𝐻, we define their adversarial distance
relative to A as:

𝜀A (𝐺, 𝐻) := 𝜀(A ◦ 𝐺,A ◦ 𝐻)
Here we abuse notation a bit to let A ◦ 𝑋 denote the function we get by calling
run.

□

As the name suggests, this relation also forms a distance metric.

Like with functions, this also leads to a natural notion of equality for games.
But first, to avoid having to say Out(𝐺) = Out(𝐻) many times, we define the
following shorthand:

Definition 2.15 (Game Shape). Two games𝐺,𝐻 are said to have the same shape
if Out(𝐺) = Out(𝐻).

□

We can then continue with our definition of equality.

Definition 2.16 (Game Equality). Given two games 𝐺 and 𝐻 with the same
shape, we say that 𝐺 and 𝐻 are equal, written 𝐺 = 𝐻, if for all adversaries A,
we have:

𝜀A (𝐺, 𝐻) = 0

□

Note that we consider all adversaries, even potentially unbounded ones. Because
adversarial distance is a metric, we also immediately conclude that this relation
is a valid equality relation.

We’ve intentionally used the = symbol here, because we think that this is the
most natural notion of equality for games. It allows for inessential differences
to be ignored, such as two ways of sampling from the same distribution, but it’s
also not too loose of a notion either, since we consider unbounded adversaries.
Any tangible difference in distributions can be sniffed out by such a powerful
adversary.

We do nonetheless want to develop a looser notion of equality, which can both
allow for a small possibility of success in distinguishing two games, as well as
the possibility of genuinely hard problems, by restricting the resources of the
adversary.

First, we need to define the kind of upper bound we use to characterize this suc-
cess probability. Often, this can just be a number, but we also need to generalize
the notion in order to be able to handle reductions as well.

21

Definition 2.17 (Advantage Bound). An advantage bound 𝜖 = (𝑓𝜖 , 𝜖1
𝑏 , . . . , 𝜖

𝑛
𝑏)

consists of an increasing function 𝑓𝜖 : R𝑛 → R, along with 𝑛 pairs of games
𝜖1

0 , 𝜖
1
1 , . . ., with 𝜖 𝑖0 and 𝜖 𝑖1 having the same shape.

□

We’ll have more to say about this definition, and how it relates to reductions later.
For now, note that the case of a single number is captured by setting 𝑓𝜖 (. . .) = 𝛼,
for some constant 𝛼. Next, we look at howwe can use this notion of an advantage
bound to define indistinguishability.

Definition 2.18 (Game Indistinguishability). Given two games 𝐺 and 𝐻 with
the same shape, we say that 𝐺 and 𝐻 are indistinguishable up to an advantage
bound 𝜖 , written 𝐺

𝜖≈ 𝐻, if for all efficient adversaries A, there exists efficient
adversaries B1, . . . ,B𝑛, such that for sufficiently large 𝜆¹ it holds that:

𝜀A (𝐺, 𝐻) ≤ 𝑓𝜖 (𝜀B1 (𝜖1
0 , 𝜖

1
1), . . . , 𝜀B𝑛 (𝜖𝑛0 , 𝜖

𝑛
1))

□

This definition only considers efficient adversaries to allow for hard problems to
exist, and also allows a bit of a “gap”, letting the adversary have some success
at distinguishing the two games, related to the success of adversaries in other
games.

The purpose of these two definitions are to capture reductions. When we say
that distinguishing a pair of games 𝐺0, 𝐺1 reduces to distinguishing a pair of
games 𝐻0, 𝐻1, we mean that 𝐺𝑏 is at least as hard as 𝐻𝑏, in the sense that any
attack against𝐺𝑏 can be converted to an attack against 𝐻𝑏, with some reasonable
relationship on the success probability.

More formally, a reduction is a statement of the form: “for all (efficient) adver-
sariesA against 𝐺𝑏, there exists an (efficient) adversary B against 𝐻𝑏, such that
𝜀A (𝐺0, 𝐺1) is at most 𝜀B (𝐻0, 𝐻1)”. This statement is interesting because if 𝜀B
is “small”, then 𝜀A will also be “small”. So, 𝐺𝑏 is hard assuming 𝐻𝑏 is.

The way we’d translate this statement into the definitions we’ve seen is by using
the bound 𝜖 := (𝑥 ↦→ 𝑥, 𝐻𝑏). Our reduction is then a statement that 𝐺0

𝜖≈ 𝐺1.
We’ll often use the shorthand 𝐺0

𝐻𝑏≈ 𝐺1 to denote this situation. This kind of
bound could be more complicated, involving several games and even functions
of 𝜆, such as:

𝜖 := (𝑓𝜖 , 𝐴𝑏, 𝐶𝑏), 𝑓𝜖 (𝑎, 𝑏) :=
𝑄2

2𝜆
+ 2 · 𝑎 +

√
𝑏

¹By this we mean that there exists a 𝜆0 (which can depend on A) such that ∀𝜆 ≥ 𝜆0, the
inequality holds, noting that A, 𝐺, 𝐻, 𝜖 are all implicit functions of 𝜆. We thank Joseph Jaeger
for pointing out the necessity of this condition, and some other flaws in defining reductions in a
previous version of this paper.

22

These advantage bounds can also be added together in a natural way.

Definition 2.19 (Advantage Bound Addition). Given two advantage bounds
𝛼 := (𝑓𝛼, 𝛼1

𝑏, . . . , 𝛼
𝑛
𝑏) and 𝛽 := (𝑓𝛽, 𝛽1

𝑏, . . . , 𝛽
𝑚
𝑏), we can define their addition

𝛼 + 𝛽 as:

𝛼 + 𝛽 := (𝑓(𝛼+𝛽) , 𝛼1
𝑏, . . . , 𝛼

𝑛
𝑏, 𝛽

1
𝑏, . . . , 𝛽

𝑚
𝑏)

𝑓(𝛼+𝛽) (𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚) := 𝑓𝛼 (𝑎1, . . . , 𝑎𝑛) + 𝑓𝛽 (𝑏1, . . . , 𝑏𝑚)

□

(This definition even extends to any increasing 𝑢 : R2 → R).

We can use this addition of bounds to define a notion of transitivity for indistin-
guishability.

Lemma 2.7 (Transitivity of Indistinguishability). Given games 𝐺, 𝐻, 𝐼 satis-
fying:

𝐺
𝜖1≈ 𝐻, 𝐻

𝜖2≈ 𝐼

it holds that:
𝐺

𝜖1+𝜖2≈ 𝐼

In more detail, for all efficient adversaries A, we have:

𝜀A (𝐺, 𝐼) ≤ 𝜖1 + 𝜖2

Proof: Since 𝜀A is a metric, it satisfies the triangle inequality, so we have:

𝜀A (𝐺, 𝐼) ≤ 𝜀A (𝐺, 𝐻) + 𝜀A (𝐻, 𝐼)

Then, we just need to apply our assumptions to get the upper bound we need to
prove.

■

This notion of transitivity is very useful, since it lets us argue that two different
games are equal by appealing to several successive differences. For example,
some system might use both encryption and signing, and we can appeal to the
hardness of both problems, one at a time, to argue that the system is secure.
This kind of technique is called “game hopping”, and one of the strengths of
state-separable proofs is making the application of the technique as simple and
routine as possible.

Having defined these notions of equality for games, we now extend them to pack-
ages. The natural way to do this is by trying to turn a package into a game, and
then using the notions we’ve just developed.

Let’s look at a way to do this transformation.

23

Definition 2.20 (Completion). Given a package 𝐴, a completion of 𝐴 is a game
C, such that Out(C) ⊇ In(𝐴), and Out(C) ∩ Out(𝐴) = ∅.

We write:

ComplC (𝐴) := ©­«
𝐴
⊗

1(C)
ª®¬ ◦ C

□

So, a completion is one way of turning a package into a game. It does so by fill-
ing in all of the input functions, but it also leaks extra information forward. The
reason behind this is so that an adversary is also able to see what’s happening
“behind” the package 𝐴. Note that for completions, the names of the extra func-
tions, those in Out(C)/In(𝐴), are very inessential, and should be considered as
being distinct from any other name used by a real package.

Before we extend our notions of equality to packages, we need to quickly extend
our notion of shape first.

Definition 2.21 (Package Shape). Two packages 𝐴, 𝐵, are said to have the same
shape if Out(𝐴) = Out(𝐵), and In(𝐴) = In(𝐵).

□

We’re now ready to define equality and indistinguishability for packages.

Definition 2.22 (Package Equality and Indistinguishability). Given two pack-
ages 𝐴, 𝐵 with the same shape, we say that:

1. 𝐴 is equal to 𝐵, written 𝐴 = 𝐵, if for all completionsC, we haveComplC (𝐴) =
ComplC (𝐵),

2. 𝐴 is indistinguishable up to 𝜖 with 𝐵, written 𝐴
𝜖≈ 𝐵, if for all efficient

completions C, we have ComplC (𝐴)
𝜖≈ ComplC (𝐵).

□

A completion turns a package into a game, so it’s natural to compare packages
by using completions. However, there’s no “canonical” completion, so it’s not
clear which one to use to compare the packages. We get around this problem by
simply using all of them.

One way of looking at these notions of equality is that we have an adversary
which completely surrounds a package 𝐴, seeing both the “front”, via Out(𝐴),
and the “back”, via In(𝐴), and can distinguish the package from others by influ-
encing either side. This is why it’s important that the adversary can interact with
C directly, so that A and C effectively form one unified adversary.

24

The basic properties of equality, like symmetry and transitivity, also hold for
packages, given the definition in terms of games.

2.5 Some Properties of Equality
So far, we’ve seen three notions of equality:

1. Literal Equality (≡),

2. Equality (=),

3. Indistinguishability (𝜖≈).

We’ve considered them in isolation, but in fact there’s a very natural link between
the three: each of them is strictly stronger than the other. We capture this fact in
the following theorem.

Lemma 2.8 (Equality Hierarchy). For any packages 𝐴, 𝐵 with the same shape,
it holds that:

1. 𝐴 ≡ 𝐵 =⇒ 𝐴 = 𝐵,

2. 𝐴 = 𝐵 =⇒ 𝐴
0≈ 𝐵.

Proof: For part one, if 𝐴 ≡ 𝐵, then A ◦ ComplC (𝐴) ≡ A ◦ ComplC (𝐵), since
composition and tensoring preserve literal equality. But, in that case, by defini-
tion of ≡, the run functions must be equal in both cases, which means that:

𝜀(A ◦ ComplC (𝐴),A ◦ ComplC (𝐵)) = 0

which is what we needed to prove.

For part 2, note that if for every adversary A and completion C, we have:

𝜀A (ComplC (𝐴),ComplC (𝐵)) = 0

then, in particular, this relation holds for every efficient adversary and completion
as well, which is what we needed to prove.

■

This hierarchy is quite useful, since we can prove precise equality relations be-
tween packages, but then ultimately use them in game hopping, where only ≈
matters. The hierarchy also lets us basically forget about ≡, since whenever we
would’ve used it, we can just use = instead, which is applicable to many more
packages.

The main properties we need to prove to wrap up our formal discussion of pack-
ages relate to showing that the composition operations we’ve defined respect
equality and indistinguishability. This is very important, since it lets us reason

25

about large packages by arguing that small components are equal or indistin-
guishable, and will form the crux of most proofs.

We start with tensoring, since the proof is simpler.

Lemma 2.9 (Tensoring Respects Equality). Given packages 𝐴, 𝐵, 𝐵′, it holds
that:

1. 𝐵 = 𝐵′ =⇒ 𝐴 ⊗ 𝐵 = 𝐴 ⊗ 𝐵′,

2. 𝐵
𝜖≈ 𝐵′ =⇒ 𝐴 ⊗ 𝐵

𝜖≈ 𝐴 ⊗ 𝐵′.

provided that these expressions are well defined, and, for part 2, that 𝐴 is efficient.

Proof:
1. Let C be some completion for 𝐴 ⊗ 𝐵. We have:

ComplC (𝐴 ⊗ 𝐵) =
©­­­­­«

𝐴
⊗
𝐵
⊗

1(C)

ª®®®®®¬
◦ C

Now, we apply interchange to write this as:

©­­­­­«
𝐴
⊗

1(𝐵)
⊗

1(C)

ª®®®®®¬
◦ ©­«

𝐵
⊗

1(C)
ª®¬ ◦ C = 𝑊 ◦ ComplC (𝐵)

for some packageW. For any adversary A, we have:

𝜀A (ComplC (𝐵),ComplC (𝐵′)) = 0

In particular, for any adversary A′ against ComplC (𝐴 ⊗ 𝐵), we can apply this
observation to A′ ◦𝑊 , giving us:

𝜀A′ (𝑊 ◦ ComplC (𝐵),𝑊 ◦ ComplC (𝐵′)) = 0

Since this observation holds for any A′, we infer that:

𝑊 ◦ ComplC (𝐵) = 𝑊 ◦ ComplC (𝐵′)

Then, applying transitivity, we conclude that:

ComplC (𝐴 ⊗ 𝐵) = ComplC (𝐴 ⊗ 𝐵′)

26

2. We apply the observation we had above, which is that:

Compl𝐶 (𝐴 ⊗ 𝐵) = 𝑊 ◦ Compl𝐶 (𝐵)

(and similarly for 𝐵′). Now, by assumption for any efficient adversary A, there
exists B1, . . . such that:

𝜀A (ComplC (𝐵),ComplC (𝐵′)) ≤ 𝑓𝜖 (𝜀B1 (𝜖1
𝑏), . . .)

for sufficiently large 𝜆.

In particular, we can apply this to A′ ◦𝑊 , for any adversary A′ against 𝐴 ⊗ 𝐵,
since𝑊 is efficient, by virtue of 𝐴 being efficient. This gives us:

𝜀A′ (𝑊 ◦ ComplC (𝐵),𝑊 ◦ ComplC (𝐵′)) ≤ 𝑓𝜖 (𝜀B1 (𝜖1
𝑏), . . .)

for some B1, . . ., and all sufficiently large 𝜆.

This means that:

𝑊 ◦ ComplC (𝐵)
𝜖≈ 𝑊 ◦ ComplC (𝐵′)

We then use transitivity to conclude that:

𝐴 ⊗ 𝐵
𝜖≈ 𝐴 ⊗ 𝐵′

■

Next, we prove the same kind of theorem about composition.

Lemma 2.10 (Composition Respects Equality). Given packages 𝐴, 𝐵, 𝐵′, 𝐶,
it holds that:

1. 𝐵 = 𝐵′ =⇒ 𝐴 ◦ 𝐵 = 𝐴 ◦ 𝐵′,

2. 𝐵
𝜖≈ 𝐵′ =⇒ 𝐴 ◦ 𝐵 𝜖≈ 𝐴 ◦ 𝐵′,

3. 𝐵 = 𝐵′ =⇒ 𝐵 ◦ 𝐶 = 𝐵′ ◦ 𝐶,

4. 𝐵
𝜖≈ 𝐵′ =⇒ 𝐵 ◦ 𝐶 𝜖≈ 𝐵 ◦ 𝐶,

provided that these expressions are well defined, and for parts 2 and 4, that 𝐴
and 𝐶 are efficient, respectively.

Proof:
1. For any completion C, we can write:

ComplC (𝐴 ◦ 𝐵) =
©­«
𝐴 ◦ 𝐵
⊗

1(C)
ª®¬ ◦ C = ©­«

𝐴
⊗

1(C)
ª®¬ ◦ ©­«

𝐵
⊗

1(C)
ª®¬ ◦ C

27

by applying interchange. We can write this as:

𝑊 ◦ ComplC (𝐵)

for some package𝑊 depending on 𝐴 and Out(C).

Then, we apply a similar logic as in our proof of Lemma 2.9. For any adversary
A, we have:

𝜀A (ComplC ,ComplC (𝐵′)) = 0

Thus, for any A′ against 𝐴 ◦ 𝐵, we apply the above to A′ ◦𝑊 , getting:

𝜀A′ (𝑊 ◦ ComplC (𝐵),𝑊 ◦ ComplC (𝐵′)) = 0

In other words, we have:

𝑊 ◦ ComplC (𝐵) = 𝑊 ◦ Compl𝐶 (𝐵′)

We can then apply transitivity to conclude that 𝐴 ◦ 𝐵 = 𝐴 ◦ 𝐵′.

2. We start with the same observation, that:

ComplC (𝐴 ◦ 𝐵) = 𝑊 ◦ ComplC (𝐵)

for some package 𝑊 . By applying our assumption to A′ ◦𝑊 for any adversary
A′ against 𝐴 ◦ 𝐵, we see that:

𝜀A′ (𝑊 ◦ ComplC (𝐵),𝑊 ◦ ComplC (𝐵′)) ≤ 𝑓𝜖 (𝜀B1 (𝜖1
𝑏), . . .)

for some B1, . . . and all sufficiently large 𝜆. In other words,

𝑊 ◦ ComplC (𝐵)
𝜖≈ 𝑊 ◦ Compl𝐶 (𝐵′)

and then apply transitivity to reach our conclusion.

3. For any completion C, we can write:

ComplC (𝐵 ◦ 𝐶) =
©­«
𝐵 ◦ 𝐶
⊗

1(C)
ª®¬ ◦ C = ©­«

𝐵
⊗

1(C)
ª®¬ ◦ ©­«

1(𝐵) ◦ 𝐶
⊗

1(C)
ª®¬ ◦ C

We can then see 𝐶 as part of a new completion, writing:

©­«
𝐵
⊗

1(C′)
ª®¬ ◦ C′ = ComplC′ (𝐵)

But, by assumption, we have:

ComplC′ (𝐵) = ComplC′ (𝐵′)

28

We then apply our initial observation in reverse, along with transitivity, to reach
our conclusion.

4. Same as above, except our assumption gives us:

ComplC′ (𝐵)
𝜖≈ ComplC′ (𝐵′)

and then transitivity can be applied to reach our result once again.

■

These lemmas form the conceptual crux of how proofs in the state-separable
style work. If you want to prove that two large packages are indistinguishable,
you do so by a series of observations, each of which breaks down the package
as a composition of many smaller packages. Sometimes you’ll be able to use
theorems you’ve already proved, or problems assumed to be hard, in order to
argue that small pieces are indistinguishable, and thus apply the lemmas we’ve
just demonstrated in order to lift that indistinguishability to the large composi-
tion. By applying a series of such hops, you eventually produce a reduction of
the security of this large package to that of several smaller packages.

2.6 Syntactical Conventions for Packages
In the previous subsections, we developed a formal model of how packages work.
In practice, packages are described using a kind of pseudo-code, which corre-
sponds with these formal objects. Some of the rules governing packages are
also relaxed in practice. In this subsection we give some examples of how this
pseudo-code works. Note that the details here aren’t essential, and one could
imagine using a different kind of pseudo-code instead.

We start with an example package, containing various syntactical constructs,
which we’ll then explain in more detail.

29

P

𝑘
$←− 01𝜆

𝑏 ← ⊥
view 𝑙 ← List.new()

A(𝑥):
assert 𝑏 ≠ ⊥
return Inc(𝑥)

B():
𝑏 ← true
𝑥 ← 2
if 𝑏 = false:
𝑥 ← 𝑥 − 1

else:
𝑥 ← Inc(𝑥)

return 𝑥

Inc(𝑥):
return 𝑥 + 1

(1)𝐶():

𝑥
$←− [10]

while 𝑥 > 0:
𝑥 ← 𝑥 − 1

So, the basic idea is that a package is usually described by a box like this, with
the name of the package—𝑃, in this case—at the top of the box. A package
has some initialization code, along with exported functions. In this case, the
exported functions are 𝐴, 𝐵, 𝐶, Inc, and l.

The meaning of view is that the value is exported in a read only fashion. So,
there’s a function 𝑙 which copies the list 𝑙 and then returns it. The caller can
modify their copy, but this has no effect on the original list.

Now, one slight deviation from the formal specification is that we allow a package
to call functions that it exports internally, like we do for Inc. The semantics of
this are that the code of Inc are inlined at the call site. So, in this case, every
place where Inc(𝑥) is used can be replaced with just 𝑥 + 1.

We also have standard control flow constructs, like if, else, while, for, return,
etc. Functions don’t have to return a value, in which case we assume they return
some pre-defined dummy value, like •.

Another construct we have is assert. This should be seen as immediately return-
ing a special value indicating that an assertion failed, if the condition is indeed
false. This is useful to restrict when a function can be called. One very common
such restriction is on the number of times a function can be called. Since we
wrote (1)𝐶, we’re indicating that this function can only be called once. This is
shorthand for having a variable keep track of the number of calls, and an assertion
checking that this count is low enough.

30

Another slight deviation from the formal specification is the use of initialization
code. Formally, a package just exports functions, it doesn’t have any code run-
ning before those functions do. One way to add initialization is to have a special
function—say, Init—which must be called before any other of the functions.
The initialization code could then be placed there.

We also don’t particularly care about the names and variables of variables and
functions, as long as it’s clear which packages are using what functions. If it’s not
ambiguous, we could refer to one of the functions in 𝑃 as just 𝐴, but wemaywant
to explicitly write down 𝑃.𝐴, to disambiguate this function from another, say,
𝑄.𝐴. We might also tensor multiple versions of 𝑃 together, calling one function
𝐴1, and the other 𝐴2, for example. Another common way to disambiguate names
is to use super.𝐴, to refer to calling an input function 𝐴.

Sometimes, we’ll also compare two packages for equality, with one package ex-
porting more functions than the other. This is usually shorthand for writing
1(. . .) ◦ 𝑃 = 𝑄, ignoring some of the functions provided by one of the pack-
ages.

We stress that these rules are merely conventions, and are intended to provide
a means of clearly expressing what a package is doing, while also not being
excessively verbose.

For further examples of how state-separable proofs work, we point the reader
to the original paper [BDF+18], or to other works making use of the paradigm
[Ros, Mei22].

3 Systems
The goal of this section is to extend the notion of packages to that of systems.
Intuitively, systems are like packages, except that they can sendmessages to other
systems via channels. This is very useful, since it lets us model the kind of
interaction we need to describe protocols.

Continuing with the machine analogy, we can see packages like machines, ar-
ranged into rows, with each row using output functions provided by the row
behind it. Systems have the same setup, except that now all the machines within
a given row have the ability to communicate with each other via channels.

3.1 Asynchronous Packages
Before we get to channels, we first need to define a notion of packages that have
asynchronous functions. This becomes necessary to have channels, since we
need to be able to handle the case where a system is receiving a message along
channel, and is waiting for that message to arrive. A natural way to model this

31

is an asynchronous process, where a system can yield control back to the caller,
indicating that it isn’t able to provide an answer yet, because it’s waiting on
something else to happen first.

Syntactically, this gives us functions such as:

F(𝑥1):
𝑥2 ← yield 3
return 𝑥1 + 𝑥2

This function takes in an input 𝑥1, and then immediately yield control to the
caller, with the value 3. The caller can then resume the function with some
value, which gets stored in the variable 𝑥2, and the function returns 𝑥1 + 𝑥2. If
this function were part of a package, it could now be called again, starting from
the top once more.

While the intuition of yielding control is simple, defining it precisely is a bit
more tricky. Ultimately, the definition we provide isn’t very elegant, but we
think it’s a very straightforward approach providing a clear meaning to yield
statements.

Definition 3.1 (Yield Statements). We define the semantics of yield by com-
piling functions with such statements to functions without them.

Note that we don’t define the semantics for functions which still contain refer-
ences to oracles. Like before, we can delay the definition of semantics until all
of the pseudo-code has been inlined.

A first small change is to make it so that the function accepts one argument, a
binary string, and all yield points also accept binary strings as continuation. Like
with plain packages, we can implement richer types on top by adding additional
checks to the well-formedness of binary strings, aborting otherwise.

The next step is to make it so that all the local variables of the function 𝐹 are
present in the global state. So, if a local variable 𝑣 is present, then every use of 𝑣
is replaced with a use of the global variable 𝐹.𝑣 in the package. This allows the
state of the function to be saved across yields.

The next step is transforming all the control flow of a function to use ifgoto,
rather than structured programming constructs like while or if. The function is
broken into lines, each of which contains a single statement. Each line is given a
number, starting at 0. The execution of a function 𝐹 involves a special variable
pc, representing the current line being executing. Excluding yield and return a
single line statement has one of the forms:

〈var〉 ← 〈expr〉

〈var〉 $←− 〈dist〉

32

which have well defined semantics already. Additionally, after these statements,
we set pc← pc + 1.

The semantics of ifgoto 〈expr〉𝑖 is:

pc← if 〈expr〉 then 𝑖 else pc + 1

This gives us a conditional jump, and by using true as the condition, we get a
standard unconditional jump.

This allows us to define if and while statements in the natural way.

Finally, we need to augment functions to handle yield and return statements. To
handle this, each function 𝐹 also has an associated variable 𝐹.pc, which stores
the program counter for the function. This is different than the local pc which is
while the function is execution. 𝐹.pc is simply used to remember the program
counter after a yield statement.

The function now starts with:

ifgoto true 𝐹.pc

This has the effect of resuming execution at the saved program counter.

Furthermore, the input variable 𝑥 to 𝐹 is replaced with a special variable input,
which holds the input supplied to the function. At the start of the function body,
we add:

0 : 𝐹.𝑥 ← input

to capture the fact that the original input variable needs to get assigned to the
input to the function.

The semantics of 𝐹.𝑚 ← yield 𝑣 are:

(𝑖 − 1) : 𝐹.pc← 𝑖 + 1
𝑖 : return (yield, 𝑣)

(𝑖 + 1) : 𝐹.𝑚 ← input

The semantics of return 𝑣 become:

𝐹.pc← 0
return (return, 𝑣)

The main difference is that we annotate the return value to be different than yield
statements, but otherwise the semantics are the same.

□

33

Note that while calling a function which can yield will notify the caller as to
whether or not the return value was yielded or returned, syntactically the caller
often ignores this, simply doing 𝑥 ← 𝐹 (. . .), meaning that they simply use return
value 𝑥, discarding the tag.

In many cases, yield is used purely to yield control, and not to exchange any
value between the caller and the function. We have a special shorthand for this
kind of use.

Syntax 3.2 (Empty Yields). In many cases, no value is yielded, or returned
back, which we can write as:

yield
which is shorthand for:

• ← yield •
i.e. just yielding a dummy value and ignoring the result.

□

Unless otherwise specified, we only consider empty yields from now on. In other
contexts, being able to yield intermediate values can be useful, but for modeling
channels, we only need empty yields.

Very often, a package just wants to run another asynchronous process to com-
pletion. It’s not enough to simply loop until the process completes, because this
might cause an infinite loop, as some external intervention might be necessary
to cause the process to make progress. Instead, we want to poll the process, and
yield ourselves if the process is not yet ready. We define these semantics via the
await statement.

Syntax 3.3 (Await Statements). We define the semantics of 𝑣 ← await 𝐹 (. . .)
in a straightforward way:

(tag, 𝑣) ← (yield,⊥)
while tag = yield :
if 𝑣 ≠ ⊥ :
yield
(tag, 𝑣) ← 𝐹 (. . .)

In other words, we keep calling the function until it actually returns its final value,
but we do yield to our caller whenever our function yield, but we do yield to our
caller whenever our function yields.

□

In practice, await is the most common way that asynchronous functions will be
called. Most systems will await other functions directly, and maybe only adver-
saries will care about being able to see the underlying polling process.

34

However, sometimes we want to await several values at once, returning the first
one which completes. To that end, we define the select statement.

Syntax 3.4 (Select Statements). Select statements generalize await statements
in that they allow waiting for multiple events concurrently.

More formally, we define:

select :
𝑣1 ← await 𝐹1(. . .) :
〈body1〉

...

𝑣𝑛 ← await 𝐹𝑛 (. . .) :
〈body𝑛〉

As follows:
(tag𝑖, 𝑣𝑖) ← (yield,⊥)
𝑖 ← 0
while �𝑖. tag𝑖 ≠ yield :
if 𝑖 ≥ 𝑛 :
𝑖 ← 0
yield

𝑖 ← 𝑖 + 1
(tag𝑖, 𝑣𝑖) ← 𝐹𝑖 (. . .)
〈body𝑖〉

Note that the order in which we call the functions is completely deterministic
and fair. It’s also important that we yield, like with await statements, but we only
do so after having pinged each of our underlying functions at least once. This is
so that if one of the function is immediately ready, we never yield.

□

This kind of situation can arise quite often when defining protocols, where you
might be waiting on a message from any one of several parties. Using a select
statement lets a package wait for the first message that happens to arrive.

Another variant of waiting occurs when we want to wait for some condition to
be true. For example, we could set up a lock over a shared value, and we might
need to wait for the lock to be free so we can modify the value. We model this
kind of situation with a wait statement.

Definition 3.5 (Wait Statement). We define the semantics of wait 〈cond〉 as

35

equivalent to:
while ¬〈cond〉:
yield

□

So, we simply keep yielding until the condition is true. This is simple, but sur-
prisingly useful.

We’ve defined the various asynchronous gadgets we’ll be needing, so the natural
next step is to define a kind of package which uses these gadgets.

Definition 3.6 (Asynchronous Packages). An asynchronous package 𝑃 is a
packagewhich uses the additional syntax fromDefinition 3.1 and Syntax 3.3, 3.4, 3.5.

□

Note that our syntax sugar definitions means that whenever one of the constructs
such as yield and what not are used, they are immediately replaced with their un-
derlying semantics. Thus, an asynchronous package literally is a package which
does not use any of those syntactical constructs. Naturally, the definitions of ◦
and ⊗ for packages also generalize directly to asynchronous packages.

3.2 Defining Systems
Our next goal is to define systems, by first defining channels, and then giving
them meaning in terms of asynchronous packages. We’ll then define various
composition operations for systems, and show that they satisfy similar properties
to those of packages.

Our first task is defining channels. We start by just defining some syntax for using
channels, and defer defining the precise meaning of this syntax until later.

Syntax 3.7 (Channels). Using channels involves two syntactic constructs:

1. 𝑚 ⇒ 𝑃, for sending a message 𝑚 on a channel 𝑃,

2. 𝑚 ⇐ 𝑃, for receiving a message 𝑚 on a channel 𝑃,

3. 𝑛← test 𝑃, for checking how many messages are on a channel 𝑃.

□

Like with functions, channels have distinct names. The two fundamental opera-
tions are sending messages, and receiving messages. We also add an operation
for testing how many messages are waiting on a channel. This is useful to allow
a package to change its behavior based on whether or not a channel is empty, in
which case test 𝑃 will return 0. We consider testing to be a kind of operation
that a system can do on the channels it’s allowed to receive on.

36

Next, we need to give packages the ability to use these channels. We call these,
systems.

Definition 3.8 (Systems). A system is a package which uses channels.

We denote by InChan(S) the set of channels the system receives on, or uses test
on, and OutChan(S) the set of channels the system sends on, and define

Chan(𝑆) := OutChan(𝑆) ∪ InChan(𝑆)

Additionally we require that OutChan(𝑆) ∩ InChan(𝑆) = ∅

□

We also define shorthands Chan(𝐴, 𝐵, . . .) = Chan(𝐴) ∪ Chan(𝐵) ∪ . . ., and
similarly for InChan and OutChan. The set of channels can be seen as another
part of the interface of a system. A package has input and output functions,
while a system additionally has input and output channels. Like with packages,
this set is often implicit, based on whatever channels the system happens to use
syntactically. We can also consider a system to be “using” channels that don’t
actually appear in the body of a package as well.

So far, we’ve defined what systems are, but we haven’t formally defined what
their semantics actually are, although we might already have some intuition, at
this stage. The simplest way of defining the semantics of a system is to compile it
down into an asynchronous package, whichwe developed awell definedmeaning
for.

Definition 3.9. We can compile systems to not use channels. We denote by
NoChan(𝑆) the asynchronous package corresponding to a system 𝑆, with the
use of channels replaced with function calls.

Channels define three new syntactic constructions, for sending and receiving
along a channel, along with testing how many messages are in a channel. We
replace these with external function calls as follows:

Sending, with 𝑚 ⇒ 𝑃 becomes:

Channels.Send𝑃 (𝑚)

Testing, with 𝑛← test 𝑃 becomes

𝑛← Channels.Test𝑃 ()

Receiving, with 𝑚 ⇐ 𝑃 becomes:

𝑚 ← await Channels.Recv𝑃 ()

37

Receiving is an asynchronous function, because the channel might not have any
available messages for us.

These function calls are parameterized by the channel, meaning that that we have
a separate function for each channel.

□

This definition makes reference to external functions, so we need to define a
package providing these functions. We do so in Game 3.1, via the Channels
package.

Channels({𝐴1, . . . , 𝐴𝑛})

𝑞 [𝐴𝑖] ← FifoQueue.New()

Send𝐴𝑖 (𝑚):
𝑞 [𝐴𝑖] .Push(𝑚)

Test𝐴𝑖 ():
return 𝑞 [𝐴𝑖] .Length()

Recv𝐴𝑖 ():
while 𝑞 [𝐴𝑖] .IsEmpty()
yield
𝑞 [𝐴𝑖] .Pop()

Game 3.1: Channels

Basically, this game has a queue for each channel, and then provides the functions
need to send, receive, and test that channel. We use a FifoQueue which pops
messages in the same order that they get pushed in, which models the semantics
of a channel delivering messages in order.

One consequence of defining separate functions for each channel is that:

Channels(𝑆) ⊗ Channels(𝑅) = Channels(𝑆 ∪ 𝑅)
which will prove to be a useful property.

Armed with the syntax sugar for channels, and the Channels game, we can con-
vert a system 𝑆 into a package via:

SysPack(𝑆) := NoChan(𝑆) ◦ (Channels(Chan(𝑆)) ⊗ 1(In(𝑆)))
This package will have the same input and output functions as the system 𝑆, but
with the usage of channels replaced with actual semantics.

At this point, we can also define a notion of efficiency for systems.

38

Definition 3.10 (Efficient Systems). Asystem 𝑆 is said to be efficient if NoChan(𝑆)
is an efficient package.

□

Note that we use NoChan rather than SysPack, because this captures the fact that
a system only needs to be efficient provided that sending and receiving on chan-
nels responds efficiently. Unless otherwise specified, we only consider efficient
systems from here on.

Our next steps will be defining the basic operations we can use to compose sys-
tems, along with some notions of equality we can use to compare systems. The
first notion of equality we want to define is the strongest one, literal equality,
which we’ll use to define fundamental properties of our composition operations,
like associativity, commutativity, and so on.

First, we need to define a notion of shape, like we did for packages, since our
various equality relations will require the systems to have the same shape.

Definition 3.11. Given systems 𝐴, 𝐵, we say that they have the same shape if

• In(𝐴) = In(𝐵),

• Out(𝐴) = Out(𝐵),

• InChan(𝐴) = InChan(𝐵),

• OutChan(𝐴) = OutChan(𝐵).

□

This is what you might expect, the functions and channels need to all match for
two systems to be considered to have the same shape.

Next, we can define the most basic notion of equality for systems.

Definition 3.12 (Literal System Equality). Given systems 𝐴, 𝐵 with the same
shape, we say that they are literally equal, written 𝐴 ≡ 𝐵 if

NoChan(𝐴) = NoChan(𝐵)

□

This is a very strong notion of equality, which doesn’t take into account the se-
mantics of channels in practice. Basically, it requires that regardless of what
messages the channels might start out with, or even what the semantics of chan-
nels are, that the behavior is identical. This is good enough for fundamental
properties of our composition operations, but we’ll move on to a looser notion
for standard equality later, like we did with packages.

39

3.3 Composing Systems
Now, we move on to define the various ways to compose systems together. Nat-
urally, we can compose systems together like we did for packages by having
one system call the functions provided by another, or having two systems used
together independently, but we also want to compose systems so that they can
communicate with each other using channels.

It’s this kind of composition, allowing for communication across channels, that
we define first, and call tensoring.

Definition 3.13 (System Tensoring). Given two systems, 𝐴 and 𝐵, withOut(𝐴)∩
Out(𝐵) = ∅, we can define their tensoring 𝐴 ∗ 𝐵, which is any system 𝐴 ∗ 𝐵 sat-
isfying:

• NoChan(𝐴 ∗ 𝐵) = NoChan(𝐴) ⊗ NoChan(𝐵),

• InChan(𝐴 ∗ 𝐵) = InChan(𝐴) ∪ InChan(𝐵),

• OutChan(𝐴 ∗ 𝐵) = OutChan(𝐴) ∪ OutChan(𝐵),

• In(𝐴 ∗ 𝐵) = In(𝐴) ∪ In(𝐵).

□

Note that combining the definition above with the definition of SysPack means
that:

SysPack(𝐴 ∗ 𝐵) = ©­«
NoChan(𝐴)

⊗
NoChan(𝐵)

ª®¬ ◦ ©­«
Channels(Chan(𝐴) ∪ Chan(𝐵))

⊗
1(In(𝐴) ∪ In(𝐵))

ª®¬
The intuition for this definition is that tensoring is like ⊗ for packages, except
that now the systems can interact by exchanging messages. This interaction only
happens through the fact that they share a common Channels package, which
well then store the messages sent by one system, so that the other can receive
them, and vice versa.

We can also gain some confidence in the quality of this definition by proving that
it’s both associative and commutative.

Lemma 3.1. System tensoring is associative, i.e. 𝐴 ∗ (𝐵 ∗ 𝐶) ≡ (𝐴 ∗ 𝐵) ∗ 𝐶.
Proof: This follows directly from the associativity of ⊗ for packages and ∪.

■

Lemma 3.2. System tensoring is commutative, i.e. 𝐴 ∗ 𝐵 ≡ 𝐵 ∗ 𝐴

Proof: This follows from the commutativity of ⊗ and ∪.

■

40

We’ve also made our lives quite easy, by defining literal equality in terms of
NoChan, so we can lean heavily on the work we did in proving that package
tensoring is associative and commutative.

In many situations, we’ll have systems that don’t actually share any channels,
and we’ll want to compose them as well, while benefiting from some nicer prop-
erties.

We define this situation formally.

Definition 3.14 (Overlapping Systems). Two systems 𝐴 and 𝐵 overlap if Chan(𝐴)∩
Chan(𝐵) ≠ ∅.

In the case of non-overlapping systems, we write 𝐴⊗𝐵 instead of 𝐴∗𝐵, insisting
on the fact that they don’t communicate.

□

One very commonway this situation arises is if a system doesn’t use any channels
at all. For example, we might write 𝐴 ⊗ 1(. . .), since 1(. . .) can be considered
as a system with no use of channels, and so won’t overlap with 𝐴. This is why
we can see ∗ as the natural generalization of ⊗ for systems, because it literally
becomes ⊗ when used for systems that do not use channels.

Next, we define the analogue of package composition for systems, which allows
one system to use the functions provided by the other.

Definition 3.15 (System Composition). Given two systems, 𝐴 and 𝐵, we can
define their (horizontal) composition 𝐴 ◦ 𝐵 as any system, provided a few con-
straints hold:

• 𝐴 and 𝐵 do not overlap (Chan(𝐴) ∩ Chan(𝐵) = ∅)

• In(𝐴) ⊆ Out(𝐵)

With these in place, we define the composition as any system 𝐴 ◦ 𝐵 such that:

• NoChan(𝐴 ◦ 𝐵) = NoChan(𝐴) ◦ ©­«
NoChan(𝐵)

⊗
1(Channels(Chan(𝐴)))

ª®¬,
• InChan(𝐴 ◦ 𝐵) = InChan(𝐴) ∪ InChan(𝐵),

• OutChan(𝐴 ◦ 𝐵) = OutChan(𝐴) ∪ OutChan(𝐵),

• In(𝐴 ◦ 𝐵) = In(𝐵).

□

It’s very important that the systems do not overlap. Our intention with system
composition is that the two systems interact only via the functions that one system
provides to the other, and not via any channels. This is like the machine analogy

41

we had earlier, where machines within a row communicate across channels, but
are only connected via functions to the rows behind them.

As one might expect, this definition of composition is also associative.

Lemma 3.3. System composition is associative, i.e. 𝐴 ◦ (𝐵 ◦𝐶) ≡ (𝐴 ◦ 𝐵) ◦𝐶.

Proof: This follows from the associativity of ◦ for packages.

■

We’ve now defined tensoring and system composition, and are in the same po-
sition as with packages, in that we need some way of characterizing how these
operations behave together, so that we can do the various manipulations we need
inside proofs.

Thankfully, Lemma 2.6 (interchange) generalizes to systems as well, allowing
us to reason in the same way as we can for packages.

Lemma 3.4 (Interchange Lemma). Given systems 𝐴, 𝐵, 𝐶, 𝐷 such that In(𝐴)∩
Out(𝐷) = ∅, and In(𝐶) ∩Out(𝐵) = ∅, and neither 𝐴 nor 𝐶 overlap with 𝐵 or 𝐷,
the following relation holds:

©­«
𝐴
∗
𝐶

ª®¬ ◦ ©­«
𝐵
∗
𝐷

ª®¬ ≡
(𝐴 ◦ 𝐵)
∗

(𝐶 ◦ 𝐷)

provided these expressions are well defined.

Proof: InChan, OutChan, and In are equal for both of these systems, by asso-
ciativity of ∪. We now look at NoChan. Starting with the right hand side, we
get:

NoChan ©­«
(𝐴 ◦ 𝐵)
∗

(𝐶 ◦ 𝐷)
ª®¬ =

©­«
NoChan(𝐴 ◦ 𝐵)

⊗
NoChan(𝐶 ◦ 𝐷)

ª®¬ =

©­­­­­­­­­«

NoChan(𝐴) ◦ ©­«
NoChan(𝐵)

⊗
1(Channels(Chan(𝐴)))

ª®¬
⊗

NoChan(𝐶) ◦ ©­«
NoChan(𝐷)

⊗
1(Channels(Chan(𝐶)))

ª®¬

ª®®®®®®®®®¬
Next, apply the interchange lemma for packages, to get:

©­«
NoChan(𝐴)

⊗
NoChan(𝐶)

ª®¬ ◦
©­­­­­­­­­«

NoChan(𝐵)
⊗

1(Channels(Chan(𝐴)))
⊗

NoChan(𝐷)
⊗

1(Channels(Chan(𝐶)))

ª®®®®®®®®®¬
42

Then, observe that:

Channels(𝑆1 ∪ 𝑆2) = Channels(𝑆1) ⊗ Channels(𝑆2)

We can use this, along with the commutativity of ⊗ to get:

©­«
NoChan(𝐴)

⊗
NoChan(𝐶)

ª®¬ ◦
©­­­­­«

NoChan(𝐵)
⊗

NoChan(𝐷)
⊗

1(Channels(Chan(𝐴 ∗ 𝐶)))

ª®®®®®¬
Which is just:

NoChan ©­«©­«
𝐴
∗
𝐶

ª®¬ ◦ ©­«
𝐵
∗
𝐷

ª®¬ª®¬
■

This lemma plays the same critical role as it did for packages, and we’ll be ap-
plying it quite often throughout the rest of this work.

3.4 System Equality and Indistinguishability
Next, we define some looser notions of equality for systems, like thosewe defined
for packages, and then show that the various operations we’ve defined respect the
notions of equality, with one exception.

First, we define the standard notion of equality we’ll be using.

Definition 3.16 (System Equality). We say that two systems 𝐴, 𝐵with the same
shape are equal, written 𝐴 = 𝐵, if:

SysPack(𝐴) = SysPack(𝐵)

□

This is the natural definition of equality, since SysPack tries and capture the
actual semantics of a system. This, comparing two systems using SysPack allows
us to compare the behavior of the two systems, disregarding inessential details,
and actually looking at how the use of channels affects their behavior.

If we can compare systems for equality using SysPack, we should also be able to
compare them for indistinguishability in the same way.

Definition 3.17 (System Indistinguishability). We say that two systems 𝐴, 𝐵
with the same shape are indistinguishable up to 𝜖 , written 𝐴

𝜖≈ 𝐵, if:

SysPack(𝐴) 𝜖≈ SysPack(𝐵)

43

□

This allows for small differences that a bounded adversary can’t notice to pop
up, and this is the notion of equality that we’ll target most often in proofs.

We’ve seen three notions of equality so far, but we haven’t commented that much
on how well behaved they are. Thankfully, they all satisfy all the properties
we’d expect from an equality relation, including transitivity, which we prove
here explicitly.

Lemma 3.5 (Transitivity of System Equality). Given systems 𝐴, 𝐵, 𝐶, we have:

1. 𝐴 ≡ 𝐵, 𝐵 ≡ 𝐶 =⇒ 𝐴 ≡ 𝐶,

2. 𝐴 = 𝐵, 𝐵 = 𝐶 =⇒ 𝐴 = 𝐶,

3. 𝐴
𝜖1≈ 𝐵, 𝐵

𝜖2≈ 𝐶 =⇒ 𝐴
𝜖1+𝜖2≈ 𝐶.

provided these expressions are well-defined.

Proof: This follows immediately from the fact that equality and indistinguisha-
bility for packages satisfy these relations, and the notions for systems are defined
in terms of NoChan or SysPack.

■

Next, we need to prove whether or not our various operations respect these no-
tions of equality, like we did for packages. This is very useful, since it allows
using the characteristic modular proofs that we have for packages in the context
of systems. We can break down a large package into smaller components, and
then appeal to the indistinguishability of those small components alone, in order
to make an argument about the system as a whole.

The first operation we target is composition.

Lemma 3.6 (Composition Compatability). Given systems 𝐴, 𝐵, 𝐵′, we have:

1. 𝐵 = 𝐵′ =⇒ 𝐴 ◦ 𝐵 = 𝐴 ◦ 𝐵′,

2. 𝐵
𝜖≈ 𝐵′ =⇒ 𝐴 ◦ 𝐵 𝜖≈ 𝐴 ◦ 𝐵′.

provided these expressions are well-defined.

Proof: We prove that

SysPack(𝐴 ◦ 𝐵) = SysPack(𝐴) ◦ SysPack(𝐵)

which then clearly implies this lemma by application of the similar properties
for packages.

44

We start with:

SysPack(𝐴◦𝐵) = NoChan(𝐴)◦©­«
NoChan(𝐵)

⊗
1(Channels(Chan(𝐴)))

ª®¬◦©­«
Channels(Chan(𝐴) ∪ Chan(𝐵))

⊗
1(In(𝐵))

ª®¬
We then use the fact that Channels(𝑆 ∪ 𝑅) = Channels(𝑆) ⊗ Channels(𝑅), and
the interchange lemma, to get:

NoChan(𝐴) ◦ ©­«
NoChan(𝐵)

⊗
Channels(Chan(𝐴))

ª®¬ ◦ ©­«
Channels(Chan(𝐵))

⊗
1(In(𝐵))

ª®¬
Apply interchange once more, to get:

NoChan(𝐴) ◦ ©­«
1(In(𝐴))
⊗

Channels(Chan(𝐴))
ª®¬ ◦ NoChan(𝐵) ◦ ©­«

Channels(Chan(𝐵))
⊗

1(In(𝐵))
ª®¬

Which is none other than:

SysPack(𝐴) ◦ SysPack(𝐵)

concluding our proof.

■

This proof is made relatively simple by being able to appeal to the work we
already did in proving the analogous property for packages.

Next, we look at strict tensoring, for systems that do not overlap.

Lemma 3.7 (Strict Tensoring Compatability). Given systems 𝐴, 𝐵, 𝐵′, we
have:

1. 𝐵 = 𝐵′ =⇒ 𝐴 ⊗ 𝐵 = 𝐴 ⊗ 𝐵′,

2. 𝐵
𝜖≈ 𝐵′ =⇒ 𝐴 ⊗ 𝐵

𝜖≈ 𝐴 ⊗ 𝐵′.

provided these expressions are well-defined.

Proof: Similar to Lemma 3.6, we start by proving:

SysPack(𝐴 ⊗ 𝐵) = SysPack(𝐴) ⊗ SysPack(𝐵)

which then entails our theorem through similar properties for packages.

Our starting point is:

SysPack(𝐴 ⊗ 𝐵) = ©­«
NoChan(𝐴)

⊗
NoChan(𝐵)

ª®¬ ◦ ©­«
Channels(Chan(𝐴) ∪ Chan(𝐵))

⊗
1(In(𝐴), In(𝐵))

ª®¬
45

We can write this as:

©­«
NoChan(𝐴)

⊗
NoChan(𝐵)

ª®¬ ◦
©­­­­­­­­­«

Channels(Chan(𝐴))
⊗

1(In(𝐴))
⊗

Channels(Chan(𝐵))
⊗

1(In(𝐵))

ª®®®®®®®®®¬
Crucially, we can use the fact that 𝐴 and 𝐵 do not overlap, in order to apply the
interchange lemma, giving us:

NoChan(𝐴) ◦ ©­«
Channels(Chan(𝐴))

⊗
1(In(𝐴))

ª®¬
⊗

NoChan(𝐵) ◦ ©­«
Channels(Chan(𝐵))

⊗
1(In(𝐵))

ª®¬
Which is none other than:

SysPack(𝐴) ⊗ SysPack(𝐵)

concluding our proof.

■

The assumption that the systems do not overlap is in fact essential, because this
lemma does not hold for tensoring in general.

Here’s some intuition for a counter example. The idea is that you can insert a
back door into a package by having a channel which is never sent on. The back
door is triggered if the package can successfully receive from this channel. If the
use of this back door allows distinguishing two packages, then in isolation they
will be equal, since it’s not possible to trigger a message being sent to open the
back door. However, when composed with another package, that package might
be able to unlock the door by sending a message, and thus the composed system
can be distinguishable again.

4 Protocols
The goal of this section will be to define protocols, along with ways to compose
and compare protocols. Intuitively, a protocol is a kind of algorithm involving

46

several players, cooperating together to achieve a desired goal. The protocol
specifies how each player should behave.

The first way of composing protocols we look at is concurrent composition,
which lets us run two protocols involving separate players in parallel, with on
interaction between them. The second way of composing protocols is more in-
teresting. We can have one protocol invoke another as a sub-protocol, with each
player in the first playing the role of several players in the latter. These two
operations are useful in tandem, allowing us to decompose large protocols into
smaller ones, allowing for modular reasoning.

When it comes to the equality of protocols, the preferred notion is that of sim-
ulation, which we’ll explain in more detail later. For now, the basic idea is that
simulation turns attacks on one protocol into attacks on the other. Beyond just
simulation, we also define two stronger notions of equality, which allow describ-
ing the fact that two protocols behave exactly the same, or almost the same, even
without simulation.

This section follows the basic road map we’ve used for both packages and sys-
tems. We first define what protocols are formally, as well as the ways in which
they compose. We then define notions of corruption, and then define the seman-
tics of protocols, based on which participants in the protocol are corrupted. Fi-
nally, we define notions of equality for protocols, and explore the ways in which
these notions are preserved under composition.

4.1 Defining Protocols and Composition
We start by defining protocols. All of the work we expended in defining systems
was ultimately to describe protocols, so naturally we’ll be using systems again
here. The basic idea is that each player is described by a system, and also that
the players have access to a package, representing the ideal functionality of the
protocol, if any. Rather than considering “real” and “ideal” world protocols, we
only ever consider protocols in the hybrid model.

Definition 4.1 (Protocols). A protocol 𝒫 consists of:

• Systems 𝑃1, . . . , 𝑃𝑛, called players,

• An asynchronous package 𝐹, called the ideal functionality,

• A set Leakage ⊆ Out(𝐹), called the leakage.

Furthermore, we also impose requirements on the channels and functions these
elements use.

First, we require that the player systems are jointly closed, with no extra channels

47

that aren’t connected to other players:⋃
𝑖∈[𝑛]

OutChan(𝑃𝑖) =
⋃
𝑖∈[𝑛]

InChan(𝑃𝑖)

Second, we require that the functions the systems depend on are disjoint, outside
of the ideal functionality:

∀𝑖, 𝑗 ∈ [𝑛] . In(𝑃𝑖) ∩ In(𝑃 𝑗) ⊆ Out(𝐹)

Third, we require that the functions the systems export on are disjoint:

∀𝑖, 𝑗 ∈ [𝑛] . Out(𝑃𝑖) ∩ Out(𝑃 𝑗) = ∅

We can also define a few convenient notations related to the interface of a base
protocol.

Let Out𝑖 (𝒫) := Out(𝑃𝑖), and let In𝑖 (𝒫) := In(𝑃𝑖)/Out(𝐹). We then define:

• Out(𝒫) :=
⋃

𝑖∈[𝑛] Out𝑖 (𝒫),

• In(𝒫) :=
⋃

𝑖∈[𝑛] In𝑖 (𝒫),

• IdealIn𝑖 (𝒫) := In(𝑃𝑖) ∩ Out(𝐹),

• IdealIn(𝒫) := In(𝐹).

□

The ideal functionality can be asynchronous, which lets us model things like
channels with certain properties inside of the functionality itself. For conve-
nience, we also allow multiple players to use the same functions from the ideal
functionality. We explicitly define a leakage set, which will be more important
later. For now, we can think of it as part of the ideal functionality that adver-
saries attacking the protocol will be able to interact with directly. The functions
that the protocol can depend on are either provided by other protocols, or other
functionalities, which is why we defined In and IdealIn that way.

The condition that the protocol dependencies be distinct will make more sense
later, when we define protocol composition, but for now, the basic idea is that
if one player uses the functions provided by a player in a sub-protocol, then that
means that this players must completely take over the role of the player in the
sub-protocol, and we want this relationship to be clear.

We can also define a notion of efficient protocols.

Definition 4.2 (Efficient Protocol). A protocol𝒫 is said to be efficient, if every
player is an efficient system, and its ideal functionality is an efficient package.

□

48

Fromnowon, we only consider efficient protocols, unless otherwise specified.

Similar to how we often talk about games, rather than just packages, we’ll often
want to talk about protocols without any dependencies.

Definition 4.3 (Closed Protocol). We say that a protocol𝒫 is closed if In(𝒫) =
∅ and IdealIn(𝒫) = ∅.

□

When we eventually get to defining notions of equality and simulation for proto-
cols, these will be targeting closed protocols, whose semantics are well defined,
since no dependencies are left unfulfilled.

We can, however, define a very strong notion of equality right now.

Definition 4.4 (Literal Equality). Given two protocols 𝒫 and 𝒬, we say that
they are literally equal, written as 𝒫 ≡ 𝒬 when:

• 𝒫.𝑛 = 𝒬.𝑛

• There exists a permutation 𝜋 : [𝑛] ↔ [𝑛] such that∀𝑖 ∈ [𝑛] . 𝒫.𝑃𝑖 ≡ 𝒬.𝑃𝜋(𝑖)

• 𝒫.𝐹 = 𝒬.𝐹

• 𝒫.Leakage = 𝒬.Leakage

□

So, the functionalities need to be the same, and the players need to be literally
equal, up to potential reordering. We use literal equality because we’re most
likely comparing systems with plenty of open channels, and we want each player
to behave the same regardless of what the rest of the protocol is doing.

Like with literal equality for packages and systems, the main purpose of this
notion is to talk about the fundamental properties of the composition opera-
tions.

Now, we get to our first notion of composition. Protocols can depend on other
protocols, but also other functionalities. One natural kind of composition is to
fill this demand, by composing a protocol with another functionality.

Definition 4.5 (Vertical Composition). Given a protocol 𝒫 and a package 𝐺,
satisfying IdealIn(𝒫) ⊆ Out(𝐺), we can define the protocol 𝒫 ◦ 𝐺.

𝒫 ◦ 𝐺 has the same players and leakage as 𝒫, but its ideal functionality 𝐹 be-
comes 𝐹 ◦ 𝐺.

□

This is more useful than it might seem at first. We can use this kind of com-
position to separate out components of the ideal functionality, which can then

49

allow us to appeal to theorems we’ve already proved about games to argue about
protocols. This kind of composition can be seen as providing a sort of “bridge”
between the world of games and the world of protocols.

This composition is also well behaved, satisfying associativity.

Claim 4.1 (Vertical Composition is Associative). For any protocol 𝒫, and
packages 𝐺, 𝐻, such that their composition is well defined, we have

𝒫 ◦ (𝐺 ◦ 𝐻) = (𝒫 ◦ 𝐺) ◦ 𝐻

Proof: This follows from the definition of vertical composition and the associa-
tivity of ◦ for packages.

■

The next kind of composition we look at allows a protocol to use another as a
kind of sub-protocol. The idea is that each player in one protocol plays the role of
one or several players in the sub-protocol. The definition is somewhat involved,
so we provide some more motivation later.

Definition 4.6 (Horizontal Composition). Given two protocols 𝒫,𝒬, we can
define the protocol 𝒫 ◁𝒬, provided a few requirements hold.

First, we need: In(𝒫) ⊆ Out(𝒬). We also require that the functions exposed by
a player in 𝒬 are used by exactly one player in 𝒫. We express this as:

∀𝑖 ∈ [𝒬.𝑛] . ∃! 𝑗 ∈ [𝒫.𝑛] . In 𝑗 ∩ Out𝑖 ≠ ∅

Second, we require that the players share no channels between the two protocols.
In other words Chan(𝒫.𝑃𝑖) ∩ Chan(𝒬.𝑃 𝑗) = ∅, for all 𝑃𝑖, 𝑃 𝑗 .

Third, we require that the ideal functionalities of one protocol aren’t used in the
other.

Out(𝒫.𝐹) ∩ In(𝒬) = ∅
Out(𝒬.𝐹) ∩ In(𝒫) = ∅

Finally, we require that the ideal functionalities do not overlap, in the sense that
Out(𝒫.𝐹) ∩ Out(𝒬.𝐹) = ∅

Our first condition has an interesting consequence: every player 𝒬.𝑃 𝑗 has its
functions used by exactly one player 𝒫.𝑃𝑖. In that case, we say that 𝒫.𝑃𝑖 uses
𝒬.𝑃 𝑗 .

With this in hand, we can define 𝒫 ◁𝒬.

50

The players will consist of:

𝒫.𝑃𝑖 ◦
©­­­«

*
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝒬.𝑃 𝑗

⊗
1(IdealIn𝑖)

ª®®®¬
And, because of our assumption, each player in 𝒬 appears somewhere in this
equation.

The ideal functionality is𝒫.𝐹⊗𝒬.𝐹, and the leakage is𝒫.Leakage∪𝒬.Leakage.

We can also easily show that this definition is well defined, satisfying the required
properties of an protocol. Because of the definition of the players, we see that:

⋃
𝑖∈[(𝒫◁𝒬).𝑛]

OutChan((𝒫◁𝒬).𝑃𝑖) = ©­«
⋃

𝑖∈[𝒫.𝑛]
OutChan(𝒫.𝑃𝑖)ª®¬∪©­«

⋃
𝑖∈[𝒬.𝑛]

OutChan(𝒬.𝑃𝑖)ª®¬
since OutChan(𝐴 ◦ 𝐵) = OutChan(𝐴 ⊗ 𝐵) = OutChan(𝐴, 𝐵). A similar reason-
ing applies to InChan, allowing us to conclude that:⋃

𝑖∈[(𝒫◁𝒬).𝑛]
OutChan((𝒫 ◁𝒬).𝑃𝑖) =

⋃
𝑖∈[(𝒫◁𝒬).𝑛]

InChan((𝒫 ◁𝒬).𝑃𝑖)

as required.

By definition, the dependencies In of each player in 𝒫 ◁ 𝒬 are the union of
several players in 𝒬, and the ideal dependencies of players in 𝒫, both of these
are required to be disjoint, so the disjointedness property continues to hold.

Finally, since each player is of the form 𝒫.𝑃𝑖 ◦ . . ., the condition on Out𝑖 is also
satisfied in 𝒫 ◁𝒬, since 𝒫 does.

□

The second part of the definition is in fact a proof that the definition produces a
valid protocol. The conditions guarantee that the two protocols are isolated from
each other, beyond the fact that the players in𝒫 are able to control the players in
𝒬 via the functions they provide. The protocols don’t share any channels, or an
ideal functionality. The end result is a protocol in which each player is “emulat-
ing” the behavior of the players in the sub-protocol, and where even though the
channels are now shared, it’s clear whether a message is intended for the main
protocol, or for a specific player in the sub-protocol.

Horizontal composition is also well behaved. For example, it satisfies associa-
tivity.

51

Lemma 4.2. Horizontal composition is associative, i.e. 𝒫 ◁ (𝒬 ◁ℛ) ≡ (𝒫 ◁𝒬) ◁ℛ
for all protocols 𝒫,𝒬,ℛ where this expression is well defined.

Proof: For the ideal functionalities, it’s clear that by the associativity of ⊗ for
systems, the resulting functionality is the same in both cases.

The trickier part of the proof is showing that the resulting players are identical.

It’s convenient to define a relation for the players inℛ that get used in𝒫 via the
players in 𝒬. To that end, we say that 𝒫.𝑃𝑖 uses ℛ.𝑃 𝑗 if there exists 𝒬.𝑃𝑘 such
that 𝒫.𝑃𝑖 uses 𝒬.𝑃𝑘 , and 𝒬.𝑃𝑘 uses ℛ.𝑃 𝑗 .

The players of 𝒫 ◁ (𝒬 ◁ℛ) are of the form:

𝒫.𝑃𝑖 ◦

©­­­­­­­«
*

𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝒬.𝑃 𝑗 ◦
©­­­«

*
ℛ.𝑃𝑘 used by 𝒬.𝑃 𝑗

ℛ.𝑃𝑘

⊗
1(𝒬.IdealIn 𝑗)

ª®®®¬
⊗

1(𝒫.IdealIn𝑖)

ª®®®®®®®¬
While those in (𝒫 ◁𝒬)ℛ are of the form:

©­­­«𝒫.𝑃𝑖 ◦
©­­­«

*
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝒬.𝑃 𝑗

⊗
1(𝒫.IdealIn𝑖)

ª®®®¬
ª®®®¬ ◦

©­­­«
*

ℛ.𝑃𝑘 used by 𝒫.𝑃𝑖

ℛ.𝑃𝑘

⊗
1(𝒬.IdealIn 𝑗)

ª®®®¬
Now, we can apply the associativity of ◦ for systems, and also group the ℛ.𝑃𝑘

players based on which 𝒬.𝑃 𝑗 uses them:

𝒫.𝑃𝑖 ◦
©­­­«

*
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝒬.𝑃 𝑗

⊗
1(𝒫.IdealIn𝑖)

ª®®®¬ ◦
©­­­«*𝒬.𝑃 𝑗

©­­­«
*

ℛ.𝑃𝑘 used by 𝒬.𝑃 𝑗

ℛ.𝑃𝑘

⊗
1(𝒬.IdealIn 𝑗)

ª®®®¬
ª®®®¬

Now, the conditions are satisfied for applying the interchange lemma (Lemma 3.4),
giving us:

𝒫.𝑃𝑖 ◦

©­­­­­­­«
*

𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝒬.𝑃 𝑗 ◦
©­­­«

*
ℛ.𝑃𝑘 used by 𝒬.𝑃 𝑗

ℛ.𝑃𝑘

⊗
1(𝒬.IdealIn 𝑗)

ª®®®¬
⊗

1(𝒫.IdealIn𝑖)

ª®®®®®®®¬
Which is none other than the players in 𝒫 ◁ (𝒬 ◁ℛ).

■

52

Next, we define another fundamental way to compose protocols: concurrent
composition. The idea here is that this allows two protocols to run side by side,
without any interaction. The resulting protocol will have two independent sets
of players, each running their own protocol together.

Definition 4.7 (Concurrent Composition). Given two protocols 𝒫,𝒬, we can
define their concurrent composition—or tensor product—𝒫⊗𝒬, provided a few
requirements hold. We require that:

1. In(𝒫) ∩ In(𝒬) = ∅.

2. Out(𝒫) ∩ Out(𝒬) = ∅.

3. Out(𝒫.𝐹) ∩ Out(𝒬.𝐹) = ∅ or 𝒫.𝐹 = 𝒬.𝐹.

4. Leakage(𝒫) ∩ In(𝒬) = ∅ = Leakage(𝒬) ∩ In(𝒫)

The players of𝒫⊗𝒬 consist of all the players in𝒫 and𝒬. The ideal functionality
is𝒫.𝐹 ⊗𝒬.𝐹, unless𝒫.𝐹 = 𝒬.𝐹, in which case the ideal functionality is simply
𝒫.𝐹. In either case, the leakage is 𝒫.Leakage ∪ 𝒬.Leakage. This use of ⊗ is
well defined by assumption.

The resulting protocol is also clearly well defined.

The jointly closed property holds because we’ve simply taken the union of both
player sets.

Since In(𝒫) ∩ In(𝒬) = ∅, it also holds that for every 𝑃𝑖, 𝑃 𝑗 in 𝒫 ⊗ 𝒬, we have
In(𝑃𝑖) ∩ In(𝑃 𝑗) = ∅, since each player comes from either 𝒫 or 𝒬.

Finally, Out(𝒫)∩Out(𝒬) = ∅, we have that Out(𝑃𝑖)∩Out(𝑃 𝑗) = ∅, by the same
reasoning.

□

One detail which might seem odd at first is that we allow for 𝒫.𝐹 = 𝒬.𝐹, han-
dling that case a bit separately. This is useful because it allows accommodating
a common situation where both protocols have a functionality of the form 1(𝑆),
for some set 𝑆, and we want to allow them to be composed, to then later write
(𝒫 ⊗ 𝒬) ◦𝐺, for some package 𝐺. Having a shared functionality between con-
current protocols is something we do want to be possible, so handling this edge
case is necessary.

This notion of composition is also well behaved, as we now prove.

Lemma 4.3. Concurrent composition is associative and commutative, i.e. 𝒫 ⊗
(𝒬 ⊗ℛ) ≡ (𝒫 ⊗𝒬) ⊗ℛ, and𝒫 ⊗𝒬 ≡ 𝒬 ⊗𝒫 for all protocols𝒫,𝒬,ℛ where
these expressions are well defined.

Proof:

53

By the definition of ≡, all that matter is the set of players, and not their order.
Because ∪ is associative, and so is ⊗ for systems, we conclude that concurrent
composition is associative as well, since the resulting set of players and ideal
functionality are the same in both cases.

Similarly, since ∪ and ⊗ (for systems) are commutative, we conclude that con-
currently composition is commutative.

■

The utility of concurrent composition and horizontal composition is enhanced
even more when combined together. As an example, consider the common situ-
ation where a protocol involves several tasks executed in sequence. One way of
writing this would be:

𝒪 ◁ ©­«
𝒬1
⊗
𝒬2

ª®¬
where𝒬𝑖 are sub-protocols for each task, and𝒪 is an orchestration protocol run-
ning the tasks in sequence. This decomposition allows a more fine-grained anal-
ysis of the protocol’s security.

4.2 Corruption
The goal of this section is to formally define the semantics of protocol. We’ve
defined a protocol so far in terms of isolated players, with strong hints as to
how the players will interact, but we haven’t actually defined how to compose
these players together to form an actual system. The idea is that if we know
which players are corrupted, and in what way, we can then compile the protocol
into a system that an adversary can interact with. They will be able to use the
corrupted and honest players to drive the execution of the protocol, in an attempt
to distinguish it from other protocols.

An important consideration as we define various kinds of corruption is that if
two players are equal, then the way the corrupted players behave should also be
equal. We’ve encountered this kind of equality preservation before, and it’s a
property we’ll keep an eye out for in this subsection as well.

The first kind of corruption we consider is that of a party which isn’t actually
corrupted.

Definition 4.8 (“Honest” Corruption). Given a system 𝑃, we define the “hon-
est” corruption of 𝑃

Corrupt𝐻 (𝑃) := 𝑃

This is clearly equality preserving, by tautology.

□

54

This is nonetheless a useful definition to have, since we don’t have to treat the
honest players as being completely separate from the dishonest players, but rather
just corrupted in a different way.

Next, we look at semi-honest corruption. The intuition here is that such a cor-
rupted party will still follow the protocol’s execution, but the adversary gains
additional visibility into the execution of that player.

Definition 4.9 (Semi-Honest Corruption). Given a system 𝑃, we can define
the semi-honest corruption CorruptSH(𝑃).

This is a transformation of of 𝑃, providing access to its “view”. More formally,
CorruptSH(𝑃) is a system which works the same as 𝑃, but with an additional
public variable log, which contains several sub-logs:

1. log.𝐴𝑖 for each sending channel 𝐴𝑖,

2. log.𝐵𝑖 for each receiving channel 𝐵𝑖,

3. log.𝐹 for each input function 𝐹.

4. log.𝐺 for each output function 𝐺.

Each of these sub-logs is initialized with log.• ← FifoQueue.New(). Addition-
ally, CorruptSH(𝑃) modifies 𝑃 by pushing events to these logs at different points
in time. These events are:

• (call, (𝑥1, . . . , 𝑥𝑛)) to log.𝐹 when a function call 𝐹 (𝑥1, . . . , 𝑥𝑛) happens.

• (ret, 𝑦) to log.𝐹 when the function 𝐹 returns a value 𝑦.

• (input, (𝑥1, . . . , 𝑥𝑛)) to log.𝐺 when the function𝐺 is called with (𝑥𝑖, . . .)
as input.

• 𝑚 to log.𝐴 when a value 𝑚 is sent on channel 𝐴.

• 𝑚 to log.𝐵 when a value 𝑚 is received on channel 𝐵.

This transformation is also equality respecting. First, note that if 𝑃 ≡ 𝑃′ as
systems, then then NoChan(𝑃) = NoChan(𝑃′), and so their logs will be the
same.

□

The use of different logs is very useful, since it makesmanipulating the log easier,
avoiding the need to parse the log to separate out events by function.

One important detail is that the log also contains entries for when the player
itself is activated through one of its input functions. This will be useful when
reasoning about how protocol composition behaves, because the input events in

55

one players log can become the output function events in the log of a player
calling that sub-protocol.

Note that, unlike other definitions of semi-honest corruption, we do not pro-
vide access to the randomness sampled by a player, at least not directly. The
reason for doing this is ultimately that defining corruption in that way is very
difficult to do while preserving equality. There are many equivalent ways to
write a given player which result in different sampling patterns. In practice, we
don’t think this is a strong limitation, because we can also see all of the output
functions and channels used by the player, so significant randomness can still be
observed.

Now, onto malicious corruption:

Definition 4.10 (Malicious Corruption). Given a system 𝑃 with:
In(𝑃) = {𝐹1, . . . , 𝐹𝑛}
OutChan(𝑃) = {𝐴1, . . . , 𝐴𝑚}
InChan(𝑃) = {𝐵1, . . . , 𝐵𝑙}

we define the malicious corruption Corrupt𝑀 (𝑃) as the following game:

Corrupt𝑀 (𝑃)

Call𝐹𝑖 ((𝑥1, . . . , 𝑥𝑛)):
return 𝐹𝑖 (𝑥1, . . . , 𝑥𝑛)

Send𝐴𝑖 (𝑚):
𝑚 ⇒ 𝐴𝑖

Test𝐵𝑖 ():
return test 𝐵𝑖

Recv𝐵𝑖 ():
return 𝑚 ⇐ 𝐵𝑖

In other words, malicious corruption provides access to the functions and chan-
nels used by 𝑃, but no more than that.

This is also equality preserving, since Corrupt𝑀 (𝑃) depends only on the chan-
nels used by 𝑃 and the functions called by 𝑃, all of which are the same for any
𝑃′ ≡ 𝑃.

□

The intuitive idea behind malicious corruption is that this party can deviate ar-
bitrarily from the protocol. The adversary corrupting this party can call any
function this party is allowed to call, and use any channel this party uses.

56

An interesting property of the kinds of corruption is that each form of corruption
is stronger than the other. A semi-honest party provides more information than
an honest party, and a malicious party doesn’t even need to follow the protocol
anymore. We can capture this hierarchy formally.

Lemma 4.4 (Simulating Corruptions). Wecan simulate corruptions using strong
forms of corruption. In particular, there exists systems 𝑆SH and 𝑆H such that for
all systems 𝑃, we have:

CorruptSH(𝑃) = 𝑆SH ◦ Corrupt𝑀 (𝑃)
CorruptH(𝑃) = 𝑆H ◦ CorruptSH(𝑃)

Proof: For the simulation of honest corruption, we can simply ignore the addi-
tional log variable, and set 𝑆H := 1(Out(𝑃)).

For semi-honest corruption, 𝑆SH is formed by first transforming CorruptSH(𝑃),
replacing:

• every function call with Call𝐹𝑖 (. . .),

• every sending of a message 𝑚 on 𝐴 with Send𝐴 (𝑚),

• every length test of 𝐵 with Test𝐵 (),

• every reception of a message on 𝐵 with Recv𝐵 ().

The result is clearly a perfect emulation of semi-honest corruption using mali-
cious corruption.

■

We’ll be using this lemma later, where it will help us show that in some situa-
tions, it suffices to consider only malicious corruption, which can simplify many
proofs.

Next, we’ll be defining what it means to actually execute a protocol with some
players being corrupted. The first notion we’ll need to develop is that of a cor-
ruption model, which is just a way of specifying which players in a protocol are
corrupted, and how.

Definition 4.11 (Corruption Models). Given a protocol𝒫with players 𝑃1, . . . , 𝑃𝑛,
a corruption model 𝐶 is a function 𝐶 : [𝒫.𝑛] → {H, SH,M}. This provides
a corruption 𝐶𝑖 associated with each player 𝑃𝑖. We also define a little syntax
to talk about corruptions in general, writing Corrupt𝜅 (𝑃), for 𝜅 ∈ {H, SH,M},
which we can then use to define Corrupt𝐶 (𝑃𝑖) := Corrupt𝐶𝑖

(𝑃𝑖).

Corruption models have a natural partial order associated with them. We have:

H < SH < M

57

and then we say that 𝐶 ≥ 𝐶′ if ∀𝑖 ∈ [𝑛] . 𝐶𝑖 ≥ 𝐶′𝑖 .

A class of corruptions 𝒞 is simply a set of corruption models.

□

Some common classes are:

• The class of malicious corruptions, where all but one player is malicious.

• The class ofmalicious corruptions, where all but one player is semi-honest.

The notion of class is very useful, and is what we usually end up proving things
about. For example, we prove that two protocols are the same under a given class
of corruptions. That proof will involve looking at each model inside the class,
as we’ll see later.

Now, let’s define what the semantics of a protocol are under a given corruption
model. These semantics should define how an adversary can run and interact
with a protocol, having corrupted some of the parties.

Definition 4.12 (Instantiation). Given a protocol 𝒫 with In(𝒫) = ∅, and a
corruption model 𝐶, we can define an instantiation Inst𝐶 (𝒫), which is a system
defining the semantics of the protocol.

First, we need to define a transformation of systems to use a router R, which
will be a special system allowing an adversary to control the order of delivery of
messages.

Let {𝐴1, . . . , 𝐴𝑛} = Chan(𝑃1, . . . , 𝑃𝑛). We then define R as the system:

R

Deliver𝐴𝑖 ():
𝑚 ⇐ 〈𝐴𝑖,R〉
𝑚 ⇒ 〈R, 𝐴𝑖〉

Next, we define a transformation Routed(𝑆) of a system, which makes commu-
nication pass via the router:

• Whenever 𝑆 sends 𝑚 via 𝐴, Routed(𝑆) sends 𝑚 via 〈𝐴,R〉.

• Whenever 𝑆 receives 𝑚 via 𝐵, Routed(𝑆) receives 𝑚 via 〈R, 𝐵〉.

With this in hand, we define:

Inst𝐶 (𝒫) :=

©­­­­­­«
*𝑖∈[𝑛]

Routed(Corrupt𝐶 (𝑃𝑖))
∗
R
⊗

1(Leakage)

ª®®®®®®¬
◦ 𝐹

58

□

The basic idea is that the adversary can call the functions provided by any player,
along with the leakage exposed by the ideal functionality. This provides a very
asynchronous notion of execution, where the adversary is able to run different
parts of the protocol at will. There isn’t even a clear “entry point”. Each player
might have multiple functions that are provided, and the adversary is able to start
with whichever one they want.

The use of the router allows the adversary to control the flow of messages in
the protocol, deciding when a message should be delivered. In this model, the
adversary can’t reorder messages, but one can model protocols in which this
happens either via a functionality, or by having each message delivered on a
separate channel.

Our next steps will be exploring how instantiation behaves for composed proto-
cols, so that we can extract some insights that we can usewhen proving properties
of the various notions of equality we define later.

We start this exploration by looking at a few convenient properties of our routing
transformation.

Lemma 4.5 (Properties of Routed). For any systems 𝐴, 𝐵, we have:

Routed(𝐴 ◦ 𝐵) = Routed(𝐴) ◦ Routed(𝐵)
Routed(𝐴 ∗ 𝐵) = Routed(𝐴) ∗ Routed(𝐵)
Routed(𝐴 ⊗ 𝐵) = Routed(𝐴) ⊗ Routed(𝐵)

(provided these expressions are well defined)

Proof: The Routed transformation simply renames each sending and receiving
channel in a system. In all the cases above, even 𝐴∗𝐵, all of the channels present
in 𝐴 and 𝐵 are present in the composition, and so all of these equations hold.

■

This will be very useful for our proofs soon enough.

Eventually, we’ll want to prove things like “if 𝒬 behaves the same as 𝒬′, then
𝒫◁𝒬 behaves the same as𝒫◁𝒬′”. Whenever we talk about behavior, we need to
define a corruption model, so that we can actually instantiate the protocol. There
is a slight issue here, in that a corruption model is specific to one protocol. A
corruption model might say how 𝒬’s players should be corrupted, but how does
this then apply to 𝒫 ◁ 𝒬? Thankfully, for the ways of composing protocols
we’ve defined, there are natural notions of corruption which make sense in such
a situation. If 𝒬 is corrupted in a certain way, then this implies that certain
corruptions need to happen in 𝒫 ◁𝒬 as well.

We define thismore formally, through the notion of compatible corruptions.

59

Definition 4.13 (Compatible Corruptions). Given protocols 𝒫,𝒬, and a cor-
ruption model 𝐶 for𝒬, we can define a notion of a compatible corruption model
𝐶′ for 𝒫 ⊗ 𝒬 or 𝒫 ◁𝒬, provided these expressions are well defined.

A corruption model 𝐶′ for 𝒫 ⊗ 𝒬. is compatible with 𝐶 when every corruption
of a player in 𝒬 is ≥ that of the corresponding corruption in 𝐶.

We say that a corruption model 𝐶′ for 𝒫 ◁ 𝒬 is compatible with a corruption
model 𝐶 for 𝒬 if for every 𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖, the corruption level of 𝒬.𝑃 𝑗 in
𝒞′ is ≥ the corruption level of 𝒫.𝑃𝑖 in 𝒞.

Furthermore, we say that 𝐶′ is strictly compatible with 𝐶 if the above property
holds with =, and not just ≥.

This extends to corruption classes as well. A corruption class 𝒞′ is (strictly)
compatible with a class 𝒞, if every 𝐶′ ∈ 𝒞′ is (strictly) compatible with some
𝐶 ∈ 𝒞.

□

For tensoring, compatibility is quite simple, we just need the players that be-
long to 𝒫’s “side” of the protocol to be corrupted in the same way, or worse.
For composition, the idea is that for a player in a sub-protocol to be corrupted,
then the player using it in the main protocol needs to be at least as corrupt. For
technical reasons, we’ll also be needing the notion of strict compatibility. This
avoids situations where a player 𝑃 uses two players 𝑄1, and 𝑄2, but only 𝑄2 is
malicious. In that case, we’d require 𝑃 to be malicious for compatibility, but if
𝑄1 is honest, the corruption of 𝑃 might be too strong now for certain properties
to hold. If this doesn’t quite make sense now, hopefully it will be clearer when
reading the proofs that make use of this strict property.

As a first use of this notion of compatibility, we make a fundamental observation
about instantiating the concurrent composition of protocols. This is elevated to
a theorem, because this breakdown observation will be used as the crux of all of
our equality-related theorems about concurrent composition.

Theorem 4.6 (Concurrent Breakdown). Given protocols 𝒫,𝒬, and a corrup-
tion model𝐶 for𝒬, then for any corruption model𝐶′ for𝒫⊗𝒬 compatible with
𝐶, we have:

Inst𝐶′ (𝒫 ⊗ 𝒬) = Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬)

60

Proof: If we unroll Inst𝐶′ (𝒫 ⊗ 𝒬), we get:

©­­­­­­­­­­­«

R
∗(

*𝑖∈[𝒫.𝑛] Routed(Corrupt𝐶′ (𝒫.𝑃𝑖))
)

∗(
*𝑖∈[𝒬.𝑛] Routed(Corrupt𝐶′ (𝒬.𝑃𝑖))

)
⊗

1(𝒫.Leakage,𝒬.Leakage)

ª®®®®®®®®®®®¬
◦ ©­«

𝒫.𝐹
⊗

𝒬.𝐹

ª®¬
We can apply a few observations here:

1. Since 𝒞′ is compatible with 𝒞, then 𝒬.𝑃𝑖 follows a corruption from 𝒞.

2. R can be written as R𝒫 ⊗ R𝒬, with one system using channels in 𝒫, and
the other using channels in 𝒬.

3. Since protocols are closed, we can use ⊗ between the players in𝒫 and𝒬,
since they never send messages to each other.

This results in the following:

©­­­«
R𝒫 ∗

(
*𝑖∈[𝒫.𝑛] Routed(Corrupt𝐶′ (𝒫.𝑃𝑖))

)
⊗ 1(𝒫.Leakage)

⊗
R𝒬 ∗

(
*𝑖∈[𝒬.𝑛] Routed(Corrupt𝐶 (𝒬.𝑃𝑖))

)
⊗ 1(𝒬.Leakage)

ª®®®¬ ◦
©­«
𝒫.𝐹
⊗

𝒬.𝐹

ª®¬
From here, we apply Lemma 3.4 (interchange), to get:

Inst𝐶′ (𝒫)
⊗

Inst𝐶 (𝒬)

■

This is an extremely useful theorem, since it breaks down the instantiation of the
tensor product into another tensor product of systems. This observation is the
cornerstone of proving the properties that concurrent composition satisfies with
respect to equality and simulation.

Now, we tackle horizontal composition. Unfortunately, the statement we have
here is not quite as elegant as that of concurrent composition.

Theorem 4.7 (Horizontal Breakdown). Given protocols 𝒫,𝒬, and a corrup-
tion model 𝐶 for 𝒬, then for any compatible corruption model 𝐶′ for 𝒫 ◁ 𝒬,

61

there exists systems 𝑆1, . . . , 𝑆𝒬.𝑛 and a set 𝐿𝒬 such that:

Inst𝐶′ (𝒫◁𝒬) = 1(𝑂)◦

©­­­­­­«
*𝑖∈[𝒫.𝑛]

Routed(Corrupt′𝐶′ (𝒫.𝑃𝑖))
∗
R𝒫

⊗
1(Leakage, 𝐿𝒬)

ª®®®®®®¬
◦

©­­­­­­­­­«

𝒫.𝐹
⊗

1(Out(R𝑞))
⊗

1(𝒬.Leakage)
⊗⊗

𝑖∈[𝒬.𝑛] 𝑆𝑖

ª®®®®®®®®®¬
◦©­«

Inst𝐶 (𝒬)
⊗

1(In(𝒫.𝐹))
ª®¬

where𝑂 := Out(Inst𝐶′ (𝒫◁𝒬)), R𝒫 ◦R𝒬 = R are a decomposition of the router
R for𝒫◁𝒬, and Corrupt′𝐶′ (. . .) is the same as Corrupt𝐶′ , except that malicious
corruption contains no Call𝐹𝑖 functions, for 𝐹𝑖 ∉ Out(𝒫.𝐹)

Furthermore, if themodels are strictly compatible, then 𝑆 𝑗 = 1(Out(Routed(Corrupt𝐶 (𝒬.𝑃𝑖)))).

Proof: We start by unrolling Inst𝐶′ (𝒫 ◁𝒬), to get:

Inst𝐶 (𝒫◁𝒬) =

©­­­­­­­­­«

*𝑖∈[𝒫.𝑛]
Routed ©­«Corrupt𝐶′

©­«𝒫.𝑃𝑖 ◦ ©­«
*𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝒬.𝑃 𝑗

⊗
1(IdealIn𝑖)

ª®¬ª®¬ª®¬
∗
R
⊗

1(Leakage)

ª®®®®®®®®®¬
◦©­«
𝒫.𝐹
⊗

𝒬.𝐹

ª®¬
Our strategy will be to progressively build up an equivalent system to this one,
starting with Corrupt𝐶 , then Routed, etc.

First, some observations about Corrupt𝜅 (𝑃 ◦ (1(𝐼) ⊗ 𝑄1 ∗ · · · ∗ 𝑄𝑚)), where
𝐼 ∩ In(𝑄1, . . .) = ∅.

In the case of malicious corruption, we have:

Corrupt𝑀 (𝑃◦(1(𝐼)⊗𝑄1∗· · ·)) = 1(𝑂)◦©­«
Corrupt′𝑀 (𝑃)

⊗
1(Out(Corrupt𝑀 (𝑄1)), . . .)

ª®¬◦
©­­­­­«

1(𝐼)
⊗

Corrupt𝑀 (𝑄1)
∗
· · ·

ª®®®®®¬
for 𝑂 = Out(Corrupt𝑀 (𝑃 ◦ (𝑄1 ∗ · · ·))). This holds by definition, since corrup-
tion 𝑃◦ (𝑄1∗· · ·) precisely allows sending messages on behalf of 𝑃 or any𝑄𝑖, as
well as calling the input functions to the𝑄𝑖 systems. Since we can’t call the func-
tions that 𝑃 uses, we use Corrupt′𝑀 , which modifies malicious corruption to only
contain Send𝐴𝑖 , Test𝐵𝑖 , Recv𝐵𝑖 , and Call𝐹𝑖 for 𝐹𝑖 ∈ 𝐼. In particular the Call• func-
tions are omitted for the functions provided by 𝑄1, . . . , 𝑄𝑚. We can write this
expression more concisely, using 1(𝐿𝑀) for 𝐿𝑀 = Out(Corrupt𝑀 (𝑄1)) ∪ · · · .

62

Next, we look at semi-honest corruption. Because the logs are divided into in-
dependent sub-logs, we can write:

CorruptSH(𝑃◦(1(𝐼) ⊗𝑄1∗· · ·)) = 1(𝑂)◦©­«
CorruptSH(𝑃)

⊗
1({𝑄1.log, . . .})

ª®¬◦
©­­­­­«

1(𝐼)
⊗

CorruptSH(𝑄1)
∗
· · ·

ª®®®®®¬
where 𝑂 = Out(CorruptSH(𝑃 ◦ (𝑄1 ∗ · · ·)))

And for honest corruption, we have

CorruptH(𝑃 ◦ (1(𝐼) ⊗ 𝑄1 ∗ · · ·)) = 𝑃 ◦ (1(𝐼) ⊗ 𝑄1 ∗ · · ·)

Now, the compatibility condition of 𝐶′ relative to 𝐶 does not guarantee that if
𝒫.𝑃𝑖 uses 𝒬.𝑃 𝑗 , then 𝒬.𝑃 𝑗 has the same level of corruption: it only guaran-
tees a level of corruption at least as strong. By Lemma 4.10, we can simulate a
weaker form of corruption using a stronger form, via some simulator system 𝑆,
depending on the levels of corruption.

Using these simulators, we get, slightly different results based on the level of
corruption.

When 𝐶′𝑖 = M:

Corrupt𝐶′ ((𝒫◁𝒬).𝑃𝑖) = 1(𝑂𝑖)◦©­«
Corrupt′𝐶′ (𝒫.𝑃𝑖)

⊗
1(𝐿𝑖)

ª®¬◦
©­­­«

*
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

Corrupt𝐶 (𝒬.𝑃 𝑗)

⊗
1(IdealIn𝑖)

ª®®®¬
with𝑂𝑖 = Out(Corrupt𝐶′ (𝒫◁𝒬).𝑃𝑖), 𝐿𝑖 =

⋃
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

Out(Corrupt𝑀 (𝒬.𝑃 𝑗)).
No simulation is needed, since the compatibility of 𝐶′ with 𝐶 guarantees that all
of the players used by 𝒫.𝑃𝑖 are maliciously corrupted.

When 𝐶′𝑖 = SH:

Corrupt𝐶′ ((𝒫◁𝒬).𝑃𝑖) = 1(𝑂𝑖)◦©­«
CorruptC’(𝑃)

⊗
1(𝐿𝑖)

ª®¬◦
©­­­«

*
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝑆 𝑗 ◦ Corrupt𝐶 (𝒬.𝑃 𝑗)

⊗
1(IdealIn𝑖)

ª®®®¬
with 𝑂𝑖 = Out(Corrupt𝐶′ (𝒫 ◁ 𝒬).𝑃𝑖), 𝐿𝑖 = {𝒬.𝑃 𝑗 .log | 𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖},
and 𝑆 𝑗 depending on the level of corruption for 𝒬.𝑃 𝑗 in 𝐶:

• 𝑆 𝑗 = 𝑆SH if 𝐶 𝑗 = M

• 𝑆 𝑗 = 1 if 𝐶 𝑗 = SH

63

When 𝐶′𝑖 = H:

Corrupt𝐶′ ((𝒫◁𝒬).𝑃𝑖) = CorruptC’(𝑃) ◦
©­­­«

*
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝑆 𝑗 ◦ Corrupt𝐶 (𝒬.𝑃 𝑗)

⊗
1(IdealIn𝑖)

ª®®®¬
with 𝑆 𝑗 depending on the level of corruption for 𝒬.𝑃 𝑗 in 𝐶:

• 𝑆 𝑗 = 𝑆H ◦ 𝑆SH if 𝐶 𝑗 = M

• 𝑆 𝑗 = 𝑆H if 𝐶 𝑗 = SH

• 𝑆 𝑗 = 1 if 𝐶 𝑗 = H

We can unify these three cases, writing:

Corrupt′𝐶′ ((𝒫◁𝒬).𝑃𝑖) = 1(𝑂𝑖)◦©­«
CorruptC’(𝑃)

⊗
1(𝐿𝑖)

ª®¬◦©­«
*𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝑆 𝑗 ◦ Corrupt𝐶 (𝒬.𝑃 𝑗)
⊗

1(IdealIn𝑖)
ª®¬

with 𝑂𝑖 and 𝐿𝑖 depending on the corruption level of 𝒫.𝑃𝑖, and 𝑆 𝑗 depending on
the corruption levels of both 𝒫.𝑃𝑖 and 𝒬.𝑃 𝑗 .

By the properties of Routed (Lemma 4.5), we have:

Routed(Corrupt′𝐶′ ((𝒫 ◁𝒬).𝑃𝑖)) =

1(𝑂𝑖) ◦ ©­«
Routed(Corrupt′C’(𝑃))

⊗
1(𝐿𝑖)

ª®¬ ◦
©­­­«

*
𝒬.𝑃 𝑗 used by 𝒫.𝑃𝑖

𝑆 𝑗 ◦ Routed(Corrupt𝐶 (𝒬.𝑃 𝑗))

⊗
1(IdealIn𝑖)

ª®®®¬
Next, we need to add the router R. We note that since 𝒫 and 𝒬 have separate
channels, we can write R = R𝒫 ◦R𝒬, where the latter contains only the channels
in𝒬, and the former contains the channels in 𝒫, and provides access to those in
𝒬 via its function dependencies. Combing this with the interchange lemma, we
get:

R ∗ *
𝑖∈[𝒫.𝑛]

Routed(Corrupt′𝐶′ ((𝒫 ◁𝒬).𝑃𝑖)) ∗ R =

1(Out(R), 𝑂1, . . . , 𝑂𝒫.𝑛) ◦
©­­­­­«
Routed(CorruptC’(𝑃))

∗
R𝒫

⊗
1(𝐿1, . . . , 𝐿𝒫.𝑛)

ª®®®®®¬
◦
©­­­­­«
* 𝑗∈[𝒬.𝑛] 𝑆 𝑗 ◦ Routed(Corrupt𝐶 (𝒬.𝑃 𝑗))

∗
R𝒬
⊗

1(Out(𝐹))

ª®®®®®¬
64

All that remains is to add the ideal functionalities, giving us, after application of
the interchange lemma:

Inst𝐶′ (𝒫 ◁𝒬) =

1(𝑂) ◦
©­­­­­«
Routed(Corrupt′C’(𝑃))

∗
R𝒫

⊗
1(Leakage, 𝐿𝒬)

ª®®®®®¬
◦
©­­­­­«
* 𝑗∈[𝒬.𝑛] 𝑆 𝑗 ◦ Routed(Corrupt𝐶 (𝒬.𝑃 𝑗))

∗
R𝒬
⊗

1(Leakage,Out(𝐹))

ª®®®®®¬
◦ ©­«

𝒫.𝐹
⊗

𝒬.𝐹

ª®¬
with 𝑂 := Out(Inst𝐶′ (𝒫 ◁𝒬)), and 𝐿𝒬 :=

⋃
𝑖∈[𝒫.𝑛] 𝐿𝑖.

Now, because 𝒬 does not use any of the functions in 𝒫.𝐹, and because each
simulator 𝑆 𝑗 does not use any channels, we can rewrite this as:

1(𝑂)◦
©­­­­«
Routed(Corrupt′C’(𝑃))

∗
R𝒫

⊗
1(Leakage, 𝐿𝒬)

ª®®®®¬
◦

©­­­­­­­­«

𝒫.𝐹
⊗

1(Out(R𝒬))
⊗

1(𝒬.Leakage)
⊗⊗

𝑗∈[𝒬.𝑛] 𝑆 𝑗

ª®®®®®®®®¬
◦

©­­­­­­­­«

©­­­­­«
* 𝑗∈[𝒬.𝑛] Routed(Corrupt𝐶 (𝒬.𝑃 𝑗))

∗
R𝒬
⊗

1(𝒬.Leakage)

ª®®®®®¬
◦𝒬.𝐹

⊗
1(In(𝒫.𝐹))

ª®®®®®®®®¬
We can then notice that the right hand side of this equation is simply Inst𝐶 (𝒬),
concluding our proof.

■

If you squint at this theorem, it’s basically saying that

Inst𝐶′ (𝒫 ◁𝒬) = Stuff ◦ Inst𝐶 (𝒬)

while also allowing the inputs to 𝒫.𝐹 to flow in. This is the core observation
we need for later. If we look at the decomposition more closely, the front is
almost like the Inst(𝒫), except that more information needs to flow through,
since the adversary also gets leakage information and routing control from 𝒬.
Furthermore, the interaction with 𝒬 is mediated via the 𝑆𝑖, which exist because
compatibility only requires that the corruption in𝒬 is at least as strong, so these
𝑆𝑖 are there to weaken what the players in 𝒫 have access to.

4.3 Equality and Simulation
In this subsection, we finally get to the various notions of equality and simulation
we’ve been foreshadowing. To skip ahead a bit, we define three main notions
here, which are about claims that:

1. two protocols behave identically,

65

2. two protocols behave indistinguishably,

3. one protocol is simulated by another.

After defining these notions, we also show that all the kinds of protocol com-
position we’ve defined respect these notions, and satisfy a form of transitivity.
This allows us to make such claims about a large protocol, by decomposing it
into smaller protocols, and then making several hops, appealing to claims about
these smaller protocols. This is analogous to the strategy that the state-separable
proof paradigm takes to proving things about game. Indeed, this analogy is the
principal motivation for this framework.

Like with packages and systems, to even compare two protocols, they need to
have the same shape.

Definition 4.14 (Shape). We say that two protocols 𝒫,𝒬 have the same shape
if there exists a protocol 𝒬′ ≡ 𝒬 such that:

• 𝒫.𝑛 = 𝒬′.𝑛,

• ∀𝑖 ∈ [𝑛] . In(𝒫.𝑃𝑖) = In(𝒬′.𝑄𝑖),

• ∀𝑖 ∈ [𝑛] . Out(𝒫.𝑃𝑖) = Out(𝒬′.𝑄𝑖),

• Leakage(𝒫) = Leakage(𝒬′),

• IdealIn(𝒫) = IdealIn(𝒬′).

□

The reason we use the 𝒬′ equivalent to 𝒬 is just so that we can get the order of
players to be the same as in 𝒫.

The first notion of equality we capture is about arguing that two protocols have
the same behavior under a class of corruptions.

Definition 4.15 (Semantic Equality). We say that two closed protocols 𝒫 and
𝒬, with the same shape, are equal under a class of corruptions 𝒞, written as
𝒫 =𝒞 𝒬, when we have:

∀𝐶 ∈ 𝒞. Inst𝐶 (𝒫) = Inst𝐶 (𝒬′)

as systems, with 𝒬′ ≡ 𝒬 as per Definition 4.14.

□

For closed protocols, this is a more natural notion of equality than ≡, since
it allows for behaviors that are effectively identical, while not technically the
same.

This notion is too strict for many protocols, which make use of hard problems.
In this case, we want to appeal to indistinguishability instead.

66

Definition 4.16 (Indistinguishability). We say that two closed protocols𝒫 and
𝒬, with the same shape, are indistinguishable up to 𝜖 under a class of corruptions
𝒞, written as 𝒫 𝜖≈𝒞 𝒬, when we have:

∀𝐶 ∈ 𝒞. Inst𝐶 (𝒫)
𝜖≈ Inst𝐶 (𝒬′)

as systems, with 𝒬′ ≡ 𝒬 as per Definition 4.14.

□

Like with systems and packages, this notion allows for small differences, and
restricts the adversary to only have a limited amount of computation, allowing
for hard problems to exist, and be used inside the protocol.

The notions we’ve seen so far are natural extensions of the ones we’ve defined
for packages and systems. This next notion, on the other hand, is novel. This
is the notion of simulation, and is the typical kind of security claim made about
protocols. Simulation allows for many more protocols to be compared, because
it allows for a simulator 𝑆 to interface between the adversary and one of the pro-
tocols. The intuition here is that the simulator translates attacks made on one
protocol to attacks made on another. If a protocol is simulated by a protocol
under which no attack is possible, then we can conclude that no attack is possi-
ble against the concrete protocol, since that would immediately translate into an
attack against the secure one.

To get to this notion of simulation, we first need to formally define what a simu-
lator is, and what it means to instantiate a protocol with that simulator.

Definition 4.17 (Simulated Instantiation). A simulator 𝑆 for a closed protocol
𝒫 under a corruption model 𝐶 is a system satisfying:

• InChan(𝑆),OutChan(𝑆) = ∅,

• In(𝑆) = Leakage ∪
(⋃

𝐶𝑖=M Out(CorruptM(𝑃𝑖))
)
∪

(⋃
𝐶𝑖=SH 𝑃𝑖 .log

)
,

• Out(𝑆) = In(𝑆),

Given such a simulator, we can define the simulated instantiation of 𝒫 under 𝐶
with 𝑆 as:

SimInst𝑆,𝐶 (𝒫) := ©­«
𝑆
⊗

1(Out(Inst𝐶 (𝒫))/Out(𝑆))
ª®¬ ◦ Inst𝐶 (𝒫)

□

Basically, the simulator 𝑆 is allowed to touch all of the “adversarial” parts of the
instantiation. This is basically everything except the honest parts of the protocol.
This includes the input functions for semi-honest parties, but not their logs. We

67

can think of this simulator as translating attacks, as mentioned above. We can
also think of the simulator as trying to “trick” the adversary into thinking it’s
interacting with one protocol, whereas in fact it’s interacting with another.

This leads to a kind of notion of equality, called simulation.

Definition 4.18 (Simulatability). Given closed protocols 𝒫,𝒬 with the same
shape, we say that𝒫 is simulatable up to 𝜖 by𝒬 under a class of corruptions𝒞,
written as 𝒫 𝜖

{𝒞 𝒬, when:

∀𝐶 ∈ 𝒞.∃𝑆. Inst𝐶 (𝒫)
𝜖≈ SimInst𝑆,𝐶 (𝒬′)

as systems, with 𝒬′ ≡ 𝒬 as per Definition 4.14.

□

Note that this is not a symmetric notion. There’s a clear directionality to claims
of simulation, as indicated by the choice of notation. One important technical
detail is that the simulator can depend on the specific corruption model. In many
cases, we even provide an explicit case-by-case proof, using different simulator
strategies for each kind of corruption.

As one might expect, these notions of equality and simulation form a nice hier-
archy, which we can formalize as follows.

Theorem 4.8 (Equality Hierarchy). For any corruption class 𝒞, we have:

1. 𝒫 ≡ 𝒬 =⇒ 𝒫 =𝒞 𝒬.

2. 𝒫 =𝒞 𝒬 =⇒ 𝒫
0≈𝒞 𝒬.

3. 𝒫
𝜖≈𝒞 𝒬 =⇒ 𝒫

𝜖
{𝒞 𝒬.

Proof:
1. For any 𝐶 ∈ 𝒞, Corrupt𝐶 and Routed are equality respecting, so we have:

∀𝑖 ∈ [𝑛] . Routed(Corrupt𝐶 (𝒫.𝑃𝑖)) = Routed(Corrupt𝐶 (𝒬.𝑃𝑖))

Furthermore, the equality of players between 𝒫 and 𝒬 makes 𝒫.R = 𝒬.R.

And then, the fact that 𝒫.𝐹 = 𝒬.𝐹 forces Leakage to be the same as well.

Finally, since ◦, ∗, ⊗ are respect ≡, we can clearly see that Inst𝐶 (𝒫) = Inst𝐶 (𝒬),
since all the sub-components are literally equal.

2. For any systems 𝐴, 𝐵, we have 𝐴 = 𝐵 =⇒ 𝐴
0≈ 𝐵. Applying this to Inst𝐶 (𝒫)

and Inst𝐶 (𝒬) gives us our result.

3. It suffices to define a simulator 𝑆 such that SimInst𝑆,𝐶 (𝒬) = Inst𝐶 (𝒬), which
will then show our result. We can simply take 𝑆 = 1(. . .) for the right set.

68

■

The fact that equality implies indistinguishability is unsurprising, since we’ve
seen that hold already for packages and systems. For simulation, the key to the
proof was that you can define a simulator that doesn’t do anything, in which case
indistinguishability and simulation are effectively the same.

For these equality notions to be useful, we also want some kind of transitivity,
so that we can decompose proofs into smaller hops. Thankfully, we also have
analogous notions of transitivity.

Theorem 4.9 (Transitivity of Equality). For any closed protocols ℒ,𝒫,𝒬
with the same shape, and any class of corruptions 𝒞, we have:

1. ℒ =𝒞 𝒫,𝒫 =𝒞 𝒬 =⇒ ℒ =𝒞 𝒬,

2. ℒ
𝜖1≈𝒞 𝒫,𝒫

𝜖2≈𝒞 𝒬 =⇒ ℒ
𝜖1+𝜖2≈ 𝒞 𝒬,

3. ℒ
𝜖1{𝒞 𝒫,𝒫

𝜖2{𝒞 𝒬 =⇒ ℒ
𝜖1+𝜖2{ 𝒞 𝒬.

Proof: The first two parts follow directly from Lemma 3.5 (transitivity for sys-
tem equality). Indeed, we just look at Inst𝐶 (ℒ), Inst𝐶 (𝒫), and Inst𝐶 (𝒬) as
systems, for any corruption model 𝐶.

For part 3, by assumption we have, for any 𝐶 ∈ 𝒞:

• Inst𝐶 (ℒ)
𝜖1≈ ©­«

𝑆1
⊗

1(𝑂)
ª®¬ Inst𝐶 (𝒫),

• Inst𝐶 (𝒫)
𝜖1≈ ©­«

𝑆2
⊗

1(𝑂)
ª®¬ Inst𝐶 (𝒬).

This means that:

Inst𝐶 (ℒ)
𝜖1+𝜖2≈ ©­«

𝑆1
⊗

1(𝑂)
ª®¬ ◦ ©­«

𝑆2
⊗

1(𝑂)
ª®¬ ◦ Inst𝐶 (𝒬)

applying the properties we have for systems.

Then, we can apply interchange to write this as:

©­«
𝑆1 ◦ 𝑆2
⊗

1(𝑂)
ª®¬ ◦ Inst𝐶 (𝒬)

which concludes our proof, since 𝑆1 ◦ 𝑆2 will be a valid simulator.

■

69

The crux of the proof was that simulators compose together, which allows simu-
lation to become transitive. As we’ve seen for packages and systems, transitivity
is a critical part of what makes proofs more modular.

From the definitions we’ve seen so far, it’s necessary to consider both semi-
honest and malicious corruption, if the class happens to include them. It turns
out that for = and ≈, we can always disregard semi-honest corruption in favor
of malicious corruption, and in some cases we can also do this for simulation as
well.

Theorem 4.10 (Malicious Completeness). Let 𝒫 and 𝒬 closed protocols with
the same shape. Given any class of corruptions 𝒞, let 𝒞′ be a related class,
containing models in 𝒞 with some malicious corruptions replaced with semi-
honest corruptions. We then have:

1. 𝒫 =𝒞 𝒬 =⇒ 𝒫 =𝒞′ 𝒬,

2. 𝒫
𝜖≈𝒞 𝒬 =⇒ 𝒫

𝜖≈𝒞′ 𝒬,

Furthermore, if for any 𝐶 ∈ 𝒞 and its related model 𝐶′ ∈ 𝒞, there exists a
simulator 𝑆M such that Inst𝐶 (𝒬) = SimInst𝑆M,𝐶′ (𝒬), then it additionally holds
that:

3. 𝒫
𝜖
{𝒞 𝒬 =⇒ 𝒫

𝜖
{𝒞′ 𝒬

Proof: Lemma (simulating corruptions) is the crux of our proof. It implies that
there exists a system 𝑆SH such that

CorruptSH(𝑃) = 𝑆SH ◦ Corrupt𝑀 (𝑃)

As a consequence, for any 𝐶′ ∈ 𝒞′ and the 𝐶 ∈ 𝒞 it’s related to, there exists a
simulator 𝑆SH such that:

Inst𝐶′ (𝒫) = ©­«
𝑆SH
⊗

1(𝑂)
ª®¬ ◦ Inst𝐶 (𝒫)

which simulates all of the semi-honest corruptions in𝐶′ from the malicious ones
in 𝐶.

This immediately implies parts 1 and 2, by the fact that ◦ for systems respects
equality and indistinguishability.

For part 3, we apply the assumption in the implication to get:

©­«
𝑆SH
⊗

1(𝑂)
ª®¬ ◦ ©­«

𝑆
⊗

1(𝑂)
ª®¬ ◦ Inst𝐶 (𝒬)

70

Then, apply our assumption about being able to simulate malicious corruption
from semi-honest corruption to get:

©­«
𝑆SH
⊗

1(𝑂)
ª®¬ ◦ ©­«

𝑆
⊗

1(𝑂)
ª®¬ ◦ ©­«

𝑆𝑀
⊗

1(𝑂)
ª®¬ ◦ Inst𝐶′ (𝒬)

which we can then apply interchange to to end up with:

©­«
𝑆SH ◦ 𝑆 ◦ 𝑆𝑀

⊗
1(𝑂)

ª®¬ ◦ Inst𝐶′ (𝒬) = SimInst𝑆′,𝐶′ (𝒬)

for 𝑆′ := 𝑆SH ◦ 𝑆 ◦ 𝑆𝑀 , concluding our proof.

■

For simulation, unfortunately we get stuck in the proof without the additional
assumption. The fundamental issue is that malicious corruption helps both the
adversary and the simulator. The simulator might make use of the extra powers
they get from malicious corruption, which are then no longer available to them
in the semi-honest case. One particular power is the ability to change the input
being provided, as noted in [HL10], in which this conundrum is explored further,
providing some example protocols secure under malicious, but not semi-honest
corruption. The condition we’ve added might seem a bit odd—being able to
simulate semi-honest corruption frommalicious corruption—but it does actually
show up somewhat often. For example, if a protocol just consists of calling part
of an ideal functionality, then semi-honest andmalicious corruption are the same,
as we’ll see later.

The next step will be to show how the various notions of composition we’ve
defined interact with these notions of equality and simulation. Thankfully, all
of the ways of composing protocols respect both equality and simulation in the
natural ways, allowing the use of modular proofs like the ones we can create for
packages.

First, we look at composing protocols with functionalities.

Theorem 4.11 (Vertical Composition Theorem). For any protocol𝒫 and game
𝐺, such that 𝒫 ◦ 𝐺 is well defined and closed, and for any corruption class 𝒞,
we have:

1. 𝐺 = 𝐺′ =⇒ 𝒫 ◦ 𝐺 =𝒞 𝒫 ◦ 𝐺′

2. 𝐺
𝜖≈ 𝐺′ =⇒ 𝒫 ◦ 𝐺 𝜖≈𝒞 𝒫 ◦ 𝐺′

Proof: We start by noting that Inst𝐶 (𝒫 ◦ 𝐺) = 𝐴 ◦ 𝐹 ◦ 𝐺, for some system 𝐴.
Part 1 follows immediately from this, since ◦ is equality respecting.

71

Part 2 follows by applying Lemma 3.6, which entails that for any system 𝑆, we
have 𝑆 ◦ 𝐺 𝜖≈ 𝑆 ◦ 𝐺′.

■

This property is quite useful, since it allows separating out part of a functionality,
and then appealing to the indistinguishability of two games, to argue that one
protocol simulates another. This allows a kind of bridging between game-based
proofs and protocols, allowing us to make use of indistinguishability proofs for
games to aid in proving properties of protocols.

Next, we look at composing protocols concurrently. We’ll need to use the notion
of compatibility for corruption classes that we’ve defined before.

Theorem 4.12 (Concurrent Composition Theorem). Let 𝒫,𝒬 be protocols,
with𝒫⊗𝒬well defined and closed. For any compatible corruption classes𝒞,𝒞′

it holds that:

1. 𝒬 =𝒞 𝒬′ =⇒ 𝒫 ⊗ 𝒬 =𝒞′ 𝒫 ⊗ 𝒬′

2. 𝒬 𝜖≈𝒞 𝒬′ =⇒ 𝒫 ⊗ 𝒬 𝜖≈𝒞′ 𝒫 ⊗ 𝒬′

3. 𝒬 𝜖
{𝒞 𝒬′ =⇒ 𝒫 ⊗ 𝒬 𝜖

{𝒞′ 𝒫 ⊗ 𝒬′

Proof: Theorem 4.6 (concurrent breakdown) will be essential to our proof. This
implies that ∀𝐶 ∈ 𝒞, then for any compatible 𝐶′ ∈ 𝒞′ we have:

Inst𝐶′ (𝒫 ⊗ 𝒬) = Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬)

1. Since 𝒬 =𝒞 𝒬′, we have ∀𝐶 ∈ 𝒞. Inst𝐶 (𝒬) = Inst𝐶 (𝒬′). Now, consider any
𝐶′ ∈ 𝒞′. By our assumption that 𝒞′ is compatible with 𝒞, there exists a 𝐶 ∈ 𝒞
that 𝐶′ is compatible with. Using concurrent breakdown, we then have:

Inst𝐶′ (𝒫 ⊗ 𝒬) = Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬)

Then, since 𝒬 =𝒞 𝒬′, we have:

Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬) = Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬′) = Inst𝐶′ (𝒫 ⊗ 𝒬′)

concluding our proof.

2. The proof here is similar to part 1. For any 𝐶′ ∈ 𝒞′, there exists a compatible
𝐶 ∈ 𝒞, and then we get:

Inst𝐶′ (𝒫 ⊗ 𝒬) = Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬)

Since 𝒬 𝜖≈𝒞 𝒬′, we have:

Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬)
𝜖≈ Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬′)

72

since ⊗ for systems respects this operation. We can then conclude with

Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬′) = Inst𝐶′ (𝒫 ⊗ 𝒬′)

3. Once more, for any 𝐶′ ∈ 𝒞′, there exists a compatible 𝐶 ∈ 𝒞 giving us:

Inst𝐶′ (𝒫 ⊗ 𝒬) = Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬)

We then apply our assumption that 𝒬 𝜖
{𝒞 𝒬′ to get:

Inst𝐶′ (𝒫) ⊗ Inst𝐶 (𝒬)
𝜖≈ Inst𝐶′ (𝒫) ⊗ ((𝑆 ⊗ 1(. . .)) ◦ Inst𝐶 (𝒬′))

Next, we apply interchange to get:

1(Out(Inst𝐶′ (𝒫))) ◦ Inst𝐶′ (𝒫)
⊗

((𝑆 ⊗ 1(. . .)) ◦ Inst𝐶 (𝒬′))
=

©­­­­­«
1(Out(Inst𝐶′ (𝒫)))

⊗
𝑆
⊗

1(Out(Inst𝐶 (𝒬))/Out(𝑆))

ª®®®®®¬
◦ ©­«

Inst𝐶′ (𝒫)
⊗

Inst𝐶 (𝒬′)
ª®¬

Applying concurrent breakdown in reverse, we get that the right hand side is
Inst𝐶′ (𝒫 ⊗ 𝒬), and that the left hand side is the simulator showing that 𝒫 ⊗
𝒬

𝜖
{𝒞′ 𝒫⊗𝒬′. The left hand side is a valid simulator because Out(Inst𝐶 (𝒬)) =

Out(Inst𝐶′ (𝒬)), and all of the honest parts of 𝒫 are left untouched, since all of
it is.

■

Critically, the use of the concurrent breakdown theorem was essential in prov-
ing this theorem. Basically, all the hard work had already been done, and we
just need to apply some of the notions we’ve developed for systems to finish the
details of the proof.

Finally, we can look horizontal composition of protocols. Like with the break-
down theorems, this one is a tad more complicated, and is where we need to
deploy the notion of strict compatibility we developed earlier.

Theorem 4.13 (Horizontal Composition Theorem). For any protocols 𝒫,𝒬
with 𝒫 ◁𝒬 well defined and closed, and for any compatible corruption classes
𝒞,𝒞, we have:

1. 𝒬 =𝒞 𝒬′ =⇒ 𝒫 ◁𝒬 =𝒞′ 𝒫 ◁𝒬′

2. 𝒬 𝜖≈𝒞 𝒬′ =⇒ 𝒫 ◁𝒬
𝜖≈𝒞′ 𝒫 ◁𝒬′

Furthermore, if 𝒞′ is strictly compatible with 𝒞, we have:

3. 𝒬 𝜖
{𝒞 𝒬′ =⇒ 𝒫 ◁𝒬

𝜖
{𝒞′ 𝒫 ◁𝒬′

73

Proof: As onemight expect, Theorem 4.7(horizontal breakdown) will be critical
to proving each of these statements.

One crude summary of the theorem, in the case that the protocols are closed, is
that given compatible corruption models 𝐶,𝐶′, there’s a system Stuff such that

Inst𝐶′ (𝒫 ◁𝒬) = Stuff ◦ Inst𝐶 (𝒬)

This summary suffices to prove a couple statements already.

1. By assumption, for any 𝐶′ ∈ 𝒞′, there exists a compatible 𝐶 ∈ 𝒞. In this
case, we have:

Inst𝐶′ (𝒫 ◁𝒬) = Stuff ◦ Inst𝐶 (𝒬)
If we then apply 𝒬 =𝒞 𝒬′, we get:

Stuff ◦ Inst𝐶 (𝒬) = Stuff ◦ Inst𝐶 (𝒬′)

and then, applying breakdown in reverse, we end up with Inst𝐶′ (𝒫 ◁𝒬′), com-
pleting our proof.

2. We apply the same reasoning, with the difference that:

Stuff ◦ Inst𝐶 (𝒬)
𝜖≈ Stuff ◦ Inst𝐶 (𝒬′)

rather than being strictly equal.

3. At this point our crude summary of the breakdown theorem is not sufficient
anymore. We start with the same reasoning. For any 𝐶′ ∈ 𝒞′, there exists a
strictly compatible 𝐶 ∈ 𝒞, and we have:

Inst𝐶′ (𝒫 ◁𝒬) = Stuff ◦ Inst𝐶 (𝒬)

then, we apply our assumption that 𝒬 𝜖
{𝒞 𝒬′, giving us:

Stuff ◦ Inst𝐶 (𝒬)
𝜖≈ Stuff ◦ (𝑆 ⊗ 1(. . .)) ◦ Inst𝐶 (𝒬)

Our strategy will be to rearrange the right hand side to get

(𝑆′ ⊗ 1(. . .)) ◦ Inst𝐶′ (𝒫 ◁𝒬′)

We start by unrolling Stuff, using strict compatibility, to get:

1(𝑂)◦

©­­­­­­«
*𝑖∈[𝒫.𝑛]

Routed(Corrupt′𝐶′ (𝒫.𝑃𝑖))
∗
R𝒫

⊗
1(Leakage, 𝐿𝒬′)

ª®®®®®®¬
◦

©­­­­­­­­­«

𝒫.𝐹
⊗

1(Out(R𝑞))
⊗

1(𝒬′.Leakage)
⊗⊗

𝑖∈[𝒬′ .𝑛] 1𝑖

ª®®®®®®®®®¬
◦©­«

𝑆
⊗

1(𝑂𝑆)
ª®¬◦Inst𝐶 (𝒬′)

74

with 𝑂𝑆 := Out(Inst𝐶 (𝒬′))/Out(𝑆), and with each 1𝑖 := 1(Out(Inst𝐶 (𝒬′.𝑃𝑖))).
we can apply interchange a few times to get:

1(𝑂)◦

©­­­­­­­­­­­­«

©­­­­­«
*
𝐶′𝑖≠H

©­«
Routed(Corrupt′𝐶′ (𝒫.𝑃𝑖))

⊗
1(𝐿𝑖)

ª®¬
⊗

1(Leakage)

ª®®®®®¬
◦ ©­«

𝑆
⊗

1(𝑂𝑆)
ª®¬ ◦

©­­­«
*
𝐶𝑖≠H

Routed(Corrupt𝐶 (𝒬′.𝑃𝑖))

⊗
1(Out(𝒫.𝐹),Out(𝒬.𝐹))

ª®®®¬
∗

*
𝐶′𝑖=H

Routed(Corrupt𝐶′ ((𝒫 ◁𝒬′).𝑃𝑖))

∗
R𝒫 ◦ R𝒬′

ª®®®®®®®®®®®®¬
◦
(
𝒫.𝐹
⊗

𝒬′.𝐹

)

with 𝑂𝑆 := 𝑂𝑆 ∪ Out(𝒫.𝐹) and 𝐿𝑖 as per the horizontal breakdown theorem.
The only functions that 𝑆 masks are the leakage, the malicious corruption func-
tions, and the logs from semi-honest corruption. Semi-honest corruption does
not use any outputs of 𝑆, instead relying on the 𝒬′.𝑃𝑖, accessible via 1(𝑂𝑆). In
the case of malicious corruption, since Corrupt′𝐶′ (𝒫.𝑃𝑖) omits the Call𝐹𝑖 func-
tions, the system also has no dependencies on the output of 𝑆. Since none of
these corrupted players depend on 𝑆, we can slide it forward, using interchange,
to get:

1(𝑂)◦

©­­­­­­­­­­­­«

©­«
𝑆
⊗

1(. . .)
ª®¬ ◦

©­­­­­«
*
𝐶′𝑖≠H

©­«
Routed(Corrupt′𝐶′ (𝒫.𝑃𝑖))

⊗
1(𝐿𝑖)

ª®¬
⊗

1(Leakage)

ª®®®®®¬
◦
©­­­«
*
𝐶𝑖≠H

Routed(Corrupt𝐶 (𝒬′.𝑃𝑖))

⊗
1(Out(𝒫.𝐹),Out(𝒬.𝐹))

ª®®®¬
∗

*
𝐶′𝑖=H

Routed(Corrupt𝐶′ ((𝒫 ◁𝒬′).𝑃𝑖))

∗
R𝒫 ◦ R𝒬′

ª®®®®®®®®®®®®¬
◦
(
𝒫.𝐹
⊗

𝒬′.𝐹

)

which becomes:

©­«
𝑆
⊗

1(Out(Inst𝐶′ (𝒫 ◁𝒬′))/Out(𝑆))
ª®¬ ◦ Inst𝐶′ (𝒫 ◁𝒬′)

From this chain of equalities we conclude that 𝒫 ◁𝒬′ 𝜖
{ 𝒫 ◁𝒬′

■

The reason we needed strict compatibility was that we needed to move the sim-
ulator 𝑆 for 𝒬, to instead become a simulator for 𝒫. When we have strictly
compatible corruption, there are no barriers to doing this, since 𝑆 is able to get
all the information it needs about 𝒬 via 𝒫 ◁𝒬. However, if we don’t have strict
compatibility, we might run into the issue that 𝑆 requires a stronger kind of cor-
ruption than𝒫 ends up using, and so we wont be able to move 𝑆 to the left hand

75

side, as we did here. This is why we demand strict compatibility. In practice,
this condition shouldn’t be very demanding, because in many cases the num-
ber of parties is the same for both protocols, or we’re focusing on a complete
corruption class, like “up to 𝑛 − 1 corruptions”.

At this point, we’ve covered the crux of our modular framework for protocols.
We’ve defined the common notion of simulation, which is usually the kind of
statement we want to prove. Furthermore, we’ve shown that the various means
of composing protocols respect this simulation. So, if one small part of a proto-
col is simulated by another, then we can argue that a larger protocol making use
of the component will be simulated by replacing this component. This allows
reasoning about large protocols via small components, and makes composing
isolated protocols into larger systems in a secure way much easier. Furthermore,
the framework we’ve defined so far also integrates nicely with games, since ideal
functionalities are simply packages. We can even use notions of indistinguisha-
bility for these functionalities to argue that the protocols that use them simulate
one another.

4.4 Global Functionalities
Next, we redo a bit of what we’ve developed so far, this time with the goal of
incorporating global functionalities. The basic example one should have in mind
throughout this section is that of a hash function, treated as a global random
oracle. This hash can be used by various protocols, but yet it should be treated
as one common random oracle throughout all of the protocols. We need a notion
of simulation which can account for this example. Basically, we want to say that
one protocol simulates another, even in the presence of a shared random oracle—
or some other global functionality—and this notion of simulation should have
the nice composability properties that we’ve come to expect.

This development does involve rehashing some of the work we’ve done in the
previous subsection. We could have avoided some of the repetition here, but we
feel like having a separate subsection provides more clarity, especially since in
many cases a global functionality isn’t being used.

First, when a protocol depends on a global functionality, this is because it isn’t
closed. This dependency will be from the fact that its ideal functionality still has
some dependencies on the global functionality.

We can formalize this “closed but for the global functionality” notion.

Definition 4.19 (Relatively Closed Protocols). A protocol𝒫 is closed relative
to a game 𝐺 if:

• In(𝒫) = ∅

• IdealIn(𝒫) ⊆ Out(𝐺)

76

□

As onemight expect, we now define notions of instantiation and equality for such
relatively closed protocols.

Definition 4.20 (Relative Instantiation). Given a closed protocol𝒫 relative to
𝐺, we can define, for any corruption model 𝐶, the relative instantiation:

Inst𝐺𝐶 (𝒫) := ©­«
Inst𝐶 (𝒫)
⊗

1(Out(𝐺))
ª®¬ ◦ 𝐺

We can also extend this to the case of simulated instantiation, defining, for any
simulator 𝑆:

SimInst𝐺𝑆,𝐶 (𝒫) := ©­«
SimInst𝑆,𝐶 (𝒫)

⊗
1(Out(𝐺))

ª®¬ ◦ 𝐺
□

One key aspect of relative instantiation is that the adversary is always able to
interact with𝐺 completely. Going back to our example of the hash function, this
would also be the case. The adversary is able to call the global random oracle at
will. This complete access is key to composability.

We can now use relative instantiation to define the same notions of equality that
we did for standard protocols and regular instantiation.

Definition 4.21 (Relative Notions of Equality). Given closed protocols 𝒫,𝒬
relative to 𝐺, with the same shape, and a corruption class 𝒞 for these protocols,
we define:

• 𝒫 =𝐺
𝒞
𝒬 ⇐⇒ ∀𝐶 ∈ 𝒞. Inst𝐺𝐶 (𝒫) = Inst𝐺𝐶 (𝒬)

• 𝒫
𝜖≈
𝐺

𝒞 𝒬 ⇐⇒ ∀𝐶 ∈ 𝒞. Inst𝐺𝐶 (𝒫)
𝜖≈ Inst𝐺𝐶 (𝒬)

• 𝒫
𝜖
{

𝐺

𝒞 𝒬 ⇐⇒ ∀𝐶 ∈ 𝒞. ∃𝑆. Inst𝐺𝐶 (𝒫)
𝜖≈ SimInst𝐺𝑆,𝐶 (𝒬)

□

These are all the same, except for the replacement of instantiation with relative
instantiation with respect to 𝐺. As one might expect, the same kind of equality
hierarchy also holds here as well.

Theorem 4.14 (Relative Equality Hierarchy). For any corruption class𝒞 and
game 𝐺, we have:

1. 𝒫 =𝐺
𝒞
𝒬 =⇒ 𝒫

0≈
𝐺

𝒞 𝒬.

77

2. 𝒫
𝜖≈
𝐺

𝒞 𝒬 =⇒ 𝒫
𝜖
{

𝐺

𝒞 𝒬.

Proof:

1. This follows from the fact that 𝐴 = 𝐵 =⇒ 𝐴
0≈ 𝐵 for any systems 𝐴, 𝐵.

2. In the proof of Theorem 4.8, we used the existence of a simulator 𝑆 such that
SimInst𝑆,𝐶 (𝒫) = Inst𝐶 (𝒫). This simulator will also satisfy SimInst𝐺𝑆,𝐶 (𝒫) =
Inst𝐺𝐶 (𝒫), and can thus be used directly to prove this relation.

■

Furthermore, these notions of equality are transitive in the exact same way as
before.

Theorem 4.15 (Transitivity of Relative Equality). For any protocolsℒ,𝒫,𝒬
closed relative to a game 𝐺, and for any corruption class, we have:

1. ℒ =𝐺
𝒞
𝒫,𝒫 =𝐺

𝒞
𝒬 =⇒ ℒ =𝐺

𝒞
𝒬,

2. ℒ
𝜖1≈
𝐺

𝒞 𝒫,𝒫
𝜖2≈
𝐺

𝒞 𝒬 =⇒ ℒ
𝜖1+𝜖2≈

𝐺

𝒞 𝒬,

3. ℒ
𝜖1{

𝐺

𝒞 𝒫,𝒫
𝜖2{

𝐺

𝒞 𝒬 =⇒ ℒ
𝜖1+𝜖2{

𝐺

𝒞 𝒬.

Proof: Once again, the first two parts follow directly from Lemma 3.5, by con-
sidering the systems Inst𝐺𝐶 (ℒ), Inst

𝐺
𝐶 (𝒫), Inst

𝐺
𝐶 (𝒬) for any 𝐶 ∈ 𝒞.

For part 3, given any 𝐶 ∈ 𝒞, there exists 𝑆1, 𝑆2 such that:

• Inst𝐺𝐶 (ℒ)
𝜖1≈ SimInst𝐺𝑆1,𝐶

(𝒫),

• Inst𝐺𝐶 (𝒫)
𝜖2≈ SimInst𝐺𝑆2,𝐶

(𝒬).

Next, observe that for any protocol 𝒫, we can write:

SimInst𝐺𝐶 = ©­«
𝑆
⊗

1(𝑂)
ª®¬ ◦ Inst𝐺𝐶 (𝒫)

where 𝑂 = Out(Inst𝐶 (𝒫))/Out(𝑆) ∪ Out(𝐺).

We then apply transitivity for systems and interchange get:

Inst𝐺𝐶 (ℒ)
𝜖1+𝜖2≈ ©­«

𝑆1 ◦ 𝑆2
⊗

1(𝑂)
ª®¬ ◦ Inst𝐺𝐶 (𝒬)

And the left side is simply SimInst𝐺(𝑆1◦𝑆2),𝐶 (𝒬), concluding our proof.

■

78

In many cases, we want to avoid proving semi-honest security explicitly, if we
can get away with just proving malicious security. Thankfully, the same obser-
vation we made for standalone protocols also applies to ones that use a global
functionality.

Theorem 4.16 (Global Malicious Completeness). Let 𝒫 and 𝒬 closed proto-
cols relative to 𝐺 with the same shape. Given any class of corruptions 𝒞, let
𝒞′ be a related class, containing models in 𝒞 with some malicious corruptions
replaced with semi-honest corruptions. We then have:

1. 𝒫 =𝐺
𝐶 𝒬 =⇒ 𝒫 =𝐺

𝐶′ 𝒬,

2. 𝒫
𝜖≈
𝐺

𝐶 𝒬 =⇒ 𝒫
𝜖≈
𝐺

𝐶′ 𝒬,

Furthermore, if for any 𝐶 ∈ 𝒞 and its related model 𝐶′ ∈ 𝒞, there exists a
simulator 𝑆M such that Inst𝐺𝐶 (𝒬) = SimInst𝐺𝑆M,𝐶′ (𝒬), then it additionally holds
that:

3. 𝒫
𝜖
{

𝐺

𝒞 𝒬 =⇒ 𝒫
𝜖
{

𝐺

𝒞′ 𝒬

Proof: We proceed similarly to Theorem 4.10 (malicious completeness). In that
theorem, the key observation was that for any 𝐶′ ∈ 𝒞′ and the related 𝐶 ∈ 𝒞, it
holds that:

Inst𝐶′ (𝒫) = SimInst𝑆SH,𝐶 (𝒫)
(this observation also doesn’t depend on𝒫 being fully closed, allowing us to use
it here).

Now, this clearly implies that:

Inst𝐺𝐶′ (𝒫) = SimInst𝐺𝑆SH,𝐶 (𝒫)

And then, using our observation from Theorem 4.15, we can write this as:

Inst𝐺𝐶′ (𝒫) =
©­«
𝑆SH
⊗

1(𝑂)
ª®¬ ◦ Inst𝐺𝐶 (𝒫)

where 𝑂 = Out(Inst𝐶 (𝒫))/Out(𝑆) ∪ Out(𝐺).

This immediately implies parts 1 and 2.

For part 3, apply the assumption in the implication to get:

©­«
𝑆SH
⊗

1(𝑂)
ª®¬ ◦ ©­«

𝑆
⊗

1(𝑂)
ª®¬ ◦ Inst𝐺𝐶 (𝒬)

79

Then apply the assumption about being able to simulate malicious corruption to
get: ©­«

𝑆SH
⊗

1(𝑂)
ª®¬ ◦ ©­«

𝑆
⊗

1(𝑂)
ª®¬ ◦ ©­«

𝑆M
⊗

1(𝑂)
ª®¬ ◦ Inst𝐺𝐶′ (𝒬)

which can then be rearranged with interchange to get:

©­«
𝑆SH ◦ 𝑆 ◦ 𝑆M

⊗
1(𝑂)

ª®¬ ◦ Inst𝐺𝐶′ (𝒬)
And then if we apply the same observation about SimInst𝐺 , we realize that this
is:

SimInst𝐺(𝑆SH◦𝑆◦𝑆M),𝐶′ (𝒬)
concluding our proof.

■

As we’ve foreshadowed, our next task will be to prove that the various notions
of composition we have respect the relative notions of equality we’ve developed.
Thankfully, our restriction that the adversary can access the entirety of the global
functionalitymakes these theorems easy to prove. Sincewe’ve already seen these
theorems before, in the standalone context, we won’t provide much commen-
tary. The proofs are usually based on the proofs in the previous subsection as
well.

Theorem 4.17 (Global Vertical Composition Theorem). For any protocol 𝒫
and game 𝐹, such that 𝒫 ◦ 𝐹 is well defined and closed relative to 𝐺, and for
any corruption class 𝒞, we have:

1. 𝐹 = 𝐹′ =⇒ 𝒫 ◦ 𝐹 =𝐺
𝒞
𝒫 ◦ 𝐹′

2. 𝐹
𝜖≈ 𝐹′ =⇒ 𝒫 ◦ 𝐹 𝜖≈

𝐺

𝒞 𝒫 ◦ 𝐹′

Proof: The proof of Theorem 4.11 will be the basis for what we do here. Using
it, we can write:

Inst𝐺𝐶 (𝒫 ◦ 𝐹) =
©­«

𝐴 ◦ 𝐹
⊗

1(Out(𝐺))
ª®¬ ◦ 𝐺

for some system 𝐴. At this point, the theorem immediately holds, since ◦ and ⊗
(for systems) respect both = and ≈.

■

Theorem 4.18 (Global Concurrent Composition Theorem). Let𝒫,𝒬 be closed
protocols relative to 𝐺, with𝒫 ⊗𝒬 well defined. For any compatible corruption
classes 𝒞,𝒞′ it holds that:

80

1. 𝒬 =𝐺
𝒞
𝒬′ =⇒ 𝒫 ⊗ 𝒬 =𝐺

𝒞′ 𝒫 ⊗ 𝒬
′

2. 𝒬 𝜖≈
𝐺

𝒞 𝒬′ =⇒ 𝒫 ⊗ 𝒬 𝜖≈
𝐺

𝒞′ 𝒫 ⊗ 𝒬′

3. 𝒬 𝜖
{

𝐺

𝒞 𝒬′ =⇒ 𝒫 ⊗ 𝒬 𝜖
{

𝐺

𝒞′ 𝒫 ⊗ 𝒬′

Proof: We start by using Theorem 4.6, giving us:

Inst𝐺𝐶′ (𝒫 ⊗ 𝒬) =
©­­­­­«
Inst𝐶′ (𝒫)
⊗

Inst𝐶 (𝒬)
⊗

1(Out(𝐺))

ª®®®®®¬
◦ 𝐺 =

©­­­­­«
Inst𝐶′ (𝒫)
⊗

1(Out(Inst𝐶 (𝒬)))
⊗

1(Out(𝐺))

ª®®®®®¬
◦ Inst𝐺𝐶 (𝒬)

We can then immediately derive parts 1 and 2.

For part 3, we apply the hypothesis to the last part of the above relation, to get:

Inst𝐺𝐶′
𝜖≈

©­­­­­«
Inst𝐶′ (𝒫)
⊗

1(Out(Inst𝐶 (𝒬)))
⊗

1(Out(𝐺))

ª®®®®®¬
◦ SimInst𝐺𝑆,𝐶 (𝒬)

Then, we unroll SimInst𝐺𝑆,𝐶 (𝒬), to get:

©­­­­­«
Inst𝐶′ (𝒫)
⊗

1(Out(Inst𝐶 (𝒬)))
⊗

1(Out(𝐺))

ª®®®®®¬
◦
©­­­­­«
©­«

𝑆
⊗

1(. . .)
ª®¬ ◦ Inst𝐶 (𝒬)
⊗

1(Out(𝐺))

ª®®®®®¬
◦ 𝐺

Then, we apply interchange to get:

©­­­­­­­­­«

©­­­­­«
1(. . .)
⊗
𝑆
⊗

1(. . .)

ª®®®®®¬
◦ ©­«

Inst𝐶′ (𝒫)
⊗

Inst𝐶 (𝒬)
ª®¬

⊗
1(Out(𝐺))

ª®®®®®®®®®¬
◦ 𝐺

But this is just SimInst𝐺𝑆′,𝐶′ (𝒫 ⊗𝒬), for some simulator 𝑆′, applying concurrent
breakdown in reverse.

■

81

Theorem 4.19 (Global Horizontal Composition Theorem). For any protocols
𝒫,𝒬 closed relative to 𝐺, with 𝒫 ◁ 𝒬 well defined, and for any compatible
corruption classes 𝒞,𝒞, we have:

1. 𝒬 =𝐺
𝒞
𝒬′ =⇒ 𝒫 ◁𝒬 =𝐺

𝒞′ 𝒫 ◁𝒬
′

2. 𝒬 𝜖≈
𝐺

𝒞 𝒬′ =⇒ 𝒫 ◁𝒬
𝜖≈
𝐺

𝒞′ 𝒫 ◁𝒬
′

Furthermore, if 𝒞′ is strictly compatible with 𝒞, we have:

3. 𝒬 𝜖
{

𝐺

𝒞 𝒬′ =⇒ 𝒫 ◁𝒬
𝜖
{

𝐺

𝒞′ 𝒫 ◁𝒬
′

Proof: This proof is similar to that of Theorem 4.13. By compatibility, for any
𝐶′ ∈ 𝒞′, we have a compatible 𝐶 ∈ 𝒞.

A crude summary of the horizontal breakdown theorem is that:

Inst𝐶′ (𝒫 ◁𝒬) = Stuff ◦ ©­«
Inst𝐶 (𝒬)
⊗

1(In(𝒫.𝐹))
ª®¬

Using the fact that being closed relative to𝐺 means In(𝒫.𝐹) ⊆ Out(𝐺), we get:

Inst𝐺𝐶′ (𝒫 ◁𝒬) =
©­«

Stuff
⊗

1(Out(𝐺))
ª®¬ ◦ Inst𝐺𝐶 (𝒬)

Part 1 and 2 both follow immediately from this decomposition.

For part 3, we dig a bit deeper into the proof of Theorem 4.13. In that proof, it
was actually shown that:

Stuff ◦ SimInst𝑆,𝐶 (𝒬′) = SimInst𝑆′,𝐶′ (𝒫 ◁𝒬′)

for some appropriate simulator 𝑆′.

We can start to apply this, first by using our hypothesis:

Inst𝐺𝐶′ (𝒫 ◁𝒬) =
©­«

Stuff
⊗

1(Out(𝐺))
ª®¬ ◦ Inst𝐺𝐶 (𝒬) 𝜖≈ ©­«

Stuff
⊗

1(Out(𝐺))
ª®¬ ◦ SimInst𝐺𝐶 (𝒬

′)

Next, we unroll the right side, to get:

©­«
Stuff
⊗

1(Out(𝐺))
ª®¬ ◦ ©­«

SimInst𝑆,𝐶 (𝒬′)
⊗

1(Out(𝐺))
ª®¬ ◦ 𝐺

82

Then, apply interchange, to get:

©­«
Stuff ◦ SimInst𝑆,𝐶 (𝒬′)

⊗
1(Out(𝐺))

ª®¬ ◦ 𝐺
And finally, apply the fact we dug up above, to get:

©­«
SimInst𝑆′,𝐶′ (𝒫 ◁𝒬)

⊗
1(Out(𝐺))

ª®¬ ◦ 𝐺
which is none other than SimInst𝐺𝑆′,𝐶′ (𝒫 ◁𝒬).

■

So, the three big theorems we proved in the standalone context also hold in the
global context. We could have saved some repetition by just doing everything in
the global context, but since we expect most proofs to be done standalone, we
felt that it was clearer to present that in more detail, and then present the global
generalizations more rapidly.

4.5 Hopping Ideal Functionalities
One difference between the framework we’ve developed and other frameworks
is that we always make statements about protocols. Protocols are equal to each
other, or simulate one another, etc. In UC security, statements are usually be-
tween protocols and ideal functionalities. One says that a protocol is simulated
by a functionality, and not another protocol.

Sometimes we want to be able to make this kind of statement as well, and the
following lemma can help us with that.

Lemma 4.20 (Deidealization Lemma). Given a closed protocol 𝒫 with an
ideal functionality 𝐹 ⊗ 𝐺, there exists protocols 𝒫′ and𝒢 such that:

𝒫 ≡ 𝒫′ ◁𝒢

and 𝒫′ has ideal functionality 𝐹.

Proof: The players of𝒫′ are those of𝒫, except that each 𝑃𝑖’s call to a function
𝑔 ∈ Out(𝐺) is replaced with a renamed function 𝑔𝑖. 𝒢 will have one player for
each player in 𝒫′. Each player 𝒢.𝑃𝑖 exports a function 𝑔𝑖 for each input 𝑔𝑖 of
𝒫′.𝑃𝑖, which immediately calls 𝑔 ∈ Out(𝐺), and returns the result. The leakage
of𝒢 will simply be𝒫.Leakage∩Out(𝐺). From this definition, it’s clear that𝒫
is literally equal to𝒫′◁𝒢, as when the players in the latter are formed, the calls
to the intermediate 𝑔𝑖 disappear, with each player calling 𝑔 ∈ Out(𝐺) directly

■

83

The idea is that if we’re using some ideal functionality inside of a protocol, we
can actually write this as using a sub-protocol, where that sub-protocol is the one
using the ideal functionality. This sub-protocol will be a kind of “dummy proto-
col”, which just immediately forwards inputs to the functionality. This allows us
to capture the kind of “a protocol is simulated by functionality” statement that
one might want to make. We would prove that a protocol simulates the dummy
protocol associated with a given functionality. Then, whenever that function-
ality is used inside of a protocol, we can appeal to the deidealization lemma to
argue that we can replace the functionality with the concrete protocol.

An example might help. Let’s say we have a functionality 𝐺. It’s dummy proto-
col is, say, 𝒢. We might succeed in proving that 𝒬 { 𝒢—ignoring corruption
classes and the epsilon—for a concrete protocol 𝒬. Then, if we have a protocol
𝒫 ◦𝐺, by deidealization, we can write this as: 𝒫′ ◁𝒢, and then we use the fact
that composition respects simulation to conclude that

𝒫′ ◁𝒬 { 𝒫′ ◁𝒢 = 𝒫 ◦ 𝐺

allowing us to replace a functionality with a concrete protocol.

Another similar idea allows us to turn global instantiation into normal instantia-
tion, by just embedding in the global functionality.

Lemma 4.21 (Embedding Lemma). Given a protocol 𝒫 closed relative to a
game 𝐺, there exists a protocol Embed𝐺 (𝒫) such that for any corruption model
𝐶, we have:

Inst𝐺𝐶 (𝒫) = Inst𝐶 (Embed𝐺 (𝒫))

Proof: This one is quite simple. Embed𝐺 (𝒫) has the same players as 𝒫, with
the ideal functionality becoming:

©­«
𝒫.𝐹
⊗

1(Out(𝐺))
ª®¬ ◦ 𝐺

and the leakage being 𝒫.Leakage ∪ Out(𝐺). The two instantiations will then
clearly be equal under any corruption model.

■

The utility here is that we can prove a bunch of things in the global model, and
then choose to actually instantiate the functionality with a local version of it at
some concrete point. We might even then appeal to deidealization to replace the
functionality with a real protocol. For example, some protocols proven secure in
the global random oracle model could be composed together, and then the global
random oracle could be replaced by a local one, shared by all the protocols, and
then we could even replace this local random oracle with a protocol to actually
sample randomness.

84

5 Examples
In this section, we provide a couple example proofs in the framework, to illustrate
how it works, and some of the advantages it provides. The two examples we
provide are that of constructing a private channel from one that leaks all messages
sent on it, and that of sampling an unbiased random value using the ubiquitous
paradigm of “commit reveal”.

5.1 Constructing Private Channels
In this subsection, we consider the problem of constructing a private channel
from a public channel. A public channel leaks all messages sent over it to an
adversary, whereas a private channel leaks a minimal amount of information:
in our case, essentially just the length of messages sent over the channel. This
example was also used in [CD+15].

We’ll be constructing a two-party private channel from a public channel using
an encryption scheme, and will also show that this construction is secure, even
if one of the two parties using the channel is corrupted.

Let’s start with the ideal functionality representing a public channel, as Game 5.1.

A few clarifications on the notation in this game:

• For 𝑖 ∈ {1, 2}, we let 𝚤 denote either 2 or 1, respectively.

• There are two versions of Send𝑖 and Recv𝑖, for 𝑖 ∈ {1, 2}.

• The pop function on queues is asynchronous, meaning that we wait until
the queue is not empty to remove the oldest element from it.

• The queues are public in an immutable fashion: they can be read but not
modified outside the package.

𝐹 [PubChan]

view 𝑚1→2, 𝑚2→1 ← FifoQueue.new()

Send𝑖→𝚤(𝑚):
𝑚𝑖→𝚤 .push(𝑚)

Recv𝑖→𝚤():
return await 𝑚𝑖→𝚤 .pop()

Game 5.1: Public Channel Functionality

The idea behind this functionality is that each party can send messages to, or re-
ceive messages from the other party. However, at any point, the currently stored
messages are readable by the adversary. Note that this assignment of which func-
tions are usable by which entities is not defined by the functionality itself, but

85

rather merely suggested by its syntax, and enforced only by how protocols will
eventually use the functionality.

Next, we look at a functionality for private channels, captured byGame 5.2.

𝐹 [PrivChan]

𝑚1→2, 𝑚2→1 ← FifoQueue.new()
pub 𝑙1→2, 𝑙2→1 ← FifoQueue.new()

Send𝑖→𝚤(𝑚):
𝑚𝑖→𝚤 .push(𝑚)
𝑙𝑖→𝚤 .push((push, |𝑚 |))

Recv𝑖→𝚤():
𝑚 ← await 𝑚𝑖→𝚤 .pop()
𝑙𝑖→𝚤 .push(pop)
return 𝑚

Game 5.2: Private Channel Functionality

The crucial difference is the nature of the leakage. Rather than being able to see
the current state of either message queue, including the messages themselves,
now the adversary can only see a historical log for each queue, describing only
the length of the messages inserted into the queue. The reason for having a
historical log, rather than just a snapshot of the lengths of the current messages, is
to make the simulator’s job easier in the eventual proof of security. For technical
reasons, it’s simpler to allow the log to be mutated, so that the simulator can
“remember” which parts of the log they’ve already seen, by popping elements
from the queue.

Now, we need to define the protocols. One protocol will use the private channel
to send messages, and the other will try and implement the same behavior, but
using only the public channel, aided by an encryption scheme.

Let’s start with the simpler private channel protocol, which we’ll call 𝒬, and
defined via Protocol 5.3
𝒬 is characterized by:

• Leakage := {𝑙1→2, 𝑙2→1},
• 𝐹 := PrivChan,
• And two players defined via the following system (for 𝑖 ∈ {1, 2}):

𝑃𝑖

Send𝑖(𝑚):
Send𝑖→𝚤 (𝑚)

Recv𝑖():
return await Recv𝚤→𝑖 ()

Protocol 5.3: Private Channel Protocol

86

This protocol basically just provides each player access with their corresponding
functions in the functionality, and leaks the parts of the functionality that the
adversary should have access to, as expected.

Next, we need to define a protocol providing an encrypted channel. We’ll call
this one𝒫. The basic idea is that𝒫 will encrypt messages before sending them
over the public channel. We’ll be using public-key encryption, as defined in Ap-
pendix A.1. For the sake of simplicity, we’ll be relying on an additional func-
tionality, Keys, which will be used to setup each party’s key pair, and allow each
party to agree on the other’s public key.

This functionality is defined in Game 5.4. The basic idea is that a key pair is
generated for each party, and that party can see their secret key, along with the
public key for the other party. Furthermore, we allow the adversary to see both
public keys.

Keys

(sk1, pk1)
$←− Gen()

(sk2, pk2)
$←− Gen()

Keys𝑖():
return (sk𝑖, pk𝚤)

PKs():
return (pk1, pk2)

Game 5.4: Keys Functionality

With this in hand, we can define 𝒫 itself, in Protocol 5.5.

87

𝒫 is characterized by:
• Leakage := {𝑚1→2, 𝑚2→1, PKs},
• 𝐹 := Keys ⊗ PrivChan,
• and two players defined via the following system (for 𝑖 ∈ {1, 2}):

𝑃𝑖

(sk𝑖, pk𝚤) ← Keys𝑖 ()

Send𝑖(𝑚):
Send𝑖→𝚤 (Enc(pk𝚤, 𝑚))

Recv𝑖():
𝑐 ← await Recv𝚤→𝑖 ()
return Dec(sk𝑖, 𝑐)

Protocol 5.5: Encrypted Channel Protocol

Each player will encrypt their message for the other player before sending it, and
then decrypt it using their secret key after receiving it.

At this point we can state and prove the crux of this example:

Claim 5.1. Let𝒞 be the class of corruptions where up to 1 of 2 parties is either
maliciously corrupt or semi-honestly corrupt. Then we have:

𝒫
2·IND
{ 𝒞 𝒬

Proof: We consider the cases where all the parties are honest and some of the
parties are corrupted separately. Furthermore, we only need to consider mali-
cious corruption, since the parties in𝒬 just directly call functions from the ideal
functionality, and so we can simulate malicious corruption from semi-honest
corruption, and can thus apply part 3 of Theorem 4.10.

Honest Case: Let H be a corruption model where both parties are honest. We
prove that 𝒫 2·IND

{ {H} 𝒬.

The high level idea is that since ciphertexts should be indistinguishable from
random encryptions, the information in the log we get as a simulator for 𝒬 is
enough to fake all the ciphertexts the environment expects to see in 𝒫.

88

We start by unrolling InstH(𝒫), obtaining:

InstH(𝒫) =

Γ0

view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()
(sk𝑖, pk𝚤) ← Keys𝑖 ()

PKs():
return (pk1, pk2)

Send𝑖(𝑚):
𝑐 ← Enc(pk𝚤, 𝑚)
𝑐𝑖→𝚤 .push(𝑐)

Recv𝑖():
𝑐 ← await c𝚤→𝑖 .pop()
return Dec(sk𝑖, 𝑐)

◦ Keys

Note that we can ignore all parts of the instantiation related to channels, includ-
ing the router, because the parties don’t use any channels. We also took the
liberty of renaming 𝑚𝑖→𝚤 to 𝑐𝑖→𝚤, to emphasize the fact that these queues contain
ciphertexts, instead of messages.

Next, we pull a bit of a trick. It turns out that since both parties are honest, we
don’t need to actually decrypt the ciphertext. Instead, one party can simply send
the plaintext via a separate channel to the other. Applying this gives us:

Γ0 ◦ Keys =

Γ1

view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()
𝑚1→2, 𝑚2→1 ← FifoQueue.new()
(•, pk𝚤) ← Keys𝑖 ()

PKs():
return (pk1, pk2)

Send𝑖(𝑚):
𝑐 ← Enc(pk𝚤, 𝑚)
𝑐𝑖→𝚤 .push(𝑐)
𝑚𝑖→𝚤 .push(𝑚)

Recv𝑖():
𝑐 ← await c𝚤→𝑖 .pop()
𝑚 ← await m𝚤→𝑖 .pop()
return 𝑚

◦ Keys

This is equal because of the correctness property for encryption, which guar-
antees that 𝑚 = Dec(Enc(pk, 𝑚)). Furthermore, the timing properties are the
same, since the size of both the 𝑐𝑖→𝚤 and 𝑚𝑖→𝚤 queues are always the same.

89

At this point, we can offload the decryption to the IND game, giving us:

Γ1 ◦ Keys =

Γ2

view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()
𝑚1→2, 𝑚2→1 ← FifoQueue.new()

PKs():
return (super.pk1, super.pk2)

Send𝑖(𝑚):
𝑐 ← Challenge𝚤 (𝑚)
𝑐𝑖→𝚤 .push(𝑐)
𝑚𝑖→𝚤 .push(𝑚)

Recv𝑖():
𝑐 ← await c𝚤→𝑖 .pop()
𝑚 ← await m𝚤→𝑖 .pop()
return 𝑚

◦ ©­«
IND0
⊗

IND0

ª®¬

We use two instances of IND, and we disambiguate the functions in each instance
by attaching 1 or 2 to each function.

Next, we can hop to IND1, since:

Γ2 ◦ ©­«
IND0
⊗

IND0

ª®¬ 𝜖≈ Γ2 ◦ ©­«
IND1
⊗

IND1

ª®¬
with 𝜖 = 2 · IND.

If we unroll this last game, we get:

Γ1 ◦ ©­«
IND1
⊗

IND1

ª®¬ =

Γ3

view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()
𝑚1→2, 𝑚2→1 ← FifoQueue.new()

(sk𝑖, pk𝑖)
$←− Gen()

PKs():
return (pk1, pk2)

Send𝑖(𝑚):

𝑟
$←−M(|𝑚 |)

𝑐𝑖→𝚤 .push(Enc(pk𝚤, 𝑟))
𝑚𝑖→𝚤 .push(𝑚)

Recv𝑖():
𝑐 ← await c𝚤→𝑖 .pop()
𝑚 ← await m𝚤→𝑖 .pop()
return 𝑚

90

Our next step will be to “defer” the creation of the fake ciphertexts, generating
them on demand when the ciphertext queue is viewed by the adversary. To do
this, we maintain a log which saves the length of messages being sent, and also
lets us know when to remove ciphertexts from the log. This gives us:

Γ4 =

Γ5

𝑙1→2, 𝑙2→1 ← FifoQueue.new()
view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()
𝑚1→2, 𝑚2→1 ← FifoQueue.new()

(sk𝑖, pk𝑖)
$←− Gen()

PKs():
return (pk1, pk2)

Send𝑖(𝑚):
𝑙𝑖→𝚤 .push((push, |𝑚 |))
𝑚𝑖→𝚤 .push(𝑚)

𝑐𝑖→𝚤():
while cmd← l𝑖→𝚤 .pop() ≠ ⊥:
if cmd = pop:
𝑐𝑖→𝚤 .pop()

if cmd = (push, |𝑚 |):

𝑟
$←−M(|𝑚 |)

𝑐𝑖→𝚤 .push(Enc(pk𝚤, 𝑟))
return 𝑐𝑖→𝚤

Recv𝑖():
𝑚 ← await m𝚤→𝑖 .pop()
𝑙𝑖→𝚤 .push((pop, |𝑚 |))
return 𝑚

But, at this point the behavior of Send𝑖 andRecv𝑖 is identical to that in𝒬, allowing

91

us to write:

Γ5 =

𝑆

view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()

(sk𝑖, pk𝑖)
$←− Gen()

PKs():
return (pk1, pk2)

𝑐𝑖→𝚤():
while cmd← l𝑖→𝚤 .pop() ≠ ⊥:
if cmd = pop:
𝑐𝑖→𝚤 .pop()

if cmd = (push, |𝑚 |):

𝑟
$←−M(|𝑚 |)

𝑐𝑖→𝚤 .push(Enc(pk𝚤, 𝑟))

⊗
1(Send𝑖,Recv𝑖)

◦ InstH(𝒬)

which concludes this part of our proof, having written out our simulator, and
proven that InstH(𝒫)

𝜖≈ SimInst𝑆,H(𝒬).

Malicious Case: Without loss of generality, we can consider the case where 𝑃1
is malicious. This is because the difference between the parties is just a matter
of renaming variables, so the case where 𝑃2 is malicious would be the same. Let
M denote this corruption model. We prove that 𝒫 0

{{M} 𝒬, which naturally
implies the slightly higher upper bound of 2 · IND.

92

We start by unrolling InstM(𝒫), to get:

InstM(𝒫) =

Γ1

view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()
(sk2, pk1) ← Keys2()

PKs():
return (pk1, pk2)

Send1(𝑐):
𝑐1→2.push(𝑐)

Send2(𝑚):
𝑐 ← Enc(pk1, 𝑚)
𝑐2→1.push(𝑐)

Keys1():

return super.Keys1()

Recv1():
return await 𝑐2→1.pop()

Recv2(𝑚):
𝑐 ← await 𝑐1→2.pop()
return Dec(sk2, 𝑐)

◦ Keys

The key affordances for malicious corruption are that the adversary can now
see the output of Keys1, including their secret key, and the public key of the
other party, and that they have direct access to 𝑐1→2. This allows them to send
potentially “fake” ciphertexts to the other party, rather than going through the
decryption process.

Next, we explicitly include the code of Keys, and also include an additional key
pair, used in Recv2, this key pair encrypts and then immediately decrypts the
message being received, and thus has no effect by the correctness property of

93

encryption. Writing this out, we get:

Γ1 ◦ Keys =

Γ2

view 𝑐1→2, 𝑐2→1 ← FifoQueue.new()
(sk1, pk1), (sk2, pk2), (sk′2, pk′2) ← Gen()

PKs():
return (pk1, pk2)

Send1(𝑐):
𝑐1→2.push(𝑐)

Send2(𝑚):
𝑐 ← Enc(pk1, 𝑚)
𝑐2→1.push(𝑐)

Keys1():

return (sk1, pk2)

Recv1():
return await 𝑐2→1.pop()

Recv2(𝑚):
𝑐 ← await 𝑐1→2.pop()
𝑚 ← Dec(sk2, 𝑐)
𝑐′← Enc(pk′2, 𝑚)
𝑚 ← Dec(sk′2, 𝑐′)
return 𝑚

The next step we perform is a bit of a trick. We swap the names of sk2 and sk′2, as
well as pk2 and pk′2, after all, renaming has no effect on a system. We also create
a separate message queue 𝑚1→2 which will be used to send messages directly.

94

This gives us:

Γ2 =

Γ3

𝑚1→2, view 𝑐1→2, view 𝑐2→1 ← FifoQueue.new()
(sk1, pk1), (sk2, pk2), (sk′2, pk′2) ← Gen()

PKs():
return (pk1, pk′2)

Send1(𝑐):
𝑐1→2.push(𝑐)
𝑚 ← Dec(sk′2, 𝑐)
𝑚1→2.push(𝑚)

Send2(𝑚):
𝑐 ← Enc(pk1, 𝑚)
𝑐2→1.push(𝑐)

Keys1():

return (sk1, pk′2)

Recv1():
return await 𝑐2→1.pop()

Recv2(𝑚):
𝑐 ← await 𝑐1→2.pop()
𝑚 ← await 𝑚1→2.pop()
𝑐′← Enc(pk2, 𝑚)
𝑚 ← Dec(sk2, 𝑐

′)
return 𝑚

Notice that at this point sk2 and pk2 now don’t actually do anything, since they
don’t actually modify the message in Recv2. The main remaining barrier to writ-
ing this as a simulator over𝒬 is that the ciphertext queues 𝑐𝑖→𝚤 are modified both
in functions we control Send1 and Recv1, but also in the two functions which we
don’t control Send2, and Recv2, and will eventually need to become pass through
functions for 𝒬.

For Recv2, it modifies 𝑐1→2 by popping elements off of it. We can emulate this
behavior by reading the access log of 𝑙1→2 we get from 𝒬, and using the pop
commands inside to modify 𝑐1→2 when necessary.

For Send2, our task is a bit harder, since we need to create an encryption of 𝑚,
and the log will only contain |𝑚 |. However, our simulator over 𝒬 will be able to
receive messages on behalf of the first party, allowing us to retrieve the message,
and then create a simulated ciphertext by encrypting it.

95

Putting these ideas together, we write:

Γ3 =

𝑆

𝑐1→2, 𝑐2→1 ← FifoQueue.new()
(sk1, pk1), (sk′2, pk′2) ← Gen()

PKs():
return (pk1, pk′2)

Keys1():
return (sk1, pk′2)

𝑐𝑖→𝚤():
Update𝑖→𝚤 ()
return 𝑐𝑖→𝚤

Send1(𝑐):
Update1→2()
𝑐1→2.push(𝑐)
𝑚 ← Dec(sk′2, 𝑐)
super.Send1(𝑚)

Update1→2():
while cmd← 𝑙1→2.pop() ≠ ⊥:
if cmd = pop:
𝑐1→2.pop()

Update2→1():
while cmd← 𝑙2→1.pop() ≠ ⊥:
if cmd = (push, •):
𝑚 ← await super.Recv1()
𝑐2→1.push(Enc(pk1, 𝑚))

Recv1():
Update2→1()
return await 𝑐2→1.pop()

⊗
1({Send2,Recv2})

◦ InstM(𝒬)

We make sure to update both queues whenever necessary. This includes when
they’re viewed by the adversary, but also whenever we modify the queues our-
selves, so that we’ve popped or pushed everything that we need to before using
the queue.

This simulator is effectively creating a man-in-the-middle attack on the adver-
sary, by providing them with the wrong public key, allowing them to decrypt the
ciphertexts they see. On the other side, the simulator can receive messages on
behalf of the adversary, and then re-encrypt them to create the fake ciphertext
queue.

Having now proved the upper bound for all the corruption models in𝒞, we con-
clude that our claim holds.

■

96

5.2 Drawing a Random Value
The basic goal of this subsection is to develop a protocol for securely choosing a
common random value. This process should such that no party can bias the re-
sulting value. We will follow the common paradigm of “commit-reveal”, where
the parties first commit to their random values, then wait for all these commit-
ments to have been made, before finally opening the random values and mixing
them together. This ensures that no party can bias the result, since they have to
choose their contribution before learning any information about the result.

We start by defining the ideal protocol for drawing a random value. We’ll be
working over an additive group G, and assuming that we have parties num-
bered 1, . . . , 𝑛. The core functionality we use allows each party to set a random
value, and then have the functionality add them together. This is contained in
Game 5.6.

𝐹 [Add]

𝑥1, . . . , 𝑥𝑛 ← ⊥

(1)Add𝑖(𝑥):
𝑥𝑖 ← 𝑥
wait ∀𝑖. 𝑥𝑖 ≠ ⊥
return ∑

𝑖 𝑥𝑖

Leak():
if ∃𝑖. 𝑥𝑖 = ⊥:
return (waiting, {𝑖 | 𝑥𝑖 = ⊥})

return (done,
∑

𝑖 𝑥𝑖)

Game 5.6: Addition Functionality

This game works by first collecting a contribution from each party, and then
adding them together. At any point after all contributions have been gathered,
the adversary can also see their sum through the Leak function. Note that we
only allow a contribution to be provided once, as marked by the (1) in front of
the function. This will be the case for the random sampling as well.

Using this functionality, we create an ideal protocol for sampling a random value,
defined in Protocol 5.7

97

𝒫[IdealRand] is characterized by:
• 𝐹 := 1(Add),
• Leakage = {Leak},
• And 𝑛 players defined via the following system, for 𝑖 ∈ [𝑛]:

𝑃𝑖

(1)Rand𝑖():

𝑥
$←− G

return await Add𝑖 (𝑥)

Protocol 5.7: Ideal Random Protocol

The idea is that each party samples a random value, and then submits that to the
addition functionality. If at least one of the values was sampled randomly, then
the final result is also random. Technically, this is an endemic random func-
tionality, in the sense that malicious parties are allowed to choose their own
randomness. We also don’t embed the 𝐹 [Add] functionality into the protocol
itself, which makes the ideal protocol technically 𝒫[IdealRand] ◦ 𝐹 [Add]. We
do this to allow considering a slightly modified variant of the protocol, which
uses a version of the addition functionality leaking more information, defined in
Game 5.8.

𝐹 [Add′]

𝑥1, . . . , 𝑥𝑛 ← ⊥

(1)Add𝑖(𝑥):
𝑥𝑖 ← 𝑥
wait ∀𝑖. 𝑥𝑖 ≠ ⊥
return ∑

𝑖 𝑥𝑖

Leak():
if ∃𝑖. 𝑥𝑖 = ⊥:
return (waiting, {𝑖 | 𝑥𝑖 = ⊥})

return (done, [𝑥𝑖 | 𝑖 ∈ [𝑛]])

Game 5.8: Addition Functionality

The difference in 𝐹 [Add′] is simply that the entire list of contributions is leaked,
rather than just their sum. We introduce this functionality because it will be
simpler to show that our concrete protocol is simulated by this slightly stronger
functionality. Thankfully, the difference doesn’t matter in the end, because we
can simulate the stronger functionality from the weaker one.

Claim 5.2. Let 𝒞 be the corruption class where all up to 𝑛 − 1 parties are cor-

98

rupted. It then holds that:

𝒫[IdealRand] ◦ 𝐹 [Add′] 0
{𝒞 𝒫[IdealRand] ◦ 𝐹 [Add]

Proof: The crux of the proof is that we can simply invent random shares for the
honest parties, subject to the constraint that the sum of all shares is the same.

Now, onto the more formal proof. We assume, without loss of generality, that
1, . . . , ℎ are the indices of the honest parties, and ℎ + 1, . . . , 𝑚 the semi-honest
parties. Another convention we use is that 𝑗 is used as a subscript for semi-honest
parties, and 𝑘 for malicious parties.

The only difference between the instantiation of both protocols lies in Leak. Oth-
erwise, the behavior of all the functions is identical. Thus, we simply need to
write a simulator for that function. The basic idea is to intercept calls to the cor-
rupted parties to learn their contributions, and then simply invent some fake but
plausible contributions for the honest parties.

This gives us:

𝑆

faked← false
𝑥′1, . . . , 𝑥

′
𝑛 ← ⊥

(1)Add𝑘 (𝑥):
𝑥′𝑘 ← 𝑥

return Add𝑘 (𝑥)

Contribution 𝑗 ():

assert(call, 𝑥) ∈ log.Add 𝑗

return 𝑥

Leak():
out← super.Leak()
if out = (waiting, on):
return (waiting, on)

if faked = false:
faked← true
for 𝑗 ∈ ℎ + 1, . . . , 𝑚:
𝑥′𝑗 ← Contribution 𝑗 ()

𝑥′2, . . . , 𝑥
′
ℎ

$←− G
𝑥′1 ← out −∑

𝑖∈[2,...,𝑛] 𝑥𝑖
return (done, [𝑥′𝑖 | 𝑖 ∈ [𝑛]])
⊗

1(. . .)

The shares of themalicious parties are obtained by catching themwhen the call to
Add𝑘 is made, whereas for the semi-honest party we instead fetch them from the

99

log. Note that because the leakage is onlymade available once all the parties have
contributed, we’re guaranteed to have already seen the shares from the corrupted
parties by the time we fake the other shares.

It should be clear that:

Inst𝐶 (𝒫[IdealRand] ◦ 𝐹 [Add′]) = SimInst𝑆,𝐶 (𝒫[IdealRand] ◦ 𝐹 [Add])

concluding our proof.

■

The next task on our hands is to write down the concrete protocol for sampling
randomness via the commit-reveal paradigm. To do that, we first need to define
an appropriate commitment functionality, which we do in Game 5.9

𝐹 [Com]

𝑐1, . . . , 𝑐𝑛 ← ⊥
𝑜1, . . . , 𝑜𝑛 ← false

(1)Commit𝑖(𝑥):
𝑐𝑖 ← 𝑥

(1)Open𝑖():
assert 𝑐𝑖 ≠ ⊥
𝑜𝑖 ← true

View𝑖(𝑥):
if 𝑐𝑖 = ⊥:
return empty

if ¬𝑜𝑖:
return set

else:
return (open, 𝑐𝑖)

Game 5.9: Commitment Functionality

This functionality acts as a one shot commitment for each participant. Each
party can commit to a value, and then open it at a later point in time. At any
time, each participant can view the state of another participant’s commitment.
This view tells us what stage of the commitment the participant is at, along with
their committed value, once opened.

We can now define a protocol sampling randomness, thanks to this commitment
scheme, in Protocol 5.10.

100

𝒫[Rand] is characterized by:
• 𝐹 := 𝐹 [Com],
• Leakage = {View1, . . . ,View𝑛},
• And 𝑛 players defined via the following system, for 𝑖 ∈ [𝑛]:

𝑃𝑖

(1)Rand𝑖():

𝑥
$←− G

Commit𝑖 (𝑥)
wait ∀𝑖.View𝑖 () ≠ empty
Open𝑖 ()
wait ∀𝑖.View𝑖 () = (open, 𝑥𝑖)
return ∑

𝑖 𝑥𝑖

Protocol 5.10: Random Protocol

The idea is quite simple, everybody generates a random value, commits to it,
and then once everybody has committed, they open the value, and sum up all the
contributions. The result is, as we’ll prove, a random value that no participant
can bias.

Unfortunately, it’s not quite the case that𝒫[Rand] is simulated by𝒫[IdealRand].
The reason is a consequence of the timing properties of the protocols. Indeed, in
𝒫[IdealRand], it suffices to activate each participant once in order to learn the
result, whereas in 𝒫[Rand], two activations are needed, once to commit, and
another time to open.

Instead we introduce a separate protocol, making use of a “synchronization”
functionality, defined in Game 5.11.

𝐹 [Sync]

view done1, . . . , done𝑛 ← false

(1)Sync𝑖():
done𝑖 ← true
wait ∀𝑖. done𝑖 = true

Game 5.11: Synchronization Game

This functionality allows the parties to first “synchronize”, by waiting for each
party to contribute, before being able to continue.

101

The protocol using this functionality is then called 𝒬, and defined in Proto-
col 5.12

𝒬 is characterized by:
• 𝐹 = 𝐹 [Sync],
• Leakage := {done1, . . . , done𝑛},
• And 𝑛 players defined by the following system, for 𝑖 ∈ [𝑛]:

𝑃𝑖

(1)Rand𝑖():
out← await super.Rand𝑖 ()
await Sync𝑖 ()
return out

Protocol 5.12: Synchronized Random Protocol

The full protocol we consider is 𝒬 ◁ (𝒫[IdealRand] ◦ 𝐹 [Add]), which can per-
fectly simulate 𝒫[Rand], as we now prove.

Claim 5.3. Let𝒞 be the class of corruptions where up to 𝑛−1 parties are corrupt.
Then it holds that:

𝒫[Rand] 0
{𝒞 𝒬 ◁ (𝒫[IdealRand] ◦ 𝐹 [Add])

Proof: Thanks to the composition properties of protocols, it suffices to prove the
above claim using 𝐹 [Add′] instead, since we already proved that:

𝒫[IdealRand] ◦ 𝐹 [Add′] 0
{𝒞 𝒫[IdealRand] ◦ 𝐹 [Add]

As before, we let 1, . . . , ℎ be the indices of honest parties, ℎ+1, . . . , 𝑚 the indices
of semi-honest parties, and use 𝑖, 𝑗 , 𝑘 for denoting indices of honest, semi-honest,
and malicious parties, respectively. We start by unrolling Inst𝐶 (𝒫[Rand]), to
get:

102

Γ0

𝑥1, . . . , 𝑥𝑛, rush𝑚+1, . . . , rush𝑛 ← ⊥
o1, . . . , o𝑛 ← false
log 𝑗 ← NewLog()

(1)Rand𝑖():

𝑥𝑖
$←− G

wait ∀𝑖. View𝑖 ≠ empty
𝑜𝑖 ← true
wait ∀𝑖. View𝑖 = (open, 𝑥𝑖)
return ∑

𝑖 𝑥𝑖

View𝑖():
if 𝑥𝑖 = ⊥:
return empty

if ¬𝑜𝑖:
return set

else:
return (open, 𝑐𝑖)

(1)Rand 𝑗 ():
log 𝑗 .Rand 𝑗 .push(input)
𝑥𝑖

$←− G
log 𝑗 .Commit 𝑗 .push((call, 𝑥𝑖))
wait ∀𝑖. View𝑖 ≠ empty
log 𝑗 .Open 𝑗 .push(call)
𝑜𝑖 ← true
wait ∀𝑖. View𝑖 = (open, 𝑥𝑖)
return ∑

𝑖 𝑥𝑖

(1)Commit𝑘 (𝑥):
𝑥𝑘 ← 𝑥

(1)Open𝑘 ():
assert 𝑥𝑘 ≠ ⊥
𝑜𝑘 ← true

Here we’ve just inlined the main elements of the game. The key difference for
the semi-honest parties is that we’re able to see the randomness they used, since
they commit to it. For the malicious parties, they can commit to any value they
want, and can also choose when to open their values.

We now rewrite this game slightly, tomake the connection with what we’re trying
to simulate a bit clearer:

103

Γ1

𝑥1, . . . , 𝑥𝑛, rush𝑚+1, . . . , rush𝑛 ← ⊥
done1, . . . , done𝑛 ← false
log 𝑗 ← NewLog()

(1)Rand𝑖():

𝑥𝑖
$←− G

wait ∀𝑖. View𝑖 ≠ empty
done𝑖 ← true
wait ∀𝑖. View𝑖 = (open, 𝑥𝑖)
return ∑

𝑖 𝑥𝑖

View𝑖():
if Leak() = (waiting, 𝑠) ∧ 𝑖 ∈ 𝑠:
return empty

else if done𝑖:
if rush𝑖 ≠ ⊥:
return (open, rush𝑖)

assert (done, [𝑦𝑖]) = Leak()
return (open, 𝑦𝑖)

return set

log 𝑗 ():
log′𝑗 ← NewLog()
log′𝑗 .Rand 𝑗 ← log 𝑗 .Rand 𝑗

log′𝑗 .Commit 𝑗 ← log 𝑗 .Add 𝑗

log′𝑗 .Open 𝑗 ← log 𝑗 .Sync 𝑗
return log′𝑗

(1)Rand 𝑗 ():
log 𝑗 .Rand 𝑗 .push(input)
𝑥𝑖

$←− G
log 𝑗 .Add 𝑗 .push((call, 𝑥𝑖))
wait ∀𝑖. View𝑖 ≠ empty
log 𝑗 .Sync 𝑗 .push(call)
𝑜𝑖 ← true
wait ∀𝑖. View𝑖 = (open, 𝑥𝑖)
return ∑

𝑖 𝑥𝑖

(1)Commit𝑘 (𝑥):
rush𝑘 ← 𝑥
𝑥𝑘 ← 𝑥

(1)Open𝑘 ():
assert rush𝑘 ≠ ⊥
done𝑘 ← true

Leak():
if ∃𝑖. 𝑥𝑖 = ⊥:
return (waiting, {𝑖 | 𝑥𝑖 = ⊥})

return (done, [𝑥𝑖 | 𝑖 ∈ [𝑛]])

First of all, we’ve renamed several variables, like 𝑜𝑖 becoming done𝑖, which
has no effect on the game, of course. We’ve also introduced a secondary set of
variables rush𝑘 to hold the values the malicious parties are committing to. We
do this to stress the fact that the simulator will be able to see and capture these
values. We also modify the logging in the semi-honest parties to use different
names, reflecting what will happen in the eventual semi-honest party of 𝒬. This
requires introducing a log 𝑗 function which will produce a simulated log by re-
naming these entries.

Finally, the biggest change is in the View𝑖 functions. We’ve rewritten the logic to
be based on this Leak method we’ve introduced, which informs of us the status
of the contributions. This gives us enough information to simulate the views
accurately. For the honest parties, we know that they’ll only open their values
after everybody has already committed, so the assertion will always pass. This

104

may not be the case for malicious parties, whichmay “rush”, opening their values
before the other parties have finished committing. This is why it’s important to
keep track of their commitments separately, so that we can present them inside
the view, if necessary.

At this point, the next step is to realize that all of this logic can in fact work inside
of a simulator, written as:

𝑆

rush𝑚+1, . . . , rush𝑛 ← ⊥

View𝑖():
if Leak() = (waiting, 𝑠) ∧ 𝑖 ∈ 𝑠:
return empty

else if done𝑖:
if rush𝑖 ≠ ⊥:
return (open, rush𝑖)

assert (done, [𝑦𝑖]) = Leak()
return (open, 𝑦𝑖)

return set

(1)Commit𝑘 (𝑥):
rush𝑘 ← 𝑥

Add𝑘 (𝑥)

(1)Open𝑘 ():
assert rush𝑘 ≠ ⊥
Sync𝑘 ()

log 𝑗 ():

log′𝑗 ← NewLog()
log′𝑗 .Rand 𝑗 ← super.log 𝑗 .Rand 𝑗

log′𝑗 .Commit 𝑗 ← super.log 𝑗 .Add 𝑗

log′𝑗 .Open 𝑗 ← super.log 𝑗 .Sync 𝑗
return log′𝑗
⊗

1(. . .)

And this concludes our proof, having shown that:

Inst𝐶 (𝒫[Rand]) = SimInst𝑆,𝐶 (𝒬 ◁ (𝒫[IdealRand] ◦ 𝐹 [Add]))

■

6 Differences with UC Security
In this section, we outline a few differences between the framework we’ve de-
veloped, MPS, and that of UC security [Can00]. Despite these differences, we

105

think that the frameworks ultimately remain quite compatible, in that proofs
in one framework should translate well to proofs in the other. This process is
not, by any means, automatic, as is the case for other variants of UC, such as
[CCL15].

Foundations without Turing Machines

One major technical difference is that MPS doesn’t specify a concrete compu-
tational model. Rather than using interactive randomized Turing machines, as
most frameworks do, we instead just assume the existence of computable ran-
domized functions, and then build everything on top of that foundation.

We believe that this makes the foundations simpler to understand, since the com-
plicated details of Turing machines and various tapes are never mentioned, but
it also makes proofs closer to the actual formalism.

In principle, UC proofs would need to make reference to interactive Turing ma-
chines writing messages on each other’s tapes. In practice, a much higher level
language is used. The advantage of basing ourselves on state-separable proofs
is that we can give a formal justification for this kind of high-level language, by
providing precise semantics for the pseudo-code we use. Thus, we expect proofs
in the MPS framework to be writable in a style close to the formalism itself,
while also proving a high level of abstraction.

Semi-Honest Security without Randomness

Another technical difference is that our notion of semi-honest security does not
allow an adversary to see the randomness sampled by a given party. Instead,
they’re allowed to see all function calls and messages sent by the party. As ex-
plained before, the main reason for this difference is that we ultimately want two
protocols with equal parties to be consider equal protocols, under any corrup-
tion model, and being able to see the exact randomness being sampled is often
enough to distinguish otherwise equal parties.

In practice, we don’t expect this difference to matter, because meaningful ran-
domness should affect the output calls and behavior of the adversary, and so
the difference between these models are likely to come from more pathological
examples.

Hybrid Only

In the usual presentation of UC security, simulation happens between a protocol
in the hybrid world, where parties can potentially interact with an ideal function-
ality, and the ideal world, where the parties don’t communicate between each
other, instead interacting only with the ideal functionality.

106

In MPS, only the hybrid world exists. Protocols aren’t simulated by ideal func-
tionalities, instead, protocols are simulated by other protocols, and all protocols
may make use of ideal functionalities.

The advantage of this approach is that it allows decomposing a larger simula-
tion proof into multiple smaller proofs, which can then be stringed together via
transitivity. The larger the gap between the protocols being simulated, the more
complicated the simulator needs to be, and so this style of proof can be much
simpler.

Corruption Agnostic Ideal Functionalities

Another technical difference is that in MPS, ideal functionalities are not aware
of which parties are corrupted, whereas some UC functionalities make use of
this fact.

We don’t think this is a necessary feature of the framework itself, since it can
be modeled by having slightly more complicated protocols on top of an ideal
functionality. For example, one common use of this kind of “corruption aware”
functionality is to describe endemic functionalities, where malicious parties are
allowed to choose their own randomness. This can be written by having the
functionality alter its behavior based on which parties are corrupt, allowing them
to choose their own randomness.

In MPS, we can instead just have a small wrapping protocol around the function-
ality, where honest parties sample a random value before calling the functional-
ity. Malicious parties are then free to sample a biased value, deviating from the
protocol.

In general, one can always have the functionality behave differently for certain
inputs, and then restrict honest parties to never trigger this behavior, thus allow-
ing the functionality to behave differently for malicious parties.

The Lack of Adversaries

In the traditional presentations of UC, simulation is a statement of the form “for
all adversaries, there exists a simulator, such that for all environments...”. In
MPS, we eliminate the notion of adversary entirely, instead simply considering
the environment to be the adversary.

This is actually a possibility inUC itself. Subsequent versions of [Can00] include
an explicit proof that it suffices to prove security against the “dummy adversary”,
which simply does whatever the environment tells it to do. We can thus consider
MPS to implicitly use such a dummy adversary.

107

The Lack of Session IDs

Another big difference is that we do away with the use of “session IDs”, at least
explicitly. These are most often used to distinguish between multiple instances
of a protocol in a given execution. These can still be used in our case, but are
more implicit.

For example, multiple instances of a protocol would be written 𝒫 ⊗ 𝒫. Tech-
nically, this is disallowed, but we could fix this by renaming all of the functions
in one instance of the protocol, so that there’s no longer any conflict. If we use
this protocol, in practice it means that we have a way of distinguishing between
the messages belonging to once instance of the protocol from the other instance.
One way of accomplishing this would be assigning session ids, but these aren’t
a formal part of our framework.

An exploration of secure composition without session IDs was also conducted
for UC security and other models in [KT11].

“Timing Side-Channels”

One unfortunate strength of the MPS framework is that the adversary is able to
observe more timing properties of protocol execution. Indeed, they are able to
observe how many times a given function yields before returning a result, or
simply whether or not a function can return a result given the current state of
execution. This is a consequence of the more asynchronous nature of execution
we have for protocols.

This is arguably present in some variants of UC already, depending on the preci-
sion of the proofs. Indeed, if the adversary is able to stall or abort execution, then
this needs to be reflected in the functionality targeted by the simulation proof.
This is how the notion of “MPC with abort” arises.

In some cases though, it seems like the visible delays are an undesirable conse-
quence of simulation that is required to be, perhaps, too precise. We think that
further work could develop more relaxed notions of simulation, which can paper
over inessential differences like those of timing and delay.

Clearer Connection with Games

Finally, we believe that a major advantage of the MPS framework is that it pro-
vides a much simpler bridge between standalone security with games, and the
composable security of protocols. Ideal functionalities are simply games, and
we have theorems showing that we can use indistinguishability results for games
to produce simulation results for protocols. Furthermore, simulation arguments
ultimately boil down to an argument about games, and so this can motivate the

108

intricate games that one might find in the analysis of protocols such as messag-
ing.

7 Conclusion
In this work, we sought to develop a modular framework for analyzing the se-
curity of protocols. We did this by extending the standalone security formalism
of state-separable proofs [BDF+18]. The result is a framework for protocol se-
curity with similar modular properties to those of state-separable proofs, and
with a strong connection with that formalism, allowing for results in standalone
security to be used in showing the security of protocols.

While we believe our framework is already suitable for proving the security of
protocols, we expect shortcomings to be discovered as the framework sees more
use. The novelty of the framework also provides a disadvantage in that not many
proofs have been written in it, and many common UC idioms may not translate
directly either. We hope that this disadvantage can diminish over time as more
more work is conducted using this or similar frameworks.

References
[BDF+18] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok,

and Markulf Kohlweiss. State separation for code-based game-playing
proofs. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 222–249. Springer, Heidelberg, De-
cember 2018.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
https://eprint.iacr.org/2000/067.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of univer-
sally composable security for standard multiparty computation. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, vol-
ume 9216 of LNCS, pages 3–22. Springer, Heidelberg, August 2015.

[CD+15] Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation.
Cambridge University Press, 2015.

[HL10] Carmit Hazay and Yehuda Lindell. A note on the relation between the
definitions of security for semi-honest and malicious adversaries. Cryptol-
ogy ePrint Archive, Report 2010/551, 2010. https://eprint.iacr.org/
2010/551.

[HS15] Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability
framework. Journal of Cryptology, 28(3):423–508, July 2015.

109

https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2010/551
https://eprint.iacr.org/2010/551

[KT11] Ralf Küsters and Max Tuengerthal. Composition theorems without pre-
established session identifiers. In Yan Chen, George Danezis, and Vitaly
Shmatikov, editors, ACM CCS 2011, pages 41–50. ACM Press, October
2011.

[Mei22] Lúcás Críostóir Meier. State-separable proofs for the curious
cryptographer. https://cronokirby.com/posts/2022/05/
state-separable-proofs-for-the-curious-cryptographer/,
2022.

[Ros] Mike Rosulek. The joy of cryptography. https://joyofcryptography.
com.

110

https://cronokirby.com/posts/2022/05/state-separable-proofs-for-the-curious-cryptographer/
https://cronokirby.com/posts/2022/05/state-separable-proofs-for-the-curious-cryptographer/
https://joyofcryptography.com
https://joyofcryptography.com

A Additional Game Definitions
In this section, we include explicit definitions of several gameswe use throughout
the rest of this work. While we expect these notions to be familiar, we think the
precise details are worth spelling out here.

A.1 Encryption
A public key encryption scheme consists of types PK, SK,M,C, along with
probabilistic functions Enc : (PK,M) $←− C and Dec : (SK,C) → M. By
M(|𝑚 |) we denote the distribution of messages with the same length as 𝑚. We
require that M(|𝑚 |) is efficiently sampleable, and we require that we can sample
(SK,PK) via an algorithm Gen.

The encryption scheme must satisfy a correctness property:

∀(sk, pk) ← Gen(), 𝑚 ∈ M. 𝑃[Dec(sk,Enc(pk, 𝑚)) = 𝑚] = 1

Encrypting and then decrypting amessage should return that samemessage.

The security of an encryption scheme can be captured by the following game:

IND𝑏

(sk, pk) ← Gen()

Challenge(𝑚0):

𝑚1
$←−M(|𝑚 |)

return Enc(pk, 𝑚𝑏)

In essence, an adversary cannot distinguish between an encryption of a message
of their choice and that of a random message.

111

	Introduction
	Our Framework
	Overview

	State-Separable Proofs
	Some Notational Conventions
	Probabilistic Functions
	Defining Packages
	Indistinguishability and Reductions
	Some Properties of Equality
	Syntactical Conventions for Packages

	Systems
	Asynchronous Packages
	Defining Systems
	Composing Systems
	System Equality and Indistinguishability

	Protocols
	Defining Protocols and Composition
	Corruption
	Equality and Simulation
	Global Functionalities
	Hopping Ideal Functionalities

	Examples
	Constructing Private Channels
	Drawing a Random Value

	Differences with UC Security
	Conclusion
	Additional Game Definitions
	Encryption

