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Abstract. In this paper, we propose a rectangle-like method called
rotational-XOR differential rectangle attack to search for better distin-
guishers. It is a combination of the rotational-XOR cryptanalysis and
differential cryptanalysis in the rectangle-based way. In particular, we
put a rotational-XOR characteristic before a differential characteristic to
construct a rectangle structure. By choosing some appropriate rotational-
XOR and differential characteristics as well as considering multiple differ-
entials, some longer distinguishers that have the probability greater than
2−2n can be constructed effectively where n is the block size of a block ci-
pher. We apply this new method to some versions of Simon and Simeck
block ciphers. As a result, we obtain rotational-XOR differential rectan-
gle distinguishers up to 16, 16, 17, 16 and 21 rounds for Simon32/64,
Simon48/72, Simon48/96, Simeck32 and Simeck48, respectively. Our
distinguishers for Simon32/64 is longer than the best differential and
rotational-XOR distinguishers. As for Simon48/96, the distinguisher is
longer than the rotational-XOR distinguisher and as long as the best
differential distinguisher. Also, our distinguisher for Simeck32 is longer
than the best differential distinguisher (14 rounds) and has the full weak
key space (i.e., 264) whereas the 16-round rotational-XOR distinguisher
has a weak key class of 236. In addition, our distinguisher for Simeck48
has a better weak key class (272 weak keys) than the 21-round rotational-
XOR distinguisher (260 weak keys). To the best of our knowledge, this
is the first time to consider the combinational cryptanalysis based on
rotational-XOR and differential cryptanalysis using the rectangle struc-
ture.

Keywords: Rotational-XOR cryptanalysis · Differential cryptanalysis
· Rectangle · Simon · Simeck · Distinguisher

1 Introduction

The security of a symmetric-key cryptographic primitive is determined by eval-
uating its resistance to a list of known cryptanalysis. Thus, it is important to
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come up with some new attacks and extend the known ones which contribute
to the development of analysis and design of cryptography. In the past few
decades, a series of cryptanalysis methods have been proposed, such as differ-
ential cryptanalysis [6], linear cryptanalysis [22], integral cryptanalysis [12], ro-
tational cryptanalysis [10] and some derivative methods like differential-linear
cryptanalysis [16], rectangle cryptanalysis [5] and rotational-XOR cryptanaly-
sis [1], etc. The derivants of some conventional cryptanalysis methods have been
proved to be more effective in some circumstances. For example, Liu et al. [18]
utilized the differential-linear cryptanalysis, which is a combination of differen-
tial and linear cryptanalysis, to achieve the best key-recovery attack on the AES
finalist Serpent [4]. Lu et al. [20] investigated the security of Simon-like ciphers
against the rotational-XOR attack, which is a combination of differential and ro-
tational cryptanalysis, and obtained the longest distinguishers for Simeck [28].
In addition, rectangle cryptanalyis is also an adaption of differential cryptanal-
ysis and aims to construct longer distinguishers by exploiting two shorter differ-
ential characteristics. These methods have been more and more widely applied
to block ciphers, hash functions, etc.

In 2013, the National Security Agency (NSA) designed two families of
lightweight block ciphers, Simon and Speck [3]. In order to obtain a more com-
pact and efficient implementation in hardware, Yang et al. [28] combined the
good components of Simon and Speck ciphers, and proposed a new lightweight
block cipher named Simeck at CHES 2015. Both Simeck and Simon ciphers
are based on Feistel structure and their round functions are similarly designed by
bitwise AND, rotation and XOR (AND-RX) operations but using different ro-
tation parameters. Therefore, they are collectively called Simon-like ciphers. In
the past decade, Simon-like ciphers have attracted a lot of attention from cryp-
tographers, and various cryptanalyses have been carried out including but not
limited to [7,13,14,27,19,26,24,20,15,17,21]. Among them, Rohit and Gong [24]
proposed a correlated sequence attack and presented the best key-recovery at-
tacks on round-reduced Simon32 and Simeck32. At ASIACRYPT 2021, Leurent
et al. [17] investigated the clustering effect on the differential and linear charac-
teristics of Simon-like ciphers. By considering the lowest w active bits of each
branch, it is practical to generate a tighter bound on the probability of the
differential or linear approximation. Therefore they explored some better differ-
ential and linear distinguishers and presented the best key-recovery attacks for
Simeck48, Simeck64, Simon96 and Simon128.

Besides, under the related-key scenario, Lu et al. [20] presented the best dis-
tinguishers for some versions of Simeck by rotational-XOR cryptanalysis. Nev-
ertheless, Simeck has the nonlinear key schedule, which brings a probability to
the rotational-XOR transition. In other words, those distinguishers in [20] only
exist in the corresponding weak key spaces. Later in [15], Koo et al. proposed the
rotational-XOR rectangle (abbreviated as RXR) cryptanalysis, which replaces
the differential characteristics by rotational-XOR characteristics in conventional
rectangle attack, and then obtained several longer related-key distinguishers for
Simon. For instance, they constructed a 16-round RXR distinguisher by exploit-
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ing two 8-round rotational-XOR characteristics and utilized this distinguisher to
present a 22-round key-recovery attack for Simon32/64. However, the probabil-
ity of RXR distinguisher might deviate from the theoretical estimations due to
some reasons like dependency, key injection, etc. Thus it is significant to provide
the experimental verification. But the distinguishers proposed in [15] lack such a
verification. In addition, RXR method utilizes two rotational-XOR characteris-
tics, so it is unfriendly to the ciphers with nonlinear key schedules since the final
distinguishers have a quite low key probability, which means the distinguishers
can only survive in a very small weak key space. It is natural to ask whether
there is an alternative approach to utilize rotational-XOR characteristics in the
rectangle structure such that the derived distinguishers not only can be verified
experimentally but also have a larger, or even full weak key space. This ques-
tion motivates us to study what will happen if we consider the rotational-XOR
and differential characteristics respectively as the upper and lower parts in a
rectangle structure.

1.1 Our Contributions

Inspired by the rotational-XOR rectangle cryptanalysis, we propose a novel
method in this paper, called rotational-XOR differential rectangle (RXDR)
cryptanalysis, to construct longer distinguishers for block ciphers. It is an adap-
tion of the rotational-XOR and differential cryptanalysis methods, which is ap-
plied in the related-key attacking scenario. To be more specific, we split a cipher
E into two parts as E = E1 ◦ E0 and then search rotational-XOR and differ-
ential characteristics for E0 and E1, respectively. Naturally, linking them in a
rectangle-based way can construct a distinguisher. This procedure is similar to
the construction of classical rectangle distinguisher, but the distinction is that
we replace the differential characteristic by a rotational-XOR characteristic in
the upper part (i.e., E0) of the distinguisher. For the sake of universal under-
standing, we next call E0 the rotational-XOR part and E1 the differential part
in a rectangle structure. In our rectangle structure, we can ensure that the dif-
ference on keys will be eliminated in the beginning of the differential part, so
we only need to consider the single-key differential transition with E1. Under
the random and independent assumptions, the construction and theory of the
RXDR cryptanalysis are fully analyzed.

As an illustration, we apply the RXDR method to Simon-like ciphers. First,
we discuss the rotational-invariant property on differential characteristics, based
on which it becomes easier to evaluate the probability of the differential part.
Thus we next exploit the existing best rotational-XOR and differential char-
acteristics to straightforwardly build RXDR characteristics. This is a straight-
forward and simple way but the obtained RXDR distinguishers are not very
long. Apparently, if we consider the differential clustering effect and multi-
ple differentials in the differential part of rectangle structure, better distin-
guishers can be explored. Based on this idea, we give an improved evaluation
on the probability of RXDR distinguishers by exploiting differential cluster-
ing effect and multiple differentials. Moreover, for a given output difference, we
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propose an algorithm based on the method in [17] to calculate the probabil-
ity of the differential part of rectangle structure. As a consequence, we found
RXDR distinguishers covering 16, 16, 17, 16 and 21 rounds with probabilities of
2−63.98, 2−89.78, 2−89.78, 2−63.76 and 2−94.52 for Simon32/64, Simon48/72, Si-
mon48/96, Simeck32 and Simeck48, respectively. These concrete RXDR dis-
tinguishers are listed in Section 4. Meanwhile, we verified the distinguishers
of Simon32/64 and Simeck32 experimentally. The source code is available at
https://github.com/chensivvei/simon-like_RXDR_cryptanalysis.git.

We list our main results and compare with some published works including
rotational-XOR, differential and RXR distinguishers in Table 1. It is worth not-
ing that our distinguisher for Simon32/64 is longer than the differential [19] and
rotational-XOR [21] distinguishers. Our RXDR distinguisher for Simon48/72
cannot reach the length of the best differential distinguisher [13] but is longer
than the longest rotational-XOR distinguisher [21]. As for Simon48/96, the dis-
tinguisher is longer than rotational-XOR [21] distinguisher and is as long as
differential distinguisher [13]. It seems that our results cannot reach or surpass
the RXR disinguishers [15]. But whether those RXR distinguishers are valid or
not needs to be verified experimentally, which was not discussed in [15]. There-
fore, our results are indeed more convincing than [15]. For Simeck32, our RXDR
distinguisher is longer than the differential distinguisher [9]. Also, it has a full
weak key space i.e., 264 weak keys whereas the 16-round rotational-XOR dis-
tinguisher presented by Lu et al. [20] has the weak key space of size 236. As
for Simeck48, we cannot find longer RXDR distinguisher than the differential
distinguisher [17] or the rotational-XOR distinguisher [20], but our 21-round
distinguisher has a better weak key class (272 weak keys) than the 21-round
rotational-XOR distinguisher (260 weak keys) presented in [20].

1.2 Organization of This Paper

In Section 2, we give a brief description on Simon-like ciphers and revisit the
rotational-XOR and classical rectangle cryptanalysis. In Section 3, we will intro-
duce the basic idea of RXDR cryptanalysis and give an argument on the con-
struction and probability of RXDR characteristics. Later we will apply RXDR
method to construct disinguishers for some versions of Simon and Simeck ci-
phers in Section 4. Finally, we conclude our paper and give a discussion on our
results in Section 5.

2 Preliminaries

We first give some notations throughout this paper in Table 2.

2.1 Description of Simon-like Ciphers

Simon [3] is a family of lightweight block ciphers published by the NSA in 2013.
A member of the family is denoted by Simon2n/mn, where the block size is 2n

https://github.com/chensivvei/simon-like_RXDR_cryptanalysis.git
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Table 1. Summary on our results (RK = Related-key, SK = Single-key).

Cipher Round Method Scenario Weak key⋆ Ref.

Simon32/64

13 Rotational-XOR RK Full [21]
14 Differential SK Full [19]
16† RXR RK Full [15]
16 RXDR RK Full Sect. 4.3

Simon48/72

13 Rotational-XOR RK Full [21]
16† RXR RK Full [15]
16 RXDR RK Full Sect. 4.3
17 Differential SK Full [13]

Simon48/96

15 Rotational-XOR RK Full [21]
17 Differential SK Full [13]
17 RXDR RK Full Sect. 4.3
18† RXR RK Full [15]

Simeck32

14 Differential SK Full [9]
16 Rotational-XOR RK 236 [21]
16 RXDR RK Full Sect. 4.3
20 Rotational-XOR RK 230 [21]

Simeck48

21 Differential SK Full [9]
21 Rotational-XOR RK 260 [21]
21 RXDR RK 272 Sect. 4.3
22‡ Differential SK Full [17]
27 Rotational-XOR RK 246 [21]

⋆ If the distinguisher is valid in a key, then we say this key is a weak key. The word
"Full" means the weak key space is the full key space, i.e., there are 2n weak keys
if the key is n bits.

† These RXR distinguishers of Simon ciphers had not been verified in [15] whether
they are valid or not, even for the 32-bit block version.

‡ In [17], the authors did not give any details on this 22-round differential and only
mentioned it in the summary table (Table 7 in [17]) that the 30-round key-recovery
attacks could be built using this distinguisher.

for n ∈ {16, 24, 32, 48, 64}, and the key size is mn for m ∈ {2, 3, 4}. Simon adopts
a quite simple round function which includes three bitwise operations: AND(∧),
XOR(⊕) and cyclic rotation by λ bits (Sλ). The round function is defined as

f(x) = (S8(x) ∧ S1(x))⊕ S2(x),

where x ∈ Fn
2 denotes the left branch of the state.

Simon-like ciphers have the same round function as Simon, but the cyclic
rotation parameters are different. For arbitrary rotation offsets (a, b, c), the def-
inition of round function is

f(a,b,c)(x) = (Sa(x) ∧ Sb(x))⊕ Sc(x).
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Table 2. Some notations of this paper.

Notation Description

F2 A finite field only contains two elements, i.e. {0, 1}
Fn
2 An n-dimensional vectorial space defined over F2

∨ Bitwise OR
∧ Bitwise AND
⊕ Bitwise XOR

x = (xn−1, . . . , x1, x0) Binary vector of n bits where xi ∈ F2

x ≪ λ, Sλ(x) Circular left shift of x by λ bits
x ≫ λ, S−λ(x) Circular right shift of x by λ bits

←−x Circular left shift of x by 1 bit
(I ⊕ Sλ)(x) x⊕ Sλ(x)

x Bitwise negation
wt(x) Hamming weight of x
0n, 1n The vectors of Fn

2 with all 0s and all 1s
x||y Concatenation of x and y (x, y ∈ Fn

2 )

In 2015, Yang et al. [28] proposed a family of lightweight block ciphers Simeck.
They chose the different rotation offsets in round function, and reuse the round
function as its key schedule which leads to better implementation in hare-
ware than Simon. Simeck has three variants: Simeck32/64, Simeck48/96 and
Simeck64/128. We represent various versions of Simeck by Simeck2n for
n ∈ {16, 24, 32}. The rotation offsets for all Simeck versions are (5,0,1). The
round function of Simon-like ciphers is depicted in Figure 1.

xi yi

Sa

Sb

Sc

ki

xi+1 yi+1

Fig. 1. Round function of Simon-like ciphers.

Simon utilizes a linear key schedule to generate round keys. Let K =
(km−1, ..., k1, k0) be a master key and T be the full rounds for Simon2n/mn.
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The i-round key ki is generated by

ki+m =


ci ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, if m = 2

ci ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, if m = 3

ci ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), if m = 4

where ci ∈ {0xfffc, 0xfffd} and 0 ≤ i < T −m. The key schedule of Simeck
reuses its round function. Let K = (t2, t1, t0, k0) be the master key of Simeck2n.
The master key is loaded in the key registers and the round key is updated by{

ki+1 = ti

ti+3 = ki ⊕ f(5,0,1)(t
i)⊕ ci

where ci ∈ {0xfffc, 0xfffd}. The key schedules of Simon and Simeck are
shown in Figure 2.

ki+3 ki+2 ki+1 ki

S−1

S−3ci

(a) One round key schedule of Simon with m = 4

ti ki

S5

S0

S1

ti+1ti+2

ci

(b) One round key schedule of Simeck

Fig. 2. The key schedules of Simon and Simeck.

2.2 Rotational-XOR Cryptanalysis

Rotational cryptanalysis [10,11] is a common attack studying the propagation of
rotational pairs. This attack will lose efficacy in the presence of constants since
XORing with a constant is not rotational-invariant. Ashur and Liu [1] solved this
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problem by considering the propagation of rotation and difference for Addition-
RX ciphers, which is the so-called rotational-XOR cryptanalysis. Then, Lu et
al. [20] extended rotational-XOR cryptanalysis to AND-RX ciphers, especially
for the Simon-like ciphers.

An RX-pair is defined as a rotational pair with rotational offset λ under the
XOR-difference α as (x, (x ≪ λ)⊕ α).

Definition 1 (RX-difference [20]). The RX-difference of x and x′ = (x ≪
λ)⊕ α is denoted by

∆λ(x, x
′) = (x ≪ λ)⊕ x′ = α,

where α ∈ Fn
2 is a constant and λ is a rotational offset with 0 < λ < n.

The propagation of an RX-difference through linear operations of AND-RX ci-
phers follows three rules [20].

– XOR. The XOR of two input RX-pairs (x, (x ≪ λ) ⊕ α1) and (y, (y ≪
λ)⊕ α2) is also an RX-pair (x⊕ y, ((x⊕ y) ≪ λ)⊕ α1 ⊕ α2).

– Cyclic rotation by λ′ bits. The cyclic rotation λ′ bits of RX-pair (x, (x ≪
λ)⊕ α) is also an RX-pair (x ≪ λ′, ((x ≪ λ)⊕ α) ≪ λ′)

– XOR with a constant c. The XOR with a constant c of RX-pair (x, (x ≪
λ) ⊕ α) is also an RX-pair (x ⊕ c, (x ≪ λ) ⊕ α ⊕ c), the corresponding
RX-difference is presented by ∆λ = c⊕ (c ≪ λ).

From the above rules we know that an RX-difference after performing linear
operations is a new RX-difference with a probability of 1. As for the nonlinear
operation AND, the RX-difference propagation is given by following proposition:

Proposition 1 ([20]). For f(x) = Sa(x) ∧ Sb(x) where gcd(n, a− b) = 1, n is
even, a > b and x = (xn−1, ..., x1, x0) ∈ Fn

2 , the probability distribution that α
goes to β through f is

Pr(α
f−→ β) =


2−n+1 if α = 1n and wt(β) ≡ 0 mod 2,

2−w if α ̸= 1n and β ∧ (Sa(α) ∨ Sb(α)) = 0n and
(β ⊕ Sa−b(β)) ∧ (Sa(α) ∧ S2a−b(α) ∧ Sb(α)) = 0n,

0 otherwise,

where w = wt((Sa(α) ∨ Sb(α)⊕ (Sa(α) ∧ S2a−b(α) ∧ Sb(α))).

2.3 Rectangle Cryptanalysis

The rectangle attack [5] is a differential-based attack that uses two short differ-
ential characteristics instead of one long differential characteristic. This attack
is originally based on boomerang attacks [25], which is an adaptive chosen plain-
text and ciphertext attack. The rectangle attack has a similar structure to the
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boomerang attack, but it is a chosen plaintext attack by a slight change of
boomerang. This technique is very useful when we have good short differential
characteristics but bad long ones.

Let a cipher E : {0, 1}n × {0, 1}k → {0, 1}n consist of two independent sub-
encryptions E0 and E1 as E = E1 ◦ E0. Assume that we have a differential
characteristic α → β with probability p for E0 and a differential characteristic
γ → δ with probability q for E1. For a given plaintext tuple (P1, P2, P3, P4)
where P1 is independent to P3, the intermediate states encrypted by E0 and the
ciphertexts encrypted by E are denoted by (P ′

1, P
′
2, P

′
3, P

′
4) and (C1, C2, C3, C4).

The specified attack is to construct a plaintext quartet (P1, P2, P3, P4) that sat-
isfies the conditions that P1 ⊕ P2 = P3 ⊕ P4 = α, P ′

1 ⊕ P ′
2 = P ′

3 ⊕ P ′
4 = β and

P ′
1 ⊕ P ′

3 = γ with probability p2 · 2−n. Under these conditions, it is easy to con-
clude P ′

2⊕P ′
4 = γ. When encrypting (P ′

1, P
′
2, P

′
3, P

′
4) by E1, the difference γ goes

to δ with probability q. Then C1 ⊕C3 = δ and C2 ⊕C4 = δ hold with probabil-
ity q2. We call a quartet (P1, P2, P3, P4) whose ciphertexts meet the condition
C1 ⊕ C3 = δ and C2 ⊕ C4 = δ a right quartet, and the probability of a quartet
being right is p2 · q2 · 2−n.

Fig. 3. Right quartet for rectangle attack.

If E is a random permutation, then the probability of having a specific
difference in the output is 2−2n for a random tuple (P1, P2, P3, P4). When
p2 · q2 · 2−n > 2−2n, namely, p · q > 2−n/2, we can obtain a valid rectangle
distinguisher.

3 Rotational-XOR Differential Rectangle Cryptanalysis

In this section, we introduce the rotational-XOR differential rectangle (RXDR)
cryptanalysis, which is composed of rotational-XOR, differential and rectangle
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cryptanalysis. For a given block cipher E : {0, 1}n × {0, 1}k → {0, 1}n, we split
it into two independent parts as E = E1 ◦ E0. The classical rectangle crypt-
analysis considers two short differential characteristics with higher probability
covering E0 and E1. The basic idea of RXDR is similar to the classical rectangle
cryptanalyis, but we consider the rotational-XOR and differential characteristics
respectively for the upper and lower parts in our RXDR structure (see Figure 4).
In other words, E1 still utilizes a traditional differential characteristic but E0

adopts a rotational-XOR characteristic with high probability and large weak key
space.

Because rotational-XOR cryptanalysis is a kind of related-key attack, RX-
difference propagation also exists in the key schedule and will cause probability
when the key schedule is nonlinear. Assuming that we have a rotational-XOR
characteristic α

E0−−→ β with a probability of p, and the corresponding rotational-
XOR characteristic w.r.t. the key is ∆I

E0−−→ ∆O, which has a probability of pk.
Note that ∆I and ∆O are not necessarily related to α and β. In addition, we have
a differential characteristic γ

E1−−→ δ with probability q for the encryption E1. For
the given plaintext tuple (P1, P2, P3, P4) and master key tuple (K1,K2,K3,K4),
we denote the tuples (P ′

1, P
′
2, P

′
3, P

′
4) and (C1, C2, C3, C4) the intermediate states

and the ciphertexts encrypted by E0 and E, respectively, i.e. P ′
i = E0(Pi,Ki),

Ci = E1(P
′
i ,Ki) for i ∈ {1, 2, 3, 4}. In addition, we denote K ′

i the round key
XORed with P ′

i , which is derived from Ki by the key schedule.

The rotational-XOR part. Let us first focus on the propagation of RX-
difference through the encryption E0. We suppose (P1, P2) and (P3, P4) are RX-
pairs with a rotation offset λ and an RX-difference α. Namely, (P1 ≪ λ)⊕P2 =
α, (P3 ≪ λ)⊕P4 = α. Assume that there exists a rotational-XOR characteristic
α

E0−−→ β with probability p. Under the condition that (K1,K2,K3,K4) and
(K ′

1,K
′
2,K

′
3,K

′
4) respectively satisfy the key RX-difference ∆I and ∆O, i.e.

(K1 ≪ λ)⊕K2 = ∆I , (K3 ≪ λ)⊕K4 = ∆I

and
(K ′

1 ≪ λ)⊕K ′
2 = ∆O, (K

′
3 ≪ λ)⊕K ′

4 = ∆O,

thus the probability that the RX-difference α can propagate to β on the both
sides by E0 is p2. That is to say, the probability that (P ′

1 ≪ λ) ⊕ P ′
2 = β and

(P ′
3 ≪ λ)⊕ P ′

4 = β hold simultaneously is p2 under the weak key space of size
22k · p2k.

The differential part. Now we consider the differential propagation through
the encryption E1. Denote γ′ and γ′′ the input differences of E1, i.e. γ′ = (P ′

1 ⊕
K ′

1)⊕(P ′
3⊕K ′

3) and γ′′ = (P ′
2⊕K ′

2)⊕(P ′
4⊕K ′

4). Before giving further illustrations,
we need to introduce the following proposition.

Proposition 2. If (P ′
1, P

′
2) and (P ′

3, P
′
4) are RX pairs with the rotation offset

λ and the RX-difference β, meanwhile (K ′
1,K

′
2) and (K ′

3,K
′
4) satisfy the corre-

sponding key RX-difference ∆O, then we have γ′′ = γ′ ≪ λ.



Rotational-XOR Differential Rectangle Cryptanalysis on Simon-like Ciphers 11

Proof. From the structure, we know γ′′ = (P ′
2 ⊕ P ′

4) ⊕ (K ′
2 ⊕ K ′

4). Due to the
fact that (P ′

1, P
′
2) and (P ′

3, P
′
4) are RX pairs, and (K ′

1,K
′
2) and (K ′

3,K
′
4) satisfy

the corresponding key RX-difference, thus we have

(P ′
1 ≪ λ)⊕ P ′

2 = β, (P ′
3 ≪ λ)⊕ P ′

4 = β

and
(K ′

1 ≪ λ)⊕K ′
2 = ∆O, (K

′
3 ≪ λ)⊕K ′

4 = ∆O.

The above relations imply that

P ′
2 ⊕ P ′

4 = ((P ′
1 ≪ λ)⊕ β)⊕ ((P ′

3 ≪ λ)⊕ β) = (P ′
1 ⊕ P ′

3) ≪ λ

and

K ′
2 ⊕K ′

4 = ((K ′
1 ≪ λ)⊕∆O)⊕ ((K ′

3 ≪ λ)⊕∆O) = (K ′
1 ⊕K ′

3) ≪ λ.

Therefore, γ′′ can be represented as

γ′′ = ((P ′
1 ⊕ P ′

3) ≪ λ)⊕ ((K ′
1 ⊕K ′

3) ≪ λ)

= ((P ′
1 ⊕ P ′

3)⊕ (K ′
1 ⊕K ′

3)) ≪ λ

= γ′ ≪ λ.

⊓⊔

If (P ′
1, P

′
2, P

′
3, P

′
4) and (K ′

1,K
′
2,K

′
3,K

′
4) satisfy the output pattern of the afore-

mentioned rotational-XOR characteristic, Proposition 2 indicates that the input
differences γ′ and γ′′ of E1 are equivalent under the rotation. Note that γ′ and
γ′′ are related to the round keys. In other words, we have to study the difference
not only on the data but also on the round key, which will cause some trouble
constructing a good RXDR distinguisher especially for the nonlinear key sched-
ules. In order to eliminate the influence of the round key, we let K3 = K1 and
K4 = K2. In this case, K ′

3 = K ′
1 and K ′

4 = K ′
2 hold naturally, thus γ′ and

γ′′ become the single-key differences and the number of weak keys can be esti-
mated as 2k · pk. In this way, we only need to study the single-key differential
of E1. What we expect is that γ′ or γ′′ is equal to the predetermined γ, which
can propagate to δ through E1 with a high probability of q. Without loss of
generality, we devote our attention to γ′. Since P1 and P3 can be chosen ran-
domly and independently, the corresponding P ′

1 and P ′
3 also stay independent

from each other and γ′ = P ′
1 ⊕ P ′

3 = γ will hold with probability 2−n under
the assumption of randomness and independency. Besides, Proposition 2 tells
us γ′′ = γ′ ≪ λ = γ ≪ λ. Hence, we can use the state-of-the-art method to
search an optimal differential characteristic (γ ≪ λ)

E1−−→ δ∗ with probability q∗.
In this case, the differences on ciphertext pairs (C1, C3) and (C2, C4) are equal
to δ and δ∗ with probability 2−n · q · q∗.
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The RXDR characteristic. As a consequence, if the chosen plaintext tu-
ple (P1, P2, P3, P4) and the master key tuple (K1,K2,K3,K4) satisfy the input
patterns of the rotational-XOR characteristic α

E0−−→ β and ∆I
E0−−→ ∆O, i.e.,

(Pi ≪ λ)⊕ Pi+1 = α, (Ki ≪ λ)⊕Ki+1 = ∆I , i = 1, 3

and K3 = K1, K4 = K2, then the probability that the corresponding ciphertexts
satisfy C1 ⊕ C3 = δ and C2 ⊕ C4 = δ∗ is

Pr = p2 · 2−n · q · q∗ (1)

under the weak key space of 2k · pk. Naturally, if the above probability is larger
than 2−2n, i.e. p2 ·q ·q∗ > 2−n, we can utilize the aforementioned rotational-XOR
and differential characteristics to form a right quartet. We call this quartet an
RXDR characteristic as depicted in Figure 4.

Fig. 4. RXDR characteristic.

Equation (1) gives us two directions to construct RXDR characteristics with
longer rounds or higher probability. The first one is to find better rotational-XOR
characteristics to improve the value of p2. Another one is to find a difference γ
such that q · q∗ is the best, where q (q∗) is the optimal probability that the
difference γ (γ ≪ λ) goes through E1.

4 RXDR Distinguishers of Simon-like Ciphers
In this section, we will construct RXDR distinguishers for Simon-like ciphers.
We first introduce the rotational-invariant property on differential characteris-
tics of Simon-like ciphers. Then we find some RXDR characteristics by searching
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optimal rotational-XOR characteristics and using the existing optimal differen-
tial characteristics. Moreover, we exploit the differential clustering effect of Si-
mon-like ciphers as well as multiple differentials to successfully extend RXDR
distinguishers.

4.1 The Rotational-invariant Property on Differential
Characteristics

Note that the round function of a Simon-like cipher is composed of bitwise AND,
XOR and rotation operations. Thus, it is of great significance to study the prop-
agation of a rotated difference through the round function and the encryption
E1. We present the relationship between the propagations of a difference and its
rotated difference for Simon-like ciphers as the following proposition.

Proposition 3. For Simon-like ciphers, let f denote the core function applied
to the left branch. If µ f−→ ν is a non-trivial differential characteristic with prob-
ability q, then ←−µ f−→←−ν is also a non-trivial differential characteristic with prob-
ability q.

Before proving this conclusion, we first give Kölbl et al.’s theory as follows.

Theorem 1 ([13]). Let f(x) = Sa(x)∧Sb(x)⊕Sc(x), where gcd(n, a− b) = 1,
n is even, and a > b. Let µ and ν be the input and output difference of f(x). Let

varibits = Sa(µ) ∨ Sb(µ)

and
doublebits = Sb(µ) ∧ Sa(µ) ∧ S2a−b(µ)

and
η = ν ⊕ Sc(µ).

We have that the probability that difference µ goes to difference ν is

Pr(µ
f−→ ν) =


2−n+1 if µ = 1n and wt(η) ≡ 0 mod 2,

2−wt(varibits⊕doublebits) if µ ̸= 1n and η ∧ (varibits) = 0n

and (η ⊕ Sa−b(η)) ∧ doublebits = 0n,

0 otherwise.

We reuse some notations defined in Theorem 1 and now proceed to prove Propo-
sition 3.

Proof. We assume that Pr(µ f−→ ν) = q and now need to prove Pr(←−µ f−→←−ν ) = q.
Because µ

f−→ ν is non-trivial, we only need to consider the two former cases in
Theorem 1 as follows:
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– Assuming that µ = 1n and wt(ν ⊕ Sc(µ)) ≡ 0 mod 2, then we have q =
2−n+1. It is obvious that←−µ = 1n holds due to µ = 1n. The Hamming weight
of a vector will not be changed when it is rotated, thus

wt(←−ν ⊕ Sc(←−µ )) = wt(
←−−−−−−
ν ⊕ Sc(µ)) = wt(ν ⊕ Sc(µ)) ≡ 0 mod 2,

which implies that Pr(←−µ f−→←−ν ) = 2−n+1 = q.
– Assuming that µ ̸= 1n and η ∧ (varibits) = 0n and (η ⊕ Sa−b(η)) ∧

doublebits = 0n, then we have q = 2−wt(varibits⊕doublebits). In this case,
←−µ ̸= 1n holds due to µ ̸= 1n. Note that η, varibits and doublebits are
calculated by a series of bitwise rotation, AND, OR and NOT operations
on µ and ν, thus if η ∧ (varibits) and (η ⊕ Sa−b(η)) ∧ doublebits both are
equal to 0n then any rotation on µ and ν will not change the values of
η∧(varibits) and (η⊕Sa−b(η))∧doublebits. Moreover, the Hamming weight
of varibits⊕ doublebits is also unchanged. Therefore, Pr(←−µ f−→←−ν ) = q.

On summary, Pr(←−µ f−→←−ν ) = Pr(µ
f−→ ν) = q. ⊓⊔

Based on Proposition 3, the following conclusion can be easily deduced.
Proposition 4. Let E denote the one-round encryption of a Simon-like cipher
and E i(i > 0) denote i-round iterative encryption. If (γL, γR)

Er

−→ (δL, δR) is
an r-round differential characteristic with a probability of q where γL and γR
respectively denote the input differences on the left and right branches, then there
must exist an r-round differential characteristic (←−γL,←−γL)

Er

−→ (
←−
δL,
←−
δR) with the

probability q.

Proof. Let (δ0L, δ0R)
E−→ (δ1L, δ

1
R)

E−→ · · · E−→ (δrL, δ
r
R) be one of the differential prop-

agation trails of (γL, γR)
Er

−→ (δL, δR), where (γL, γR) = (δ0L, δ
0
R) and (δL, δR) =

(δrL, δ
r
R). Assuming that the ith round differential propagation (δi−1

L , δi−1
R )

E−→
(δiL, δ

i
R) holds with a probability of qi for i ∈ {1, 2, ..., r}, thus q =

∏r
i=1 qi.

Moreover, we can deduce from Proposition 3 that (
←−−
δi−1
L ,
←−−
δi−1
R )

E−→ (
←−
δiR,
←−
δiR) also

holds with the probability qi. Therefore, we can concatenate the r rotated dif-
ferential propagations into a differential characteristic as (

←−
δ0L,
←−
δ0R)

E−→ (
←−
δ1L,
←−
δ1R)

E−→
· · · E−→ (

←−
δrL,
←−
δrR) with a probability of

∏r
i=1 qi. Namely, (←−γL,←−γL)

Er

−→ (
←−
δL,
←−
δR) is an

r-round differential characteristic with the probability q. ⊓⊔

The above proposition illustrates the rotational-invariant property on differential
characteristics of Simon-like ciphers. This will facilitate the construction of the
differential part in our RXDR structure.

4.2 RXDR Characteristics of Simon-like ciphers

As we discussed in Section 3, we first need to prepare a good rotational-XOR
characteristic for E0. Some previous works [1,20,21] indicate that the rotational-
XOR characteristic is optimal when the rotation offset of an RX-difference is
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fixed to 1 (i.e., λ = 1). Thus we consider λ = 1 by default in the following content.
Additionally, if we find an optimal differential characteristic (γL, γR)→ (δL, δR)
for E1 with probability q, then according to Proposition 4, the differential charac-
teristic (←−γL,←−γR)→ (

←−
δL,
←−
δR) is indeed optimal and the corresponding probability

is equal to q. As a result, the RXDR characteristic has a probability of

Pr = p2 · 2−n · q2 (2)

due to Equation (1), where p is the probability of the optimal rotational-XOR
characteristic of E0.

According to the above analysis, we can simply construct some RXDR char-
acteristics using the rotational-XOR characteristics in [21] and the optimal dif-
ferential characteristics in [13,14,19].

RXDR characteristics of Simon32 and Simon48. In order to construct
RXDR characteristics, we first need to prepare some good rotational-XOR and
differential characteristics. The rotational-XOR characteristics for Simon are
given in [21]. We list them in the top sub-table of Table 3. Note that the key
schedules of Simon family are linear, thus the RX-difference through key sched-
ules will not bring probability. That is to say, the key probability is always equal
to 1, i.e. pk = 1. In addition, we list several published optimal differential charac-
teristics of Simon32 and Simon48 from [13] in the bottom sub-table of Table 3.

Table 3. The optimal rotational-XOR and optimal differential characteristics of Si-
mon32 and Simon48. The corresponding optimal probabilities are given as log2(p) and
log2(q).

(a) The optimal rotational-XOR characteristics of Simon32 and Simon48.

Round 6 7 8 9 10 11 12 13 14 15 16

Simon32/64 0 -4 -6 -10 -14 -20 -24 -30 -32 - -
Simon48/72 -2 -4 -8 -12 -16 -26 -36 -40 -48 - -
Simon48/96 0 -4 -4 -10 -14 -24 -32 -32 -38 -46 -

(b) The optimal differential characteristics of Simon32 and Simon48.

Round 1 2 3 4 5 6 7 8 9 10 11

Simon32 0 -2 -4 -6 -8 -12 -14 -18 -20 -25 -30
Simon48 0 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30

By appropriately combining rotational-XOR and differential characteristics
from Table 3, we can easily construct some RXDR characteristics. The corre-
sponding probabilities are calculated using Equation (2). We only list the optimal
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RXDR characteristics of Simon32 and Simon48 in Table 4. An RXDR character-
istic is a significant distinguisher when its probability follows p2 ·2−n ·q2 > 2−2n,
i.e., p2 · q2 > 2−n. From Table 4, the longest RXDR characteristics for Si-
mon32/64, Simon48/72 and Simon48/96 are 13 (6+7), 15 (6+9) and 16 (8+8)
rounds with probabilities of 2−60, 2−92 and 2−92, respectively. The details of
these optimal RXDR characteristics are listed in Appendix A.

Table 4. The optimal RXDR characteristics of Simon32 and Simon48. The probabil-
ities are given as log2(p

2 · q2), where p and q are probabilities of the rotational-XOR
and differential characteristics, respectively.

Round 7 8 9 10 11 12 13 14 15 16 17

Combination† 6+1 6+2 6+3 6+4 6+5 6+6 6+7 6+8 6+9 7+9 8+9
Simon32/64 0 -4 -8 -12 -16 -24 -28 -36 -40 -48 -52

Combination 6+1 6+2 6+3 6+4 6+5 7+5 6+7 7+7 6+9 7+9 8+9
Simon48/72 -4 -8 -12 -16 -20 -24 -32 -36 -44 -48 -56

Combination 6+1 6+2 6+3 6+4 6+5 8+4 8+5 8+6 8+7 8+8 8+9
Simon48/96 0 -4 -8 -12 -16 -20 -24 -32 -36 -44 -48
† The combination a+b means this optimal RXDR characteristic is constructed using
a-round rotational-XOR characteristic and b-round differential characteristic. Some
optimal RXDR characteristics have more than one combinations, here we only list
one of them.

RXDR characteristics of Simeck32 and Simeck48. The rotational-XOR
characteristics for short rounds are not given in [21], which have the potential to
form a better RXDR characteristic. Thus here we use the SAT/SMT method [21]
to search 6 to 9 rounds characteristics for Simeck32 and 6 to 14 rounds for
Simeck48. Note that the key schedules of Simeck family are nonlinear, thus a
rotational characteristic is composed of the data and key probabilities. We list
our short rotational-XOR characteristics and some results from [20] in the top
sub-table of Table 5. Besides, the optimal differential characteristics provided
by [19] are listed in the bottom sub-table of Table 5.

By combining rotational-XOR and differential characteristics of Table 5, we
obtain the optimal RXDR characteristics as illustrated in Table 6. Under the
condition of p2q2 > 2−n, the longest characteristics of Simeck32 and Simeck48,
which can be used as significant distinguishers, are 15 and 20 rounds with prob-
abilities of 2−60 and 2−92. The details of the longest characteristics can be found
in Appendix A.

4.3 Exploiting the Differential Clustering Effect and Multiple
Differentials to Construct Better RXDR Distinguishers

The previous work [13,14,19,17] indicates that there exists a very strong dif-
ferential clustering effect on Simon-like ciphers. Differential distinguishers can
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Table 5. The rotational-XOR and optimal differential characteristics of Simeck32
and Simeck48. The data and key probabilities of the rotational-XOR characteristic
are denoted by p and pk, and the probability of the differential characteristic is given
as log2(q).

Round 6 7 8 9 10 11 12 13 14 15 16 17 18

Simeck32
log2(p) 0 -2 -4 -4 -6 -10 -12 -12 -16 -18 -18 -18 -22
log2(pk) 0 0 -2 -6 -8 -12 -12 -18 -18 -20 -28 -32 -30

Simeck48
log2(p) 0 -2 -4 -4 -6 -8 -10 -12 -12 -18 -18 -18 -22
log2(pk) 0 0 -2 -6 -8 -16 -20 -18 -24 -20 -28 -32 -30

Round 1 2 3 4 5 6 7 8 9 10 11 12 13

Simeck32 0 -2 -4 -6 -8 -12 -14 -18 -20 -24 -26 -30 -32
Simeck48 0 -2 -4 -6 -8 -12 -14 -18 -20 -24 -26 -30 -32

Table 6. The optimal RXDR characteristics of Simeck32 and Simeck48. The data
and key probabilities are given as log2(p

2q2) and log2(pk).

(a) The optimal RXDR characteristics of Simeck32.

Round 7 8 9 10 11 12 13 14 15 16

Combination 6+1 6+2 6+3 9+1 9+2 9+3 9+4 9+5 10+5 13+3
log2(p

2q2) 0 -4 -8 -8 -12 -16 -20 -24 -28 -32
log2(pk) 0 0 0 -6 -6 -6 -6 -6 -8 -18

(b) The optimal RXDR characteristics of Simeck48.

Round 12 13 14 15 16 17 18 19 20 21

Combination 9+3 9+4 9+5 14+1 14+2 13+4 17+1 17+2 17+3 17+4
log2(p

2q2) -16 -20 -24 -24 -28 -32 -36 -40 -44 -48
log2(pk) -6 -6 -6 -24 -24 -24 -24 -24 -32 -32

be greatly improved by summing over partial or all differential paths that start
from and end up with the same input and output differences. Similarly, we can
exploit the clustering effect on the differential part in our RXDR structure to
improve the probability or extend the round number of RXDR distinguishers.

Differential clustering effect. For a Simon-like cipher, we prepare a
rotational-XOR characteristic for the r0-round encryption with data and key
probabilities of p and pk, respectively. Assume that we find N differential char-
acteristics for the r1-round encryption that start from the difference γ and end
up with the difference δ. Moreover, the i-th differential characteristic has a prob-
ability of qi (i ∈ {1, 2, ..., N}). Then according to Equation 2, an (r0+ r1)-round
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RXDR characteristic can be derived using the i-th differential characteristic with
probability

p2 · 2−n · q2i .

By summing over N differential characteristics, we can obtain an r1-round dif-
ferential γ → δ with probability q̂ where q̂ =

∑N
i=1 qi. Note that the rotational-

invariant property is also applicable to differentials of Simon-like ciphers. There-
fore we can utilize the differential to construct an (r0 + r1)-round RXDR distin-
guisher with a higher probability, that is

Pr = p2 · 2−n · q̂2. (3)

Multiple differentials. An RXDR distinguisher only focuses on the differences
of the ciphertext pairs (C1, C3) and (C2, C4) as shown in Figure 4. In other words,
we can take multiple differentials into account as long as these differentials share
the same output difference. This can further improve the probability of RXDR
distinguishers. Note that there are 2n possible input differences of the differential
part in our RXDR structure since the plaintext P1 is independent to P3. For a
fixed output difference δ, if we consider its 2n multiple differentials and the i-th
differential is γi → δ (i ∈ {1, 2, ..., 2n}) with a probability of q̂i, then we can use
the prepared rotational-XOR characteristic and these 2n multiple differentials
to construct an RXDR distinguisher with a greatly improved probability, which
is calculated as

Pr =

2n∑
i=1

(p2 · 2−n · q̂2i ) = p2 · 2−n · q̃ (4)

due to Equation (3), where q̃ =
∑2n

i=1 q̂
2
i .

Calculation of q̃. According to the above analysis, we need to find an output
difference δ such that the corresponding probability q̃ is as large as possible. Note
that the encryption is indeed identical to the decryption for Simon-like ciphers,
which tells us that the differentials (γL, γR)→ (δL, δR) and (δR, δL)→ (γR, γL)
have the same probability. Therefore for a given output difference (δL, δR), we
can regard (δR, δL) as the input difference to calculate its multiple differentials.
In [17], the authors investigated the clustering effect on Simon-like ciphers and
proposed an efficient method to calculate the probability of differentials by cal-
culating the differential transition matrix (DTM). The core idea of their method
is to only consider the lowest w (w ≤ 2/n) active bits of the difference in each
branch. The parameter w is the so-called window. Thus the scale of the DTM is
decreased from 2n × 2n to 22w × 22w. Based on their method we can calculate
22w differentials and the corresponding probability q̃ when the output difference
(δL, δR) is given. We illustrate the brief procedure in Algorithm 2 of Appendix C.

Better RXDR distinguishers for Simon32 and Simon48. We choose
(0x2022, 0x8) and (0x222, 0x80) as the output difference (δL, δR) for Simon32
and Simon48, which are derived using the SAT/SMT method [13]. In addition,
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we fix the window w = 16 for Simon32 and w = 17 for Simon48 due to the
limitation of our computation power. By Algorithm 2, we obtain the probability
of the best differential (q̂B) and the sum on squared probabilities of multiple
differentials (q̃) as shown in Table 7. The probability produced by differential
part increases significantly compared with only considering the single differen-
tial characteristic. For example, the optimal single differential characteristic of
8-round Simon32/64 has a probability of 2−18 (in Table 3), which means it will
produce 2−36 to the probability of RXDR structure. Nevertheless, Table 7 shows
this probability is 2−27.92.

Table 7. The probabilities q̂B and q̃ for Simon32 (left) and Simon48 (right).

Round log2(q̂B) log2(q̃) log2(q̂B) log2(q̃)

1 -2 -2 -2 -2
2 -6 -6.8300 -6 -7.4150
3 -8 -12.1784 -8 -12.6784
4 -9.2996 -15.3273 -9.2996 -15.8947
5 -9.2996 -17.7060 -9.2996 -18.0040
6 -11.2996 -20.3584 -11.2996 -20.5348
7 -13.2995 -23.7946 -13.2996 -24.0664
8 -16.5986 -27.9198 -16.5991 -28.5694
9 -18.5968 -31.3192 -18.5991 -33.7847
10 -23.3970 31.9834 -23.6518 -41.0640
11 -26.8462 -31.9996 -27.0840 -48.9414

Combining with the rotational-XOR characteristics in Table 3, several longer
RXDR distinguishers can be constructed. We list them in Table 8. Our results
show that the longest significant RXDR distinguishers are extended from 13,
15 and 15 rounds to 16, 16, 17 rounds for Simon32/64, Simon48/72 and Si-
mon48/96 respectively after taking the differential clustering effect and multiple
differentials into consideration. The details of the longest distinguishers are listed
in Appendix B.

Better RXDR distinguishers for Simeck32 and Simeck48. We use the
SAT/SMT method [13] to search several optimal differential characteristics, from
which we choose the output difference (δL, δR) for our RXDR structure. As a
result, we choose (0x15, 0x8) and (0x28, 0x10) for Simeck32 and Simeck48.
Moreover, similarly to Simon, we fix w = 16 and w = 17 respectively for the
two versions of Simeck to calculate the probabilities q̂B and q̃ by Algorithm 2.
The results are listed in Table 9.

By combining the rotational-XOR characteristics in Table 5, we construct
better RXDR distinguishers as listed in Table 10. Compared with the optimal
RXDR characteristics in Table 6, we can improve the weak key classes of RXDR
distinguishers for 14- and 15-round Simeck32 and extend the longest RXDR
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Table 8. Some RXDR distinguishers of Simon32 and Simon48.

Version Round† Input RX-diff. Output diff. Prob.(> 2−2n)

Simon32/64 14 (6 + 8) (0x0, 0x6) (0x2022, 0x8) 2−59.92

Simon32/64 15 (6 + 9) (0x0, 0x6) (0x2022, 0x8) 2−63.32

Simon32/64 16 (6 + 10) (0x0, 0x6) (0x2022, 0x8) 2−63.98

Simon48/72 15 (7 + 8) (0x0, 0x3e) (0x222, 0x80) 2−84.57

Simon48/72 16 (7 + 9) (0x0, 0x3e) (0x222, 0x80) 2−89.78

Simon48/96 15 (6 + 9) (0x0, 0x6) (0x222, 0x80) 2−81.78

Simon48/96 16 (8 + 8) (0x0, 0x180016) (0x222, 0x80) 2−84.57

Simon48/96 17 (8 + 9) (0x0, 0x180016) (0x222, 0x80) 2−89.78

† This number r (r0+r1) means that the r-round RXDR distinguisher
is formed by the r0- and r1-round rotational-XOR and differential
structures.

Table 9. The probabilities q̂B and q̃ for Simeck32 (left) and Simeck48 (right).

Round log2(q̂B) log2(q̃) log2(q̂B) log2(q̃)

1 -2 -2 -2 -2
2 -6 -7 -4 -5.2996
3 -8 -12.1466 -4 -7.2270
4 -9.2996 -15.3131 -6 -9.7971
5 -9.2996 -17.6736 -8 -13.2161
6 -11.2996 -20.3091 -11.2996 -17.5076
7 -13.2980 -23.7652 -13.2986 -22.5177
8 -16.5960 -27.8889 -18.2765 -28.4986
9 -18.5931 -31.3817 -19.8362 -33.6676
10 -23.5341 -31.9843 -22.2135 -37.9695
11 -24.9184 -31.9993 -22.6593 -42.0173

distinguisher from 15 to 16 rounds. For Simeck48, we also improve the proba-
bility and weak key class for the 20-round RXDR distinguisher, and extend the
longest RXDR distinguisher for one round (from 20 to 21). The details of the
longest distinguishers can be found in Appendix B.

4.4 Experimental Verification on Some RXDR Distinguishers

As we repeatedly mentioned, the precondition that concatenating an rotational-
XOR characteristic with a differential characteristic into a rectangle structure
then deriving the corresponding RXDR characteristic is the two sub-ciphers
E0 and E1 are independent. Namely, our theoretical analysis may be inconsis-
tent with the practical one if E0 and E1 are dependent. There are many re-
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Table 10. Some RXDR distinguishers of Simeck32 and Simeck48.

Version Round Input RX-diff. Output diff. Data prob.
(> 2−2n) Key prob.

Simeck32 14 (7 + 7) (0x0, 0x4) (0x15, 0x8) 2−59.77 1

Simeck32 15 (9 + 6) (0x0, 0x4) (0x15, 0x8) 2−60.31 2−6

Simeck32 16 (9 + 7) (0x0, 0x4) (0x15, 0x8) 2−63.76 2−6

Simeck32 16 (6 + 10) (0x0, 0x6) (0x15, 0x8) 2−63.98 1

Simeck48 19 (9 + 10) (0x0, 0x4) (0x28, 0x10) 2−93.97 2−6

Simeck48 20 (14 + 6) (0x0, 0x110) (0x28, 0x10) 2−89.51 2−24

Simeck48 21 (14 + 7) (0x0, 0x110) (0x28, 0x10) 2−94.52 2−24

searches about the influence of independency on distinguishers in the composite
attacks [23,8,2].

In this paper, we perform some practical experiments to verify our results.
Limited to the computation and memory resources, we can only experimentally
verify the RXDR distinguishers of the small-block Simon and Simeck, i.e., Si-
mon32/64 and Simeck32. In general, we need to exhaust all the 264 plaintext
tuples (P1, P2, P3, P4), where P1 is independent to P3 and P2 (P4) is derived from
P1 (P3), to count the number of tuples that satisfy the RXDR distinguisher for a
fixed key. But exhausting all the 264 tuples (P1, P2, P3, P4) is computationally in-
feasible. Here we provide an efficient way to achieve the experiment as illustrated
in Algorithm 1. The basic idea is that if a plaintext tuple (P1, P2, P3, P4) can sat-
isfy the RXDR distinguisher, then the corresponding ciphertext pair (C1, C3) or
(C2, C4) must satisfy the differential pattern of RXDR distinguisher. Therefore,
we can choose a ciphertext pair (C1, C3) satisfying the given differential pattern
and then obtain (P1, P3) by decrypting (C1, C3). Next we use (P1, P3) to get
(P2, P4) by the rotational-XOR difference and further obtain the ciphertext pair
(C2, C4) by encrypting (P2, P4). Finally, we need to verify whether the cipher-
text pair (C2, C4) satisfies the rotated differential pattern. As a consequence,
we only need to choose 232 ciphertext pairs (C1, C3) instead of 264 plaintext
tuples (P1, P2, P3, P4) to count the number of right plaintexts. In other words,
the computational complexity is decreased from 264 to 232.

For Simon32/64, we repeat the experiment 210 times by randomly choosing
210 keys. The average numbers of tuples satisfying the 14-, 15- and 16-round
RXDR distinguishers in Table 8 are 79.93, 3.52 and 1.08, suggesting the corre-
sponding probabilities of 2−57.68, 2−62.18 and 2−63.89, respectively. All of these
experimental probabilities are higher than the predicted ones. The comparison
is listed in Table 11.

As for Simeck32, when the round is larger than 7, the optimal rotational-
XOR characteristic will bring a probability to the key (see in Table 5) because
of its nonlinear key schedule. Therefore, we only test the 14-, 15- and 16-round
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Algorithm 1: Practically verify RXRD distinguishers of Simon-like
ciphers

Input: The input RX-difference α, key RX-difference ∆I and the output
difference δ of an RXDR distinguisher.

Output: The experimental probability of the given RXDR disitnguisher.
1 Initialize cnt = 0;
2 Randomly choose a master key K1;
3 K3 ← K1, K2 ←

←−
K1 ⊕∆I , K4 ← K2;

4 for C1 in F32
2 do

5 C3 ← C1 ⊕ δ;
6 Decrypt (C1, C3) under (K1,K3) to obtain (P1, P3);
7 (P2, P4)← (

←−
P1 ⊕ α,

←−
P3 ⊕ α);

8 Encrypt (P2, P4) under (K2,K4) to obtain (C2, C4);
9 if C2 ⊕ C4 ==

←−
δ then

10 cnt++;
11 end
12 end
13 return cnt · 2−64.

RXDR distinguishers, which are composed of the 6- or 7-round rotational-XOR
characteristic, to eliminate the influence of key on the experimental probability.
Namely, the weak key class is 264. By repeating the experiment 210 times, we
obtain that the average numbers of tuples satisfying the 14-, 15- and 16-round
RXDR distinguishers of Simeck32 in Table 11 are 107.75, 9.63 and 2.09. The
corresponding probabilities listed in Table 11 are also higher than the predicted
ones.

5 Conclusion

In this paper, we propose a new method called the rotational-XOR differential
rectangle (RXDR) cryptanalysis that combines rotational-XOR, rectangle and
differential cryptanalysis. We first illustrate how to build an RXDR structure
and evaluate its probability in a generalized situation. Then we further discussed
the probability of RXDR structure based on the rotational-invariant property
for Simon-like ciphers. In order to construct better RXDR distinguishers, we
further consider the differential clustering effect and multiple differentials in the
differential part of an RXDR structure. As a consequence, we obtained 16-,
16-, 17-, 16- and 21-round RXDR distinguishers for Simon32/64, Simon48/72,
Simon48/96, Simeck32 and Simeck48. Also, we verified the validity of some
RXDR distinguishers of Simon32/64 and Simeck32 by experimentally comput-
ing their probabilities. As we expected, all of the experimental probabilities are
higher than the predicted ones, which indicates that our RXDR distinguishers
are indeed valid.
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Table 11. The predicted and experimental probabilities of some RXDR distinguishers
of Simon32/64 and Simeck32.

Cipher Round Input
RX-diff.

Key†

RX-diff.
Output

diff.
Predicted

prob.
Experimental

prob.

Simon32/64 14 (6 + 8) (0x0, 0x6) 0x6 (0x2022, 0x8) 2−59.92 2−57.68

Simon32/64 15 (6 + 9) (0x0, 0x6) 0x6 (0x2022, 0x8) 2−63.32 2−62.18

Simon32/64 16 (6 + 10) (0x0, 0x6) 0x6 (0x2022, 0x8) 2−63.98 2−63.89

Simeck32 14 (7 + 7) (0x0, 0x4) 0x4 (0x15, 0x8) 2−59.77 2−57.25

Simeck32 15 (7 + 8) (0x0, 0x4) 0x4 (0x15, 0x8) 2−63.89 2−60.73

Simeck32 16 (6 + 10) (0x0, 0x6) 0x6 (0x15, 0x8) 2−63.98 2−62.94

† The key RX-difference is 64 bits, thus the above information indicates that there
only exists non-trivial RX-difference on the first round subkey. For instance, give
a master key K = K[0]||K[1]||K[2]||K[3] and the key RX-difference 0x4, another
key K∗ can be obtained by K∗ =

←−−
K[3]||

←−−
K[2]||

←−−
K[1]||

←−−
K[0]⊕ 0x4.

In addition, we did not list any results on Simon and Simeck versions with
a block size larger than 48 bits, since the obtained RXDR distinguishers are
much shorter than the best differential distinguishers. For example, we built an
18-round RXDR characteristic with a probability of 2−124 for Simon64/128 by
combing a 9-round rotational-XOR characteristic and a 9-round optimal dif-
ferential characteristic. The best RXDR distinguisher we could find reached 19
rounds (9 + 10) with a probability of 2−125.26 when we considered the differen-
tial clustering effect and multiple differentials. Note that the length of the best
differential characteristic and the best differential are 18 and 23 rounds, respec-
tively. It follows that there exists a gap between the best RXDR and differential
distinguishers after considering the differential clustering effect for both of them,
even if the best RXDR characteristic has a same round number as the best dif-
ferential characteristic. Thus, it can be inferred that RXDR structures with high
probability mainly benefits from their short but high-probability rotational-XOR
characteristics. Therefore, once the number of rounds increases, the probability
of RXDR structures will decrease rapidly.

Finally, what we would like to state is that this paper mainly devotes atten-
tion to the construction of RXDR distinguishers for the small-block versions of
Simon-like ciphers. We do not present any attacks based on the proposed RXDR
distinguishers, which can be further explored. Nevertheless, our results provide
a new insight on the security of block ciphers (especially for AND-RX ciphers)
against combined attacks derivated from classical ones.
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Table 13. The specific 6-round rotational-XOR (left) and 7-round differential (right)
characteristics of Simon32/64, which form the optimal 13-round RXDR characteristic.

Round Key RX-diff. Data RX-diff. Data diff.

0 0006 (0000||0006) 0008||0015
1 0000 (0000||0000) 0005||0008
2 0000 (0000||0000) 0002||0005
3 0000 (0000||0000) 0001||0002
4 0000 (0000||0000) 0000||0001
5 0006 (0000||0000) 0001||0000
6 (0006||0000) 0002||0001
7 0005||0002

Prob. 1 1 2−14

Table 14. The specific 6-round rotational-XOR (left) and 9-round differential (right)
characteristics of Simon48/72, which form the optimal 15-round RXDR characteristic.

Round Key RX-diff. Data RX-diff. Data diff.

0 300006 (000000||300007) 001000||004440
1 000006 (000001||000000) 000440||001000
2 000001 (000000||000001) 000100||000440
3 000000 (000000||000000) 000040||000100
4 000000 (000000||000000) 000000||000040
5 00ae82 (000000||000000) 000040||000000
6 (00ae82||000000) 000100||000040
7 000440||000100
8 001000||000440
9 004440||001000

Prob. 1 2−2 2−20

Table 15. The specific 8-round rotational-XOR (left) and 8-round differential (right)
characteristics of Simon48/96, which form the optimal 16-round RXDR characteristic.

Round Key RX-diff. Data RX-diff. Data diff.

0 180016 (000000||180016) 000200||000888
1 800000 (000000||000000) 000088||000200
2 000003 (800000||000000) 000020||000088
3 800004 (000000||800000) 000008||000020
4 000010 (000004||000000) 000000||000008
5 000004 (000000||000004) 000008||000000
6 000000 (000000||000000) 000020||000008
7 800019 (000000||000000) 000088||000020
8 (800019||000000) 000200||000088

Prob. 1 2−4 2−18



28 Siwei Chen et al.

Table 16. The specific 10-round rotational-XOR (left) and 5-round differential charac-
teristics (right) of Simeck32, which form the optimal 15-round RXDR characteristic.

Round Key RX-diff. Data RX-diff. Data diff.

0 008e (0004||0006) 0800||1400
1 0004 (0000||0004) 0400||0800
2 0000 (0000||0000) 0000||0400
3 0000 (0000||0000) 0400||0000
4 0000 (0000||0000) 0800||0400
5 0002 (0000||0000) 1400||0800
6 0006 (0002||0000)
7 0006 (0002||0002)
8 0002 (0000||0002)
9 008d (0000||0000)
10 (008d||0000)

Prob. 2−8 2−6 2−8

Table 17. The specific 17-round rotational-XOR (left) and 3-round differential charac-
teristics (right) of Simeck48, which form the optimal 20-round RXDR characteristic.

Round Key RX-diff. Data RX-diff. Data diff.

0 000114 (000000||000110) 000002||000004
1 000008 (000004||000000) 000000||000002
2 000004 (000000||000004) 000002||000000
3 000000 (000000||000000) 000004||000002
4 000002 (000000||000000)
5 000006 (000002||000000)
6 000002 (000000||000002)
7 000000 (000000||000000)
8 000008 (000000||000000)
9 000005 (000008||000000)
10 000007 (000015||000008)
11 000015 (000000||000015)
12 000000 (000000||000000)
13 000008 (000000||000000)
14 000019 (000008||000000)
15 000013 (000009||000008)
16 00001e (000000||000009)
17 (000017||000000)

Prob. 2−32 2−18 2−4
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B Detail on RXDR distinguishers of Simon and Simeck

In section 4.3, we show some longer RXDR distinguishers. The detailed struc-
tures and probabilities of the longest RXDR distinguishers are shown in Table 18.

Table 18. Some optimal RXDR distinguishers of Simon and Simeck.

Version Round Input RX-diff. Output diff. Data prob.
(> 2−2n) Key prob.

Simon32/64 16 (6 + 10) (0x0, 0x6) (0x2022, 0x8) 2−63.98 1

Simon48/72 16 (7 + 9) (0x0, 0x3e) (0x222, 0x80) 2−89.78 1

Simon48/96 17 (8 + 9) (0x0, 0x180016) (0x222, 0x80) 2−89.78 1

Simeck32 16 (9 + 7) (0x0, 0x4) (0x15, 0x8) 2−63.76 2−6

Simeck48 21 (14 + 7) (0x0, 0x110) (0x28, 0x10) 2−94.52 2−24

Moreover, the specific rotational-XOR characteristics and optimal differential
characteristics, from which we chose the output difference of multiple differen-
tials, are listed in Table 19, 20, 21 and 22. The 6-round and 8-round rotational-
XOR characteristics of Simon32 and Simon48/96 can be seen in Table 13
and 15.

Table 19. The 7-round rotational-XOR characteristic of Simon48/72.

Round Key RX-diff. Data RX-diff.

0 00003e (000000||00003e)
1 000020 (000000||000000)
2 000080 (000020||000000)
3 000020 (000000||000020)
4 000020 (000000||000000)
5 000080 (000020||000000)
6 284900 (000000||000020)
7 (284900||000000)

Prob. 1 2−4
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Table 20. The 7-round optimal differential characteristics of Simeck32 (left) and
Simeck48 (right).

Round Data diff. Data diff.

0 0008||0015 000010||000028
1 0005||0008 000008||000010
2 0002||0005 000000||000008
3 0001||0002 000008||000000
4 0000||0001 000010||000008
5 0001||0000 000028||000010
6 0002||0001 000040||000028
7 0005||0002 0000a8||000040

Prob. 2−14 2−14

Table 21. The 9-round (left) and 14-round (right) rotational-XOR characteristics of
Simeck32 and Simeck48.

Round Key RX-diff. Data RX-diff. Key RX-diff. Data RX-diff.

0 0004 (0000||0004) 000114 (000000||000110)
1 0000 (0000||0000) 000008 (000004||000000)
2 0000 (0000||0000) 000004 (000000||000004)
3 0000 (0000||0000) 000000 (000000||000000)
4 0002 (0000||0000) 000002 (000000||000000)
5 0006 (0002||0000) 000006 (000002||000000)
6 0006 (0002||0002) 000002 (000000||000002)
7 0002 (0000||0002) 000000 (000000||000000)
8 000e (0000||0000) 000008 (000000||000000)
9 (000e||0000) 000005 (000008||000000)
10 000007 (000015||000008)
11 000015 (000000||000015)
12 000000 (000000||000000)
13 00006f (000000||000000)
14 (00006f||000000)

Prob. 2−6 2−4 2−24 2−12

Table 22. The 10-round (left) and 12-round (right) optimal differential characteristics
of Simon32 and Simon48.

Round Data diff. Data diff.

0 0008||2022 000080||000222
1 2002||0008 000022||000080
2 8000||2002 000008||000022
3 2000||8000 000002||000008
4 0000||2000 000000||000002
5 2000||0000 000002||000000
6 8020||2000 000008||000002
7 0002||8020 000022||000008
8 8028||0002 000080||000022
9 0020||8028 000222||000080
10 80a8||0020 020808||000222
11 002200||020808
12 008008||002200

Prob. 2−25 2−35
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C Algorithm to Calculate q̃ for Simon-like Ciphers

Algorithm 2: Calculate multiple differentials of Simon-like ciphers
Input: The output difference δ = (δL, δR), the window w and the round R.
Output: The values of q̂B (probability of the best differential) and q̃.

1 Initialize q[2w] = 0, space[2w] = ∅, q̂B = 0 and q̃ = 0;
2 for µ from 0 to 2w − 1 do
3 for ν from 0 to 2w − 1 do
4 Calculate the probability Pr(µ→ ν) according to Theorem 1;
5 if Pr(µ→ ν) > 0 then
6 q[µ]← Pr(µ→ ν);
7 Add ν to the set space[µ];
8 end
9 end

10 end
11 Initialize X[2w][2w] = 0;
12 X[δR][δL]← 1; /* Regard (δR, δL) as the input difference */
13 /* From line 14-34, i and j denote differences of the left and right branches

respectively in the r-round differential propagation. */
14 for r from 1 to R do
15 Initialize Y [2w][2w] = 0;
16 for i from 0 to 2w − 1 do
17 for j from 0 to 2w − 1 do
18 if X[i][j] > 0 and q[i] > 0 then
19 for ν in space[i] do
20 Y [ν ⊕ j][i]← Y [ν ⊕ j][i] + q[i] ·X[i][j];
21 end
22 end
23 end
24 end
25 X ← Y ;
26 end
27 for i from 0 to 2w − 1 do
28 for j from 0 to 2w − 1 do
29 q̃ ← q̃ + (X[i][j])2; /* According to Equation (4). */
30 if X[i][j] > q̂B then
31 q̂B ← X[i][j];
32 end
33 end
34 end
35 return (q̂B , q̃).
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