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Distributed Differential Privacy via Shuffling vs
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Abstract—How to achieve distributed differential privacy (DP)
without a trusted central party is of great interest in both theory
and practice. Recently, the shuffle model has attracted much
attention. Unlike the local DP model in which the users send
randomized data directly to the data collector/analyzer, in the
shuffle model an intermediate untrusted shuffler is introduced to
randomly permute the data, which have already been randomized
by the users, before they reach the analyzer. The most appealing
aspect is that while shuffling does not explicitly add more noise to
the data, it can make privacy better. The privacy amplification
effect in consequence means the users need to add less noise
to the data than in the local DP model, but can achieve the
same level of differential privacy. Thus, protocols in the shuffle
model can provide better accuracy than those in the local DP
model. What looks interesting to us is that the architecture of
the shuffle model is similar to private aggregation, which has
been studied for more than a decade. In private aggregation,
locally randomized user data are aggregated by an intermediate
untrusted aggregator. Thus, our question is whether aggregation
also exhibits some sort of privacy amplification effect? And if
so, how good is this “aggregation model” in comparison with
the shuffle model. We conducted the first comparative study
between the two, covering privacy amplification, functionalities,
protocol accuracy, and practicality. The results as yet suggest
that the new shuffle model does not have obvious advantages
over the old aggregation model. On the contrary, protocols in
the aggregation model outperform those in the shuffle model,
sometimes significantly, in many aspects.

Index Terms—Differential privacy, shuffle model, aggregation
model

I. INTRODUCTION

TODAY, data are more valuable than ever. Data are a
key driver behind technological innovations that enable
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companies to provide more competitive and reliable products
and services. In fact, the success of big name Internet compa-
nies, such as Google and Facebook, is largely due to the vast
amount of data they collect from their users. While collecting
data from users can provide clear benefits for businesses,
it also means hefty privacy risks. With increasingly stricter
privacy laws and regulations, companies are obliged to provide
adequate protection to the data they collect, store, and process.

Differential privacy (DP) [1] has been regarded by many as
a promising Privacy Enhancing Technology (PET). It allows
companies to collect and share aggregated data while main-
taining the privacy of individual users. Traditionally, DP was
studied in the central model where a trusted data collector
collects raw data from the users, then processes the data with
a differentially private algorithm and publishes the results.
Central DP guarantees the privacy of the final published
statistics. However, the assumption that the data collector is
trusted is too strong. In many real-world scenarios, it is just
not possible for the users to trust the data collector. This led to
the development of distributed DP mechanisms. One popular
approach is local DP. In local DP, each user randomizes his/her
data before sending it to the data collector. Under local DP,
data are already differentially private when it leaves the user’s
control. Thus, the data collector cannot see the raw data and
does not need to be trusted. Yet, the randomized data from the
users still allow the data collector to extract useful statistics.
Local DP mechanisms have been deployed by big names such
as Google [2], Apple [3], and Microsoft [4] in their services,
to encourage users to share their data.

While local DP is appealing in many ways, it has one vital
weakness. Compared to central DP, the amount of noise being
added is much larger, which causes excessive obfuscation,
hence the loss of utility. This motivated the recent research
of distributed DP with enhanced utility [5]–[7]. One notable
line of research in this direction is DP protocols in the
shuffle model [5], [8]–[10]. In the shuffle model, an additional
untrusted shuffler is placed between the users and the data
collector (analyst). Each user randomizes his/her data and
then sends it to the shuffler. After receiving all users’ data,
the shuffler randomly shuffles the data before sending them
to the data collector. At first glance, it is not obvious what
is the benefit of the shuffle model in comparison with the
local DP model. However, in-depth analysis [8], [10] showed
that introducing the shuffler can provide privacy amplification.
That is, in the shuffle model, to achieve the desired differential
privacy level, less noise is needed to be added by the users
to their data compared to the local DP model. It has been
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shown in [8], [9] that the accuracy of the statistics produced
by the shuffle model is somewhere in between the local and
the central model. Also, the shuffle model does not require a
strong trust assumption as the central model because neither
the shuffler nor the data collector needs to be trusted. Because
of all these advantages, the shuffle model has attracted much
attention from the research community ( [5], [8]–[16]).

What inspired the study we present in this paper is the
observation that the architecture of the shuffle model resembles
that of private aggregation [17]–[20], which has already been
studied for more than a decade. In many private aggregation
schemes, each user adds noise locally to his/her data and
then sends it to an untrusted aggregator, who then outputs a
differentially private aggregate to the final data collector. It is
interesting to ask whether aggregation can achieve the privacy
amplification effect, like protocols in the shuffle model. If so,
which is better in various dimensions, such as privacy, utility,
functionality, and efficiency?
Contributions. In this paper, we conducted the first compara-
tive study between differentially private protocols in the shuffle
model and those based on private aggregation.

• As the first step, we formally defined the aggregation model
that captures private aggregation and is comparable to the
shuffle model in the architecture, trust assumptions, and
practical settings. As examples, we also gave two concrete
protocols in the aggregation model, which are transformed
from the well-known Gaussian and Laplace mechanisms in
the central DP model.

• Our analysis revealed that protocols in the aggregation
model can provide privacy amplification. Although much
more analysis still needs to be done to fully understand this
effect in the aggregation model, our initial results showed
that protocols in the aggregation model can amplify privacy
at least as well as those in the shuffle model and, in some
cases, can do better.

• We showed that protocols in the aggregation model can
support all algorithms in the Statistical Query (SQ) model.
This is on par with the power of protocols in the shuffle
model (see [9]).

• We compared the accuracy of aggregation protocols and
shuffle protocols for a diverse set of tasks, including sum-
mation, histogram, top-k, sorting, SGD, and PCA. The
results demonstrate the effectiveness of the aggregation
protocols for each task, providing compelling evidence
that the iterative use of summation does not render the
aggregation model ineffective. Moreover, we consistently
observe superior performance of the aggregation protocols
compared to their corresponding shuffle protocols from both
theoretical and empirical perspectives.

• In terms of practicality, we found that one constraint of
protocols in the shuffle model is that they often require the
user numbers to exceed a lower bound. This is generally not
the case in aggregation protocols. Also, contrary to the claim
in [9], we found private aggregation can be implemented
much more efficiently than secure shuffle with state-of-the-
art cryptographic protocols or trusted hardware.

We hope our findings in this paper could spark further

discussion in the community, provide useful input to the
future design of distributed privacy mechanisms, and help
practitioners make better-informed decisions.

II. PRELIMINARIES

A. Differential Privacy

Differential privacy is a mathematical definition of privacy
with rigorous guarantees. If an individual’s private record is
used as part of the input dataset, the output from a differ-
entially private mechanism has the property that anyone can
learn almost nothing more about the individual than if that
person’s record were absent from the dataset. Informally, this
intuition is captured by requiring that the output distributions
produced by a mechanism should differ only slightly when
accessing any two datasets that differ from each other only in
one element. Formally, differential privacy is defined as the
following:

Definition 1. (Differential privacy) [1] Let ε ≥ 0 and
δ ∈ [0, 1). A randomized mechanism M : Xn → Z satisfies
(ε, δ)−DP if for any X,X ′ ∈ Xn that differ in only one
element, and any Z ⊆ Z , it holds

P[M(X) ∈ Z] ≤ eεP[M(X ′) ∈ Z] + δ.

Note that in the above definition, the mechanism must be
run by a trusted data collector/owner who has full access to
the raw input dataset. However, in many scenarios, this trust
may not exist. Thus, the notion of local differential privacy
was proposed that requires each piece of data in the dataset to
be randomized. If each individual locally randomizes his/her
own record before handing it to the untrusted data collector,
differential privacy guarantee also holds for the collector.
Formally, local differential privacy is defined as the following:

Definition 2. (Local differential privacy) [21] Let ε ≥ 0
and δ ∈ [0, 1). A local randomizer R : X → Y satisfies
(ε, δ)−LDP if and only if for any input x, x′ ∈ X and any
Y ⊆ Y , it holds

P[R(x) ∈ Y ] ≤ eεP[R(x′) ∈ Y ] + δ.

B. Gaussian and Laplace Mechanisms

Now we briefly review the Gaussian mechanism and the
Laplace mechanism in the central model. These two mecha-
nisms achieve differential privacy by adding noise drawn from
Gaussian (Laplace) distribution to query results. Since the
noise added is closely related to the notion of global sensitivity,
we first recall it as follows.

Definition 3. (Global Sensitivity) [1] Given any function f :
Xn → Rd, for any X,X ′ ∈ Xn that differ in only one element,
the global sensitivity of the function f is:

∆f = max
X,X′

||f(X)− f(X ′)||p,

where || · ||p is the lp norm.

The value of the global sensitivity is decided by the query
function f and the input domain. For instance, for real-valued
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summation function f(x1, · · · , xn) =
∑

xi with xi ∈ [−a, a],
the value of the global sensitivity of f is ∆f = 2a.

The Laplace mechanism [22] adds random noise drawn
from the Laplace distribution to the results. We first recall
that the Laplace distribution is defined as the following:

Definition 4. (The Laplace distribution) The Laplace dis-
tribution (centered at 0) with scale b is the distribution with
probability density function:

Lap(x | b) = 1
2b exp

(
− |x|

b

)
.

We use Lap(b) to denote the Laplace distribution with scale
b and the variance of Lap(b) is 2b2.

Theorem 1. (Laplace Mechanism) Given any function f :
Xn → Rd, ∆f measured by the l1 distance, Laplace Mecha-
nism defined as

ML(X) = f(X) + (NL,1, NL,2, · · · , NL,d)

provides ε-DP, where {NL,i}i∈[d] are random variables inde-
pendently drawn from Lap(∆f/ε).

The Laplace distribution has a property called infinite
divisibility [23] (Proposition 2.4.1), which says a Laplacian
random variable can be expressed as a sum of i.i.d random
variables (that follow a certain distribution). Later we will use
this property to implement the distributed Laplace mechanism
in Section III-C.

Theorem 2. (Infinite divisibility of Laplace distribution)
Given a Laplace distribution Lap(b), for any n ∈ N+, there
exists a Gamma distribution Ga(n, b) with probability density
function:

(1/b)
1/n

Γ(1/n)
x

1
n−1e−x/b,

such that
n∑

i=1

(γi,1 − γi,2) follows Lap(b), where γi,1, γi,2 are

independently drawn from Ga(n, b).

The Gaussian mechanism adds random noise to results. The
noise follows the Gaussian distribution.

Definition 5. (Gaussian distribution) Gaussian distribution
with expectation 0 and variance σ2 is the distribution with
probability density function:

N (x|σ) = 1√
2πσ

exp (− x2

2σ2
). (1)

We use N (0, σ2) to denote the Gaussian distribution with
expectation 0 and variance σ2 in the rest of the paper.

Theorem 3. (Gaussian Mechanism) Given any function f :
Xn → Rd, global sensitivity ∆f measured by the l2 distance,
the Gaussian Mechanism defined as

MG(X) = f(X) + (NG,1, NG,2, · · · , NG,d)

provides (ε, δ)-DP, where {NG,i}i∈[d] are random vari-
ables independently drawn from N (0, σ2) with σ =
∆f
√

2log(1.25/δ)

ε .

C. Local Model

In [24] a so-called local model was defined to capture
private computation with local differential privacy. In the local
model, algorithms cannot access the raw dataset, but only via
local randomizers:

Definition 6. (Local Randomizers) [24] An ε-local randomizer
R : X → Y is an ε-differentially private algorithm that takes a
database of size n = 1. That is, P[R(x) = y] ≤ eεP[R(x′) = y]
for all x, x′ ∈ X and all y ∈ Y . The probability is taken over
the coins of R (but not over the choice of the input).

Definition 7. (Local Oracles) [24] Let X = (x1, . . . , xn) ∈
Xn be a database. An LR oracle LRX(·, ·) gets an index
i ∈ [n] and an ε-local randomizer R, and outputs a random
value y ∈ Y chosen according to the distribution R(xi). The
distribution R(xi) depends only on the entry xi in X .

Definition 8. (Local Algorithms) [24] An algorithm is
ε-local if it accesses the database X via the oracle
LRX with the following restriction: for all i ∈ [n], if
LRX(i, R1), . . . , LRX(i, Rk) are the algorithm’s invocations
of LRX on index i,where each Rj is an εj-local randomizer,
then ε1 + · · ·+ εk ≤ ε.

D. SQ Model

To obtain differential privacy, noise often needs to be added
to the data. One frequently asked question is whether the
output is still useful. An often-used theoretical framework to
answer this question is the Statistical Query (SQ) model [25].
In the SQ model, computational tasks are formulated as learn-
ing algorithms. Let C be a class of {−1,+1}-valued functions
(also called learning concepts) over an input space X . The
aim of a learning algorithm is to learn a concept c. Normally,
a learning algorithm is given examples randomly chosen from
some unknown distribution P over X and should produce a
hypothesis of c. In the SQ model, a learning algorithm (or
SQ algorithm for short) instead of having access to examples,
has only access to statistical properties of the distribution
P . Formally, the ability to access statistical properties is
abstracted as SQ Oracle:

Definition 9. (SQ Oracle) [24] Let P be a distribution over
a domain X . An SQ oracle SQP takes as input a function
g : X → {−1,+1} and a tolerance parameter τ ∈ [0, 1]. Its
output v satisfies

|v − E
u∼P

[g(u)]| ≤ τ ,

where u denotes a random sample.

In the above definition, the SQ oracle takes as input a
statistical query of the form (g, τ), where g is a {−1,+1}-
valued query function on input u from domain X , and
τ ∈ [0, 1] is a tolerance parameter. It outputs an estimation for
the expectation of g over the P that is accurate with additive
error ±τ . An SQ algorithm can only access the distribution P
indirectly via the SQ oracle SQP . The significance of the
SQ model is that any SQ algorithm can be automatically
converted to a learning algorithm in the presence of certain
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noise, thus leading to noise-tolerant algorithms. It has been
shown in [24] that the Local model (Section II-C) is equivalent
to the SQ model, i.e., a concept class is learnable by a local
differentially private algorithm if and only if it is learnable in
the SQ model. Similarly, we will prove in Section V-A that
private aggregation is sufficient to support any SQ algorithms.
Computation Tasks Supported by the SQ model. In the
SQ model, we can compute the bounded real-valued statistical
query. We can compute almost every learning algorithm that
works in the Probably Approximately Correct (PAC) model
(with the exception of parity learning algorithms). For exam-
ple, we can compute singular value decomposition, principal
component analysis, k-means clustering, decision tree, and
gradient descent.

III. SHUFFLE MODEL AND AGGREGATION MODEL

In this section, we will introduce the shuffle model and
aggregation model. In both models, there are n users, and
each holds a piece of data xi ∈ X . We denote the n users’
record using the vector X = (x1, · · · , xn).

A. Shuffle Model

x1

x2

xn

trust
boundary

trust
boundary

y1

y2

yn

Shuffler Analyzer

x1→y1

x2→y2

xn→yn
yπ(1)+...+yπ(n)

...

Randomizer

Randomizer

Randomizer

yπ(1)

yπ(2)

yπ(n)

yπ(1) yπ(2) yπ(n)

Fig. 1: Shuffle model

The architecture of the shuffle model is illustrated in Fig-
ure 1, and we review the definition of the protocol in the
shuffle model as the following:

Definition 10 (Shuffle Model [5], [9]). A protocol P in the
shuffle model consists of three randomized algorithms:

• A randomizer R : X → Ym that takes as input a
single user’s record xi and outputs a set of message
yi,1, · · · , yi,m ∈ Y . If m = 1, then P is in the single-
message shuffle model.

• A shuffler S : Y∗ → Y∗ that takes a set of messages
and outputs these messages in a uniformly random order.
Specifically, on input y1, · · · , yN , S chooses a uniformly
random permutation π : [N ] → [N ] and outputs
yπ(1), · · · , yπ(N ).

• An analyzer A : Y∗ → Z that takes a set of mes-
sages y1, · · · , yN and attempts to estimate some funtion
f(x1, · · · , xn) from these messages.

With this setup, we review the following definition of
differential privacy in the shuffle model.

Definition 11 (Differential Privacy in the Shuffle Model). A
protocol P = (R,S,A) is (ε, δ)-differentially private in the

shuffle model if, for n ∈ N+, the algorithm (S ◦ Rn)(X) :=
S(R(x1), · · · , R(xn)) is (ε, δ)-differentially private.

B. Aggregation Model

x1

x2

xn

trust
boundary

trust
boundary

y1

y2

yn

Aggregator Analyzer

Randomizer

y1+...+yn

y1+...+yn

x1→y1

x2→y2

xn→yn

Randomizer

Randomizer

Fig. 2: Aggregation model
Figure 2 illustrates the aggregation model, whose architec-

ture is similar to that of the shuffle model. We define the
protocol in the aggregation model as the following:

Definition 12 (Aggregation Model). A protocol P in the
aggregation model consists of three randomized algorithms:

• A randomizer R : X → Y that takes as input a single
user’s record xi and outputs a message yi ∈ Y .

• An aggregator G : Yn → Y that takes n messages and
aggregates messages. Specifically, on input y1, · · · , yn, G

outputs z =
n∑

i=1

yi.

• An analyzer A : Y → Z that computes statistic f(z)
upon the obtained aggregate.

We further define the definition of differential privacy in the
aggregation model as the following:

Definition 13 (Differential Privacy in the Aggregation Model).
A protocol P = (R,G,A) is (ε, δ)-differentially private in
the aggregation model if, for all n ∈ N+, the algorithm
(G ◦Rn)(X) := G(R(x1), · · · , R(xn)) is (ε, δ)-differentially
private.

C. Concrete Protocols
To facilitate discussion, here we show two concrete proto-

cols in the aggregation model. The two aggregation protocols
presented here are the Gaussian aggregation protocol AG

n,a,σ

and the Laplace aggregation protocol AL
n,a,b, named after the

noise distributions they use for randomizing the result. In
Appendix B of the full version of this paper, we also include
three shuffle protocols from [8], [9], for computing the sum
of bits or real numbers in the range of [0, 1].

The Gaussian aggregation protocol AG
n,a,σ is shown in

Figure 3. Each Randomizer in AG
n,a,σ adds noise following

Gaussian distribution. AG
n,a,σ(X) is (ε, δ)-DP for any ε > 0,

δ ∈ (0, 1), n ∈ N+, and X = (x1, · · · , xn) ∈ [−a, a]n, when

σ =
2a
√

2 log 1.25/δ

ε .
The Laplace aggregation protocol AL

n,a,b is shown in Fig-
ure 4. It utilizes the infinite divisibility of Laplace distribu-
tion (Section II-B) to add Laplace noise to the aggregated
results. AL

n,a,b(X) is (ε, 0)-DP for any ε > 0, n ∈ N+ and
X = (x1, · · · , xn) ∈ [−a, a]n, when b = 2a/ε.
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Gaussian aggregation protocol AG
n,a,σ = (Ra

n,σ, G,A)

Randomizer Ra
n,σ(x):

Input: x ∈ [−a, a], σ > 0, n ∈ N+

Output: y ∈ R
1) Let σ0 = σ√

n
and sample random variable ng from Gaussian

distribution N (0, σ2
0).

2) Return y = x+ ng ;

Aggregator G(y1, · · · , yn):
Input: (y1, · · · , yn) ∈ Rn

Output: z ∈ R

1) Return z =
n∑

i=1
yi;

Analyst A receives z;

Fig. 3: Protocol: AG
n,a,σ

Laplace aggregation protocol AL
n,a,b = (Ra

n,b, G,A)

Randomizer Ra
n,b(x):

Input: x ∈ [−a, a], b > 0, n ∈ N+

Output: y ∈ R
1) Sample random variables γ1, γ2 from gamma distribution

Ga(n, b)
2) Return y = x+ γ1 − γ2;

Aggregator G(y1, · · · , yn):
Input: (y1, · · · , yn) ∈ Rn

Output: z ∈ R

1) Return z =
n∑

i=1
yi;

Analyst A receives z;

Fig. 4: Protocol: AL
n,a,b

IV. PRIVACY AMPLIFICATION

One attractive property of protocols in the shuffle model
is that they can achieve privacy amplification. That is, the
output of the local randomizers satisfies only a weaker notion
of differential privacy, but after shuffling, the output satisfies a
stronger notion of differential privacy. Privacy amplification is
the key reason why the shuffle model can achieve better utility
than the local model. Can protocols in the aggregation model
also achieve some level of privacy amplification? If so, how
can we compare the level of privacy amplification between
protocols in the shuffle and aggregation models? This is our
first question.

A. Concrete Aggregation Protocol Privacy Amplification
Analysis

To start with, we first investigate whether the two concrete
aggregation protocols can amplify privacy. The answer is yes.

The following theorem states that for the Gaussian ag-
gregation protocol, the differential privacy that the whole
protocol can achieve is better than what the local randomizer
alone achieves. More specifically, if the randomizer’s output
satisfies (

√
nεA, δ)-differential privacy, then the whole proto-

col is (εA, δ)-differentially private. The amplification factor
depends on n, the number of users. Therefore, the more users

participating in the protocol, the stronger the amplification will
be.

Theorem 4. Let AG
n,a,σ be the Gaussian aggregation protocol

and Ra
n,σ(x) : [−a, a]→ R be the local randomizer, as defined

in Figure 3. If AG
n,a,σ satisfies (εA, δ)-differential privacy, then

Ra
n,σ(x) is (

√
nεA, δ)-differentially private.

The theorem follows directly from how noise is distributedly
generated in the protocol and the differential privacy of the
central Gaussian mechanism. The proof is straightforward and,
thus, is omitted.

The analysis of the Laplace aggregation protocol is more
involved because the noise distribution is rather complex.
Yet, we can still show that the output of the whole protocol
can be better in terms of privacy than that of the local
randomizer. We summarize the amplification theorem of the
Laplace aggregation protocol in Theorem 5 (Proof is available
in Appendix C of the full version).

Theorem 5. Let AL
n,a,b = (Ra

n,b, G,A) be the Laplace
aggregation protocol and Ra

n,b : [−a, a] → R be the local
randomizer, as defined in Figure 4. If AL

n,a,b satisfies εA-
differentially private, Ra

n,b is (εL, δ)-differential privacy such
that εA < εL, and 0 < δ < ∆ for some ∆ ∈ ( 12 , 1).

B. Comparison Analysis with the Shuffle Model

We have proved that the two concrete aggregation protocols
can achieve privacy amplification. Then, we are interested
in asking can we compare the level of privacy amplification
between shuffle protocols and the aggregation protocols. In
particular, is there a separation of the privacy amplification
ability between the protocols in the two models. We report
two interesting observations as the following.

Informally, Theorem 6 says that if an aggregation protocol
uses the same local randomizer as a shuffle protocol, then the
aggregation protocol can achieve at least the same privacy as
the shuffle protocol. In turn, it equals to say that adopting
the same local randomizer in the aggregation model and the
(single-message) shuffle model, the privacy amplification of
the resulting aggregation protocol is at least as strong as that
provided by the resulting shuffle model.

Theorem 6. Let PS = (R,S,A) be a single-message shuffle
model protocol and PA = (R,G,A) an aggregation model
protocol. The randomizer R : X → Y satisfies (εL, δ)-
differential privacy. For n ∈ N+, if PS is (εS , δ)-differentially
private, then PA is (εS , δ)-differentially private.

Proof. Recall n is the number of users participating in the
shuffle protocol PS and the aggregation protocol PA. Without
loss of generality, we fix n ∈ N+ as an arbitrary positive
integer in the following.

Let T be the range of the aggregation protocol PA, and
let W be the range of the shuffle protocol PS . By theorem’s
condition, if PS is (εS , δ)-DP, we have for every neighboring
input X,X ′ ∈ Xn which only differ by one coordinate and
every event W ∈ W, the following inequality holds

P[PS(X) ∈W ] ≤ eεSP[PS(X
′) ∈W ] + δ. (2)



6

Without loss of generality, let X = (x1, · · · , xn−1, xn) ∈
Xn, X ′ = (x1, · · · , xn−1, x

′
n) ∈ Xn be an arbitrary pair of

datasets, which differs at the n-th coordinates, and let T ⊆
T be an arbitrary event. Using event T, we define the event

W = {(r1, · · · , rn) ∈ Yn|
n∑

i=1

ri ∈ T}, which is the set of all

n-elements tuples whose sum is in the set T. Then, we have
P[PS(X) ∈W ] = P[PA(X) ∈ T ]. This is because

P[PS(X) ∈W ]

=P[S(R(x1), · · · , R(xn)) ∈W ]
(by protocol’s Definition (Def. 10))

=P[(R(x1), · · · , R(xn)) ∈W ]
(event W is not sensitive to uniformly random permutation)

=P[
n∑

i=1

R(xi) ∈ T ] (by event W ’s definition)

=P[PA(X) ∈ T ].

Similarly, we have P[PS(X
′) ∈ W ] = P[PA(X

′) ∈ T ].
Combining with Inequality 2, we can see that, if PS is (εS , δ)-
DP, then for every neighboring input X,X ′ ∈ Xn which only
differ by one coordinate and every event T ∈ T , the following
inequality holds

P[PA(X) ∈ T ] ≤ eεSP[PA(X
′) ∈ T ] + δ.

That is, PA is (εS , δ)-DP.

Theorem 7 provides a separation of the privacy amplification
ability between protocols in the aggregation models and the
shuffle models. Theorem 7 says that there exist aggregation
protocols that can provide meaningful ε-differential privacy
amplification. In comparison, it has been shown in [26] (claim
4.2) that if the protocol has to satisfy ε-differential privacy
(rather than (ε, δ)-differential privacy), then (single-message)
shuffle model cannot offer privacy amplification.

Theorem 7. Let R : {−1, 1} 7→ {−2,−1, 1, 2} be a εL-
differential private randomizer, which takes as input x from
the set {−1, 1}, and outputs x with probability eεL

eεL+3 , or a
value from {−2,−1, 1, 2}\x with probability 1

eεL+3 . Then, the
aggregation protocol PA = (R,G,A) satisfies εA-differential
privacy, where

εA = max{ln 2eεL + 1

3
, ln

e3εL + 3

e2εL + eεL + 2
}.

Proof. We first construct a randomizer R : {−1, 1} →
{−2,−1, 1, 2} which works as the following: it takes a value
x ∈ {−1, 1} as input, and then with probability eεL

eεL+3 returns
x, with the rest of probability it uniformly returns a value from
{−2,−1, 1, 2}\{x}.

Without loss of generality, let X = (x1, · · · , xn, xn+1) ∈
Xn+1, X ′ = (x1, · · · , xn, x

′
n+1) ∈ Xn+1 be an arbitrary pair

of datasets, which differs at the (n + 1)-th coordinates. We
further fix xn+1 = −1 and x′

n+1 = 1, which does not harm
the proof’s generality. Let n+1 be the number of users, Yn =
n∑

i=1

R(xi), Z = R(xn+1), Z ′ = R(x′
n+1). For every k ∈

{−2n − 2,−2n − 1, , 2n + 1, 2n + 2}, the probability ratio
evaluating at the point k is

Pr[
n∑

i=1

R(xi) +R(xn+1) = k]

Pr[
n∑

i=1

R(xi) +R(x′
n+1) = k]

=
Pr[Yn + Z = k]

Pr[Yn + Z ′ = k]

=

∑
j∈{−2,−1,1,2} Pr[Yn = k − j]Pr[Z = j]∑
j∈{−2,−1,1,2} Pr[Yn = k − j]Pr[Z ′ = j]

. (3)

To show that εA < εL, it suffices to show for every k ∈
{−2n−2,−2n−1, · · · , 2n+1, 2n+2} and every assignment
of (x1, · · · , xn−1, xn), one of the quantities Pr[Yn = k +
2], P r[Yn = k − 1], P r[Yn = k − 2] is larger than 0 when
Pr[Yn = k + 1] > 0. Because for the case −2n − 2 ≤ k ≤
−2n−1 and 2n+1 ≤ k ≤ 2n+2 (when Pr[Yn = k+1] = 0),
we have

(3) ≤ max{1, e−εL} < eεL .

For the case −2n− 2 ≤ k ≤ 2n+ 2 and −2n ≤ k + 1 ≤ 2n
(when Pr[Yn = k + 1] > 0), we know that when n > 1,
one of the quantity k + 2, k − 1, k − 2 must be in the set
k ∈ {−2n,−2n + 1, · · · , 2n − 1, 2n}, and hence one of the
quantities Pr[Yn = k + 2], P r[Yn = k − 1], P r[Yn = k − 2]
must be larger than 0. So far, we conclude that εA < εL.

We are interested in how large the privacy amplification in
this aggregation protocol can be, in other words, how large
the difference between εL and εA can be.

Let f(n, k) be the probability ratio evaluating at the point
k for the neighboring dataset X,X ′. Formally,

f(n, k) =
Pr[PA(X) = k]

Pr[PA(X ′) = k]
.

Recall Yn =
n∑

i=1

R(xi), Z = R(xn+1), Z ′ = R(x′
n+1),

then we have

f(n, k) =
Pr[PA(X) = k]

Pr[PA(X ′) = k]

=
∑

j∈{−2,−1,1,2}

Pr[Yn−1 + Z = k − j]Pr[R(xn) = j]

Pr[Yn−1 + Z ′ = k − j]Pr[R(xn) = j]

≤ max
j∈{−2,−1,1,2}

{
Pr[Yn−1 + Z = k − j]

Pr[Yn−1 + Z ′ = k − j]

}
. (4)

Let h(n− 1, k− j) = Pr[Yn−1+Z=k−j]
Pr[Yn−1+Z′=k−j] , which is the inner

expression of the right hand-side of Inequality 4. We observe
that the maximum probability ratio for the neighboring dataset
X,X ′ is obtained at n = 2. This is because

max
k∈{−2n−2,··· ,2n+2}

{f(n, k)}

≤ max
k∈{−2n−2,··· ,2n+2}

j∈{−2,−1,1,2}

{h(n− 1, k − j)} (by Inequality 4)

= max
k∈{−2n,··· ,2n}

{f(n− 1, k)}.

Therefore, the value of eεA will be obtained at n = 2 for
some k, i.e. f(2, k). f(2, k) achieves its maximum (minimum)
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at k = −3(4) with X = (−1,−1,−1), X ′ = (−1,−1, 1).
Then, we have the following expression of εA:

eεA =


2eεL + 1

3
, 0 < εL < 1 + 2

√
2,

e3εL + 3

e2εL + eεL + 2
, εL ≥ 1 + 2

√
2.

When εL is set in the common range, the difference between
εA and εL does not converge to 0.

V. FUNCTIONALITY

In this section, we explore the question of ’what functional-
ities can be computed in the aggregation model’ and compare
its capabilities with those of the shuffle model. Initially, the
shuffle model appears to provide the analyzer with a richer set
of functionalities, as it outputs a vector of randomized data,
while the aggregation model only offers a single sum (with
noise). However, upon closer examination, we carefully review
the concrete computation tasks that existing shuffle protocols
can perform and discover that all of these tasks are achievable
in the aggregation model as well. This finding raises doubts
about the speculation that the shuffle model is inherently more
functionality-rich than the aggregation model.

From a theoretical perspective, literature [9] demonstrates
that functionalities computable in the SQ model can also be
privately computed in the shuffle model. As a comparison,
we prove in section V-A, and all computation tasks in the
SQ model can also be privately computed in the aggregation
model. An astute reader might question why we chose the
SQ model for comparison. The reason is simple; currently, no
other computational model are known to capture the classes
of functionalities that current shuffle protocols can achieve.
Section V-B provides a few concrete examples showing aggre-
gation protocols can do some complex tasks, hence justifying
these counter-intuitive theoretical results.

A. Theoretical Results

In the SQ model, the algorithm learns by accessing sta-
tistical properties provided by the SQ oracle. To show that
aggregation protocols can support all algorithms in the SQ
model, it is sufficient to show that aggregation protocols can
simulate the SQ oracle. That is, whatever the SQ oracle can
do, the aggregation protocol can do as well, with a high
probability. Thus, the SQ algorithms can query an aggregation
protocol instead of the SQ Oracle and should produce the same
quality output.

For any statistical query (g, τ), the SQ oracle can output
an estimation for the expectation of g over the domain X
that is accurate with additive error ±τ . Following [27], here
we consider g to be a real-valued function g : X → [−a, a]
that is more general than Boolean. The global sensitivity of
g is thus 2a. We can construct an algorithm Ag , as shown in
Figure 5, that simulates the SQ oracle using an aggregation
protocol Asum. Corollary 1 guarantees that Ag produces the
same quality output of the SQ oracle with probability at least
1−β, where β can be arbitrarily small given enough samples.

Algorithm Ag(n, ε, δ, g, Asum) that simulates an SQ
Oracle

Input: u1, u2, · · · , un ∈ X , query g : X → [−a, a], Asum which
can be a aggregation summation protocol.
Output: 1

n
Asum(g(u1), · · · , g(un)).

Fig. 5: Algorithm Ag that simulates an SQ Oracle

Corollary 1. Algorithm Ag approximates Eu∼P [g(u)] within
additive error ±τ with probability at least 1 − β, if input

database z has n = Ω(
a2 log 1

β

τ2 +
a
√

log 1
β log 1

δ

τε ) entries sampled
i.i.d. from a distribution P on domain X for Asum = AG

n,a,σ;

or n = Ω(
a2 log 1

β

τ2 +
a log 1

β

τε ) for Asum = AL
n,a,b.

Proof. To prove the Corollary 1, we first recall the accuracy
of the two aggregation protocols AG

n,a,σ and AL
n,a,b in Claim 1

and 2, separately. The proof is deferred to Appendix D in our
full version paper.

Claim 1. For any ε, δ ∈ (0, 1], n ∈ N+, X = (x1, · · · , xn) ∈
[−a, a]n and 0 < β < 1, with probability at least 1− β:

|AG
n,a,σ(X)−

n∑
i=1

xi| ≤
4a

ε

√
log

1

β
log

1.25

δ
.

Claim 2. For any ε ∈ (0, 1), n ∈ N+, X = (x1, · · · , xn) ∈
[−a, a]n and 0 < β < 1, with probability 1− β:∣∣∣∣∣AL

n,a,b(X)−
n∑

i=1

xi

∣∣∣∣∣ ≤ 2a

ε
log

1

β
.

Let v = Eu∼P [g(u)] denote the expectation of function g
over the domain X . Recalling the Hoeffding’s inequality, for
any β0 ∈ (0, 1):

P

[∣∣∣∣∣ 1n
n∑

i=1

g(ui)− v

∣∣∣∣∣ < 2a

√
1

2n
log

2

β0

]
> 1− β0.

Substituting 2a
√

1
2n log 2

β0
with τ

2 and β0 with β
2 in the above

inequality, we have

P

[∣∣∣∣∣ 1n
n∑

i=1

g(ui)− v

∣∣∣∣∣ ≥ τ

2

]
≤ 2e

− τ2n
8a2 .

Solving the equation 2e−
τ2n
8a2 = β/2, we obtain that with-

out adding random noise,
8a2 log 4

β

τ2 examples are enough
to approximate Eu∼P [g(u)] within additive error ± τ

2 with
probability at least 1− β

2 .
Recall the relationship of Ag and Asum shown in Figure 5:

Ag(u1, · · · , un) =
1

n
Asum(g(u1), · · · , g(un)).

In the case of Asum = AG
n,a,σ , by the result of Claim 1,∣∣∣∣∣AG

n,a,σ

n
− 1

n

n∑
i=1

g(ui)

∣∣∣∣∣ ≤ 4a

nε

√
log

2

β
log

1.25

δ
.

Substituting 4a
nε

√
log 2

β log 1.25
δ = τ

2 , we have
8a

√
log 2

β log 1.25
δ

τε samples are sufficient to ensure the
noise added through gausian-based aggregation algorithm
lies outside ± τ

2 with probability at most β
2 . Combining
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the above, we have that Ag estimates Eu∼P [g(u)] within
additive error ±τ with probability at least 1 − β if

n =
8a2 log 4

β

τ2 +
8a

√
log 2

β log 1.25
δ

τε .

When Asum = AL
n,a,b, with the same method,

8a2 log 4
β

τ2 +
4a log 2

β

τε samples are enough to draw the result that Ag esti-
mates Eu∼P [g(u)] within additive error ±τ with probability
at least 1− β.

The proof of Corollary 1 is quite general and similar
argument can apply to any aggregation protocols, except the
number of samples required would change depending on the
noise added in the sum. From Corollary 1, it follows directly
that an SQ algorithm can be simulated by an aggregation
algorithm. Furthermore, the simulation also preserves the
differential privacy property of the underlying aggregation
protocol.

Theorem 8. Let ASQ be an SQ algorithm that makes at most
t queries to an SQ oracle SQP , each with tolerance at least τ .
The simulation above is ε-differentially private (resp. (ε, δ)-
differentially private) when Ag parameterized with Asum =

AL
n,a,b (resp. AG

n,a,σ). If dataset X has n′ = tn = Ω(
ta2 log t

β

τ2 +

ta log t
β

ετ ) (resp. Ω(
ta2 log t

β

τ2 +
ta

√
log t

β log 1
δ

τε )) entries sampled
i.i.d. from the distribution P , then the simulation above gives
the same output as ASQ with probability at least 1− β.

Proof. On the aspect of privacy, it provides ε-differential
privacy (resp. (ε, δ)-differential privacy) because each piece
of data in X is independent. On the aspect of probability of
failure, the SQ algorithm queries an SQ oracle SQP at most
t times, and the aggregation algorithm simulates each query
(g, τ) by running Ag on n samples. The allowed probability
of failure for each query is β′ = β

t . By the union bound,
the probability of any of the queries not being approximated
within additive error ±τ is bounded by β.

B. Concrete Examples

The crux of the discrepancy between the theoretical results
and the intuition is that although the aggregator outputs a
single sum in each run of the aggregation protocol, the
functionality can be decomposed, and the analyzer in the
aggregation model can obtain a vector of data values through
multiple (possibly parallel) runs of the aggregation protocol.
Hence, the analyzer can compute any SQ algorithm in the
aggregation model. As concrete examples, in the following,
we show how to obtain histograms, compute sample variance,
and optimize using the Stochastic Gradient Descent algorithm.

We start by introducing a vector aggregation protocol AH

(See Figure 6), which is essentially composed of multiple
instances of the aggregation protocol Asum that privately sums
scalar values. AH satisfies (ε, δ)-differential privacy if the
aggregation protocol Asum satisfies (ε, δ)-differential privacy
and the elements in the vector are independent (Proof is avail-
able in Appendix A of the full version).. AH satisfies (ε, δ)-
differential privacy if Asum satisfies ( εd ,

δ
d )-differential privacy

and d out of k dimensions in the vector are dependent (by the
sequential composition theorem of differential privacy [1]).

Vector aggregation protocol AH

Randomizer: R(X):
Input: X = (x1, · · · , xk) ∈ X k,
Output: Y = (y1, · · · , yk) ∈ Rk

1) For 1 ≤ i ≤ k, randomize each xi by using the
randomizer in Asum, and produce yi=Asum.R(xi)

2) Return Y = (y1, · · · , yk)

Aggregator G(Y1, · · · , Yn):
Input: Y1, · · · , Yn ∈ Rk

Output: Z = (z1, , · · · , zk) ∈ Rk

1) For each 1 ≤ i ≤ k, sum the i-th value in vectors
Y1 to Yn, and set zi = Asum.G(Y1,i, · · · , Yn,i);

2) Return Z = (z1, , · · · , zk);
Analyzer receives Z;

Fig. 6: Protocol: AH

The following examples all use AH . At a high level, each
user uses a local encoding algorithm to encode his/her record
into a vector and runs AH , then the aggregator outputs a
perturbed aggregated vector, and the analyzer can use the
vector as the input to an estimation algorithm (depending on
the randomizer) to compute the desired statistics.

1) Histogram: For n users each hold a record, we show
how to privately generate a histogram through aggregation.
Let Q : X → Zk be a histogram query that partitions the data
values into k bins. For convenience, we also define predicates
q1, . . . , qk such that qi : X → {0, 1} evaluates to 1 if the data
value falls into the i-th bin, and 0 otherwise. To generate a
histogram, each user encodes its record x as a vector U =
(u1, · · · , uk) = (q1(x), · · · , qk(x)). It is clear that U is a
standard basis vector whose elements are all 0, except one
that equals 1. Then, all the users run the vector aggregation
protocol AH that aggregates their vectors. The sum of those n
standard basis vectors gives the histogram, and the histogram
is protected by the noise added by the randomizers.

2) Sample Variance: For n users such that each user i holds
a real value xi ∈ R, the sample variance is defined as S2 =
1

n−1

n∑
i=1

(xi − x̄)2 = 1
n−1 (

n∑
i=1

x2
i − nx̄2), where the sample

mean x̄ = 1
n

n∑
i=1

xi. To do so, each user encodes its record

xi as a vector Ui = (ui,1, ui,2) = (x2
i , xi) and uses Ui in the

vector aggregation protocol AH . AH outputs Y = (y1, y2) to
the analyzer, which outputs z = 1

n−1 (y1 −
1
ny

2
2).

3) Stochastic Gradient Descent: Stochastic gradient de-
scent (SGD) is popular in machine learning and is one of
the most fundamental components in Neural Networks. It is
an iterative approach that can be used to learn linear classifiers
and regressors. We here describe how to implement mini-batch
SGD, the most common form of SGD, in the aggregation
model. Without the loss of generality, there are n users each
has a labeled example (x, l), where record x ∈ Rd, and
label l ∈ {−1, 1}. The analyzer begins with an initial vector
w0 ∈ Rd. At step t, it randomly chooses b users and sends
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wt to them, where wt is the vector computed from w0 after
t−1 times update. Each of these users computes (sub)gradient
U = ∇(wt, x, l) and sends this d-dimension vector to AH ,
which outputs Y = (y1, · · · , yd) to the analyzer. Finally, the
analyzer updates wt+1 = wt − ηt(λwt +

1
bY ), where ηt and

λ are some fixed learning algorithm parameters.
Beyond these examples, in the aggregation model, the

analyzer can compute various statistics based on the output of
aggregation protocols. For example, with the sum, mean can
be easily computed. Also, with histograms, median or most
frequent items can be computed. More complex functions,
e.g., k-means, can be computed by iteratively calling the
aggregation protocols. In principle, since all SQ queries can be
answered in the aggregation model, the aggregation protocols
can be used to compute a fairly wide range of functions,
including complex ones like expectation-maximization, SVM,
linear/convex optimization, MCMC, simulated annealing, and
so on [28]. Real-world private analytics, such as what Ap-
ple [3] and Google [2] do, can all be computed in the
aggregation model.

VI. ACCURACY ANALYSIS

In this section, we analyze and compare the accuracy of
concrete protocols in both the shuffle and aggregation models.
We begin with the summation task, evaluating it from both
theoretical and empirical perspectives. Our analyses from both
angles consistently demonstrate that the aggregation protocols
have better accuracy. Subsequently, we delve into more com-
plex tasks, including histogram, top-k, sorting, SGD, and PCA.
The empirical evaluation reveals that aggregation protocols
consistently outperform shuffle protocols in those statistical
analyses. This experimental validation also demonstrates the
usefulness of the aggregation protocols, as the iterative use
of summation can achieve acceptable utility levels even for
complex tasks.

A. Theoretical Analysis on Summation Task

We measure the accuracy of protocols using two metrics:
mean square error (MSE) and (α, β)-accuracy. Both metrics
are commonly used in the analysis of shuffle protocols. The
MSE quantifies the average noise introduced during protocol
execution. On the other hand, (α, β)-accuracy bounds the
worst-case noise added, guaranteeing that it remains below
a threshold α with a probability of at least 1− β.

We focus on the summation protocols, which calculate
the sum of binary or real-valued data. We compare seven
shuffle protocols 1 and two aggregation protocols (AG

n,a,σ and
AL

n,a,b) 2, and the results are presented in Table I.
Table I highlights the Laplace aggregation protocol AL

n,a,b

as the most accurate among all protocols with the same privacy
guarantee. Following closely is the shuffle protocol [29]-real-2.

1While some of the shuffle protocols’ accuracy is analyzed using one
metric in the original paper, we also compute the other metric (marked with
”*” in Table I) whenever possible. The detailed calculations are provided in
Appendix D and E of the full version.

2AL
n,a,b satisfies ε-differential privacy, and others protocols satisfy (ε, δ)-

differential privacy

TABLE I: Accuracy Comparison of Shuffle and Aggregation
Protocols.

Protocols MSE α

[9]-bit O( 1
ε2

log 1
δ
) 30

ε

√
log 4

δ
log 2

β
*

[9]-real O( 1
ε2

log2 n
δ
) 122

ε
log 8

δ

√
log 4

β
*

[8]-real O(n
1
3

log
2
3 1

δ

ε
4
3

)* 2n
1
6

ε
2
3

log
1
3 2

δ

√
19 log 2

β
*

[26]-bit – 50
ε2n

log 2
δ
+

√
200
εn

√
log 2

δ
log 2

β

[29]-real-1 O(
(log logn)2

ε2
log 1

δ
) –

[29]-real-2 O( 1
ε2

)

√
1
β

(
2
ε2

+ 1
4
+ 5n2e−

εn
2

)
[30]-real O( 1

ε2
log 1

δ
)

√
1
β

(
1

300n
+ 2000

ε2
log 1

δ

)
*

AG
n,a,σ O( 1

ε2
log 1

δ
) 2

ε

√
log 1.25

δ
log 1

β
*

AL
n,a,b O( 1

ε2
) 1

ε
log 1

β
*

These two protocols stand out because they distributively add
Laplace noise and discrete Laplace noise, respectively, which,
as it turns out, are the most effective noise distributions for
the DP summation task.

The deeper and more intuitive reason why aggregation
protocols outperform shuffle protocols can be attributed to
the noise addition paradigm. From the central view, all nine
summation protocols follow the paradigm of outputting the
true summation plus a noise random variable. The Gaussian
and Laplacian mechanisms have already demonstrated their
utility in the central model and can be efficiently implemented
in the aggregation model. Compared to other methods of
adding randomness in the shuffle model, it is no surprise that
the aggregation protocols perform better.

We also observed that multiple-message shuffle protocols
exhibit higher accuracy compared to single-message shuffle
protocols. This advantage stems from the flexibility offered
by multiple-message protocols in their design. Single-message
protocols [9]-bit, [9]-real, [8]-real employ a technique known
as the ”privacy blanket” [8], where some individual records are
randomly replaced with noise. Multi-message protocols [26]-
bit and [29]-real-1 extend the ”privacy blanket” technique
to the multi-message case. Notably, [29]-real-1 adopts a
recursive approach, leveraging the single-message protocol to
bootstrap the privacy amplification it can achieve. As a result,
the multi-message version adds less noise while ensuring the
same privacy guarantee, leading to improved utility.

On the other hand, multi-message protocols such as [30]-
real and [29]-real-2 employ a different technique. They utilize
an analog of secret sharing in the distributional DP setting,
splitting each individual record into a set of random look-like
messages. This technique is exclusive to the multi-message
model, allowing for more effective noise management and
further enhancing accuracy.

B. Experimental Validation on Summation Task

In this subsection, we present the results of empirical exper-
iments conducted on both aggregation and shuffle summation
protocols. Our experiments take into account three factors that
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Fig. 7: MSE under different n values and dataset

can influence performance: the differential privacy parameters,
data distribution, and dataset size. For the Laplace aggregation
protocol, we set ϵ = 1, while for other protocols, we fixed the
privacy parameters at ϵ = 1 and δ = 2−30. The input dataset
size varied from 10,000 to 1,000,000.

Regarding data distribution, we considered two options for
real summation protocols: uniformly chosen inputs from the
real domain [0, 1], and inputs following a normal distribution
with mean 0.57 and standard deviation 0.1. For bit summation
protocols, we explored two dataset distributions: uniformly
chosen inputs from the binary domain 0, 1, and inputs follow-
ing a Bernoulli distribution with a probability of 0.001 being
1 and 0 otherwise.

Figure 7 presents the results, with each point representing
the empirical MSE of the respective protocol, averaged from
1000 protocol executions. Notably, the MSE of both the
Laplace aggregation protocol and the multi-message shuffle
protocol [29]-real-2 is significantly lower, by orders of mag-
nitude, compared to that of other protocols. As discussed in
Section VI-A, these two protocols add (almost) the same noise
distribution from the central view, resulting in comparable and
better accuracy compared to other protocols.

Our second observation is the consistency of accuracy for
the two aggregation protocols and the shuffle protocol [29]-
real-2 across different dataset sizes (n) and dataset distribu-
tions. In contrast, the accuracy of other shuffle protocols is
dependent on these factors, validating the theoretical results
discussed earlier. This observation further highlights the poten-
tial for more stable and reliable performance from aggregation
protocols.

We also observe multi-message shuffle protocol [29]-real-1
and [26]-bit don’t always outperform single-message shuffle
protocols, as shown in Figure 7 (bottom figures). We first
look at the protocol [26]-bit in the bottom left figure. The
dataset used here only has a small fraction of 1, and the
rest is 0. When the sum x is much smaller than the dataset
size n, protocol [26]-bit outputs 0 as the estimate of x with
high probability. This probability increases as n increases
and x decreases. Consequently, when we set x =

√
n and

n sufficiently large, the MSE for [26]-bit becomes O(n).
Notably, the MSE of [8]-real is O(n1/3), and [9]-bit does not
depend on n. This difference reveals that the distribution of
the added noise in [26]-bit can vary depending on the data
distribution, and that is one reason why, in some cases, the
accuracy can be worse than single-message shuffle protocols.

Figure 7 (bottom right figure) shows that the accuracy of
the multi-message protocol [29]-real-1 is worse than that of
its single-message version [8]-real. The errors in both [8]-
real and [29]-real-1 arise from the noise for privacy guarantee
and the rounding error used to convert real data into integer
data. The multi-message protocol incurs more rounding errors
than the single-message one, as each data piece is split into
multiple messages, each requiring rounding. Consequently, the
overall rounding error is larger for the multi-message protocol.
In scenarios where the rounding error dominates the overall
error, the utility of the multi-message protocol is worse than
that of the single-message protocol.

C. Experimental Validation on Complex Computation Tasks
In this subsection, we evaluate and compare the performance

of aggregation and shuffle protocols designed for a diverse
set of computation tasks, including histogram, top-k, sorting,
Stochastic Gradient Descent (SGD), and Principal Component
Analysis (PCA). The results show that the aggregation proto-
col provides useful results for each specific task. The utility
of the aggregation protocols is satisfactory even for SGD
with multiple iterations. Moreover, in comparison with their
corresponding shuffle protocols, the aggregation protocols
consistently demonstrate superior performance. We present
the problem settings, utility metrics, and detailed protocol
performance results for each task in the following.

1) Histogram, Top-k, and Sorting: The evaluated aggrega-
tion histogram protocols are instantiations of protocol AH

(Fig. 6). The summation protocol Asum within AH is in-
stantiated with AL

n,a,b and AG
n,a,σ , respectively. Similarly, the

shuffle histogram protocols are instantiations of the histogram
protocol presented in [26] (Fig. 2), using the summation
protocols [9]-bit and [8]-real. We conducted these protocols
on the Fire dataset [31], which contains 681,174 user calls to
the San Francisco Fire Department, classified into 272 ”Alert”
types. We use privacy parameters ε = 0.05, 0.1, 0.5, 1 and
δ = 10−5. The histogram query results in 272 noised counters,
each representing an ”Alert” type. To evaluate the error of the
query results, we measure the empirical MSE of the obtained
counters, averaged from 100 protocol executions.

To obtain the top-k and sorting query results, we perform
post-processing on the histogram query results. For the top-k
query, we extract the first k largest counters and return the
corresponding ”Alert” types associated with them. In the case
of the sorting query, we sort the top-k counters in descending
order and retrieve the corresponding ”Alert” types accordingly.
To evaluate the error of these query results, we count the
number of types that are in the wrong position in the returned
”Alert” types list. The average accuracy is computed from 100
protocol executions. In experiments, we set k to 20.

Table II presents a comparison of errors between aggrega-
tion protocols and shuffle protocols for the histogram, top-
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TABLE II: Accuracy Comparison of Protocols in the Shuffle model and the Aggregation model.

Protocols
ε = 0.05 ε = 0.1 ε = 0.5 ε = 1

MSE top k sorting MSE top k sorting MSE top k sorting MSE top k sorting

[9]-bit 3.02e6 2.55 12.17 6.66e5 1.43 1.06e4 0.06 0 2.30 2.57e3 0 1.35

[8]-real 7.14e6 3.52 14.23 1.63e5 0.64 7.21 7.59e3 0.02 2.13 2.54e3 0 1.34

Laplace 3.71e3 0.01 1.19 7.91e2 0 0.83 25.31 0 0.24 8.62 0 0.02

Gaussian 4.70e4 0.18 4.95 1.06e4 0.03 2.22 401.32 0 0.76 107.55 0 0.50

k, and sorting tasks. The results show that the error of
aggregation protocols is consistently lower than that of the
shuffle protocols.
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Fig. 8: Accuracy of SGD for aggregation and shuffle protocols.

2) Stochastic Gradient Descent (SGD): The aggregation
SGD protocol is an instantiation of the DP SGD scheme of
Abidi et al. [32] in the aggregation model, and the shuffle SGD
protocol is from the work of Girgis et al. [33]. We conducted
these protocols on the MNIST dataset [34] and evaluated their
utility by computing the prediction accuracy rate on the testing
set. For each scheme, training was performed for 80 epochs,
using different privacy parameters, namely ε = 0.1, 0.5, 1, 5,
and δ = 10−5.

Figure 8 demonstrates that the aggregation SGD protocol
consistently outperforms the shuffle protocol. The upper left
figure shows that even for high privacy settings (ε = 0.1), the
aggregation protocol can still achieve an impressive accuracy
rate of up to 75%. In contrast, the shuffle protocol’s accuracy
is around 10%, equivalent to random guessing. These results
serve as a compelling example of the effectiveness of the
aggregation model in handling complex tasks that require
iteratively publishing sums.

3) Principal Component Analysis (PCA): The aggregation
PCA protocol is a distributed implementation of the central
PCA algorithm [35], both of which perform the same op-
erations. Therefore, the accuracy of the aggregation PCA is
the same as that of the central algorithm [35]. We defer
the introduction of the Principal Component Analysis, and
the comparison between the central PCA algorithm and the
aggregation PCA protocol to the Appendix F of the full version
of this paper.

In the experiment, we run the aggregation PCA protocol on
10,000 samples taken from the MNIST dataset [34]. We use
privacy parameters ε = 0.1, 0.5, 1.0, 5.0 and delta = 10−5.
To evaluate the error of the query result, we calculate the l2
distance between the k normalized raw singular vectors Vk and
the noised singular vectors V̂ with the largest singular values,
denoted as ∥VkV

T
k − V̂kV̂

T
k ∥2. For this experiment, we set k

to 10.
As a shuffle PCA protocol was not available for comparison,

we report the errors of the aggregation PCA protocol at
different privacy levels: 0.7436 at ε = 0.1, 0.1863 at ε = 0.5,
0.0543 at ε = 1.0, and 0.0022 at ε = 5.0.
Remark. The utility of the aggregation protocols depends
largely on the utility of the corresponding central differential
privacy protocols, especially in scenarios where the data
needs to be queried multiple times. We emphasize that the
DP research community has devoted considerable effort to
addressing the issue of noise accumulation and its potential
impact on utility over the years. Leveraging existing advance-
ments, such as the improved privacy accounting method [32]
used in DP SGD, and noise reduction techniques for counting
queries [36]–[38], the aggregation protocols can effectively
mitigate the impact of noise accumulation.

VII. PRACTICALITY ANALYSIS

A. Minimal Number of Users

TABLE III: Minimum Number of Users Required for Proto-
cols in the Shuffle model

ε
min(n)

[9]-bit [9]-real [8]-real

0.01 130396 1791262 6016518
0.1 13040 179127 60166
0.2 6520 89564 15042
0.5 4259 35826 2407
1.0 4259 17913 602

One factor that can restrict the application of the shuffle
protocols in real-world scenarios is that they often require
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a large number of users to participate, in order to achieve
adequate privacy. For instance, in [9], the bit sum protocol
can only be proved to be (ε, δ)-differentially private under
the constraints that ε ∈ (

√
3456
n log 4

δ , 1) and n ≥ 14 log 4
δ .

Therefore, given a particular (ε, δ) pair, n is lower bounded
by both ϵ and δ. The real sum protocol in [9] also requires
a minimal n because this protocol is essentially realized by
invoking the bit sum protocol multiple times. The lower bound
of n is much worse than that of the bit sum protocol because
to achieve a certain (ε, δ), the base bit sum protocol being
invoked has to satisfy smaller privacy parameters (ε0, δ0).
Similarly, in [8], the real sum protocol has a constraint
14(k+1) log (2/δ)

nε2 < 1 that lower bounds n. in Table III, we show
the minimal n calculated under various ε for those protocols
in the shuffle model, when δ is fixed to 2−30. As we can see,
better privacy generally requires more users. In contrast, user
numbers in aggregation protocols generally are not a concern.
For example, the two aggregation protocols in Section III-C
can have an arbitrary number of users, as few as 1, for any
(ε, δ).

B. Efficiency Analysis

In the previous sections, we treated the shuffler and the
aggregator as ideal functionalities. In the real world, there are
no such ideal functionalities, and they have to be implemented
somehow. This brings on the question of which model is
more efficient in reality. In this section, we try to answer this
question.

In either model, the shuffler or the aggregator is assumed
to be untrusted. This is because if there is a trusted party, one
can be better off by using the trusted party to realize a central
mechanism for differential privacy. To ensure correctness and
security when utilizing an untrusted shuffler or aggregator,
some technical measures are inevitably needed. In this section,
we show the results obtained via two different routes: by using
a cryptographic protocol and by using trusted hardware.

1) Cryptographic Protocol: A shuffler can be realized via
a mixnet. A mixnet [39] is a protocol involving a sequence of
untrusted nodes. The first node takes as input a set of encrypted
messages and outputs a uniformly random permutation of
those messages (after re-encryption/randomization). The first
node’s output is taken by the second node as input, which will
permute the messages again. As long as there is one honest
node, the messages will be shuffled randomly in this process.
To ensure that the nodes cannot manipulate the messages, each
node also produces a cryptographic proof to show that the
plaintexts of messages in the output set are the same as those
of the input set.

An aggregator can be realized via Multiparty Computation
(MPC). Specifically, the protocol involves several untrusted
nodes as computation parties. The users send their inputs to
the computation parties in an encrypted form, and then the
computation parties compute the sum of the data. It is easy
to use a generic MPC framework such as SPDZ [40], [41]
to implement the aggregator, and SPDZ guarantees that as
long as there is one honest computation party, the sum can be
computed securely and correctly.

A Remark. There are three different flavors of aggregation
protocols in the literature: (a) the users use MPC and interact
among themselves, without intermediate parties, to realize a
virtual aggregator that computes the sum [19]; (b) the aggrega-
tor is a single physical node, and computes the sum by running
a cryptographic protocol with the users [17], [18], [20]; (c)
the aggregator is a group of nodes, and compute the sum by
running a cryptographic protocol with the users [42]. Here we
adopt (c) in the comparison because the shuffler has to be
made of at least two nodes – a virtual shuffler run by all users
is not practically feasible, and a single node shuffler means
we have to trust the shuffler to shuffle properly. Otherwise,
there is no guarantee that the permutation is random. For this
reason, if the aggregator is by approach (a) or (b), then the
comparison is not fair because of the difference in the trust
assumptions.
Complexity Analysis. We first compare the computational and
communication complexity for protocols realizing the shuffler
and the aggregator. The shuffler protocol is based on the state-
of-the-art verifiable shuffle protocol [43], and the aggregator
protocol is based on the SPDZ framework (the framework
can be found in Appendix H of the full version). The results
can be found in Table IV. Both protocols can be divided
into an offline and online phase such that the offline phase
is used for pre-processing and the online phase is used for
the actual computation. In particular, in the offline phase
of the aggregator protocol, the computation parties generate
secret shares of random numbers, while in the offline phase
of the shuffler protocol, the mixnet nodes generate a common
reference string (CRS).

For the computational complexity, in Table IV, we count the
number of most computationally costly operations. The shuf-
fler protocol relies heavily on public key operations, i.e., group
exponentiation (scalar multiplication in an Elliptic Curve
group) and pairing. The aggregator protocol in the online phase
involves only modular addition in a small field. Although in
the online phase, the computational costs of both protocols are
linear in the number of nodes and users, the operations in the
aggregator protocols are much cheaper (e.g., see Table V). In
the offline phase, the aggregator protocol requires somewhat
homomorphic encryption whose computation is dominated
by multiplications in a polynomial ring. Note that although
the polynomial multiplication is a more costly operation, the
aggregator can benefit from the SIMD parallelization of the
underlying homomorphic encryption scheme, and reduce the
number of operations by a large factor ϕ(M), which is often
in the order of thousand. Therefore, the aggregator protocol is
more efficient overall.

For the communication complexity, the messages in the
shuffler protocol consist of elements in two elliptic curve
groups G1 and G2, and the messages in the aggregator
protocol consist of elements in finite field Fq and Fp (q > p).
Usually, elements in G1 and G2 have to be large enough to
be secure, e.g. ∼256-bit (with point compression) to achieve
128-bit security. The size of Fq and Fq can be much smaller
depending on the plaintext domain (e.g., see Table V). Note
that in the online phase, the communication complexity of the
aggregator protocol is k2, which is due to each computation
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Fig. 9: The computation and communication overhead of the shuffler protocol and the aggregator protocol.

party broadcasting one message. Here, k is often a small
number compared to n (a few vs thousands).

TABLE IV: Efficiency Comparison (k: the number of the
mixnet nodes/computation parties; n: the number of users).

Efficiency Shuffler Aggregator

Comp.
Online 13kn exp., kn pair. kn add.

Offline 4kn exp., 2kn pair. 10kn/ϕ(M) polymul.

Comm.
Online 4kn× G1, 3kn× G2 k2Fp

Offline 4kn× G1, kn× G2
kn

ϕ(M)
(MFq + 3ϕ(M)Fp)

TABLE V: Cost comparison of primitive operations and ele-
ments in the underlying groups/fields.

Computation
Time

n 1000 10000
exp. 0.10s 1.03s
pair. 0.54s 5.27s
add. 25.1 ns 222.3 ns

polymul. 0.55s 5.84s

Size

G1 254 bits
G2 254 bits
Fp 70 bits
Fq 249 bits

Experimental Evaluation. We also implemented the shuffler
and the aggregator protocols in C++ and measured the perfor-
mance based on our implementation. The implementation of
the shuffler protocol is based on the source code3 provide by
the authors of [43], which uses libff4 library for the underlying
ECC and pairing operations. The particular curve used is
BN-128, a Barreto-Naehrig curve that provides 128 bits of
security. The aggregator protocol5 is implemented on top of the
SPDZ-26 library, in which it implemented the BGV somewhat
homomorphic encryption [44]. The parameter of BGV was set
to |p| = 70-bit, |q| = 249-bit, and M = 8192 to achieve
128 bits security. In the experiment, we employed two mixnet

3https://bitbucket.org/JannoSiim/hat shuffle implementation/src/master/
4https://github.com/scipr-lab/libff
5https://github.com/PuzzleEAA/eaa
6https://github.com/bristolcrypto/SPDZ-2

nodes for the shuffler and two computation parties for the
aggregator, all of which have the same hardware (an Intel
Core i7-7700 3.60GHz CPU and 16GB RAM). Note that here,
we only used two nodes for each protocol because, in the
aggregator protocol, the summation is done in parallel at all
computation parties non-interactively, while the execution of
the shuffler protocol is sequential, one node after another.
Therefore, the difference would be more significant if more
nodes were employed in the experiment.

Table V shows the computational cost of primitive opera-
tions (total time for 1,000 and 10,000 operations) in the two
protocols as well as the size of the elements in the underlying
groups and fields. The figures can be used in conjunction with
those in Table IV to understand the actual cost of the protocols.

In Figure 9, we show the running time and communication
cost of the shuffler and aggregator protocols, with different
numbers of users ranging from 1,000 to 100,000. In Fig-
ure 9(a), we show the total computation time in seconds
for both protocols and in Figure 9(b), we show the online
computation time. As we can see, the difference is about 2 -
3 orders of magnitude. We can also see that the online com-
putation phase in the aggregation model is very fast. This is
because aggregation only involves the addition operation, and
the addition operation in SPDZ is just an addition operation
in some small fields, which is very fast. On the other hand,
the shuffler protocols involve public key operations and thus
are much slower. We also show the communication cost of the
aggregator and shuffler protocols in Figure 9(c), Figure 9(d).
Figure 9(c) shows the total communication cost. We can see
the aggregator protocol uses much less bandwidth than the
shuffler protocol. Figure 9(d) shows the online communication
cost, from which we can see that the cost is linear to the
number of users in the shuffler protocol but is constant in the
aggregator protocol. It is easy to understand: in the shuffler
protocol, one node has to pass the whole shuffled set to the
other node, while the aggregators can perform the computation
locally (since it is just an addition) and only need to send out
the shares of one value that is the final sum.

2) Protocol Based on Trusted Hardware: We also imple-
mented a shuffler and an aggregator based on Intel SGX.
The protocols are simple: the shuffler and the aggregator
are programs running in SGX protected memory space, and
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Fig. 10: The computation overhead of the SGX-based imple-
mentation.

the users communicate with the shuffler/aggregator through
an authenticated secure channel and send in the randomized
data, which is stored and processed (shuffle/aggregate) in SGX
protected memory space. For the shuffler, we use the imple-
mentation of the stash shuffle7 [5]. We run the experiments on
a PC with Intel Core i7-7700 CPU and 3.60GHz, 16GB RAM.
Figure 10(a) compares the total running time of shuffle and
aggregation operation. In Figure 10(a), we can see that the run-
ning time of the aggregator protocol is significantly less than
that of the shuffler, mainly because shuffling is a more costly
operation. The stash shuffle requires 2n hash operations, while
the aggregation requires only n addition operations. Note that
when using SGX-based protocol, the users have to establish an
authenticated secure channel with the shuffler/aggregator and
thus need to run a key agreement protocol. This key establish
phase is the same in both shuffler/aggregator protocols and
is actually quite expensive (Figure 10(b)). If taking this into
account, the cryptographic protocols actually need less time
than SGX-based protocols when the number of users is large.

VIII. RELATED WORK

The research on the shuffle model aims to improve local DP
with better utility. Bittau et al. [5] first proposed an architecture
called ESA (Encode, Shuffle, Analyze) for online monitoring
tasks, but without rigorous analysis. Then, Erlingsson et al.
[10] provided a privacy amplification bound of the shuffle
model, quantifying the privacy of protocols in the shuffle
model in terms of the local differential privacy provided by the
local randomizer. The work by Cheu et al. [9] gave a protocol
for the summation of bits, which can be extended to the real-
valued case with an additional cost in communication. They
showed that shuffle protocols provide strictly better accuracy
than local protocols in some cases. Balle et al. [8] proposed
a protocol for real number summation with better accuracy
and communication cost than the protocol in [9]. In addition,
it gave a new privacy amplification bound, generalizing the
results in [10] to a wider range of parameters.

In the literature of private aggregation, there has been a
lot of work on distributed realization of different privacy,
to eliminate the requirement of trusted data collectors. This
line of work follows a similar model, where users perturb

7https://github.com/google/prochlo/tree/master/prochlo stash shuffler

their data locally and upload encrypted noisy data to the
untrusted aggregator, such that the final decrypted result
satisfies differential privacy. In 2006, Dwork et al. [19] first
proposed a distributed implementation of privacy-preserving
statistical databases, where the users generate Gaussian or
exponential noise to make the database queries differentially
private. Later, Shi et al. [20] proposed a private aggregation
protocol, where the users distributively add geometrical noise
to the sum. Chan et al. [18] proposed an approach, which is
resilient to user failure and compromise. Differential privacy
can be guaranteed even when some users are disconnected,
at the cost of higher communication overhead and estimation
error. Moreover, Ács et al. [17] proposed a protocol that
realizes distributed Laplace mechanism for differential privacy.
Eigner et al. [42] designed a generic architecture for distributed
private aggregation, which supports the Laplace mechanism,
Discrete Laplace, and Exponential mechanism.

IX. CONCLUSION AND FUTURE WORK

In this paper, we conducted the first comparative study
between the shuffle model and the aggregation model, both
of which can achieve distributed differential privacy. Firstly,
it demonstrates that the aggregation model, in contrast to
the (single message) shuffle model, can provide ε-DP ampli-
fication. Secondly, it showcases that the aggregation model
supports a wide range of computation tasks, including those
supported by existing shuffle protocols. Furthermore, it com-
pares the accuracy and efficiency of aggregation and shuffle
protocols for various computation tasks from both theoretical
and empirical perspectives.

Our analysis reveals that protocols in the aggregation model,
despite being considered old fashioned, often outperform the
newer protocols in the shuffle model in many aspects, and
perhaps are more suitable for practical use in the current
state. This observation prompts a research question for the
distributed DP community: Can we design a shuffle proto-
col that outperforms the aggregation protocol, especially for
computation tasks that extend beyond simple aggregations?
To fully understand the strengths and limitations of both the
shuffle and aggregation models in theory and practice, we
believe further research is needed.
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APPENDIX A
PARALLEL COMPOSITION

Intuitively, let M be a mechanism that is the parallel
composition of d (ε, δ)-differentially private sub-mechanisms.
By the definition of parallel composition, the input to M must
be partitioned into d disjoint and independent subsets, each one
is the input to a sub-mechanism. If X and X ′ that differ on
one element is used as the input to M , then the difference will
affect only one sub-mechanism (all the other mechanisms will
see the same input no matter X or X ′ is used). From here,
we can easily prove M is (ε, δ)-differentially private.
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Theorem 9. Let Mi each provide (ε, δ)-differential privacy.
Let Di be arbitrary disjoint subsets of the input domain D.
For any input dataset X , the sequence of Mi(X∩Di) provides
(ε, δ)-differential privacy.

Proof. Let X , X ′ be neighboring datasets. Suppose that they
are both divided into d subsets of disjoint data, where Xi =
X ∩Di and X ′

i = X ′∩Di. Without loss of generality, X and
X ′ are only different between X1 and X ′

1 for one element.
For any r1 ⊆ Range(M1), We have:

Pr[M1(X1) ∈ r1] ≤ eεPr[M1(X
′
1) ∈ r1] + δ.

For any r ⊆ Range(M) and ri ⊆ Range(Mi), where M
is the sequence of Mi, the probability of output from the
sequence of M(X) is

Pr[M(X) ∈ r] =

d∏
i=1

Pr[Mi(Xi) ∈ ri]

=

d∏
i=2

Pr[Mi(Xi) ∈ ri]Pr[M1(X1) ∈ r1]

≤
d∏

i=2

Pr[Mi(Xi) ∈ ri](e
εPr[M1(X

′
1) ∈ r1] + δ)

= eεPr[M1(X
′
1) ∈ r1]

d∏
i=2

Pr[Mi(Xi) ∈ ri]

+ δ

d∏
i=2

Pr[Mi(Xi) ∈ ri]

≤ eεPr[M(X ′) ∈ r] + δ,

which completes the proof.

APPENDIX B
SHUFFLE PROTOCOL

The protocol of [9]-bit is shown in Figure 11. The input data
domain of [9]-bit protocol is {0, 1}, and the protocol aims to
compute the sum of all the inputs:

∑n
i=1 xi. For every input

xi, the randomizer R0/1
n,λ chooses a random value from {0, 1}

as yi with probability of λ
n , and chooses yi to be the true value

with probability of 1− λ
n . The parameter λ is determined by

the privacy parameters and the value of n. For n ≥ 14 log 4
δ ,

ε ∈ (
√
3456
n log 4

δ , 1),

λ =


64

ε2
log

4

δ
if ε ≥

√
192

n
log

4

δ

n− εn3/2√
432 log (4/δ)

otherwise.

The outputs of randomizers are forwarded to the shuffler,
which shuffles the randomized data and then sends to the
analyzer A0/1

n,λ. The analyzer A0/1
n,λ then outputs the scaled sum

z of
∑n

i=1 yi, as shown in Figure 11. z is an unbiased estimator
of

∑n
i=1 xi.

[9]-real protocol in Figure 12 is extended from [9]-bit
protocol. The input domain is [0, 1], and this protocol still
aims to compute the sum of the inputs:

∑n
i=1 xi. In order

to avoid introducing too much additional error, this protocol
rounds the input multiple times to several boolean values.
Firstly, the randomizer performs randomized rounding. It takes

[9]-bit protocol P 0/1
n,λ = (R

0/1
n,λ, S,A

0/1
n,λ)

Randomizer R
0/1
n,λ(x):

Input: x ∈ {0, 1}, parameters n ∈ N+, λ ∈ (0, n)
Output: y ∈ {0, 1}

1) Sample b←Ber(λ
n
)

2) if b = 0 : Let y ← x
else b = 1: y ←Ber( 1

2
)

3) Return y

AnalyzerA0/1
n,λ(y1, · · · , yn):

Input: (y1, · · · , yn) ∈ {0, 1}n, parameters n ∈ N, λ ∈ (0, n)
Output: z ∈ [0, n]

1) Let z ← n
n−λ

(∑n
i=1 yi −

λ
2

)
2) Return z

Fig. 11: [9]-bit protocol P 0/1
n,λ

an input x ∈ [0, 1] and a parameter r ∈ N+, and gets a vector
(b1, · · · , br) ∈ {0, 1}r such that E[ 1r

∑
j bj ] = xj . Typically, r

is set to ε
√
n. After doing the rounding, RR

n,λ,r runs the [9]-bit
protocol P 0/1

n,λ on the bits b1,j , · · · , bn,j for each j ∈ [r]. The
average of the results

∑
i
1
r

∑
j bi,j is used to get the unbiased

estimator of
∑n

i=1 xi. The privacy parameters ε, δ of [9]-real
can be obtained by the ε, δ of [9]-bit (we note them as ε0, δ0)
: ε = ε0

√
8r log (2/δ), δ = 2rδ0.

[9]-real protocol PR
n,λ,r = (RR

n,λ,r, S,A
R
n,λ,r)

Randomizer RR
n,λ,r(x):

Input: x ∈ [0, 1], parameters n, r ∈ N+, λ ∈ (0, n)
Output: (y1, · · · , yr) ∈ {0, 1}r

1) Let µ← ⌈x · r⌉ and p← x · r − µ+ 1
2) for j = 1, · · · , r

bj =

 1 j < µ
Ber(p) j = µ
0 j > µ

3) (y1, · · · , yr)← (R
0/1
n,λ(b1,1), · · · , R

0/1
n,λ(bn,r))

4) Return (y1,1, · · · , yn,r)

Analyzer AR
n,λ,r(y1,1, · · · , yn,r):

Input: (y1,1, · · · , yn,r) ∈ {0, 1}n, parameters n, r ∈ N, λ ∈ (0, n)
Output: z ∈ [0, n]

1) Let z ← 1
r
· n
n−λ

(∑
j

∑
i yi,j −

λ·r
2

)
2) Return z

Fig. 12: [9]-real protocol PR
n,λ,r

The protocol of [8]-real is shown in Figure 13. Similar to
the above real-sum protocol [9]-real, [8]-real protocol aims to
compute a differentially private approximation of

∑
i xi. The

randomizer Rc,k,n first randomly rounds each input xi in [0, 1]
to an integer xi in {0, 1, · · · , k}, such that E[xi/k] = E[xi].
Then, the randomizer performs random response. With prob-
ability of γ = c(k+1)

n , the randomizer chooses an integer
uniformly in {0, 1, · · · , k} as the output yi. Otherwise, the ran-
domizer Rc,k,n submits xi. The parameter c is determined by
the setting of privacy parameters: c = max

{
14 log (δ/2)

ε2 , 27
ε

}
.

After shuffling, the analyzer Ac,k,n constructs and outputs an
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unbiased estimator of
∑

i xi with
∑

i yi/k.

[8]-real protocol Pc,k,n = (Rc,k,n, S,Ac,k,n)

Randomizer Rc,k,n(x):
Input: x ∈ [0, 1], parameters c, k > 0, n ∈ N+

Output: y ∈ {0, 1, · · · , k}
1) Let x← ⌊xk⌋+Ber(xk − ⌊xk⌋)
2) Sample b←Ber( c(k+1)

n
)

3) if b = 0 : Let y ← x
else : Sample y ←Unif({0, 1, · · · , k})

4) Return y

AnalyzerAc,k,n(y1, · · · , yn):
Input: (y1, · · · , yn) ∈ {0, 1, · · · , k}n, parameters c, k > 0, n ∈ N
Output: z ∈ [0, 1]

1) Let ẑ ← 1
k

∑n
i=1 yi

2) Let z ←
(
ẑ − c(k+1)

2

)
/
(
1− c(k+1)

n

)
3) Return z

Fig. 13: [8]-real protocol Pc,k,n

APPENDIX C
PRIVACY AMPLIFICATION PROOF OF LAPLACE

AGGREGATION PROTOCOL AL
n,a,b

Theorem 10. Let AL
n,a,b = (Ra

n,b, G,A) be the Laplace
aggregation protocol and Ra

n,b : [−a, a] → R be the local
randomizer, as defined in Figure 4. If AL

n,a,b satisfies εA-
differentially private, Ra

n,b is (εL, δ)-differential privacy such
that εA < εL, and 0 < δ < ∆ for some ∆ ∈ ( 12 , 1).

Proof. Let us first analyse the distribution of the random noise
generated by Ra

n,b. We denote the noise by a random variable
K = γ1− γ2, where γ1 and γ2 are independently drawn from
Gamma distribution Ga(n, b). For any k ∈ R, the probability
density function PK(k) of K can be derived from formula (4)
in [45], and is:

In the protocol, the global sensitivity is 2a, which means
the difference between any two inputs to the local randomizer
is at most 2a. We define the following function g(k, c), where
c ∈ (0, 2a]:

g(k, c) =
PK(k)

PK(k + c)
.

Informally, g(k, c) describes how close the distributions of the
output from Ra

n,b can be, when given two different inputs x
and x+ c.

The function g(k, c) has the following properties:

(1) g(k, 2a) > eεA when k ≥ 0.
(2) When fixing k > 0, g(k, c) is monotonically increasing.

Property (1) holds, because when k ∈ [0,+∞):

g(k, 2a) = eεA
∫∞
0

(t+ k)
1
n−1t

1
n−1e

−εAt

a dt∫∞
0

(t+ k + 2a)
1
n−1t

1
n−1e

−εAt

a dt
> eεA > 1.

For each t ≥ 0, (t + k)
1
n−1 > (t + k + 2a)

1
n−1, hence the

division of the integral is larger than 1.

Property (2) holds, because when fixing k = k0 > 0, for
0 < c0 < c1 ≤ 2a we have

g(k0, c0)

g(k0, c1)

=
PK(k0)PK(k0 + c1)

PK(k0 + c0)PK(k0)

=e
εA(c0−c1)

2a

∫∞
0

(t+ k0 + c1)
1
n−1t

1
n−1e

−εAt

a dt∫∞
0

(t+ k0 + c0)
1
n−1t

1
n−1e

−εAt

a dt
< 1.

For each t ≥ 0, (t+k0+c1)
1
n−1 < (t+k0+c0)

1
n−1. Hence, the

division of the integrals is less than 1. Therefore, g(k0,c0)
g(k0,c1)

< 1,
that is equivalent to say g(k0, c0) < g(k0, c1) when c0 < c1.
Note that g(k, c) ≤ g(k, 2a) when c ∈ (0, 2a] and k > 0,

Next, we choose a pair of differential parameter (εL, δ)
and then show that the output of Ra

n,b is (εL, δ)-differentially
private. Pick kL an arbitrary value in (0,+∞) and set εL =
ln g(kL, 2a).

Then, partition R as R = R1 ∪R2, where

R1 = {k ∈ R| max
c∈(0,2a]

|ln g(k, c)| ≤ εL},

R2 = {k ∈ R| max
c∈(0,2a]

|ln g(k, c)| > εL}.

Set δ =
∫
k∈R2

PK(k) dk. Since | ln g(k, c)k→0| → ∞, there
are always some k satisfying | ln g(k, c)| > εL, hence R2 ̸= ∅
and δ > 0. When choosing (εL, δ) in such way, we can expect
that |ln g(k, c)| is bounded by εL with probability 1− δ, since
P[k ∈ R2] = δ. When kL ∈ (0,+∞), δ can take any value
between (0,∆) for some ∆ ∈ ( 12 , 1).

To show that Ra
n,b satisfies (εL, δ)-differential privacy, we

need to show that for any input pair x0 ̸= x1 and an arbitrary
set S ⊆ R

P[Ra
n,b(x0) ∈ S] ≤ eεLP[Ra

n,b(x1) ∈ S] + δ.

Define set S1 and S2 such that S = S1 ∪ S2 and

S1 = {Ra
n,b(x0)|K ∈ R1},

S2 = {Ra
n,b(x0)|K ∈ R2}.

Recall that the output of Ra
n,b(x) is K + x, given input x.

Henceforth, we have

P[Ra
n,b(x0) ∈ S] = P[Ra

n,b(x0) ∈ S1] + P[Ra
n,b(x0) ∈ S2]

= P[K + x0 ∈ S1] + P[K + x0 ∈ S2]. (5)

Because P[K + x0 ∈ S2] ≤ P[K ∈ R2], we have

(5) ≤ P[K + x0 ∈ S1] + δ. (6)

Further, since

P[K + x0 ∈ S1]

P[K + x1 ∈ S1]
=

∫
k+x0∈S1

PK(k) dk∫
k+x1∈S1

PK(k − x1 + x0) dk
≤ eϵL , (7)

which can be obtained from the definition of set R1.
Consequently, we have

(6) ≤ eεLP[K + x1 ∈ S1] + δ

≤ eεLP[K + x1 ∈ S] + δ
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= eεLP[Ra
n,b(x1) ∈ S] + δ,

which is what we need to prove.
The only remaining piece we need to prove is that ϵL > ϵA.

Since kL > 0, following Property (1), we have that eεL =
g(kL, 2a) > eεA . Thus, εL > εA.

APPENDIX D
ACCURACY ANALYSIS OF PROTOCOL AG

n,a,σ AND AL
n,a,b

Theorem 11. For any ε, δ ∈ (0, 1], n ∈ N+, X =
(x1, · · · , xn) ∈ [−a, a]n and 0 < β < 1, with probability
at least 1− β:

|AG
n,a,σ(X)−

n∑
i=1

xi| ≤
4a

ε

√
log

1

β
log

1.25

δ
.

Proof. As shown in Section III-C, AG
n,a,σ outputs

AG
n,a,σ(X) =

n∑
i=1

xi + NG, where NG follows N (0, σ2) and

σ =
2a
√

2 log (1.25/δ)

ε . We have NG = AG
n,a,σ(X) −

n∑
i=1

xi.

Define F (x) as the cumulative distribution function of NG

such that F (x) = 1
2 + 1

2erf(
x

σ
√
2
), where erf is the error

function of Gaussian distribution.
Set y as the value that satisfies 1− F (y) = β

2 . This is be-
cause we want to bound y that gives P [|NG| ≤ y] = 1−β. We
have F (y)−F (−y) = erf( y

σ
√
2
) = 1− β since erf is a odd

function. Solving the equation, y = erf−1(1−β) 4aε
√

log 1.25
δ .

For 0 < β < 1, as long as y ≤ 4a
ε

√
log 1

β log 1.25
δ , which

equivalents to

erf−1(1− β) ≤
√

log
1

β
, (8)

we have P
[
|NG| ≤ 4a

ε

√
log 1

β log 1.25
δ

]
≥ 1− β, and conse-

quently complete the prove.
To show how inequality (8) establishes, we first do some

transformation. Since erf is monotonically increasing in range
of (−∞,+∞), inequality (8) equivalents to erf(

√
log 1

β ) +

β−1 ≥ 0. Let function f(β) = erf(
√
log 1

β )+β−1. We can
prove that inequality (8) establishes by showing that f(β) ≥ 0
in (0, 1).

As f(1) = 0, f(β)β→0 → 0 and f( 12 ) > 0, f(β) ≥ 0 in
(0, 1) as long as it has only one extreme point in (0, 1). Let
derivative of function f equals to 0, we have the following
equivalent equations:

f ′(β) = 1− 2√
π
elog β 1

2β
√
ln 2
√
− lnβ

= 0

⇔
√
π ln 2

√
− lnβ = β

1
ln 2

−1

⇔ −π ln 2 lnβ = β
2

ln 2
−2.

Let function g(β) = β
2

ln 2−2 + π ln 2 lnβ. g(β)β→0 < 0,
g(1) > 0 and g(β) is monotonically increasing in range
of (0, 1). Therefore, g(β) = 0 has only one root in (0, 1).
Henceforth f(β) has only one extreme point in (0, 1).

Theorem 12. For any ε ∈ (0, 1), n ∈ N+, X =
(x1, · · · , xn) ∈ [−a, a]n and 0 < β < 1, with probability
1− β: ∣∣∣∣∣AL

n,a,b(X)−
n∑

i=1

xi

∣∣∣∣∣ ≤ 2a

ε
log

1

β
.

Proof. As shown in Section III-C, AL
n,a,b outputs AL

n,a,b(X) =
n∑

i=1

xi+NL, where NL follows Lap(b) and b = ∆f/ε = 2a/ε.

Since the fact that P [|NL| ≥ t ∗ b] = exp(−t), substituting
exp(−t) with β and b = 2a/ε, it follows

P
[
|NL| ≥

2a

ε
log

1

β

]
= β.

Therefore, the following conclusion can be drawn : for any
0 < β < 1, with probability 1− β,∣∣∣∣∣AL

n,a,b(X)−
n∑

i=1

xi

∣∣∣∣∣ ≤ 2a

ε
log

1

β
.

APPENDIX E
ACCURACY OF SHUFFLE PROTOCOLS

A. Accuracy analysis of protocols in [9]
Theorem 13. For all δ ∈ (0, 1), n ≥ 14log 4

δ , ε ∈
(
√
3456
n log 4

δ , 1), the standard deviation σ of [9]-bit protocol
P

0/1
n,λ is:

4

ε

√
5

3
log

4

δ
< σ <

6

ε

√
3 log

4

δ
.

Proof. The proof is divided to two parts by two cases of λ.
When ε ≥

√
192
n log 4

δ , λ = 64
ε2 log

4
δ ≤

n
3 , the lower bound of

standard deviation σ in this case is:

σ =
n

n− λ

√
λ

2
(1− λ

2n
)

>

√
λ

2
(1− λ

2n
) >

√
5λ

12

=

√
80

3ε2
log

4

δ
=

4

ε

√
5

3
log

4

δ
.

The upper bound of σ in this case is:

σ =
n

n− λ

√
λ

2
(1− λ

2n
)

≤ 3

2

√
λ

2
(1− λ

2n
) ≤ 3

2

√
λ

2

=
3

2

√
32

ε2
log

4

δ
=

6

ε

√
2 log

4

δ
.

Besides, when ε ∈ (
√
3456
n log 4

δ ,
√

192
n log 4

δ ), λ = n −
εn3/2√

432log(4/δ)
∈ (n3 , n−

√
8nlog 4

δ ). Then σ is:

σ =
n

n− λ

√
λ

2
(1− λ

2n
) =

1

ε

√
432log

4

δ

√
λ

2n
(1− λ

2n
).

For λ
2n ∈ ( 16 ,

1
2 (1−

√
8
n log

4
δ )), the lower bound of σ is:

σ =
1

ε

√
432log

4

δ

√
λ

2n
(1− λ

2n
)
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>
1

ε

√
432log

4

δ

√
5

36

=
2

ε

√
15log

4

δ
.

The upper bound of σ in this case is:

σ =
1

ε

√
432log

4

δ

√
λ

2n
(1− λ

2n
)

<
1

ε

√
432log

4

δ

√
1

4
− 2

n
log

4

δ

<
1

ε

√
108log

4

δ
=

6

ε

√
3 log

4

δ
.

Above all, σ ∈ ( 4ε

√
5
3 log

4
δ ,

6
ε

√
3 log 4

δ ).

The standard deviation of [9]-real protocol can be derived
from that of [9]-bit. The error of [9]-real is introduced from
two parts: random rounding and random response. Take the
upper bound of the standard deviation of [9]-real as example,
σ <

√
n
r + 12

ε

√
6 log 2

δ log
8r
δ , where the maximum random

rounding error is 1
r . The value of r is ε

√
n in [9], while this

setting cannot always yield the best accuracy. Let f(r) =
√
n
r +

12
ε

√
6 log 2

δ log
8r
δ , then we have

f ′(r) = −
√
n

r2
+

6

rε

√
6 log

2

δ

1

log (8r/δ)
,

and f ′′(r) = 2
√
n

r3 −
3

r2ε

√
6 log 2

δ

(
log 8r

δ

)−3/2
> 0. f ′(1) > 0

when ε < 6
√
6 log 2

δ
1

n log (8/δ) , so f(1) is the minimum value
of f(r). Thus, when ε is sufficient small, r = 1 yields better
accuracy than r = ε

√
n.

B. Accuracy analysis of protocols in [8]
Theorem 14. For ε ∈ (0, 1), δ ∈ (0, 2e−27/14), n ≥
112 log (2/δ)

ε2 , and X = (x1, · · · , xn) ∈ [0, 1]n, [8]-real pro-
tocol Pc,k,n satisfies

MSE(Pc,k,n(X)) < 19
n1/3

ε4/3
log2/3

1

δ
.

Proof. According to the derivation in paper [8], the mean
squared error of Pc,k,n protocol is:

MSE(Pc,k,n(X)) ≤ n

(1− γ)2

(
1

4k2
+

c(k + 1)

2n

)
.

Choosing k = (n/c)1/3, then γ = 1
k2 + 1

k3 . Combined
c < n, we can obtain:

MSE(Pc,k,n(X)) ≤ 1

(1− γ)2

(
3

4
c2/3n1/3 +

1

2
c

)
<

1

(1− γ)2

(
5

4
c2/3n1/3

)
=

5

4
c2/3n1/3

(
1 +

k + 1

k3 − k − 1

)2

=
5

4
c2/3n1/3

(
1 +

1
k3

k+1
− 1

)2

.

As n ≥ 112 log (2/δ)
ε2 and k = (n/c)1/3, we have k ≥ 2, then

1 +
1

k3

k+1 − 1
≤ 1 +

1
8
3 − 1

=
8

5
.

When δ ∈ (0, 2e−27/14), c = 14
ε2 log 2

δ . Substituting the
value of c, we can obtain:

MSE(Pn,γ(X)) <
5

4

(
8

5

)2

c2/3n1/3

<
5

4

(
8

5

)2

142/3
n1/3

ε4/3
log2/3

2

δ

< 19
n1/3

ε4/3
log2/3

2

δ
.

Thus yields the bound in the statement of the theorem.

Theorem 15. For ε, δ ∈ (0, 1), n ≥ 112 log (2/δ)
ε2 , k =

(n/c)1/3, X = (x1, · · · , xn) ∈ [0, 1]n , γ > 16
3n log 2

β and
β ∈ (0, 1), the [8]-real protocol Pc,k,n satisfies

P

[∣∣∣∣∣Pc,k,n(X)−
n∑

i=1

xi

∣∣∣∣∣ > 2n
1
6

ε
2
3

log
1
3
2

δ

√
19 log

2

β

]
< β.

Proof. Let di denote the random variable 1
kR(xi)− γ

2 − (1−
γ)xi. It has maximum 1− γ

2 < 1 and minimum γ
2 − 1 > −1

and E[di] = 0, V[di] = V[yi/k].
The variance of y/k is V[y/k] = E[(y/k)2] − (E[y/k])2.

We firstly obtain the expectations of y/k and (y/k)2. Observe
that the expectation of y/k is:

E[y/k] = (1− γ)E[x/k] + γ

k + 1

k∑
i=0

i

k
= (1− γ)x+

γ

2
.

Similarly, We can obtain the expectation of (y/k)2:

E[(y/k)2] = (1− γ)E[(x/k)2] + γ

k + 1

k∑
i=0

(
i

k

)2

=
1

k2
(1− γ)(−(xk − ⌊xk⌋)2 + (xk − ⌊xk⌋)

+ (xk)2) +
2k + 1

6k
γ.

So that the variance of y/k can be computed as:

V[y/k] =E[(y/k)2]− (E[y/k])2

=
1

k2
(1− γ)

(
−(xk − ⌊xk⌋)2 + (xk − ⌊xk⌋) + (xk)2

)
+

2k + 1

6k
γ − (1− γ)2x2 − γ(1− γ)x− γ2

4
.

Because xk − ⌊xk⌋ ranges in [0,1), we can get the lower
bound of the variance V[y/k]:

V[y/k] ≥ γ(1− γ)(x2 − x) +
2k + 1

6k
γ − γ2

4

≥ −1

4
γ(1− γ) +

2k + 1

6k
γ − γ2

4

= (
1

12
+

1

6k
)γ >

1

12
γ.

From the Bernstein’s inequality8, if the variance V[yi/k] is

larger than 4
9n log 2

β , we can get P
[∣∣∣∣ n∑

i=1

di

∣∣∣∣ > α0

]
< β, where

α0 = 2
√
V[di]n log 2

β . The variance satisfies V[yi/k] >

8If x1, · · · , xn are independent random variables, each with mean 0,
variance σ2 > 4

9n
log 2

β
, and bounded in [−1, 1], then for every β > 0:

P
[∣∣∣∣ n∑

i=1
xi

∣∣∣∣ > 2σ
√

n log 2
β

]
< β.
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4
9n log 2

β , which is equally to make sure the lower bound of
the variance satisfies above condition, i.e. 1

12γ > 4
9n log 2

β .
Thus we have γ > 16

3n log 2
β .

Now consider the relationship between
∑
i

di and

Pc,k,n(X)−
∑
i

xi. Observe that∑
i

di =
∑
i

yi/k −
nγ

2
− (1− γ)

∑
i

xi

1

1− γ

∑
i

di =
1

1− γ

(
n∑

i=1

yi/k −
nγ

2

)
−
∑
i

xi

= Pc,k,n(X)−
∑
i

xi.

Thus the inequality P
[∣∣∣∣Pc,k,n(X)−

n∑
i=1

xi

∣∣∣∣ > α

]
< β is

equal to P
[

1
1−γ

∣∣∣∣ n∑
i=1

di

∣∣∣∣ > 1
1−γα0

]
< β , such that we have

α =
1

1− γ
α0

=
2

1− γ

√
V[yi/k]n log

2

β

< 2

√
19

n1/3

ε4/3
log2/3

2

δ
log

2

β

=
2n

1
6

ε
2
3

log
1
3
2

δ

√
19 log

2

β
.

Finally, we get the following conclusions that

P

[∣∣∣∣∣Pc,k,n(X)−
n∑

i=1

xi

∣∣∣∣∣ > 2n
1
6

ε
2
3

log
1
3
2

δ

√
19 log

2

β

]
< β.

C. Accuracy analysis of protocols in [29]
Theorem 16. For any ε > 0, β ∈ (0, 1), n ∈ N, q = ⌈2n3/2⌉,
p =
√
n and α = e−ε/p, the protocol P of [29]-real-2 that is

(α, β)-accurate satisfies:

α =

√
1

β

(
2

ε2
+

1

4
+ 5n2e−

εn
2

)
Proof. From Chebyshev’s Inequality, we have that for
a random variable X and any real number a > 0,
P [|X − E(X)| ≥ a] ≤ V[X]

a2 . Since the protocol is not com-
pletely unbiased, the expectations of the output deviate some-
what from the sum of the inputs. For ease of computation, we
approximate the protocol as an unbiased private summation,

i.e. E(X) =
n∑

i=1

xi. As shown in [29], the private summation

of [29]-real-2 protocol has MSE(P)≤ 2
ε2 +

1
4 +5n2e−

εn
2 . The

MSE is equal to the variance in unbiased case.
Suppose the input is X = (x1, · · · , xn) and the output is

P (X), for any β ∈ (0, 1) and real number α, the protocol
satisfies:

P

[∣∣∣∣∣P (X)−
n∑

i=1

xi

∣∣∣∣∣ ≥ α

]
≤ MSE(P )

α2
= β.

Thus, α2 = MSE(P )
β , i.e. α =

√
1
β

(
2
ε2 + 1

4 + 5n2e−
εn
2

)
.

D. Accuracy analysis of protocols in [30]

Theorem 17. For any ε > 0, δ, β ∈ (0, 1), n ∈ N, the protocol
P of [30]-real that is (α, β)-accurate satisfies:

α =

√
1

β

(
1

300n
+

2000

ε2
log

1

δ

)
,

Proof. From Chebyshev’s Inequality, we have that for
a random variable X and any real number a > 0,
P [|X − E(X)| ≥ a] ≤ V[X]

a2 . Since the protocol is not com-
pletely unbiased, the expectations of the output deviate some-
what from the sum of the inputs. For ease of computation, we
approximate the protocol as an unbiased private summation,

i.e. E(X) =
n∑

i=1

xi.

As shown in [30], the private summation protocol P has
error of two parts. First, the mean squared error of rounding
is at most 1

3k2 . Secondly, the mean squared error when the
randomizer submits a random value from Discrete Laplace
distribution is at most 1

k2 · 2p(1+p)
(1−p)2(1+p−2p(N+1)/2 .

k = 10n, p = 1− ε
10k = 1− ε

100n , N = 3kn+ 10
δ + 10

ε =
30n2 + 10

δ + 10
ε , q = 10

n log 1
δ .

2p(1 + p)

(1− p)2(1 + p− 2p(N+1)/2)
<

2(1− p)

(1− p)2(1 + p− 2p)

=
2

(1− p)2

The MSE of the output of the protocol is:

MSE(P ) ≤ n

(
1− q

3k2
+

2q

k2(1− p)2

)
<

n

k2

(
1

3
+

2q

(1− p)2

)
=

1

100n

(
1

3
+

20

n
(
100n

ε
)2 log

1

δ

)
=

1

300n
+

2000

ε2
log

1

δ

Suppose the input is X = (x1, · · · , xn) and the output is
P (X), for any β ∈ (0, 1) and real number α, the protocol
satisfies:

P

[∣∣∣∣∣P (X)−
n∑

i=1

xi

∣∣∣∣∣ ≥ α

]
≤ MSE(P )

α2
= β.

Thus, we have that α2 = MSE(P )
β , i.e.

α =

√
1

β

(
1

300n
+

2000

ε2
log

1

δ

)
.

APPENDIX F
AGGREGATION PCA PROTOCOL AND CENTRAL PCA

PROTOCOL

Principal Component Analysis (PCA) is a statistical tech-
nique used for dimensionality reduction, transforming high-
dimensional data into a lower-dimensional form by identifying
and preserving the most significant patterns or variations
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in the data. It achieves this by extracting orthogonal linear
combinations (principal components) of the original variables
based on their variances.

We implement the central PCA algorithm [35] in the aggre-
gation model. Since both implementations perform the same
operations, the aggregation PCA protocol shares the same
accuracy as that of the central PCA algorithm [35]. For clarity,
we compare the central algorithm and our aggregation PCA
protocol as follows.

The central PCA algorithm takes as input an n×m matrix
A and outputs the first k principle components of A. In the
computation, the algorithm first computes the noised covari-
ance matrix for A, i.e., M = ATA+E, where E is an m×m
symmetric noise matrix whose upper triangle elements are
i.i.d. sampled from an univariate normal distribution N (0, σ2),
and each lower triangle is copied from its upper triangle
counterpart. The variance σ2 is determined by the privacy
parameters ϵ and δ. Then, the algorithm computes the first
k eigenvectors Wk of the noised covariance matrix M and
then returns AWk as the first k principle components of A.

In the scenario of aggregation model, there are n users,
where each user holds the i-th row of the matrix A, denoted
as Ai. When executing the protocol, each local randomizer
sends AT

i Ai + Ei to the aggregator, where Ei is an m ×m
symmetric noise matrix whose upper triangle elements are
i.i.d. sampled from an univariate normal distribution N (0, σ2

n ),
and each lower triangle is copied from its upper triangle
counterpart. Then, the aggregator computes and sends the

noised covariance matrix M =
n∑

i=1

(AT
i Ai +Ei) = ATA+E

to the analyzer. Finally, the analyzer computes the first k
eigenvectors Wk of the noised covariance matrix M and then
outputs AWk as the first k principle components of A.

APPENDIX G
SPDZ

SPDZ is a secret-sharing based secure multiparty computa-
tion (SMC) scheme over a finite field. It consists of two-phase:
a pre-processing phase and an online phase. As a notable
feature, SPDZ provides highly efficient secure addition and
secure multiplication in the online phase. In addition, SPDZ
offers a strong security guarantee: it is UC secure against a
static, active adversary corrupting up to d− 1 parties.

In the pre-processing phase, SPDZ generates random values
independent of the computational task and these random
values are used to authenticate the input value x. In SPDZ, a
authenticated value x ∈ Fp is defined as follow:

[[x]] = (x1, · · · , xn,m
(x)
1 , · · · ,m(x)

n ,∆1, · · · ,∆n),

and each party Pi holds a sharing tuple [[x]]i = (xi,m
(x)
i ,∆i)

such that:

x =
n∑

i=1

xi m(x) =
n∑

i=1

m
(xi)
i ∆ =

n∑
i=1

∆i.

Value x is authenticated by MAC m(x) = x ·∆. ∆ is the
MAC key and each party Pi holds a fixed shared MAC key
∆i. When x is revealed, each party computes and broadcasts

m
(x)
i −x ·∆i, and then verifies if

n∑
i=1

(m
(x)
i −x ·∆i) equal to

0. If not, the party terminates the execution.
In the online phase, each party performs efficient compu-

tation using its shares. One benefit of SPDZ is that online
addition can be computed locally by each party, thus reducing
the interaction between the parties. The following SPDZ online
primitives will be used in our instantiation:

Jx+ yK← JxK + JyK : sum the shared values JxK and JyK.
Each party Pi computes Jx+yKi = Jxi+yi,m

(x)
i +m

(y)
i ,∆iK.

Ja + xK ← a + JxK : add a value a to JxK. P1 computes
Ja + xK1 = Jx1 + a,m1 + a∆1,∆1K, each other party Pi

computes Ja+ xKi = Jxi,mi + a∆i,∆iK.
reveal(JxK) : reveal the value of x. Each party Pi broad-

casts the shared value xi to the rest of all, and then computes
n∑

i=1

xi. If not passing the verification, the party rejects the

revealed value and terminates the execution.
output(JxK) : output the computation result at the end of the

protocol. After executing reveal(JxK) among all parties, each
party verifies the MAC of x. If not passing the verification,
the party rejects the computation result and terminates the
execution.

APPENDIX H
AGGREGATOR PROTOCOL

We show the workflow of the protocol as follows. In the
protocols, we have a set of n randomizers (Rs) and a set of d
aggragators (Gs). Each randomizer is responsible for adding
noise to its data locally. After the data has been randomized,
the randomizers secrete-share the randomized data among
the aggragators, who securely combine them and output the
summation. The protocol consists of four phases: initialization
phase, offline phase, collection phase and aggragation phase.
We explain each phase as follows.

The intialization phase runs once when setting up the data
sharing system. In this phase, randomizers and aggregators
negotiate parameters to be used in the protocol. The parties
firstly agree on a finite field Fp, which functions as the basis of
data representation. Two parameters determines the modulus
p : 1) L, which is the number of bits needed to represent
the fixed-point randomized data, and 2) M , e.g. 8192, which
is used by the BGV somewhat homomorphic encryption [44]
used by SPDZ. Concretely, p chosen by parties is a L-bit
prime number and M divides p − 1. Secondly, parties make
a consensus about the aggregation algorithm, users number
n, the input field [−a, a] and privacy parameters ε, δ. The
noise added in each algorithm is determined by users number
n and parameter c (in Protocol 2), which is σ in Gaussian
summation algorithm, and b in Laplace summation algorithm.
The parameter c is determined by the privacy parameter and
input field. Thirdly, parties need to define the precision l of
the output. The precision l is the reserved fractional bits of a
fixed-point randomized data.

In the offline phase, the aggregators run the pre-processing
protocol of SPDZ. Additionally, they also generate random
values used in the collection phase. r ∈R Fp means the random
value r is in the finite field Fp . We recall the offline protocol
Rand() in Protocol 1, which is originally proposed in [46].
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Protocol 1: Rand()

Result: JrK, where r ∈R Fp

1 for i = 1; i ≤ d; i++ do
2 Aggregator Gi samples ri ∈R Fp, and calls FJ·K with

(input, ri, Pi);
3 All Gi obtains JriK;
4 end
5 return JrK =

∑d
i=1JriK;

Protocol 2: Data Collection
Input: n randomizers Rs’ data {xi}i∈[n] where xi ∈ R; the

agreed aggregation algorithm Asum with parameter c.
Result: The aggregators Gs obtain shares of randomizers’

randomized data.
1 Each Ri does the following:
2 Let yi ← Asum.Ra

n,c(xi);
3 Let yi ← ⌊yi · 2l⌋;
4 Run Share(yi) with the aggregators Gs;

In the collection phase, each randomizer randomizes its data
and then truncates the noised data to predefined precision, as
shown in Protocol 2 (lines 1 – 3). After randomization, each
randomizer runs the sub Protocol 3 among all the aggregators.
Concretely, aggregators Gs send additive shares of JrK to
the randomizer (lines 2). The randomizer sums the shares to
get r (lines 3) and broadcasts the subtraction of r from its
randomized data x to all aggregators Gs (lines 4). In this
way, aggregators Gs obtain the shares of mac and value of
x without revealing their mac key shares to the randomizer.
Also, unless analyzers control the randomizer, they will know
nothing about the individual data except what leaks from the
final summation.

After finishing data collection from all of n randomizers
Rs, aggregators Gs begin the aggregation phase, which is
shown in Protocol 4. In the first place, each aggregator G sums
the n shares from randomizers Rs locally (lines 1 – 4). This
simple short-bits summation requires little computation power

Protocol 3: Share(x)
Input: The randomizer R’s input is x.
Result: The aggregators Gs obtain JxK

1 Aggregators G run the offline Protocol 1 Rand() to obtain
JrK;

2 Gi send ri to R;
3 R calculates r =

∑
ri;

4 R broadcasts x− r to all G;
5 G obtains JxK = JrK + x− r;

Protocol 4: Aggregation(Jx0K, · · · , Jxn−1K)
Input: Jx0K, · · · , Jxn−1K, the shared value from n

Randomizers.
Result: A aggregated value z.

1 JzK = 0;
2 for i = 0; i ≤ n− 1; i++ do
3 JzK = JzK + JxiK;
4 end
5 Return z ← output(JzK);

and nearly no memory. Conceptually, this local step of the
aggragation phase can be parallelly done with the collection
phase. When completing addition, all of aggregators Gs run
the SPDZ protocol output() (line 5, We show how this works
in the SPDZ section of appendix) . Protocol output() verifies
the final result z and only requires several rounds of interaction
with little communication bandwidth.

Protocol Security Our protocol can be trivially proven
secure against malicious adversary who statically corrupts up
to d−1 aggregators Gs. The protocol is proven modularly in a
hybrid model, as shown in many proofs. Concretely, an already
proven secure sub-protocol that is used in our protocol can be
replaced by an ideal functionality. The security of the SPDZ
protocol has been proven in [40], [41], and that of Rand()
has been proven in [46]. Since our protocol is a combination
of this sub-protocol, the security of it is obvious.


