
Forging tropical signatures

Lorenz Panny

Technische Universität München, Germany
lorenz@yx7.cc

Abstract. A recent preprint [3] suggests the use of polynomials over a
tropical algebra to construct a digital signature scheme “based on” the
problem of factoring such polynomials, which is known to be NP-hard.
This short note presents two very efficient forgery attacks on the scheme,
bypassing the need to factorize tropical polynomials and thus demonstrat-
ing that security in fact rests on a different, empirically easier problem.

Keywords: Cryptanalysis, tropical algebra, digital signatures, factorization.

1 Introduction

Tropical algebra is concerned with the min-plus semiring, or tropical semiring : an
algebraic structure over the extended reals defined by the two binary operations
“min” and “+”. Multiple candidate cryptographic constructions using the tropical
semiring in various ways have been suggested in a series of papers starting about
ten years ago, and, to a large extent, broken. Readers may wish to consult the
introduction of [2] for an overview of past proposals and corresponding attacks.

The most recent proposal [3] in the tropical-cryptography family is a signature
scheme building on multiplication of polynomials over the tropical semiring. In
this note, we give two fairly simple, yet very effective forgery attacks against the
scheme and show that the attacker is in fact not required to solve the claimed
hard problem underneath the construction. We provide implementations of both
attacks, confirming that they work in practice.

These results also highlight the need for clear problem statements and unam-
biguous claims concerning the relationships between them: The signature scheme
of [3] may be “based on” the factorization problem for tropical polynomials in
the sense that it is inspired by that problem. However, there is no known result
indicating that breaking the signature scheme is as hard as factoring tropical poly-
nomials (e.g., a reduction from that factoring problem to breaking the EUF-CMA
security of the scheme), and indeed, our attacks strongly suggest the opposite.

As a side remark, we also note that the emphasis of [3] on the NP-hardness
of factoring tropical polynomials misses the point: Cryptography requires com-
putational problems that are hard for almost all instances, while the notion of
NP-hardness only says something about the hardest, possibly very few instances.
See the classic paper [5] for an informal overview of average-case complexity.
∗ Date of this document: 2024-01-13.



Parallel and subsequent work. Soon after this note first appeared online,
a larger set of attacks against [3] and some countermeasures (insufficient to
prevent all known attacks) were presented in [1]. Yet another attack which was
not covered by [1] was presented in [6]; it bypasses the countermeasures of [1] too.

1.1 Tropical polynomials

The tropical semiring is defined as the set R∪{+∞} with two binary operations
a⊕ b = min{a, b} and a⊗ b = a+ b. With this, tropical polynomials are simply
symbolic expressions of the form

f(x) = c0 ⊕ (c1⊗x)⊕ (c2⊗x⊗2)⊕ · · · ⊕ (cn⊗x⊗n)

where x is a variable and the coefficients c0, ..., cn lie in the tropical semiring;
they too form a semiring under the operations ⊕ and ⊗ extended to polynomials
in the usual way. Note that “missing” coefficients are interpreted as +∞.

Example 1. In more usual notation, f(x) = min{c0, c1 +x, c2 +2x, ..., cn +nx}.

Example 2. The tropical polynomial product f(x)⊗ g(x) has coefficients c0 + c′0,
min{c0 + c′1, c1 + c′0}, min{c0 + c′2, c1 + c′1, c2 + c′0}, etc., where ci and c′j are the
coefficients of f(x) and g(x) respectively. Generally, the kth coefficient equals

min
{
ci + c′k−i : i ∈ {0, ..., k}

}
.

Remark 3. Beware that there are at least two notions of “tropical polynomial”
in the literature: One is the algebraic viewpoint employed in [3] and here. The
other identifies polynomials with the functions they define on R. In the latter
formalism, all tropical polynomials split uniquely into linear tropical polynomials
and the factors can be found in polynomial time; see for instance [4].

1.2 Signatures from tropical polynomials

The signature scheme proposed by [3] features two integer parameters d and r;
the values suggested in [3, § 4] are d = 150 and r = 127. Let Td,r denote the set
of tropical polynomials of degree d and with all coefficients in {0, ..., r} ⊆ Z, and
let H be a collision-resistant hash function from bit strings to Td,r.

The public key is a tropical product M = X ⊗Y , where (X,Y ) are tropical
polynomials sampled uniformly from Td,r. A valid signature for a message m is
a triple (S1, S2, N) of tropical polynomials with S1, S2 ∈ T3d,3r and N ∈ T2d,2r,
such that S1⊗S2 = P ⊗P ⊗M ⊗N where P = H(m); in addition, neither S1

nor S2 may be a constant (tropical) multiple of P ⊗M or P ⊗N .
For the sake of completeness, here is how [3] computes such a signature using

the private key (X,Y ) ∈ Td,r × Td,r: Sample U, V ← Td,r and let N := U ⊗V .
The signature is (P ⊗X ⊗U, P ⊗Y ⊗V, N).

Remark 4. By definition (cf. Example 2), multiplying a tropical polynomial by a
constant amounts to shifting each coefficient by that constant. Hence, constant
multiples can easily be detected using ordinary subtraction on the coefficients.

2



2 The attacks

The problem of recovering a secret key for a given public key really is factoring
(with some extra constraints on the degree and coefficient sizes). However, the
problem of forging a signature gives significantly more power to the attacker:
Their task is to factor when another factorization is already known!

In more detail, recall that a signature consists of a triple (S1, S2, N) of
tropical polynomials such that S1 ⊗ S2 = P ⊗ P ⊗M ⊗ N , where M is the
public key and P is a hash value of the message encoded as a tropical polynomial
in a suitable way. Setting S1 = P ⊗M and S2 = P ⊗N solves the verification
equation but clearly does not require knowledge of the secret; hence, this pair
and its constant (tropical) multiples are excluded as “trivial forgeries” in [3].
However, in tropical algebra, polynomial multiplication is highly non-cancellable,
and a tropical polynomial typically has a very large number of distinct product
decompositions. All attacks explained in the sequel are based on different methods
of discovering new product decompositions starting from a given one.

Note that we focus on the most basic version of each attack for simplicity, and
that the forged signatures produced by those methods look rather different from
honestly generated signatures. We can (and will) however speculate that any
particular method of detecting forgeries can be fooled by carefully combining and
adjusting the basic forgery techniques. Indeed, since chaining these basic strategies
may prove useful, it is helpful to view them not just as one-shot forgery attacks,
but as transformations on pairs (S1, S2) of tropical polynomials which produce
another pair (S′

1, S
′
2) such that S′

1⊗S′
2 = S1⊗S2, while preserving superficial

properties like the degrees and bounds on the coefficients.

2.1 Warmup: “Trivial forgeries”

The most trivial forgery would be (P ⊗M, P ⊗N, N) for any N with the correct
degree and coefficient bounds. A mild generalization is to (tropically) multiply
the three components by constants in such a way that the verification equa-
tion and coefficient bounds remain satisfied; this yields signatures of the form
(c1⊗P ⊗M, c2⊗P ⊗N, c1⊗ c2⊗N). Forgeries of this type are detected and
rejected by the verification algorithm specified in [3]. However, they form a big
part of the following stronger attacks in the sense that they provide the initial
product decomposition (S1, S2) = (P ⊗M, P ⊗N) of P ⊗P ⊗M ⊗N .

2.2 Attack #1: Morphing products

The starting point for the first attack is to recall Example 2 and notice that there
will almost certainly be coefficients ci and c′j in the inputs (S1, S2) which effectively
do not contribute to the result at all: Only the smallest sum ci + c′k−i in each
coefficient of the product matters; the remaining information disappears under the
minimum. This phenomenon is particularly pronounced for the middle coefficients,
where each minimum runs over a large number of individual sums ci + c′j .

3



Hence, the idea is to search for small modifications to the coefficients of both
S1 = P ⊗M and S2 = P ⊗N which do not spoil the final product. The simplest
conceivable approach is to first find a single coefficient ci in S1 such that setting
ci ← ci ± 1 preserves the product with S2, and then find a single coefficient c′j in
S2 such that setting c′j ← c′j ± 1 preserves the product with that modified S1.
Experimentally, for the parameter choices suggested in [3], there appears to be
plenty of freedom in S1 and S2 to produce a forgery that passes verification.

We stress again that there is no reason to stop at modifying a single coefficient
in each value by ±1 only; hence, the obvious countermeasure of banning values
of S1 and S2 which are “close to” P ⊗M or P ⊗N is insufficient.

2.3 Attack #2: Swapping divisors

The second attack is based on the simple observation that divisors of S1 can be
moved over to S2, and vice versa, without changing the value of the product
S1⊗S2. Notably, a full factorization of the respective polynomials is not needed,
and finding small-degree divisors appears to be significantly easier — if they exist.
Empirically, generic constraint solvers are capable of computing (or ruling out)
divisors of reasonably small degree very quickly; see Section 2.4.

Forging signatures thus works as follows: Search for a message such that P ⊗M
can be decomposed as D1⊗R1 with deg(D1) ≪ deg(R1). Once found, search
for a nonce N as in the legitimate signing algorithm that can be decomposed as
D2⊗R2 with deg(D2) = deg(D1). The signature is (D1⊗R2, D2⊗R1, N). In
practice, executing this forgery becomes a little easier by directly assembling N
with a suitable pre-existing known factor, rather than searching randomly.

2.4 Attack implementation

We provide Python code for both attack varieties, using the proof-of-concept
implementation of [3] to check that forgeries were successful. While the script
for attack #1 is entirely elementary, the script for attack #2 makes use of the
Python interface to the z3 solver [7] to find divisors of tropical polynomials up
to degree 5. (This cutoff was chosen pretty arbitrarily.)

Both attacks require no more than a few seconds of computation on average.
Code: https://yx7.cc/files/tropical-attack.tar.gz

References

[1] Daniel R. L. Brown and Chris Monico. More forging (and patching) of
tropical signatures. IACR Cryptology ePrint Archive 2023/1837. 2023. url:
https://ia.cr/2023/1837.

[2] Ivan Buchinskiy, Matvei Kotov and Alexander Treier. Analysis of four
protocols based on tropical circulant matrices. IACR Cryptology ePrint
Archive 2023/1707. 2023. url: https://ia.cr/2023/1707.

4

https://yx7.cc/files/tropical-attack.tar.gz
https://ia.cr/2023/1837
https://ia.cr/2023/1707


[3] Jiale Chen, Dima Grigoriev and Vladimir Shpilrain. Tropical cryptography
iii: digital signatures. IACR Cryptology ePrint Archive 2023/1475. 2023.
url: https://ia.cr/2023/1475.

[4] Nathan Grigg and Nathan Manwaring. An Elementary Proof of the Funda-
mental Theorem of Tropical Algebra. 2007. arXiv: 0707.2591.

[5] Russell Impagliazzo. “A personal view of average-case complexity”. In: Pro-
ceedings of Structure in Complexity Theory. 1995, pp. 134–147.

[6] Minsun Kim. “Tropical Santa” (2023 Christmas CTF). Blog post. url:
https://soon.haari.me/2023-christmas-ctf/#tropical-santa.

[7] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340. url: https://github.com/Z3Prover/z3.

5

https://ia.cr/2023/1475
https://arxiv.org/abs/0707.2591
https://soon.haari.me/2023-christmas-ctf/#tropical-santa
https://github.com/Z3Prover/z3

	Forging tropical signatures

