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Abstract
We present a deterministic synchronous protocol for binary Byzantine Agreement against a corrupt minority

with adaptive O(n · f) communication complexity, where f is the exact number of corruptions. Our protocol
improves the previous best-known deterministic Byzantine Agreement protocol developed by Momose and Ren
(DISC 2021), whose communication complexity is quadratic, independent of the exact number of corruptions.
Our approach combines two distinct primitives that we introduce and implement with O(n ·f) communication,
Reliable Voting and Weak Byzantine Agreement. In Reliable Voting, all honest parties agree on the same value
only if all honest parties start with that value, but there is no agreement guarantee in the general case. In
Weak Byzantine Agreement we achieve agreement, but validity requires that the inputs to the protocol satisfy
certain properties. Our Weak Byzantine Agreement protocol is an adaptation of the recent Cohen et al.
protocol (OPODIS 2022), in which we identify and address various issues.

1 Introduction
Byzantine Agreement (BA) is a fundamental problem in the domain of distributed computing. In the simplest
(binary) version of the BA problem, n parties start with some value in {0, 1} and wish to jointly agree on one
value while tolerating up to t < n/2 Byzantine (i.e., malicious) parties (Agreement.) If all honest parties start
with the same value, they must output that value (Validity.) See Definition 2.1 for the formal definition of BA.
The foundations of this field were laid by the pioneering work of Lamport, Shostak, and Pease [27] in the 1980s.
However, in recent years, we have witnessed the practical applications of BA in large-scale systems, mainly due
to recent advancements in blockchain protocols.

1.1 Our Result. This paper focuses on the communication complexity of deterministic binary BA. In
particular, we present the first protocol to achieve deterministic binary BA1 with adaptive O(n ·f) communication
complexity2 and near-optimal resilience t < ( 12 − ϵ)n, where f ≤ t is the exact number of faulty parties. This
constitutes a major improvement over the quadratic O(n2) communication bound achieved by previous work [29]
(For example, for executions where f is constant, our work achieves a linear communication bound.) It should
be noted that our protocol does not require knowledge of the exact value of f . For a comparison of our protocol
with existing work, please see Table 1.
Reliable Voting and Weak BA. To achieve deterministic BA with O(n · f) communication, we reduce
deterministic BA into two distinct problems, Reliable Voting (RV) and Weak Byzantine Agreement (WBA).
Then we provide protocols with O(n · f) communication for RV and WBA. Note that both RV and WBA are
problem definitions that we introduce. (In particular, our WBA definition is an appropriate extension of a WBA
definition appearing in previous work [15].)

Intuitively, in RV, every party starts with some value in {0, 1} and upon termination, every party outputs a
value v alongside some auxiliary information aux. What we wish RV to achieve is provable validity with respect
to a fixed Boolean predicate validate: If all honest parties have the same input value v, then they all output v
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1Note that for the binary case, BA and strong BA where parties must agree always on the initial input of some honest party, are

exactly the same. This is not trivially the case in the multivalued setting.
2As in related work, communication complexity refers to the number of words, where a word is a constant-size object.



Table 1: Comparison of existing literature with our work. We measure communication of all protocols in words,
where a word comprises a constant number of signatures and values.

Protocol Corruptions Communication Problem
Dolev and Strong [20] t < n O(n2 · t) Broadcast
Momose and Ren [29] t < n/2 O(n2) Agreement

Cohen et al. [15] t < n/2 O(n · f) Broadcast
Our ΠBA (Figure 1) t < (1/2− ϵ)n O(n · f) Agreement

along with aux such that (v, aux) satisfy validate. At the same time we must ensure that no malicious party can
output a different value v′ ̸= v and some auxiliary information aux′ that satisfy validate. See Definition 2.2 for
the formal definition of RV. In our RV construction, aux represents a proof that there exist n− t distinct digital
signatures on v, r (for some r = 1, . . . , n), in which case we call the respective Boolean predicate a “threshold
predicate”3. A keen reader might have already noticed that RV achieves the validity property of BA, however, it
does not achieve agreement (Nothing is guaranteed for the case where honest parties start with different values.)

For this, we make use of WBA. In WBA, each party now starts with some input value v along with some
auxiliary information aux and upon termination outputs a decision value. The protocol must satisfy agreement
and restricted validity, again with respect to a fixed Boolean predicate validate. Agreement is the same as for BA
with respect to the output values. Restricted validity requires that if all honest parties start with the same input
value v and auxiliary information aux such that (v, aux) satisfy validate, and no party starts with a different value
v′ ̸= v and some auxiliary information aux′ that satisfy validate, then all honest parties output v. See Definition 2.3
for the formal definition of WBA. Again, the validate predicate in our WBA construction will be the threshold
predicate.
BA from RV and WBA. One can observe the input requirements for WBA’s restricted validity are satisfied by
the output requirements guaranteed by RV’s provable validity, assuming they are both using the same predicate.
Clearly, this is not a coincidence. What our BA construction does is taking the input values of BA, runs them
through an RV protocol that enhances them with aux that satisfies the threshold predicate, whenever all honest
parties start with the same input. Then it runs the output pair (value and aux) through a WBA protocol to
guarantee agreement. The precise pseudocode of our proposed BA is in Figure 1.

Algorithm ΠBA(vi):
1: yrv, auxi ← ΠRV(vi)
2: yi ← ΠWBA(yrv, auxi)

return yi

Figure 1: Code of ΠBA for party pi.

We now state and prove our first theorem.

Theorem 1.1. (Byzantine Agreement from Reliable Voting and Weak Byzantine Agreement)
Let ΠRV be an RV protocol, as per Definition 2.2, with respect to a predicate validate. Let ΠWBA be a WBA
protocol, as per Definition 2.3, with respect to the same predicate validate. Then ΠBA from Figure 1 is a BA
protocol, as per Definition 2.1.

Proof. For validity, assume each honest party pi starts with value vi = v. The execution of ΠRV(vi) ensures that
all honest parties output (v, auxi) such that validate(v, auxi) = true. At the same time, no party generates an
output of (v′ ̸= v, auxi) where validate(v′, auxi) = true, as guaranteed by RV. In Line 2, all honest parties invoke
ΠWBA with the output (yrv, auxi) of ΠRV. Thus, based on the restricted validity property of WBA, all honest

3An implementation of this predicate could simply be a verification of n − t distinct signatures, although in our construction we
will be using other implementations of this predicate, e.g., through verification of succinct arguments.



Figure 2: Our implementation of Byzantine Agreement: We derive Byzantine Agreement from Reliable Voting
and Weak Byzantine Agreement, both w.r.t. to the Threshold Predicate. Reliable Voting is implemented via two
subprotocols: Polling and Rebuttal.

parties decide v. For agreement, ΠWBA achieves agreement independently of the input with which it is initialized.
Since ΠWBA is the last call of every honest party, the agreement property of ΠBA is guaranteed from the agreement
property of ΠWBA. Finally, termination follows trivially from the termination of ΠRV and ΠWBA.

Communication complexity and the use of silent phases. What is the communication complexity of
the above protocol? For one thing, naive implementations of RV or WBA easily lead to O(n2) communication
complexity, far from our stated goal of O(n ·f). For example, one can implement RV by having each party sign its
input and send its signature along with its input to all other parties, which will lead to quadratic communication
complexity. As mentioned before, to achieve our stated goal of O(n · f), it is essential for both RV and WBA to
maintain a communication complexity of O(n · f). This is the focus of our paper.

Towards this goal, both our proposals for RV and WBA follow the paradigm of silent phases, introduced by
Spiegelman [32]. In this paradigm, protocols execute over n round-robin phases, where each party is the leader
of its respective phase. Communication takes place only (1) from leader to parties and (2) from parties to leader.
In our work we also require that communication is restricted to a fixed connectivity structure—expander graphs
(Malicious parties can communicate with each other as they choose, but this communication is not counted in the
total communication.) Throughout each phase, the goal is for the leader to build and send out certificates, which
will ensure that the leader made all honest parties agree on the same output, which satisfies some additional,
protocol-specific properties. Once an honest leader has sent such a certificate, all subsequent honest leaders will not
invoke any communication during their respective phases, i.e., they remain silent. Since it typically takes f phases
for an honest leader to be picked (and nobody speaks after that) and each phase typically causes the communication
of O(n) words (due to expander graphs), protocols in this paradigm achieve O(n · f) communication.
Constructing RV: Polling and Rebuttal. Our RV protocol with respect to the threshold predicate consists
of two subprotocols, Polling and Rebuttal—see Figure 2.

The goal of the Polling protocol is for honest parties to agree on a first estimation on who has signed which
value. In particular, in Polling, each party starts with an input value and must output a ballot and potentially an
accusation list. The accusation list is a subset S of [n] and the ballot contains two counters, count0 and count1,
a commitment (hash) HA, and a proof to verify the proper construction of the counters and the hash. Not only
does Polling guarantee honest parties agree on the same ballot, but it also ensures (1) count0 corresponds to the
size of some set S0 ⊆ [n] − S of parties that signed value 0, r; (2) count1 corresponds to the size of some set
S1 ⊆ [n] − S of parties that signed value 1, r; (3) S0 ∪ S1 ∪ S = [n]; (4) HA is a commitment to the output
accusation list (The accusation list, therefore, contains parties that are still unaccounted for and Polling ensures
at least one honest party outputs it.) We note here that while honest parties can be assured about the validity
of ballots by actually verifying the set of all involved signatures and checking all conditions above, this would be
very communication inefficient. Instead, Polling uses succinct arguments (SNARKs) [24], which are crucial for
achieving our final O(n·f) communication bound. We finally note that our proposed Polling protocol (see Figure 4)



is a leader-based process based on the silent phases paradigm, thus achieving communication complexity O(n ·f).
If one were to envision Polling as an untrustworthy voting process, then Rebuttal acts as an opportunity

for accused parties to redeem themselves. Because our implementation of Polling is leader-based, a malicious
leader might be able to construct verifiable ballots that selectively exclude signatures from honest parties. Thus,
a malicious adversary can bias the tallies of a seemingly correct ballot. In our implementation of Rebuttal (see
Figure 5), parties who were in the accusation list of the ballot output by Polling, get to send their own values
directly to the other parties. This is done efficiently by bounding the size of the accusation list to O(f), ensuring
that the communication does not exceed O(n · f). Ultimately, by the conclusion of Rebuttal, all honest parties’
initial values will be accounted for, thereby yielding provable validity as required by RV.
WBA Definition by Cohen et al. [15] versus our WBA definition. Our WBA definition resembles the
WBA definition of Cohen et al. [15] but differs in the validity property that is provided. In particular, Cohen
et al. [15] allow parties to output ⊥ if more than one valid values (according to a predicate) exist during the
execution. In our definition, we never output ⊥ and parties agree on a value v if there is only a single input v (to
the protocol) that satisfies the predicate (See Definition 2.3.) For example, in our definition, it might be the case
that all honest parties start with the same value v that satisfy the predicate, but another value v′ that satisfies
the predicate is also input to the protocol (e.g., as input of a malicious party). In this case our protocol will
guarantee agreement, but not necessarily on v. We note here that while delving into the details of the Cohen et
al. protocol [15], we discovered an attack that breaks the agreement property of their definition. In Appendix B
we present the attack and propose a fix. We do not prove the entirety of their protocol correct from scratch but
our own WBA protocol uses the idea behind our proposed fix.
Our WBA Protocol. Similarly to [15], our WBA protocol is constructed following the silent phases paradigm.
Abstractly, each non-silent phase of WBA executes four rounds of message exchanges between the leader and each
party. The goal of an honest leader is to convince the honest parties to agree with the honest leader’s proposal.
Each party has three states. neutral, committed, and decided. At the start of WBA parties are undecided. States
transfer across phases and are one-way: neutral parties can become committed and committed parties can become
decided, but no other switch occurs. A decided leader will remain silent.

Intuitively, in each round of a non-silent phase, a leader sends a proposal of some form. Depending on their
state and the leader’s proposal, parties might either reply to the leader or not. Depending on the number of replies
received, the leader might be able to construct a valid certificate to convince parties to change their state. Our
construction guarantees that if all honest parties start WBA with the same value and proof that the value satisfies
a pre-defined predicate, the leader can create valid certificates only on that value. This ensures restricted validity.
During the protocol, we use several primitives. We apply SNARKs, threshold signatures, and collision-resistant
hash functions to reduce the communication cost of the required proofs and certificates during each phase. This,
in conjunction with the use of expanders, facilitates the efficient dissemination of certificates between parties,
achieving the targeted O(n · f) word complexity.

1.2 Related Work. Byzantine agreement has a long history in the literature, dating back to the seminal
work of Shostak, Pease, and Lamport [27]. While their pioneering work [27, 30] introduced initial solutions, both
protocols suffered from exponential communication complexity. Subsequently, Dolev and Strong presented a
protocol with improved message complexity4 of O(n2 · t) [20], which was later proven to be optimal by Dolev and
Reishuk [18]. However, the optimal message complexity of O(n2) in the Dolev-Strong protocol came at the cost
of cubic communication complexity due to message length of O(t) signatures. Later, Momose and Ren proposed
a protocol with optimal O(n2) complexity [29].
Improved Communication Complexity. Nevertheless, quadratic complexity remains impractical for large-
scale applications. Recently, several lines of work have attempted to circumvent the quadratic complexity either
through randomization [2, 9, 25], which weakens the protocol guarantees to probabilistic ones and is inherently
insecure against a strong adaptive adversary, or optimistic execution [32, 23, 35, 6], where the expected complexity
is sub-quadratic under ideal conditions like synchronous execution and the absence of failures. Another line of
work is adaptive communication complexity [15, 32], which is the focus of this work and where the communication
complexity is expressed as a function of the exact number of malicious parties during the protocol execution, which

4It is noteworthy that the Dolev-Strong protocol directly achieves O(n2(f + 1)) adaptive message complexity, by performing the
communication analysis for the actual number of corruptions f , on a given run, instead of the upper bound t.



we denote by f . The work by Spiegelman [32] adapts the Dolev-Reishuk bound based on the actual number of
malicious parties, proving a more practical lower bound of Ω(ft + t), and presents a protocol that achieves
optimistic synchronous Byzantine agreement with an asynchronous fall-back algorithm that tolerates resilience
of t < n

3 . Cohen et al., [15] a Broadcast protocol with a communication complexity of O(n · f). To achieve
Broadcast, they introduce a Weak Byzantine Agreement protocol with O(n · f) communication, which they use
as a subroutine to achieve Broadcast. Both protocols tolerate t < n

2 . Note, this is not the optimal resilience for
authenticated broadcast, as it is known it can tolerate up to t < n malicious parties [20]. Another line of work
includes early-stopping protocols [19, 17, 3], which aim to achieve consensus in min{f +2, t+1} rounds, resulting
in communication complexity dependent on f . Table 1 shows a comparison of previous works with our result.
Concurrent Work by Civit et al. [14]. Concurrently with our work, Civit et al. [14] proposed a BA protocol
with O(n · f) communication complexity. This work appeared online after the SODA 2024 submission deadline.
Their approach is also based on silent phases and requires running a pre-processing protocol to create a constant-
size verifiable certificate (that a value is safe to vote on) so that validity is not violated later when running a
WBA. Both our protocols achieve comparable suboptimal resilience—achieving the same results with optimal
resilience t < n/2 remains an open problem. Note, their protocol is based on Cohen’s WBA [15], which we have
identified as having a vulnerability due to an attack on agreement.

1.3 Paper Roadmap. Section 2 provides definitions for BA, RV and WBA as well as for the cryptographic
primitives we employ such as SNARKs, threshold signatures and collision-resistant hash functions. Section 3
discusses the intuition and construction of the RV protocol. Section 4 presents the WBA protocol. The correctness
proofs of the protocols and some key lemmas are presented in Appendix A. Furthermore, the attack in the WBA
protocol proposed in [15] as well as our fix are presented in Appendix B.

2 Preliminaries
We consider a set of n parties, namely {p1, . . . , pn}, of which at most t < ( 12 − ϵ)n parties could behave
maliciously where ϵ ∈ (0, 1/2). We denote by f ≤ t the exact number of malicious parties. We assume that the
protocols operate through synchronous rounds, where there is a known upper bound on the message delays. The
communication network is deemed point-to-point, reliable, and authenticated. We consider an adaptive Byzantine
adversary; it may deviate arbitrarily from the protocol, and it has the freedom to corrupt parties dynamically
during the process, up to t parties. We assume the adversary to be computationally bounded that cannot break the
cryptographic primitives used with non-negligible probability. It is important to note that once a party deviates
from the protocol, it retains this status throughout the execution, thus called “malicious”. Conversely, a party that
does not become malicious throughout the entire execution is referred to as “honest”. Furthermore, we assume a
trusted public key infrastructure (PKI), where there exists a trusted party that generates a public/private key pair
(pki, ski) for each party pi and shares (pk1, . . . , pkn) and ski to each pi such that all parties hold the (same) vector
of public keys (pk1, . . . , pkn) but only pi knows the respective ski. Since our later constructions require SNARKs,
we further require the trusted party to share a Common Reference String (CRS) with all parties. We follow the
widely adopted notion of complexity employed in previous works [2, 29, 15], the so-called word complexity. The
communication complexity of a protocol is determined by the total number of words sent by all honest parties
throughout the execution of the protocol. Here, a word comprises a constant number of signatures and values,
and we assume that each message transmitted during the protocol contains at least one word.

2.1 Consensus Definitions. In this subsection, we define the primitives used to achieve Byzantine agreement.
Specifically, our study focuses on the binary Byzantine agreement problem, where possible values are restricted
to the set {0, 1}. Throughout the definitions presented, we use λ to denote the security parameter.

Definition 2.1. (Byzantine Agreement) Let Π be an n-party protocol, where each honest party pi starts with
initial value vi ∈ {0, 1}, and outputs value yi ∈ {0, 1}. A protocol Π achieves Byzantine Agreement, with up to t
malicious parties, if it achieves the following properties, except with negligible probability negl(λ):

• Validity: If all honest parties have initial value vi = v, all honest parties output yi = v;

• Agreement: All honest parties output the same value;

• Termination: All honest parties terminate.



As mentioned earlier, our approach involves constructing a Byzantine Agreement protocol through the
combination of a Reliable Voting protocol and a Weak Byzantine Agreement protocol. We define them formally.

Definition 2.2. (Reliable Voting) Let Π be an n-party protocol, where each honest party pi starts with initial
value vi ∈ {0, 1} and outputs value yi ∈ {0, 1} and auxiliary information auxi. Let validate(., .) be a Boolean
predicate on a party’s output. A protocol Π achieves Reliable Voting with respect to validate(., .), with up to t
malicious parties, if it achieves the following properties, except with negligible probability negl(λ):

• Provable Validity: If all honest parties have initial value vi = v, then (1) all honest parties output yi = v
and auxi such that validate(yi, auxi) = true and (2) no party outputs yj ̸= v and auxiliary information auxj
such that validate(yj , auxj) = true;

• Termination: All honest parties terminate.

Definition 2.3. (Weak Byzantine Agreement) Let Π be an n-party protocol, where each honest party pi
starts with input (vi ∈ {0, 1}, auxi), and outputs value yi ∈ {0, 1}. Let validate(., .) be a Boolean predicate on
a party’s input. A protocol Π achieves Weak Byzantine Agreement with respect to validate(., .), with up to t
malicious parties, if it achieves the following properties, except with negligible probability negl(λ):

• Restricted Validity: If all honest parties have input (vi = v, auxi) such that validate(v, auxi) = true, and no
party inputs (v′ ̸= v, auxi) such that validate(v′, auxi) = true, all honest parties output yi = v;

• Agreement: All honest parties output the same value;

• Termination: All honest parties terminate.

2.2 Cryptographic Primitives. In this section we introduce definitions for the various cryptograhpic
primitives that our protocols will be using.
Succinct Non-Interactive Arguments of Knowledge (SNARKs) [24]. Let R be an efficiently computable
binary relation that consists of pairs of the form (x,w) where x is a statement and w is a witness.

Definition 2.4. (SNARKs) A SNARK is a triple of PPT algorithms Π = (Setup,Prove,Verify) defined as
follows:

• Setup(1λ,R)→ crs: takes a security parameter λ and a binary relation R and outputs a common (structured)
reference string crs.

• Prove(crs, x,w)→ π : on input crs, a statement x and the witness w, outputs an argument π.

• Verify(crs, x, π) → 1/0: on input crs, a statement x, and a proof π, it outputs either 1 indicating accepting
the argument or 0 for rejecting it.

It also satisfies the following properties:

• Completeness: For all (x,w) ∈ R, the following holds:

Pr

[
Verify(crs, x, π) = 1

∣∣∣∣∣ crs← Setup(1λ,R)
π ← Prove(crs, x,w)

]
= 1

• Knowledge Soundness: For any PPT adversary A, there exists a PPT extractor ExtA such that the following
probability is negligible in λ:

Pr

[
Verify(crs, x, π)

∧R(x,w) = 0

∣∣∣∣∣ crs← Setup(1λ,R)
((x, π);w)← A ∥XA (crs)

]

• Succinctness: For any x and w, the length of the proof π is given by |π| = poly(λ, log |w|, log |x|).



Signature Schemes. We assume a signature scheme that supports threshold signatures [12, 31].

Definition 2.5. (Threshold signatures) An (n−t)-out-of-n threshold signature scheme is a tuple of efficient
algorithms (KeyGen, SignShare, VerShare, Combine, Verify) defined as follows.

• SS.KeyGen(λ, n, n − t): The randomized key generation algorithm takes as input the security parameter λ
and the number of parties n in the protocol, it outputs a public and secret key share (ski, pki) for each party,
and a public key pkss;

• SS.SignShare(x, ski): On input a message x and a secret key share ski, it outputs a signature share σi;

• SS.VerShare(pki, x, σi): On input a public key share pki, a message x, and a signature share σi, it outputs
1 if the signature is correct or 0 otherwise;

• SS.Combine((pk1, . . . , pkn), x, (σ1, . . . , σn−t)): On input a vector of public key shares (pk1, . . . , pkn), a
message x, and a set S of n− t signature shares (σi, i) (with corresponding indices), it outputs a signature
σ or ⊥;

• SS.Verify(pkss, x, σ): On input a public key pkss, a message x, and a signature σ. It outputs 1 if the signature
is correct or 0 otherwise.

The signature scheme should satisfy Unforgeability defined as follows:

Unforgeability: For any PPT adversary A that can corrupt up to t parties, given a share signing oracle
S, the following probability is negligible in λ:

Pr

[
σ′ ← A

SS.Verify(pkss,m
′, σ′) = 1 ∧m′ ̸= m

∣∣∣∣∣ (pkss, (pki, ski)i∈n)← SS.KeyGen(λ, n, n− t)

(m,σi)← AS(pki∈n)

]

Collision-Resistant Hash Functions. We use a cryptographic collision-resistant hash function Hash, which
maps an arbitrary length message to a fixed length output.

Definition 2.6. (Collision-Resistant Hash Functions) We say a family of hash functions H, is collision-
resistant if for a random Hash ∈R H it is hard for a polynomially bounded adversary to come up with two preimages
x ̸= y that collide (Hash(x) = Hash(y)).

Signatures and Hashing Notation. Throughout the paper, we use the abbreviated notation ⟨m⟩σi
to

refer to tuples (m, sigi(m)), where m is some message and sigi(m) is the valid signature on that message for
party pi with public key pki. We utilize the function Hash to compute the hash value of a list of public keys
pk1, . . . , pkr. To achieve this, we sort the list in ascending order and then hash the concatenation of the sorted list.

In Table 2 we provide an overview of the variables and predicates used across our protocols.

2.3 Expander Graphs. Our protocol in Section 3 and Section 4 uses expanders. Expanders are sparse graphs
with O(1) degree and have good connectivity.

Definition 2.7. (Expanders) Let α and β be constants satisfying 0 < α < β < 1. We define an (n, α, β)-
expander to be a graph of n vertices such that, for any set S of αn vertices, the number of neighbors of S is greater
than βn.

We use expanders as defined in [29], where α = 2ϵ, β = 1 − α, for constant ϵ ∈ (0, 1/2). In [29] they prove
that such expanders exist with non-negligible probability, and can be obtained with overwhelming probability
via a probabilistic algorithm within at most polynomially many attempts. We follow their notation and define a
(n, 2ϵ, 1− 2ϵ) expander graph as Gn,ϵ.

Note that the use of expanders does not directly render a protocol randomized. Our protocol shown later
is deterministic in the sense that every operation after initialization (e.g., cryptographic-keys generation) is
deterministic (e.g., there is no random committee election). The expander can be computed during initialization
(and provided by the trusted party) or be pre-calculated. In the latter case, the expander can serve multiple
executions of the protocol for the same number of parties.



Table 2: Variables and predicates used throughout all our protocols used by party pi.
Variable Definition

N Set of public keys belonging to the n parties.

ballot = ⟨r, count0, count1, HA, πballot⟩ r: phase number in which ballot was created;
count0: number of partis that have signed 0;
count1: number of parties that have signed 1;
HA: a hash of the list of public keys of accused parties;
πballot: a proof to verify consistency of (count0, count1, HA).

accList list of accused parties committed to by HA.

Ψi Data structure that holds all accList that pi has received with respect to ballot.
Ψi[ballot] retrieves accList if pi has received it, or ⊥ otherwise.

QCcommit Aggregate signature of n− t distinct signatures on ⟨ballot, r⟩ for ΠPolling.
Aggregate signature of n− t distinct signatures on ⟨v, r⟩ for ΠWBA.

Commit Certificate for ΠPolling/ΠWBA ⟨ballot, r,QCcommit⟩/⟨v, r,QCcommit⟩

QCdecide Aggregate signature of n− t distinct signatures on ⟨decide, ballot, r⟩ for ΠPolling.
Aggregate signature of n− t distinct signatures on ⟨decide, v, r⟩ for ΠWBA.

Decide Certificate for ΠPolling/ΠWBA ⟨decide, ballot, r,QCdecide⟩/⟨decide, v, r,QCdecide⟩.

ThresholdPredicate(v, aux) SNRK3.Verify(crs3, (v), aux) (SNRK3 is described in Section 3.2).

SafeVal(vr, auxr, vi, auxi, vcommit) true if vcommit =⊥ and(
ThresholdPredicate(vi, auxi) = false or ThresholdPredicate(vr, auxr) = true

)
.

3 Reliable Voting (RV)
In this section we propose a protocol ΠRV for RV—see Figure 3. Recall that in RV, each party starts with initial
value vi ∈ V, where V = {0, 1}, and generates output value yi ∈ V, along with auxiliary information auxi. As
mentioned earlier, RV plays a crucial role in ensuring validity for BA through its provable validity property. Our
ΠRV consists of two subroutines: the Polling protocol (Section 3.1) and the Rebuttal protocol (Section 3.2), as
depicted in Figure 3. Our ΠRV protocol is instantiated with respect to the Boolean predicate ThresholdPredicate.
Specifically, ThresholdPredicate(v, auxi) is set to true if auxi contains proof of the existence of n − t distinct
signatures (votes) on v, r for some r ∈ [n], where the proof here is constructed using SNARKs.

Algorithm ΠRV(vi):

1: balloti, accListi ← ΠPolling(vi)
2: yi, auxi ← ΠRebuttal(vi, balloti, accListi)

return (yi, auxi)

Figure 3: Code of ΠRV for party pi.

3.1 Polling. The Polling protocol (Figure 4) comprises two crucial steps: the leader-based step, which is built
upon the silent phases framework, and the processing step. In essence, the Polling protocol aims to tally parties’
initial values of the form ⟨vi, r⟩, where r is the current phase number, create a list of parties whose votes weren’t



counted, accList, provide proof of correct tallying, and share the result with everyone in the form of a ballot. By
the end of Polling, it is guaranteed that all honest parties agree on the same ballot, however, parties reach weak
agreement on accList; An honest party either outputs accListi = accused or ⊥, but no other honest party output
accListj ̸= accused.

During the leader-based step, each leader, if undecided, requests parties to send their initial values. A leader
pi is considered undecided if balloti =⊥. For a leader to create a ballot, the leader counts the initial values (votes)
received for each value ∈ {0, 1}, count0 and count1, and compiles a list of accused parties (accList) from whom the
leader allegedly did not receive votes, along with a hash of that list (HA). It is crucial for honest parties to ensure
that the initial values of accused parties are not included in the ballot’s count to avoid double counting in the
Rebuttal step. Therefore, the leader creates a proof πballot, which is included in ballot, that verifies three essential
properties: firstly, the tally (countv) for a specific value v is computed from the signed initial values sent by a set of
parties in Pv ⊂ N ; secondly, the aforementioned set of parties, along with the set of accused parties, are mutually
exclusive, and when combined, they form the complete list of all parties involved in the protocol (correctness
property in Theorem 3.1). Finally, the vote of party pj is included in the count of the respective value; pj is not
in accList. The ballot takes the form of ⟨r, count0, count1, HA, πballot⟩, and the leader sends ballot to each party pj .
An honest party first verifies the correctness of the proof and then signs the ballot to the leader. In the following
rounds, the leader attempts to get parties to decide on this ballot, which we discuss in detail in the next section.
Flexible Threshold. Constructing a ballot involves collecting initial values from parties and tallying them,
where the number of initial values included directly influences the size of the list of accused parties who are
claimed to have not provided values. Consequently, it becomes crucial to determine an appropriate threshold for
the minimum number of votes required to form a valid ballot. Failure to set a suitable threshold could result in a
substantial increase in communication complexity during the Rebuttal protocol, since the accused parties would
receive accusing messages from all parties during it, resulting in a communication complexity of O(n · |list|).
Naively, one might set the threshold to n− t. However, setting a fixed minimum threshold of n− t is not feasible,
as it would allow a malicious leader to manipulate the system by submitting a list of O(t) accused parties whose
values were not included in the tally, even if the leader received more than n− t initial values. This would result
in a quadratic complexity of O(n · t) in the Rebuttal protocol instead of O(n · f) even if f < O(t). To mitigate
this problem, we propose a novel idea of a flexible threshold.

In the first round, the leader attempts to construct an n-ballot consisting of initial values received from n
parties. If unsuccessful, it indicates the presence of at least one malicious party f ≥ 1, who is either the leader
or one of the n − 1 parties that did not send their initial value to the leader. In the second phase, the second
leader decreases the threshold by 1 and attempts to create at least an (n − 1)-ballot. If successful, it ensures
the existence of at least one malicious party from the previous phase. Otherwise, the protocol moves on to the
third phase, where the leader needs to collect n − 2 initial values. This process continues until phase n − t + 1,
where a created valid ballot should contain at least (n− t) votes. In subsequent rounds, the leader can only create
a ballot of the minimum threshold n − t. This flexible threshold concept ensures that the accused list can be
constructed without causing communication complexity to exceed O(n · f). Precisely, we prove in Lemma 4 that
the size of the accused list is at most 2f − 1. Furthermore, while this leader-based step is built upon the silent
phases framework, it is not guaranteed that it will only incur f + 1 non-silent phases. In other words, if there is
a phase r < f where the leader is honest and undecided, it is not certain that the leader will be able to create
a valid ballot and convince all honest parties to decide on it by the end of that phase. This uncertainty is due
to the flexible threshold, as a leader might not be able to collect sufficient initial values to meet the threshold
required for creating the ballot. Nevertheless, in Lemmas 3,2, we demonstrate that the run consists of at most
2f + 1 = O(f) non-silent phases, and at most f honest parties remain undecided.

Thus, the leader-based step is followed by a processing step, during which undecided parties send a help
request to all parties, seeking assistance from parties that have already made their decision to obtain the
agreed-upon ballot. This ensures that all parties reach a decision before Rebuttal. As the number of undecided
honest parties is bounded by f , the processing step incurs at most n(2f) communication, where the additional
f is due to the malicious parties.
Protocol Overview. The protocol consists of a leader-based part and a processing part. The former runs for n
phases, each phase involving four steps; prepare, pre-commit, commit and decide.
(prepare) In each phase, the leader remains silent if decided (balloti ̸=⊥). Otherwise, the leader seeks help by
sending ⟨value_req⟩σr to all parties. Upon receiving ⟨value_req⟩σr from the leader, if a party pj is committed to



a certain ballot, ballotcommit = ballot, in a previous phase, pj forwards ballot to the leader along with rankcommit
(the phase in which commit certificate was created), and πcommit (proof of the validity of the commit certificate).
The πcommit is n− t signatures on ⟨ballot, rankcommit⟩ (QCcommit). Otherwise, pj sends to the leader the initial value
⟨vj , r⟩σ, where r is the current phase number. Note, that including the phase number in the vote is important to
prevent malicious leaders from using votes from older phases to create a valid ballot.
(pre-commit) In case the leader receives multiple valid commit certificates ⟨ballot, rankcommit, QCcommit⟩ from
parties, where a commit certificate is considered valid if SS.Verify(pkss, ⟨ballot, rankcommit⟩, QCcommit) = 1, the
leader selects the one with the highest rankcommit. Subsequently, the leader proposes the corresponding ballot in
the commit certificate with the highest rank to the parties, accompanied by πcommit and rankcommit. Otherwise,
the leader uses the initial values received to form ballot. To create a ballot, the leader uses a collision-resistant
hash function (Definition 2.6) to form a hash HA on the list of parties that the leader accuses of not submitting
any votes. The leader also includes the count of the set of parties voted on 0, r and the set of parties voted on
1, r. Furthermore, the leader provides evidence to validate the legitimacy of the generated ⟨count0, count1, HA⟩
by including a proof πballot. Let SNRK1 be a SNARK system per Definition 2.4. The leader pr constructs πballot

for the public statement:

x = (⟨r, count0, count1, HA⟩) ,

The above public NP statement is verified using the following witness:

w = (P0, P1, S0, S1) ,

where P0 is a vector of public keys, P1 is another vector of public keys, S0 is a set of signatures and S1 is another
set of signatures. The verification computation SNRK1.Verify(crs1, x, πballot) outputs “1” if and only if the following
checks are true:

1. count0 = |P0| and count1 = |P1|;

2. P0 ⊆ N , P1 ⊆ N and P0 ∩ P1 = ∅;

3. HA = Hash(N − P0 − P1);

4. S0 are valid signatures on ⟨0, r⟩ by public keys in P0;

5. S1 are valid signatures on ⟨1, r⟩ by public keys in P1;

Finally, the leader sends (⟨ballot = ⟨r, count0, count1, HA, πballot⟩, r⟩σr
, ⟨accList⟩σr

⟩) to each party.
If a party receives a ballot proposal from the leader associated with a commit certificate with rank greater
than rankcommit, the party propagates the proposal ballot though the expander. Otherwise, if a party
receives ballot, the party verifies whether Hash(accList) = HA, |accList| ≤ min{r − 1, t}, pi /∈ accList, and
SNRK1.Verify(crs1, (r, count0, count1, HA⟩), πballot) = 1. If the verification is successful, the party propagates ballot
through the expander. Since the leader might send a conflicting ballot′, we use an (n, 2ϵ, 1 − 2ϵ)-expander
with constant degree. After propagation, each party checks if received a conflicting ballot′ before sending vote
⟨ballot, r⟩σi to the leader.
(commit) If the leader receives at least n − t precommit messages of the form ⟨ballot, r⟩σj , the leader creates
a valid commit certificate ⟨ballot, r,QCcommit⟩ by aggregating the messages received forming QCcommit and sends
the commit certificate to all parties. If a commit certificate exists, then n − t > t + 2ϵ parties, of which at
least 2ϵ honest parties, must have propagated the leader’s ballot proposal to their neighbors. The expansion
property implies more than (1− 2ϵ)n > 2t, out of which at least t+ 1 honest parties would receive ballot. They
would never vote for ballot′ ̸= ballot, so a conflicting commit certificate cannot exist (Lemma 6). Note that
accList is not propagated or signed by the parties, nor is it included in commit certificate as it is of size O(f).
Had it been included in commit certificate, f the malicious leader could influence honest parties to send the
commit certificate to which they are committed in (pre-commit), incurring O(nf2) communication complexity
for O(f) phases. However, the parties store (ballot, accList) for future purposes. Upon receiving a valid commit
certificate from the leader, the party updates commit variables; ballotcommit, rankcommit, πcommit, and propagates
the commit certificate received through the expander. Consequently, the party sends a matching decide message



of ⟨decide, ballot, r⟩σi
to the leader, where ballot ∈ commit certificate received from the leader in the previous

round. As the adversary can potentially generate two conflicting commitment certificates in the run using two
consecutive malicious leaders, it is not safe to decide on the ballot that the party is committed to. Thus, we
introduce an additional layer of protection in the form of another round of voting, (decide) round.
(decide) If the leader receives at least n− t decide messages on the same ballot, the leader creates a valid decide
certificate by aggregating the messages received to form QCdecide, and multicasts ⟨ballot, r,QCdecide⟩σr

to parties.
Once received a valid decide certificate, the party sets balloti = ballot. If stored accList for balloti in (pre-commit),
Ψi[balloti] ̸=⊥, the party sets accListi = Ψi[balloti]. Consequently, the party is decided and remains silent.
(processing.) By the end of the n phases, it is not guaranteed that all parties are decided due to the decreasing
threshold. For example, in a scenario where f = O(t) and the initial leaders are honest, it is possible that they
cannot gather sufficient initial values to meet the threshold required for the creation of the ballot. Consequently,
the following malicious leader will cause the remaining honest parties, who are designated as leaders for the
remaining n phases, to be decided, resulting in their silence during their respective phases. Thus, after the n
phases, if an honest party is still undecided, the party sends a help message ⟨help⟩σj to all parties. Upon receiving
a help message, an honest party sends back the ballot decided during Polling, and proof of decision πdecide to all
parties who sent the help message. As a result, we guarantee that all honest parties are decided before starting
the rebuttal protocol. In Lemma 2, we prove that the number of undecided honest parties is upper-bounded by
O(f). Thus, the overall communication complexity of this step is O(n · f).

Protocol ΠPolling achieves the properties of Theorem 3.1, which we prove in Appendix A.

Theorem 3.1. (Polling) Assume an execution of protocol ΠPolling (Figure 4), where each party pi inputs value
vi ∈ {0, 1}, and outputs values balloti = ⟨r, count0, count1, HA, πballot⟩ and accListi, where accListi is either a subset
of [n] or ⊥. Then, ΠPolling satisfies the following properties, except with negligible probability negl(λ):

• Agreement: If an honest party outputs balloti, no honest party outputs ballotj ̸= balloti;

• Correctness: (i) There exists a set of parties P0, with |P0| = count0, that have signed ⟨0, r⟩; (ii) There exists
a set of parties P1, with |P1| = count1, that have signed ⟨1, r⟩; (iii) P0 and P1 are disjoint; (iv) HA is the
collision-resistant hash of the set [n] − P0 − P1; (v) πballot is a SNARK proof that ⟨r, count0, count1, HA⟩
satisfy properties (i) to (iv);

• Count validity: Let h be the number of honest parties in the set of parties committed to by HA. If honest
parties start with the same value vi = v, then countv + h ≥ n− t;

• Integrity: If an honest party outputs accListi ̸=⊥, then accListi = [n]− P0 − P1;

• Reliability: At least one honest party outputs accListi ̸=⊥;

• Termination: All honest parties terminate.

Subsequently, we prove that ΠPolling incurs overall O(n · f) communication complexity. To do so, we begin by
demonstrating that if a leader is honest and undecided in phase r > f , all honest parties will reach a decision by
the end of this phase. This observation leads us to the conclusion that there are at most 2f +1 non-silent phases
throughout the run.

Lemma 1. If a leader is honest and undecided in phase r > f , all honest parties are decided by phase r.

Proof. Assume some phase r > f and let leader pr for that phase be honest. In Round 1, pr ,if undecided, sends
⟨value_req⟩ to all parties. To propose a ballot in (precommit), pr can either propose a ballot included in a commit
message received from some party at the beginning of the round or create a new ballot and πballot from the initial
values received from parties. If the leader receives some commit message, pr will propose the respective valid
ballot with the greatest respective phase number.

Conversely, by construction, if the leader does not receive any commit message, then no honest party is
committed. Therefore, the leader needs to create a new ballot by collecting enough initial values to meet the
threshold for the creation of the ballot. Since r > f , the leader needs to collect at least n−r+1 ≤ n−(f+1)+1 ≤



n − f initial values from parties. Since no honest party is committed, then every honest party sends the initial
value to the leader. So, the leader will collect at least n − f initial values and will meet the threshold for the
creation of the ballot. Consequently, the leader will send a valid ballot proposal to all parties.

Once the honest leader proposes a valid ballot to the parties, all honest parties will vote for it in (round 3).
Thus, the leader will collect at least n−t votes to create QCcommit and a valid commit certificate ⟨ballot, r,QCcommit⟩,
which the leader will broadcast to all parties. Upon receiving a valid commit certificate, every honest party will
send to the leader a matching decide message ⟨decide, ballot, r⟩, allowing the leader to collect at least n− t decide
messages to form QCdecide and a valid decide certificate that the leader broadcasts to all parties. Finally, once
an honest party receives a valid decide certificate, sets balloti to the received ballot, which is the one the honest
leader proposed for the respective commit and the decide certificate. Thus, all honest parties are decided at the
end of phase r.

From Lemma 1, we prove that the number of undecided honest parties before the processing step, and the
number of non-silent phases are bounded by O(f).

Lemma 2. Before processing (Line 46 of ΠPolling), at least n−2f honest parties are decided, and at most f honest
parties are undecided.

Proof. Given that the leading-based step spans n phases, every honest party has the opportunity to act as a
leader during its respective phase, provided that it has not already decided. From Lemma 1, if a leader is honest
and undecided in phase r > f , every honest party is decided at the end of their phase. Thus, if not all honest
parties are decided at the end of Polling, the adversary must have made every honest party that is supposed to
be a leader in phases r > f decided by phase f . As there are n phases in the run and the number of malicious
parties that could potentially be leaders after phase f is f , at least n−f −f honest parties are decided at the end
of Polling. Since there are f malicious parties, at most n− (n− 2f)− f = f honest parties are undecided.

Lemma 3. There are at most 2f + 1 non-silent phases in ΠPolling.

Proof. In Polling, each honest party pi is the leader during phase i. From Lemma 1, if an honest leader pr is
undecided at the beginning of phase r > f , then after phase r all honest parties are decided and every honest
party pr′ remains silent for phases r′ > r. Since there are n phases and at most f malicious parties that could be
leaders after phase f , there are at most f + f + 1 non-silent phases during ΠPolling.

The minimum threshold for the number of initial values required to create a ballot is determined by the phase
number, which, in turn, affects the maximum size of the accused list for that phase. This relationship is derived
from the fact that the size of the accused list is calculated as the difference between the total number of parties
n and the minimum threshold for that phase. By previously proving that there are at most 2f + 1 non-silent
phases, we proceed to prove Lemma 4, which bounds the size of the accused list to O(f).

Lemma 4. There are at most 2f − 1 = O(f) accused parties in accList.

Proof. The size of accList depends on the phase at which the ballot ballot, which all parties decide, is formed.
Let r be the first phase in which ballot is considered valid. Then, by construction, ballot cannot already be
accompanied by a commit certificate. Therefore, it must include a valid SNRK1 proof and must be accompanied
by an accused list accList. According to Line 23, an honest party accepts ballot only if the size of accList is at
most n−max{n− r+1, n− t} = min{r−1, t}. If r ≤ f , |accList| < f = O(f). Otherwise, if r > f , we distinguish
two cases based on whether ballot is created by an honest or malicious leader. In phase r > f , an honest leader
collects at least n − f ≥ max{n − r + 1, n − t} initial values, resulting in |accList| ≤ f . On the other hand, a
malicious leader can have ballot accompanied by accList which includes parties who actually sent their values to
the leader. Despite this, due to the constraint of at most 2f+1 speaking phases from Lemma 3, a malicious leader
must construct the ballot agreed by the parties at most by phase 2f . Thus, the maximum size of the accList a
malicious leader of phase r ∈ {f +1, . . . , 2f} can send is limited to at most min{2f − 1, t}, else honest parties do
not accept accList in Line 23.

Finally, we use Lemmas 2,3 and 4 to prove that ΠPolling incurs O(n · f) communication complexity.



Theorem 3.2. ΠPolling has a communication complexity of O(n · f).

Proof. To assess the communication complexity of the polling consensus protocol, we analyze the communication
for each phase. Each phase comprises four rounds, namely prepare, precommit, commit, and decide.
(prepare) In this round, the leader sends a message of size O(1), denoted as ⟨value_req⟩, to all parties if it
is undecided. Honest parties reply by sending either a commit certificate consisting of their committed ballot
ballotcommit and πcommit, both of size O(1), or their initial variable O(1). The total communication complexity for
(prepare) is O(n).
(precommit) If the leader receives a valid commit certificate from a party, it selects the highest-ranked one and
proposes the ballot contained in it, which is of size O(1), to all parties. Otherwise, if the leader gathers enough
initial values from the parties to reach the threshold for the creation of a ballot, it creates a ballot (that includes
πballot) and an accussed list and sends them to all parties. The accused list contains its members, which are
(O(f)) from Lemma 4, resulting to O(n ·f) communication for this round. If the leader does not receive a commit
certificate or enough initial values to create a new ballot, it remains silent for the rest of the phase. If a party
receives a valid ballot proposal, it propagates it to its O(1) neighbors using the expander, without transmitting
the accused list to avoid increasing the communication complexity. Finally, the honest party sends its vote on the
ballot proposed to the leader. In total, the communication complexity is O(n · f) if the leader creates a ballot,
and O(n) if the leader proposes a ballot in a received commit certificate.
(commit) In this round, after receiving enough votes to create a valid commit certificate, the leader sends it to all
parties, incurring a total communication complexity of O(n). If a party receives a valid commit certificate, it sends
a matching decide message ⟨decide, ballot, r,QCdecide⟩ to the leader. Thus, the total communication complexity of
this round is O(n).
(decide) Similarly, upon receiving enough votes to create a valid decide certificate, the leader sends the certificate
to all parties, incurring a total communication complexity of O(n). Once a leader sends a valid decide certificate,
all honest parties are decided, and they will be silent as leaders.

It should be noted that O(n · f) communication complexity in the precommit round is incurred by at most
one honest leader in the run. This is because once a valid proposal (ballot) is sent, the leader can collect
enough n − t votes to create valid QCcommit and QCdecide, given that t < ( 12 − ϵ)n. Therefore, all honest parties
will decide by the end of this honest leader’s phase and will not speak in their phases. From Lemma 3, there
are at most 2f + 1 non-silent phases. Thus, the overall communication complexity of the first n phases is
O(n · f) +O(n) · (2f) = O(n(2f + 1)) = O(n · f).
(processing) In the three rounds of processing, undecided parties send help messages to all parties. Since the
number of undecided honest parties is upper-bounded by f (Lemma 2), at most 2f parties send help messages to
everyone, whereas the other f could come from malicious parties. In the next round, the decided honest parties
send balloti and πdecide to the parties who sent the help messages. Since both messages are of size O(1), the
communication complexity of these three rounds is O(n · f).
Thus, the overall communication complexity of Polling is O(n · f).

Algorithm ΠPolling(vi):

balloti, accListi, ballotcommit, rankcommit, πcommit, πdecide =⊥, Ψi = ∅
1: for phase r = 1 to n do
2: leader← pr mod n

(prepare)
Round 1:
leader:

3: if balloti =⊥ then send([n], ⟨value_req⟩σr )

replica:
4: if received ⟨value_req⟩σr and ballotcommit =⊥ then send(pr, ⟨vi, r⟩σi)
5: else if received ⟨value_req⟩σr and ballotcommit ̸=⊥ then
6: send(pr, ⟨ballotcommit, rankcommit, πcommit⟩σi)

(pre-commit)
Round 2:



leader:
7: if received messages ⟨cj⟩σj , s.t

{ cj = ⟨ballotj , k,QCcommit⟩ and
SS.Verify(pkss, ⟨ballotj , k⟩, QCcommit) = 1

}
then

8: c = argmaxcj{k}
9: send([N ], (⟨c.ballot, r⟩σr , ⟨c.k, c.QCcommit⟩σr ))

10: else if received at least max{n− r + 1, n− t} messages ⟨mj , r⟩σj , mj ∈ {0, 1} then
11: P0 = {pkj}j:mj=0, P1 = {pkj}j:mj=1, accList = N − (P0 ∪ P1))
12: w = (P0, P1, {⟨0, r⟩σj}j∈P0 , {⟨1, r⟩σj}j∈P1)
13: x = (r, |P0|, |P1|,Hash(accList)⟩)
14: πballot = SNRK1.Prove(crs1, x,w)
15: ballot = ⟨r, |P0|, |P1|,Hash(accList), πballot⟩
16: send([N ], (⟨ballot, r⟩σr , ⟨accList⟩σr ))

replica:
17: if received exactly one message M from the leader then
18: if M = ⟨ballot, r⟩σr , ⟨k,QCcommit⟩σr then
19: if SS.Verify(pkss, ⟨ballot, k⟩, QCcommit) = 1 and k ≥ rankcommit then
20: send(Gn,ϵ, ⟨ballot, r⟩σr )

21: else if M = ⟨ballot, r⟩σr , ⟨accList⟩σr ⟩, where ballot = ⟨r, count0, count1, HA, πballot⟩ then
22: if SNRK1.Verify(crs1, (r, count0, count1, HA), πballot) = 1 and pki /∈ accList and Hash(accList) = HA

23: and |accList| ≤ min{r − 1, t} then
24: Ψi[ballot] = ⟨accList⟩σr

25: send(Gn,ϵ, ⟨ballot, r⟩σr )

Round 3:
replica:

26: if sent in (round 2) and not received ⟨ballot′, r⟩σr , s.t. ballot′ ̸= ballot then
27: send(pr, ⟨ballot, r⟩σi)

(commit)
Round 4:
leader:

28: if received set S of size s ≥ n− t many signatures on ⟨ballot, r⟩ then
29: QCcommit = SS.Combine({pki1 , . . . , pkis}, ⟨ballot, r⟩, S)
30: send([N ], ⟨ballot, r,QCcommit⟩σr )

replica:
31: if received ⟨ballot, r,QCcommit⟩σr and SS.Verify(pkss, ⟨ballot, r⟩, QCcommit) = 1 then
32: temp_com_cert = ⟨ballot, r,QCcommit⟩
33: send(Gn,ϵ, ⟨temp_com_cert⟩σr )

Round 5:
replica:

34: if temp_com_cert ̸=⊥ then
35: ballotcommit= temp_com_cert.ballot, rankcommit= temp_com_cert.r,
36: πcommit= temp_com_cert.QCcommit

37: send(pr, ⟨decide, ballotcommit, r⟩σi)
38: else if received ⟨ballot, r,QCcommit⟩σr and SS.Verify(pkss, ⟨ballot, r⟩, QCcommit) = 1 then
39: ballotcommit= ballot, rankcommit= r, πcommit= QCcommit

(decide)
Round 6:
leader:

40: if received set DS of size s ≥ n− t many signatures on ⟨decide, ballot, r⟩ then
41: QCdecide = SS.Combine({pki1 , . . . , pkis}, ⟨decide, ballot, r⟩, DS)
42: send([N ], ⟨decide, ballot, r,QCdecide⟩σr )

replica:
43: if received ⟨decide, ballot, r,QCdecide⟩σr and SS.Verify(pkss, ⟨decide, ballot, r⟩, QCdecide) = 1 then
44: balloti = ballot, πdecide= r,QCdecide

45: if Ψi[balloti] ̸= ∅ then accListi = Ψi[balloti].accList



(Processing)
Round 1:

46: if balloti =⊥ then
47: send([N ], ⟨help⟩σi)

Round 2:
48: for all ⟨help⟩σj messages received do
49: send(pj , ⟨balloti, πdecide⟩σi)

Round 3:
50: if balloti =⊥ and received ⟨decide, ballotj , r,QCdecide⟩σj s.t SS.Verify(pkss, ⟨ballot, r⟩, QCdecide) = 1 then
51: balloti = ballotj
52: if Ψi[balloti] ̸= ∅ then accListi = Ψi[balloti]

return (balloti, accListi)

Figure 4: Code of ΠPolling for party pi.

3.2 Rebuttal. The objective of ΠRebuttal (Figure 5) is to validate the correctness of the initial tallying process
and that no initial values belonging to some parties were unjustly omitted. In ΠRebuttal, parties invoke it with
input (vi, balloti, accListi), where balloti and accListi represent the output of ΠPolling. If, in the Polling protocol, the
malicious ballot creator fails to include the initial values of all honest parties, the honest parties possessing non-
empty accusation lists (accList ̸=⊥) will send accusing messages to each party within accList. In response, upon
receiving an accusing message, the honest parties send their initial values to all the other parties. Consequently,
honest parties can observe whether the total number of initial values vi = (v, r), where r ∈ ballot, received during
the Rebuttal phase, in addition to countv in the agreed ballot, adds to n−t for a v ∈ {0, 1}. If this condition is met,
the parties output yi = v, and auxi, which is a SNARK proof πv confirming the existence of n−t votes on v, r during
the run. The creation of auxi involves the use of πballot, which confirms the existence of countv valid signatures, and
the additional signatures received during rebuttal. Consequently, we define ThresholdPredicate(yi, auxi) = true, if
auxi is a valid proof of existence of n− t signatures on v, r. By ensuring the prevention of double counting, we can
guarantee that even if accused malicious parties act maliciously and send contradicting initial values to parties,
it will not compromise validity. If an honest party receives n− t distinct signatures on the same value, then the
signature of at least one honest party is included. If all honest parties start with the same value v, the adversary
cannot generate n− t > t signatures on value v′, r except with negligible probability for forging signatures. This
achievement aligns with the primary goal of Reliable voting, ensuring validity for BA.

Protocol Overview. The algorithm is comprised of three rounds. During the first round, all honest parties
possessing a non-null accList send an accusing message ⟨pkj , πj,A⟩σr

to the accused parties ∈ accList. Here, πj,A

denotes a SNARK proof constructed by the accusing parties, proving that pkj ∈ accList to parties that might
not have knowledge of accList. Let SNRK2 be a SNARK system as defined in Definition 2.4. An accusing party
constructs πj,A for the public statement:

x = (pkj , HA) ,

where pkj is the public key for some party pj and HA is the hash of some set. The above public NP statement is
verified using the following witness:

w = (accList) ,

where accList is a set of public keys. The verification computation SNRK2.Verify(crs2, x, πj,A) outputs “1" if and
only if HA = Hash(accList) and pkj ∈ accList.
In round 2, parties who receive an accusing message that contains a valid πi,A, forward their initial value ⟨vi, r⟩σj

and the accusing message to all parties. Finally, during round 3, each honest party verifies that each message
⟨v, r⟩σj

, where r ∈ ballot, it received is accompanied by a valid SNARK proof πj,A, proving that pj ∈ accList. If
the messages are deemed valid, the honest party tallies the votes of all accused parties. Specifically, if the sum of
(1) the total count of received signatures on v, r and (2) the countv ∈ ballot is at least n − t for v ∈ {0, 1}, then
the party constructs a proof πv using SNRK3, a SNARK system as per Definition 2.4, indicating the existence of



at least n− t votes on v, r. The party constructs the proof πv for the public statement:

x = (v) ,

This public NP statement is verified using the following witness:

w = (votesv, ballot) ,

where votesv is a set of messages. The verification computation SNRK3.Verify(crs3, x, πv) outputs “1” if and only
if the following checks are true:

• ballot = ⟨r, count0, count1, HA, πballot⟩, such that SNRK1.Verify(crs1, ⟨r, count0, count1, HA⟩, πballot) = 1,

• each m ∈ votesv is of the form ⟨⟨v, r⟩σj ,⟨pkj , πj,A⟩⟩,

• for each m ∈ votesv, the signature for ⟨v, r⟩ is valid with respect to pkj ,

• for each m ∈ votesv: SNRK2.Verify(crs2, ⟨pkj , HA⟩, πj,A) = 1

• countv + |votesv| ≥ n− t

Finally, the honest party sets yi = v and auxi = πv. By the end of Rebuttal, all honest parties are assured of
receiving the votes of every honest party in accList that were not included in ballot.

Protocol ΠRebuttal achieves the properties stated in the following theorem that we prove in Appendix A.

Theorem 3.3. (Rebuttal) Assume an execution of protocol ΠRebuttal (Figure 5). Each party pi starts with
input (vi, balloti, accListi), where vi is the input to ΠPolling and balloti = ⟨r, count0, count1, HA, πballot⟩ and accListi
are the outputs of ΠPolling. Each party outputs value yi ∈ {0, 1} and auxiliary information auxi. Then, ΠRebuttal

satisfies the following properties, except with negligible probability negl(λ):

• Provable validity: If all honest parties start with vi = v, then, all honest parties output yi = v, and auxi such
that ThresholdPredicate(yi, auxi) outputs true. Moreover, no party outputs yj ̸= yi and auxiliary information
auxj such that ThresholdPredicate(yj , auxj) outputs true.

• Termination: All honest parties terminate.

Further, we prove that ΠRebuttal has O(n · f) communication complexity.

Theorem 3.4. ΠRebuttal has O(n · f) communication complexity.

Proof. The protocol involves three communication rounds, with messages exchanged between all parties and the
accused parties. By Lemma 4, the number of accused parties is less than 2f . Consequently, the communication
complexity of the rebuttal stage is O(n · f).

Finally, we demonstrate that the security properties of ΠPolling and ΠRebuttal when combined, result in a secure
Reliable Voting protocol, ΠRV.

Theorem 3.5. (Reliable Voting from Polling and Rebuttal) Let ΠPolling be the protocol of Figure 4 and
ΠRebuttal be the protocol of Figure 5. ΠRV of Figure 3 achieves Reliable Voting per Definition 2.2, for t < (1/2−ϵ)n
with respect to ThresholdPredicate, incurring a communication complexity of O(n · f).

Proof. (Termination) From assumption, ΠPolling and ΠRebuttal terminate as per Theorem 3.1 and Theorem 3.3,
thereby ensuring the termination of ΠRV.
(Provable Validity) Assume that all honest parties start with the same value v. Then, ΠRebuttal achieves provable
validity on v and auxi per Theorem 3.3. Since these are the outputs of ΠRV, the property is achieved trivially.
(Communication) Finally, our proposed approach involves invoking each protocol, namely ΠPolling and ΠRebuttal,
only once in ΠRV. Given our assumptions, ΠRV incurs a communication complexity of O(n · f).



Algorithm ΠRebuttal(vi, balloti = ⟨r, count0, count1, HA, πballot⟩, accListi):

Round 1:
yi ← vi, auxi ←⊥

1: for each pkj ∈ accListi do
2: πj,A = SNRK2.Prove(crs2, (pkj , HA), accListi))
3: send(pj , ⟨πj,A⟩σi)

Round 2:
4: if received message ⟨πi,A⟩σj and SNRK2.Verify(crs2, (pki, HA), πi,A) = 1 then
5: send([N ], (⟨vi, r⟩σi , ⟨πi,A⟩σi))

Round 3:
6: for each v ∈ {0, 1} do
7: for all (⟨v, r⟩σj ,⟨πj,A⟩σj ) received s.t. SNRK2.Verify(crs2, (pkj , HA), πj,A) = 1 do
8: votesv = votesv ∪ {(⟨v, r⟩σj ,⟨πj,A⟩σj )}
9: if |votesv|+ countv ≥ n− t then

10: πv = SNRK3.Prove(crs3, (v), (votesv, balloti))
11: yi = v, auxi = πv

return yi, auxi

Figure 5: Code of ΠRebuttal for party pi.

4 Weak Byzantine Agreement (WBA)
Our WBA protocol, ΠWBA (Figure 6), is leader-based and built upon the silent phases paradigm. Our starting
point is the WBA protocol in [15], which achieves agreement, termination, and unique validity. However, we
achieve a different validity property, the so-called restricted validity. In ΠWBA, each party begins with input
(vi, auxi), where the auxiliary information auxi assists the party in deciding whether to support a leader’s
proposed value or not. Similar to RV, Our ΠWBA protocol is instantiated with respect to the Boolean predicate
ThresholdPredicate. Thus, if an honest party starts with (vi, auxi) where ThresholdPredicate(vi, auxi) = true, they
are more likely to refrain from voting if the leader proposes a conflicting value vr unless the leader can prove
that ThresholdPredicate(vr, auxr) = true. For modularity, we define a predicate SafeVal that checks if the value
proposed by the leader pr is safe to accept with respect to vi, auxi with which a party pi starts. In other words,
SafeVal(vr, auxr, vi, auxi, vcommit) is true if vcommit =⊥, where vcommit is a value that the party is committed to, and
either ThresholdPredicate(vi, auxi) = false or, ThresholdPredicate(vr, auxr) = true.

SafeVal(vr, auxr, vi, auxi, vcommit) is true if vcommit =⊥ and

• ThresholdPredicate(vi, auxi) = false or,

• ThresholdPredicate(vr, auxr) = true

It should be noted that our protocol employs the use of expanders, which results in suboptimal resilience of
t < ( 12 − ϵ)n, where ϵ is a positive constant. Expanders are utilized to ensure that the leader does not generate
conflicting commit certificates within a given phase. In other words, parties only vote for a value after confirming
that they have not received any contradictory messages from their neighbors in the expander. Although expanders
do lower the resilience of the protocol, it is guaranteed that all parties are decided by the end of the n phases,
eliminating the need for fallback algorithms, which is utilized in [15], as it is not guaranteed that all parties are
decided by the end of the n phases. This is because, in the latter protocol, the leader has to collect ⌈n+t+1

2 ⌉
signatures to form valid commit and decide certificates. Therefore, if f > t

2 , it is possible that all honest
leaders fail to collect the required ⌈n+t+1

2 ⌉ signatures. Using expanders as in ΠPolling, we can lower the signature
threshold to n − t, which guarantees that an honest leader can obtain enough votes to form valid commit and
decide certificates, ensuring that all honest parties are decided by the end of the leader’s phase. This process
guarantees safety equivalent to that provided by the ⌈n+t+1

2 ⌉ threshold, whereby a leader cannot generate two
conflicting commit certificates without an honest party voting for both. Therefore, we achieve a better round



complexity than in [15]. In Lemma 5, we prove that all honest parties will be decided within f + 1 non-silent
phases.
Protocol Overview. ΠWBA runs for n phases. Each phase comprises four rounds; prepare, pre-commit, commit,
and decide.
(prepare) If a leader is undecided, they ask for all parties’ values by multicasting a request message ⟨value_req⟩.
If a committed honest party receives the request message, they forward their commit value vcommit along with a
proof πcommit and a commit rank to the leader. If they are not committed, they forward their input (vi, auxi) to
the leader, but only if ThresholdPredicate(vi, auxi) = true.
(precommit) The leader surveys the messages sent during the prepare round and selects an optimal message
that all honest parties will vote for. If the leader receives commit messages, the leader selects the one with the
highest commit rank and proposes it along with the commit proof and rank to the parties. If the leader does
not receive any commit message, the leader chooses a value that satisfies the SafeVal conditions. If none of these
conditions is met, the leader proposes initial value (vi, auxi). Honest parties sign the leader’s proposal if they
receive a commit message with a higher rank than the one to which they committed or if the value proposed
is safe, as determined by the SafeVal function. Before sending the vote to the leader, the party propagates the
leader’s proposal through the expander Gn,ϵ to ensure that the leader did not send a conflicting value.
(commit) If the leader receives n − t votes (signatures) on the leader’s proposal, the leader combines them to
form a valid commit proof QCcommit. The leader then forwards the commit certificate ⟨commit_value, r, QCcommit⟩
to all parties. Upon receiving a valid commit certificate, a party sends a matching decide message to the leader
and propagates the commit message through the expander.
(decide) Once the leader collects enough (≥ n− t) decide messages, the leader forms a valid decide proof QCdecide

and decide certificate for vr, which is multicast to all parties to decide on.

Lemma 5. All honest parties are decided within f + 1 phases.

Proof. Each undecided honest leader pr initiates communication during designated phase r by sending ⟨value_req⟩
to all parties. If a party has vcommit ̸=⊥, they send their vcommit, rankcommit, and πcommit to the leader. Otherwise,
if an honest party pj has vcommit =⊥ and ThresholdPredicate(vj , auxj) = true, it sends (vj , auxj) to pr. As a result,
pr proposes the highest rank commit certificate if they receive one, ensuring that all committed parties vote for
it (Line 16), or a value v, where ThresholdPredicate(v, auxi) = true, ensuring that all honest parties vote for it if
they are not committed. Otherwise, if the leader does not receive either, they propose their vi. After receiving
a proposed value, each party propagates it to their neighbors to confirm that there are no conflicting values
proposed. Since the leader is honest and does not send conflicting value, all honest parties send a matching vote
message ⟨v, r⟩σi , allowing pr to collect enough n−t votes to form a valid commit certificate, which they forward to
all parties. Subsequently, the parties send a matching decide message once they receive a valid commit certificate.
This allows pr to collect enough n− t decide messages to form a valid decide certificate, which they again forward
to all parties. Once an honest party sees a valid decide certificate on v, they set yi = v and is decided henceforth.
In subsequent phases, honest leaders remain silent and no communication occurs. Since there are f malicious
leaders on the run, all honest parties are decided within f + 1 phases.

Algorithm ΠWBA(vi, auxi):

yi, vcommit, rankcommit, πcommit ←⊥

1: for phase r = 1 to n do
2: leader← pr mod n

(prepare)
Round 1:
leader:

3: if yi =⊥ then
4: send([n], ⟨value_req⟩σr )

replica:
5: if received ⟨value_req⟩σr and vcommit ̸=⊥ then
6: send(pr, ⟨vcommit, rankcommit, πcommit⟩σi)



7: else if received ⟨value_req⟩σi and vcommit =⊥ and ThresholdPredicate(vi, auxi) = true then
8: send(pr, ⟨vi, auxi⟩)

(pre-commit)
Round 2:
leader:

9: if received messages ⟨cj⟩σj , s.t cj = ⟨vj , k,QCcommit⟩ and SS.Verify(pkss, ⟨vj , k⟩, QCcommit) = 1 then
10: c = argmaxcj{k}
11: send([n], ⟨c.v, r⟩σr , ⟨c.k, c.QCcommit⟩σr ))
12: else if ThresholdPredicate(vi, auxi) = true or received ⟨vj , auxj⟩σj , where ThresholdPredicate(vj , auxj) = true

then
13: pick any and send([n], (⟨v, r⟩σr , ⟨aux, r⟩σr ))
14: else send([n], (⟨vi, r⟩σr ), ⟨auxi, r⟩σr )

replica:
15: if received exactly one message M then
16: if M is of the form ⟨v, r⟩σr , ⟨k,QCcommit⟩σr then
17: if SS.Verify(pkss, ⟨v, k⟩, QCcommit) = 1 and k ≥ rankcommit then
18: send(Gn,ϵ, ⟨v, r⟩σr )

19: else if M is of the form ⟨v, r⟩σr , ⟨aux, r⟩σr and SafeVal(vr, auxr, vi, auxi, vcommit) then
20: send(Gn,ϵ, ⟨v, r⟩σr )

(Round 3):
replica:

21: if sent in (round 2) and not received ⟨v′, r⟩σr s.t. v′ ̸= v then
22: send(pr, ⟨v, r⟩σi)

(commit)
Round 4:
leader:

23: if received set S of size s ≥ n− t many signatures on ⟨v, r⟩ then
24: QCcommit = SS.Combine({pki1 , . . . , pkis}, ⟨v, r⟩, S)
25: send([n], ⟨v, r,QCcommit⟩σi)

replica:
26: if received ⟨v, r,QCcommit⟩σr and SS.Verify(pkss, ⟨v, r⟩, QCcommit) = 1 then
27: temp_com_cert = ⟨v, r,QCcommit⟩
28: send(Gn,ϵ, ⟨temp_com_cert⟩σr )

Round 5:
replica:

29: if temp_com_cert ̸=⊥ then
30: vcommit = temp_com_cert.v,rankcommit = temp_com_cert.r, πcommit = temp_com_cert.QCcommit

31: send(pr, ⟨decide, v, r⟩σi)

32: if received ⟨v, r,QCcommit⟩σr and SS.Verify(pkss, ⟨v, r⟩, QCcommit) = 1 then
33: vcommit = v,rankcommiti = r, πcommit = QCcommit

(decide)
Round 6:
leader:

34: if received set DS of size s ≥ n− t many signatures on ⟨decide, v, r⟩ then
35: QCdecide = SS.Combine({pki1 , . . . , pkis}, ⟨decide, v, r⟩, DS)
36: send([n], ⟨decide, v, r,QCdecide⟩σi)

replica:
37: if received ⟨decide, v, r,QCdecide⟩σr and SS.Verify(pkss, ⟨decide, v, r⟩, QCdecide) = 1 then
38: yi = v

return yi

Figure 6: Code of ΠWBA for party pi.
We state the theorem for the correctness of ΠWBA, which we prove in Appendix A.



Theorem 4.1. Our protocol ΠWBA (Figure 6), instantiated with ThresholdPredicate, achieves Weak Byzantine
Agreement per Definition 2.3 for t < (1/2− ϵ)n.

Finally, we prove the communication complexity of ΠWBA.

Theorem 4.2. ΠWBA has O(n · f) communication complexity.

Proof. Each phase requires constantly many steps of communication between the leader and all parties back and
forth. Each message transmitted during this communication is of size O(1), meaning that each phase incurs a
communication complexity of O(n). According to Lemma 5, every honest party is decided within f + 1 phases.
Once an honest party is decided, it stays silent in its leader phase and does not incur any communication. Thus,
the total communication of the protocol is O(n · f).

5 Conclusion and Future Directions
In this paper, we study the communication complexity of deterministic binary Byzantine agreement, which is
crucial for efficient large-scale applications. We introduce a practical construction with communication complexity
of O(n · f), where f is the exact number of malicious parties. This constitutes a major improvement over the
quadratic O(n2) communication bound achieved by previous work [29], since for executions where f = o(n),
our protocol achieves o(n2) communication. This sets a precedence on ways to circumvent the theoretical lower
bounds on communication exchange for BA. However, several directions remain unanswered.
Extending to multivalued settings. Our protocol can be trivially extended to achieve BA in multivalued
settings. For L-bit input values, parties can run L (even parallel) executions of our binary BA protocol. We
notice that the communication of this solution is O(n · f ·L). Since L is the dominating factor in many practical
applications, such communication could be prohibitive. Therefore extending the result to multivalued BA, where
the values’ size i) is not part of the word size and ii) is not a multiplicative factor in the O(n · f) communication
complexity, is an interesting future direction.
Strong BA. In the related literature, the term BA is sometimes conflated with Strong BA, where a strictly
stronger validity property (alas, strong validity) is achieved, namely that the output of honest parties is always
the input of some honest party. Confusion between the two terms might stem from the fact that in the binary
case, BA and Strong BA are equivalent; Since the input domain is 2, if honest parties start with different values,
then their inputs cover the entire domain, and strong validity is guaranteed from agreement. However, in the
multivalued setting, this property is much more difficult to achieve. This is also why we refrained from describing
our result as achieving binary Strong BA, even though it does.

Achieving Strong Byzantine Agreement (Strong BA) in the multivalued setting is challenging, as the resilience
threshold is inversely related to the input domain size. As shown in an earlier work by [22], let a value domain of
size m. Then, assume the case where all honest parties start with m− 1 different inputs, each chosen evenly by
n−t
m−1 honest parties. Then, t malicious parties can claim their input to be the value in the domain not input by
any honest party. Other than that, malicious parties act honestly throughout the protocol. No protocol could dis-
tinguish this case from a case where simply all parties are honest and t start with that value. So, for a protocol to
achieve Strong BA, it must tolerate t < n−t

m−1 , i.e. t < n/m malicious parties. Interestingly notice that for m = 2,
we naturally get the t < n/2 optimal resilience of binary (Strong) BA. Exploring the optimality of protocols’
communication for multivalued Strong BA is thus an open question, with exciting practical applications.
Other Directions. Since we achieve near-optimal resilience t < (1/2−ϵ)n due to the use of expanders, achieving
deterministic Byzantine Agreement with optimal resilience t < n/2 and O(n · f) communication remains an open
problem. Another direction that is worth exploring is how to simplify the protocol for the reliable voting.
A modern approach that could be promising would be to combine silent phases with gossiping and batching
techniques (e.g. [4, 33, 5]) to achieve randomized BA or parallel broadcast protocols with improved, adaptive
communication compared to the current best.
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A Correctness Proofs
In this Section we prove the correctness of our Polling, Rebuttal and WBA protocols. We start with proofs for
Polling and show that Theorem 3.1 holds.

A.1 Polling Correctness Proof.

Lemma 6. If a leader creates a valid commit certificate C1 in a phase, no valid conflicting certificate C ′
1 ̸= C1 is

created in the same phase, except with negligible probability negl(λ).

Proof. For leader pr in phase r to generate a valid commit certificate say C1, they have to aggregate at least
n − t distinct valid signatures for the respective message ⟨ballot, r⟩. Unless the leader forges signatures, which
happens with probability negl(λ), the leader needs to receive the signatures from at least n − t distinct parties.
Since t < (1/2− ϵ)n, then n− t > t+ 2ϵn, which means that more than 2ϵn of those senders are honest. These
honest parties propagate ballot via the expander graph. By the expander’s property (Definition 2.7), more than
(1− 2ϵ)n > 2t parties receive that specific ballot related to the commit certificate. Out of these parties, at least
t+1 are honest. In Round 3, those honest parties do not sign any conflicting precommit message ⟨ballot′, r⟩, where
ballot′ ̸= C1.ballot. Thus, the leader cannot collect more than n−(t+1) signatures on any such message ⟨ballot′, r⟩
and therefore cannot create a valid conflicting commit certificate, except with negligible probability.

Lemma 7. During ΠPolling, there can be exactly one ballot ballot∗ for which there exist valid decide certificates,
except with negligible probability, negl(λ).

Proof. First, we prove that there exists at least one ballot with valid decide certificates. By Lemma 2, at least
one honest party is decided during ΠPolling. By construction, an honest party becomes decided on a ballot ballot
during phase r, if it receives valid decide certificate on ⟨decide, ballot, r⟩. Thus, there exists at least one ballot for
which there exist valid decide certificates.

Now, we prove that there exists exactly one such ballot. Let ballot∗ be the ballot for which there could exist
a valid decide certificate on the earliest phase. More specifically, ballot∗ is the ballot with the earliest phase r∗,
for which at least n− t distinct signatures on ⟨decide, ballot∗, r∗⟩ were sent to the leader pr∗ . We prove that there
cannot exist any other ballot ballot with valid decide certificates.

Let ballot have a valid decide certificate in some phase. Since ballot∗ has a valid decide certificate for phase
r∗, at least n − t parties signed ⟨decide, ballot∗, r∗⟩. Thus, at least n − 2t > 2ϵn honest parties signed that
message. These honest parties, also sent ⟨ballot∗, r∗, QCcommit⟩ through the expander graph, meaning that at
least (1 − 2ϵ)n > 2t parties received it. Out of all such parties, at most t were corrupted, so at least t + 1 were
honest. In round 5, these at least t + 1 honest parties committed to ballot∗, and set their rankcommit to r∗. In
any subsequent phase l > r∗, these at least t + 1 parties propose ballot∗ to the leader pl unless they receive a
commit certificate Cl with a higher rank l > r∗. For a leader to create a commit certificate on ballot with a higher
rank, they have to gather at least n− t votes on ballot, unless the leader forges signatures, which can occur with
negligible probability negl(λ). If the leader proposes ballot via a commit certificate that was created in phases
m < r∗, those t+1 honest parties will not send their votes as they also see ballot∗ with higher commit rank. Also,
from Lemma 7 no valid conflicting commit certificate could have been created in phase r∗. If the leader proposes
ballot with a valid commit certificate and a higher rank than ballot∗, then either the leader forges the necessary



signatures or breaks the SNRK1 scheme, which happens with negligible probability negl(λ), or ballot = ballot∗.
This is because, to form a new ballot the leader would need to gather initial values from at least n− t parties in
round 1. Since these at least t+ 1 honest parties have already committed to ballot∗, then they send ballot∗ back
to the leader during round 1, so the leader does not receive enough initial values for forming a new ballot. Thus,
ballot = ballot∗, except with negligible probability negl(λ).
Thus, there exists exactly one ballot for which there exist valid decide certificates.

Lemma 8. ΠPolling achieves Agreement according to Theorem 3.1, except with negligible probability negl(λ).

Proof. By Lemma 7, there exists exactly one ballot ballot∗ for which there exist valid decide certificates. Also, by
Lemma 2, at least n− 2f honest parties are decided before (Processing). During Processing, honest parties with
balloti =⊥ ask for help from all n parties. They receive back ballot∗ along with valid decide proofs, and they will
also thus output ballot∗.

Lemma 9. ΠPolling achieves Correctness, Count validity, Reliability, and Integrity according to Theorem 3.1, except
with negligible probability negl(λ).

Proof. (Correctness) Party pi only sets its balloti = ballot after receiving a valid decide certificate. To create
such a certificate, at least n − t parties must send a decide message for ballot in the commit certificate they
received from the leader. To form a commit certificate ⟨ballot, r,QCcommit⟩, at least n− t parties must verify and
sign ⟨ballot, r⟩, except with negligible probability negl(λ) that the leader will forge their votes. Thus, at least
n− t ≥ t+2ϵn parties must have voted for the precommit message. Among those parties, at least 2ϵn are honest
parties, so to vote on t⟨ballot, r⟩, they must have verified it. To verify ballot an honest party first checks that it is
of the form ⟨r, count0, count1, HA, πballot⟩, where πballot is a SNARK1 proof. The verification of the SNARK proof
in Line 23 proves the correctness property of Polling since it ensures that a party votes only if properties i) to iv)
for Correctness hold, unless the leader breaks the Knowledge Soundness property of the SNARK scheme, which
happens with negligible probability in λ. Similarly, πballot satisfies the correctness property v).
(Count validity) Without loss of generality let all honest parties start ΠPolling with input values vi = 1 (for vi = 0
the same arguments hold symmetrically.) Then, each honest party signs only messages of the form ⟨1, r⟩ in round
1 of phases while it is not committed. By construction, a leader can only generate valid ballots of the form
⟨r, count0, count1, HA, πballot⟩, where either the signature of an honest party pi is taken into account on count0, or
pi ∈ A : Hash(A) = HA, because otherwise the ballot will not be verified by the SNARK, except with negligible
probability negl(λ) that the adversary forges their votes on ⟨0, r⟩. From Agreement all honest parties agree on the
same ballot ballot and from correctness ballot = ⟨r, count0, count1, HA, πballot⟩. Thus, if h = |A| : Hash(A) = HA,
then by construction each honest party is accounted for either in count1 or in h. Since there are at least n − t
honest parties, we thus have h+ count1 ≥ n− t.
(Integrity),(Reliability) Once a party decides on a ballot, they set their accList variable to cert = Ψi[balloti].accList
at Line 45 or Line 52 if they stored it in the (precommit) step. Thus, all honest parties either set accList =
Ψi[balloti].accList or ⊥ and at least 2ϵn ≥ 1 honest parties set accList ̸=⊥.

Lemma 10. ΠPolling achieves Termination.

Proof. Trivial; after the n phases and the 3 additional rounds each party terminates.

From Lemmas 8,9, and 10, we conclude that Theorem 3.1 holds.

A.2 Rebuttal Correctness Proof.

Lemma 11. Let each honest party pi call ΠRebuttal(vi, balloti, accListi), where (balloti, accListi) ← ΠPolling(vi). Let
A be the subset of parties for which Hash(A) = HA ∈ balloti. Then, by the end of ΠRebuttal, every honest party pi
receives from every honest pj ∈ A message ⟨vj , r⟩σj

, where r ∈ balloti.

Proof. From Agreement of ΠPolling (Theorem 3.1), all honest parties have the same ballot ballot as input to ΠRebuttal.
From Reliability of ΠPolling (Theorem 3.1), at least one honest party pi has accListi = A : Hash(A) = HA ∈ ballot.
In Round 1 of ΠRebuttal, this honest party sends accusing messages (see Line 3) to every party belonging to A.
Therefore, each honest accused party pj receives an accusing message and subsequently during Round 2 it sends
to all parties message ⟨vj , r⟩σj

, where r ∈ ballot.



Lemma 12. ΠRebuttal achieves Provable Validity per Theorem 3.3, except with negligible probability negl(λ).

Proof. Assume that all honest parties start ΠPolling with inputs vi = v. Then, each party pi starts ΠRebuttal with
input (v, balloti, accListi), where balloti = ⟨r, count0, count1, HA, πballot⟩ and accListi are the outputs of ΠPolling.
Therefore, balloti, accListi achieve the properties of Theorem 3.1. Specifically:

(1) All honest parties start ΠRebuttal with the same balloti = ballot and accListi ∈ {A,⊥}, where A is the list of
parties whose votes were not tallied in ballot and

(2) The sum of countv and the number of honest parties within A with initial value vi = v is at least n− t for
exactly one v ∈ {0, 1}.

As per Lemma 11, every honest party, whose initial value was not included in ballot, receives an accusing
message in the first round of the Rebuttal phase. Once an honest party pj receives a valid accusing message,
it sends ⟨v, r⟩σj to all parties. Thus, every honest party receives the initial values of the honest parties
in A during Rebuttal. By (2) above and the execution of the protocol in Line 10, all honest parties set
πv = SNRK3.Prove(crs3, (v), (votesv, ballot)) and πv is a valid SNARK3 proof. Thus, they will set yi = v and
auxi = πv in Line 11. Since count1−v ≤ t and no honest party sends ⟨1 − v, r⟩σj

, the adversary cannot collect
more than t < n− t signatures on 1− v. Therefore, a valid SNARK3 proof on 1− v cannot be generated. Thus,
all honest parties output yi = v and auxi s.t. ThresholdPredicate(v, auxi) = true and no party outputs (v′, auxi)
s.t. ThresholdPredicate(v′, auxi) = true.

Lemma 13. ΠRebuttal achieves Termination.

Proof. ΠRebuttal runs for 3 synchronous rounds. Accused parties have the opportunity to redeem themselves and
send their initial values. At the end of Rebuttal, parties check if they can construct a SNARK3 proof on v. If
so, they update their yi from ⊥ to v, and update auxi to comprise the SNARK3 proof on v. Finally, the parties
output yi and auxi.

From Lemmas 12, and 13, we conclude that Theorem 3.3 holds.

A.3 Weak Byzantine Agreement Correctness Proof.

Lemma 14. If a leader creates a valid commit certificate C in a phase r, no conflicting certificate C ′ ̸= C is
created in the same phase, except with negligible probability negl(λ).

Proof. Let phase r. For party pr to generate a valid commit certificate say C, they need to aggregate at least
n− t distinct valid signatures for the respective message ⟨v, r⟩, unless they forge the necessary signatures, which
can occur with negligble probability in λ. Since t < (1/2− ϵ)n, then n− t > t+2ϵn. Thus, more than 2ϵn honest
parties signed and propagated the leader’s proposed value v ∈ C via the expander graph. By the expander’s
property (Definition 2.7), more than (1−2ϵ)n > 2t parties receive (precommit) message containing v ∈ C. Out of
these parties, at least t+1 are honest. In Round 3, those honest parties do not vote for any conflicting v′ ̸= v, in
other words, they do not send ⟨v′, r⟩ signed back to the leader. So, the leader cannot collect more than n− (t+1)
signatures on any such message ⟨v′ ̸= v, r⟩, and thus cannot create a valid conflicting commit certificate, except
with negligible probability negl(λ).

Lemma 15. If all honest parties start with input vi = v and auxi s.t. ThresholdPredicate(v, auxi) = true, and no
party starts with v′ s.t ThresholdPredicate(v′, auxi) = true, then, no leader can create a valid commit certificate on
v′ ̸= v, except with negligible probability negl(λ).

Proof. For a leader to successfully create a valid commit certificate on v′, they must receive at least n−t signatures
on ⟨v′, r⟩ to form a valid QCcommit, unless they forge the necessary signatures, which can occur with negligble
probability in λ. If a malicious leader proposes (vr = v′, auxr), with ThresholdPredicate(vr, auxr) = false, then no
honest party propagates the leader’s proposal in Line 20, or send their vote to the leader in Line 22 as vcommit ̸=⊥
and SafeVal(vr, auxr, v, auxi, vcommit) = false. Since, t < n− t, the adversary can not collect enough votes on v′ to
create a valid QCcommit and thus a commit certificate on v′, except with negligible probability negl(λ).



Lemma 16. ΠWBA achieves Restricted Validity, except with negligible probability negl(λ).

Proof. Assume all honest parties have the same input value, denoted as v, and auxiliary information auxi such
that ThresholdPredicate(v, auxi) = true. Based on Lemma 15, no leader can create a valid commit certificate
on v′ ̸= v, except with negligible probability in λ. Therefore, during the protocol, if a party receives a commit
certificate with a valid QCcommit, it must be for the input value v. Subsequently, parties only send matching decide
message on v. This means that a leader cannot collect enough votes to form a valid decide certificate for v′ ̸= v
because they cannot create a valid commit certificate for v′ in the first place. Thus, if a party receives a valid
decide certificate on v, they output v. According to Lemma 5, all parties decide within f + 1 phases, and hence,
everyone outputs v, except with negligible probability negl(λ).

Lemma 17. ΠWBA achieves Agreement, except with negligible probability negl(λ).

Proof. By Lemma 5, all parties are decided at the end of the protocol. Let pi be the honest party who decides
on the earliest phase, say k > 0. Assume that pi decides value v. For every other honest party pj who decides
value v′ we distinguish two cases, based on the phase in which pj decides.
Case 1: pj decides v′ in phase k. Since pi decided v, they received a valid decide certificate for v. To create
that certificate, the leader must have collected at least n− t votes (signatures) on ⟨decide, v, k⟩, unless the leader
forges votes, which happens with negligible probability negl(λ). A party only sends their vote once they receive
a valid commit certificate with rank k from the leader. From Lemma 14, the leader can create only one commit
certificate in their phase, except with negligble probability in λ. Since pi decided v, there must be a valid commit
certificate in phase k for v. Thus the only commit certificate the leader can generate in phase k is for value v.
Since pj decides v′, there must be a valid commit certificate in phase k for v′, therefore, v′ = v, except with
negligible probability negl(λ).

Case 2: pj decides v′ in phase l > k. Again, since pi decided v in phase k, they received a valid decide certificate
for v and to create that certificate, the leader must have collected at least n− t votes (signatures) on ⟨decide, v, k⟩,
unless the leader forges votes, which happens with negligible probability negl(λ). Even if all t malicious parties
send their votes, at least n − 2t ≥ 2ϵn honest parties must also vote for it. This means they received a commit
certificate Ck on v and propagated it to their neighbors in Line 28 before sending a matching decide vote. Due
to the expansion property, at least (1 − 2ϵ)n > 2t parties received Ck. Out of all such parties, at most t were
corrupted, so at least t + 1 were honest. In round 5, these at least t + 1 honest parties committed to v, and
set their rankcommit to k. In any subsequent phase l > k, these at least t + 1 parties propose v to the leader pl
unless they receive a commit certificate Cl with a higher rank l > k. For a leader to create a commit certificate
on v′ with a higher rank, they have to gather at least n − t votes on v′. If the leader proposes v′ via a commit
certificate that was created in phases m < k, those t + 1 honest parties will not send their votes as they have
a higher commit rank. If the leader proposes v′ by sending (⟨v′, r⟩σr ), ⟨aux⟩σr ), and receives back enough votes,
then at least one of those t+1 honest parties must have voted for v′ except with negligible probability negl(λ) of
the leader forging the necessary signatures. Since they have already committed to v and they voted for v′, then
v′ = v, except with negligible probability negl(λ).

Lemma 18. ΠWBA achieves Termination

Proof. The protocol runs for n phases; each consists of 6 synchronous rounds. From Lemma 5, all honest parties
are decided within f+1 phases. Since f ≤ t < n

2 , every honest party terminates by the end of the n phases.

From Lemmas 16, 17 and 18, we conclude that Theorem 4.1 holds.

B WBA protocol from Cohen et al [15]
Overview. In this section, we give a brief overview of the WBA protocol from [15] and point out a potential
attack (and a simple fix) in their Invoke_Phase subroutine. The protocol consists of two parts; Invoke_Phase,
which they propose, and a fallback algorithm [29]. During the invoke phase, the honest parties aim to reach
agreement on a value. If some parties fail, which only occurs when f > t

2 , the protocol proceeds to the fallback
algorithm [29], which has a communication complexity of O(n2). The invoke phase subroutine is based on the



silent phases framework. Each phase consists of three rounds; propose, commit, and decide.
(propose) First, the leader, if undecided, proposes the leader’s initial value vi and tries to get the parties to agree
on the leader’s proposed value. Upon receiving the leader’s proposal, the honest parties either sign this value or
respond with a value that they had committed to earlier along with the associated commit proof πcommit, which
is an aggregate ⌈n+t+1

2 ⌉ signatures on the committed value.
(commit) The leader broadcasts the commit message if it has been received from a party. Otherwise, if the leader
has collected at least ⌈n+t+1

2 ⌉ signatures on the proposal, the leader can generate a commit quorum QCcommit

on the leader’s proposed value. The threshold ensures that the leader cannot create two commit certificates on
conflicting values, unless an honest party votes for both values in the same phase. Upon receiving a commit
message on v consisting of the value and commit proof, the party sends a matching decide message on v, even if
it is committed on a different value. Also, the party commits to this value if it has not already committed.
(decide) If a leader collects at least ⌈n+t+1

2 ⌉ signatures on the same decide message, the leader can form a decide
certificate QCdecide by aggregating the decide messages, which the leader then sends to the parties to ensure a
safe decision on the proposed value. Finally, upon receiving a decide certificate from the leader for value v, the
party outputs v. For a more detailed explanation of the protocol, the reader may refer to [15].
Agreement Attack. The Invoke_Phase subroutine could fail to satisfy the agreement property in the case that
f > t

2 and the first few leaders are malicious. The root cause of this problem lies in the ability of consecutive
malicious leaders to collect enough votes to form conflicting QCcommit and QCdecide. This would lead the parties to
agree on two conflicting values. The vulnerability arises because honest parties send matching decide messages to
the commit certificate they received from the leader, even if they are committed to a different value. Therefore,
if malicious leaders create conflicting commit certificates, they can easily collect enough votes to create two valid
conflicting decide certificates. This exploit is achievable by having the first few leaders in the run be malicious.
Once the first malicious leader forms a valid commit certificate on v (which the leader can do since it is the first
phase and no party is committed), the leader can strategically send the created certificate to a small subset of
honest parties. This approach allows the following malicious leader to collect enough votes on the leader’sproposed
value v′ ̸= v and create a conflicting commitment certificate. The adversary now owns two conflicting commit
certificates and can equivocate two values. So, honest parties will decide on conflicting values, thereby violating
the agreement property. For clarity, we now illustrate an attack that breaks agreement.

This attack assumes that the first three leaders are malicious. Assume f = t, then, there are n − t = t + 1
honest parties. We will divide the honest parties into three groups: A, B and C, where |A| = t

2 − 2, |B| = t
2 − 1,

and |C| = 4. The phases are as follows:

• Phase 1 : P1 proposes v, collects ⌈n+t+1
2 ⌉ votes on v from parties, creates a valid commit certificate on v,

and sends the certificate only to group A (only Group A is committed on v.)

• Phase 2 : P2 proposes v′ to groups B and C, and ignores the commit messages received from group A. Since B
and C are not committed, they sign the leader’s proposal and return it back to P2. Since B+C+f > ⌈n+t+1

2 ⌉,
P2 creates a valid conflicting commit certificate on v′ and forwards it to B and C. Once they receive it, they
send a matching decide message (votes) on v′. Similarly, P2 collects enough votes to create a valid decide
certificate on v′, which P2 sends to group B only. Group B is now decided on v′.

• Phase 3 : P3 proposes any value and receives commit messages from all groups. P3 broadcasts the commit
message on v received from group A. Groups A and C send a matching decide message to P3 according
to line 16 of the Invoke_Phase protocol in [15]. Since A + C + f > ⌈n+t+1

2 ⌉, P3 creates a valid decide
certificate on v for groups A, and C. Therefore, A and C decide on v.

In subsequent rounds, all honest parties are decided and every honest leader will remain silent. Eventually,
group B will output v, and groups A and C will output v′, thus breaking agreement.

Proposed Solution. To prevent the agreement attack against the protocol, we must prevent group C from
sending a decide message on a value v that is different from the one to which it is committed (v′). Consequently,
the leader will never collect enough decide messages on v and will fail in convincing groups A and C to decide
on v; in essence, creating a valid decide certificate on v′. To implement this, we follow the intuition of certificate
ranks [26] (we utilize it similarly in our protocols). Intuitively, a certificate is ranked based on the phase in which



it was created. In the suggested protocol, a party only updates its commit value and sends a matching decide
message if the commitment message received has a higher rankcommit than the one to which the party is committed.
Therefore, in the agreement attack, when the group C receives a commitment message in phase 3 where πcommit
aggregates ⌈n+t+1

2 ⌉ messages ⟨v, 1⟩σp1
of rank 1, it will not send a matching decide message. This is due to the

fact that the group C is already committed on v′ with πcommit that aggregates ⌈n+t+1
2 ⌉messages ⟨v′, 2⟩σp2

of rank 2.

Our modification only affects Lemma A.2 in [15]. All the other lemmas and arguments are not affected.
Please refer to [15] for the terms and variables used here.

Lemma 19. If an honest party decides on v during Invoke_Phase, no honest party decides on v′ ̸= v. In addition,
at most one decide certificate can be formed in all phases.

Proof. Let pi be the honest party who decides on the earliest phase, say k > 0. Assume that pi decides value v. For
every other honest party pj who decides value v′ we distinguish two cases, based on the phase in which pj decides.
Case 1: pj decides v′ in phase k. A party decides a value once it receives a decide certificate. Thus, pi and pj
must have received a valid decide on v and v′ respectively. Since a decide certificate is only formed by aggregating
⌈n+t+1

2 ⌉ decide messages on the same value, an honest party must have sent two decide messages on v and v′ for
the leader to create two conflicting valid decide certificates. This is impossible because the pseudo-code allows
sending decide message only once by an honest party per phase.
Case 2: pj decides v′ in phase l > k. In phase k, pi receives a decide certificate on value v signed by ⌈n+t+1

2 ⌉
distinct parties. Hence, at least ⌈n+t+1

2 ⌉ − t ≥ t
2 + 1 parties updated their commit_var = v, rankcommit = k, and

πcommit. As they are committed, they do not vote on any subsequent leader’s proposed value for any phases after
k unless the leader provides a valid commit certificate with rank greater than k. For phases after k, at most
n− t− ( t2 + 1) = t

2 honest parties sign a conflicting proposed value v′ by the leader, which is not enough to form
a valid conflicting commitment message, as t

2 + t < ⌈n+t+1
2 ⌉. Thus, the leader will never collect enough decide

messages on v′ to form a conflicting valid decide certificate. Consequently, there is at most one decide certificate
that can be formed in all phases.
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