
Some Results on Related Key-IV Pairs of Espresso

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. In this paper, we analyze the Espresso cipher from a related key chosen IV perspective.
More precisely, we explain how one can obtain Key-IV pairs such that Espresso’s keystreams either
have certain identical bits or are shifted versions of each other. For the first case, we show how to obtain
such pairs after 232 iterations, while for the second case, we present an algorithm that produces such
pairs in 228 iterations. Moreover, we show that by making a minor change in the padding used during
the initialization phase, it can lead to a more secure version of the cipher. Specifically, changing the
padding increases the complexity of our second attack from 228 to 234. Finally, we show how related
IVs can accelerate brute force attacks, resulting in a faster key recovery. Although our work does not
have any immediate implications for breaking the Espresso cipher, these observations are relevant in
the related-key chosen IV scenario.

1 Introduction

With the growth of Internet of Things (IoT) applications, lightweight ciphers are becoming highly demanded
in the IoT industry. Lightweight ciphers are required to offer users a high level of assurance, while running
in resource-constrained devices. Additionally, with the rise of 5G networks, traffic volume is estimated to
increase by 1000 times [11]. Hence, besides being implemented in IoT devices that usually have limited
computing power and strict power constraints, lightweight ciphers should also offer low propagation delays
in implementation.

Since previously cipher designs focused either on hardware size or speed, a new class of lightweight ciphers
had to be introduced. Such a class was introduced in [8] and was designed to be a trade-off between hardware
size and speed for a given security level. The basic idea of this new design is to combine the short propagation
delays of the Galois Non-Linear Feedback Shift Registers (NFSRs) with the advantage of Fibonacci NFSRs,
which are more easily analyzed from a security point of view. More precisely, the authors of [8] employ a
NFSR in Gallois configuration and carry out their security analysis on a transformed NFSR which resembles
a Fibonacci NFSR. They also provide a concrete construction, called Espresso, that is a representative of
their design.

The only independent security analyses that we are aware of can be found in [12,13]. In [12], the authors
propose a related key chosen IV attack on a variant of Espresso, denoted Espresso-a. Similar to [8], they
transform the Galois NFSR to a Fibonacci one, however the output function is the same as that of Espresso.
The authors of [13], state that the transformed NFSR studied in [8,12] are not equivalent to the original Galois
NFSR, unless the output function is changed accordingly. Hence, the security analyses are not conducted
on the actual cipher. To support their claim, the authors introduce a novel transformation that converts
Espresso-like ciphers into LFSR filter generators. Then they provide several algebraic and fast correlation
attacks that can be applied to the resulting filter generators. In light of their results, they also urge researchers
to reassess Espresso’s resistance against chosen IV attacks, differential attacks and weak key attacks.

Compared to previous approaches, instead of studying the equivalent Fibonacci NFSR, we propose three
related key chosen IV attacks by working directly with the Galois NFSR. We will first study the differential
properties of the initialization algorithm and we will show how to construct related Key-IV pairs that pro-
duce identical bits on certain positions. Our methods are influenced by the differential attacks, previously

https://orcid.org/0000-0003-3953-2744


published in [4,10], designed against the Grain family. Secondly, we show a sliding property of the initializa-
tion algorithm that allows an attacker to construct related Key-IV pairs that generate shifted keystreams.
Again, we were influenced by the sliding attacks devised against the Grain family (presented in [4–6,9,10]).
To increase the complexity of our proposed slide attacks, we suggest a slight change to Espresso’s padding.
Thirdly, we propose a guess and determine attack that takes as input two or four related IV’s and outputs
the secret key. A similar approach3 can be found for Grain-128a in [7] and Espresso-a in [12]. We finally
note that we do not consider any of the attacks presented in this paper to be a serious threat in practice.
However, they certainly expose some non-ideal behavior of the Espresso initialization algorithm.

Structure of the Paper. We introduce notations and preliminaries in Section 2. In Section 3 we present
differential attacks, in Section 4 we propose several constructions for generating related Key-IV pairs and in
Section 5 we suggest several key recovery algorithms. We conclude in Section 6.

2 Preliminaries

Notations. Throughout the paper, the notation ∥ denotes string concatenation, ⊕ denotes bitwise XOR and
| denotes bitwise OR. The x ≫ i operator causes the bits in x to be rotated to the right by i positions. The
subset {0, . . . , s} ∈ N is denoted by [0, s]. The action of selecting a random element x from a sample space
X is represented by x ∈R X. Hexadecimal strings are marked by the prefix 0x. We define MID[ℓ1,ℓ2](Q) =
qℓ1∥ . . . ∥qℓ2 and LSBℓ1(Q) = MID0,ℓ1(Q), where Q = q0∥ . . . ∥qℓ1∥ . . . ∥qℓ2∥ . . . ∥qℓ.

2.1 Description of Espresso

We further provide the specifications of Espresso as presented in [8]. One of the main building blocks of
Espresso is a 256-bit NFSR in the Galois configuration. Let Xi = [xi, xi+1, . . . , xi+255] denote the state of
the NFSR at time i and let gj(Xi), where j ∈ [0, 255], be the feedback functions of the NFSR. The nonlinear
feedback functions are defined as follows

g255(Xi) = xi ⊕ xi+41xi+70

g251(Xi) = xi+252 ⊕ xi+42xi+83 ⊕ xi+8

g247(Xi) = xi+248 ⊕ xi+44xi+102 ⊕ xi+40

g243(Xi) = xi+244 ⊕ xi+43xi+118 ⊕ xi+103

g239(Xi) = xi+240 ⊕ xi+46xi+141 ⊕ xi+117

g235(Xi) = xi+236 ⊕ xi+67xi+90xi+110xi+137

g231(Xi) = xi+232 ⊕ xi+50xi+159 ⊕ xi+189

g217(Xi) = xi+218 ⊕ xi+3xi+32

g213(Xi) = xi+214 ⊕ xi+4xi+45

g209(Xi) = xi+210 ⊕ xi+6xi+64

g205(Xi) = xi+206 ⊕ xi+5xi+80

g201(Xi) = xi+202 ⊕ xi+8xi+103

g197(Xi) = xi+198 ⊕ xi+29xi+52xi+72xi+99

g193(Xi) = xi+194 ⊕ xi+12xi+121

The remaining feedback functions are of type gj(Xi) = xi+j+1.

3 both using only two related IV’s

2



Another building block of the Espresso cipher is a non-linear output function z(Xi) given by

z(Xi) =xi+80 ⊕ xi+99 ⊕ xi+137 ⊕ xi+227 ⊕ xi+222 ⊕ xi+187 ⊕ xi+243xi+217 ⊕ xi+247xi+231

⊕ xi+213xi+235 ⊕ xi+255xi+251 ⊕ xi+181xi+239 ⊕ xi+174xi+44 ⊕ xi+164xi+29

⊕ xi+255xi+247xi+243xi+213xi+181xi+174

We further describe the main algorithms used by the Espresso cipher in the initialization and keystream
generation phases.

Key Loading Algorithm (KLA). Espresso uses a 128-bit key K, a 96-bit initialization vector IV and a fixed
32-bit padding P = 0xfffffffe. The key is loaded in the NFSR as follows: X0 = K∥IV ∥P .

Key Scheduling Algorithm (KSA). After running KLA, the output4 zi = z(Xi) is XOR-ed to g255(Xi) and
g217(Xi) update functions, i.e., during one clock the update functions are updated as g255(Xi) = xi ⊕
xi+41xi+70 ⊕ zi and g217(Xi) = xi+218 ⊕ xi+3xi+32 ⊕ zi.

Pipeline Key Scheduling Algorithm (PKSA). Due to the pipelining of the output function some extra clocks
are needed before producing the keystream. Hence, the PKSA algorithm instead of outputting4 zi simply
ignores it. Note that after each generated bit the NFSR’s internal state is updated using the KSA routine
with g255(Xi) = xi ⊕ xi+41xi+70 and g217(Xi) = xi+218 ⊕ xi+3xi+32.

Pseudorandom Keystream Generation Algorithm (PRGA). After performing the KSA routine for 256 clocks
and the PKSA routine for 3 clocks, bit zi is used as the output keystream bit. After each generated bit the
NFSR’s internal state is updated as in the PKSA routine.

2.2 Security Model

In this paper, we will work in the Related Key Chosen IV security model. In this model, according to [5,
Section 2.1], the adversaryA is given access to an encryption oracleO that has access to the key K. Therefore,
A can query O and thus obtain valid ciphertexts.

More precisely, for each query i, the adversary first chooses the oracle’s parameters: an initialization
vector IVi, a function Fi : {0, 1}n → {0, 1}n and a message mi. Then O encrypts mi using the Key-IV pair
(Fi(K), IVi). After repeating this process several times, the adversary’s task is to distinguish the keystream
output from a random stream or to compute the secret key efficiently.

3 Related Key-IV Pairs

Our first goal is to construct a family of related Key-IV functions such that the adversary can distinguish the
resulting keystreams from random ones with high probability. An important step to construct such pairs is
the observation that the KSA and PKSA routines are invertible. More precisely, if a state Xi is obtained by
applying either KSA or PKSA to Xi−1, we can recover Xi−1 from Xi by rolling back one clock. We further
refer to the transition functions from Xi to Xi−1 as KSA−1 and PKSA−1. The exact details of KSA−1 and
PKSA−1 are given in Algorithms 1 and 2.

We further denote by KSA256 and KSA−1
256 the KSA and KSA−1 routines performed for 256 clocks.

Similarly, we define PKSA3 and PKSA−1
3 . We also define KLA−1(X) = (LSB127(X),MID[128,223](X)) and

∆(X) = X ⊕ δ, where δ ∈ {0, 1}256. Using these routines we can obtain a pair of related Key-IVs (K, IV )
and (K, IV )∆ such that they produce almost similar initial keystreams. A high level description of the
construction is provided in Figure 1.

We further present an algorithm that checks which keystream positions produced by the states X0

and X0,∆ are identical. Before stating our result, we first introduce a small modification to the keystream
generation algorithm. Note that this modification is only used as part of Algorithm 3 and is needed to aid
us find identical positions. We also make an assumption about Espresso’s keystream bits.
4 during one clock

3



Algorithm 1: PKSA−1 routine for Espresso
Input: State Xi = (x0, . . . , x255)
Output: The preceding state Xi−1 = (y0, . . . , y255)

1 for t = 0 to 254 do
2 yt+1 = xt

3 y0 = x255 ⊕ x40x69

4 y252 = x251 ⊕ x41x82 ⊕ x7

5 y248 = x247 ⊕ x43x101 ⊕ x39

6 y244 = x243 ⊕ x42x117 ⊕ x102

7 y240 = x239 ⊕ x45x140 ⊕ x116

8 y236 = x235 ⊕ x66x89x109x136

9 y232 = x231 ⊕ x49x158 ⊕ x188

10 y218 = x217 ⊕ x2x31

11 y214 = x213 ⊕ x3x44

12 y210 = x209 ⊕ x5x63

13 y206 = x205 ⊕ x4x79

14 y202 = x201 ⊕ x7x102

15 y198 = x197 ⊕ x28x51x71x98

16 y194 = x193 ⊕ x11x120

Algorithm 2: KSA−1 routine for Espresso
Input: State Xi = (x0, . . . , x255)
Output: The preceding state Xi−1 = (y0, . . . , y255)

1 Xi−1 = PKSA−1(Xi)
2 z = y80 ⊕ y99 ⊕ y137 ⊕ y227 ⊕ y222 ⊕ y187 ⊕ y243y217 ⊕ y247y231 ⊕ y213y235 ⊕ y255y251 ⊕ y181y239 ⊕ y174y44 ⊕

y164y29 ⊕ y255y247y243y213y181y174
3 y0 = y0 ⊕ z
4 y218 = y218 ⊕ z

(K, IV ) Xk
0 Xp

0 X0

(K, IV )∆ Xk
0,∆ Xp

0,∆ X0,∆

F ∆

KLA KSA256 PKSA3

KLA−1 KSA−1
256 PKSA−1

3

Fig. 1: Construction of the Related Key-IV function

Modified Pseudorandom Keystream Generation Algorithm (PRGA′). To obtain our modified PRGA we
replace ⊕ (XOR) and · (AND) operations in the original PRGA with | (OR) operations.

Assumption. Based on the experimental results we obtained, we further assume that the output of PRGA5 is
independently and uniformly distributed. To obtain these results 100 keystream were statistically tested using
the NIST Test Suites [1, 2]. During our experiments we used the default pseudorandom numbers generator
implemented in the GMP library [3] to randomly generate 100 Key-IV pairs.

Theorem 1. Let δ ∈ {0, 1}256, q1 the number of desired identical positions in the keystream and q2 the
maximum number of search trials. Then, Algorithm 3 finds at most q1 identical positions in a maximum of
q2 trials.

5 implicitly PKSA and PKSA−1

4



Proof. Let ω be the Hamming weight of δ. We note that in Algorithm 3 the bits bi1 , . . . , biω on position
i1, . . . , iω are set. For j ∈ [1, ω], if bit bij is taken into consideration while computing the output bit of
PRGA then the output of PRGA′ is also set due to the replacement of the original operations ⊕ and · with
| operations. The same argument is valid if a bit of Espresso’s internal state is influenced by bij . ⊓⊔

Remark 1. Note that if we run Algorithm 3 we do not obtain all the identical positions. This is due to the
fact that Algorithm 3 is prone to producing internal collisions, and thus eliminate certain positions that are
identical in both keystreams. Although we do not find all the positions, our algorithm has the advantage of
finding identical keystream positions automatically.

Algorithm 3: Search for identical keystream positions
Input: Integers δ ∈ {0, 1}256 and q1, q2 > 0
Output: Keystream positions φ

1 Set s← 0 and φ← ∅
2 Let X0 ∈ {0, 1}256 be the zero state (0, . . . , 0)
3 Construct X0,∆ = X0 ⊕ δ
4 while |φ| ≤ q1 and s < q2 do
5 Set b← PRGA′(X0,∆) and update state X0,∆ with the current state
6 if b = 0 then
7 Update φ← φ ∪ {s}
8 Set s← s+ 1

9 return φ

Based on Algorithm 3, in Table 1 we present some examples. More precisely, two initial states X0 and
X0,∆ which differ only in the position presented in Table 1, Column 1, produce identical output bits in the
positions found in Table 1, Column 3, among the initial 160 key stream bits obtained during the PRGA.

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical Keystream Bits

31 25 0-15, 19, 22, 23, 27, 34, 42, 55, 58, 71
47 10 0, 1, 25, 36, 39, 43, 47, 51, 66, 82
71 21 0, 1, 3, 4, 7, 8, 11, 12, 15-17, 19, 20, 21, 24, 25, 49, 60, 67, 71, 75
95 32 0-5, 7-9, 11, 12, 16, 18, 20, 22, 23, 27, 31, 32, 35, 36, 39, 41, 43-45, 48, 49, 73, 91, 95, 99
119 22 0, 1, 4, 5, 8, 9, 12, 13, 16, 19, 24, 27, 35, 36, 40, 42, 46, 51, 56, 59, 65, 67
143 32 0-2, 4, 5, 8-10, 12-14, 16-19, 21-24, 33, 36, 40, 43, 48, 51, 59, 60, 64, 66, 70, 83, 91

167 51 0-2, 4-8, 10-12, 14-17, 19-22, 24-26, 28, 29, 32-34, 36-38, 40-43, 45-48, 57, 60, 64, 67,
72, 75, 83, 84, 88, 90, 94, 107, 115

191 58 0-2, 5, 6, 8, 9, 11, 13-16, 18-20, 22-26, 28-32, 34-36, 38-41, 43-45, 48, 49, 52, 56-58, 61,
62, 65-67, 69, 71, 72, 81, 84, 88, 91, 99, 108, 112, 114, 131

215 81 0, 1, 3-26, 29, 30, 32, 33, 35, 37-40, 42-44, 46-50, 52-56, 58-60, 62-65, 67-69, 72, 73, 76,
80-82, 85, 86, 89-91, 93, 95, 96, 105, 108, 112, 115, 123, 132, 136, 138, 155

239 96
1-3, 5-7, 9-11, 13-16, 18-21, 23-25, 27-50, 53, 54, 56, 57, 59, 61-64, 66-68, 70-74, 76-80,
82-84, 86-89, 91-93, 96, 97, 100, 104-106, 109, 110, 113-115, 117, 119, 120, 129, 132,

136, 139, 147, 156

Table 1: Propagation of a Single Bit Differential

5



3.1 Multiple Key-IV Trials with a Fixed Differential

We further consider that the adversary is allowed to produce any related Key-IV pairs for a given fixed
differential. In this case, the while loop of our proposed algorithm (Algorithm 4) has to run an expected 232

times with different randomly chosen (K, IV ) pairs, until X0,∆ has the correct padding. Once this happens,
we output a related Key-IV pair (K, IV ) and (K ′, IV ′). In Table 2 we provide one such an example.

Algorithm 4: Search for Key-IV pairs that produce almost similar initial keystreams for a given δ

Input: An integer δ ∈ {0, 1}256
Output: Key-IV pairs (K, IV ) and (K′, IV ′)

1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and IV ∈R {0, 1}96
4 Run KSA256(K∥IV ) and PKSA3(K∥IV ) routines to obtain an initial state X0 ∈ {0, 1}256
5 Compute the state X0,∆ = X0 ⊕ δ

6 Run PKSA−1
3 (X0,∆) and KSA−1

256(X0,∆) routines to produce state Xk
0,∆ = K′∥IV ′∥P ′

7 if P ′ = 0xfffffffe then
8 Set s← 1
9 return (K, IV ) and (K′, IV ′)

Key IV State
0xd17117b8c5f9042 0x96a2736a408 0x7a53d74a086602e4943e052d9fc6865
43a69b7db0a535d2b 208e40e4ce2e9 b37d9c35fb68b0cf78e8b5bcba7f0a273
0xcee2d9eee6c6da3 0x52385c5ecfd 0x7a53d74a086602e4943e052d9fc6865
625309eb7737e3f4d 2fa898bf48b67 b37d9c35fb68b0cf78e8b5bcba7f1a273

Table 2: Key-IV pairs which differ only in the 239th position

3.2 Single Key-IV Trials with Multiple Differentials

In practice, the attacker has access to a single Key-IV pair and he has to produce a second Key-IV pair related
to the one given. In this case, the attacker has to try around 232 different values for δ, until Algorithm 5
outputs a pair.

In Figure 2a we can see how cardinality of φ fluctuates depending on the iteration step i and the Hamming
weight ω of δ. In [10], the authors introduce an algorithm that computes Key-IV pairs that produce similar
initial Grain-128a keystreams for δ’s of the form 0 . . . 010 . . . 0. Our proposal (Algorithm 5) can be easily
adapted to Grain-128a, and thus for comparison we also provide in Figure 2b the evolution of |φ| in the case
of Grain-128a.

For a given ∆, let X1 be a random state such that X1 ̸= X0,∆. Note that in Algorithm 5 parameter ℓ
controls the probability of obtaining identical keystream bits for states X0 and X1 on the positions included
in φ. More precisely, the probability of obtaining a collision for X0 and X1 is 1/2ℓ. In Table 3 we can see
the number of δ’s such that |φ| ≥ 16. Hence, for ℓ = 16 in Algorithm 5 it is sufficient to run the while loop
until j ̸= 5 since 239 · 137 · 110 · 69 · 18 ≥ 232. In the case of Grain-128a it is sufficient to run the while loop
until j ̸= 4 since 2564 ≥ 232.

6



Algorithm 5: Search for a Key-IV pair that produces an almost similar initial keystream with a
given Key-IV pair (K, IV )

Input: A Key-IV pair (K, IV ) and an integer ℓ > 0
Output: A related Key-IV pair (K′, IV ′)

1 Run KSA256(K∥IV ) and PKSA3(K∥IV ) routines to obtain an initial state X0 ∈ {0, 1}256
2 Set the integer j ← 0 and the state δ = 0
3 while j ̸= 256 do
4 Set the bit δj = 1 and compute j ← j + 1
5 for i ∈ [0, 255] do
6 Compute φ← Algorithm 3(δ, 160, 160)
7 if |φ| < ℓ then
8 Skip the next instructions and go to the next i
9 Compute the state X0,∆ = X0 ⊕ δ

10 Run PKSA−1
3 (X0,∆) and KSA−1

256(X0,∆) routines to produce state Xk
0,∆ = K′∥IV ′∥P ′

11 if P ′ = 0xfffffffe then
12 Set s← 1
13 return (K′, IV ′)

14 Rotate to the right δ = δ ≫ 1

0 50 100 150 200 250

16

32

48

64

80

96

112

128

i

|φ
|

ω = 1 ω = 2
ω = 3 ω = 4
ω = 5 ω = 6
ω = 7 ω = 8
ω = 9 ω = 10
ω = 11 ω = 12

(a) Espresso

0 50 100 150 200 250

16

32

48

64

80

96

112

128

i

|φ
|

ω = 1 ω = 2
ω = 3 ω = 4
ω = 5 ω = 6
ω = 7 ω = 8
ω = 9 ω = 10
ω = 11 ω = 12

(b) Grain-128a

Fig. 2: The evolution of |φ|

Cipher ω
1 2 3 4 5 6 7 8 9 10 11 12

Espresso 239 137 110 69 56(18) 51 49 48 47 0 0 0
Grain-128a 256 256 256 256 256 247 233 185 164 158 133 121

Table 3: Number of valid possibilities for ℓ = 16

7



4 Key-IV Pairs That Produce Shifted Keystreams

In this section, we will show how an attacker can obtain related Key-IV pairs that produce 4-bit shifted
keystreams. Our algorithm’s main idea is that we can obtain a valid padding after running KSA−1 for 4
clocks if we fix the last four bits of the IV. We also provide a slower algorithm that uses the KSA routine,
which will be useful in the next section. Our results are presented in Theorem 2. To increase the complexity of
these attacks and consequently increase the security of the Espresso cipher, we recommend using the padding
0x7fffffff instead of 0xfffffffe. To support our claim we adapted Theorem 2 to the 0x7fffffff padding
and we presented the attacks’ complexity in Theorem 3. Note that in all the attacks the PRNG routine is
composed of PKSA and PRGA.

Theorem 2. There are two attack strategies that an adversary can use to produce 4-bit shifted keystreams.
He can use either the KSA algorithm (see Algorithm 6) or the KSA−1 algorithm (see Algorithm 7). The
algorithms’ have an average running time of 232 and 228 iterations, respectively.

Proof. In the first case, the attacker can use the algorithm described in Algorithm 6 to obtain 4-bit shifted
keystreams. For simplicity, we present in Table 4 the evolution of bits 255 to 224 of state X0 after each run
of the KSA routine. We highlighted with red the positions that are updated after each run6 and we denote
by ? the bits that are unknown to the attacker. We can easily see that after 4 clocks the bits from 255 to
228 are unknown to the attacker and are randomly distributed7. Hence, we should obtain a correct padding
after 228 iterations.

To obtain a shifted keystream we need an extra restriction. More precisely, when we run the KSA routine
for 256 clocks state X0 evolves to state X256, but state X ′

0 = X4 evolves to state X ′
256 = X260. Hence, to

obtain the shifted keystream we need z257 = z258 = z259 = z260 = 0. The probability of this happening is
1/24. Therefore, the average running time of Algorithm 6 is 228 · 24 = 232.

Algorithm 6: Constructing Key-IV pairs that generate 4-bit shifted keystream (forward construc-
tion)

Output: Key-IV pairs (K′, IV ′) and (K, IV )
1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and IV ∈R {0, 1}96
4 Run KSA(K∥IV ) routine for 4 clocks to obtain a state X ′

0 = K′∥IV ′∥P ′

5 if P ′ = 0xfffffffe then
6 Run KSA(K′∥IV ′) and PRNG routine for 252 clocks and 4 clocks, respectively, to obtain bits

z257, z258, z259, z260
7 if z257 = z258 = z259 = z260 = 0 then
8 Set s← 1
9 return (K, IV ) and (K′, IV ′)

A more efficient strategy is described in Algorithm 7. In this case, we set the last four bits of the
initialization vector to 1. In Table 5 we can see the state evolution of bits 255 to 220 after running the
KSA−1 routine. We separated the extra four bits of the IV by a straight line and we denoted by × the bits
that are unknown to the attacker, but are irrelevant for our attack. In this case, the updated positions are
252, 248, 244, 240, 236, 232. We can easily see that after 4 clocks we have 24 unknown positions. Thus, the
expected running time until we obtain a correct padding is 224.

As in the first case, we need some additional restrictions. We can see that after running the KSA routine
for 256 clocks state X0 evolves to state X256, but state X ′

0 = X−4 evolves to state X ′
256 = X252. Hence, to

6 255, 251, 247, 243, 239, 235, 231
7 due to the key bits involved in their computation

8



0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
? 0 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1
? ? 0 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 1
? ? ? 0 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 1
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1

Table 4: State evolution of bits 255 to 224 after applying the KSA routine (Algorithm 6)

obtain the shifted keystream we need z253 = z254 = z255 = z256 = 0. Therefore, the average running time of
Algorithm 7 is 224 · 24 = 228.

Algorithm 7: Constructing Key-IV pairs that generate 4-bit shifted keystream (backward con-
struction)

Output: Key-IV pairs (K′′, IV ′′) and (K, IV )
1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and V ∈R {0, 1}92
4 Set IV ← V ∥0xf
5 Run KSA−1(K∥IV ) routine for 4 clocks to obtain a state X ′′

0 = K′′∥IV ′′∥P ′′

6 if P ′′ = 0xfffffffe then
7 Run KSA(K∥IV ) and PRNG routine for 252 clocks and 4 clocks, respectively, to obtain bits

z253, z254, z255, z256
8 if z253 = z254 = z255 = z256 = 0 then
9 Set s← 1

10 return (K, IV ) and (K′′, IV ′′)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 ×
1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 × ×
1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 1 1 1 1 1 × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 1 × × × ×
Table 5: State evolution of bits 255 to 220 after applying the KSA−1 routine (Algorithm 7)

⊓⊔

We further consider the padding 0x7fffffff and we study its impact on the average time needed to
obtain shifted keystreams. We can easily see that this small change increases the complexity of finding shifted
keystreams. Hence, we suggest using this padding instead of the classical one. Note that due to the attacks
presented in Section 3, it is sufficient to devise a padding scheme that induces an average running time
greater than 232.

Theorem 3. There are two attack strategies that an adversary can use to produce 8-bit shifted keystreams.
He can use either the KSA algorithm (see Algorithm 8) or the KSA−1 algorithm (see Algorithm 9). The
algorithms’ have an average running time of 240 or 234 iterations, respectively.

Proof (sketch). The proof is similar to the proof of Theorem 2 and thus we omit some details.

9



In the first case, the attacker can use the algorithm described in Algorithm 8 to obtain 8-bit shifted
keystreams. The evolution of bits 255 to 224 of state X0 is presented in Table 6. We can easily see that after
8 clocks the bits from 255 to 224 are unknown to the attacker and thus he will obtain a correct padding after
232 iterations. Note that, when we run the KSA routine for 256 clocks state X0 evolves to state X256, but state
X ′

0 = X8 evolves to state X ′
256 = X264. Hence, to obtain the shifted keystream we need z257 = . . . = z264 = 0.

Therefore, the average running time of Algorithm 8 is 232 · 28 = 240.

Algorithm 8: Constructing Key-IV pairs that generate 8-bit shifted keystream (forward construc-
tion)

Output: Key-IV pairs (K′, IV ′) and (K, IV )
1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and IV ∈R {0, 1}96
4 Run KSA(K∥IV ) routine for 8 clocks to obtain a state X ′

0 = K′∥IV ′∥P ′

5 if P ′ = 0x7fffffff then
6 Run KSA(K′∥IV ′) and PRNG routine for 248 clocks and 8 clocks, respectively, to obtain bits

z257, . . . , z264
7 if z257 = . . . = z264 = 0 then
8 Set s← 1
9 return (K, IV ) and (K′, IV ′)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1
? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 1
? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 1
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Table 6: State evolution of bits 255 to 224 after applying the KSA routine (Algorithm 8)

The second strategy is described in Algorithm 9. In this case, we set the last six bits of the initialization
vector to 1. In Table 7 we can see the state evolution of bits 255 to 218. Note that we also have position 218
updated. We can easily see that after 8 clocks we have 26 unknown positions. Thus, the expected running
time until we obtain a correct padding is 226. Note that, after running the KSA routine for 256 clocks state
X0 evolves to state X256, but state X ′

0 = X−8 evolves to state X ′
256 = X248. Hence, to obtain the shifted

keystream we need z249 = . . . = z256 = 0. Therefore, the average running time of Algorithm 9 is 226 ·28 = 234.
⊓⊔

In Table 8 we present a set of examples for Algorithms 6 to 9.

10



Algorithm 9: Constructing Key-IV pairs that generate 8-bit shifted keystream (backward con-
struction)

Output: Key-IV pairs (K′′, IV ′′) and (K, IV )
1 Set s← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and V ∈R {0, 1}90
4 Set IV ← V ∥0x3f
5 Run KSA−1(K∥IV ) routine for 8 clocks to obtain a state X ′′

0 = K′′∥IV ′′∥P ′′

6 if P ′′ = 0x7fffffff then
7 Run KSA(K∥IV ) and PRNG routine for 248 clocks and 8 clocks, respectively, to obtain bits

z249, . . . , z256
8 if z249 = . . . = z256 = 0 then
9 Set s← 1

10 return (K, IV ) and (K′′, IV ′′)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 0 1 1 1 1 1 1 ?
1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 0 1 1 1 1 1 1 ? ?
1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 0 1 1 1 1 1 1 ? ? ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 0 1 1 1 1 1 1 ? ? × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 0 1 1 1 1 1 1 ? ? × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 1 1 1 ? ? × × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 1 1 1 1 ? ? × × × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ? ? × × × × × ×

Table 7: State evolution of bits 255 to 218 after applying the KSA−1 routine (Algorithm 9)

Key IV Keystream

Algorithm 6

0x2a13a9539900630 0x2c112eb15ad 0x6757b665d8a3e72
f7a721a25e2193026 d58ec3a99599a bd2bdfdc326a93404
0xa13a9539900630f 0xc112eb15add 0x757b665d8a3e72b
7a721a25e21930262 58ec3ad959aef d2bdfdc326a934043

Algorithm 7

0xb1d331f900270d5 0x7e8b7fd12fe 0x6172f847028df4f
f6a43069b404888cf bf7c2f17d86ff eb0906ea001fc6d1f
0xfb1d331f900270d 0xf7e8b7fd12f 0x56172f847028df4
5f6a43069b404888c ebf7c2b17684f feb0906ea001fc6d1

Algorithm 8

0xb64e24eddec37cf 0xaee197ec26b 0x0261c57c8b0238e
8a30970c2155d30cf 76484bceb639d 469f8e67299c3ed57
0x4e24eddec37cf8a 0xe197ec26b76 0x61c57c8b0238e46
30970c2155d30cfae 4849c49c2f33f 9f8e67299c3ed5742

Algorithm 9

0xd90e03c9fdcf7ce 0xb6a7a25b255 0xca75acab22d4c9e
231f9ac4c322ad987 b956c9672467f e1fb6c9045f1379e0
0xd7d90e03c9fdcf7 0x87b6a7a25b2 0x05ca75acab22d4c
ce231f9ac4c322ad9 55b954817ee18 9ee1fb6c9045f1379

Table 8: Key-IV pairs that produce shifted keystreams

11



5 Key Recovery Algorithms

According to the results presented in Section 4, we know that related IV’s exist. Note that we also know the
average running time τ needed to find such a pair (IV, IV ′) and the keystream shift σ that they produce. Since
we do not have access to the secret key, a simple strategy to finding such a pair is to choose a random IV and
use it to generate α bits that are stored in memory. Then clock the NFSR either forward or backwards, and
then randomly generate8 IV ′ until we obtain a keystream with the desired shift σ. Note that the probability
of randomly obtaining the desired shift is 1/2α−σ. Therefore, if we choose a large enough α the probability
is small enough.9

We further assume that we are in possession of two related IV’s and we want to recover the secret key.
Using a related IV pair, we can use a guess and determine attack10 to recover the secret key. We propose
three key recovery attacks. The first one (forward construction) uses IV pairs generated using the KSA
routine, while the second (backward construction) use IV-pairs created using the KSA−1 routine. The last
attack (mixed construction) assumes that we are in possession of two IV-pairs and is a combination of the
forward and backward constructions.

5.1 Forward Construction

Before presenting our attack, we want to see which NFSR positions are modified11 by the KSA routine after
each clock. These positions are presented in Table 9.

Clock Cells
1 193, 197, 201, 205, 209, 213, 217, 231, 235, 239, 243, 247, 251, 255
2 192, 193, 196, 197, 200, 201, 204, 205, 208, 209, 212, 213, 216, 217, 230, 231, 234, 235,

238, 239, 242, 243, 246, 247, 250, 251, 254, 255
3 191− 193, 195− 197, 199− 201, 203− 205, 207− 209, 211− 213, 215− 217, 229− 231,

233− 235, 237− 239, 241− 243, 245− 247, 249− 251, 253− 255

4 190− 217, 228− 255

5 189− 217, 227− 255

6 188− 217, 226− 255

7 187− 217, 225− 255

8 186− 217, 224− 255

Table 9: Modified cells after running the KSA routine

We first start our study with the classical Espresso cipher. Hence, looking at the KLA and KSA routines,
we can see that on clock i+1 K’s bits used by the feedback functions and the output function are found on
positions 0 − (127 − i), where i ∈ [0, 3]. According to Table 9, none of K’s bits are modified. Similarly, we
can see that IV ’s bits used by the feedback functions are not modified. In the case of the output function,
we can see that the only positions that are modified are 213 and 217 at clocks 2− 4. Luckily we can recover
them from IV ′’s bits. Also, note that for i = 2, 3 the value found on position 222 is 1 (due to the shifting of
the initial padding).

As stated in Table 9, some positions between 223 and 255 are modified. But we are working with two
related IV’s that produce 4-bit shifted keystreams. Hence, we know that after 4 clocks we end up with a
valid padding. Hence, we know their values.
8 an average of τ IV’s are generated
9 e.g. α = 100 since σ = 4 or 8

10 An attacker starts by brute-forcing parts of a cryptographic key and then uses various methods to determine the
remaining unknown portions, often relying on prior knowledge or observations about the encryption process.

11 and hence, unknown to an attacker

12



Rewriting the feedback functions we obtain

g255(Xi+1) = ki ⊕ ki+41ki+70 ⊕ z(Xi+1)

g251(Xi+1) =

{
1⊕ ki+42ki+83 ⊕ ki+8 if i ̸= 3

ki+42ki+83 ⊕ ki+8 if i = 3

g247(Xi+1) = 1⊕ ki+44ki+102 ⊕ ki+40

g243(Xi+1) = 1⊕ ki+43ki+118 ⊕ ki+103

g239(Xi+1) = 1⊕ ki+46ivi+13 ⊕ ki+117

g235(Xi+1) = 1⊕ ki+67ki+90ki+110ivi+9

g231(Xi+1) = 1⊕ ki+50ivi+31 ⊕ ivi+61

g217(Xi+1) = ivi+90 ⊕ ki+3ki+32 ⊕ z(Xi+1)

g213(Xi+1) = ivi+86 ⊕ ki+4ki+45

g209(Xi+1) = ivi+82 ⊕ ki+6ki+64

g205(Xi+1) = ivi+78 ⊕ ki+5ki+80

g201(Xi+1) = ivi+74 ⊕ ki+8ki+103

g197(Xi+1) = ivi+70 ⊕ ki+29ki+52ki+72ki+99

g193(Xi+1) = ivi+66 ⊕ ki+12ki+121

where

z′(Xi+1) = ki+80 ⊕ ki+99 ⊕ ivi+9 ⊕ ivi+59 ⊕ ivi+53 ⊕ ivi+46ki+44 ⊕ ivi+36ki+29

z(Xi+1) =


z′(Xi+1)⊕ iv85iv89 ⊕ iv94+i if i = 0

z′(Xi+1)⊕ iv′81+iiv
′
85+i ⊕ 1⊕ iv′81+iiv53+iiv46+i ⊕ iv94+i if i = 1

z′(Xi+1)⊕ iv′81+iiv
′
85+i ⊕ iv′81+iiv53+iiv46+i if i = 2

z′(Xi+1)⊕ iv′81+iiv
′
85+i ⊕ iv′81+iiv53+iiv46+i if i = 3

From Espresso’s feedback functions we can see that the only functions containing retrievable key bits are
g255, g251, g247, g243, g239 and g217. Note that all positions, except 217, can be recovered from the padding (see
Table 4). In the case of g217, the value can be recovered from IV ′’s bits. Therefore, we obtain Algorithm 10
for recovering some of K’s bits. To ease understanding, in Algorithm 10 we marked at each step the recovered
key bits %rec and the used key bits %use.

We further develop a key recovery algorithm for our proposed version of Espresso. To simplify description,
we first write some intermediary feedback function

g′251(Xi+1) = 1⊕ ki+42ki+83 ⊕ ki+8

g′247(Xi+1) = 1⊕ ki+44ki+102 ⊕ ki+40

g′243(Xi+1) = 1⊕ ki+43ki+118 ⊕ ki+103

g′239(Xi+1) = 1⊕ ki+46ivi+13 ⊕ ki+117

g′235(Xi+1) = 1⊕ ki+67ki+90ki+110ivi+9

g′231(Xi+1) = 1⊕ ki+50ivi+31 ⊕ ivi+61

g′217(Xi+1) = ki+3ki+32

g′213(Xi+1) = ivi+86 ⊕ ki+4ki+45

g′209(Xi+1) = ivi+82 ⊕ ki+6ki+64

g′205(Xi+1) = ivi+78 ⊕ ki+5ki+80

13



Algorithm 10: Key bits recovery algorithm for the 0xfffffffe padding (forward construction)
Input: Chosen IV’s IV and IV ′ and key bits kj , where

j ∈ {4− 6, 29− 35, 44− 49, 70− 72, 84− 86, 99− 102, 121}
Output: 24 key bits kj , where j ∈ {0− 3, 8− 11, 40− 43, 80− 83, 103− 106, 117− 120}

1 for i ∈ [0, 3] do
2 ki+117 ← ki+46ivi+13 %rec : 117− 120 use : 46− 49
3 k105 ← k45k120 %rec : 105 use : 45, 120
4 k43 ← k47k105 %rec : 43 use : 47, 105
5 for i ∈ [0, 3] do
6 if i ̸= 2 then ki+103 ← ki+43ki+118 %rec : 103, 104, 106 use : 43, 44, 46, 118, 119, 121
7 for i ∈ [0, 2] do
8 ki+40 ← ki+44ki+102 %rec : 40− 42 use : 44− 46, 102− 104
9 o3 ← k102 ⊕ iv12 ⊕ iv62 ⊕ iv′84 ⊕ iv′88 ⊕ iv56 ⊕ iv49k47 ⊕ iv39k32 ⊕ iv′i+81 ⊕ iv′i+81ivi+53ivi+46 %use : 102, 47, 32

10 k83 ← o3 ⊕ iv′89 ⊕ iv93 ⊕ k6k35 %rec : 83 use : 6, 35
11 k3 ← o3 ⊕ k83 ⊕ k44k73 %rec : 3 use : 83, 44, 73
12 for i ∈ [0, 2] do
13 oi ← ki+99 ⊕ ivi+9 ⊕ ivi+59 ⊕ iv′i+81 ⊕ iv′i+85 ⊕ ivi+53 ⊕ ivi+46ki+44 ⊕ ivi+36ki+29

%use : 99− 101, 44− 46, 29− 31
14 if i ̸= 0 then oi ← o⊕ 1⊕ iv′i+81 ⊕ iv′i+81ivi+53ivi+46

15 if i = 2 then oi ← o⊕ 1
16 else oi ← o⊕ ivi+94

17 ki+80 ← oi ⊕ iv′i+86 ⊕ ivi+90 ⊕ ki+3ki+32 %rec : 80− 82 use : 3− 5, 32− 34

18 for i ∈ [0, 2] do
19 ki+0 ← oi ⊕ ki+80 ⊕ ki+41ki+70 %rec : 0− 2 use : 80− 82, 41− 43, 70− 72
20 for i ∈ [0, 3] do
21 ki+8 ← ki+42ki+83 %rec : 8− 11 use : 42− 45, 83− 86
22 if i = 3 then ki+8 ← ki+8 ⊕ 1

g′201(Xi+1) = ivi+74 ⊕ ki+8ki+103

g′197(Xi+1) = ivi+70 ⊕ ki+29ki+52ki+72ki+99

g′193(Xi+1) =

{
ivi+66 ⊕ ki+12ki+121 if i ≤ 6

ivi+66 ⊕ ki+12ivi−6 otherwise

Using arguments similar to the classical case, we obtain the following feedback functions

g255(Xi+1) = ki ⊕ ki+41ki+70 ⊕ z(Xi+1)

g251(Xi+1) =

{
g′251(Xi+1) if i ≤ 3

g′251(Xi+1)⊕ 1⊕ ki−4 ⊕ ki+37ki+66 ⊕ z(Xi−3) otherwise

g247(Xi+1) =

{
g′247(Xi+1) if i ≤ 3

g′247(Xi+1)⊕ ki+38ki+79 ⊕ ki+4 otherwise

g243(Xi+1) =

{
g′243(Xi+1) if i ≤ 3

g′243(Xi+1)⊕ ki+40ki+98 ⊕ ki+36 otherwise

g239(Xi+1) =

{
g′239(Xi+1) if i ≤ 3

g′239(Xi+1)⊕ ki+39ki+114 ⊕ ki+99 otherwise

g235(Xi+1) =

{
g′235(Xi+1) if i ≤ 3

g′235(Xi+1)⊕ ki+42ivi+9 ⊕ ki+113 otherwise

14



g231(Xi+1) =

{
g′231(Xi+1) if i ≤ 3

g′231(Xi+1)⊕ ki+63ki+86ki+106ivi+5 ⊕ ki+7ki+116 otherwise

g217(Xi+1) =


g′217(Xi+1)⊕ ivi+90 ⊕ z(Xi+1) if i ≤ 5

g′217(Xi+1)⊕ z(Xi+1) if i = 6

g′217(Xi+1)⊕ 1⊕ z(Xi+1) if i = 7

g213(Xi+1) =

{
g′213(Xi+1) if i ≤ 3

g′213(Xi+1)⊕ ki−1ki+28 ⊕ z(Xi−3) otherwise

g209(Xi+1) =

{
g′209(Xi+1) if i ≤ 3

g′209(Xi+1)⊕ kiki+41 otherwise

g205(Xi+1) =

{
g′205(Xi+1) if i ≤ 3

g′205(Xi+1)⊕ ki+2ki+60 otherwise

g201(Xi+1) =

{
g′201(Xi+1) if i ≤ 3

g′201(Xi+1)⊕ ki+1ki+76 otherwise

g197(Xi+1) =

{
g′197(Xi+1) if i ≤ 3

g′197(Xi+1)⊕ ki+4ki+99 otherwise

g193(Xi+1) =

{
g′193(Xi+1) if i ≤ 3

g′193(Xi+1)⊕ ki+25ki+48ki+68ki+95 otherwise

where

z′(Xi+1) = ki+80 ⊕ ki+99 ⊕ ivi+9 ⊕ 1⊕ ivi+59 ⊕ b243b217 ⊕ b247b231 ⊕ b213b235 ⊕ b255b251

⊕ ivi+53b239 ⊕ ivi+46ki+44 ⊕ ivi+36ki+29 ⊕ b255b247b243b213ivi+53ivi+46

z(Xi+1) =


z′(Xi+1)⊕ ivi+94 if i < 2

z′(Xi+1)⊕ 1 if i = 3, 4

z′(Xi+1)⊕ 1⊕ ivi+56 ⊕ ki+45ivi+26 if 4 < i < 7

z′(Xi+1)⊕ 1⊕ ivi+56 ⊕ ki+45ivi+26 ⊕ k12k121 if i = 7

and

b255 =

{
ki−1 ⊕ ki+40ki+69 ⊕ z(Xi) if 0 < i ≤ 4

1 otherwise

b251 =

{
1⊕ ki+41ki+82 ⊕ ki+7 if 0 < i ≤ 4

1 otherwise

b247 =

{
1⊕ ki+43ki+101 ⊕ ki+39 if 0 < i ≤ 4

1 otherwise

b243 =

{
1⊕ ki+42ki+117 ⊕ ki+102 if 0 < i ≤ 4

1 otherwise

b239 =

{
1⊕ ki+45ivi+12 ⊕ ki+116 if 0 < i ≤ 4

1 otherwise

15



b235 =

{
1⊕ ki+66ki+89ki+109ivi+8 if 0 < i ≤ 4

1 otherwise

b231 =

{
1⊕ ivi+60 ⊕ ki+49ivi+30 if 0 < i ≤ 4

1 otherwise

b217 =


ivi+89 if i = 0

ivi+89 ⊕ ki+2ki+31 ⊕ z(Xi) if 0 < i ≤ 4

iv′i+81 otherwise

b213 =


ivi+85 if i = 0

ivi+85 ⊕ ki+3ki+44 if 0 < i ≤ 4

iv′i+77 otherwise

We can see that the only feedback function that contain retrievable bits are g255, g251, g247, g243, g239,
g235 and g217. When we tried to recover the key bits, we found some loops that prevented us from recovering
two bits. More precisely, we found the following dependencies

k87 ←↩ k12 ←↩ k87 and k8 ←↩ k83 ←↩ k85 ←↩ k8,

where a ←↩ b denotes “to compute the value of a we need to know b”. Also, we could not find a method for
recovering k9 to k10, since their dependencies interfered with k87 to k84. Hence, we do not claim that this is
the optimal solution for recovering the key bits. Our solution is presented in Algorithm 11.

5.2 Backward Construction

In this case, we want to see how the KSA−1 routine affects the NFSR positions after each clock. The results
are presented in Table 10.

With respect to the classical Espresso, we can see that the KSA−1 routine on clock i − 1 K’s and IV ’s
bits used by the feedback functions are unchanged, where i ∈ {0,−1,−2,−3}. Moreover, we can see that
the first 4 bits of IV ′ coincide with the last 4 bits of K. The only problem that we encounter is on position
218. Here on the last clock the feedback function uses x−1, but the value can be easily obtained from k40,
k69 and the output function.

In the case of the output function, the only problematic positions are 213 and 217 from the −4 clock.
The two bits coincide with bits 210 and 214 from clock −1. Lastly, for positions 232 to 255 we know the
exact values due to related Key-IV pairs used by the algorithm. Therefore, we obtain

g−1
0 (Xi−1) =

{
xi+40xi+69 ⊕ z−1(Xi−1) if i = 0

1⊕ xi+40xi+69 ⊕ z−1(Xi−1) if i ̸= 0

g−1
252(Xi−1) = 1⊕ ki+41ki+82 ⊕ ki+7

g−1
248(Xi−1) = 1⊕ ki+43ki+101 ⊕ ki+39

g−1
244(Xi−1) = 1⊕ ki+42ki+117 ⊕ ki+102

g−1
240(Xi−1) = 1⊕ ki+45ivi+12 ⊕ ki+116

g−1
236(Xi−1) = 1⊕ ki+66ki+89ki+109ivi+8

g−1
232(Xi−1) = 1⊕ ki+49ivi+30 ⊕ ivi+60

g−1
218(Xi−1) =

{
ivi+89 ⊕ ki+2ki+31 ⊕ z−1(Xi−1) if i ̸= −3
ivi+89 ⊕ g−1

0 (X−1)ki+31 ⊕ z−1(Xi−1) if i = −3

g−1
214(Xi−1) = ivi+85 ⊕ ki+3ki+44

16



Algorithm 11: Key bits recovery algorithm for the 0xefffffff padding (forward construction)
Input: Chosen IV’s IV and IV ′ and key bits kj , where

j ∈ {0− 3, 8− 12, 29− 53, 67− 77, 88− 102, 111− 116, 121− 125}
Output: 27 key bits kj , where j ∈ {4− 7, 13− 15, 80− 87, 103− 110, 117− 120}

1 Function update_bits():
2 b213 ← b213 ⊕ ki+3 ⊕ ki+44 %use : 4− 7, 45− 48
3 b217 ← ivi+89 ⊕ ki+2ki+31 ⊕ oi−1 %use : 3− 6, 32− 35
4 b231 ← b231 ⊕ ki+49ivi+30 ⊕ ivi+60 %use : 50− 53
5 b235 ← b235 ⊕ ki+66ki+89ki+109ivi+8 %use : 67− 70, 90− 93, 110− 113
6 b239 ← b239 ⊕ ki+45ivi+12 ⊕ ki+116 %use : 46− 49, 117− 120
7 b243 ← b243 ⊕ ki+42ki+117 ⊕ ki+102 %use : 43− 46, 118− 121, 103− 106
8 b247 ← b247 ⊕ ki+43ki+101 ⊕ ki+39 %use : 44− 47, 102− 105, 40− 43
9 b251 ← b251 ⊕ ki+41ki+82 ⊕ ki+7 %use : 42− 45, 83− 86, 8− 11

10 b255 ← ki−1 ⊕ ki+40ki+69 ⊕ oi−1 %use : 0− 3, 41− 44, 70− 73

11 Function update_o(i):
12 o← ki+99 ⊕ ivi+9 ⊕ 1⊕ ivi+59 ⊕ b243b217 ⊕ b247b231 ⊕ b213b235 ⊕ b255b251 ⊕ ivi+53b239 ⊕ ivi+46ki+44 ⊕

ivi+36ki+29 ⊕ b255b247b243b213ivi+53ivi+46 %use : 99− 106, 44− 51, 29− 36
13 Function main():
14 for i ∈ [4, 7] do
15 ki+113 ← ki+67ki+90ki+110ivi+9 ⊕ ki+42ivi+9 %rec : 117− 120 use : 71− 74, 94− 98, 114− 118,

46− 49
16 for i ∈ [4, 7] do
17 ki+99 ← ki+46ivi+13 ⊕ ki+117 ⊕ ki+39ki+114 %rec : 103− 106 use : 50− 53, 121− 124, 43− 46,

118− 121
18 for i ∈ [4, 7] do
19 ki+103 ← ki+43ki+118 ⊕ ki+40ki+98 ⊕ ki+36 %rec : 107− 110 use : 47− 50, 122− 125, 44− 47,

102− 105, 40− 43
20 for i ∈ [7, 4] do
21 b213, b217 ← ivi+85, iv89
22 b231, b235, b239, b243, b247, b251, b255 ← 1, 1, 1, 1, 1, 1, 1
23 if i = 4 then update_bits()
24 if i > 4 then b213, b217 ← iv′i+77, iv

′
i+81

25 update_o(i)
26 if i > 4 then o← o⊕ ivi+56 ⊕ ki+45ivi+26 %use : 52− 50
27 if i = 7 then o← o⊕ k12k121 %use : 12, 121
28 ki+80 ← iv′i+82 ⊕ ki+3ki+32 %rec : 87− 84 use : 10− 7, 39− 36
29 switch i do
30 case ≤ 5 do ki+80 ← ki+80 ⊕ ivi+90 ⊕ 1⊕ o
31 case 5 do ki+80 ← ki+80 ⊕ 1⊕ o
32 otherwise do ki+80 ← ki+80 ⊕ o

33 ki ← ki+41ki+70 ⊕ ki+80 ⊕ o %rec : 7− 4 use : 48− 45, 77− 74, 87− 84

34 for i ∈ [3, 0] do
35 b213, b217 ← ivi+85, iv89
36 b231, b235, b239, b243, b247, b251, b255 ← 1, 1, 1, 1, 1, 1, 1
37 if 1 ≤ i then update_bits()
38 update_o(i)
39 if i < 2 then o← oi ⊕ ivi+94

40 else if i = 3 then o← oi ⊕ 1
41 ki+80 ← iv′i+82⊕ ivi+90⊕ ki+8ki+49⊕ ki+3ki+32⊕ o %rec : 83− 80 use : 11− 8, 52− 49, 6− 3, 35− 32
42 if i ̸= 0 then ki+12 ← 1⊕ ki+46ki+87 ⊕ ki ⊕ ki+41ki+70 ⊕ ki+80 ⊕ o %rec : 15− 13 use : 49− 47,

90− 88, 3− 1, 44− 42, 73− 71, 83− 80

17



Clock Cells
−1 0, 194, 198, 202, 206, 210, 214, 218, 232, 236, 240, 244, 248, 252
−2 0, 1, 194, 195, 198, 199, 202, 203, 206, 207, 210, 211, 214, 215, 218, 219, 232, 233, 236,

237, 240, 241, 244, 245, 248, 249, 252, 253
−3 0− 2, 194− 196, 198− 200, 202− 204, 206− 208, 210− 212, 214− 216, 218− 220,

232− 234, 236− 238, 240− 242, 244− 246, 248− 250, 252− 254

−4 0− 3, 194− 221, 232− 255

−5 0− 4, 194− 222, 232− 255

−6 0− 5, 194− 223, 232− 255

−7 0− 6, 194− 224, 232− 255

−8 0− 7, 194− 225, 232− 255

Table 10: Modified cells after running the KSA−1 routine

g−1
210(Xi−1) = ivi+81 ⊕ ki+5ki+63

g−1
206(Xi−1) = ivi+77 ⊕ ki+4ki+79

g−1
202(Xi−1) = ivi+73 ⊕ ki+7ki+102

g−1
198(Xi−1) = ivi+69 ⊕ ki+28ki+51ki+71ki+98

g−1
194(Xi−1) = ivi+65 ⊕ ki+11ki+120

where

z′−1(Xi−1) = ki+79 ⊕ ki+98 ⊕ ivi+8 ⊕ ivi+58 ⊕ ivi+52 ⊕ ivi+45ki+43 ⊕ ivi+35ki+28

z−1(Xi−1) =


z′−1(Xi−1)⊕ ivi+88 ⊕ ivi+84 ⊕ ivi+84ivi+52ivi+45 if i = 0

z′−1(Xi−1)⊕ ivi+88 ⊕ ivi+84 ⊕ ivi+84ivi+52ivi+45 if i = −1
z′−1(Xi−1)⊕ ivi+88 ⊕ ivi+84 ⊕ ivi+93 ⊕ 1⊕ ivi+84ivi+52ivi+45 if i = −2
z′−1(Xi−1)⊕ iv81 ⊕ k5k63 ⊕ iv85 ⊕ k3k44 ⊕ ivi+93 if i = −3

From Espresso’s reverse feedback functions we can see that the only functions containing retrievable
key bits are g−1

252, g
−1
248, g

−1
244, g

−1
240 and g−1

218. Note that all positions, except 217, can be recovered from the
padding (see Table 5). In the case of g−1

218, the value can be recovered from IV ′’s bits. Therefore, we obtain
Algorithm 12 for recovering some of K’s bits.

In the case of our proposed version of Espresso, we can carry out a similar analysis. Again, for simplicity,
we will first write some intermediary feedback function

g′−1
0 (Xi−1) = 1⊕ xi+40xi+69

g′−1
252 (Xi−1) = 1⊕ ki+41ki+82 ⊕ ki+7

g′−1
248 (Xi−1) = 1⊕ ki+43ki+101 ⊕ ki+39

g′−1
244 (Xi−1) = 1⊕ ki+42ki+117 ⊕ ki+102

g′−1
240 (Xi−1) = 1⊕ ki+45ivi+12 ⊕ ki+116

g′−1
236 (Xi−1) = 1⊕ ki+66ki+89ki+109ivi+8

g′−1
218 (Xi−1) =

{
ivi+89 ⊕ ki+2ki+31 if i ≥ −2
ivi+89 ⊕ g−1

0 (Xi+4)ki+31 otherwise

g′−1
214 (Xi−1) =

{
ivi+85 ⊕ ki+3ki+44 if i ≥ −3
ivi+85 ⊕ g−1

0 (Xi+5)ki+44 otherwise

18



Algorithm 12: Key bits recovery algorithm for the 0xfffffffe padding (backward construction)
Input: Chosen IV’s IV and IV ′ and key bits kj , where j ∈ {0− 3, 25− 31, 40− 45, 63, 69, 76− 82, 117}
Output: 24 key bits kj , where j ∈ {4− 7, 36− 39, 95− 102, 113− 116, 124− 127}

1 for i ∈ [0,−2] do
2 ki+116 ← ki+45ivi+12 %rec : 116− 114 use : 45− 43
3 ki+102 ← ki+42ki+117 %rec : 102− 100 use : 42− 40, 117− 115

4 k113 ← k42iv9 %rec : 113 use : 42
5 k99 ← k43k101k114 %rec : 99 use : 43, 101, 114
6 for i ∈ [0,−3] do
7 ki+127 ← iv′i+3 %rec : 127− 124
8 ki+7 ← ki+41ki+82 %rec : 7− 4 use : 41− 38, 82− 79
9 if i = 0 then ki+7 ← ki+7 ⊕ 1

10 ki+39 ← ki+43ki+101 %rec : 39− 36 use : 43− 40, 101− 98
11 o← ki+79 ⊕ ivi+8 ⊕ ivi+58 ⊕ ivi+52 ⊕ ivi+45ki+43 ⊕ ivi+35ki+28 %use : 79− 76, 43− 40, 28− 25
12 if i = 3 then o← o⊕ iv81 ⊕ k5k63 ⊕ iv85 ⊕ k3k44 ⊕ iv90 %use : 5, 63, 3, 44
13 else o← o⊕ ivi+88 ⊕ ivi+84 ⊕ 1⊕ ivi+84ivi+52ivi+45

14 if i = 0 or i = 1 then o← o⊕ 1
15 else o← o⊕ ivi+93

16 ki+98 ← o⊕ iv′i+93 ⊕ ivi+89 ⊕ ki+2ki+31 %rec : 98− 95 use : 2− 0, 31− 28
17 if t = 0 then k−1 ← o⊕ k98 ⊕ k40 ⊕ k69 %use : 98, 40, 69

g′−1
210 (Xi−1) =

{
ivi+81 ⊕ ki+5ki+63 if i ≥ −5
ivi+81 ⊕ g−1

0 (Xi+7)ki+63 otherwise

g′−1
206 (Xi−1) =

{
ivi+77 ⊕ ki+4ki+79 if i ≥ −4
ivi+77 ⊕ g−1

0 (Xi+6)ki+79 otherwise

g′−1
202 (Xi−1) = ivi+73 ⊕ ki+7ki+102

g′−1
198 (Xi−1) = ivi+69 ⊕ ki+28ki+51ki+71ki+98

Using these intermediary functions we obtain the following the feedback functions

g−1
0 (Xi−1) =

{
g′−1
0 (Xi−1)⊕ z−1(Xi−1) if i ≥ −4
g′−1
0 (Xi−1)⊕ ki+45ki+86 ⊕ ki+11 ⊕ z−1(Xi−1) otherwise

g−1
252(Xi−1) =

{
g′−1
252 (Xi−1) if i ≥ −4
g′−1
252 (Xi−1)⊕ ki+47ki+105 ⊕ ki+43 otherwise

g−1
248(Xi−1) =

{
g′−1
248 (Xi−1) if i ≥ −4
g′−1
248 (Xi−1)⊕ ki+46ki+121 ⊕ ki+106 otherwise

g−1
244(Xi−1) =

{
g′−1
244 (Xi−1) if i ≥ −4
g′−1
244 (Xi−1)⊕ ki+49ivi+16 ⊕ ki+120 otherwise

g−1
240(Xi−1) =

{
g′−1
240 (Xi−1) if i ≥ −4
g′−1
240 (Xi−1)⊕ ki+70ki+93ki+113ivi+12 otherwise

g−1
236(Xi−1) =

{
g′−1
236 (Xi−1) if i ≥ −4
g′−1
236 (Xi−1)⊕ ki+53ivi+34 ⊕ ivi+64 otherwise

g−1
232(Xi−1) =

{
ki+49ivi+30 ⊕ ivi+60 if t ̸= −7
1⊕ ki+49ivi+30 ⊕ ivi+60 if t = −7

19



g−1
218(Xi−1) =

{
g′−1
218 (Xi−1)⊕ z−1(Xi−1) if i ≥ −4
g′−1
218 (Xi−1)⊕ ki+7ki+48 ⊕ z−1(Xi−1) otherwise

g−1
214(Xi−1) =

{
g′−1
214 (Xi−1) if i ≥ −4
g′−1
214 (Xi−1)⊕ ki+9ki+67 otherwise

g−1
210(Xi−1) =

{
g′−1
210 (Xi−1) if i ≥ −4
g′−1
210 (Xi−1)⊕ ki+8ki+83 otherwise

g−1
206(Xi−1) =

{
g′−1
206 (Xi−1) if i ≥ −4
g′−1
206 (Xi−1)⊕ ki+11ki+106 otherwise

g−1
202(Xi−1) =

{
g′−1
202 (Xi−1) if i ≥ −4
g′−1
202 (Xi−1)⊕ ki+32ki+55ki+75ki+102 otherwise

g−1
198(Xi−1) =

{
g′−1
198 (Xi−1) if i ≥ −4
g′−1
198 (Xi−1)⊕ ki+15ki+124 otherwise

g−1
194(Xi−1) = ivi+65 ⊕ ki+11ki+120

where

z′−1(Xi−1) = ki+79 ⊕ ki+98 ⊕ ivi+8 ⊕ b221 ⊕ ivi+58 ⊕ b242b216 ⊕ b246 ⊕ b212b234 ⊕ b254b250

⊕ ivi+52b238 ⊕ ivi+45ki+43 ⊕ ivi+35ki+28 ⊕ b254b246b242b212ivi+52ivi+45

z−1(Xi−1) =


z′−1(Xi−1) if i = −2
z′−1(Xi−1)⊕ 1⊕ b246 if i = −6
z′−1(Xi−1)⊕ 1 otherwise

and

b254 =

{
1⊕ ki+44ki+85 ⊕ ki+10 if −3 ≥ i ≥ −6
1 otherwise

b250 =

{
1⊕ ki+46ki+104 ⊕ ki+42 if −3 ≥ i ≥ −6
1 otherwise

b246 =

{
1⊕ ki+45ki+120 ⊕ ki+105 if −3 ≥ i ≥ −6
1 otherwise

b242 =

{
1⊕ ki+48ivi+15 ⊕ ki+119 if −3 ≥ i ≥ −6
1 otherwise

b238 =

{
1⊕ ki+69ki+92ki+112ivi+11 if −3 ≥ i ≥ −6
1 otherwise

b234 =

{
1⊕ ki+52ivi+33 ⊕ ivi+63 if −3 ≥ i ≥ −6
1 otherwise

b221 =


1 if i ≥ −4
0 if i = −5
iv′i+101 otherwise

20



b216 =


ivi+88 if 0 ≥ i > −3
ivi+88 ⊕ ki+6ki+47 if −3 ≥ i ≥ −6
iv′i+96 if i = −7

b212 =


ivi+84 if 0 ≥ i > −3
ivi+84 ⊕ ki+8ki+66 if −3 ≥ i ≥ −6
iv′i+92 if i = −7

We can see that the only feedback function that contain retrievable bits are g−1
252, g

−1
248, g

−1
244, g

−1
240 and g−1

218.
When we tried to recover the key bits, we found some loops that prevented us from recovering three bits.
More precisely, we found the following dependencies

k97 ←↩ k1 ←↩ k35 ←↩ k97 and k96 ←↩ k0 ←↩ k34 ←↩ k96 and k95 ←↩ k116 ←↩ k113 ←↩ k95.

Moreover, we note that the first 4 bits of IV ′ coincide with the last 4 bits of K. Again, we do not claim that
our solution is optimal. Our solution is presented in Algorithm 13.

5.3 Mixed Construction

Once we have constructed two pairs of related IV’s using the KSA and the KSA−1 routines, we can sim-
ply apply both the forward and the backward construction. Note that there might be better approaches
when combining the forward and backward type constructions (i.e. constructions that recover different bits
compared to ours).

In the classical case, we can recover 41 key bits. More precisely, the mixed construction takes as input the
two pairs and the key bits kj , where j ∈ {3− 6, 25− 35, 44− 49, 63, 69− 72, 76− 79, 84− 86, 98− 102, 121}.
Then it runs the forward construction and then it runs the backward one. Finally, the algorithm outputs kj ,
where j ∈ {0− 3, 7− 11, 36− 43, 80− 83, 95− 98, 103− 106, 113− 120, 124− 127}.

Regarding our proposal, the mixed construction can recover 39 key bits. More precisely, the mixed
construction takes as input the two pairs and the key bits kj , where j ∈ {4−12, 21−31, 36−53, 60−82, 86−
90, 95− 97, 99− 103, 106− 108, 117}. Then it runs the backward construction and then it runs the forward
one. Finally, the algorithm outputs kj , where j ∈ {0− 3, 13− 15, 32− 35, 83− 85, 91− 94, 98, 104, 105, 109−
116, 118− 127}.

Remark 2. Note that we also studied the backward and forward combination for the classic case. However,
this combination performed poorer than the one we presented. Thus, we omitted it. The same happened for
the forward and backward combination for our proposed padding scheme.

5.4 Complexity

To summarise, we provide in Table 11 the complexities of the key recovery attacks. We can see that when we
take the attacks separately, the original padding has a better security margin. However, in the mixed case
our proposal performs better.

Construction Padding
0xfffffffe 0x7fffffff

Forward 2104 + 232 2101 + 240

Backward 2104 + 228 299 + 234

Mixed 287 + 232 + 228 289 + 240 + 234

Table 11: Attack Complexity

21



Algorithm 13: Key bits recovery algorithm for the 0xefffffff padding (backward construction)
Input: Chosen IV’s IV and IV ′ and key bits kj , where

j ∈ {4− 7, 21− 28, 31, 36− 49, 60− 68, 72− 82, 86− 89, 95− 97, 99− 103, 106− 108, 117}
Output: 29 key bits kj , where j ∈ {0− 3, 32− 35, 91− 94, 98, 109− 116, 120− 127}

1 Function update_bits():
2 b212 ← b212 ⊕ ki+8ki+66 %use : 5− 2, 63− 60
3 b216 ← b216 ⊕ ki+6ki+47 %use : 3− 0, 44− 41
4 b234 ← b234 ⊕ ki+52ivi+33 ⊕ ivi+63 %use : 49− 46
5 b238 ← b238 ⊕ ki+69ki+92ki+112ivi+11 %use : 66− 63, 89− 86, 109− 106
6 b242 ← b242 ⊕ ki+48ivi+15 ⊕ ki+119 %use : 45− 42, 116− 113
7 b246 ← b246 ⊕ ki+45ki+120 ⊕ ki+105 %use : 42− 39, 117− 114, 102− 99
8 b250 ← b250 ⊕ ki+46ki+104 ⊕ ki+42 %use : 43− 40, 101− 98, 39− 36
9 b254 ← b254 ⊕ ki+44ki+85 ⊕ ki+10 %use : 41− 38, 82− 79, 7− 4

10 Function update_o(i):
11 o← ki+79 ⊕ ivi+8 ⊕ b221 ⊕ ivi+58 ⊕ b242b216 ⊕ b246 ⊕ b212b234 ⊕ b254b250 ⊕ ivi+52b238 ⊕ ivi+45ki+43 ⊕

ivi+35ki+28 ⊕ b254b246b242b212ivi+52ivi+45 %use : 79− 72, 43− 36, 28− 21
12 Function main():
13 for i ∈ [0,−7] do
14 ki+127 ← iv′i+7 %rec : 127− 120
15 k109 ← k38iv5 ⊕ k63k86k106iv5 %rec : 109 use : 38, 63, 86, 106
16 for i ∈ [−4,−6] do
17 ki+116 ← ki+45ivi+12 ⊕ ki+70ki+93ki+113ivi+12 %rec : 112− 110 use : 41− 39, 66− 64, 89− 87,

109− 107
18 k2 ← k36k77 ⊕ k42k100 ⊕ k38 %rec : 2 use : 36, 77, 42, 100, 38
19 b212, b216 ← iv′84, iv

′
88

20 b221, b234, b238, b242, b246, b250, b254 ← 1, 1, 1, 1, 1, 1, 1
21 update_o(0)
22 k98 ← o⊕ 1⊕ iv′97 ⊕ iv89 ⊕ k2k31 %rec : 98 use : 2, 31
23 k35 ← k39k97 ⊕ k42k117 ⊕ k103 %rec : 35 use : 39, 97, 42, 117, 102
24 k113 ← k35k110 ⊕ k95 ⊕ k42iv9 %rec : 113 use : 35, 110, 95, 42
25 for i ∈ [−4,−6] do
26 ki+120 ← ki+42ki+117⊕ ki+102⊕ ki+49ivi+16 %rec : 116− 114 use : 38− 36, 113− 111, 98− 96, 45− 43
27 for i ∈ [−5,−6] do
28 ki+39 ← ki+43ki+101 ⊕ ki+46ki+121 ⊕ ki+106 %rec : 34, 33 use : 38, 37, 96, 95, 41, 40, 116, 115, 101, 100
29 for i ∈ [−4,−7] do
30 if i ̸= 5 then ki+7 ← ki+41ki+82 ⊕ ki+47ki+105 ⊕ ki+43 %rec : 3, 1, 0 use : 37, 35, 34, 78, 76, 75, 43, 41,

40, 101, 99, 98, 39, 37, 36

31 for i ∈ [−1,−7] do
32 b212, b216 ← ivi+84, ivi+88

33 b234, b238, b242, b246, b250, b254 ← 1, 1, 1, 1, 1, 1
34 if −3 ≥ i ≥ −6 then update_bits()
35 if i = −7 then b212, b216 ← iv′i+92, iv

′
i+96

36 switch i do
37 case ≤ 4 do b221 = 1
38 case 5 do b221 = 0
39 otherwise do b221 = iv′i+101

40 update_o(i)
41 if i ̸= −2 then o← o⊕ 1
42 if i = −6 then o← o⊕ b246
43 if i ≤ −4 then ki+98 ← o⊕ iv′i+97 ⊕ ivi+89 ⊕ ki+2ki+31 ⊕ ki+7ki+48 %rec : 94− 91 use : 27− 24,

3− 0, 44− 41
44 if i ≥ −4 then ki−1 ← 1⊕ ki+40ki+69 ⊕ ki+98 ⊕ o %use : 39− 36, 68− 65, 97− 94

45 k32 ← k36k94 ⊕ k39k114 ⊕ k99 %rec : 32 use : 36, 94, 39, 114, 99

22



6 Conclusions

In this paper, we have shown that given any Key-IV pair, one can easily construct another pair, with expected
232 time complexity, that produces the same bits as the initial keystream on a significant amount of positions.

Furthermore, we have studied related Key-IV pairs that produce shifted keystreams. We have shown how
one can obtain two related Key-IV pairs, in expected 228 trials, such that the pairs generate 4-bit shifted
keystreams. To increase the complexity of these attacks, we have proposed a new padding scheme and have
proven that the complexity increases to 234.

Additionally, we managed to describe several attacks that recover some of the key bits and requires only
two/four related IV’s. Hence, we can decrease the complexity of conducting a brute force attack on the key
to 287 in the classical case and to 289 for our proposal.

References

1. NIST SP 800-22: Download Documentation and Software. https://csrc.nist.gov/Projects/
Random-Bit-Generation/Documentation-and-Software

2. NIST SP 800-90B: Entropy Assessment. https://github.com/usnistgov/SP800-90B_EntropyAssessment
3. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
4. Banik, S., Maitra, S., Sarkar, S.: Some Results on Related Key-IV Pairs of Grain. In: SPACE 2012. Lecture Notes

in Computer Science, vol. 7644, pp. 94–110. Springer (2012)
5. Banik, S., Maitra, S., Sarkar, S., Meltem Sönmez, T.: A Chosen IV Related Key Attack on Grain-128a. In: ACISP

2013. Lecture Notes in Computer Science, vol. 7959, pp. 13–26. Springer (2013)
6. Cannière, C., Küçük, Ö., Preneel, B.: Analysis of Grain’s Initialization Algorithm. In: AFRICACRYPT 2008.

Lecture Notes in Computer Science, vol. 5023, pp. 276–289. Springer (2008)
7. Ding, L., Guan, J.: Related Key Chosen IV Attack on Grain-128a Stream Cipher. IEEE Trans. Inf. Forensics

Secur. 8(5), 803–809 (2013)
8. Dubrova, E., Hell, M.: Espresso: A Stream Cipher for 5G Wireless Communication Systems. Cryptography and

Communications 9(2), 273–289 (2017)
9. Küçük, Ö.: Slide Resynchronization Attack on the Initialization of Grain 1.0. Tech. rep. (2006)

10. Maimuţ, D., Teşeleanu, G.: New Configurations of Grain Ciphers: Security Against Slide Attacks. In: SECITC
2021. Lecture Notes in Computer Science, vol. 13195, pp. 260–285. Springer (2021)

11. Olsson, M., Cavdar, C., Frenger, P.K., Tombaz, S., Sabella, D., Jäntti, R.: 5GrEEn: Towards Green 5G mobile
networks. In: WiMob 2013. pp. 212–216. IEEE Computer Society (2013)

12. Wang, M.X., Dai Lin, D.: Related Key Chosen IV Attack on Stream Cipher Espresso Variant. In: CSE 2017.
vol. 1, pp. 580–587. IEEE Computer Society (2017)

13. Yao, G., Parampalli, U.: Generalized NLFSR Transformation Algorithms and Cryptanalysis of the Class of
Espresso-like Stream Ciphers. CoRR abs/1911.01002 (2019)

23

https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://gmplib.org/

	Some Results on Related Key-IV Pairs of Espresso

