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Abstract—Large transformer-based models have realized state-
of-the-art performance on lots of real-world tasks such as natural
language processing and computer vision. However, with the
increasing sensitivity of the data and tasks they handle, privacy
has become a major concern during model deployment. In this
work, we focus on private inference in two-party settings, where
one party holds private inputs and the other holds the model. We
introduce BumbleBee, a fast and communication-friendly two-
party private transformer inference system. Our contributions
are three-fold: First, we propose optimized protocols for matrix
multiplication, which significantly reduce communication costs
by 80% – 90% compared to previous techniques. Secondly,
we develop a methodology for constructing efficient protocols
tailored to the non-linear activation functions employed in
transformer models. The proposed activation protocols have
realized a significant enhancement in processing speed, alongside
a remarkable reduction in communication costs by 80% – 95%
compared with two prior methods. Lastly, we have performed
extensive benchmarks on five transformer models. BumbleBee
demonstrates its capability by evaluating the LLaMA-7B model,
generating one token in approximately 14 minutes using CPUs.
Our results further reveal that BumbleBee outperforms Iron
(NeurIPS22) by over an order of magnitude and is three times
faster than BOLT (Oakland24) with one-tenth communication.

I. INTRODUCTION

Large transformer-based models such as BERT [19], [50],
GPT [60] and ViT [22] have realized state-of-the-art (SOTA)
performance on lots of real-world tasks including person
re-identification [47], voice assistant [14] and code auto-
completion [75]. As the transformer models are handling
increasingly sensitive data and tasks, privacy has become one
of the major concerns during the model deployment.

Private inference aims to protect model weights from users,
while guaranteeing that the server learns no information
about users’ private inputs. Many recent works have intro-
duced cryptographic frameworks based on Secure Multi-party
Computation (MPC) [8], [27] to enable private inference on
deep learning models such as convolution neural networks
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(CNN) [36], [2], [41], [62] and transformer-based models [48],
[33], [79], [73]. While Secure Two-party (2PC) can efficiently
infer CNNs in a matter of minutes, the private inference
on transformer-based models introduce new challenges, par-
ticularly in terms of communication overhead. For example,
studies such as [33], [30] have indicated that a single private
inference on a 12-layer BERT model may require up to 90 GB
of communication. Furthermore, [73, Table 1] reports one
private inference on a 12-layer ViT might need to exchange
about 262 GB messages. Thus, a high-speed bandwidth is
indispensable for these communication-intensive approaches.

We summarize two major challenges in developing a com-
putational fast and communication-friendly 2PC framework
for the private evaluation of large transformers.

1) Multiplication of large-scale matrices. The inference
of a transformer-based model can involve hundreds of
multiplications of large matrices. For instance, Natural
Language Processing (NLP) transformers use embedding
tables to convert a query of words into a numerical
representation. An embedding table lookup can be defined
as a matrix multiplication EV where each row of E is a
one-hot vector corresponding to the index of each word
in the input query. In other words, the dimensions of
this multiplication can be parsed as numbers of words ×
vocabulary size × embedding size which is significantly
larger than the matrix in CNNs. Vision transformers can
also involve large size matrices due to a relatively larger
embedding size than the NLP transformers.
Most of the existing cryptographic protocols for private
matrix multiplication rely on either Oblivious Trans-
fer (OT) [18], [57], [59] or Homomorphic Encryption
(HE) [41], [12], [36], [35]. However, these two line of
approaches have their limitations. The OT-based methods
for private matrix multiplication require less computation
time but necessitate the transmission of an enormous
amount of messages. On the other hand, the HE-based
methods demand significantly more computation but are
more communication-friendly than the OT approaches.
The first challenge is to develop a matrix multiplication
protocol that is both speedy and communication-friendly.

2) More complicated activation functions. In contrast to
the straightforward ReLU activation employed in CNNs,
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Figure 1: The overall bandwidth improvements of the proposed
optimizations on the BERT-base model with 128 input tokens
(1Gbps, CPU). Please note that direct comparisons of timing
results may not be equitable due to differences in execution
environments.

the transformer consists of complex activation functions
like softmax, Gaussian Error Linear Unit (GeLU), and
Sigmoid Linear Unit (SiLU). The evaluation of these
activation functions requires fundamental functions such
as the exponentiation, division and hyperbolic. While
researchers have developed specific protocols for these
fundamental functions [11], [61], [62], [44], however, it
is still not practical to use them directly in transformer
models. The primary reason is that the number of acti-
vations in the transformer models is exceedingly large.
For example, a single inference on the GPT2 model [15]
requires evaluating about 3.9× 106 point-wise GeLUs.
Our second challenge is to design efficient 2PC protocols
for these complex activation functions.

A. Technical Details

Efficient protocols for linear functions. We propose a
primitive called Oblivious Linear Transformation (OLT). We
describe the OLT as a 2-party protocol that takes two private
matrices Q ∈ Z∗

2ℓ and V ∈ Z∗
2ℓ from the two parties,

respectively, and generates the share JQVK between them.
Using OLT, we can achieve the multiplication of two addi-
tively shared matrices over the ring modulus 2ℓ. The HE-
based approaches [36], [54] provide a good starting point. A
significant limitation of these works is the considerable com-
munication overhead, which arises from the “sparse” format
of the output ciphertexts. More specifically, each of the output
ciphertexts in [36], [54] encrypts a long vector. However,
only a small subset of the vector entries are needed for the
multiplication result. One still needs to transfer the whole
encrypted vector for decryption. To overcome this shortage,
we present a compression procedure to homomorphically
zeroize the unnecessary entries of the encrypted vector so
that we can combine many of the “sparse” vectors into a
“dense” one. The communication is thus reduced because
of a smaller number of ciphertexts to send. Compared to a
previous ciphertext compression method [13], our compression
procedure is about 50× faster. Overall, we observed 80% –
90% less communication costs over [36], [54].

Besides the matrix multiplications, the point-wise multipli-
cation x0 · y0, x1 · y1, · · · is also an important computation
in the transformer inference1. Many HE-based point-wise
multiplication protocols [18], [63] have to set a relatively large
plaintext modulus t. For instance, both [18], [63] set the HE
parameter t > 22ℓ+40 to encrypt a value from Z2ℓ . In this
work, we present a modulus lifting function to unify the secret
sharing modulus and the plaintext modulus of the underlying
HE. The lifting function enables us to perform modulo 2ℓ

arithmetic operations over the HE ciphertexts. This allows us
to choose a smaller HE parameter, i.e., t ≈ 22ℓ. Our empirical
results demonstrate 1.3× improvements when applying the
lifting function to [63].
A framework for constructing efficient and accurate pro-
tocols for the activation functions in transformers. We first
propose a general framework for constructing efficient and
precise 2PC protocols for the activation functions used by
many transformer models. These activation functions share a
common property: they are relatively smooth within a short
interval around the origin and nearly linear on two sides.
With this characteristic in mind, we propose using one or two
low-degree polynomials to approximate the activation function
within the short interval, and using the identity function on the
two sides. For example, we suggest to approximate SiLU with
two polynomials P (x) and Q(x) of a low degree that minimize
the least square error, as follows.

SiLU(x) ≈


−10−5 x < −8
P (x) −8 < x ≤ −4
Q(x) −4 < x ≤ 4

x− 10−5 x > 4

Then we propose optimizations based on two key insights.
Firstly, we exploit the smoothness of the activation function
to enhance efficiency. For example, the evaluation of an input
x = −3.98 on the (wrong) 2nd segment can also give a similar
result. That is P (−3.98) ≈ Q(−3.98). This smoothness gives
us some room to design an efficient evaluation method at the
cost of introducing a mild error. Secondly, we introduce opti-
mizations to improve the amortized efficiency when evaluating
multiple polynomials over the same input point. Concretely,
our optimized activation protocol is 9 – 20 times faster and
requiring 80% – 95% less communication compared to the
current numerical methods detailed in [61], [53].

B. Contributions

To summarize, we make three key contributions:
1) We have developed a matrix multiplication protocol from

HE, specifically tailored for modulo 2ℓ operations, opti-
mized to enhance communication efficiency. In fact, our
protocol has been shown to require 80% less communi-
cation compared to existing methods based on HE. Also,
our protocol is speedy. For instance, the private matrix

1The point-wise multiplications are usually achieved via Batch Oblivious
Linear Evaluation [17].
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multiplication in the dimensions 128× 768× 768 can be
done within 1.0 second using a moderate cloud instance.

2) We have implemented all the proposed protocols and
developed a new MPC back-end called BumbleBee into
the SPU library [53]. To compare, we also implemented a
baseline using several SOTA 2PC protocols based on the
SPU library. Upon quick examination, Figure 1 illustrates
the improvements made by the proposed protocols com-
pared to the baseline. In summary, we have a reduction of
communication costs by 84% over SIGMA [30], by 90%
over BOLT [58], and by 92% over Iron [33].

3) BumbleBee enables easy-to-use private transformer in-
ference. The existing works [48], [33], [58] have only
considered the BERT-family models. To compare, we
have successfully run BumbleBee on 5 pre-trained trans-
former models utilizing the model weights and the Python
programs available on HuggingFace’s website, including
BERT-base, BERT-large, GPT2-base, LLaMA-7B, and
ViT-base. We also evaluated the accuracy of BumbleBee
across four public datasets. All our experiments were con-
ducted using the proposed protocols, rather than through
simulation. We provide a reproducible implementation in
https://github.com/AntCPLab/OpenBumbleBee. Our ap-
proach provides a promising evidence that accurate and
feasible private transformer inference is possible, even
without changing the neural network structure.

II. PRELIMINARIES

A. Notations

We write x = y to mean x is equal to y and write x := y
to assign the value of y to the variable x. For an interactive
protocol Π, we write JxK ← Π to denote the execution of
the protocol. We denote by [n] the set {0, · · · , n − 1} for
n ∈ N. For a set D, x ∈R D means x is sampled from
D uniformly at random. We use ⌈·⌉, ⌊·⌋ and ⌊·⌉ to denote
the ceiling, flooring, and rounding function, respectively. The
logical AND and XOR is ∧ and ⊕, respectively. Let 1{P}
denote the indicator function that is 1 when the predicate P
is true and 0 when P is false. We use lower-case letters with
a “hat” symbol such as â to represent a polynomial, and â[j]
to denote the j-th coefficient of â. We use the dot symbol ·
such as â · b̂ to represent the multiplication of polynomials.
We denote Zq = Z ∩ [0, q) for q ≥ 2. The congruence
x ≡ y mod 2ℓ will be abbreviated as x ≡ℓ y. For a 2-power
number N , and q > 0, we write Rq to denote the set of integer
polynomials Rq = Zq[X]/(XN +1). We use bold letters such
as a,M to represent vectors and matrix, and use a[j] to denote
the j-th component of a and use M[j, i] to denote the (j, i)
entry of M. The Hadamard product is written as a⊙ b.

B. Cryptographic Primitives

1) Additive Secret Sharing: We use 2-out-of-2 additive
secret sharing schemes over the ring Z2ℓ throughout this
manuscript. A ℓ-bit (ℓ ≥ 2) value x is additively shared as JxK0
and JxK1 where JxKl is a random share of x held by Pl. We
can write the multiplication of two shared value as JxK·JyK ≡ℓ

(JxK0 + JxK1) · (JyK0 + JyK1) ≡ℓ JxK0JyK0 + JxK1JyK1 +
JxK0JyK1 + JxK1JyK0 where the mixed-terms JxK0JyK1 and
JxK1JyK0 are computed using homomorphic encryption. For
a real value x̃ ∈ R, we first encode it as a fixed-point value
x = ⌊x̃2f⌋ ∈ [−2ℓ−1, 2ℓ−1) under a specified precision f > 0
before secretly sharing it. We write J·; fK to explicitly denote
the shared value of f -bit fixed-point precision. When ℓ = 1,
we use JzKB to denote Boolean shares. Also we omit the
subscript and only write JxK or JzKB when the ownership is
irrelevant from the context.

2) Oblivious Transfer: We rely on oblivious transfer (OT)
for the non-linear computation. In a general 1-out-of-2 OT(
2
1

)
-OTℓ, a sender inputs two messages m0 and m1 of length ℓ

bits and a receiver inputs a choice bit c ∈ {0, 1}. At the end of
the protocol, the receiver learns mc, whereas the sender learns
nothing. When sender messages are correlated, the Correlated
OT (COT) is more efficient in communication [6]. In our
additive COT, a sender inputs a function f(x) = x + ∆ for
some ∆ ∈ Z2ℓ , and a receiver inputs a choice bit c. At the
end of the protocol, the sender learns x ∈ Z2ℓ whereas the
receiver learns x + c · ∆ ∈ Z2ℓ . In this work, we use the
Ferret protocol [77] for a lower communication COT.

3) Lattice-based Additive Homomorphic Encryption: A
homomorphic encryption (HE) of x enables computing the
encryption of F (x) without the knowledge of the decryption
key. In this work, we use an HE scheme that is based on
Ring Learning-with-Error (RLWE) [52]. The RLWE scheme
is defined by a set of public parameters HE.pp = {N, q, t}.

• KeyGen. Generate the RLWE key pair (sk, pk) where the
secret key sk ∈ Rq and the public key pk ∈ R2

q .
• Encryption. An RLWE ciphertext is given as a polyno-

mial tuple (b̂, â) ∈ R2
q . We write RLWEq,t

pk (m̂) to denote
the encryption of m̂ ∈ Rt under a key pk.

• Addition (⊞). Given two RLWE ciphertexts ct0 =
(b̂0, â0) and ct1 = (b̂1, â1) that respectively encrypts
m̂0, m̂1 ∈ Rt under a same key, the operation ct0 ⊞ ct1
computes the RLWE tuple (b̂0+ b̂1, â0+ â1) ∈ R2

q which
can be decrypted to m̂0 + m̂1 mod Rt.

• Multiplication (⊠). Given an RLWE ciphertext ct =
(b̂, â) that encrypts m̂ ∈ Rt, and a plain polynomial ĉ ∈
Rt, the operation ct⊠ĉ computes the tuple (b̂·ĉ, â·ĉ) ∈ R2

q

which can be decrypted to m̂ · ĉ mod Rt.
• SIMD Encoding. By choosing a prime t such that t ≡
1 mod 2N , the SIMD technique [66] allows to convert
vectors v,u ∈ ZN

t of N elements to polynomials v̂, û ∈
Rt. The product polynomial v̂ · û can be decoded to the
point-wise multiplication u⊙ v mod t. In the context of
private evaluation, the SIMD technique can amortize the
cost of point-wise multiplication by a factor of 1/N . We
denote v̂ := SIMD(v) as the SIMD encoding, and write
SIMD−1(·) as the decoding function.

• Automorphism. Given a RLWE ciphertext ct ∈ R2
q that

encrypts a polynomial m̂(X) ∈ Rt, and an odd integer
g ∈ [1, 2N), the operation ct′ := Auto(ct, g) computes
ct′ ∈ R2

q which decrypts to m̂′(X) = m̂(Xg) ∈ Rt.

3
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TABLE I: The proposed protocols in BumbleBee. Also we use
some existing protocols as the building blocks.

Proposed Protocols Descriptions

JzK← ΠbOLEe(x,y) such that Batch OLE with Error
z ≡ℓ x⊙ y + e for ∥e∥∞≤ 1 (§IV)
Jx⊙ yK← Πmul(JxK, JyK) Point-wise mult.
Jx2K← Πsquare(JxK) Square

JZK← ΠOLT(X,Y) Oblivious Linear Transformation
such that Z ≡ℓ X ·Y (§III)
JX ·YK← Πmatmul(JXK, JYK) Shared matrix mult.

Jỹ; fK← ΠGeLU(Jx̃; fK) GeLU (§V-A)
Jỹ; fK← Πsoftmax(Jx̃; fK) Softmax (§V-B)

Ideal Functionalities Descriptions

Jx̃; fK← Ff
trunc(Jx̃; 2fK) Truncation [36], [16]

Jc?x : yK← Fmux(JcKB , JxK, JyK) Multiplexer
J1/
√
x̃; fK← Frsqrt(Jx̃; fK) Reciprocal Sqrt [44]

J1{x < y}KB ← Fless(JxK, JyK) Less-then [62]
JxK← FH2A(RLWE(x)) HE to arithmetic share [36], [63]

In this work, we use the automorphism to compress the
volume of RLWE ciphertexts.

Remark 1 (Circuit Privacy). RLWE ciphertexts have a noise
associated with them which would leak information about
the homomorphic computation to the decryption key holder.
We need a mechanism to hide the noise when sending the
computed RLWE ciphertexts for decryption. We abstract this
mechanism as a FH2A functionality (see Table I) which takes
as input an RLWE ciphertext of m̂ and outputs the arithmetic
share Jm̂K to each party without revealing the noise to the
decryptor. Concretely, we adopt the noise flooding [26] and
the approximated resharing [36] to implement this function.
The concrete H2A protocols are given in Appendix.

C. Transformer-based Models

Many modern language pre-processors such as GPT [15]
and BERT [19] consist of an input embedding layer fol-
lowed by multiple layers of Transformers [70]. Similarly,
Vision Transformers (ViTs) [22], [5] also employ a similar
architecture, except that they do not incorporate an input
embedding layer. There are two major computation blocks for
Transformer-based models: a multi-head attention mechanism
and a feed-forward network. Besides, layer normalization are
employed around each of the two consequent layers.
Multi-head Attention.. An attention mechanism
Attention(Q,K,V) computing softmax(QK⊤ + M)V,
can be described as mapping a query Q and a set of
key-value pairs (K,V) to a weighted sum. Note Q,K,V
are different linear projections of an input matrix. The
multi-head attention variant computes a H-parallel attention
Attention(Qj ,Kj ,Vj) for j ∈ [H] and then concatenate
these H resultant matrices.
Layer Normalization. For a vector x ∈ Rd, let µ = (1/d) ·∑

j x[j] ∈ R and σ =
∑

j∈[d](x[j] − µ)2 ∈ R. The layer
normalization is denoted by LayerNorm(x) = γ · (x − µ) ·
σ−1/2 + β, where γ, β ∈ R are two hyper-parameters.

Party 1

Model

Party 2

Input

BumbleBee
Private Inference

Classifier

Transformer Block

Input Embedding

Layer Norm

Feed Forward

Layer Norm

Multi-head Attention
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Figure 2: Overview of BumbleBee’s private transformer infer-
ence. The dash arrows indicate secretly shared messages.

Feed-forward. A feed-forward network typically includes two
linear projections, with an activation function applied between
them, i.e., FFN(X) = W0 · F (W1 ·X), where F : R∗ 7→ R∗

is an activation function such as GeLU or SiLU.

D. Threat Model and Private Inference

Similar to previous work [41], [55], [62], [36], [3], we
target privacy against a static and semi-honest probabilistic
polynomial time (PPT) adversary following the ideal/real
world paradigm [10]. That is, we consider a computationally
bounded adversary that corrupts one of the parties at the
beginning of the protocol execution, follows the protocol
specification, but tries to learn additional information about
the honest party’s input.
BumbleBee invokes several sub-protocols of smaller private

computations that are summarized in Table I. To simplify
the protocol description and security proofs, we describe
BumbleBee using the hybrid model. A protocol invoking a
functionality F is said to be in “F-hybrid model”. Also, some
functions are computed approximately in BumbleBee for the
sake of a better efficiency. According to the definition [25],
a protocol constitutes a private approximation of F if the
approximation reveals no more about the inputs than F itself
does. In the context of private 2PC inference (Figure 2), a
server S holds a transformer model while a client C queries
to the model such as a piece of texts. Assuming semi-honest
S and C, BumbleBee enables C to learn only two pieces
of information: the architecture of the transformer, and the
inference result. S is either allowed to learn the result or
nothing, depending on the application scenario. All other
information about C’s private inputs and the model weights
of S should be kept secret. Formal definitions of the threat
model are provided in the Appendix.

III. SECURE MATRIX MULTIPLICATION

We need two types of matrix multiplication for the private
transformer inference:

1) The multiplication of a shared matrix and a plaintext
matrix. For instance, for each of the Transformer block
(cf. Figure 2), we compute the multiplication between a
shared input matrix (that is computed from the previous
block) and a weight matrix of the server in plaintext.

2) The multiplication of two secretly shared matrices inside
the attention mechanism.
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Toy example over Z25 .

Q =

1 2
3 4
5 6
7 8

 ,V =

[
9 10
11 12

]
⇒ QV ≡

31 2
7 14
15 26
23 6

 mod 25

Compute QV with q̂ := πlhs(Q) and v̂ := πrhs(V).

q̂ = 1X0 − 2X15 + 3X4 + 4X3 + 5X8 + 6X7 + 7X12 + 8X11

v̂ = 9X0 + 11X1 + 10X2 + 12X3

q̂ · v̂ mod (X16 + 1, 25) ≡ 31X0 + 31X1 + 2X2 + 16X3 + 7X4+

9X5 + 14X6 + 26X7 + 15X8 + 19X9 + 26X10 + 4X11+

23X12 + 29X13 + 6X14 + 2X15 mod (X16 + 1, 25)

Figure 3: Example of how to compute matrix multiplication
using KRDY style with N = 16 and ℓ = 5. Here 8 out of the
16 result coefficients are ”useful”.

We propose a primitive called Oblivious Linear Transforma-
tion (OLT) to achieve these two types of matrix multiplication.
We describe the OLT as a 2-party protocol that takes two
private matrices Q and V from the two parties, respectively,
and generates the share JQVK between them. With the OLT
primitive, we can compute the multiplication between a shared
matrix JQK and a plaintext matrix V using one OLT execution.
On the other hand, we need two OLTs for multiplying two
shared matrices. That is we compute the two mixed terms
JQK1 · JVK0 and JQK0 · JVK1 using two OLTs.

A. Existing HE-based Approaches for OLT

Our starting point is the HE-based OLT used by many works
such as [54], [36], [33] (hereafter referred to as KRDY style).
KRDY needs two functions πlhs : Zkw×mw

2ℓ
7→ R2ℓ and πrhs :

Zmw×nw

2ℓ
7→ R2ℓ to encode a matrix into coefficients of a

polynomial that can be encrypted using RLWE. Assuming 1 ≤
kw ·mw ·nw ≤ N , these two functions are defined as follows.

q̂ := πlhs(Q) and v̂ := πrhs(V) such that (1)
q̂[0] = Q[i, j] for i = 0 ∧ j = 0,

q̂[N + i · kw ·mw − j] = −Q[i, j], for i = 0 ∧ j ∈ [mw]/{0}
q̂[i · kw ·mw − j] = Q[i, j] for i > 0 ∧ j ∈ [mw]

v̂[k ·mw + j] = V[j, k] for j ∈ [mw], k ∈ [nw]

All other coefficients of q̂ and v̂ are set to 0. The product
polynomial q̂ · v̂ directly gives the resultant matrix QV in
some of its coefficients as shown in the following proposition.

Proposition 1. [54, adapted] Assuming 1 ≤ kw ·mw ·nw ≤ N .
Given two polynomials q̂ = πlhs(Q), v̂ = πrhs(V) ∈ R2ℓ , the
multiplication U ≡ℓ Q ·V can be evaluated via the product
û = q̂ · v̂ over the ring R2ℓ . That is U[i, k] = û[i ·mw · nw +
k ·mw] for all i ∈ [kw], k ∈ [nw].

Figure 3 provides a simple illustration of the ideas behind
πlhs and πrhs encodings. In the context of OLT, we let P0

to send a ciphertext RLWEpk0
(πlhs(Q)) to P1 using P0’s key.

Then P1 can homomorphically evaluate the matrix multipli-
cation Q ·V using a single homomorphic multiplication i.e.,

Input: {âj ∈ Rq}j∈[2r] for an odd q and 1 ≤ 2r ≤ N .
Output: ĉ ∈ Rq such that ĉ[i] = âi mod 2r [⌊i/2r⌋ · 2r].

1: for ∀j ∈ [2r] do in parallel
2: Compute b̂j,0 := 2−r · âj mod q.
3: for k = 0, 1, · · · , r − 1 do in sequence
4: b̂j,k+1 := b̂j,k + Auto(b̂j,k,

N
2k

+ 1).
5: end for ▷ b̂j,r[i] = 0 for ∀i i ≡ 0 mod 2r

6: b̂j := b̂j,r ·Xj ∈ Rq ▷ right-shift by j unit
7: end for
8: return the sum

∑2r−1
j=0 b̂j as ĉ.

Figure 4: InterLeave: Coefficients interleaving (Naive).

RLWEpk0
(πlhs(Q))⊠πrhs(V). To convert the encrypted matrix

to arithmetic share, P0 and P1 then jointly invoke FH2A func-
tionality (cf. Table I). When matrix shape k·m·n > N , we can
split them into smaller sub-matrices and apply KRDY to each
pair of the corresponding sub-matrices. We denote the par-
tition windows as (kw,mw, nw). In terms of communication
cost, KRDY needs to exchange O(min( km

kwmw
, mn
mwnw

) + kn
kwnw

)
ciphertexts.

Compared to other HE-based OLT used in [55], [62], KRDY
OLTs do not require any rotations (which are very expensive
in HE), thus are quite efficient. However, there are many
”useless” coefficients in the result of KRDY OLTs. According to
Proposition 1, only kwnw coefficients of the result polynomial
û are ”useful” out of the N coefficients, but KRDY still needs
to transmit the entire RLWE ciphertext of û for decryption,
which could be a waste of communication. To provide an
example, we consider a set of dimensions commonly used in
transformer models such as k = 16,m = 768, and n = 3072.
In this scenario, the KRDY protocol might require exchanging
about 25 MB of ciphertexts. This can be a substantial commu-
nication overhead since the transformer models often contain
hundreds of such large-scale matrices. The following section
will elaborate on methods for reducing this communication
burden.

B. First attempt via Ciphertext Packing

Our first try is to apply a PackLWEs [13] procedure to KRDY,
which we refer as KRDY+ hereafter. The PackLWEs proce-
dure allows us to choose arbitrary coefficients from multiple
RLWE ciphertexts and combine them into a single RLWE
ciphertext by performing homomorphic automorphisms. In the
case of KRDY+, we can reduce the number of ciphertexts
from O(kn/(kwnw)) to O(kn/N) ciphertexts at the costs
of O(kn) homomorphic automorphism operations. Consider
the matrix shape (k,m, n) = (16, 768, 3072) again. KRDY+

now exchanges about 2.9 MB of ciphertexts which is a
significant reduction from the 25 MB of KRDY. However,
the automorphism operation in HE is quite slow, in fact
for matrices with a large kn, the automorphisms used by
KRDY+ could become more computationally expensive than
the homomorphic multiplication itself.
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C. Ciphertext Interleaving Optimization

We present a specifialized optimization for the PackLWEs

procedure [13] in the context of matrix multiplication. The
main idea is that, instead of “picking”’ useful coefficients one
by one follows the PackLWEs procedure, we prefer to “clean
up” the useless2 coefficients in the result ciphertexts, and then
combine them into a single ciphertext.

We briefly describe the clean up procedure. Let us use
N = 8 and â(X) =

∑i=7
i=0 aiX

i as an example. By definition,
the automorphism Auto(â, 9) yields

∑i=7
i=0 aiX

i·9, which is
equivalent to

i=7∑
i=0

aiX
i·9 ≡

i=3∑
i=0

a2iX
2i −

i=3∑
i=0

a2i+1X
2i+1 mod X8 + 1.

Here, the sign of coefficients in odd positions is flipped. Hence,
evaluating â + Auto(â, N + 1) will cancel out odd-indexed
coefficients and double the even-indexed coefficients. More
generally, let compute â+Auto(â, N/2j +1) for any 2-power
factor of N . Take N = 8 as the example again, and we
consider 2j = 2. Auto(â, 8/2 + 1) equals to

i=7∑
i=0

aiX
i·5 ≡ a0 − a2X

2 + a4X
4 − a6X

6 +
∑

i̸=0 mod 2

aiX
i·5.

In brief, coefficients in odd multiples of 2j are sign-flipped.
Suppose the coefficients of â[i] for all i ̸= 0 mod 2j are
zeros already. Then â + Auto(â, N/2j + 1) will cancel out
the odd multiples of 2j while doubling the positions of even
multiples of 2j . We define a function ZeroGap(â, 2r) to
repeat the formula r times â := â + Auto(â, N/2j + 1) for
j = 0, 1, · · · , r − 1. After performing these operations, the
result is a polynomial where only coefficients at positions that
are multiples of 2r are non-zero. However, these coefficients
are scaled by a factor of 2r. To correct for this scaling, we
initially multiply the polynomial by the inverse scaling factor
2−r mod q. This implicitly requires an odd modulus q, which
is commonly satisfied in RLWE-based HE that uses modulus
q ≡ 1 mod 2N . Also the ZeroGap procedure requires the
gap between two needed coefficients being a power-of-two
number. This equals to the partition window mw in the πlhs

and πrhs encodings. Note that this partition window can be
chosen freely as long as 1 ≤ kwmwnw ≤ N is satisfied.

With the ZeroGap procedure in mind, we present one
of our key contributions, i.e., the InterLeave procedure.
The InterLeave procedure interleaves 2r polynomials into
a single polynomial with the input coefficients arranged in a
stride of 2r steps. We first give the easy-to-follow version of
InterLeave in Figure 4. In this naive version, we separately
apply the ZeroGap procedure on each input polynomials
(Step 2 to Step 5) to clean up the irrelevant coefficients.
Then we obtain the final result via a simple rotate-then-sum
computation (Step 6 to Step 8). We would like to emphasize
that the rotation over the coefficients can be achieved much

2By “useless”, we mean the coefficients are not belong to the matrix
multiplication.
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c2(X) · X2

<latexit sha1_base64="pSKlDXJqOA+Gep3AgfW/bM+FqR0="></latexit>

d2(X) · X3

<latexit sha1_base64="ki79CO1HpIHjSxk4jtORMorC8W4="></latexit>

ZeroGap(a(X), 4)

Sum up
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0000000000-0-0
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000000000000

<latexit sha1_base64="5mhmEY0RVnWDme/pDm6kwSNy3vM="></latexit>

a1(X) a0(X) + a0(X
17)

<latexit sha1_base64="ojYRc78WIj5MHPbeENaAZHF60uo="></latexit>

a2(X) a1(X) + a1(X
9)

Figure 5: Toy example of InterLeave (Naive) for N = 16
and r = 2. Upper: 2 automorphisms clean up the irrelevant
coefficients, i.e., dashed cells, in one polynomial. Lower: 4
“clean” polynomials merge into one via negacyclic right shift.

more efficiently than the SIMD rotation [32] in the ciphertext
domain. Indeed, Figure 4 computes O(r · 2r) automorphisms
to combine N coefficients into a single polynomial. Figure 5
gives a toy example of InterLeave (Naive).
Final Version. We now present the optimized version of
InterLeave in Figure 6 which improves the complexity of the
Figure 4 from O(r · 2r) automorphisms to O(2r). We show
the intuition behind this optimized version. It is intuitively
sensible to exploit the bilinear nature of the automorphism
function to combine two automorphisms with identical indices
into one automorphism operation. That is the sum of two
automorphisms Auto(â, g)+Auto(b̂, g) equals to the automor-
phism on the sum polynomial for any valid index g. However,
polynomials that apply the same automorphism index are right
shifted by distinct units (i.e., Step 6 of Figure 4) before the
sum step (i.e., Step 8 of Figure 4). To address this issue, we
take advantage the following equation. That is Auto(â, N

2j +

1)+Auto(b̂, N
2j +1) ·X2j equals to Auto(â− b̂ ·X2j , N

2j +1)

when b̂[i] = 0 for all positions i that i ̸= 0 mod 2j . Recall that
the operation Auto(·, N

2j +1) sign-flips the coefficients located
at odd multiples of 2j , while leaving those at even multiples
of 2j unchanged. Also the right-shift to b̂ by multiplying
X2j simply changes the parity of b̂’s coefficient positions
— shifting from an odd multiple to an even multiple of 2j

and vice versa. Thus the pattern of automorphism-then-shift
Auto(b̂, N

2j + 1) · X2j is equivalent to the negate-shift-then-
automorphism manner Auto(−b̂ ·X2j , N

2j + 1). Then we can
combine the two automorphisms with the same index into one
automorphism using the bilinear property.

D. Proposed OLT Protocol

We now describe our OLT protocol in Algorithm 1. The
first three steps are similar to those KRDY style protocols [54],
[36]. Specifically, we divide a large matrix into sub-blocks
and encode each block as a polynomial using πlhs and πrhs.
However, we intentionally select a power-of-two partition
window mw in our approach. The main difference between our
protocol and theirs is the use of the InterLeave procedure
in Step 4 to decrease the number of RLWE ciphertexts from
O(kn/(kwnw)) to O(kn/N). The process of parsing the
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Input: {âj ∈ Rq}j∈[2r] for an odd q and 1 ≤ 2r ≤ N .
Output: ĉ ∈ Rq such that ĉ[i] = âi mod 2r [⌊i/2r⌋ · 2r].

1: Compute b̂j := 2−r · âj mod q for ∀j ∈ [2r].
2: for k = 0, 1, · · · , r − 1 and h := 2r−k/2 do in

sequence
3: for ∀j ∈ [h] do in parallel
4: Right-shift first b̂j,h := b̂j+h ·Xh ∈ Rq .
5: Bilinear b̂j := b̂j+b̂j,h+Auto(b̂j−b̂j,h, N

h +1).
6: end for
7: end for
8: return b̂0 as ĉ.

Figure 6: Optimized InterLeave using a FFT-style algorithm.

interleaved polynomials and constructing the result matrix is
explained in Figure 8 in the Appendix.

To achieve a good balance between computation and com-
munication overhead, it is essential to choose an appropriate
partition window mw. A smaller value of mw might increase
the communication overhead in Step 1 excessively while a
larger value of mw results in more homomorphic automor-
phisms in Step 4. Given the matrix shape (k,m, n) and the
partition windows (kw,mw, nw), the number of ciphertexts
sent in Step 1 is n1 := m′·min(k′, n′). The total number of ho-
momorphic automorphisms to perform InterLeave in Step 4

is n2 := ⌈k′n′/mw⌉mw. After the interleaving, n3 := ⌈k
′n′

mw
⌉

ciphertexts are sent in Step 5. To choose the proper partition
window, we can minimize argmin

kw,mw,nw

PC · n2 + PB · (n1 + n3)

under the constrain that mw is a 2-power value and 1 ≤
kwmwnw ≤ N . Here PC models the price for computing
one homomorphic automorphism and PB models the price for
sending one ciphertext. A smaller ratio PC/PB can indicate
the scenario of powerful computing or constraint bandwidth
condition. For such cases, we prefer to set a larger mw.
Conversely, if an ample amount of bandwidth is accessible,
a smaller value for mw can be chosen to lighten the time
taken for ciphertext interleaving.
Complexity. Based on our empirical results, it appears that
selecting mw ≈

√
N is a viable choice. Then the protocol in

Algorithm 1 requires about O(kn/
√
N) homomorphic auto-

morphisms for the ciphertexts interleaving. To compare, the
KRDY+ baseline needs O(kn) homomorphic automorphisms.
As an example, let mw = 26 with N = 213. Under this
setting, the ciphertext compression time of our protocol is
approximately 1/26 ≈ 1.6% of the ciphertext compression
time of KRDY+. The communication overhead of KRDY+ and
ours are both O(kn/N) ciphertexts. Note that BOLT’s prime-
modulus OLT might require less homomorphic automorphisms
O(

√
k2m2n/N2) according to the matrix dimensions [58].

Security. We only add a ciphertext compression step to reduce
the communication overhead, the information we send are a
subset of KRDY protocols, so we have the same security level.
The proof of Theoreom 1 follows [54], [36].

Algorithm 1 Proposed Oblivious Linear Transform ΠOLT

Inputs: Sender S: Q ∈ Zk×m
2ℓ

and sk. Receiver R: V ∈
Zm×n
2ℓ

.
Output: JUK such that U ≡ℓ Q ·V.
Public Params: pp = (HE.pp, pk, (kw,mw, nw))

• The size mw is a 2-power value, and 1 ≤ kwmwnw ≤ N .
• k′ = ⌈ k

kw
⌉, m′ = ⌈ m

mw
⌉, n′ = ⌈ n

nw
⌉, and m̃ = ⌈k′n′

mw
⌉.

• Note: If k′ > n′ then flip the role of sender and receiver.

1: S first partitions the matrix Q into block matrices
Qα,β ∈ Zkw×mw

ℓ . Then S encodes each block matrices
as a polynomial q̂α,β := πlhs(Qα,β) for α ∈ [k′] and
β ∈ [m′]. After that S sends {ct′α,β := RLWEq,2ℓ

pk (q̂α,β)}
to R.

2: R first partitions the matrix V into block matrices
Vβ,γ ∈ Zmw×nw

ℓ . Then R encodes each block matrices
as a polynomial v̂β,γ := πrhs(Vβ,γ) for β ∈ [m′] and
γ ∈ [n′].

3: On receiving {ct′α,β} from S, R computes a vector of
RLWE ciphertexts, denoted as c, where c[αn′ + γ] :=

⊞β∈[m′]

(
ct′α,β ⊠ v̂β,α

)
for α ∈ [k′], γ ∈ [n′],

4: To compress the the vector c of k′n′ ciphertexts into m̃
ciphertexts without touching the needed coefficients, R
runs InterLeave on subvectors of c. For example

c̃[θ] := InterLeave([c[θ ·mw], c[θ ·mw + 1], · · ·︸ ︷︷ ︸
mw

]),

for θ ∈ [m̃]. ▷ Pad with zero(s) when k′n′ ∤ mw.
5: Call ĉi,0, ĉi,1 ← FH2A(c̃[i]) on each ciphertext in c̃,

where S obtains ĉi,0 ∈ R2ℓ and R obtains ĉi,1 ∈ R2ℓ , re-
spectively. After that both S and R can derive their share
using a local procedure JUKl := ParseMat(ĉ0,l, ĉ1,l, · · · )
in Appendix.

Theorem 1. The protocol ΠOLT in Algorithm 1 privately
realizes the OLT functionality in presence of a semi-honest
adversary under the FH2A hybrid.

E. Further Optimizations

1) Batched Matrix Multiplications: Recall that each multi-
head attention in a transformer model involves H > 1 parallel
matrix multiplications, e.g., Qj ·Kj for j ∈ [H]. When each
of these resultant matrix is small, i.e., |Qj ·Kj | ≤ N/2, we
prefer to apply InterLeave to compress the ciphertexts from
the batch multiplications. Briefly, the O(H) RLWE ciphertexts
of the batch multiplications are further packed into O((H ·
kn)/N) ciphertexts.

2) Dynamic Compression Strategy: We adopt a dynamic
strategy for ciphertext compression that allows us to strike a
balance between reducing communication costs and incurring
additional computation costs. Specifically, we do not use
any ciphertext compression when there is only one RLWE
ciphertext to send, i.e., ⌈k/kw⌉ · ⌈n/nw⌉ = 1. Also when
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kn ≪ N , we use PackLWEs instead of InterLeave where
the former can run faster for small cases.

IV. FASTER BATCH OLE FROM RLWE

Besides of matrix multiplications, scalar multiplications
(or Hadamard product, in a batched way) are also required
in transformer models. We use the notation Batch OLE
(bOLE) [17] to describe a 2-party computation protocol that
takes a vector x from a sender S, and a vector y from a
receiver R, and generates the secret share Jx ⊙ yK of their
Hadamard product. In the context of private inference, we
demonstrate that a variant of bOLE with Error (bOLEe) is
sufficient. We can build more efficient bOLEe protocol using
smaller RLWE parameters. Our bOLEe may introduce Least-
Significant-Bit (LSB) errors in the final output. Nonetheless,
due to the use of fixed-point representation in MPC, the LSB
errors would be removed by subsequent truncations, so our
approach does not affect the overall accuracy.

Similarly to the RLWE-based bOLE from [63], we also
apply the SIMD technique [66] to implement bOLE but with
a better amortized efficiency. In [63], a sender S pre-processes
its private input x ∈ ZN

2ℓ as SIMD(x), and sends the ciphertext
RLWEq,t

S (SIMD(x)) to the receiver R. Then R responses the
ciphertext RLWEq,t

S (SIMD(x))⊠SIMD(y)⊞SIMD(r) to S with
a masking vector r ∈ ZN . Indeed, the arithmetic x⊙y+r here
is carried out modulo t, even though the values in x and y are
from the ring Z2ℓ . Since the modulus t is indivisible by 2ℓ,
the masking vector r should be sampled from a larger ring to
provide statistical security. Specifically, [63] samples r from
ZN
22ℓ+σ to provide statistical security of σ-bit. In addition, to

prevent the overflow from addition, they needs to set a large
plaintext modulus t > 22ℓ+σ+1. We present how to avoid this
extra σ-bit overhead, at the cost of 1-bit LSB error. Basically,
we use a lifting function to introduce an intermediate layer of
a modulus of 2ℓ upon the prime plaintext modulus t.

Lift(x) : ZN
2ℓ 7→ ZN

t via ⌊ t
2ℓ
· x⌉ mod t,

Down(y) : ZN
t 7→ ZN

2ℓ via ⌊2
ℓ

t
· y⌉ mod 2ℓ.

Proposition 2. If t > 22ℓ then Down(Lift(x)·y mod t) ≡ℓ x·y
given any x, y ∈ Z2ℓ . That is, we can operate modulo 2ℓ on-
top of the prime modulus t.

Proof. It suffices to show the error term can be rounded to
zero. Lift(x) ·y mod t can be written as t

2ℓ
· ((x ·y mod 2ℓ)+

re · y for a round error |re| ≤ 1/2. Then the error term is
rounded as ⌊ 2ℓt · (re · y)⌉ = 0 given t > 22ℓ and y < 2ℓ.

We are now able to use an informatics random masking
r ∈ ZN

t instead of the statistical one. There might be a chance
of introducing 1-bit error in the result.

Proposition 3. Let u′ := Down(Lift(x) · y − r mod t) and
v′ := Down(r) given x, y ∈ Z2ℓ and r ∈ Zt. If t > 22ℓ and
r distributes uniformly over Zt, then u′ + v′ ≡ℓ x · y + e for
e ∈ {0,±1}.

Algorithm 2 bOLE with Error Protocol ΠbOLEe

Input: Sender S: x ∈ ZN
2ℓ , secret key sk. Receiver R:

y ∈ ZN
2ℓ . Public parameters pp = {N, t} such that t =

1 mod 2N is a prime and t > 22ℓ and the public key pk.
Output: JzK ∈ ZN

2ℓ such that ∥z− x⊙ y mod 2ℓ∥∞≤ 1.

1: S sends RLWEq,t
pk (x̂) to S, where x̂ := SIMD(Lift(x)).

2: R computes ŷ := SIMD(y).
3: On receiving the ciphertexts RLWEq,t

sk (x̂), R computes
ct := RLWEq,t

pk (x̂)⊠ ŷ.
4: JûK ← FH2A(ct) to convert to arithmetic share.

Suppose S’s share is JûK0 ∈ Rt and R’s share is
JûK1 ∈ Rt. Remind that we let the FH2A function to
capture the circuit privacy (c.f. Remark 1).

5: S outputs Down(SIMD−1(JûK0)).
6: R outputs Down(SIMD−1(JûK1)).

The proof basically follows the similar arguments in [36,
full version, Appendix C].

Theorem 2. The protocol ΠbOLEe in Algorithm 2 privately
realizes the bOLEe functionality (cf. Table I) in presence of a
semi-honest adversary under the FH2A hybrid model.

The correctness of Theorem 2 simply follows the SIMD
packing and Proposition 3. For the concrete improvements,
our bOLEe protocol requires t ≈ 2128 for ℓ = 64, whereas
the approach of [63] requires a larger value of t ≈ 2168. Our
empirical results show that our protocol is about 1.3× faster
than their protocol.

V. PROTOCOLS FOR ACTIVATION FUNCTIONS

We first describe our protocol for the GeLU function. The
method and optimizations described in this section can also
be used for other functions such as SiLU and ELU (see
Appendix D).

A. Gaussian Error Linear Unit (GeLU)
A common definition of the GeLU function is

GeLU(x) = 0.5x(1 + tanh(
√
2/π(x+ 0.044715x3))).

Following the existing works [58], [49], [24], [21], we approx-
imate GeLU function using piecewise functions such as

Seg4GeLU(x) =


−ϵ x < −5
P 3(x) −5 < x ≤ −1.97
P 6(x) −1.97 < x ≤ 3

x− ϵ x > 3

(2)

where P b(x) a degree-b polynomial that approximates the
GeLU function in a short interval. For instance, setting
ϵ = 10−5 we plot Seg4GeLU in Figure 7a. We can see that
Seg4GeLU approximates the GeLU function very well. Our
GeLU protocol in Algorithm 3 basically follows (2) using Fless

and Fmux for the branch selection. To further enhance the
efficiency, we discuss and introduce three independent opti-
mizations which are not mentioned in the previous works [58],
[49], [24], [21].

8



5 4 3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 GeLU
P3(x)
P6(x)

(a)

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

GeLU
P3(x)
P6(x)

(b)

Figure 7: (Left) The maximum absolute error between
Seg4GeLU and GeLU within the interval [−5, 3] is about
1.5× 10−2. (Right) We use a wider range for the polynomial
fitting which gives P 3(x) ≈ P 6(x) for x around the pivot.

1) Approximated Branch Selection: The first optimiza-
tion leverages the smoothness of the activation function.
Specifically, we first find the approximation polynomials
P 3(x) and P 6(x) such that P 3(x) ≈ P 6(x) for x around
the pivot point, e.g., x = −1.97 in our case. The selection
in (2) can be privately achieved via a less-than protocol
1{x < y} for x, y ∈ Z2ℓ . Given these observations, we
suggest computing the less-than bit with some low-end f ′ bits
ignored to reduce communication overhead. This is a common
folkloric optimization for performing comparisons over secret
shares of fixed-point values. However, it is crucial to ensure
proper approximation polynomials, as fluctuations exceeding
the pivot point might ruin the approximation. Empirically, the
approximated segment selection helps reduce the communica-
tion overhead of the GeLU protocol in Algorithm 3 by 5%.

2) Batching (Approximated) Branch Selection: Our sec-
ond optimization is specified for the concrete OT-based MSB
protocol of [46], [36]. These protocol compute the MSB
of an arithmetic share JxK using the formula MSB(JxK0) ⊕
MSB(JxK1) ⊕ 1{(JxK0 mod 2ℓ−1) + (JxK1 mod 2ℓ−1) ≥
2ℓ−1}, where the computation of the last bit needs one(
M
1

)
-OT2. Thus we need 3 calls to

(
M
1

)
-OT2 for the branch

selection in (2). Note that these “batched” comparisons are
conducted using one secret share and multiple plaintext thresh-
olds. This arrangement allows us to consolidate three calls to(
M
1

)
-OT2 into a single

(
M
1

)
-OT6, that is 1-of-M OT on 6-bit

messages. While this OT combination may not reduce commu-
nication overhead by too much, it can reduce the computation
time of GeLU by 35% according to our experiments. This is
because the running time of one call to

(
M
1

)
-OT2 is similar

with one call to
(
M
1

)
-OT6 when using Ferret OT.

3) Optimizing Polynomial Evaluation: For the evaluation
of P 3(x) and P 6(x) in (2), we suggest to use the faster square
protocol Πsquare to compute all even-power terms, such as x2,
x4 and x6. Indeed, in 2PC, the cost of performing a square
is half of a standard multiplication operation. Additionally,
we present to reduce the communication cost for the odd-
power terms by half. As an example, let us consider the
computation of Jx3K given JxK and Jx2K. We can employ
two calls of bOLEs to compute Jx3K, i.e., FbOLE(JxK0, Jx2K1)
and FbOLE(Jx2K0, JxK1). For our bOLE construction in Algo-

Algorithm 3 Private GeLU protocol ΠGeLU

Input: Jx̃; fK with f -bit fixed-point precision. The polyno-
mial coefficients {a0, a1, a2, a3} in P 3(x) and the coeffi-
cients {b0, b1, b2, b4, b6} in P 6(x).
Output: JSeg4GeLU(x̃); fK. See (2) for definition.

1: Compute the powers Jx̃2K ← Πsquare(Jx̃K), Jx̃4K ←
Πsquare(Jx̃2K), Jx̃3K ← Πmul(Jx̃2K, Jx̃K), and Jx̃6K ←
Πsquare(Jx̃3K). The truncations are implicitly called.

2: Evaluate two polynomials JP 3(x̃)+ϵ; fK← Ff
trunc(⌊(ϵ+a0)·

22f⌋ +
∑

k∈{1,2,3}Jx̃
kK · ⌊ak · 2f⌋), and JP 6(x̃) + ϵ; fK ←

Ff
trunc(⌊(ϵ+ b0) · 22f⌋+

∑
k∈{1,2,4,6}Jx̃

k; fK · ⌊bk · 2f⌋).
3: Compute the comparisons for segement selection

Jb0KB ← Fless(Jx̃K,−5) ▷ b0 = 1{x̃ < −5}
Jb1KB ← Fless(Jx̃K,−1.97) ▷ b1 = 1{x̃ < −1.97}
Jb2KB ← Fless(3, Jx̃K) ▷ b2 = 1{3 < x̃}

Locally sets Jz0KBl := Jb0KBl ⊕ Jb1KBl , Jz1KBl := Jb1KBl ⊕
Jb2KBl ⊕ l and Jz2KBl := Jb2KBl . Note z0 = 1{−5 < x̃ ≤
−1.97}, z1 = 1{−1.97 < x̃ ≤ 3}, and z2 = 1{3 < x̃}.

4: Compute the multiplexers Jz0·(P 3(x̃)+ϵ)K, Jz1·(P 6(x̃)+ϵ)K,
and Jz2 · x̃K using the Fmux functionality. Then Pl locally ag-
gregates them and outputs as the share of JSeg4GeLU(x̃); fKl.

rithm 2, P0 sends the ciphertexts of SIMD(Lift(JxK0)) and
SIMD(Lift(Jx2K0)) to P1. We note that these two ciphertexts
are already sent to P1 when computing Jx2K and Jx4K, respec-
tively. Therefore, to compute the cubic term, the players can
skip Step 1 in Algorithm 2, and follow the remaining steps
identically.
Tradeoffs. In our evaluations, we demonstrate that these three
optimizations can result in a 35% reduction in time and a 7%
reduction in communication. It is important to note that these
improvements come with an increase in approximation error.
Specifically, the average ULP error for our GeLU evaluation
is approximately 11, compared to an average ULP error of 4
for [58]. Additionally, we tested the proposed GeLU protocols
in four transformers, and the results indicate a minimal infer-
ence precision downgrade of less than 1%. We consider this
a reasonable tradeoff between accuracy and efficiency.

B. Softmax

For the sake of numerical stability [29, Chapter 4], the
softmax function is commonly computed as

softmax(x)[i] =
exp(x[i]− x̄)∑
j exp(x[j]− x̄)

, (3)

where x̄ is the maximum element of the input vector x. For
a two-dimension matrix, we apply (3) to each of its row
vector. It is worth noting that all inputs to the exponentia-
tion operation in (3) are negative. We leverage the negative
operands to accelerate the private softmax. Particularly, we
approximate the exponentiation with a simple clipping branch.

That is exp(x) ≈
(
1 +

x

2n

)2n

for x ∈ [Texp, 0] otherwise
exp(x) ≈ 0 for x < Texp. For the clipping range Texp, we
simply set Texp such that exp(Texp) ≈ 2−f where f is the
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fixed-point precision. Suppose we set f = 18. Then we set
Texp = −13 since exp(−13) < 2−18. When Texp is fixed,
we can empirically set the Taylor expansion degree n. For
instance, in our experiments, we set n = 6 for Texp = −13
to achieve an average error within 2−10. Also we apply the
approximated less-than proposed in the previous section for the
branch selection since the exponentiation on negative inputs is
smooth too. The division by 2n can be achieved using a call
to Fn

trunc, and the power-of-2n is computed via a sequences
of Πsquare.

C. Mixed-Bitwidth Evaluation
Before running our activation protocols, we can first switch

the shares to a smaller ring ℓ′ < ℓ to save communication
overhead. The share conversion from a large ring Z2ℓ to a
smaller ring Z2ℓ′ can be done locally via setting JxKl mod 2ℓ

′
.

For the opposite direction, we combine the ring extension
protocol from [61] with a heuristic optimization [16]. For
our implementation, each conversion from Z2ℓ′ to Z2ℓ will
exchange about O(2(ℓ − ℓ′)) bits in two rounds. The major
issue in this mixed-bitwidth evaluation is the overflow from
multiplication. For instance, the double fixed-point precision
2f might be already larger than ℓ′. To address this issue,
we have to make two compromises. We must 1) reduce
the fixed-point precision within the activation function using
one extra call to Ftrunc, 2) and shrink the approximation
interval or increase the number of branches so that we can use
lower degree polynomials. The recent work [58] approximates
the GeLU within a narrow interval using one low-degree
polynomial, i.e., GeLU(x) ≈ P 4(x) = 0.5x+

∑i=4
i=0 ci|x|

i for
x ∈ [−2.7, 2.7]. In some of our experiments, we apply this
P 4(x) for GeLU but we still need two polynomials for the
SiLU function.

VI. RELATED WORK

Low Communication OLT. Many works that leverages the
homomorphic SIMD [66] can be directly used for the OLT
functionality with a relatively small communication overhead,
such as [32], [12], [39], [35]. The SIMD technique in turn
demands a prime plaintext modulus t rather than the 2ℓ

modulus used by secret sharing. One can use the Chinese
Remainder Theorem to accept secret shares from Z2ℓ at
the cost of increasing the computation and communication
overheads on the HE-side by many times. An alternative
strategy for constructing low-communication OLT is to use
Vector Oblivious Linear Evaluation (VOLE) [9], [77], [7],
as proposed in CipherGPT [34]. However, this VOLE-based
approach requires a significantly large matrix dimension of
k ≈ 107 to achieve low (amortized) communication, making
it suitable only for auto-regression transformers.
Non-linear Functions. For the softmax function, [45], [68]
also use the Taylor series (1 + x/2n)2

n

to approximate the
exponentiation except they do not apply the range clipping. For
example, CryptGPU empirically sets n = 9 according to their
examination on some datasets. SiRNN [61] uses a Look-up-
Table for an initial guess with a few Newton iterations. These

approaches do provide a precise exponentiation but are also
expensive to evaluate in 2PC. [80] approximates the softmax
function using an alternative numerical approach. However, it
may require more than 64 rounds of multiplications, making
it communication-intensive. Kelkar et al. [42] propose a novel
2PC exponentiation protocol but with limitations of using a
large ring ℓ ≈ 128 or to strictly constrain the input domain
(e.g., |x| ≤ 5) due to a failure probability. [49] uses 12 poly-
nomials of degree-1 to approximate the activation functions
via Garbled Circuit [78]. The recent approaches also [20],
[21], [24], [58] approximate the GeLU function using multiple
low-degree polynomials. However, none of these approaches
consider the smoothness of the GeLU function and batched
comparisons to reduce the overhead of the branch selection.
Private Transformer Inference. (2PC). Iron [33], BOLT [58]
and CipherGPT [34] are the 2PC inference frameworks de-
signed for transformers. Both these three frameworks heavily
re-use the OT-based protocols from the SiRNN framework [61],
[23] for evaluating the activation functions. BOLT [58] is
considered state-of-the-art for secure two-party transformer in-
ference. BumbleBee shares some design elements with BOLT,
such as piecewise approximation for nonlinear functions and
private matrix multiplication using HE. However, BumbleBee
outperforms BOLT, particularly in terms of communication ef-
ficiency (c.f. Figure 1). The primary reasons for BumbleBee’s
advantages over BOLT are summarized as follows:

• Share-type Consistent Multiplications. BOLT’s matrix
multiplication protocol works over a prime modulus p
while their non-linear protocols works over a ring mod-
ulus 2ℓ. They have to switch back and forth between
different share types during the private inference. To
integrate a ring-to-prime conversion (e.g., [42]), BOLT

requires a special share multiplication where the bitwidth
of the outputs can be larger than the bitwidth of the
inputs. Specifically, BOLT reuses the OT-based protocol
from the EzPC framework [23], [61] to achieve this non-
uniform share multiplication.
In contrast, in BumbleBee, both the matrix multiplica-
tion protocol and the share multiplication protocol work
over the ring modulus 2ℓ. These share-type consistent
multiplications enable us to build a more efficient share
multiplication protocol from HE. As already shown by
existing works such as [63], the HE-based share multi-
plication protocol can be 5×–6× more efficient than the
OT-based counterpart in terms of communication. Note
that we further optimize the communication costs of [63]
by 1.3×.

• Square is Half the Cost of Standard Multiplication.
To privately evaluate the piecewise function, we need to
evaluate a low-degree polynomial on a secretly shared
input JxK. BOLT leverages Horner’s method for polyno-
mial evaluation. For example, BOLT evaluates a degree-4
polynomial as follows:

P 4(JxK) = (((((a4·JxK+a3)·JxK)+a2)·JxK)+a1)·JxK+a0,

which requires 3 standard multiplications of secret shares.
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BOLT applies Motzkin’s polynomial preprocessing to re-
duce the number of standard multiplications down to 2.
In contrast, in BumbleBee, we prefer to leverage the
square because the cost of performing a square is half
that of a standard multiplication operation. For example,
we need two squares (for the quadratic and quartic
terms) and “half” standard multiplication (for the cubic
term) to evaluate the degree-4 polynomial. Let alone the
more efficient share multiplication protocol. The way we
evaluate a given low-degree polynomial is also efficient
than the Horner method used by BOLT, particularly in the
context of private computation.

• Lower Communication OT. The final advantage comes
from the specific choice of OT. Specifically, BOLT chooses
to use the IKNP OT [38] as its underlying OT protocol
while we leverage the Ferret OT [77]. The communication
overhead of Ferret OT is smaller than that of IKNP OT,
at the cost of more local computation. We have made
engineering efforts to integrate Ferret OT into a multi-
core CPU to minimize its running time, including the
syncrhonization across multiple threads.

From the summary above, we emphasize the importance of our
matrix multiplication protocol that supports a ring modulus. It
is the share-type consistency of our multiplication protocols
that allows BumbleBee to significantly outperform BOLT.
Private Transformer Inference ((2+1)-PC). Recent studies
such as [48], [31], [67], [30] have examined scenarios in which
both parties (e.g., S and C) can access to a trusted third party
(TTP) for help. These approaches typically divide the private
computation process into two distinct phases: an initial prepro-
cessing, followed by an evaluation phase. Notably, during the
preprocessing phase, the TTP is responsible for generating and
distributing all correlated randomness that the two parties will
subsequently utilize during the evaluation stage. Following the
name of [67], we denote such a TTP-assisted computation as
a (2+1)-PC to clearly distinguish it from our 2PC setting.
Private Transformer Inference. (3PC). PrivFormer [3]
and PUMA [21] two private inference frameworks designed
for transformers based on the three-party setting [4], [56].
Specifically, PrivFormer replaces the softmax attention by an
MPC-friendly alternative (i.e., ReLU attention) which requires
model fine-tune. PUMA shares some design elements with
BumbleBee, such as the piecewise approximation for GeLU,
and Taylor approximation for the exponentiation function. In
brief, these 3PC approaches are OT-free and HE-free but at
the costs of a larger communication than ours.

Other related works [79], [48], [3] consider alternative
models with different approximated structures that are easier
to compute in MPC. However it has been demonstrated that
rough approximations can significantly compromise model
accuracy [43], so model fine-tune would be necessary in their
works. One of BumbleBee’s advantage is that it does not
require any model fine-tune; instead, our focus is on the
private inference of a given pre-trained transformer model.
Note that our techniques could also be adapted for use in their
models to yield even better performance.

VII. EVALUATIONS

Models & Datasets. We evaluate BumbleBee on 5 Trans-
former models, including four NLP models, i.e., BERT-base,
BERT-large [19], GPT2-base [15], and LLaMA-7B [69], and
a computer vision model ViT-base [74], [22]. These models
are parameterized by three hyper-parameters: the number of
blocks B, the dimension of representations D and the number
of heads H . We directly reuse the trained models from publicly
available sources.

To demonstrate the effectiveness of BumbleBee, we con-
ducted private inference on 4 datasets, which includes CoLA,
RTE, and QNLI from the GLUE benchmarks [71] for NLP
tasks, and ImageNet-1k [64] for image classification. In more
details, the ImageNet-1k dataset is a classification task of 1000
different classes, while the three from the GLUE benchmarks
are binary classification tasks.
Metrics. Given the 2PC setting, we do not distinguish between
the “offline” and “online” costs as in some prior (2+1)-PC
works [55], [30]. We report the end-to-end running time
including the time of transferring ciphertexts through the
network. However, we have not included the time taken
for loading models from a hard disk. We measure the total
communication including all the messages sent by the two
parties. We write 1GB = 210MB = 230 bytes.
Testbed Environment. The experiments described in this
paper were majorly conducted on two Alibaba Cloud in-
stances (ecs.g7.16xlarge), equipped with 64 vCPUs, operating
at 2.70GHz, and 256 GB of RAM. We utilize multi-threading
as much as possible. To simulate different network conditions,
we manipulated the bandwidth between the cloud instances
using the traffic control command in Linux. Specifically, we
conducted our benchmarks in two network settings: a Local
Area Network (LAN) with of 1 gigabit per second (one-way
1 Gbps) bandwidth, and 0.5ms of ping time, and a Wide Area
Network (WAN) with 400 Mbps bandwidth and 4ms ping time.
Concrete Parameters. We set ℓ = 64 for the secret sharing
and set the fixed-point precision f = 18. When doing the
mixed ring optimization on GeLU and exponentiation, we
set ℓ′ = 32 and f ′ = 12. Specifically, we apply the mixed
ring optimization for GeLU and exponentiation on the BERT-
base, GPT2-base and ViT-base models, while we only apply
to the GeLU/SiLU activation for the other larger models. We
extend the Ferret implementation in the Yacl library [1] to
support various application-level OT types, such as

(
M
1

)
-OT6.

For RLWE, we use the SEAL library [65] with [37] for
acceleration on Intel CPUs. For the approximated less-than,
we evaluate an MSB protocol on 50-bit inputs for the segment
selection in (2). For approximating the exponentiation, we
set Texp = −14 and use n = 6. More details on the
implementation parameters refer to Appendix.
Availability. We provide a reproducible implementation in
https://github.com/AntCPLab/OpenBumbleBee.

A. Microbenchmarks

In Table II, we compare the performance of the proposed
protocols with many SOTA approaches.
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TABLE II: Comparison of proposed protocols with SOTA in
terms of running time and communication costs. The time for
HE key generation and base OTs are excluded. Each machine
was tested with 25 threads. For BOLT’s implementation [58],
we set ℓ = 37 to follow their settings. We evaluated GeLU
using the mixed-bitwidth approach in §V-C.

ΠOLT(X,Y)

(k,m, n)
Comm. LAN WAN

(1, 50257, 768)

[23] 9.41GB 96.22s 217.03s
KRDY 20.84MB 0.45s 0.73s
KRDY+ 1.38MB 0.46s 0.46s
Ours∗ 1.38MB 0.46s 0.46s

(128, 768, 768)

[23] 18.41GB 159.98s 397.83s
KRDY 30.16MB 0.66s 1.06s
KRDY+ 5.02MB 7.07s 7.85s
Ours 5.02MB 0.51s 0.52s

ΠbOLE(x,y)
Comm. LAN WAN

|x| = |y| = 215
[63] 4.67MB 0.07s 0.17s
Ours 3.61MB 0.05s 0.14s

|x| = |y| = 220
[63] 139.94MB 2.39s 5.33s
Ours 105.93MB 1.71s 4.02s

ΠGeLU(x)
Comm. LAN WAN

|x| = 220

[61] 16.06GB 141.52s 353.76s
[53] 3.54GB 66.50s 103.68s
[58] 3.85GB 33.41s 83.47s

Ours† 0.43GB 6.47s 11.37s
Ours‡ 0.42GB 4.16s 9.42s
Ours 0.40GB 3.95s 8.82s

Πsoftmax(W)
|W| Comm. LAN WAN

(960, 180)

[61] 1.66GB 16.39s 40.84s
[44], [53] 0.66GB 9.28s 14.53s

[58] 1.25GB 11.00s 27.12s
Ours 0.27GB 3.03s 5.79s

∗ Identical to KRDY+ in this case due to the strategy in §III-E2
† We call 3

(M
1

)
-OT2 without approximated less-than in this run.

‡ We call 1
(M
1

)
-OT6 without approximated less-than in this run.

Linear Operations. To demonstrate the performance of our
OLT protocol, we have implemented the approach from KRDY

and our baseline KRDY+ which adapts the PackLWEs [13] to re-
duce the communication overhead of KRDY. We also compared
with the COT-based approach from the SCIOT library [23],
which leverages the IKNP for COT [38]. We can see that KRDY

is already more efficient than the COT-based method. KRDY+

could bring down 80% – 90% of the communication compared
with KRDY, but the overall time cost is higher than KRDY on
large matrices, this is because of the expensive homomorphism
in PackLWEs. Our OLT protocol was shown to be rapid and
light. With our ciphertext interleaving technique, our OLT
protocol has the same communication complexity as KRDY+,
while 14× faster than KRDY+.
Non-linear Activation Functions. We compare our non-
linear protocols with the default implementations in the SPU

library [53] by changing their underlying OT to Ferret [72].

TABLE III: Prediction accuracy on the GLUE benchmarks us-
ing BERT-base, and classification accuracy on the ImageNet-
1k dataset using ViT-base. We report Matthews correlation
(higher is better) for CoLA and Top-1 (Top-3) accuracy for
the ImageNet-1k dataset.

Dataset Size Class Distribution Plaintext BumbleBee

RTE 277 131/146 0.7004 0.7004
QNLI 1000 519/481 0.9030 0.9020
CoLA 1043 721/322 0.6157 0.6082

ImageNet 1000 one img per class 0.7317 (0.894) 0.7257 (0.891)

Also, we compare with SiRNN [61] and BOLT [58] by re-
running their codes. The results in Table II demonstrate that
our protocols yielded a significant decrease in communication
costs, resulting in savings of about 89% communication for
GeLU and 80% for softmax. Additionally, we run our GeLU
protocol without the two optimizations, namely the approx-
imated less-than (§V-A1) and batched MSBs (§V-A2). Our
findings indicate that these two optimizations can reduce the
computation time of GeLU by about 3% and 35% respectively.

B. Evaluation on Large Transformers

We have run BumbleBee on five transformer models, includ-
ing four NLP models (BERT-base, BERT-large, GPT2-base,
and LLaMA-7B) and one vision transformer (ViT-base). Note
we select top-1 token in the GPT2 and LLaMA models.
Accuracy. To demonstrate the effectiveness of BumbleBee, we
performed private inference on the BERT-base and ViT-base
models on four datasets. The results are given in Table III.
As shown in the table, BumbleBee attains comparable levels
of accuracy when compared to the cleartext prediction. It is
important to highlight that all our experiments were conducted
using the proposed 2PC protocols rather than through cleartext
simulation. Also, we do not perform any model fine-tunning.
Break-down. Table IV breaks down the BumbleBee inference
time and communication for GPT2-base (left) and LLaMA-7B
(right). The inputs to these two models consist of 128 and 8
tokens, respectively. The first column of Table IV indicates a
specific operation in the SPU framework. Operations beginning
with the “i ” prefix take integer inputs, while those beginning
with the “f ” prefix take fixed-point values as inputs. The
truncation protocol [16], [36] may be implicitly invoked within
these fixed-point operations. In terms of communication, the
activations make up about 50% of the communication costs. In
contrast, matrix multiplication is the most expensive operation
which takes 70% – 95% of the total inference time. We provide
the performance breakdown of ViT-base in Appendix.

From the results, we could observe the striving direc-
tions: even after our optimizations, matrix multiplication
(mmul)/scalar multiplication (mul)/GeLU/softmax still consti-
tute the major cost in secure transformer inferences.
Discussions. Indeed, the cost of i equal can be saved by
allowing the client to query an one-hot vector instead of the
token-id. Nonetheless, there are scenarios where a private
conversion from token-id to one-hot vector is still required,
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TABLE IV: Performance breakdown of BumbleBee on two transformers. The input to the GPT2 model and LLaMA-7B model
consist of 128 and 8 tokens, respectively. Both models generate 1 token. The LAN setting was used.

Operation Used by GPT2-base (B = 12, D = 768, H = 12) LLaMA-7B (B = 32, D = 4096, H = 32)
#Calls Time (sec) Sent (MB) Recv (MB) #Calls Time (sec) Sent (MB) Recv (MB)

i equal token-id to one-hot 128 6.67 70.83 34.05 8 3.76 11.10 9.64
mixed mmul embedding lookup 128 32.59 265.47 41.88 8 30.89 18.31 16.39

f mmul linear projections 49 58.35 230.82 230.82 225 747.25 900.47 457.92
f batch mmul multi-head attention 24 12.17 165.72 156.02 64 10.94 403.26 400.21

f less max / argmax 131 6.59 159.90 32.79 117 0.73 6.08 1.31
multiplixer max / argmax 386 0.99 24.65 23.42 155 0.30 1.20 1.20

f exp softmax 12 15.30 779.69 636.92 32 2.27 39.33 36.08
f reciprocal softmax 12 4.18 28.18 29.08 32 1.36 12.87 7.95

f mul layer norm, softmax 174 17.91 880.51 878.63 356 10.53 758.30 730.10
f rsqrt layer norm 25 0.93 3.13 2.62 65 1.14 0.81 0.58
f gelu GeLU / SiLU 12 20.55 1088.35 724.91 32 17.99 1175.45 745.04

Total 3.06min Sent + Recv 6.61 GB Total 13.87min Sent + Recv 5.64 GB

such as when outsourcing private inference to two collusion-
free servers, where the generated token (in the middle of the
computation) is also unknown by both servers.

C. Comparison with Existing Frameworks

We mainly compare with two existing 2PC frameworks:
Iron [33] and BOLT [58]. Note that both Iron and BOLT

have only considered the BERT-base transformer model. For
the other frameworks, i.e., MPCFormer [48], PUMA [21], and
SIGMA [30], they have a different threat model as the 2PC
ones, but we list their performances for completeness. Also we
note the communication costs associated with the GPT2-base
model of CipherGPT [34], which amount to 14GB for 256
input tokens. The results of BOLT, MPCFormer, and PUMA are
obtained by re-running their codes3 under ours environment
while that of SIGMA are estimated using the reported numbers
from their paper. In SIGMA, the TTP is required to distribute a
FFS key with a size of 45.06 GB to each party for the BERT-
large model. Assuming our LAN setting, this transfer would
take approximately 45.06 · 2 GB /1 Gbps = 12 minutes.

We present the comparisons in Table V. In summary, we
have achieved up to 3× (resp. 13×) improvements in inference
time while and a reduction of communication costs by 90%
(resp. 92%) compared to the BOLT (resp. Iron) framework.
BumbleBee is about 1.3× – 1.5× slower than MPCFormer and
PUMA in LAN, which is expected since these approaches are
OT-free and HE-free. However, BumbleBee can perform better
than MPCFormer and PUMA in the WAN setting, as BumbleBee
requires 50% – 60% less communication compared to them.
This translates similarly when considering SIGMA, due to their
necessity of transferring a substantially large FSS key.

VIII. CONCLUSION

Private and accurate two-party inference on large trans-
former is possible. We present a highly optimized 2PC
framework BumbleBee that can run large transformers with
a significantly less overhead than the previous arts. Our

3BOLT https://github.com/Clive2312/EzPC/tree/bert/SCI, MPCFormer https:
//github.com/DachengLi1/MPCFormer and PUMA https://github.com/
secretflow/spu/tree/main/examples/python/ml/flax llama7b.

TABLE V: End-to-end comparisons with the existing private
inference frameworks. The numbers of Iron and CipherGPT

are taken from their papers. The timings of SIGMA include both
the key-transmission and online inference, which are estimated
based on our bandwidth. GPT2 models generated 1 token.
Frameworks marked with “*” are not 2PC framework.

Model Framework Total Time (min) Comm.
LAN WAN (GB)

Iron ≈ 34 – 76.50
BOLT 8.89 16.90 59.61

BERT-base SIGMA∗ ≈ 4 ≈ 12 34.37
128 input tokens MPCFormer∗ 2.79 5.09 12.08

PUMA∗ 2.19 4.55 10.77
BumbleBee 2.55 4.86 6.40

Iron ≈ 92 – ≈ 220
BERT-large SIGMA∗ ≈ 12 ≈ 31 92.75

MPCFormer∗ 4.52 9.81 32.58
128 input tokens PUMA∗ 4.02 9.06 27.25

BumbleBee 6.19 9.81 16.37

SIGMA∗ ≈ 4 ≈ 10 28.71
GPT2-base MPCFormer∗ 1.10 2.85 7.32

64 input tokens PUMA∗ 1.20 2.42 7.82
BumbleBee 1.48 2.05 2.77

approach offers a promising way forward for advancing the
use of privacy-enhancing techniques. Considering future de-
velopment of network and hardware, using privacy-preserving
transformer models in a variety of applications would be
possible. In the future, we would like to apply specialized
hardware to accelerate the ciphertext interleaving procedure.
A number of studies have demonstrated that the use of GPUs
can improve the speed of homomorphic automorphisms by up
to two orders of magnitude [40], [76].
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APPENDIX

A. Some Observations and Practices

Many private machine learning frameworks utilize a high-
level front-end to translate a deep learning program (e.g,.
written in PyTorch or JAX) to an Intermediate Representation
(IR). By running a MPC back-end engine on each operation
defined by the IR, we can obtain the private evaluation of
the deep learning program. However, the development of a
deep learning program without a thorough understanding of
the behavior and properties of the underlying MPC primitives
can significantly diminish the performance of the private
evaluation, which unfortunately is a common occurrence. For
instance, SPU’s JAX front-end for the softmax is as belows.
1. def _softmax(x, axis = -1):
2. x_max = jnp.max(x, axis,

keepdims=True)↪→

3. unnormalized = jnp.exp(x - x_max)
4. sum_exp = jnp.sum(unnormalized, axis,

keepdims=True)↪→

5. result = unnormalized / sum_exp
6. return result

The issue lies at Line 4 and Line 5 where perform a keep-
dimension-then-division workflow. This will significantly in-
creases the costs for the division part. The proper approach
is to perform the reciprocal operation first and then broadcast
the shape for multiplication. Indeed, several of recent papers
on private transformer inference have claimed that the softmax
function is the bottleneck [48], [73], [3]. We believe that the
primary reason for this is the improper calling order, rather
than the inherent complexity of the softmax function itself.

B. Threat Model and Security

We provide security against a static semi-honest proba-
bilistic polynomial time adversary A following the simulation
paradigm [28]. That is, a computationally bounded adversary
A corrupts either the server S or the client C at the beginning
of the protocol ΠF and follows the protocol specification
honestly. Security is modeled by defining two interactions:
a real interaction where S and C execute the protocol ΠF
in the presence of A and the environment E and an ideal
interaction where the parties send their inputs to a trusted party
that computes the functionality F faithfully. Security requires
that for every adversary A in the real interaction, there is an
adversary Sim (called the simulator) in the ideal interaction,
such that no environment E can distinguish between real and
ideal interactions.

We recap the definition of a cryptographic inference pro-
tocol in [55]. S holds a model W consisting of d layers
W1, · · · ,Wd, and C holds an input vector x.

Definition 1. A protocol Π between S having as input model
parameters W = (W1, · · · ,Wd) and C having as an input
vector x is a cryptographic inference protocol if it satisfies the
following guarantees.

• Correctness. On every set of model parameters W that
the server holds and every input vector x of the client,
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the output of the client at the end of the protocol is the
correct prediction W(x).

• Privacy. We require that a corrupted, semi-honest client
does not learn anything about the server’s network
parameters W . Formally, we require the existence
of an efficient simulator algorithm SC to generate
SC(meta, out) ≈c ViewΠ

C . Here ViewΠ
C is the view of C

in the execution of Π, meta includes the meta information
(i.e., the public parameters HE.pp, the public key pk,
the number of layers, the size and type of each layer,
and the activation) and out denotes the output of the
inference. We also require that a corrupted, semi-honest
S does not learn anything about the private input x of the
client. Formally, we require the existence of an efficient
simulator algorithm SS to generate SC(meta) ≈c ViewΠ

S

where ViewΠ
S is the view of the server in the execution

of Π.

C. From HE to Arithmetic Share FH2A

We mention two different methods to convert RLWE
ciphertext to arithmetic secret sharing. The first one is
used for ciphertexts of SIMD-packed messages, e.g., ct =
RLWEq,t

pk (SIMD(m)) for m ∈ ZN
t for a prime modulus t. As

mentioned in [63], we need a noise-flooding step by using a
large enough random e′ to statistically hide the noises in ct.
Also one need to choose a proper ciphertext modulus q so that
the ciphertext ct′ can be correctly decrypted even applying the
noise-flooding.

The second conversion is used for RLWE ciphertext of a
normal polynomial, e.g., ct = RLWEq,t

pk (m̂). Let parse ct as
a tuple (b̂, â) ∈ R2

q . To properly masking ct, the sender S

computes ct′ := (b̂ + r̂, â) ⊞ RLWEq,t
pk (0) where the random

polynomial r̂ ∈R Rq . Let the decryption of ct′ be û ∈ Rt,
which can be viewed as one share of m̂. On the other hand,

we have v̂ := −⌊ t · r̂
q
⌉ mod 2ℓ as the other share of m̂.

However, the uniform random r̂ may lead to an incorrect
decryption result. According to the analysis in [36], it will
introduce at most a 1-bit error into the arithmetic share, i.e.,
∥m̂ − (û + v̂ mod 2ℓ)∥∞≤ 1. As mentioned in [36], 1-bit
error in polynomial coefficients will lead to a significantly
large error during SIMD decoding. This is the reason why we
require two distinct constructions for the FH2A functionality.

We unify these two kinds of H2A in Figure 4.

Proof of Theorem 1. The correctness of Theorem 1 is directly
derived from Proposition 1. We now show the the privacy part.
Particularly we instantiate FH2A as ΠCoeff

H2A .
(Corrupted Receiver.) Receiver’s view of ViewΠOLT

R consists
of RLWE ciphertexts {ct′α,β} for α ∈ [k′] and β ∈ [m′]. The
simulator SΠOLT

R for this view can be constructed as follows.
1) Given the access to meta, SΠOLT

R outputs the ciphertexts
{c̃tα,β := RLWEq,2ℓ

pk (0)} to R.
The security against a corrupted R is directly reduced to the
semantic security of the underlying RLWE encryption. Thus
we have ViewΠOLT

R ≈c SΠOLT

R (meta).

Algorithm 4 From HE to Arithmetic Share Πtag
H2A

NOTE: This protocol is parameterized by a tag tag ∈ {SIMD,Coeff}.
Input: Sender S: RLWEq,t

pk (m̂; ê), B,B′ > 0 such that ∥ê∥∞< B and
B′ ≫ B. Receiver R: the corresponding decryption key sk.
Output: ẑ0 to S and ẑ1 to R such that ẑ0 + ẑ1 = m̂ mod t.
1: if tag = SIMD then
2: S samples his share ẑ0 ∈R Rt from the plaintext ring.
3: S constructs a public encryption of ẑ0 but sampling the noise ê′ from

a wider noise range ZB′ .
4: S sends RLWEq,t

pk (m̂; ê) ⊞ RLWEq,t
pk (−ẑ0; ê′) to R.

5: else if If tag = Coeff then
6: S samples r̂ ∈R Rq from the ciphertext ring Rq .
7: S constructs a fresh encryption of 0, i.e., RLWEq,t

pk (0).
8: S sends RLWEq,t

pk (m̂; ê) ⊞ RLWEq,t
pk (0) ⊞ (r̂, 0) to R.

9: S outputs −⌊
t · r̂
q
⌉ mod t as ẑ0.

10: end if
11: R decrypts the received ciphertext and outputs the result as ẑ1.

(Corrupted Sender.) Sender’s view of ViewΠOLT

S consists of
an array of RLWE ciphertexts c (that encrypted under S’s
key), and the decryption of these ciphertexts in the execution
in the H2A protocol ΠCoeff

H2A . The important part is to show
that the Sender (i.e., decrypt key holder) can not gain extra
information from the ciphertext noise. The simulator SΠOLT

S

for this view can be constructed as follows. Also, instead
of calling a simulator for FH2A, we directly simulate the
corresponding view in the ΠCoeff

H2A protocol.

1) On receiving the RLWE ciphertexts {ct′} from S and
given the access to meta, SΠOLT

S samples uniform ran-
dom polynomial r̂i ∈R Rq and computes cti :=

RLWEq,2ℓ

pk (0)⊞ (r̂i, 0) for i ∈ [m̃].

2) SΠOLT

S computes the rounding r̂′i := ⌊2ℓ · r̂i/q⌉ mod 2ℓ

for i ∈ [m̃].
3) SΠOLT

S outputs a matrix Ũ :=
ParseMat(r̂′0, r̂

′
1, · · · , r̂′m̃−1,meta) using the parsing

procedure in Figure 8.

Indeed, Step (1) and Step (2) basically simulate the Step 6 –
Step 9 of ΠCoeff

H2A . The RLWE ciphertexts c[i] ≈c cti due to the
informatics masking r̂i and the semantic security. That is, the
ciphertext noise in the real execution is informatically masked
by the random r̂ (Step 6 of Figure 4) which is indistinguishable
from the uniform random r̂i sampled by the simulator. Also,
the values in the output matrix JUKl of S in ΠOLT distribute
uniformly in Z2ℓ which is exact the same distribution SΠOLT

S

creates Ũ. Thus we have ViewΠOLT

S ≈c SΠOLT

S (meta, out).

The security proofs for ΠbOLEe (Theorem 2) can be given
in a similar manner while the simulator SΠbOLEe

S invoke a
different ΠSIMD

H2A function for SIMD-packed messages. Also,
we argue that the security proofs for the GeLU protocol and
the softmax protocol simply follow in the hybrid model since
only OT messages and properly masked HE ciphertexts are
exchanged.
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D. Activation Functions

We use the following coefficients of (2) for the GeLU
approximation.

a0 = −0.5054031199708174, a1 = −0.4222658115198386
a2 = −0.1180761295118195, a3 = −0.0110341340306157
b1 = 0.5

b0 = 0.0085263215410380, b2 = 0.3603292692789629

b4 = −0.037688200365904, b6 = 0.0018067462606141.

We recap the polynomial GeLU(x) ≈ P 4(x) = 0.5x +∑i=4
i=0 ci|x|i used in [58] for the GeLU approximation in the

narrow range x ∈ [−2.7, 2.7]. That is

c0 = 0.001620808531841547, c1 = −0.03798164612714154
c2 = 0.5410550166368381, c3 = −0.18352506127082727
c4 = 0.020848611754127593.

This polynomial is constructed using a symmetric property of
the GeLU function.

Using the method described in §V-A, we can approximate
the SiLU function SiLU(x) =

x

1 + exp(−x) as using the

proposed exponential protocol on the first branch.

SiLU(x) ≈


−ϵ x < −8
a2x

2 + a1x+ a0 −8 < x ≤ −4
b6x

6 + b4x
4 + b2x

2 + b1x+ b0 −4 < x ≤ 4

x− ϵ x > 4

where the coefficients

a0 = −0.3067541139982155 a1 = −0.0819767021525476
a2 = −0.0055465625580307 b0 = 0.0085064025895951

b1 = 0.5 b2 = 0.2281430841728270

b4 = −0.011113046708173 b6 = 0.0002743776353465

are fitted using numpy.polyfit API.
Also we can approximate the ELU function for α > 0

ELU(x) =

{
α · (exp(x)− 1) x < 0

x x ≥ 0

E. More Details on Implementations

1) Parsing Interleaved Polynomials: The procedure in Fig-
ure 6 merges multiple (encrypted) polynomials into one poly-
nomial in an interleaving manner. Indeed, we need a way to
parse back the packed polynomial to obtain the final matrix
multiplication. We assume the (encrypted) polynomials are
arranged in a row-major manner, i.e., the ciphertext array c
in Step 3 of Figure 6. In Figure 8, we present the pseudocode
that parses an array of polynomials into a matrix, given the
meta information.

def parse_mat(polys: Array<Poly>, dim3, win3):
# matrix shape
(k, m, n) = dim3
# partition windows
(k_w, m_w, n_w) = win3
# number of blocks along each axis
k_prime = ceil(k / k_w)
m_prime = ceil(m / m_w)
n_prime = ceil(n / n_w)
# expected polys to parse
m_tilde = ceil(k_prime * n_prime / m_w)
assert(len(polys) == m_tilde)
out = Matrix(k, n) # initialize
# each poly are packed from `m_w` polys
for i in range(k_prime * n_prime, step=m_w):
pidx = i // m_w
for j in range(m_w):
# we assume row-major packing
row_blk, col_blk = j // mprime, j % mprime
rbgn = row_blk * k_w
rend = min(rbgn + k_w, k) # min on margin cases
cbgn = col_blk * n_w
cend = min(cbgn + n_w, n) # min on margin cases
for r in range(rend - rbgn):
for c in range(cend - cbgn):
# flatten index of this (r, c) entry
fidx = r * n_w + c
# `+ pidx` due to some packing
# might across two mult.
cidx = fidx * m_w + (j + pidx) % m_w
out[rbgn + r, cbgn + c] = polys[pidx][cidx]

return out

Figure 8: ParseMat Parse the packed polynomials as matrix

TABLE VI: Performance breakdown on ViT-base. The input
is one 224×224 RGB image. The LAN setting was used. The
mixed ring evaluating was used for GeLU with a smaller ring
ℓ′ = 32, while Exp was computed over modulus 264.

Operation ViT-base (B = 12, D = 768, H = 12)
#Calls Time (sec) Sent (MB) Recv (MB)

f mmul 73 90.91 440.83 584.38
f tensordot 1 6.57 38.68 30.52
f batch mmul 24 23.81 393.50 373.20
multiplixer 120 1.15 43.10 43.09

f less 145 16.18 375.33 79.15
f exp 12 36.18 1870.28 1537.38

f reciprocal 12 3.71 38.98 40.07
f mul 174 29.73 1574.58 1571.98

f rsqrt 25 0.77 5.28 5.13
f gelu 12 29.85 1676.25 1117.00

Total 3.99min 6.30GB 5.26GB

2) More Concrete Parameters: For the matrix multipli-
cation, we use the SEAL parameters HE.ppOLT = {N =
8192, q ≈ 2147, t = 264, q′ = 249} where q′ is needed for the
homomorphic automorphism. For the point-wise multiplica-
tion, we use a footnotesizeer SEAL parameters HE.ppbOLE =
{N = 8192, q ≈ 2148, t ≈ 245×3}. Indeed, we decomposite
the plaintext modulus t into 3 co-primes where each of them
is about 45 bits. This is a commonly used technique when
doing the SIMD encoding with a large plaintext modulus [51],
[63]. Also, we sample B′ = 298 bits randomness for the noise
flooding used in ΠSIMD

H2A . For the concrete MSB protocol [62],
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TABLE VII: Compared with PackLWEs. Fixing mw = 64 for
InterLeave. 4T means 4 threads were used.

Matrix Shape (16, 768, 768) (256, 768, 768) (128, 768, 3072)

PackLWEs 4901.00ms 74.85s 150.35s
InterLeave 32.61ms 483.75ms 851.13ms

(4T) Speedup 150× 154× 176×

PackLWEs 1714.42ms 21.01s 38.87s
InterLeave 33.51ms 392.72ms 808.68ms

(16T) Speedup 51× 53× 48×

Algorithm 5 Ring Extension Protocol [61] with the positive
heuristic [16]
Input: x′

0, x
′
1 ∈ Z2ℓ′ where x′

0 + x′
1 ≡ℓ′ ⌊x̃ · 2f⌋ for some

x̃ ∈ R.
Output: x0, x1 ∈ Z2ℓ such that x0 + x1 ≡ℓ ⌊x̃ · 2f⌋.
1: Update x′

1 ← x′
1 +M for some heuristic M > 0.

2: Compute Jw := 1{x′
0 + x′

1 > 2ℓ
′−1}K ∈ Z2ℓ .

3: Output xl ≡ℓ x′
l − 2ℓ

′ · (JwKl mod 2ℓ−ℓ′ )− l ·M for l ∈ {0, 1}.

we set M = 16 for the
(
M
1

)
-OT2 and

(
M
1

)
-OT6.

3) More Experiment Results: In Table VI, we present the
running details of BumbleBee on a Vision Transformer. We
can see that the activation part in the ViT model need more
optimizations.

In Table VII, we compare the performance of InterLeave
with PackLWEs. We observe that the PackLWEs procedure
gains a more significant performance improvement from multi-
threading compared to the InterLeave procedure. In practice,
we can further enhance parallelism at the InterLeave level.
This means that for large-scale matrix multiplication tasks,
we may require multiple InterLeave calls. For instance, to
fully leverage the capabilities of a 32-core CPU, we could
launch 8 threads for each InterLeave instance and execute
4 InterLeave calls simultaneously.
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