
Arithmetization Oriented Encryption

Tomer Ashur
3MI Labs, Leuven, Belgium

Polygon Research
tomer@cryptomeria.tech

Al Kindi
Polygon

al-kindi-0@protonmail.com

October 27, 2023

Abstract

We design a SNARKs/STARKs-optimized AEAD scheme based on
the MonkeySpongeWrap (ToSC 2023(2)) and the RPO permutation (ePrint
2022/1577).

1 Introduction

Our goal is to construct a SNARK/STARK-friendly encryption scheme with a
special focus on zero-knowledge virtual machines (zk-VMs). SNARKs (Succinct
Non-Interactive Arguments of Knowledge) and STARKs (Scalable Transparent
Arguments of Knowledge) are cryptographic protocols that allow for the veri-
fication of computations without revealing any sensitive information about the
inputs or intermediate values and with significantly less effort than running the
full computations directly.

The goal of zk-VMs is to enable trustless and privacy-preserving execution
of virtual machines. This is of special relevance to blockchains where one can
improve certain aspects of existing chains either with increased throughput or
with even new functionalities without compromising the guarantees offered by
the base chain. Miden VM and Miden rollup aim to achieve both goals by having
the ability to have private state with private (local) execution in addition to the
classical shared public state model.

However, the private execution model introduces some new challenges related
to the state. For example, users might want to keep a backup of their encrypted
state using a trusted third party. This can be done in a straightforward manner
outside of the VM using any existing encryption scheme. This solution fails,
however, when the state is shared between a set of fixed parties. A solution to
this can be as follows:

1. The set of parties share the most recent encrypted state using a third
party as before.

1

Algorithm 1: The keyed duplex initialization interface KD.init

Interface: KD.init
Input: (K,U) ∈ Fκ

p × Fp

Output: ∅
/* Set the state to (K]||U | |0b−κ−1) */

1 S ←− (K||U | |0b−κ−1)
2 return ∅

2. To transition the state, the party requesting the transition should encrypt
the new proposed state and request a signature from the third party to
attest to the VM that it has received the new state.

3. To transition the state, the VM should ensure that:

(a) the state transition is valid,

(b) the encryption was done correctly using the correct key,

(c) the third party has received the new state by verifying a signature
on the encrypted state.

It is clear that the performance of this solution, especially inside the VM, de-
pends on the performance of the encryption and signature verification proce-
dures.

In this work, we design an encryption scheme that is optimized for SNARKs/STARKs.
Our scheme is an Arithmetic Oriented (AO) Authenticated Encryption scheme.
It is also very general in the sense that it can work with any AO cryptographic
permutation. In this work, we focus on the Rescue-prime optimized (RPO)
permutation [AKM+22] as it is the one used in the Miden VM. Furthermore,
we discuss the efficiency of our encryption scheme and how it can be integrated
inside the VM.

2 Perliminaries

Our keyed duplex is instantiated using the RPO sponge [AKM+22]. Conse-
quently, it carries an internal state S ∈ F12

p composed of b = 12 field elements
in Fp with p = 264 − 232 + 1, c = 4 of which are the capacity i.e. inner part,
while the remaining r = 8 field elements are the rate i.e. the outer part.

To obtain a keyed duplex the RPO sponge is initialized with two inputs: a
key K of length κ = 4 field elements, and a public, non-repeating nonce U . It
exposes two interfaces KD.init and KD.duplex described in Algorithms 1–2,
respectively. For KD.duplex we follow the phasing suggested in [Men22] (i.e.,
permute, absorb, squeeze) extended to work with prime field elements.

2

Algorithm 2: The duplex interface

Interface: KD.duplex
Input: (d, P) ∈ {0, 1} × Fr

p

Output: Z ∈ Fr
p

/* Apply the permutation */

1 S ←− p(S)
/* Squeeze the left-most r field elements. */

2 Z ←− leftr(S)
/* If d = 1 (P is an AD block), overwrite the outer part; else (P is a

plaintext block), add the value into it */

3 S ←− S + d · ((−Z)||[1, 0, 0, 0]) + (P ||[0, 0, 0, 0])
/* If d = 1 (P is an AD block), return the input unmodified; otherwise

(P is a plaintext block), return the corresponding ciphertext */

4 return (1− d) · Z + P

3 AE Algorithm

In what follows, we adapt the AEAD scheme MonkeySpongeWrap presented in
[Men22, Use Case 5]. More precisely, we define the encryption and decryption
algorithms:

ENC : Fκ
p × Fp × F∗

p × F∗
p −→ F∗

p × Fτ
p

(K,U,A, P) 7−→ (C, T)

DEC : Fκ
p × Fp × F∗

p × F∗
p × Fτ

p −→ F∗
p ∪ {⊥}

(K,U,A,C, T) 7−→ {P,⊥} .

For simplicity inside the Miden VM, we generalize [Men22]’s construction by
changing how domain separation is done, in both encryption and decryption.
This allows us to use the scheme with or without AD seamlessly.

3.1 Message preparation

To encrypt a sequence of elements P ′ such that P ′ = A′||M ′ is the concatena-
tion of the associated data A′ and the plaintext M ′ we operate on A′ and M ′

separately. If A′ = ∅ we do nothing; otherwise, we pad it with a [1] element
followed by the minimal number of [0] elements such that the padded message
A = A1, . . . , Av consists of a sequence of r-element blocks.

The plaintext—regardless of length—is always padded with a [1] element
followed by the minimal number of [0] elements required to ensure that the
padded message P = P1, . . . , Pw consists of a sequence of r-element blocks.

3

3.2 Encryption

To start the encryption the user initializes a duplex object (see Algorithm 1).
The associated data is absorbed via a sequence of v calls to the duplex interface
with d = 1 (see Algorithm 2). Once all the associated data blocks have been
absorbed, encryption is done in a similar manner but this time with d = 0 (see
Algorithm 2).

Finally, one last duplex call is made to generate the authentication tag T =
Zv+w, truncated to the proper length, after which the internal state of the duplex
is destroyed.1 The complete AEAD algorithm is described in Algorithm 3 and
depicted in Figure 1.

K∥U

p

[1]∥[0]c−1

A1

r

p
c

[1]∥[0]c−1

Av

r

p
c

P1 C1

r

c

p

Pw Cw

r

c

p

T
r

Figure 1: Encryption

3.3 Decryption

To decrypt, the user initializes a duplex object (see Algorithm 1). Both the
associated data and the ciphertext are absorbed via a sequence of v + w calls
to the duplex interface with d = 1. In the last w calls (i.e., when absorbing the
ciphretexts) the outputs Z1, . . . , Zw are stored before they are overwritten by
the respective Ci’s. After absorbing all the blocks, one last duplex call is made
to generate an interim tag T ∗ = Zv+w. The algorithm then checks if T == T ∗

and if they do, it outputs the decrypted plaintexts Pi = Ci − Zi; otherwise, it
outputs ⊥. The complete decryption algorithm is described in Algorithm 4 and
depicted in Figure 2.

4 AE in the Miden VM

Miden VM is a stack-based VM composed of 3 components:

1. A push-down stack composed of field elements with only the top 16 field
elements directly accessible via stack-manipulation instructions.

1As a rule of thumb it is not advised to use encryption without authenticating the respective
data; however, protocols that are able to ensure authenticity by other means can omit the
last duplex call and destroy the internal state of the duplex immediately after receiving the
last ciphertext block.

4

Algorithm 3: Encryption

Interface: ENC
Input: (K,U,A, P) ∈ Fκ

p × Fp × F∗
p × F∗

p

Output: (C, T) ∈ F|P |
p × Fτ

p

/* Pad the plaintext */

1 (A1, · · · , Av)←− pad(A)
2 (P1, · · · , Pw)←− pad(M)
3 C ←− ∅
4 T ←− ∅
5 KD.init(K,U)

/* Absorb the associated data */

6 for i = 1, · · · , v do
7 Ai = KD.duplex(1, Ai)

/* Absorb the plaintext and extract the ciphertext */

8 for i = v + 1, · · · , v + w do
9 Ci−v = KD.duplex(0, Pi−v)

10 C = C||Ci−v

/* Squeeze the tag */

11 T = KD.duplex(0, ∅)
12 return

(
left|P |(C), leftτ (T)

)

K∥U

p

1∥0c−1

A1

r

p
c

1∥0c−1

Av

r

p
c

C1 P1C1

r

p
c

Cw PwCw

r

p
c

T ∗

r

Figure 2: Decryption

5

Algorithm 4: Decryption

Interface: DEC
Input: (K,U,A,C, T) ∈ Fk

p × Fp × F∗
p × F∗

p × Fτ
p

Output: P ∈ F|C|
p ∪ {⊥}

/* Pad the associated data and ciphertext */

1 (A1, · · · , Av)←− pad(A)
2 (C1, · · · , Cw)←− pad(C)
3 P ←− ∅
4 T ∗ ←− ∅
5 KD.init(K,U)

/* Absorb the associated data */

6 for i = 1, · · · , v do
7 Ai = KD.duplex(1, Ai)

/* Absorb the ciphertext and output the plaintext */

8 for i = v + 1, · · · , v + w do
9 Zi = (KD.duplex(0, ∅))

10 Pi−v = Ci−v + (−1) · Zi

11 Ci−v = (KD.duplex(1, Ci−v))
12 P ←− P ||Pi−v

/* Squeeze the tag */

13 T ∗ ←− KD.duplex(0, ∅)
14 return (leftτ (T) == leftτ (T

∗)) ? left|C|(P) : ⊥

6

2. A linear random-access read-write memory that is word addressable. A
word in, in this context, is a tuple of 4 field elements and we can read/write
from/to memory in batches of 4 elements.

3. An advice provider, which is a collection of data structures that facilitate
the provision of non-deterministic inputs to the VM.

Figure 3: Miden VM: Stack & Memory

For encrypting and decrypting, we can assume that the associated data,
plaintext and ciphertext are already loaded into a memory region described by
a memory pointer, and we can from now on focus on the interactions involving
only the first 2 components (figure 4).

4.1 Encryption

In encryption, there are mainly three stages:

1. Absorbing the associated data (AD): This is done by loading the double-
word Ai from memory, using a pointer ptr on the stack, and overwriting
the top 8 field elements on the stack with them i.e. the rate-portion of
the state. The ptr is also incremented by 2 to prepare for absorbing the
next 2 words.

2. Absorbing the plaintext and squeezing the ciphertext: Similar to the pre-
vious step, we load the double-word Pi from memory using again the
pointer ptr only this time we add it to the top 8 elements of the stack.
Figure 4.1 illustrates this step. This will result in the ciphertext block Ci.
We now need to store the double-word Ci in memory and this can be done
in at least two ways:

(a) Use ptr to overwrite the plaintext Pi, in memory, with the ciphertext
Ci.

7

Figure 4: Absorbing Associated Data

(b) Using a swapdw, dupw3, dupw3, we can make a copy of Ci that is
pushed deep into the stack beyond the top 16 accessible field ele-
ments. Thus the Ci’s will remain in the overflow-stack and can be
accessed (in reverse order) once the encryption process is complete.

In both cases, ptr is incremented by 2 in preparation for the next iteration.

3. Authentication tag: A final permutation call is performed in order to
generate the authentication tag T .

4.2 Decryption

Decryption is also composed of three stages:

1. Absorbing the associated data (AD): This happens in exactly the same
way as in encryption.

2. Absorbing the ciphertext and squeezing the plaintext: Here three things
need to happen:

• The ciphertext portion Ci needs to be loaded from memory using
ptr and added to the additive inverses of the top 8 stack field ele-
ments. This results in the plaintext block Pi which now needs to be
stored. We can use the same solution that was proposed in the case
of encryption to do so i.e., overwrite Ci with the resulting Pi.

• Overwrite with Ci the top 8 stack field elements in preparation for the
next call to the permutation. Given the previous point, the ciphertext
blocks Ci will need to be stored a sequence of duplicated blocks i.e.,
C0, C0, C1, C1, · · · , Cw, Cw.

8

• Increment ptr by 4.

3. Authentication check: A final permutation call is performed in order to
generate a tag T ∗ which is then checked for equality against the authen-
tication tag T that was received with the ciphertext.

4.3 General Remarks

1. The above description glossed over domain separation between the two
absorption phases of associated data and plaintext. However, this should
be avoidable if we do not have associated data.

2. The Miden VM currently has an instruction MSTREAM which uses a
pointer, located on the stack, to fetch a double-word from memory and
overwrite the top 8 stack field element with it. A similar instruction,
say MSTREAMADD, could be useful in order to make encryption and
decryption more performant. Its use in encryption is straightforward,
while in decryption the ciphertext might need to be saved in memory
as sequence of repeated double-words in order to use a combination of
MSTREAM and MSTREAMADD.

References

[AKM+22] Tomer Ashur, Al Kindi, Willi Meier, Alan Szepieniec, and Bobbin
Threadbare. Rescue-prime optimized. Cryptology ePrint Archive,
Paper 2022/1577, 2022. https://eprint.iacr.org/2022/1577.

[Men22] Bart Mennink. Understanding the duplex and its security. Cryp-
tology ePrint Archive, Paper 2022/1340, 2022. https://eprint.

iacr.org/2022/1340.

9

https://0xpolygonmiden.github.io/miden-vm/design/stack/io_ops.html#mstream
https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2022/1340
https://eprint.iacr.org/2022/1340

	Introduction
	Perliminaries
	AE Algorithm
	Message preparation
	Encryption
	Decryption

	AE in the Miden VM
	Encryption
	Decryption
	General Remarks

