
Partial Sums Meet FFT: Improved Attack on
6-Round AES

Orr Dunkelman1, Shibam Ghosh1, Nathan Keller2,
Gaetan Leurent3, Avichai Marmor2, and Victor Mollimard1

1 Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il, sghosh03@campus.haifa.ac.il,

victor.mollimard@gmail.com
2 Department of Mathematics, Bar Ilan University, Ramat Gan, Israel

Nathan.Keller@biu.ac.il, avichai@elmar.co.il
3 Inria, Paris, France gaetan.leurent@inria.fr

Abstract. The partial sums cryptanalytic technique was introduced in
2000 by Ferguson et al., who used it to break 6-round AES with time
complexity of 252 S-box computations – a record that has not been beaten
ever since. In 2014, Todo and Aoki showed that for 6-round AES, partial
sums can be replaced by a technique based on the Fast Fourier Transform
(FFT), leading to an attack with a comparable complexity.
In this paper we show that the partial sums technique can be combined
with an FFT-based technique, to get the best of the two worlds. Using
our combined technique, we obtain an attack on 6-round AES with
complexity of about 246.4 additions. We fully implemented the attack
experimentally, along with the partial sums attack and the Todo-Aoki
attack, and confirmed that our attack improves the best known attack
on 6-round AES by a factor of more than 32.
We expect that our technique can be used to significantly enhance nu-
merous attacks that exploit the partial sums technique. To demonstrate
this, we use our technique to improve the best known attack on 7-round
Kuznyechik by a factor of more than 80, and to reduce the complexity of
the best known attack on the full MISTY1 from 269.5 to 267.

1 Introduction

The partial sums cryptanalytic technique was introduced by Ferguson et al. [22]
as a tool for enhancing the Square attack [17] on AES [1]. Informally, the Square
attack requires computing the XOR of 232 8-bit values extracted from partially
decrypted ciphertexts under each of 240 candidate subkeys, which amounts to
272 operations. The partial sums technique divides the attack into several steps
where at each step, the adversary guesses several key bits and computes a ‘partial
sum’, which allows reducing the number of partially decrypted values whose
XOR should be computed. As a result, the overall complexity of the attack is
significantly reduced to 252 operations.

In the 23 years since the introduction of the partial sums technique, it was
shown to enhance not only the Square attack but also several other attacks



2 O. Dunkelman et al.

(e.g., integral, linear, zero-correlation linear, and multi-set algebraic attacks,
see [4,6,8,12,18]) in various scenarios, and was applied to attack numerous ciphers
(AES, Kuznyechik, MISTY1, CLEFIA, Skinny, Zorro, Midori, and LBlock, to
mention a few). Yet, its best known application remained the original one – the
attack on 6-round AES which remained the best attack on 6-round AES, despite
many attempts to supersede it (see Table 2).

In 2014, Todo and Aoki [36] showed that an FFT-based technique can replace
partial sums in enhancing the Square attack. The idea is to represent the XOR
of the 232 partially decrypted ciphertexts which the adversary has to compute
as a convolution of two tailor-made functions and then to use the Fast Fourier
Transform (FFT) in order to compute this value for all guessed subkeys at once,
at the cost of about 4 · 232 · log(232) addition operations. While at a first glance,
this technique seems clearly advantageous over partial sums, subtle practical
difficulties counter its advantages, making the two techniques comparable. First,
the technique can be applied only after guessing 8 bits of the key. Secondly, as
the output of the FFT is an element in Z and not an element in the finite field
GF (28), one has to repeat the procedure for each of the 8 bits in which the XOR
should be computed. Thirdly, while partial sums can exploit partial knowledge of
the subkeys the adversary needs to guess, it seems that the FFT-based technique
does not gain anything from partial knowledge. According to the authors of [36],
the complexity of their attack on 6-round AES is 6 · 250 addition operations,
which is roughly equal to the complexity of the partial sums attack.

In the last decade, the Todo-Aoki technique was used as a comparable al-
ternative of partial sums, with several authors mentioning advantages of each
attack technique in different scenarios (see [4,6,16,38]). Yet, it seemed that one
has to choose between the benefits of the two techniques in each application.

In this paper we show that one can combine partial sums with an FFT-based
technique, getting the best of the two worlds in many cases. The basic idea
behind our technique is to use the general structure of partial sums, but to
replace particular key-guessing steps used in partial sums (or combinations of
several such steps) by FFT-based steps, which include embedding finite field
elements into Z. We show that this allows computing the XOR in all 8 output bits
at once, exploiting partial key knowledge, and even packing several computations
together in the same 64-bit word addition and multiplication operations. As a
result, we obtain the speedup of FFT over key guessing, without the disadvantages
it carries in the Todo-Aoki technique. In addition, the new technique allows for
much more flexibility, as we may choose which steps we group together and in
which steps we use FFT instead of key guessing. The choice depends on multiple
step-dependent parameters, such as the number of subkey bits guessed in the
step, the ability to pre-compute some of the operations required for the FFT,
and partial knowledge of subkey bits. Thus, the flexibility may be very helpful.

We use our technique to mount an improved attack on 6-round AES. We
obtain an attack which requires 233 chosen plaintexts (compared to 234.5 in the
partial sums attack of [22]), time complexity of about 246.4 additions (compared
to 252 S-box computations in partial sums), and memory complexity of 227



Partial Sums Meet FFT: Improved Attack on 6-Round AES 3

Table 1. Cost comparison of three best attacks on 6-Round AES in Amazon’s AWS

Attack (Source) AWS Instance Running Time Total Cost
(in minutes) (in US$)

Square & Partial sums [22] m6i.32xlarge 4859 497
Square & FFT [36] r6i.32xlarge 3120 418
Square & Partial sums & FFT (Sect. 3.5) m6i.32xlarge 48 5

128-bit blocks (roughly the same as in partial sums). As it is hard to compare
additions with S-box applications, we compared the attacks experimentally, by
fully implementing our attack, the partial sums attack, and the Todo-Aoki attack,
using Amazon AWS servers. We optimized the instance which best fits the attacks
(optimizing for performance/cost tradeoff). Our experiments show that our attack
takes 48 minutes (and costs 5 US$), the partial sums attack takes 4859 minutes
(and costs 497 US$), and the Todo-Aoki attack takes 3120 minutes (and costs 418
US$). Thus, our attack provides a speedup by a factor of more than 65 over both
the partial sums attack and Todo-Aoki’s attack, and allows breaking 6-round
AES in about 48 minutes at the cost of only 5 US$. This breaks a 23-year old
record in practical attacks on 6-round AES. Table 1 summarizes the costs of
running the attacks.

Our attack improves the partial sums attack of [22] on 7-round AES by the
same factor. In addition, it might be applicable to other primitives that use
6-round AES as a component like the tweakable block cipher TNT-AES [5].

Due to the flexibility of our technique, it can be used to improve various
attacks that use the partial sums technique. We demonstrate this applicability
by presenting improved attacks on three ciphers:

– Kuznyechik [19] – the Russian Federation encryption standard. The best-
known attack on Kuznyechik is a multiset-algebraic attack on 7 rounds (out of
9) with the complexity of 2154.5 encryptions, presented by Biryukov et al. [12].
We show that this attack can be improved by a factor of more than 80 to
about 2148 encryptions, thus providing the best-known attack on Kuznyechik.

– MISTY1 [26] – a block cipher which is widely deployed in Japan, and is
recognized internationally as a European NESSIE-recommended cipher and
an ISO standard. In [34], Todo used the division property-based integral
attack to obtain the first attack on the full MISTY1 which is faster than
an exhaustive key search. Bar-On and Keller [8] reduced the complexity of
Todo’s attack to 269.5 MISTY1 encryptions. We show that the complexity
can be further reduced by a factor of 6 to 267 encryptions.

– CLEFIA [32] – a block cipher which is widely used in Japan and is recognized
internationally as an ISO standard. Several works [13,25,31] presented partial
sums attacks on 11, 12, and 14 rounds of CLEFIA, and we show that all
these attacks can be improved using our technique. The improvement is most



4 O. Dunkelman et al.

Table 2. Comparison of our results with previous key recovery attacks on 6-Round
AES, reduced Kuznyechik and full MISTY1. The results are listed in chronological
order.

Cipher Rounds Data Time Technique and Source
AES 6 232 CP 271 Enc. Square [17]

6 · 232 CP 252 S-box Eval. Square & Partial sums [22]
271 ACPC 271 Enc. Boomerang [11]
233 CP 252 S-box Eval. Square & Partial sums [37]
6 · 232 CP 252 Add. Square & FFT [36]
226 CP 280 Enc. Mixture Differential [7]
255 ACPC 280 Enc. Retracing Boomerang [21]
279.7 ACPC 278 Enc. Boomeyong [30]
259 ACPC 261 Enc. Truncated Boomerang [9]
233 CP 246.4 Add. Square & Partial sums & FFT (Sect. 3)

Kuznyechik 7 2128 KP 2154.5 Enc. Integral & Partial sums [12]
6 2120 KP 2146.5 Enc. Integral & Partial sums [12]
7 2128 KP 2148 Enc. Integral & Partial sums & FFT (Sect. 4)
6 2120 KP 2140.9 Enc. Integral & Partial sums & FFT (Sect. 4)

MISTY1 8 263.6 KP 2121 Enc. Integral & Partial sums [34]
(Full) 264 KP 269.5 Enc. Integral & Partial sums [8]
(Full) 264 KP 267 Enc. Integral & Partial sums & FFT (App. A)

striking for 12-round CLEFIA, where our technique improves a partial sums
attack of Sasaki and Wang [31] by a factor of about 230.

A comparison of our results on 6-round AES, on reduced Kuznyechik and full
MISTY1 with previously known results is presented in Table 2.

The paper is organized as follows. In Section 2, we describe the structure of
the AES, the Square attack, and the two previously known methods for enhancing
it – partial sums and the Todo-Aoki FFT-based method. Section 3 presents our
new technique, along with its application to 6-round AES. Section 4 presents
application of the new technique to the cipher Kuznyechik. The applications of the
new technique to MISTY1 and to CLEFIA are described in Appendices A and B.

2 Background

2.1 Description of AES

AES [1] is a 128-bit block cipher, designed by Rijmen and Daemen in 1997
(originally, under the name Rijndael). In 2001, it was selected by the US National
Institute of Standards (NIST) as the Advanced Encryption Standard, and since
then, it has gradually become the most widely used block cipher worldwide.

AES is a Substitution-Permutation Network operating on a 128-bit state
organized as a 4× 4 array of 8-bit words. The encryption process is composed of



Partial Sums Meet FFT: Improved Attack on 6-Round AES 5

10, 12, or 14 rounds (depending on the key length: 10 rounds for 128-bit keys, 12
rounds for 192-bit keys, and 14 rounds for 256-bit keys). Each round of AES is
composed of four operations, presented in Figure 1:

SubBytes. Apply a known 8-bit S-box independently to the bytes of the state;
ShiftRows. Shift each row of the state to the left by the position of the row;
MixColumns. Multiply each column by the same known invertible 4-by-4
matrix over the finite field GF (28);
AddRoundKey. Add a 128-bit round key computed from the secret key to
the state, using a bitwise XOR operation.

An additional AddRoundKey operation is applied before the first round, and
the last MixColumns operation is omitted. As properties of the key schedule of
AES are not used in this paper, we refer the reader to [1] for its description.

00

01

02

03

04

05

06

07

08

09

0a

0b

0c

0d

0e

0f

00

05

0a

0f

04

09

0e

03

08

0d

02

07

0c

01

06

0b

52

09

6a

d5

30

36

a5

38

bf

40

a3

9e

81

f3

d7

fb

0a

1b

00

11

1e

07

14

0d

02

13

08

19

16

0f

1c

05

SB SR MC
ARK

xℓ yℓ zℓ wℓ

⊕

kℓ
Fig. 1. An AES Round

The rounds are numbered from 0 to Nr − 1, where Nr is the number of
rounds. The subkey used in the AddRoundKey operation of round ℓ is denoted
by kℓ, and the j’th byte in its i’th row is denoted by kℓ4j+i. The whitening key
added before the initial round is denoted by k−1. The j’th byte in the i’th row of
the state before the SubBytes, ShiftRows, MixColumns, AddRoundKey
operations of round ℓ is denoted by xℓ

4j+i, y
ℓ
4j+i, z

ℓ
4j+i, and wℓ

4j+i, respectively. A
set of bytes {vi, vj , vk} is denoted by vi,j,k.

2.2 The Square Attack on AES

AES was designed as a modification of the block cipher Square [17], which came
together with a dedicated attack, called ‘the Square attack’. This attack, in its
basic application to AES, uses the following observation.

Lemma 1. Consider the encryption by 3-round AES of a set of 256 plaintexts,
P0, P1, . . . , P255, which are equal in all bytes except for a single byte, such that
the single byte assumes each possible value exactly once. Then the corresponding
ciphertexts C0, C1, . . . , C255 satisfy

⊕255
i=0 Ci = 0.

As was shown in [17], this property can be used to attack 6-round Square, and
also 6-round AES, with a complexity of about 280 S-box computations. The
adversary asks for the encryption of 232 plaintexts which are equal in all bytes
except for the main diagonal (i.e., bytes 0,5,10,15) and assume all 232 possible



6 O. Dunkelman et al.

values in the main diagonal. Then, he guesses bytes 0, 5, 10, 15 of k−1, and for
each guess, he partially encrypts the plaintexts through round 0 and finds a set of
28 inputs to round 1 which satisfy the assumption of Lemma 1. Then, he partially
guesses the subkeys k4, k5, partially decrypts the 28 corresponding ciphertexts
through rounds 4,5 and checks whether the XOR of the 28 corresponding values
at the state x4

0 (i.e., at byte 0 before the SubBytes operation of round 4) is
zero, as is stated by Lemma 1. If not, the subkey guess is discarded.

While it seems that in order to compute byte x4
0 from the ciphertext, the

adversary must know 64 subkey bits (specifically, key bytes k50,7,10,13 and k40,1,2,3),
in fact knowing 40 subkey bits is sufficient. Indeed, since MixColumns is a linear
operation, it can be interchanged with the AddRoundKey operation after it, at
the cost of replacing k4 with the equivalent subkey k̄4 = MixColumns−1(k4).
The knowledge of the key bytes k50,7,10,13 and k̄40 is sufficient for computing
the state byte x4

0 from the ciphertext of 6-round AES.4 Each check whether 28

values XOR to zero provides an 8-bit filtering, and hence, checking several sets is
sufficient for discarding all wrong subkey guesses. The attack recovers 9 subkey
bytes (k−1

0,5,10,15, k̄
4
0, k

5
0,7,10,13) with complexity of about 232 · 240 · 28 = 280 S-box

computations.
In [22], Ferguson et al. observed that the Square attack can be improved by

replacing Lemma 1 with the following lemma on 4-round AES.

Lemma 2. Consider the encryption by 4-round AES of a set of 232 plaintexts,
P0, P1, . . . , P232−1, which are equal in all bytes except for the main diagonal (i.e.,
bytes 0,5,10,15), such that the diagonal assumes each possible value exactly once.
Then the corresponding ciphertexts C0, C1, . . . , C232−1 satisfy

⊕232−1
i=0 Ci = 0.

Lemma 2 can be used to attack 6-round AES using the same strategy described
above. The adversary asks for the encryption of a few sets of 232 plaintexts which
satisfy the assumption of Lemma 2. Then, for each set, he guesses subkey bytes
k̄40, k

5
0,7,10,13 and checks whether the XOR of the 232 intermediate values at the

state byte x4
0 is zero, as is stated by Lemma 2. The attack recovers 5 subkey bytes

(k̄40, k50,7,10,13) and its complexity is about 232 · 240 = 272 S-box computations.

2.3 The Partial Sums Attack

In the same paper [22], Ferguson et al. showed that the complexity of the Square
attack described above can be significantly reduced, by dividing the key guessing
and partial decryption into several steps and gradually reducing the number of
values whose XOR should be computed. By the structure of AES, the state byte
x4
0 is computed from the ciphertext C using the following formula:

x4
0 = S−1

(
k̄40 ⊕ 0ex·S−1(C0 ⊕ k50)⊕ 09x · S−1(C7 ⊕ k57)⊕

⊕ 0dx · S−1(C10 ⊕ k510)⊕ 0bx · S−1(C13 ⊕ k513)
)
,

(1)

4 Here and in the sequel, we assume that in 6-round AES, the MixColumns operation
of round 5 is omitted. If this operation is not omitted, the attack works almost
without change; we only have to replace the key k5 with the equivalent key k̄5 =
MixColumns−1(k5).



Partial Sums Meet FFT: Improved Attack on 6-Round AES 7

where the coefficients 0ex, 09x, 0dx, 0bx come from the inverse MixColumns
operation and the multiplication is performed in the finite field GF (28).

Note that the right hand side of (1) depends only on bytes 0,7,10,13 of the
ciphertext. This means that if two ciphertexts are equal in these four bytes, then
their contributions to the XOR of x4

0 values cancel each other. Thus, we may
replace the list of ciphertexts with a list A of 232 binary indices which indicates
whether each of the 232 possible values of bytes 0,7,10,13 of the ciphertext appears
an even or an odd number of times in the list of ciphertexts. The goal of the
subsequent steps is to reduce the number of needed binary indices, in parallel to
guessing subkey bytes.

At the first step, the adversary guesses bytes 0,7 of k5, and reduces the size of
the list to 224. Denote a1 = 0ex ·S−1(C0⊕k50)⊕09x ·S−1(C7⊕k57). Observe that if
two ciphertexts are equal in the bytes a1, C10, C13, then their contributions to the
XOR of x4

0 values cancel each other. As the guess of bytes k50,7 allows computing
a1 for each ciphertext, the adversary can construct a list A1 of 224 binary values
which indicates whether each possible value of (a1, C10, C13) appears an even or
an odd number of times in the list of intermediate values. The complexity of this
step is about 216 · 232 = 248 S-box evaluations.

At the second step, the adversary guesses the byte k510 and reduces the list to
a list A2 of size 216 that corresponds to the possible values of (a2, C13), where
a2 = a1 ⊕ 0dx · S−1(C10 ⊕ k510). At the third step, the adversary guesses the byte
k513 and reduces the list to a list A3 of size 28 that corresponds to the possible
values of a3, where a3 = a2⊕0bx ·S−1(C13⊕k513). Finally, at the fourth step, the
adversary guesses the byte k̄40, computes ⊕{x∈{0,1}8:A3[x]=1}S

−1(k̄40 ⊕ x), which
is equal to the right hand side of (1), and checks whether it is equal to zero. The
complexity of each step is about 248 S-box computations, and thus, the overall
complexity for a single set of 232 plaintexts is 250 S-box computations.

As the attack recovers 5 subkey bytes, six sets of 232 plaintexts are required
to recover their value uniquely with a high probability. Note that after the check
of the first set, only about 240 · 2−8 = 232 suggestions for the 40 subkey bits
remain undiscarded. This means that for each possible value of k50,7,10,13, at most
a few values of k̄40 that correspond to them are expected to remain. Hence, when
examining the second set of 232 plaintexts, the complexity of the fourth step
becomes negligible as it is performed only for a few values of k̄40. Similarly, when
examining the third set, the two last steps become negligible, etc. In total, the
complexity of checking all six plaintext sets of size 232 is equivalent to the cost
of 4 + 3 + 2 + 1 = 10 steps, or 251.3 S-box computations.5

The attack is given as Algorithm 1. To simplify the notation, we rewrite
equation (1) in a more generic way, using S0 for 0ex · S−1(·), S1 for 09x · S−1(·),
S2 for 0dx · S−1(·), S3 for 0bx · S−1(·), and renaming the keys and the ciphertext

5 We note that in [22], the authors performed a similar analysis and concluded that
the complexity is 252 S-box computations. This value was used in all subsequent
papers. For the sake of consistency, we use the same value in Table 2, but note that
the actual complexity is lower, as is shown here, and use the lower estimate when
comparing the partial sums attack with our new attack.



8 O. Dunkelman et al.

bytes to k0, k1, k2, k3, k4 and c0, c1, c2, c3, respectively:

a4 = S−1 (k4 ⊕ S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1)⊕ S2(c2 ⊕ k2)⊕ S3(c3 ⊕ k3)) . (2)

Algorithm 1 Partial-sum algorithm for key recovery [22].
1: Input: Array A of bits such that the jth value of A denotes the parity of the number

of occurrences of j in the list of ciphertexts
2: for all k0, k1 do
3: Declare an empty bit-array A1 of size 224

4: for all c0, c1, c2, c3 do
5: if A[c0, c1, c2, c3] = 1 then
6: a1 ← S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1)
7: A1[a1, c2, c3]← A1[a1, c2, c3]⊕ 1

8: for all k2 do
9: Declare an empty bit-array A2 of size 216

10: for all a1, c2, c3 do
11: if A1[a1, c2, c3] = 1 then
12: a2 ← a1 ⊕ S2(c2 ⊕ k2)
13: A2[a2, c3]← A2[a2, c3]⊕ 1

14: for all k3 do
15: Declare an empty bit-array A3 of size 28

16: for all a2, c3 do
17: if A2[a2, c3] = 1 then
18: a3 ← a2 ⊕ S3(c3 ⊕ k3)
19: A3[a3]← A3[a3]⊕ 1

20: for all k4 do
21: a4 ← 0
22: for all a3 do
23: if A3[a3] = 1 then
24: a4 ← a4 ⊕ S−1(k4 ⊕ a3)

25: if a4 ̸= 0 then
26: k0, k1, k2, k3, k4 is not a valid key candidate

Reducing the data complexity. In [37], Tunstall observed that the data complexity
of the attack can be reduced to 233 chosen plaintexts by examining two sets of
232 plaintexts instead of six sets. The idea is to check an analogue of Equation (1)
for three additional bytes – x4

5, x
4
10, and x4

15 – using the same set of 232 plaintexts.
Note that in order to compute each of these three bytes from the ciphertext, the
adversary needs the subkey bytes k50,7,10,13 (which are the same as in Equation (1)),
along with a different byte of k̄4. When two sets are checked at the same byte,
they provide a 16-bit filtering, which in particular yields an 8-bit filtering on the
value k50,7,10,13 which is common to all examined bytes. Hence, information from
different bytes can be combined to recover k50,7,10,13 with a high probability.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 9

The data complexity can be further reduced to 232 by examining a single
set and checking the XOR in all 16 bytes of x4. The algorithm is more complex
and uses a meet-in-the-middle procedure based on the properties of the AES key
schedule. We omit the description here, as it will not be needed in the sequel.

In [37], it is claimed that when the same set of plaintexts is used to check
the parity in several bytes, the complexity of checking the first byte is dominant,
as some of the computations performed for computing the XOR in different
bytes are identical. However, this claim seems incorrect, as in the variant of
Equation (1) for other bytes, the order of the coefficients 0ex, 09x, 0dx, 0bx which
stems from the inverse MixColumns operation is changed, and hence, the
operations performed for different bytes are not identical and only knowledge of
subkeys can be ‘reused’. Therefore, the complexity of the attack that uses two
sets is about (4 + 3 + 2 + 2 + 1 + 1) · 248 = 251.7 S-box computations, and the
attack that uses one set takes about 16 · 250 = 254 S-box computations.

The idea of using two sets of size 232 instead of six was independently suggested
in [2] by Alda et al., who also verified it experimentally.

2.4 The FFT-Based Attack of Todo and Aoki

The general idea of using the Fast Fourier Transform (FFT) for speeding up
cryptanalytic attacks on block ciphers goes back to Collard et al. [15] who used
the FFT to speed up linear cryptanalysis. This idea was extended to several other
techniques, including multi-dimensional linear attacks [28,29], zero-correlation
attacks [13], differential-linear attacks [10], etc. In [36], Todo and Aoki proposed
to replace the partial sums technique by an FFT-based technique. The basic idea
behind the Todo-Aoki technique is that the sum of the values in the right hand
side of Equation (1) which we want to compute can be written in the form of a
convolution of tailor-made functions, as seen in Algorithm 2.

Consider a set S of 232 ciphertexts for which we want to compute the XOR
of the intermediate values at the state byte x4

0. Like in the partial sums attack,
denote by A a bit array of size 232, such that A(c0, c1, c2, c3) = 1 if and only if
C0,7,10,13 = (c0, c1, c2, c3) holds for an odd number of ciphertexts in S. Let f :
{0, 1}32 → {0, 1} be the indicator function of the array, that is, f(c0, c1, c2, c3) =
1(A(c0, c1, c2, c3) = 1). Assume that the subkey k4 was guessed, and let gi :
{0, 1}32 → {0, 1}, for 0 ≤ i ≤ 7, be defined by

gi(t0, t1, t2, t3) =
[
S−1 (k4 ⊕ S0(t0)⊕ S1(t1)⊕ S2(t2)⊕ S3(t3))

]
i
, (3)

where [S−1(t)]i denotes the i’th bit of S−1(t). Then, denoting by [x(C, k0, k1, k2, k3)]i
the i’th bit of the value x4

0 corresponding to the ciphertext C for a given guess
of k0, k1, k2, k3 (see Equation (2)), we have
⊕

C∈S

[x(C, k0, k1, k2, k3)]i =
⊕

{(c0,c1,c2,c3):A[c0,c1,c2,c3]=1}

gi(c0 ⊕ k0, c1 ⊕ k1, c2 ⊕ k2, c3 ⊕ k3)

=
⊕

c0,c1,c2,c3

f(c0, c1, c2, c3) · gi(c0 ⊕ k0, c1 ⊕ k1, c2 ⊕ k2, c3 ⊕ k3)

= (f ∗ gi)(k0, k1, k2, k3).



10 O. Dunkelman et al.

Algorithm 2 FFT-based algorithm for key recovery [36].
The blue colored step has naive complexity 232 × 232, but can be replaced by
several Hadamard transformations of size 232 with complexity 237 each.
1: Input: Array A of bits such that the jth value of A denotes the parity of the number

of occurrences of j in the list of ciphertexts
2: for all k4 do
3: for all k0, k1, k2, k3 do

4: A1[k1, k2, k3, k4]←
⊕

c0,c1,c2,c3

A[c0, c1, c2, c3] · S−1

(
k4 ⊕ S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1)

⊕S2(c2 ⊕ k2)⊕ S3(c3 ⊕ k3)

)
5: for all k0, k1, k2, k3 do
6: if A1[k0, k1, k2, k3] ̸= 0 then
7: k0, k1, k2, k3, k4 is not a valid key candidate

Therefore, we can compute the sum for all 232 possible guesses of (k0, k1, k2, k3) at
once by guessing the byte k4 and computing the convolution of two functions on 32
bits, that takes time of about 4·232 log2(232) additions, as was shown by Collard et
al. [15]. As the summation is performed for each bit separately, the complexity of
examining a single set S of 232 ciphertexts is 8 ·28 ·4 ·232 log2(232) = 250 additions,
which is roughly equal to the number of operations required for examining a
single set of ciphertexts in the partial sums attack.

A disadvantage of the Todo-Aoki technique, compared to the partial sums
attack, is that it cannot use partial knowledge of the subkey to obtain a speedup.
Indeed, as the computation is performed for all values of (k0, k1, k2, k3) at the
same time, partial knowledge (e.g., knowledge of k3) cannot be exploited. As
a result, when six sets of 232 ciphertexts are examined, the complexity of the
Todo-Aoki attack becomes 6 · 250 = 252.6 additions, while the overall complexity
of partial sums is only 251.3 S-box computations, as was shown above.

The question, whether there is a way to use partial knowledge of the key in
an FFT-based attack, was explicitly mentioned as an open question in [36].

Using precomputation of the FFT to speed up the attack. In the eprint version
of the same paper [33], Todo showed that the complexity of the attack can be
reduced by precomputing some of the Fast Fourier Transforms that should be
computed in the course of the attack.

Recall that the computation of the convolution of f, g : {0, 1}n → {0, 1} using
the FFT consists of three stages:

1. Computing the Fourier transforms f̂ , ĝ : {0, 1}n → Z.
2. Computing the pointwise product h : {0, 1}n → Z defined by h(x) = f̂(x) · ĝ(x).
3. Computing the inverse Fourier transform (which is the same as computing the

Fourier transform and dividing by 2n) to obtain f ∗ g = ĥ · 2−n.

Here, we use the convention that the Fourier transform f̂ is obtained from f by
writing f as a 2n-dimensional vector and multiplying it by the Hadamard matrix
Hn, defined recursively as Hn =

(Hn−1 Hn−1

Hn−1 −Hn−1

)
, where H1 =

(
1 1
1 −1

)
.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 11

The cost of each computation of the FFT is n2n addition operations. In order
to avoid overflow the additions should have at least 2n bits of precision, but since
we only want one bit of the result the computation can be done with n+1 bits of
precision. For the 6-round AES attack we have n = 32 and the FFT will typically
be implemented with 64-bit additions. The cost of the pointwise product is about
2n multiplication operations, which is not much more than the cost of 2n addition
operations for small n (in particular for a software implementation with n ≤ 32,
as in the attack on 6-round AES).6 Hence, the overall cost of the convolution
computation in our case is about 3 · 32 · 232 additions.

Todo observed that the Fourier transforms f̂ and ĝ can be precomputed. As
the function f does not depend on the guess of k4, one can compute it once,
store the result (which requires at most 232 64-bit words), and re-use it for
each value of k4. As the cost of this FFT computation is 32 · 232 additions, the
amortization over guesses of k4 makes it negligible. The function g cannot be
precomputed since it depends on k4. On the other hand, as it does not depend
on the ciphertexts, it can be reused for other sets of ciphertexts. Therefore, the
complexity of computing the XOR for a single set of 232 ciphertexts is reduced
to about 8 · 28 · 2 · 32 · 232 = 249 addition operations, and the complexity of
computing the XOR for six sets is reduced to about 249 + 5 · 248 = 250.8 addition
operations. If only two sets are examined and the XOR is computed in four
bytes (as was described above), then the complexity becomes 249 +7 · 248 = 251.2

addition operations. This complexity seems a bit lower than the complexity of
partial sums, but it is still quite close and the different types of operations make
comparison between the techniques tricky.

3 The New Technique: Partial Sums Meet FFT

In this section, we describe our new technique which allows combining the
advantages of the partial sums technique with those of the Todo-Aoki FFT-based
technique. We begin with a basic variant of the technique in Section 3.1, then we
show how the complexity can be reduced significantly by packing several FFT
computations together in Section 3.2, afterward, we present several additional
enhancements and other variants of the basic technique in Section 3.3, and we
conclude this section with a comparison of our technique with partial sums and
the Todo-Aoki technique in Section 3.4. For the sake of concreteness, we present
the attack in the case of 6-round AES and reuse the notations of Section 2. It will
be apparent from the description how our technique can be applied in general.

3.1 The Basic Technique

Our basic observation is that we can follow the general structure of the partial
sums attack, and replace each step by computing a convolution of properly
6 We note that in [36], the authors conservatively estimate that pointwise multiplication

of two vectors of size 2n whose entries are n-bit integers takes n2n addition operations.
For the sake of consistency with [36] and fairness, we use the conservative estimate in
the table of results and the less conservative estimate when we compare the Todo-Aoki
technique to our technique.



12 O. Dunkelman et al.

chosen functions. This is shown in Algorithm 3 which is a rearrangement of the
operations of Algorithm 1, making convolution appear. As we use somewhat
different convolutions for different steps of the attack, we present them separately.

First step. As described in Section 2.3, before the first step of the partial sums
attack, the list of ciphertexts is replaced with a list A of 232 binary indices which
indicate whether each of the 232 possible values of the bytes c0, c1, c2, c3 appears
an even or an odd number of times in the list of ciphertexts. At the first step, the
adversary guesses the bytes k0, k1, and replaces the list by a list A1 of size 224

which corresponds to the bytes a1, c2, c3, where a1 = S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1).
We observe that the list A1 can be computed for all values k0, k1 simulta-

neously by computing a convolution. Let χ : {0, 1}32 → {0, 1} be the indicator
function of the list A. That is, χ(c0, c1, c2, c3) = 1 if and only if the value
(C0, C7, C10, C13) = (c0, c1, c2, c3) appears an odd number of times in the list of
ciphertexts. For any c2, c3 ∈ {0, 1}8, define χ1

c2,c3(c0, c1) = χ(c0, c1, c2, c3).
For any a1 ∈ {0, 1}8, let I1a1

(x, y) = 1(S0(x)⊕ S1(y) = a1). Both χ1
c2,c3 and I1a1

are indicator functions on {0, 1}16. For any a1, c2, c3 ∈ {0, 1}8, we have

(χ1
c2,c3 ∗ I

1
a1
)(k0, k1) =

∑

c0,c1∈{0,1}8

χ1
c2,c3(c0, c1) · I

1
a1
(c0 ⊕ k0, c1 ⊕ k1)

=
∑

c0,c1∈{0,1}8

χ(c0, c1, c2, c3) · 1(S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1) = a1).

Therefore, the entry which corresponds to (a1, c2, c3) in the list A1[k0, k1] created
for the subkey guess (k0, k1) is

A1[k0, k1][a1, c2, c3] =
(
(χ1

c2,c3 ∗ I
1
a1
)(k0, k1)

)
mod 2. (4)

(Note that formally, we define A1, which is a list of size 224 that depends on two
key bytes, as an array of size 216 × 224 which includes the guessed bytes.) As
was shown in Section 2.4, the computation of this convolution requires 3 · 16 · 216
addition operations for each value of a1, c2, c3, or a total of 48 · 240 additions.
This compares favorably with the first step of the partial sums attack which
requires 248 S-box computations. As we shall see below, the actual advantage of
our technique is significantly larger. However, this requires to store the full A1

for all values of (k0, k1), of size 240 bits.

Second step. At the second step of the partial sums attack, the adversary
guesses the byte k2 and reduces the list A1 to a list A2 of size 216 that corresponds
to the possible values of (a2, c3), where a2 = a1 ⊕ S2(c2 ⊕ k2).

We compute the entries of the list A2 using a convolution, as follows. For any
k0, k1, c3 ∈ {0, 1}8, define

χ2
k0,k1,c3(a1, c2) = 1(A1[k0, k1][a1, c2, c3]) I2(x, y) = 1(x = S2(y)).



Partial Sums Meet FFT: Improved Attack on 6-Round AES 13

Both χ2
k0,k1,c3

and I2 are indicator functions on {0, 1}16. For any k0, k1, c3 ∈
{0, 1}8, we have

(χ2
k0,k1,c3 ∗ I

2)(a2, k2) =
∑

a1,c2∈{0,1}8

χ2
k0,k1,c3(a1, c2) · I

2(a1 ⊕ a2, c2 ⊕ k2)

=
∑

a1,c2∈{0,1}8

1(A1[k0, k1][a1, c2, c3]) · 1(a1 ⊕ a2 = S2(c2 ⊕ k2))

=
∑

a1,c2∈{0,1}8

1(A1[k0, k1][a1, c2, c3]) · 1(a2 = a1 ⊕ S2(c2 ⊕ k2)).

Therefore, the entry which corresponds to (a2, c3) in the list A2 created for the
subkey guess (k0, k1, k2) is

A2[k2][a2, c3] =
(
(χ2

k0,k1,c3 ∗ I
2)(a2, k2)

)
mod 2. (5)

(Note that formally, we define A2, which is a list of size 216 that depends on three
key bytes, as an array of size 28 × 216, which depends on k0, k1). As above, the
complexity of this step is 48 · 240 additions.

Third step. This step is similar to the second step. Thus, we present it briefly.
At the third step of the partial sums attack, the adversary guesses the byte k3
and reduces the list A2 to a list A3 of size 28 that corresponds to the possible
values of a3, where a3 = a2 ⊕ S3(c3 ⊕ k3). We obtain the list A3 by defining

χ3
k0,k1,k2

(a2, c3) = 1(A2[k2][a2, c3]) and I3(x, y) = 1(x = S3(y)),

and setting

A3[k3][a3] =
(
(χ3

k0,k1,k2
∗ I3)(a3, k3)

)
mod 2. (6)

(Note that formally, we define A3 as an array of size 28 × 28, which depends on
k0, k1, k2). As above, the complexity of this step is 48 · 240 additions.

Fourth step. At the fourth step of the partial sums attack, the adversary
guesses the byte k4, and computes ⊕{x∈{0,1}8:A3[x]=1}S

−1(k4 ⊕x), which is equal
to the right hand side of (2), and checks whether it is equal to zero.

We cannot compute this XOR directly using a convolution, since in order
to apply the FFT we need functions whose output is an integer and not an
element of GF (28). A basic solution, that was adopted by Todo and Aoki [36], is
to compute the XOR in each bit separately. To this end, we define the functions
χ4
k0,k1,k2,k3

, I4,j : {0, 1}8 → {0, 1} for j = 0, 1, . . . , 7 by

χ4
k0,k1,k2,k3

(a3) = 1(A3[k3][a3]) and I4,j(x) = [S−1(x)]j ,



14 O. Dunkelman et al.

where [S−1(x)]j denotes the j’th bit of S−1(x). We have

(χ4
k0,k1,k2,k3

∗ I4,j)(k4) =
∑

a3∈{0,1}8

χ4
k0,k1,k2,k3

(a3) · I4,j(a3 ⊕ k4)

=
∑

a3∈{0,1}8

1(A3[k3][a3]) · [S−1(a3 ⊕ k4)]j .

Therefore, the j’th bit of the XOR we would like to compute for the key guess
(k0, k1, k2, k3, k4) is equal to

(
(χ4

k0,k1,k2,k3
∗ I4,j)(k4)

)
mod 2. (7)

Hence, we can check the XOR by initializing a list of 240 binary indicators which
correspond to the possible values of (k0, k1, k2, k3, k4), computing the convolutions
χ4
k0,k1,k2,k3

∗ I4,j for j = 0, 1, . . . , 7, and discarding all keys (k0, k1, k2, k3, k4) for
which at least one of the results of (7) is not equal to zero modulo 2.

The complexity of this step is 232 · 8 · (3 · 8 · 28) = 192 · 240 additions, which is
slightly better than the complexity of the fourth step of the partial sums technique.
As we shall show below, the complexity can be reduced significantly, by using a
new method to pack several FFT together, and exploiting enhancements from
previous attacks based on the re-use of computations.

The basic algorithm is summarized in Algorithm 3.

3.2 Packing Several FFTs Together by Embedding into Z

We now show that the complexity of the basic attack can be significantly reduced
by packing several convolution computations into a single convolution. We assume
that the attack is implemented using 64-bit operations, which is typical for a
software implementation. For reference, the 6-round AES attack of Todo and
Aoki requires 64-bit additions to avoid overflow.

Improving the fourth step of the attack. Consider the fourth step of our
basic attack described above. The step consists of computing the convolution
of the function χ4

k0,k1,k2,k3
with the eight functions I4,j (j = 0, 1, . . . , 7). These

eight convolutions can be replaced by a single computation of convolution.
Let s be a ‘separation parameter’ that will be determined below, and define

a function I4 : {0, 1}8 → Z by I4(x) =
∑7

j=0 2
js[S−1(x)]j .

We claim that for an appropriate choice of s, the convolution χ4
k0,k1,k2,k3

∗ I4
allows recovering the value of the XOR in all 8 bits we are interested in, with a
high probability. Indeed, we have



Partial Sums Meet FFT: Improved Attack on 6-Round AES 15

Algorithm 3 The following is the Algorithm for key recovery. The function 1
is the indicator function. All the blue colored steps are of complexity 216 × 216

and can be replaced by a 3 Hadamard transformations of size 216 with total
complexity 3× 220. The red colored step has complexity 28 × 28, which can be
replaced by 3 Hadamard transformations of size 28 with total complexity 3× 211.
1: Input: Array A of bits such that the jth value of A denotes the parity of ciphertext

j
2: Declare an empty 2D bit-array A1 of size 216 × 224; ▷ 240 memory
3: for all a1, c2, c3 do
4: for all k0, k1 do
5: A1[k0, k1][a1, c2, c3]←

⊕
c0,c1

A[c0, c1, c2, c3] · 1(S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1) = a1)

6: for all k0, k1 do
7: Declare an empty 2D bit-array A2 of size 28 × 216;
8: for all c3 do
9: for all k2, a2 do

10: A2[k2][a2, c3]←
⊕
a1,c2

A1[k0, k1][a1, c2, c3] · 1(a1 ⊕ S2(c2 ⊕ k2) = a2)

11: for all k2 do
12: Declare an empty 2D bit-array A3 of size 28 × 28;
13: for all k3, a3 do
14: A3[k3][a3]←

⊕
a2,c3

A2[k2][a2, c3] · 1(a2 ⊕ S3(c3 ⊕ k3) = a3)

15: for all k3 do
16: Declare an empty 1D byte-array A4 of size 28;
17: for all k4 do
18: A4[k4]←

⊕
a3

A3[k3][a3] · S−1(a3 ⊕ k4)

19: for all k4 do
20: if A4[k4] ̸= 0 then
21: k0, k1, k2, k3, k4 is not a valid key candidate

(χ4
k0,k1,k2,k3

∗ I4)(k4) =
∑

a3∈{0,1}8

χ4
k0,k1,k2,k3

(a3) · I4(a3 ⊕ k4)

=
∑

a3∈{0,1}8

1(A3[k3][a3]) ·
7∑

j=0

2sj [S−1(a3 ⊕ k4)]j

=

7∑

j=0

2sj
∑

a3∈{0,1}8

1(A3[k3][a3]) · [S−1(a3 ⊕ k4)]j

=

7∑

j=0

2sj(χ4
k0,k1,k2,k3

∗ I4,j)(k4),



16 O. Dunkelman et al.

where the penultimate equality uses the change of the order of summation.
Recall that for each value of k4, we want to compute the eight parity bits

(χ4
k0,k1,k2,k3

∗ I4,j(k4)) mod 2. Let us reformulate our goal, for the sake of con-
venience. Denoting bj = χ4

k0,k1,k2,k3
∗ I4,j(k4), we have χ4

k0,k1,k2,k3
∗ I4(k4) =∑7

j=0 2
sjbj . Thus, for nonnegative integers b0, b1, . . . , b7, we are given

∑7
j=0 2

sjbj
and we want to compute from it the eight parity bits (bj) mod 2.

Observe that if for all 0 ≤ j ≤ 7, we have bj < 2s, then the multiplications by
2sj separate the values bj , and thus, we can simply read the values (bj) mod 2
from 2sjbj , as in this case,

∀j :




7∑

j=0

2sjbj



sj

= [2sjbj ]sj = (bj) mod 2.

How large should s be so that bj < 2s holds with a high probability for all j’s?
Note that each bj is the sum of 128 elements, which correspond to the 128 values
of c3 such that [S−1(c3 ⊕ k4)]j = 1. Each such element is χ4

k0,k1,k2,k3
(c3), which

can be viewed as a randomly distributed indicator. Hence, bj is distributed like
Bin(128, 1/2). The expectation of such a variable is 64, and its standard deviation
is 4

√
2. This means that the values bj are strongly concentrated around 64, and

the probability Pr[bj ≥ 27] is extremely small. Therefore, by taking s = 7, we
can derive the eight parity bits (bj) mod 2 from the sum

∑7
j=0 2

sjbj , easily and
with a very low error probability.

How small should s be in order to perform the entire computation with 64-bit
words? For the sake of efficiency, we compute the convolution using 64-bit word
operations and disregard overflow beyond the 64’th bit. If s is too large, this may
cause an error in the computation of the sum

∑7
j=0 2

sjbj , and consequently, in
the computation of the parity bits (bj) mod 2.

To overcome this, note that in the computation of a convolution of f, g :
{0, 1}n → Z, all operations are additions and multiplications, except for division
by 2n at the last step. Hence, when we neglect overflow beyond the 64’th bit,
this causes an additive error of m · 264 for some m ∈ Z until the last step, and
an additive error of m · 264−n at the final result. Assuming that bj < 2s for all
j, this error does not affect the parity bits as long as 7s < 64− n (as the error
affects only the top n bits of

∑7
j=0 2

sjbj).
In our case, n = 8 and hence, for all s ≤ 7, the possible error does not affect

the parity bits we compute.

Reducing s even further. Note that we can allow random errors in the convolution
computations that do not correspond to the right subkey guess, as such random
errors do not increase the probability of a wrong key guess to pass the filtering.
Hence, we only have to make sure that for the right key, we obtain the correct
value of the parity bits with a high probability.

As was explained above, the values bj are concentrated around 64. Formally,
by evaluating the cumulative distribution function of the binomial law, we have



Partial Sums Meet FFT: Improved Attack on 6-Round AES 17

Pr[48 < bj < 80] > 0.99, and thus, 0 < bj − 48 < 25 with a very high probability.
To make use of this concentration, we subtract from the value

∑7
j=0 2

sjbj the
integer u = 48

∑7
j=0 2

sj , to obtain

7∑

j=0

2sjbj −
7∑

j=0

48 · 2sj =
7∑

j=0

(bj − 48)2sj .

Since 0 < bj − 48 < 25, we can compute the parity bits (bj) mod 2 also for s = 6
and for s = 5, with a very low error probability.

Summary of improving the fourth step. To summarize, the eight convolutions can
be computed using a single convolution of functions over {0, 1}8. This reduces
the complexity of this step to 232 · 3 · 8 · 28 = 24 · 240 operations.

Improving the other steps of the attack. Once we acquired the ability to
compute several convolutions in parallel, we can use it at the other steps of the
attack as well. The idea is to pack the convolutions that correspond to several
subkey guesses into a single convolution. We exemplify this approach by showing
how the first step of the attack can be improved; the improvement of the second
and the third steps is similar.

Recall that at the first step of our attack, for any values c2, c3 ∈ {0, 1}8, we
compute the parity of the convolution (χ1

c2,c3 ∗ I
1
a1
)(k0, k1), for all k0, k1 ∈ {0, 1}8.

We may pack up to seven such computations in parallel. For example, in order to
pack four computations, we write c2 = (ch2 , c

l
2), where ch2 denotes the two most

significant bits of c2 and is identified with an integer between 0 and 3, via the
binary expansion. We define

χ1
ch2 ,c

l
2,c3

(c0, c1) = χ(c0, c1, c2, c3), and χ̄1
cl2,c3

=

3∑

j=0

2sjχ1
j,cl2,c3

.

Then, for any cl2 ∈ {0, 1}6, and k0, k1, c3 ∈ {0, 1}8, we compute the convolution
(χ̄1

cl2,c3
∗ I1a1

)(k0, k1), and using the technique described above we derive from it
the four parity bits ((χ1

c2,c3 ∗ I
1
a1
)(k0, k1)) mod 2 with c2 ∈ {(0, cl2), . . . , (3, cl2)}.

To see what is the maximal value of s we may take, note that each convolution
value b′ = (χ1

c2,c3 ∗I
1
a1
)(k0, k1) is the sum of 256 elements, which correspond to the

256 values of (c0, c1) such that S0(c0 ⊕ k0)⊕S1(c1 ⊕ k1) = a1. Each such element
can be viewed as a randomly distributed indicator. Hence, b′ is distributed like
Bin(256, 1/2). When analyzing step 4, we could tolerate a low probability of
errors for the right key, but in the first step, there are 224 values of A1 that are
involved in the computation for the right key, and we want all of them to be
correct. Therefore, we use s ≥ 7, since Pr[64 < b′ < 192] > 1 − 2−50. Hence,
by subtracting 64 ·

∑3
j=0 2

js from the convolution value (χ̄1
cl2,c3

∗ I1a1
)(k0, k1),

we can compute the parity bits
(
(χ1

c2,c3 ∗ I
1
a1
)(k0, k1)

)
mod 2 with a very high



18 O. Dunkelman et al.

probability for s ≥ 7, and the 224 relevant values are simultaneously correct with
probability at least 1− 2−26.

Unfortunately, with s = 7 we can only pack 7 parallel convolutions within
64-bit words. Indeed, at this step, the convolution is computed for functions over
{0, 1}16 (instead of 8-bit functions in the fourth step), and thus, we would need
7s < 64− 16 = 48 in order to pack 8 FFTs and avoid errors due to overflow. (We
exemplified the idea of packing 4 parallel convolutions for the sake of convenience).

This reduces the complexity of the first step of the attack from 224 ·3 ·16 ·216 =
48 · 240 to 48/7 · 240 addition operations. The complexity of the second step can
be reduced similarly from 48 · 240 to 48/7 · 240. For the third step, we can actually
use s = 6 and pack 8 parallel convolutions within a 64-bit word, because we
only need 28 correct computations, and we have Pr[96 < b′ < 160]256 > 0.98; the
complexity is reduced from 48 · 240 to 6 · 240.

Improving the fourth step even further. Finally, we can reduce the com-
plexity of the fourth step even further by packing 12 FFTs in a 64-bit word
with s = 5. This requires to change the way we do the packing: instead of
packing 8 different I4,j with a fixed χ4 as was described above, we consider each
function I4,j separately and pack a fixed I4,j with 12 χ4 functions corresponding
to different key guesses. This reduces the complexity of the fourth step from
24 · 240 to 16 · 240.

3.3 Enhancements and Other Variants of the Basic Technique

In this section, we present two enhancements that reduce the complexity of
the attack, along with another variant of the technique that provides us with
flexibility that will be useful in the application of our technique to other ciphers.

Precomputing some of the FFT computations. At each step of the attack,
we perform three FFT computations. As was described in Section 2.4 regarding
the FFT-based attack of Todo and Aoki, some of these computations do not
depend on the guessed key material, and hence, they can be precomputed at the
beginning of the attack, thus reducing the overall time complexity.

Specifically, the functions I2, I3, I4, and I1a1
(for all a1 ∈ {0, 1}8) do not

depend on any guessed subkey bits, and thus, their FFTs can be precomputed
with overall complexity of about 28 · 16 · 216 = 228 addition operations, which is
negligible compared to other steps of the attack. The results can be stored in
lists that require about 224 64-bit words of memory.

The function χ1
c2,c3 does not depend on the value of a1, and thus, its FFT

can be computed once (for each value of (c2, c3)) and reused for all values of
a1. This reduces the time complexity of this FFT computation (in total, for all
values of c2, c3) to 216 · 16 · 216 = 236 additions, which is negligible compared
to other steps of the attack. As we need to store in memory at each time only
the result of the FFT that corresponds to a single value of c2, c3, the memory
requirement of this step is 216 64-bit words of memory.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 19

These precomputations reduce the time complexity of the first step (in which
two FFTs can be precomputed) from 48/7 · 240 to 16/7 · 240 additions, the time
complexity of the second, third, and fourth steps (in which one FFT can be
precomputed) to 32/7 · 240, 4 · 240, and 32/3 · 240 additions, respectively.

If the fourth step is implemented by packing 12 χ4 functions together, as
was described above, we can reduce its complexity further by precomputing the
FFT of the function χ̄4 which represents the ‘packed’ function and reusing it
for computing convolutions with the eight functions I4,j (j = 0, 1, . . . , 7). This
reduces the time complexity of the fouth step to (16 + (16/8))/3 · 240 = 6 · 240
additions.

Therefore, the time complexity of examining a set of 232 plaintexts is reduced
to 240 · (16/7 + 32/7 + 4 + 6) ≈ 16.9 · 240 ≈ 244.1 additions.

Lower cost for examining additional sets of plaintexts. As was described
in Section 2.3 regarding the partial sums attack, when we check the XOR of
additional sets of 232 values at a byte which we already checked for one set,
the complexity of the check is reduced. Indeed, after the first set was checked,
we expect that for each value of (k50, k57, k510, k513), only a few values of k̄40 are
not discarded. Hence, instead of performing the fourth step of the attack by
computing a convolution, we can simply compute the sum directly for each
of the remaining candidate subkeys. The average complexity of such a step is
232 · 1 · 27 = 239 S-box evaluations and the same number of XORs, which is
equivalent to about 1 · 240 addition operations. Note that since the fourth step is
the most time consuming step of our attack, this gain is more significant than
the gain which the partial sums attack achieves in the same case.

After two sets were checked, we expect that for each value of (k50, k57, k510),
only a few values of (k513, k̄40) are not discarded. Hence, instead of performing
the third and the fourth steps of the attack by computing convolutions, we can
simply directly perform each of them for each of the remaining candidate subkeys.
This reduces the complexity of the third step to 240 additions and the complexity
of the fourth step to 232 additions.

Attack that examines six sets of 232 plaitexts. By continuing the reasoning in the
same manner, we see that the complexity of considering six sets of 232 ciphertexts
and computing the XOR of the values x4

0 that correspond to them, is about

240 ·
((

16 + 32

7
+ 4 + 6

)
+

(
16 + 32

7
+ 4 + 1

)
+

(
16 + 32

7
+ 1

)
+

(
16

7
+ 1

)
+ 1

)

≈ 40.8 · 240 ≈ 245.4 additions.

Attack that examines two sets of 232 plaitexts. If we consider two sets of 232
ciphertexts and examine 4 different bytes (as was suggested by Tunstall [37] for
the partial sums attack), then we may begin with checking the XOR of both sets
at the byte x4

0, which requires 240(16.9 + 11.9) additions as was described above.
Then, we must move to another byte, and it seems that we have to pay a ‘full



20 O. Dunkelman et al.

price’ again. However, note that after the first two filterings, for each value of
(k50, k

5
7, k

5
10) we are left with one value of k513 on average. As these four subkey

bytes are reused in the examination of the XOR in the byte x4
5 (along with a

different byte from k̄4), we can replace the third step by computing the sum
directly for each remaining value of k513 and replace the fourth step by computing
the sum directly for each remaining value of (k513, k̄41). This reduces the complexity
of each of these two steps to 240 additions. When we examine the second set of
232 ciphertexts at the byte x4

5, the complexity of the fourth step can be further
reduced to 232 additions, since for any value of (k50, k57, k510) we are left with one
value of (k513, k̄41) on average.

Continuing in the same manner, we see that the complexity of considering
two sets of 232 ciphertexts and computing the XOR of the values x4

0,5,10,15 that
correspond to them, is about

240 ·
((

16 + 32

7
+ 4 + 6

)
+

(
16 + 32

7
+ 4 + 1

)
+

(
16 + 32

7
+ 1 + 1

)
+

(
16 + 32

7
+ 1

)
+

(
16

7
+ 1

)
+

(
16

7
+ 1

)
+ 1

)
≈ 62.8 · 240 ≈ 246 additions.

Attack that examines one set of 232 plaintexts. As was explained in Section 2.3,
in this case we examine each byte with only a single set of ciphertexts, and
thus, we do not obtain information that can be reused in other computations.
Therefore, the complexity of our attack in this case is 16 · 16.9 · 240 = 248.1

addition operations, which is 16 times the complexity of checking a single set
of ciphertexts (like in the partial sums and the Todo-Aoki attacks with only a
single set of 232 ciphertexts examined).

Alternative Way of Performing the First Step. Recall that at the first
step we are given a list A of 232 binary indices which correspond to (c0, c1, c2, c3)
and our goal is to compute the 224 entries of the list A1 which corresponds to
triples of the form (a1, c2, c3) where a1 = S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1), for all values
of (k0, k1). We may divide this step into two sub-steps as follows:

– Step 1.1: At this sub-step, we guess the subkey k0 and update the list A
into a list A0 of 232 binary indices that correspond to (a0, c1, c2, c3), where
a0 = S0(c0 ⊕ k0). The complexity of this step is about 232 · 28 = 240 S-box
computations.

– Step 1.2: At this sub-step, performed for each guess of k0, our goal is to
replace the list A0 with a list of size 224 that corresponds to the values
(a1, c2, c3) where a1 = a0 ⊕ S1(c1 ⊕ k1), for each value of k1. This task is
exactly the same as the task handled at the second and third steps of our
attack described above, and hence, it can be performed in exactly the same
way. Specifically, the convolution we have to compute is

A1[k0, k1][a1, c2, c3] =
(
(χ̄1

k0,c2,c3 ∗ Ī
1)(a1, k1)

)
mod 2, (8)



Partial Sums Meet FFT: Improved Attack on 6-Round AES 21

where

χ̄1
k0,c2,c3(a0, c1) = 1(A0(a0, c1, c2, c3) = 1), and Ī1(x, y) = 1(x = S1(y)).

Like in the second step of our attack described above, we can precompute
one FFT and perform the computation of 7 FFTs in parallel. Hence, the
complexity of this sub-step is 32/7 · 240 additions.

The alternative version of the attack is present in Algorithm 4.

Algorithm 4 Low-memory version of the attack.
1: Input: Array A of bits such that the jth value of A denotes the parity of ciphertext

j
2: for all k0 do
3: Declare an empty 1D bit-array A0 of size 232; ▷ 232 memory
4: for all c0, c1, c2, c3 do
5: a0 ← S0(c0 ⊕ k0)
6: A0[a0, c1, c2, c3]← A[c0, c1, c2, c3]

7: Declare an empty 2D bit-array A1 of size 28 × 224; ▷ 232 memory
8: for all c2, c3 do
9: for all k1, a1 do

10: A1[k1][a1, c2, c3]←
⊕
a0,c1

A0[a0, c1, c2, c3] · 1(a0 ⊕ S1(c1 ⊕ k1) = a1)

11: for all k1 do
12: Declare an empty 2D bit-array A2 of size 28 × 216;
13: for all c3 do
14: for all k2, a2 do
15: A2[k2][a2, c3]←

⊕
a1,c2

A1[k1][a1, c2, c3] · 1(a1 ⊕ S2(c2 ⊕ k2) = a2)

16: for all k2 do
17: Declare an empty 2D bit-array A3 of size 28 × 28;
18: for all k3, a3 do
19: A3[k3][a3]←

⊕
a2,c3

A2[k2][a2, c3] · 1(a2 ⊕ S3(c3 ⊕ k3) = a3)

20: for all k3 do
21: Declare an empty 1D byte-array A4 of size 28;
22: for all k4 do
23: A4[k4]←

⊕
a3

A3[k3][a3] · S−1(a3 ⊕ k4)

24: for all k4 do
25: if A4[k4] ̸= 0 then
26: k0, k1, k2, k3, k4 is not a valid key candidate

Formally, the complexity of the alternative way is higher than the complexity
of the original way of performing this step described above — 39/7 · 240 additions
instead of 16/7 · 240 additions. As a result, the complexity of the attack with



22 O. Dunkelman et al.

two sets of 232 plaintexts becomes about 82.5 · 240 ≈ 246.4 additions (which is
the complexity we mention in the introduction). However, this alternative has
several advantages:

1. Lower memory complexity. In the attack described above, the most memory-
consuming part is the first step which requires a list of 240 bit entries. Thus,
its memory complexity is about 233 128-bit blocks.
The alternative way reduces the memory complexity of the first step to
232 bits. We observe that all other steps of the attack can be performed
with at most 234 bits of memory. Indeed, all ciphertexts can be transformed
immediately into entries of the table A whose size is 232 bits. The table A0

(which should be stored for one value of k0 at a time) requires 232 bits. The
subsequent tables used in the attack are smaller, and the arrays used in the
FFTs are also smaller (as all FFTs are performed on 16-bit or 8-bit functions).
By checking two sets of 232 plaintexts in parallel, we reduce the number of
remaining keys after examining the byte x4

0 to 224, and then the storage of
these keys requires less than 230 bits of memory. Therefore, the total memory
complexity of the attack is reduced to about 2 · 232 + 232 < 234 bits, i.e., 227
128-bit blocks.

2. Lower average-case time complexity. While it is common to measure the
complexity of attacks using the worst-case scenario (e.g., the complexity of
exhaustive search over an n-bit key is computed as 2n, although on average,
the attack finds the key after 2n−1 trials), the average-case complexity has
clear practical significance. In the partial sums attack and in the Todo-Aoki
attack, the average-case time complexity is half of the worst-case complexity,
since the attack is applied for 28 ‘external’ guesses of a subkey, and the right
key is expected to be found after trying half of these subkeys. In the original
version of our attack, since the last step is performed for all keys in parallel,
our average-case complexity is no better than the worst-case complexity, and
so, we lose a factor of 2. In the alternative way described here, the attack is
performed for each guess of the subkey k50, and hence, we regain the factor 2
loss in the average-case complexity.

3. Practical effect on the time complexity. The lower memory complexity of
the alternative variant of the attack is expected to have an effect on the
time complexity as well. Indeed, our experiments show that the memory
accesses to the 240-bit sized array slow down our attack considerably. As the
alternative variant requires only 234 bits of memory, it may be even faster in
practice than the original variant.

The alternative way of performing the first step is used in our improved attack
on the full MISTY1 [26] presented in Appendix A.

3.4 Our Technique vs. Partial Sums and the Todo-Aoki Technique

In this section, we present a comparison between our new technique and the
partial sums technique and the Todo-Aoki FFT-based technique. First, we discuss
the case of 6-round AES, and then we discuss applications to general ciphers.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 23

The case of 6-round AES. Here, we considered three attacks:

1. Attack with 6 structures of 232 chosen plaintexs. The partial sums attack
requires 251.3 S-box computations, the Todo-Aoki attack requires 250.8 addi-
tions, and our attack requires 245.4 additions. Hence, our attack is at least
32 times faster than both previous attacks. In the experiments presented in
Section 3.5, the advantage of our attack was even bigger.

2. Attack with 2 structures of 232 chosen plaintexs. The partial sums attack
requires 251.7 computations, the Todo-Aoki attack requires 251.2 additions,
and our attack requires 246 additions. Hence, our attack is at least 32 times
faster than both previous attacks.

3. Attack with 1 structure of 232 chosen plaintexs. The partial sums attack
requires 254 S-box computations, the Todo-Aoki attack requires 253 additions,
and our attack requires 248.1 additions. Hence, our attack is almost 32 times
faster than both previous attacks.

General comparison. The speedup of our technique over the partial sums
technique stems from two advantages: First, we replace key guessing steps with
computation of convolutions. Second, we may pack the computation of several
convolutions in a single convolution computation. The effect of the first advantage
depends on the number of subkey bits guessed at the most time consuming steps
of the attack: For a 4-bit subkey guess our gain is negligible, for an 8-bit key guess
we get a speedup by a factor of more than 10 (without using packing), and for a
32-bit key guess our speedup factor may be larger than 225 as is demonstrated in
our attack on CLEFIA [23] presented in Appendix B. The effect of the second
advantage is also dependent on the number of guessed subkey bits (since it
determines the size of the functions whose convolution we have to compute,
which in turn affects the number of convolutions we may pack together). Usually,
between 4 and 8 convolutions can be packed together, which leads to a speedup
by a factor of at least 4. Interestingly, when the number of guessed subkey bits
is small (e.g., 4 bits), more convolutions can be packed together, and hence, a
stronger effect of the second advantage compensates for a weaker effect of the
first advantage.

The speedup of our technique over the Todo-Aoki technique stems from two
advantages: First, our attack provides us with more flexibility, meaning that
instead of replacing the whole attack by a single FFT-based step, we can consider
each step (or group of steps) of the partial sums procedure separately and decide
whether it will be better to perform it with key guessing or with an FFT-based
technique. Second, we may pack the computation of several convolutions in a
single convolution computation. The first advantage allows us to make use of
partial knowledge of the subkey. A particular setting in which this advantage
plays a role is analysis of additional plaintext sets after one set was used to
obtain some key filtering. While our technique and the partial sums technique
can make use of this partial knowledge, the Todo-Aoki technique must repeat
the entire procedure. In the case of 6-round AES, this makes our attack 6 times
faster than the Todo-Aoki attack without using packing (see Appendix D). The



24 O. Dunkelman et al.

second advantage provides a speedup by a factor of at least 4, as was described
above. Yet another advantage that is worth mentioning is that while the Todo-
Aoki technique applies the FFT to functions in high dimensions (e.g., dimension
72 in the Todo-Aoki attack on 12-round CLEFIA-128 presented in [36]), our
technique applies the FFT to functions of a significantly lower dimension (e.g.,
dimension 16 in our improved attack on 12-round CLEFIA-128 presented in
Appendix B). Computation of the FFT in high dimensions is quite cumbersome
from the practical point of view, and hence, avoiding this is a practical advantage
of our technique. Moreover, higher dimension FFTs require additions with more
precision; without using packing the Todo-Aoki attack on 6-round AES requires
64-bit additions while our attack can use 32-bit additions.

Two advantages of the partial sums technique and the Todo-Aoki technique
over our technique are a somewhat lower memory complexity (about 227 128-bit
blocks for partial sums and about 231 128-bit blocks for Todo-Aoki) and the fact
that on average, the attack finds the right key after trying half of the possible keys
while our attack must try all keys. However, both advantages can be countered
by implementing the first step of our attack in the alternative way presented in
Section 3.3, which makes the memory complexity equal to that of the partial
sums attack and regains the ‘lower average-case complexity’, as was explained in
Section 3.3.

3.5 Experimental Verification of Our Attack on 6-round AES

We have experimentally verified our attack on Amazon’s AWS infrastructure.
For comparison, we also implemented the partial sums attack of [22] and the
Todo-Aoki attack [36]. All implementations in C are attached to the submission
as part of the supplementary material, and will be made publicly available. We
note that the FFT implementations were based on the “Fast Fast Hadamard
Transform” library [3].

The AWS instances used in the experiment. For each attack we had to pick
the most optimal AWS instance, depending on the computational and memory
requirements.

The partial sums attack is quite easy to parallelize, and its memory require-
ment is low. (Specifically, the memory requirement is 234 bits, or 16GB, as
was shown above. Furthermore, only an 232-bit list that stores the parities of
(c0, c1, c2, c3) combinations should be stored in a memory readable by all threads).
As a result, we took the Intel-based instance (that has the AES-NI instruction
set) with the maximal number of cores per US$. At the time the experiment was
performed (January, 2023) this was the m6i.32xlarge instance.7

For our attack (in its original variant) and for the Todo-Aoki attack, we
needed instances that support a large amount of memory. The optimal choice
for our attack was the same instance as the one for the partial sums attack —

7 The m6i.32xlarge instance has 128 Intel-based vCPUs and 512GB of RAM.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 25

the m6i.32xlarge instance. For the Todo-Aoki attack, we needed 64 GB of RAM
for each thread of the attack. Hence, the optimal instance we found was the
r6i.32xlarge instance.8 We note that in the Todo-Aoki attack, we do not exploit
all the vCPUs, but we do exploit the whole memory space (of 1 TB of RAM).

Experimental results. The partial sums attack took 4859 minutes to complete,
and its cost was 497 US$ (we used the US-east-2 region (Ohio) which offered
the cheapest cost-per-hour for a Linux machine of 6.144 US$, before VAT). The
Todo-Aoki approach took 3120 minutes to complete, and its cost was 418 US$
(at 8.064 US$ per hour). We note that due to the costs of these attacks, they
were run only once, but none of those attacks (nor our attack) is expected to
show high variance in the running time.

To evaluate the running time of our attack, we ran Algorithm 3 and Algo-
rithm 4 ten times each. In both algorithms, we used only 4 FFTs packed in
parallel at each of Steps 1,2,3 and 8 FFTs packed in parallel at Step 4, for ease of
implementation. The average running time of Algorithm 3 is 90 minutes, and its
average cost is 9.21 US$. The average running time of Algorithm 4 is 48 minutes
and its cost is 5 US$. Hence, in the experiment our attack was 83-times cheaper
and 65 times faster than both partial sums and Todo-Aoki’s attacks.

4 Improved Attack on Kuznyechik

The flexibility of our techniques improves attacks against various other ciphers
that use the partial sums technique. In this section, we demonstrate this by
presenting an attack on 7-round Kuznyechik, which improves over the multiset-
algebraic attack on the cipher presented in [12] by a factor of more than 80. In
the supplementary material, we present improved attacks on the full MISTY1
(App. A), and variants of CLEFIA-128 with 11 and 12 rounds (App. B). Our
attacks on Kuznyechik and MISTY1 are the best known attacks on these ciphers.

4.1 The structure of Kuznyechik

The block cipher Kuznyechik [19] is the current encryption standard of the
Russian Federation. It is an SPN operating on a 128-bit state organized as a 4×4
array of 8-bit words. The key length is 256 bits, and the encryption process is
composed of 9 rounds. Each round of Kuznyechik is composed of three operations:

Substitution. Apply an 8-bit S-box independently to every byte of the state;
Linear Transformation. Multiply the state by an invertible 16-by-16 matrix
M over GF (28);
Key Addition. XOR a 128-bit round key computed from the secret key to
the state.

An additional key addition operation is applied before the first round. As proper-
ties of the key schedule of Kuznyechik are not used in this paper, we omit its
description and refer the reader to [19].
8 The r6i.32xlarge instance has 128 Intel-based vCPUs and 1024GB of RAM.



26 O. Dunkelman et al.

4.2 The multiset-algebraic attack of Biryukov et al.

In [12], Biryukov et al. presented an algebraic attack on up to 7 rounds of
Kuznyechik. The attack is based on the following observation:

Lemma 3. Consider the encryption by 4-round Kuznyechik of a set of 2127

distinct plaintexts, P 0, P 1, . . . , P 2127−1, which form a subspace of degree 127 of
{0, 1}128. Then the corresponding ciphertexts satisfy

⊕2127−1
i=0 Ci = 0.

The attack uses Lemma 3 in the same way as the Square attack on AES uses
Lemma 1. The adversary asks for the encryption of the entire codebook of 2128
plaintexts. Then he guesses a single byte of the whitening subkey and for each
guess, he finds a set of 27 values in that byte such that the corresponding values
after the substitution operation form a 7-dimensional subspace of {0, 1}8. By
taking these values along with all 2120 possible values in the other 15 bytes, the
adversary obtains a set of 2127 plaintexts, whose corresponding intermediate
values after one round satisfy the assumption of Lemma 3.

By the lemma, the XOR of the corresponding values at the end of the 5’th
round is zero. In order to check this, the adversary guesses some subkey bytes in
the last two rounds and partially decrypts the ciphertexts to compute the XOR
in a single byte at the end of the 5’th round. The situation is similar to the AES,
with the ‘only’ difference that since the linear transformation is a 16-by-16 matrix
(and not a 4-by-4), one has to guess all 16 bytes of the last round subkey. The
adversary guesses the last round subkey and one byte of the equivalent subkey of
the penultimate round, partially decrypts the ciphertexts, and checks whether
the values XOR to zero. Biryukov et al. suggested to significantly speed up this
procedure using partial sums. Borrowing the notation from Section 2.3, the value
of the byte in which the XOR should be computed can be written as:

x5
0 = S−1(k̄50 ⊕ e0·S−1(C0 ⊕ k60)⊕ e1 · S−1(C1 ⊕ k61)⊕ . . .

⊕ e14 · S−1(C14 ⊕ k614)⊕ e15 · S−1(C15 ⊕ k615)),
(9)

where the constants e0, e1, . . . , e15 are obtained from the matrix M−1 and the
multiplication is defined over GF (28). In the attack of Biryukov et al., the sum
in the right hand side of (9) is computed using 16 steps of partial sums, where
we begin with a list of 2128 binary indices which indicate the parity of occurrence
of each ciphertext value, and at each step, another subkey byte k6i is guessed and
the size of the list is reduced by a factor of 28. Like in the partial sums attack on
the AES, the two outstanding steps are the first step in which two subkeys are
guessed and the list is squeezed to a list of size 2120, and the last step in which
the XOR of 28 values is computed under the guess of 17 subkey bytes.

The complexity of each step is 2144 S-box computations, and hence, the
complexity of the entire procedure is 2148 S-box computations. Since the procedure
provides only an 8-bit filtering, the adversary has to repeat it for each of the 16
bytes (and for each guess of the subkey byte at the first round). Therefore, the
total time complexity of the attack is 28 · 16 · 2148 = 2160 S-box computations,
which are equivalent (according to [12]) to 2154.5 encryptions.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 27

The authors of [12] present also an attack on 6-round Kuznyechik. In this
attack, they use the fact that for 3-round Kuznyechik, taking a vector space of
degree 120 of plaintexts (instead of degree 127 above) is sufficient for guaranteeing
that the ciphertexts XOR to zero. Hence, in order to attack 6-round Kuznyechik,
an adversary can ask for the encryption of 2120 plaintexts which are equal in a
single byte and assume all possible values in the other bytes. The corresponding
intermediate values after one round form a vector space of degree 120, and hence,
the corresponding intermediate values after 4 rounds XOR to zero. This allows
applying the same attack like above, where the overall complexity is reduced by a
factor of 28 since there is no need to guess a subkey byte at the first round. Hence,
the overall data complexity is 2120 chosen plaintexts and the time complexity is
2146.5 encryptions.

The attacks of [12] are the best known attacks on reduced-round Kuznyechik.

4.3 Improvement using our technique

Just like for AES, we can replace each step of the partial sums procedure performed
in [12] by computing a convolution. We can compute several convolutions in
parallel by embedding into Z as well as precompute two FFTs required for the
first step and one FFT required for each subsequent step. However, we can only
compute 6 FFTs in parallel rather than 7, as we need 2120 values to be correct
in the first step. This requires s ≥ 8 and cannot accommodate 7 parallel FFTs;
instead we use 6 parallel FFTs with s = 9 which guarantees no overflow. The
complexity of the first step is reduced to 2120 ·16 ·216/6 = 8/3 ·2136 additions and
the complexity of the subsequent steps is reduced to 2120 ·2 ·16 ·216/6 = 16/3 ·2136
additions. At the last step (which computes the XOR of the values) we have to
compute FFTs for the 8 bits of the SBox individually, but we use FFTs on 8-bit
functions (instead of 16-bit ones), we can pack 8 computations in parallel, and we
can precompute an additional FFT and reuse it for the computations of the eight
bits. Hence, its amortized complexity is 2128 · (1+(1/8)) ·8 ·28 = 9 ·2136 additions.
We conclude that the analysis of a single set of 2127 ciphertexts, with a given
guess of the whitening key, takes (8/3 + 14 · 16/3 + 9)2136 = 259/3 · 2136 = 2142.4

additions.
Instead of examining the other 15 bytes using the same set of 2127 cipher-

texts, we may construct additional sets of 2127 ciphertexts by taking other
127-dimensional subspaces at the end of the first round (which is possible since
we ask for the encryption of the entire codebook and guess a subkey byte at the
first round) and examining their XOR at the same byte at the end of the 5’th
round. Like in the case of AES, when we examine the XOR at the same byte for
a second set of ciphertexts, the complexity of the last step becomes negligible (as
it is performed only for a few possible values of the subkey). When a third set
of ciphertexts is examined, the two last steps become negligible, etc. By using
seven sets of 2127 ciphertexts and examining each of them in three bytes, the



28 O. Dunkelman et al.

complexity of the attack becomes

28 · 2136 · 1/3 ·
(
(259 + 232 + 216 + 200 + 184 + 168 + 152)+

+ (136 + 136 + 120 + 104 + 88 + 72 + 56) + (40 + 40 + 24 + 8)
)

= 2144 · 745 = 2153.5

additions, which are equivalent to about 2148 encryptions – a speedup by a factor
of more than 80 compared to the attack of [12].

The attack on 6-round Kuznyechik can be improved similarly. The only
difference is that we cannot use additional sets of plaintexts without increasing
the data complexity. Hence, for the same data complexity, the time complexity
is reduced to 2146.4 additions, which are equivalent to 2140.9 encryptions – a
speedup by a factor of more than 40.

5 Summary

In this paper we showed that the partial sums technique of Ferguson et al. [22]
and the FFT-based technique of Todo and Aoki [36] can be combined into a new
technique that allows enjoying ‘the best of the two worlds’. The combination
improves over the best previously known attacks on 6-round AES by a factor of
more than 32, as we verified experimentally.

Furthermore, the new technique allows improving other attacks — most
notably, we improve the best known attack against Kuznyechik [19] by a factor
of more than 80, the best known attack against the full MISTY1 [26] by a factor
of 6, and the partial sums attacks against reduced-round CLEFIA [23] by varying
factors (including a huge factor of 230, on 12-round CLEFIA-128). We expect
that our new technique will be used to improve other cryptanalytic attacks, and
will (again) highlight the strength and potential of FFT-based techniques in
improving cryptanalytic attacks.

Acknowledgements

The research was conducted in the framework of the workshop ‘New directions in
the cryptanalysis of AES’, supported by the European Research Council under
the ERC starting grant agreement n. 757731 (LightCrypt). The authors thank
all the participants of the workshop for valuable discussions and suggestions.

The first, second and sixth authors were supported in part by the Center for
Cyber, Law, and Policy in conjunction with the Israel National Cyber Directorate
in the Prime Minister’s Office and by the Israeli Science Foundation through
grants No. 880/18 and 3380/19. The third and the fifth authors were supported by
the European Research Council under the ERC starting grant agreement n. 757731
(LightCrypt) and by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office. The fourth author is partially supported by ANR grants
ANR-20-CE48-001 and ANR-22-PECY-0010.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 29

References

1. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology, NIST FIPS PUB 197, U.S. Department of Commerce (Nov 2001)

2. Aldà, F., Aragona, R., Nicolodi, L., Sala, M.: Implementation and improvement
of the partial sum attack on 6-round aes. In: Physical and Data-Link Security
Techniques for Future Communication Systems. pp. 181–195. Springer (2016)

3. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Fast fast
hadamard transform, available at https://github.com/FALCONN-LIB/FFHT

4. Ankele, R., Dobraunig, C., Guo, J., Lambooij, E., Leander, G., Todo, Y.: Zero-
correlation attacks on tweakable block ciphers with linear tweakey expansion.
Cryptology ePrint Archive, Report 2019/185 (2019), https://eprint.iacr.
org/2019/185

5. Bao, Z., Guo, C., Guo, J., Song, L.: TNT: how to tweak a block cipher. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 12106, pp. 641–673. Springer (2020)

6. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 315–342. Springer,
Heidelberg (Apr 2015)

7. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recov-
ery attacks on reduced-round AES with practical data and memory complexities. J.
Cryptol. 33(3), 1003–1043 (2020)

8. Bar-On, A., Keller, N.: A 270 attack on the full MISTY1. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 435–456. Springer, Heidelberg
(Aug 2016)

9. Bariant, A., Leurent, G.: Truncated boomerang attacks and application to AES-
based ciphers. Cryptology ePrint Archive, Report 2022/701 (2022), https://
eprint.iacr.org/2022/701

10. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with ap-
plications to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) Advances in
Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
III. Lecture Notes in Computer Science, vol. 12172, pp. 329–358. Springer (2020)

11. Biryukov, A.: The boomerang attack on 5 and 6-round reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard - AES, 4th
International Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Revised
Selected and Invited Papers. Lecture Notes in Computer Science, vol. 3373, pp.
11–15. Springer (2004)

12. Biryukov, A., Khovratovich, D., Perrin, L.: Multiset-algebraic cryptanalysis of
reduced Kuznyechik, Khazad, and secret SPNs. IACR Trans. Symm. Cryp-
tol. 2016(2), 226–247 (2016), https://tosc.iacr.org/index.php/ToSC/
article/view/572

13. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear
cryptanalysis with FFT and improved attacks on ISO standards Camellia and
CLEFIA. In: Lange, T., Lauter, K., Lisonek, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 306–323. Springer, Heidelberg (Aug 2014)

14. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible
possible. J. Cryptol. 31(1), 101–133 (2018)

https://github.com/FALCONN-LIB/FFHT
https://eprint.iacr.org/2019/185
https://eprint.iacr.org/2019/185
https://eprint.iacr.org/2022/701
https://eprint.iacr.org/2022/701
https://tosc.iacr.org/index.php/ToSC/article/view/572
https://tosc.iacr.org/index.php/ToSC/article/view/572


30 O. Dunkelman et al.

15. Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity of mat-
sui’s linear cryptanalysis. In: Nam, K., Rhee, G. (eds.) Information Security and
Cryptology - ICISC 2007, 10th International Conference, Seoul, Korea, November
29-30, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4817, pp. 77–88.
Springer (2007)

16. Cui, J., Hu, K., Wang, Q., Wang, M.: Integral attacks on Pyjamask-96 and round-
reduced Pyjamask-128. In: Galbraith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161,
pp. 223–246. Springer, Heidelberg (Mar 2022)

17. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: Biham, E.
(ed.) Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel,
January 20-22, 1997, Proceedings. Lecture Notes in Computer Science, vol. 1267,
pp. 149–165. Springer (1997)

18. Demirbaş, F., Kara, O.: Integral characteristics by keyspace partitioning. Designs,
Codes and Cryptography 90(2), 443–472 (2022)

19. Dolmatov, V., e.: Gost r 34.12-2015: Block cipher “kuznyechik”. https://www.rfc-
editor.org/rfc/rfc7801.html (2016)

20. Dunkelman, O., Keller, N.: Practical-time attacks against reduced variants of misty1.
Designs, Codes and Cryptography 76(3), 601–627 (2015)

21. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang
attack. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT
2020 - 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12105, pp. 280–309. Springer (2020)

22. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (Apr 2001)

23. Katagi, M.: The 128-bit blockcipher clefia. https://www.rfc-editor.org/rfc/rfc6114
(2011)

24. Li, L., Jia, K., Wang, X., Dong, X.: Meet-in-the-middle technique for truncated
differential and its applications to CLEFIA and camellia. In: Leander, G. (ed.) Fast
Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey,
March 8-11, 2015, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 9054, pp. 48–70. Springer (2015)

25. Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA
block cipher. In: Jung, S., Yung, M. (eds.) WISA 11. LNCS, vol. 7115, pp. 28–39.
Springer, Heidelberg (Aug 2012)

26. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) Fast
Software Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January
20-22, 1997, Proceedings. Lecture Notes in Computer Science, vol. 1267, pp. 54–68.
Springer (1997)

27. Maximov, A., Ekdahl, P.: New circuit minimization techniques for smaller and
faster AES SBoxes. IACR TCHES 2019(4), 91–125 (2019), https://tches.
iacr.org/index.php/TCHES/article/view/8346

28. Nguyen, P.H., Wei, L., Wang, H., Ling, S.: On multidimensional linear cryptanalysis.
In: Steinfeld, R., Hawkes, P. (eds.) Information Security and Privacy - 15th Aus-
tralasian Conference, ACISP 2010, Sydney, Australia, July 5-7, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6168, pp. 37–52. Springer (2010)

29. Nguyen, P.H., Wu, H., Wang, H.: Improving the algorithm 2 in multidimensional
linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) Information Security and
Privacy - 16th Australasian Conference, ACISP 2011, Melbourne, Australia, July

https://tches.iacr.org/index.php/TCHES/article/view/8346
https://tches.iacr.org/index.php/TCHES/article/view/8346


Partial Sums Meet FFT: Improved Attack on 6-Round AES 31

11-13, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6812, pp. 61–74.
Springer (2011)

30. Rahman, M., Saha, D., Paul, G.: Boomeyong: Embedding yoyo within boomerang
and its applications to key recovery attacks on AES and pholkos. IACR Trans.
Symmetric Cryptol. 2021(3), 137–169 (2021)

31. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
Feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (Aug 2013)

32. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher
CLEFIA (extended abstract). In: Biryukov, A. (ed.) Fast Software Encryption,
14th International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28,
2007, Revised Selected Papers. Lecture Notes in Computer Science, vol. 4593, pp.
181–195. Springer (2007)

33. Todo, Y.: FFT-based key recovery for the integral attack. Cryptology ePrint Archive,
Report 2014/187 (2014), https://eprint.iacr.org/2014/187

34. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.J.B.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg
(Aug 2015)

35. Todo, Y.: Integral cryptanalysis on full MISTY1. Journal of Cryptology 30(3),
920–959 (Jul 2017)

36. Todo, Y., Aoki, K.: FFT key recovery for integral attack. In: Gritzalis, D., Kiayias,
A., Askoxylakis, I.G. (eds.) CANS 14. LNCS, vol. 8813, pp. 64–81. Springer,
Heidelberg (Oct 2014)

37. Tunstall, M.: Improved “partial sums”-based square attack on AES. In: Proceedings
of the International Conference on Security and Cryptography - SECRYPT, (ICETE
2012). pp. 25–34. INSTICC, SciTePress (2012)

38. Yi, W., Chen, S., Wei, K.: Zero-correlation linear cryptanalysis of reduced round
aria with partial-sum and fft. arXiv preprint arXiv:1406.3240 (2014)

39. Yi, W., Wu, B., Chen, S., Lin, D.: Improved integral and zero-correlation linear
cryptanalysis of CLEFIA block cipher. In: Chen, K., Lin, D., Yung, M. (eds.)
Information Security and Cryptology - 12th International Conference, Inscrypt
2016, Beijing, China, November 4-6, 2016, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 10143, pp. 33–46. Springer (2016)

Supplementary Material

A Improved Attack on the Full MISTY1

In this appendix we improve the best known attack on the full version of the
MISTY1 block cipher. The time complexity of the attack, presented in [8], is
improved by a factor of about 6.

A.1 The structure of MISTY1

MISTY1 [26] is a 64-bit block cipher with 128-bit keys designed in 1995 by Matsui
for Mitsubishi Electric. It is widely used in Japan (where it was recommended
for use by the Government CRYPTREC project between 2003 and 2013) and is
recognized internationally as an ISO standard. In addition, a slight modification

https://eprint.iacr.org/2014/187


32 O. Dunkelman et al.

of MISTY1 called KASUMI is used by millions of customers worldwide as the
cipher of the 3G cellular networks.

MISTY1 has an 8-round recursive Feistel structure, where the round function
FO is in itself a 3-round Feistel construction, whose F-function FI is in turn a 3-
round Feistel construction using 7-bit and 9-bit invertible S-boxes called S9 and
S7. In addition, after every two rounds a key-dependent linear function FL is
applied independently to each of the two halves of the state. As the description
of the cipher is somewhat complex, we present below the details required for our
attack and refer the reader to [26] for the full details.

MISTY1 was the subject of dozens of cryptanalytic attacks (see, e.g., [8] and
the references therein). Some of these attacks use the partial sums technique
(e.g., [8,20,35]) and it seems that all of them can be improved using our technique.
We present an improvement of the best known attack on the full MISTY1, and
leave other improvements for further research.

A.2 Previous attacks on the full MISTY1

In the first 20 years since its design, MISTY1 withstood numerous cryptanalytic
attempts. At Crypto’15, Todo [34] presented the first attack on the full MISTY1,
based on a novel variant of the integral attack called division property. The attack
is based on the following (hard to prove) result:

Lemma 4. Consider the encryption by 6-round MISTY1 of a set of 263 distinct
plaintexts, P 0, P 1, . . . , P 263−1, which form a subspace of degree 63 of {0, 1}64 of
a specific form. Then the corresponding ciphertexts satisfy

⊕2127−1
i=0 [Ci]57−63 = 0

(i.e., the 7 most significant bits of the XOR are equal to zero).

In order to use Lemma 4 to attack the full 8-round MISTY1, the adversary asks
for the encryption of almost the entire codebook and partially guesses the subkey
of the initial FL layer, which allows him to find a set of 263 plaintexts whose
corresponding intermediate values after the initial FL layer satisfy the assumption
of Lemma 4. By the lemma, the XOR of the corresponding intermediate values
at the end of the 6’th round equals 0 in the 7 most significant bits. To check this,
the adversary partially guesses the subkey of the 8’th round and of the FL layers
FL7, FL9, FL10, and partially decrypts the ciphertexts to the point where the
XOR can be checked.

The main difficulty in this approach is that the amount of key material that
should be guessed is very large. Todo [34] showed that the complexity can be
reduced using the partial sums technique, and obtained an attack with time
complexity of 2107.3 encryptions.

In [8], Bar-On and Keller showed that the complexity can be significantly
reduced to 269.5 encryptions by a very complex procedure, which incorporates
into the partial sums attack a ‘meet in the middle’ ingredient along with other
ingredients. As the description of the attack is rather complex, we refer the reader
to [8] for the complete description of the attack, and present only the two most
time consuming steps which essentially determine the time complexity of the



Partial Sums Meet FFT: Improved Attack on 6-Round AES 33

attack. These two steps, which are Steps 2.1 and 2.2 of the algorithm described
in [8, Section 4.4] and are demonstrated in Figure 5 and Table 4 there, can be
summarized as follows:

– Step 2.1: At the input of the step, the adversary possesses a list of 225 binary
indices, which correspond to 16 bits at the input of FI8,1 (before the addition
of the subkey K8) and 9 bits of the second half of the state. The adversary
guesses the 16-bit subkey K8, computes the first two rounds of the function
FI8,1, and reduces the list to a new list of 218 indices which correspond to
9 bits of the input to the third round of FI8,1 and an updated version of
the 9 bits of the second half which incorporates XOR with the output of the
second round of FI8,1. In addition, a similar operation squeezes a list of 223
binary indices which correspond to 16 bits at the input of FI8,1 and 7 bits of
the second half of the state, to a list of 216 indices.

– Step 2.2: The adversary guesses the 9-bit equivalent subkey EKR
5 , computes

the third round of FI8,1, and reduces the list to a new list of 29 indices which
correspond to 9 bits of the input to the function FI8,3 (before the XOR
with a subkey). In addition, a similar operation squeezes a list of 216 binary
indices, to a list of 27 indices.

According to the analysis of [8], Step 2.1 requires 225 · 216 + 223 · 216 = 241.3

S-box computations (where we simply multiply the number of guessed subkey
bits by the size of the lists), and Step 2.2 requires 216 · 29 · (214 + 216) = 241.3

S-box computations (where an additional trick allows ‘paying’ 214 instead of 218
for the size of the larger list). The two steps are performed for each guess of the
32-bit subkey used in FL10, and thus, the overall complexity of the attack is
about 232 · 2 · 241.3 = 273.3 S-box computations, which are equivalent to about
269.5 encryptions.

A.3 Improvement using our technique

We show that Steps 2.1 and 2.2 presented above can be significantly improved
using our technique.

First, we consider Step 2.1. We divide this step into two sub-steps. At the first
sub-step, we guess 9 bits of the subkey K8 and compute the first round of FI8,1
for all 225 values in the list. This partial computation does not allow reducing
the size of the list, but we update the list in a way that fully incorporates the
effect of the computed round on the entries. As the complexity of this sub-step is
29 · 225 = 234 S-box computations, there is no further need to speed it up.

At the second sub-step, for each guess made at the first sub-step, we guess
the 7 remaining bits of the subkey K8, compute the second round of FI8,1 for all
values of the list, and reduce the size of the list to 218. Basically, the complexity of
this sub-step is 27 · 29 · 225 = 241 S-box computations. However, we may perform
it by computing a convolution, exactly like in the second and the third steps
of the attack on AES. Here, the convolution we have to compute is I ∗ χ(a, k),
where a denotes the updated value of the 7 bits taken from the second half of



34 O. Dunkelman et al.

the state, k denotes the guessed 7-bit subkey, and the convoluted functions are
I(x, y) = 1(x = S7(y)), and χ(x, y) which is the indicator function of the list,
like in the attack on AES. We may pack 8 FFT’s into the same computation
(and actually, even more than 8, since the FFT is computed over 14 bits and
not over 16 bits), and we also can precompute the FFT of I(x, y). Hence, the
complexity of this step is 29 · 211 · 2 · 14 · 214/8 = 235.8 additions. The complexity
of the second part of Step 2.1 (in which the same computation is performed for
a list of size 223) is smaller by a factor of 4, like in the attack of [8]. Therefore,
the complexity of Step 2.1 is reduced to about 236.3 additions (compared to 241.3

S-box computations in [8]).
Next, we consider Step 2.2. This step can be performed by computing a

convolution just like the second sub-step of Step 2.1. The only differences are that
the function I(x, y) is replaced by I ′(x, y) = 1(x = S9(y)), the function χ(x, y) is
updated to the corresponding list, and the convolution is performed for functions
I ′, χ : {0, 1}18 → {0, 1}. This time, packing 8 FFTs into the same computation
may be problematic (since the FFT is computed over 18 bits, instead of 16 bits),
but 4 FFTs can still be packed together easily. The complexity of this step is
216 · 2 · 18 · 218/4 = 237.2 additions. The complexity of the second part of Step 2.2
(in which the same computation is performed for a list of size 216) is smaller by
a factor of 4, like in the attack of [8]. Therefore, the complexity of Step 2.2 is
reduced to about 237.5 additions (compared to 241.3 S-box computations in [8]).

Overall, the complexity of Steps 2.1 and 2.2 is reduced to less than 238

additions. As Steps 1,2 of the attack of [8] contain two other steps, each taking
about 238 S-box computations (Steps 2.3 and 2.4+2.5), the overall complexity
of these steps is reduced to about 240 S-box computations. Recalling that these
steps are performed for each guess of the 32 subkey bits used in FL10, the
time complexity of the attack is 232 · 240 = 272 S-box computations, which are
equivalent to about 267 MISTY1 encryptions.

This reduces the complexity of the attack of [8] by a factor of about 6. We
note that in this case, the improvement is more modest than in other cases. The
reason for this is that the attack of [8] contains steps which do not use the partial
sums technique and whose complexity is not much lower than the complexity of
the most time consuming partial sums steps.

B Improved Attacks on Reduced-Round CLEFIA

In this appendix we present improved attacks on 11-round and 12-round CLEFIA
with 128-bit keys, which significantly improve previous attacks which used the
partial sums technique. Among the known attacks on 12-round CLEFIA, our
attack has the lowest time complexity, if encryption of the data is not taken
into account. We note that due to the high data complexity and to the fact
that there exist attacks faster than exhaustive key search on 13-round and 14-
round CLEFIA-128 (see [14,24] and the references therein), the impact of our
attacks on the security level of CLEFIA-128 is limited. The main purpose of
the presentation here is to demonstrate the huge advantage our technique can



Partial Sums Meet FFT: Improved Attack on 6-Round AES 35

provide over partial sums in cases where the amount of subkey bits guessed in
the most time consuming steps of the attack is large. In the case of 12-round
CLEFIA-128, 32 subkey bits are guessed at once, which allows us speeding up
the attack by a factor of about 230.

Our attack can be also used to improve the time complexity of the partial
sums attacks on 14-round CLEFIA-192 and on 15-round CLEFIA-256 presented
in [13,39], by a factor of more than 32. As the improvement is similar to other
applications of our technique, and since these attacks are superseded by other
attacks on the same variants of CLEFIA (see [14,24]), we omit the description.

B.1 The structure of CLEFIA

CLEFIA [32] is a block cipher developed in 2007 by Shirai et al. for the Sony
corporation. It is widely used in Japan (where it was recommended as a candidate
by the Government CRYPTREC project in 2013) and is recognized internationally
as an ISO standard.

CLEFIA is a generalized Feistel construction operating on a 128-bit state
organized as a vector of four 32-bit words. We denote the vector at the input
of round i by (W i

0,W
i
1,W

i
2,W

i
3) Keys of 128, 192, and 256 bits are supported

and the number of rounds is 18, 22, or 26 (for keys of 128, 192, and 256 bits,
repsectively). CLEFIA with an n-bit key is commonly called CLEFIA-n. At each
round of CLEFIA, the words W i

0,W
i
2 are fed into a round function (Fi,0 and

Fi,1, respectively), and the output of the round function is XORed to the next
word (W i

1 and W i
3, respectively). Then, the words are shifted cyclically to the

left. Hence, the state at the beginning of round i+ 1 is defined as

(W i+1
0 ,W i+1

1 ,W i+2
2 ,W i+1

3 ) = (W i
1 ⊕ Fi,0(W

i
0),W

i
2,W

i
3 ⊕ Fi,1(W

i
2),W

i
0).

The round function Fi,j : {0, 1}32 → {0, 1}32 is composed of three operations:

Key Addition. Add a 32-bit round key RK2i+j computed from the secret
key to the state, using a bitwise XOR operation;
Substitution. Apply one of two known 8-bit S-boxes S0, S1 independently
to every byte of the state. For Fi,0, the order of the S-boxes is (S0, S1, S0, S1),
and for Fi,1, the order is reversed;
Linear Transformation. Multiply the state by an invertible 4-by-4 matrix
Mj over the finite field GF (28).

As properties of the key schedule of CLEFIA are not used in this paper, we omit
its description and refer the reader to [32].

CLEFIA was the subject of many cryptanalytic attacks (see, e.g., [13,24] and
the references therein). Some of these attacks use partial sums and all of those
can be improved using our technique. We present the improvement of the attacks
on 11-round and 12-round CLEFIA-128, presented in [31].



36 O. Dunkelman et al.

B.2 Previous partial sums attacks on 11-round CLEFIA-128

In 2011, Li et al. [25] presented an integral attack on 11-round CLEFIA. The
attack is based on the following observation:

Lemma 5. Consider the encryption by 9-round CLEFIA of a set of 2112 distinct
plaintexts, P 0, P 1, . . . , P 2112−1, in which the word W 0

2 assumes the 216 values

{(v ⊕ w, 02x · v ⊕ 08x · w, 04x · v ⊕ 02x · w, 06x · v ⊕ 0ax · w) : v, w ∈ {0, 1}8}

(where multiplication is taken in GF (28)) and the words W 0
0 ,W

0
1 ,W

0
3 assume all

296 possible values (for each value of W 0
2 ). Then the corresponding ciphertexts

satisfy
⊕2127−1

i=0 Ci
1 = 0 (that is, the XOR of the word W1 in the ciphertexts is

zero).

The attack uses Lemma 5 in a way which is similar to the way the Square
attack on AES uses Lemma 1, but is a bit more complex due the generalized
Feistel construction. The adversary asks for the encryption of a set of 2112 chosen
plaintexts that satisfies the assumption of Lemma 5. By the lemma, the XOR of
the words W1 in the corresponding values at the end of the 9’th round is zero.
In order to check this, the adversary guesses some subkey bytes in the last two
rounds and partially decrypts the ciphertexts to compute the XOR in a single
byte at the end of the 9’th round. Specifically, the adversary checks the XOR in
the first byte of the word W 9

1 by checking the following equation:
⊕

S0(S1(C8 ⊕RK21,0)⊕ 08x · S0(C9 ⊕RK21,1)⊕ 02x · S1(C10 ⊕RK21,2)

⊕ 0ax · S0(C11 ⊕RK21,3)⊕ C12 ⊕RK ′
18,0) =

⊕
C ′,

(10)

where Ci denotes the i’th byte of the ciphertext, the j’th byte of the word RKℓ

is denoted by RKℓ,j , the equivalent subkey RK ′
18,0 is the XOR of RK18,0 with

a byte of the final whitening key, and C ′ = C0 ⊕ 02x · C1 ⊕ 04x · C2 ⊕ 06x · C3

is the initial byte of M−1
0 (C0, C1, C2, C3) (see [31] for more details and a figure

describing the attack).
The right hand side of (10) can be easily computed in time of 232 operations

(since it depends on 32 ciphertext bits and does not depend on the key). Naively,
the computation of the left hand side of (10) requires 280 operations, since
it depends on 40 ciphertext bits and on 40 (equivalent) subkey bits. Li et
al. [25] showed that the computation can be performed with complexity of 256
S-box computations, using partial sums. Sasaki and Wang [31] observed that
actually 248 S-box computations are sufficient. In order to obtain the improved
complexity, the computation is divided into five steps, where at each of the first
four steps, a single subkey byte is guessed and the size of the list (which is
initially 240) is reduced by 8 bits, and at the last step, the XOR of 28 values is
computed. (Note that unlike the partial sums attack on AES, here at the first
step, a single subkey byte RK21,0 is guessed, and the ‘new variable’ is defined as
a1 = S1(C8 ⊕RK21,0)⊕ C12, thus replacing the two variables C8, C12 in the list



Partial Sums Meet FFT: Improved Attack on 6-Round AES 37

by the single variable a1. As was shown in [31], this situation is typical in attacks
on Feistel constructions that use the partial sums technique). The complexity of
each step is 248 S-box computations, and hence, the complexity of checking the
XOR for each structure is 250.3 S-box computations. Since the attack recovers 5
subkey bytes, six structures are needed, and hence, the overall complexity of the
attack is 252.9 S-box computations, which are equivalent (according to [31]) to
about 246 11-round CLEFIA-128 encryptions.

B.3 Improved attack on 11-round CLEFIA-128

Just like in the case of AES, we can replace each step of the partial sums procedure
performed in [31] by computation of a convolution. Here, at all steps but the
last one, we may compute 8 convolutions in parallel by embedding into Z and
precompute one FFT, and hence, the complexity of each of the first four steps is
reduced to 224 · 2 · 16 · 216/8 = 4 · 240 additions. At the last step (which computes
the XOR of the values), we have to compute the XOR in each bit separately (like
in the attack on 6-round AES). On the other hand, we use FFT on 8-bit functions
(instead of 16-bit functions), we can pack up to 12 computations in parallel, and
we can precompute an additional FFT and reuse it in the computations of the
eight bits. Hence, its average complexity is 232 · (1 + (1/8)) · 8/12 · 8 · 28 = 6 · 240
additions. Therefore, the complexity of examining a single set of ciphertexts
(except for the initial encryption and ciphertext sorting step) is (4·4+6)240 = 244.5

additions.
As in the case of AES, when we examine the XOR at the same byte using ad-

ditional structures, the complexity of the last steps becomes negligible. Therefore,
the overall complexity of checking six structures is 240(22+16+12+8+4) = 246

additions, which are equivalent to about 239.1 11-round CLEFIA-128 encryptions.
This improves the complexity of the attack of [31] by a factor of about 120.

B.4 Previous partial sums attacks on 12-round CLEFIA-128

In [25], Li et al. presented a partial sums attack on 12-round CLEFIA-128 with
data complexity of 2115.7 chosen plaintexts and time complexity of about 2120

encryptions. In [31], Sasaki and Wang improved the attack significantly, leaving
the data complexity unchanged and reducing the time complexity to about 2103.1

encryptions (except for the time required for encrypting and sorting the data).
The technique of [31], based on incorporating a ‘meet in the middle’ component
into the partial sums attack, is rather complex. Hence, we refer the reader to [31]
for the complete description of the attack, and present only the most time
consuming step which essentially determines the time complexity of the attack.
At this step, the adversary has to compute

⊕
S0(S1(b0 ⊕RK21,0)⊕ 08x · S0(b1 ⊕RK21,1)⊕ 02x · S1(b2 ⊕RK21,2)

⊕ 0ax · S0(b3 ⊕RK21,3)⊕ C8 ⊕RK18,0),
(11)



38 O. Dunkelman et al.

where the 32-bit value (b0, b1, b2, b3) is defined as

(b0, b1, b2, b3) = (C4, C5, C6, C7)⊕M0·(S0(C0 ⊕RK22,0), S1(C1 ⊕RK22,1),

S0(C2 ⊕RK22,2), S1(C3 ⊕RK22,3)).

(12)

Note that (11) depends on the 9 ciphertext bytes C0, C1, . . . , C8. In the attack
of [31], the adversary first guesses RK22 and computes (b0, b1, b2, b3), and then
he computes (11) by the same algorithm as in the 11-round attack. (Note that
once (b0, b1, b2, b3) is known, the computation of (11) is indeed equivalent to the
computation made in the 11-round attack described above). The complexity is
dominated by computing (b0, b1, b2, b3), which requires 232 · 272 = 2104 half-round
computations. The attack recovers 13 key bits, and hence, the procedure is
repeated for 13 plaintext sets. Therefore, the overall complexity of the attack is
2107.7 half-round computations, which are equivalent to 2103.1 12-round CLEFIA
encryptions.

In [36], Todo and Aoki showed that the partial sums technique can be
replaced by a single application of their FFT-based technique. As a result, the
time complexity is significantly reduced to 287.5 additions.

B.5 Improved attack on 12-round CLEFIA-128

We show that using our technique, the time complexity of the attack (without
the data collection step) can be further reduced to 275.7 encryptions.

First, we consider the step of computing (b0, b1, b2, b3). We observe that this
step can be reorganized and further subdivided into four steps. We can write

(b0, b1, b2, b3) = M0·(M−1 · (C4, C5, C6, C7)⊕ (S0(C0 ⊕RK22,0),

S1(C1 ⊕RK22,1), S0(C2 ⊕RK22,2), S1(C3 ⊕RK22,3)).

This allows replacing (C4, C5, C6, C7) by (C ′
4, C

′
5, C

′
6, C

′
7) = M−1·(C4, C5, C6, C7),

and then computing M−1
0 · (b0, b1, b2, b3) in four steps. At the first step, RK22,0

is guessed, and C0, C
′
4 are replaced by S0(C0 ⊕RK22,0)⊕ C ′

4. The same is done
in three subsequent steps with RK22,1, RK22,2, RK22,3. The vector we obtain
at the end of the fourth step is M−1

0 (b0, b1, b2, b3), which we then transform to
(b1, b2, b3, b4).

Even if these four steps are performed by naive key guessing, the time
complexity of computing (b0, b1, b2, b3) is already reduced to 4 · 272 · 28 = 282

S-box computations. Using our technique, we can perform each of these steps
by computing a convolution, which reduces the complexity of each of them to
256 · 2 · 16 · 216/8 = 274 additions. (As usual, we can compute 8 convolutions in
parallel and use 16-bit FFTs. Note that here we do not have the step of XORing
the values). Thus, the complexity of this step is reduced to 276 additions.

Next, we consider the step of computing (11), given (b0, b1, b2, b3). Here, we
use the 11-round attack like was done in [31], but we can take advantage of the



Partial Sums Meet FFT: Improved Attack on 6-Round AES 39

improved attack we presented above. Hence, we obtain a total complexity of
232 · 245 = 277 additions.

Combining the two steps, we obtain complexity of 276 + 277 additions for
checking each set of 2112 plaintexts. When we check 13 sets of plaintexts, the
complexity of the first step remains unchanged, while the complexity of the
second step is gradually reduced (as was shown above for the 11-round attack).
In total, we obtain complexity of 13 · 276 + 272(22 + 16 + 12 + 8 + 4) = 280

additions, which are equivalent to about 273 12-round CLEFIA-128 encryptions.
This improves the partial sums attack of [31] by a factor of about 230 and the
FFT-based attack of [36] by a factor of more than 27.

This attack demonstrates the significant advantage achieved by our technique
in cases where the number of subkey bits guessed in the most time consuming
steps of the partial sums procedure is large.

C Another Variant of Our Attack

In this appendix we present another variant of our ‘Partial sums meet FFT’
attack, in which we perform several steps of the attack at once by computing
a single convolution. We demonstrate this idea by showing how the first two
steps of the attack on 6-round AES can be computed by a single convolution
computation. We use the notations of Section 3.

In the combined step, we are given a list A of 232 binary indices which
correspond to (c0, c1, c2, c3) and our goal is to compute the 216 entries of the
list A2 which corresponds to pairs of the form (a2, c3) where a2 = S0(c0 ⊕ k0)⊕
S1(c1 ⊕ k1) ⊕ S2(c2 ⊕ k2), for all values of (k0, k1, k2). We may perform this
step as a single convolution of 24-bit functions. For any c3 ∈ {0, 1}8, define
χ̃1
c3(c0, c1, c2) = χ(c0, c1, c2, c3). For any a2 ∈ {0, 1}8, let Ĩ1a2

(x, y, z) = 1(S0(x)⊕
S1(y) ⊕ S2(z) = a1). Both χ̃1

c3 and Ĩ1a2
are indicator functions on {0, 1}24. For

any a2, c3 ∈ {0, 1}8:

(χ̃1
c3 ∗ Ĩ

1
a2
)(k0, k1, k2) =

∑

c0,c1,c2∈{0,1}8

χ̃1
c3(c0, c1, c2) · Ĩ

1
a2
(c0 ⊕ k0, c1 ⊕ k1, c2 ⊕ k2)

=
∑

c0,c1,c2∈{0,1}8

χ(c0, c1, c2, c3) · 1(S0(c0 ⊕ k0)⊕ S1(c1 ⊕ k1)⊕ S2(c2 ⊕ k2) = a2).

Therefore, the entry which corresponds to (a2, c3) in the list A2[k0, k1, k2] created
for the subkey guess (k0, k1) is

A2[k2][a2, c3] =
(
(χ̃1

c3 ∗ Ĩ
1
a2
)(k0, k1, k2)

)
mod 2. (13)

As in the original variant of the attack, we can precompute two of the three FFTs
required for computing this convolution. Since the FFT is performed on 24-bit
functions, we cannot pack 8 computations in parallel, but 4 computations are
possible (e.g., by taking s = 13). Therefore, the time complexity of this combined



40 O. Dunkelman et al.

step is 216 · 1 · 24 · 224/4 = 6 · 240 additions, which is comparable to the sum of
the complexities of the first two steps in the original attack.

In a similar way, one may combine the second and the third steps or all three
first steps. These combinations do not improve over the original attack in the
case of AES, but they may be advantageous in attacks on other ciphers.

D On the Impact of the Packing Technique

In order to show in more details the impact of the packing technique in our
results, we compare our attack on 6-round AES with previous attacks, with and
without using the packing technique. This shows more clearly what part of the
improvement is due to the packing technique, and what part is due to the novel
combination of partial sums and FFT.

D.1 Comparison of our attack without packing with the previous
attacks

Analysis of our attack without packing. If we disregard the packing technique
but include the other improvements (in particular the precomputation of FFTs
when possible), our attack has the following complexity to process one set of
plaintexts:

– Step 1 requires 16 · 240 additions
– Step 2 requires 32 · 240 additions
– Step 3 requires 32 · 240 additions
– Step 4 requires 72 · 240 additions

When processing six sets of plaintexts to recover a single key candidate, the
total complexity is:

240 · ((16 + 32 + 32 + 72) + (16 + 32 + 32 + 1) + (16 + 32 + 1) + (16 + 1) + 1)

= 300 · 240 ≈ 248.2 additions.

Comparison with the Todo-Aoki attack. When comparing with the Todo-Aoki
attack [36] with 250.8 additions, we gain a factor 6. Moreover, the additions
in our attack require fewer bits than in [36], because the corresponding FFTs
have a smaller dimension: [36] requires FFTs of dimension 32, while we use
FFTs of dimension 16 for steps 1 to 3, and of dimension 8 for step 4. In a naive
implementation without packing, [36] requires 64-bit additions, while our attack
requires only 32-bit additions (and 16-bit additions for step 4). This provides a
gain of a further factor 2 in terms of bit operations in a naive implementation.
Therefore, when comparing attacks without using the packing technique, our
attacks gains a factor 12 over the Todo-Aoki attack in terms of bit operations.



Partial Sums Meet FFT: Improved Attack on 6-Round AES 41

Comparison with the partial sums attack. Directly comparing with the partial
sums attack [22] is more delicate because its complexity is dominated by 251.3

S-box look-ups; the relative cost of an S-box lookup and a 32-bit addition can
vary depending on how the attack is implemented. In terms of bit operations,
the best known implementations [27] of the AES S-box have between 100 and
120 gates. For comparison, a full adder requires 5 gates, therefore a 32-bit adder
requires 160 gates; however we can drop the high bits and only keep 17 bits
of precision when computing the FFT, leading to only 85 gates for a 17-bit
adder. In a software implementation, on the other hand, additions (with 32-bit or
64-bit operands) are typically more efficient than S-boxes (implemented as table
lookups). Moreover, in the attacks considered, most computations (S-boxes or
additions) are followed by a memory access to a relatively large table (between
232 bits and 240 bits). In practice, memory accesses are likely to dominate the
time complexity, and the difference between the complexity of an addition and
the complexity of an S-box evaluation has a limited impact. Therefore, we assume
that the complexity of an S-box lookup is similar to the complexity of an addition
(with 32-bit or 64-bit operands). This makes comparing attacks easier, and has
been used frequently in previous works. Under this assumption, we gain a factor
8 compared with the partial sum attack.

D.2 Comparison of our attack with the previous attacks when they
use packing

Analysis of the Todo-Aoki attack with packing. The packing technique can also
be applied to the Todo-Aoki attack, assuming that we use 64-bit operations. We
can pack 2 FFTs with a very small error rate, using s = 31. Indeed, the values bj
that we are computing are distributed like Bin(231, 1/2), with expectation 230

and standard deviation 214.5. Therefore, the probability to stay in a range of size
231 is extremely high. However, if we try to pack 3 FFTs, we can use at most
s = 15, in order to keep 2s < 64− 32. Unfortunately, the probability to stay in a
range of size 215 is too low.

Therefore, the Todo-Aoki attack can be implemented with 249.8 64-bit addi-
tions rather than 250.8 using the packing technique. Our attack is more than 20
times faster.

Analysis of the partial sum attack with packing. Since the partial sum attack
does not use any FFT computation, the packing technique cannot be directly
applied. More generally, the attack is dominated by S-box computations and
memory accesses. S-box computations could be parallelized using a dedicated
circuit to compute S-boxes in parallel (like the AES-NI instructions), but the
memory accesses cannot be packed together efficiently because they depend on
the S-box output. Hence, our attack is about 60 times faster in this setting.


	Partial Sums Meet FFT: Improved Attack on 6-Round AES

