
On the Security of Triplex- and Multiplex-type
Constructions with Smaller Tweaks

Nilanjan Datta1, Avijit Dutta1, Eik List2 and Sougata Mandal1,3

1 Institute for Advancing Intelligence, TCG CREST, India
2 Nanyang Technological University, Singapore

3 Ramakrishna Mission Vivekananda Educational and Research Institute, India
nilanjan.datta@tcgcrest.org, avijit.dutta@tcgcrest.org,

eik.list@ntu.edu.sg, sougata.mandal@tcgcrest.com

Abstract. In TCHES’22, Shen et al. proposed Triplex, a single-pass
leakage-resistant authenticated encryption scheme based on Tweakable
Block Ciphers (TBCs) with 2n-bit tweaks. Triplex enjoys beyond-birthday-
bound ciphertext integrity in the CIML2 setting and birthday-bound
confidentiality in the CCAmL1 notion. Despite its strengths, Triplex’s op-
erational efficiency was hindered by its sequential nature, coupled with a
rate limit of 2/3. In an endeavor to surmount these efficiency challenges,
Peters et al. proposed Multiplex, a variant of Triplex with increased paral-
lelism and a flexible rate of d/(d+1) that retains similar security guaran-
tees. However, the innovation came at the price of requiring TBCs with
dn-bit tweaks, which are unusual and potentially costly for d > 3. In this
paper, we investigate the limits of generalized Triplex- and Multiplex-type
constructions for single-pass leakage-resilient authenticated encryption.
Our contributions are threefold. First, we show that such constructions
cannot provide CIML2 integrity for any tweak lengths below dn/2 bits.
Second, we provide a birthday-bound attack for constructions with TBCs
of tweak lengths between dn/2 and (d − 1)n + n/2 bits. Finally, on the
constructive side, we propose a family of single-pass leakage-resilient au-
thenticated ciphers, dubbed Tweplex, that uses tweaks of dn/2 bits and
provides a rate of d/(d+1) while providing n/2-bit CIML2 integrity and
CCAmL1 confidentiality.

1 Introduction

The design and analysis of schemes for authenticated encryption (with associ-
ated data) has been a highly active research area since it had been postulated
to be a primitive of its own kind [37] that shall protect both the confidential-
ity of the message and the integrity of the ciphertext. Throughout the decades,
variants like online schemes [4, 28], nonce-based, or deterministic authenticated
encryption [39] arose. With them, a vast number of designs have been pro-
posed that tried to optimize various needs between efficiency and security, most
recently as the outcomes of the CAESAR [7] and NIST Lightweight competi-
tions [41]. Beyond those general aspects, a series of research has been addressing
robustness aspects, such as security under nonce-misuse [39], accidental nonce

repetitions [18] or settings where unverified would-be plaintexts could be re-
leased [1, 11]. This led to the strongest theoretical security notions for AE in
Robust [27] and Subtle AE [3].

1.1 Leakage-resilient Authenticated Encryption

The usual theoretical security notions of AE treat the primitives as black boxes
whereas real-world adversaries are free to exploit additional information from
side channels. Such leakage can include but is not limited to information about
timing, power consumption, or electromagnetic radiation, which can leak sig-
nificant amounts of information about the internal state of the mode including
its keys. One differentiates between two main attack vectors in the context of
power consumption: Simple Power Analysis (SPA) and Differential Power Anal-
ysis (DPA) [29]. In SPA attacks, an adversary observes leakages from encrypting
a single input message under potentially multiple measurements to remove noise.
DPA attacks study leakage from encrypting multiple inputs which provides new
information about the internals of a cipher. Thus, the privacy of internal states
can be reduced at a rate exponential in the number of distinct inputs.

Widespread AEAD schemes such as OCB [30, 38], GCM [20, 32], or CCM [19],
which invoke a block cipher multiple times with a single key, are typically sus-
ceptible to DPA attacks. However, the protection of the underlying block cipher
against leakage is usually left to the implementors and engineers who implement
the components of a scheme so to minimize leakages as much as possible. For
example, on a hardware level, the usual approaches for preventing leakage are to
blur the signal with noise or special circuits. In contrast, on the implementation
level, countermeasures include masking [12, 21], where the internal state of the
device is split into several shares, which are then used in individual computations,
or shuffling [25,42]. Strong protection often adds considerable amounts of addi-
tional area, power, or efficiency penalties. Protection against DPAs lowers the
performance of both software and hardware implementations of the algorithm
by several orders of magnitude compared to the unprotected implementations in
standard metrics (e.g. [22]). Consequently, a line of research of developing more
efficient schemes that provide trade-offs has emerged. For an in-depth survey, we
refer the interested reader to [6].

Instead of using a strongly protected block-cipher implementation for all invo-
cations in an AEAD scheme, leakage-resistant modes of operations [3, 9, 10, 16]
have shifted the paradigm to support dedicated leveled implementations. In this
scenario, a crytographic primitive is called multiple times in an AEAD mode, but
only certain calls to the primitive are strongly protected against DPA attacks
while the remaining calls – that usually perform the majority of computations –
are allowed to leak a certain amount of information to the adversary every time
they are used. In summary, leakage-resilient AE schemes ensure security despite
leakage at the cost of requiring a strong protection for a few primitive calls. This
allows for reasonable efficiency with sufficient protection in practice.

2

1.2 Security Models for Leakage-resilient Nonce-based
Authenticated Encryption

We consider the notions for leakage-resilient authenticated encryption by Guo et
al. [9,10,23]. In [23], they proposed a comprehensive framework and the relations
between them. As the strongest notions for AE, they identified (1) Ciphertext
Integrity with Misuse-resistance and Leakage in encryption and decryption, or
CIML2 [9,10]; (2) chosen-ciphertext security with misuse-resilience and Leakage
in encryption and decryption oracle, called CCAmL2 [23]; (3) moreover, schemes
that process the messages in multiple passes could furthermore achieve the usual
nonce-misuse resistance in the black-box setting without leakage [39].
In general, authenticated encryption schemes can be categorized into one- or
multipass schemes. The latter can achieve both CIML2 and CCAmL2 security.
However, in the context of lightweight cryptography single-pass modes are often
prefered over two-pass modes. While nonce-based single-pass schemes can also
achieve CIML2 security, CCAmL2 is out of range, but they can achieve CCA
security with misuse-resilience and leakage in encryption, which was formulated
as CCAmL1 [23].
A portfolio of leakage-resilient schemes for leveled implementations has been
developed in the past few years. Misuse-resistant two-pass schemes include ISAP
[16], ISAPv2 [15], or TEDT [8]. One-pass schemes include AEDT [10], or Triplex
[40], and Multiplex [35]. All these constructions share a common design structure
that consists of three independent modules [6, 14]: (i) the first module is called
the key-derivation function (KDF) that employs a protected primitive to derive
a session state from the nonce and the long-term master secret key; (ii) the
second module is called the message-processing function (MPF), in which the
plaintext (or the ciphertext) is encrypted (or decrypted) with a less protected
primitive. In security treatments, the MPF module is often assumed to leak
continuously. However, it adopts the idea of frequent rekeying to ensure that
the security should not degrade badly. (iii) The third module is called the tag-
generation function (TGF). It also employs a heavily protected primitive to derive
the authentication tag. For nonce-based one-pass AE schemes, the MPF module
will finally output a state as the input data to the TGF module, whereas for two-
pass AE schemes [8,14,23,31] such a state is produced by hashing the ciphertext,
nonce, and associated data with a less protected primitive. Following [23], Bellizia
et al. [6] referred to leveled designs achieving both CIML2 and CCAmL1 security
as Grade-2-protected. Recent lightweight one-pass leakage-resilient schemes, such
as Ascon [17], Spook [5], or Triplex [40] are Grade-2 designs.

1.3 Revisiting Triplex and Multiplex

Leakage-resilient AE schemes are built primarily upon public permutations and
tweakable block ciphers (TBCs). TBC-based leakage-resilient AE schemes re-
quire at least two calls to a primitive with n-bit block size for encrypting an n-
bit message. While TEDT and TEDT2, which are two-pass AE schemes, achieve
strong security guarantees (i.e., CIML2 and CCAmL2), they inherently offer a

3

E

E

E

N‖P

⊕
θ2

⊕
θ1

⊕M1

C1

C2⊕

M2

h2⊕

k2
⊕

E

E

E
N

K

P‖0n

0n

θ1

⊕

h1

k1

⊕

⊕

N‖P

N‖P

E

E
⊕

θ1

⊕

1

A1‖A2

A1‖A2

⊕

⊕

E

K 0n

Tag

(a) Encryption with Triplex [40].

E

E

E

N

K

P‖0n

0n

θ1

⊕

⊕

⊕

N‖P

N‖P

θ1

⊕

E

E

⊕

⊕

A1‖A2

A3‖A4

Eki

Eki

Eki

⊕

θ2

⊕

θ1

A3‖A4

A3‖A4

A3‖A4

⊕

⊕

M2

C2

⊕

⊕

M1

C1

⊕

E

E

E
⊕

θ1

⊕

θ2

C1‖C2

C1‖C2

C1‖C2

⊕

⊕

M4

C4

⊕

⊕

M3

C3

⊕

E

E
⊕

θ1 C3‖C4

C3‖C4

⊕

⊕

E

K0n

Tag

(b) Encryption with Multiplex for d = 2 [35].

Fig. 1: Triplex and Multiplex. The darkened TBC calls in the KDF and TGF mod-
ules need strong protection whereas the white calls to E do not. The blue, green,
and red lines represent block, key, and tweak input to the TBCs, respectively.

lower performance compared to single-pass modes. In this respect, Shen et al. [40]
introduced a nonce-based single-pass AE scheme, called Triplex, which offered a
rate of 2/3 while providing n− log2(n)-bit CCAmL1 and CIML2 security. Triplex
is shown schematically in Fig. 1a.

Despite its efficiency under leakage, its design limits its throughput. In particu-
lar, one cannot make parallel TBC calls for en- or decryption. To address this
shortcoming, Peters et al. proposed Multiplex [35], that allows a higher degree
of parallelization at every round of the algorithm and offers a flexible rate of
d/(d + 1), where d denotes the degree of parallelization, with O(n − log2(dn))-
bits of security. In particular, at each round, it process dn bits message using d+1
TBC calls such that each one of them requires dn bits tweak. Despite of achiev-
ing a higher throughput, its primary disadvantage is the use of large tweak.
Although, a few long-tweak variants of TBCs have been proposed [13, 33, 34],
their security is far less understood compared to established designs and de-
mands more cryptanalysis [24,36] to be stable. Moreover, instantiating Multiplex
with TBCs of tweak lengths between 2n and 3n bits does not add anything
extra over Triplex. Therefore, it is an interesting question how the security of
Triplex and Multiplex is affected when they are instantiated with smaller tweak

4

size TBCs. In particular, our study is narrowed down to ask the following two
questions:

1. Can we instantiate Triplex using a TBC with < 2n-bit tweaks?
2. In the light of the importance of using TBCs with established tweak

lengths, can we process d message blocks in Multiplex with (d+1) calls
to a TBC with < dn-bit tweaks?

1.4 Our Contribution

Answering the question above is the central theme of the paper. More precisely,
we tackle it in three steps as follows:

1. We show that for any choice of linear functions f, g : {0, 1} → {0, 1}l that
take 2n-bit ciphertexts and produce l-bit outputs, if l < n, one can mount a
forging attack with probability one on Triplex with a small constant number
of queries. Furthermore, we show for tweak lengths of l ∈ [n, 3n/2] bits,
one can mount a forging attack on the construction with probabilty one
in approximately 2n/2 queries. Finally, we show for tweak lengths of l ∈
(3n/2, 2n) bits, an adversary can mount a forgery attack on the construction
with success probability 23n−2l by making at least 22n−l queries.

2. For a given fixed parameter d, we show that for any choice of a pair of linear
functions (f, g) that takes dn-bit ciphertexts and produces l-bits output,
if l < dn/2, then one can mount a forging attack with probability 1 on
Multiplex with a constant number of queries. We further show for tweak
lengths of l ∈ [dn/2, dn− n/2] bits, then one can mount a forging attack on
the construction with probabilty 1 by making at least 2n/2 queries. Finally,
we show for tweak lengths of l ∈ (dn − n/2, dn) bits, an adversary can
mount a forgery attack on the construction with success probability 23n−2l

by making at least 22n−l queries. This provides an answer to our second
question.

3. On a constructive side and to transform our theoretical results into prac-
tice, we propose an efficient Multiplex-type construction, dubbed Tweplex,
which employs a TBC with dn/2-bits tweak and a rate of d/(d + 1). We
show that Tweplex achieves the maximally possible O(n/2)-bit CIML2 and
birthday-bound CCAmL1 security in the multi-user setting. Our construc-
tion maintains the rate of d/(d+ 1) while using only half of the tweak size of
Triplex and Multiplex. Hence, our construction provides higher throughput
over Triplex and Multiplex while allowing still a rate of 4/5 for d = 4 with
established ciphers such as Deoxys-BC-128-384 or Skinny-128-384.

What remains is structured as follows: after briefly recalling the necessary no-
tions, we study forgery results on Multiplex-type constructions in Section 3. We
define Tweplex in Section 4 and prove its CIML2 and muCCAmL1 security under
multiple users in Sections 5 and 6, respectively.

5

2 Preliminaries

Notations: For a finite set X , we write X
$←− X to denote that X is uniformly

sampled from X . We write (X1, X2, . . . , Xq)
$←− X to denote that each Xi is

sampled uniformly at random from X . For a set X , we write X ∪←− X to denote
that X ← X ∪ {X}. For a fixed n, we write the set of all n-bit binary strings
as {0, 1}n, and {0, 1}∗ denotes the set of all binary strings of arbitrary length.
ε is used to denote the empty string. |x| denotes the length of the bit string
x. msbc(Z) and lsbc(Z) return the c most and least significant bits of a bit
string Z, respectively. x[i, j] denotes the substring from i-th bit to j-th bit of x.
Concatenation of two strings x and y is denoted as x‖y. We also often write it
as (x, y). If A is an algorithm, then y ← A(x1, x2, . . . , ; r) denotes running the
algorithm A with randomness r on inputs x1, . . . , and assigning the output to

y. Equivalently, we can express the notation above as follows: let y
$←− A(x1, . . .)

be the result of picking r uniformly at random and then compute A(x1, . . . ; r)
and assign the result to the variable y. For an algorithm A and an oracle O, we
write A O to denote the output of A at the end of its interaction with O.

2.1 Security Notions

A distinguisher A is an algorithm that tries to distinguish between two oracles
O0 and O1 via black-box interaction with one of them. At the end of its interac-
tion, it returns a bit b ∈ {0, 1}. The distinguishing advantage of A against O0

and O1 is defined as

∆A [O0;O1]
∆
=
∣∣Pr[A O0 = 1]− Pr[A O1 = 1]

∣∣ ,

where the probabilities depend on the random coins of O0 and O1 and the
random coins of the distinsguisher A . The time complexity of the adversary is
defined over the usual RAM model of computations. We call A a (q, t)-adversary
if it asks at most q queries and runs in time at most t. We augment this notation
by parameters e. g. in settings, where queries consist of en- and decryption
oracles, we consider (qe, qd, t)-adversaries, assuming it asks at most qe en- and
qd decryption queries, respectively. When queries consist of multiple blocks or
bits, we augment it by σ for the number of blocks an adversary asks, and by p
if an additional oracle to a primitive is given.

2.2 Tweakable Block Cipher

A tweakable block cipher with key space {0, 1}κ, tweak space {0, 1}t and domain

{0, 1}n is a function Ẽ : {0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n such that for each

key k ∈ {0, 1}κ and each tweak t ∈ {0, 1}t, the function Ẽ(k, t, ·) is a permutation
over {0, 1}n. We call such TBCs (κ, t, n)-TBCs and define TBC(κ, t, n) for the
set of all (κ, t, n)-TBCs. We call a function IC : {0, 1}κ×{0, 1}t×{0, 1}n an ideal

TBC if IC
$←− TBC(κ, t, n). In this case, ICt

k is a random independent permutation

6

over {0, 1}n, for each (k, t) ∈ {0, 1}κ × {0, 1}t, even if k is public. We write Ẽ
for TBCs, and in our ideal TBC-based security proofs, we use the notation IC.
TP(t, n) denotes the set of all functions π̃ : {0, 1}t×{0, 1}n → {0, 1}n such that
for all t ∈ {0, 1}t, π̃(t, ·) is a permutation over {0, 1}n. We define the strong

tweakable pseudorandom permutation (stprp) advantage of A against Ẽ as

Advstprp

Ẽ
(A)

∆
= ∆A

[
(Ẽk, Ẽ

−1
k); (π̃, π̃−1)

]
,

where k
$←− {0, 1}κ and π̃

$←− TP(t, n).

2.3 Nonce-based Single-pass Authenticated Encryption

Let K,N ,A,M, C, T be non-empty sets for keys, nonces, associated data, mes-
sages, ciphertext, and authentication tags, respectively. A nonce-based authen-
ticated encryption scheme (nAE) consists of a pair of deterministic algorithms,
called the encryption algorithm E : K×N ×A×M→ C×T and the decryption
algorithm D : K ×N ×A× C × T →M∪ {⊥}. The correctness condition of a
nAE scheme states that for every K ∈ K, N ∈ N , A ∈ A, and M ∈ M, we have
D(K,N,A, E(K,N,A,M)) = M and the tidiness condition of the nAE scheme
states that for all (K,N,A,C, T) ∈ K×N×A×C×T , where ∃M ∈M such that
E(K,N,A,M) = (C, T), it holds that E(K,N,A,D(K,N,A, (C, T))) = (C, T).
Let Π = (E ,D) be a nAE scheme.
In this work, we focus on various security models of single-pass AEAD schemes
under leakage; in particular, we limit our interest to notions for AEAD with
nonce-misuse-resistant integrity and nonce-misuse-resilient confidentiality under
potential leakage in encryption queries. Note that nonce-misuse-resistant confi-
dentiality in the context of both en- and decryption-oracle leakage is impossible
to achieve for a single-pass AE mode. We refer to the interested reader to the
Appendix A of [8] for a detailed discussion.
Leakage depending on the implementation of an AEAD scheme can be viewed as
two functions: leakage during encryption queries and leakage during decryption
queries. In [9], Berti et al. have defined the leakage integrity notion with nonce-
misuse-resistant by allowing only encryption leakage, which is referred to as
CIML [9] notion, in which an adversary makes encryption and decryption queries,
and obtains the corresponding responses. Along with that, the adversary also
obtains leakages corresponding to the encryption queries. The final goal of the
adversary in this model is to forge the construction with a valid tuple. However,
this security notion has been extended from CIML [9] to CIML2 [10], where the
latter allows leakage from not only encryption, but also from decryption queries.
Berti et al. [8] defined muCIML2 as a multi-user distinguishing version of CIML2.
We focus on the strong multi-user notions (in their non-distinguishing variants)
muCIML2 for integrity and muCCAmL1 for confidentiality both under leakage.

2.4 (Multi-user) Ciphertext Integrity under Misuse Leakage

We consider Ciphertext Integrity under Misuse Leakage (CIML2) under leak-
age in both en- and decryption queries. In this security notion, an adversary

7

A is allowed to make queries to the encryption LEKi for any user i, and the
decryption oracle LDKi

, and obtains the corresponding responses along with
the leakages corresponding to the encryption and the decryption. Finally, the
adversary submits a forging tuple (i,N,A,M,C, Tag) such that it is fresh. The
forging advantage of the muCIML2 notion is then defined as the probability that
(i,N,A,M,C, Tag) is valid. Formally, we define the muCIML2 notion following
algorithm 2 as follows:

Definition 1. Let the game of muCIML2 be defined in Algorithm 2. Let A be a
(q, t)-muCIML2 adversary on an AEAD scheme Π := (E ,D). Then, the advan-
tage A is defined as

AdvmuCIML2
Π (A)

∆
= Pr

[
A LEK,LDK,Ẽ,Ẽ

−1

forges
]
,

where the probability is taken over the u manu user keys K = (K1, . . . ,Ku),

randomness of A , and the ideal TBC Ẽ.

The algorithmic description of muCIML2 is given in Supporting Material A.

2.5 (Multi-user) Chosen-ciphertext Indistinguishability under
Nonce Misuse and Leakage

For privacy under nonce repetitions, we follow [2]. In this context, an adversary
A is allowed to make encryption queries and ideal TBC queries. We split the
encryption oracle into two categories: E1 and E2, where A is allowed to repeat
the nonce for same user during E1 queries but has to use a fresh nonce for
every query to E2. Ultimately, the adversary has to distinguish between E2 and
a random function. We define the advantage as follows:

Advconf
Π (A)

∆
= ∆A

[
(E1

K, E2
K, Ẽ, Ẽ

−1); (E1
K, $, Ẽ, Ẽ

−1)
]
.

We extend the notion above to incorporate leakage. Then, the adversary interacts
with the en- and decryption oracles with possibly repeating nonces. It obtains
the corresponding en- or decryption responses plus potential leakage during the
encryption queries, i.e., the decryption oracle does not leak. Finally, the adver-
sary submits a challenge encryption query corresponding for some user under a
fresh nonce N . The challenger either encrypts that query or encrypts a randomly
chosen message and responds with the corresponding ciphertext-tag pair. The se-
curity advantage of muCCAmL1 is then defined as the distinguishing advantage.
We define muCCAmL1 security of an authenticated encryption scheme Π as in
Algorithm 3 with respect to leakage and nonce-misuse resilience. An adversary A
can query four oracles: a primitive oracle, the decryption oracle without leakage,
the encryption oracle LE1 with a leakage function LE , and another encryption
oracle LE2 with a leakage function LE . Using these queries, A has to distinguish
between LE2 and a random funtion. We define the muCCAmL1 advantage as

AdvmuCCAmL1
Π (A)

∆
= ∆A

[
(LE1

K, LE2
K,D, Ẽ, Ẽ−1); (LE1

K, L$,D, Ẽ, Ẽ−1)
]
,

8

where the probability is taken over the u user keys K = (K1, . . . ,Ku), the ran-

domness of A , and the ideal TBC Ẽ. Note that we have considered leakage
from only the encryption oracle. This is a weaker notion as compared to muC-
CAmL2, where both en- and decryption oracles leak. However, it is well-known
that the notion muCCAmL2 is impossible to achieve for single-pass authenticated
encryption schemes. Thus, we restrict our intesrest to muCCAmL1. An alterna-
tive game-based description of muCCAmL1 security notion is given in Supporting
Material A.

3 Forgery Complexity on Triplex- and Multiplex-type
Constructions

In this section, we show forging attacks on Triplex- and Multiplex-type construc-
tions based on TBCs with varying tweak lengths. Since our attack algorithms
and the corresponding analysis depend on a well-known combinatorial result, we
briefly recall it here.

Theorem 1. Let A and B be linear spaces and f : A → B be a linear map.
Then, if dim(A) is finite, we have dim(A) = rank(f)+nullity(f), where rank(f)
= dim(f(A)) and nullity(f) = dim{x : x ∈ A ∧ f(x) = 0}.

3.1 Forging Attack on Triplex with smaller Tweak

We start with the attack algorithm on Triplex. In each iteration of its message-
processing module, Triplex encrypts two n-bit message blocks M2i, M2i+1 and
produces two ciphertext blocks C2i, C2i+1. Moreover, it generates the successive
key and chaining-value pair (h, k) using two tweakable block ciphers with 2n-
bit tweak using C2i, C2i+1 as the tweak. It has been shown in [40] that Triplex
achieves n-bit CIML2 security. Moreover, it can be easily seen from the design
of Triplex that it is impossible to process more than 2n-bit message material in
one iteration.
In the following, let those ciphertext blocks be denoted as C1 and C2. Let further
t1 be an l-bit tweak to the bottom TBC and t2 be the other l-bit tweak to the
middle TBC call in a round of Triplex with l < 2n. Those tweaks are used for
creating the successive pair of key and chaining value. Assume that these two
tweaks t1, t2 are created using two linear transformations f, g : {0, 1}2n → {0, 1}l
such that t1 = f(C1, C2) and t2 = g(C1, C2). Let Ker(f) = {x ∈ {0, 1}2n : f(x) =
0l} be the set of all preimages of f which are mapped to 0l. Ker(g) is defined
similarly. There are three distinct cases in which we attempt forgery on Triplex
with l-bit tweak. The cases are as follows:

• Case A: There exist x, y ∈ Ker(f) such that g(x) = g(y).
• Case B: There exist x, y ∈ Ker(g) such that f(x) = f(y).
• Case C: None of the two conditions above holds.

We describe forgery-attack algorithms for each case in the following.

9

Ẽki

f(C1, C2)

hi ki+1

⊕Ẽki

g(C1, C2)

hi+1⊕

θ1

⊕

Ẽki

twk

M2

⊕ C2⊕

θ2

⊕

⊕M1 C1

(a) Core of Triplex.

Ẽki

f(C1, C2, . . . , Cd)

hi ki+1

⊕Ẽki

g(C1, C2, . . . , Cd)

hi+1⊕

θ1

⊕

(b) Core of Multiplex.

Fig. 2: Core of the Triplex and Multiplex constructions. where C1, C2, . . . stem
from the preceding iteration.

2 Forgery Algorithm for Case A: The attack algorithm for Case A is depicted
in Fig. 3. Let us briefly justify how the attack works. Since x, y ∈ Ker(f) such
that g(x) = g(y), we have f(x⊕z) = f(y⊕z) and g(x⊕z) = g(y⊕z) due to the
linearity of f and g. We will use this fact to mount the forgery attack. Note that
we have used the intermediate values (e1 and e2) of the first encryption query
to set up the second encryption query such that the tweak used at the core
component of the same round of the construction for generating the ciphertext
blocks (C ′1, C

′
2) is f(C ′1‖C ′2) = f(M ′1 ⊕ e1‖M ′2 ⊕ e2) = f(x ⊕ z). A similar

argument holds for the tweak used at the middle TBC call g(x ⊕ z). Next,
we have expilicitly used y ⊕ z as the two respective ciphertext blocks in the
forging attempt that ensure the tweaks used to generate the successive chaining
and updated key values are f(y ⊕ z) and g(y ⊕ z), respectively. The property
that f(x⊕ z) = f(y ⊕ z) and g(x⊕ z) = g(y ⊕ z) ensures the forgery.

2 Forging Algorithm for Case B: The attack algorithm for Case B is similar to
that of Case A, but concentrates on f(x) = f(y) instead of g(x) = g(y). When
the boxed statements are included, Fig. 3 also describes Case B. The analysis of
this case is then naturally almost identical to that of Case A. Note that similarly
to Case A, the success probability depends on the proper choice of x, y, and z
such that f(x⊕ z) = f(y ⊕ z), and g(x⊕ z) = g(y ⊕ z).

2 Forging Algorithm for Case C: In this case, we also try to achieve an internal
two-block (h, k) collision. While Cases A and B achieved this by a collision in
the tweak values, Case C constructs a collision in the tweak for one TBC call
(that generates the chaining value). For the other calls, we make several queries
with different tweaks and expect to get a collision. Thus, our attack will succeed

10

Case A: ∃ x, y ∈ Ker(f) : g(x) = g(y) Case B: ∃ x, y ∈ Ker(g) : f(x) = f(y)

1 : Choose z ∈ {0, 1}2n : f(z) 6= 0l; Choose z ∈ {0, 1}2n : g(z) 6= 0l;

2 : Make an Encryption Query (N,A,M = (M1‖M2));

3 : Let the response be (C = C1‖C2, T);

4 : Compute e1 = C1 ⊕M1, e2 = C2 ⊕M2;

5 : Compute M ′1‖M ′2 = (x⊕ z)⊕ (e1‖e2);

6 : Make an Encryption Query (N,A,M ′ = (M ′1‖M ′2));

7 : Let the response be (C′, T ′);

8 : Forge (N,A,C′′ = (y ⊕ z), T ′);

Fig. 3: Forgery algorithm in Cases A (without the boxed statements) and B (with
the boxed statements) for Triplex.

probabilistically depending on the tweak length l. The algorithm for Case C is
given in Fig. 4.
Let us briefly discuss how the attack works. Since x1, . . . , xa ∈ Ker(g), we have
g(x1 ⊕ z) = · · · = g(xa ⊕ z) = g(z) due to the linearity of g. Now we try to see
if we could find (i, j) such that ki = kj , then we would be done and could set
up the forgery in a similar manner that we have done for Case A. Now let us
look at the probability of matching two keys ki and kj . Note that the ki values
are generated from the invocation of the TBC with the same key and input but
with different tweaks. Hence,

Pr[∃ i, j ∈ {1, 2, . . . , a} : ki = kj] ≤ a2 · 2−n .

It is easy to see that a successful forgery happens in this case whenever we obtain
a pair (i, j) with ki = kj . Hence, the probability of getting a successful forgery
is bounded by a2 · 2−n.
Now let us summerize the different settings depending on the used tweak lengths:

(i) l < n. From the rank-nullity theorem, we have dim(Ker(f)) ≥ 2n− l > n
and the same follows for ker(g). Let Bf and Bg be two bases for ker(f)
and Ker(g), respectively. Then |Bf | ≥ n + 1 and |Bg| ≥ n + 1. Moreover,
the dimension of {0, 1}2n ensures that one of following properties will be
satisfied: ∃ x, y ∈ Bf which are linearly dependent to Bg which satisfy
Case A or ∃ x, y ∈ Bg which are linearly dependent on Bf which satisfies
Case B. Thus, for l < n, at least one of Case A or B will happen. Hence,
for tweaks of less than n bits, we can forge successfully with a constant
number of queries.

(ii) n ≤ l ≤ 3n/2. Here, we can have multiple cases: if any of the first two

cases is satisfied for f and g, we will have successful forgery with only
three queries. Otherwise, we consider Case C. Since a = min{22n−l, 2

n
2 } =

11

Case C: Cases A and B do not hold

1 : Make an Encryption Query (N,A,M = (M1‖M2));

2 : Let the resonse be (C = (C1‖C2), T);

3 : Note internal round pair (hα, kα), used to create C1‖C2;

4 : Choose z ∈ {0, 1}2n : g(z) 6= 0;

5 : Let a = min{22n−l, 2
n
2 };

6 : Choose distinct x1, x2, . . . , xa ← Ker(g);

7 : Compute ki ← Ẽ(kα, t
i
1, hα), where ti1 ← f(xi ⊕ z), for i = 1, . . . , a;

8 : Find (i, j) such that ki = kj ;

9 : Compute e1 := C1 ⊕M1, e2 := C2 ⊕M2;

10 : Compute M ′1‖M ′2 = (xi ⊕ z)⊕ (e1‖e2);

11 : Make an Encryption Query (N,A,M ′ = (M ′1‖M ′2));

12 : Let the response be (C′, T ′);

13 : Forge with (N,A,C′′ = (xj ⊕ z), T ′);

Fig. 4: Forgery algorithm in Case C for Triplex.

2
n
2 , from the analysis of Case C, the adversary will be successful with

probability one using at most 2
n
2 queries.

(iii) l > 3n/2. Again, if any of first two cases is satisfied, we will have successful

forgery with only three queries. Otherwise, as the analysis of Case C in

Fig. 4 states, the success probability of the forgery is at least a2

2n for the
value of a as in Line 5 of Fig. 4. Clearly, the value of a decreses as l increases.
Thus, the security increases as the tweak length increases.

3.2 Forgery Attacks on Multiplex with < dn-bit TBCs

Multiplex encrypts d n-bit message blocks using d+1 TBC calls in each iteration.
It processes these d blocks in the next iteration using them as the tweak of the
TBC calls. Multiplex uses the same Hirose’s compression function as Triplex for
generating the subsequent key and chaining value. Unlike Triplex, Multiplex allows
different values of d while achieving almost n-bit CIML2 security. In this section
we will analyze the security of Multiplex when instantiated with a TBC with a
tweak length of < dn bits.
Similarly as for Triplex, the core component of Multiplex (see Fig. 2b) processes
d ciphertext blocks (from the preceding iteration). Let t1 and t2 be the tweaks
to two TBC calls in an iteration of the compression function to create the pair
of key and chaining value. These two tweaks t1, t2 are created using two linear
transformations f, g : {0, 1}dn → {0, 1}l such that t1 = f(C1, C2, . . . , Cd) and
t2 = g(C1, C2, . . . , Cd). Let Ker(f) = {x ∈ {0, 1}dn : f(x) = 0l} be the set of

12

Table 1: Forgery-attack properties for instantiations of Triplex and Multiplex with
TBCs of varying tweak lengths.

(a) For Triplex.

Tweak #Queries Success
length l q prob.

l < n 2 1

n ≤ l ≤ 3n/2 2n/2 1

3n/2 < l < 2n 22n−l 23n−2l

(b) For Multiplex.

Tweak #Queries Success
length l q prob.

l < dn/2 2 1

dn/2 ≤ l ≤ dn− n/2 2n/2 1

dn− n/2 < l < dn 22n−l 23n−2l

all preimages of f which are mapped to 0l. Ker(g) is defined similarly. Similarly
as for Triplex, there are three distinct cases in which we attempt a forgery on
Multiplex when instantiated with an l-bit TBC. Now we will analyze the security
for three cases depending on f ands g as follows:

• Case A: There exist x, y ∈ Ker(f) such that g(x) = g(y).
• Case B: There exist x, y ∈ Ker(g) such that f(x) = f(y).
• Case C: None of the two conditions above holds.

Similarly as for Triplex, we can mount forgery attacks for the three cases above.
For completeness, we present the attacks in Supporting Material D.
According to the cases mentioned above, one can mount the following generic
attacks based on the length of the tweaks used:

(i) l < dn/2: In this case, one can show that one of Case A or Case B gets

satisfied, and hence, we can forge successfully with only two encryption
queries.

(ii) dn/2 ≤ l ≤ dn− n/2: In this case, if one of the first two cases gets satisfied

for f and g, we will have a successful forgery with only three queries. Other-
wise, we will mount an attack following Case C with a = min{2dn−l, 2n/2} =
2n/2. From the analysis of Case C, the adversary will be successful with
probability one using at most 2n/2 queries.

(iii) l > dn− n/2: Similarly as in the previous settings, it holds that if any of

the first two cases is satisfied, we will have a successful forgery with three
queries. Otherwise, the analysis of Case C in Fig. 7 states that the success
probability of the forgery is at least a2 · 2−n for the value of a. Clearly, the
value of a decreses as l increases. Thus, the security will increase as the
tweak length increases.

4 The Tweplex Authenticated Cipher

Tweplex follows the three-step model suggested in [6] for designing leakage-
resilient AEAD schemes. It uses a TBC with dn-bit tweaks as the underlying

13

Algorithm 1 Encryption Algorithm of Tweplex

11: function E(i,Ki, Pi, N,A,M)
12: d′ ← dn/2
13: h1‖k1 ← KDF(i,Ki, Pi, N)
14: (C, twk)← MPF(h1, k1, A,M)
15: T← TGF(i,Ki, twk, 0

n)
16: Return (C,T)

21: function KDF(i,Ki, Pi, N)

22: k0 ← Ẽ(Ki, Pi‖0d
′−n, N)

23: a← Ẽ(k0, N‖Pi‖0d
′−2n, 0n)

24: b← Ẽ(k0, N‖Pi‖0d
′−2n, θ1)⊕ θ1

25: return (a, b)

41: function TGF(i,Ki, twk,X)

42: return Ẽ(Ki, twk‖0d
′−2n, X)

31: function MPF(h1, k1, A,M)
32: A1‖A2‖ · · · ‖Ada ← PAD(A)
33: M1‖M2‖ · · · ‖Mdm ← PAD(M)
34: for i← 2 . . . a do
35: ti,1 ← msbd′(Ad(i−2)+1‖Ad(i−2)+2‖ · · · ‖Ad(i−2)+d)
36: ti,2 ← lsbd′(Ad(i−2)+1‖Ad(i−2)+2‖ · · · ‖Ad(i−2)+d)

37: ki ← Ẽ(ki−1, ti,1, hi−1)⊕ hi−1

38: hi ← Ẽ(ki−1, ti,2, hi−1 ⊕ θ1)⊕ hi−1 ⊕ θ1
39: X1 ← msbd′(Ad(a−1)+1‖Ad(a−1)+2‖ · · · ‖Ad(a−1)+d)
40: X2 ← lsbd′(Ad(a−1)+1‖Ad(a−1)+2‖ · · · ‖Ad(a−1)+d)
41: X3 ← X1 ⊕X2

42: for i← 1 . . .m do
43: ka+i ← Ẽ(ka+i−1, X1, ha+i−1)⊕ ha+i−1

44: ha+i ← Ẽ(ka+i−1, X2, ha+i−1 ⊕ θ1)⊕ ha+i−1 ⊕ θ1
45: Cd(i−1)+1 ←Md(i−1)+1 + ha+i
46: for j ← 2 . . . d do
47: ej ← Ẽ(ka+i−1, X3, ha+i−1 ⊕ θj)⊕ ha+i−1 ⊕ θj
48: Cd(i−1)+j ←Md(i−1)+j + ej

49: X1 ← msbd′(Cd(i−1)+1‖Cd(i−1)+2‖ · · · ‖Cd(i−1)+d)
50: X2 ← lsbd′(Cd(i−1)+1‖Cd(i−1)+2‖ · · · ‖Cd(i−1)+d)
51: X3 ← X1 ⊕X2

52: twk1 ← Ẽ(ka+m, X1, ha+m)⊕ ha+m
53: twk2 ← Ẽ(ka+m, X2, ha+m ⊕ θ1)⊕ ha+m+1 ⊕ θ1
54: twk ← twk1‖twk2
55: C = C1‖C2‖C3‖ · · · ‖Cdm
56: return (C, twk)

primitive. Like Triplex and Multiplex, Tweplex consists of three distinct mod-
ules called key-derivation (KDF), message-processing (MPF) and tag-generation
function (TGF), respectively. In a broader sense, the KDF module consists of a
call to a TBC implementation that is strongly protected against DPA. It uses
the secret key, the public key of the user, and the nonce as inputs and pro-
duces a pair of an initial key and a chaining-value (h1, k1). The MPF module
takes (h1, k1) as its input and processes the associated data using two tweakable
block-cipher calls in each iteration. This module is structurally very similar to
Hirose’s compression funtion [26]. Thereafter, it computes a multihash based on
the MBL compression function, which is used in the design of the multihash
function of Multiplex. Recall that the MBL compression function used in Multi-
plex consists of (d+ 1) calls to a tweakable block cipher to encrypt a dn-bit part
of the message such that each of the (d+ 1) TBC calls uses a dn-bit tweak. Our
design does the same but uses a TBC with only dn/2-bit tweaks. The final two
TBC calls produce the pair of successive key and chaining value (h, k) for the
next iteration. Finally, the TGF module consists again of a strongly protected
call to the TBC, taking the fixed input 0n, the secret key, and the output of the
multihash concatenated with the required number of zeroes as the tweak and
outputs T.

An algorithmic description of the construction is given in Fig. 1. An illustration
for d = 4, with 8n-bit message and associated data each and tweak sizes of 2n
bit is shown in Fig. 5.

14

Ẽ
K

N

P‖0n

Ẽ

N‖P

Ẽ

N‖P

0n

⊕

θ1

⊕
⊕

Ẽ

A1‖A2

Ẽ

A3‖A4

⊕
θ1

⊕
⊕

Ẽ

A5‖A6

Ẽ

A7‖A8

Ẽ

A5‖A6 ⊕A7‖A8

Ẽ

A5‖A6 ⊕A7‖A8

Ẽ

A5‖A6 ⊕A7‖A8

⊕

θ1

⊕

θ2

⊕

θ3

⊕

θ4

⊕
⊕
⊕

M1C1

⊕
⊕

M2C2

⊕
⊕

M3C3

⊕
⊕

M4C4

Ẽ

C1‖C2

Ẽ

C3‖C4

Ẽ

C1‖C2 ⊕ C3‖C4

Ẽ

C1‖C2 ⊕ C3‖C4

Ẽ

C1‖C2 ⊕ C3‖C4

⊕

θ1

⊕

θ2

⊕

θ3

⊕

θ4

⊕
⊕
⊕

M5C5

⊕
⊕

M6C6

⊕
⊕

M7C7

⊕
⊕

M8C8

Ẽ

C5‖C6

Ẽ

C7‖C8

⊕

θ1

⊕
⊕

Ẽ

0n K

T

Fig. 5: Tweplex for d = 4.

5 Authentication Security of Tweplex

In this section, we show that Tweplex achieves ciphertext integrity in the muCIML2
setting for up to 2n/2 queries.

Theorem 2. Consider an adversary A that tries to break the muCIML2 security
of Tweplex. Assuming that A makes at most qe encryption queries, qd decryption
queries with at most σ blocks in total, qp primitive queries, over at most u users.
Then, we have

AdvmuCIML2
Tweplex (A) ≤ u2

22n+1
+

4(q2 + q)

2n
+

q2

22n
.

where qc = qe + qd, q = max{qp, qc} and u ≤ q.

5.1 Query Types and Responses

The adversary A can make three types of queries: primitive, encryption, and
decryption (or forging) queries. Here, we describe how the challenger responds
to each query:

� Primitive Query: For a primitive (ideal TBC) query (J, t, x,→), A will

obtain y = ẼJ(t, x) and for query of the form (J, t, y,←), A gets x = Ẽ−1
J (t, y).

For both query types, the transcript will store an entry (Prim, J, t, x, y, dir),
where dir ∈ {←,→}. Hereafter, we will use ? to denote that the direction is
arbitrary.

15

� Encryption Query: For an encryption query of the form (i,N,A,M), A
will obtain a ciphertext-tag pair C‖T such that C‖T← E(i,N,A,M). Let h be
the set of all hi’s generated during the production of C‖T and k be the set of
all ki’s generated during the production of C‖T. Due to the unbounded leakage
assumption A will have full access to h and k. An encryption query is stored in
the form (Enc, i, N,A,M,C‖T,h,k). In addition, all internal primitive in- and
outputs are stored in τp.

� Decryption Query: For an decryption query of the form (i,N,A,C‖T), A
will get M such that M ← D(i,N,A,C‖T). Note that M can be a message or
⊥ depending on authentication is successful or not, respectively. Let h be the
set of all hi’s generated during decryption and k be the set of all ki’s generated
during the same. Due to unbounded leakage assumption A will have h and k.
This query will be stored in the form (Dec, i, N,A,M,C‖T,h,k). Moreover, all
internal primitive in- and outputs are stored in τp.
Note that we consider only non-trivial adversaries that do not make any decryp-
tion query of the form (i,N,M,C‖T), after having observed C‖T as the output
of an encryption query (i,N,A,M). We will try to bound A ’s successful forging
probability. We will employ the standard technique: (i) define some bad events
and show that the probability of having the bad events is low, and (ii) show that
the forging probability of A is low if the defined bad events do not occur.

5.2 Defining Bad Events and Bounding Their Probabilities

We define a set of bad events as follows.

• Bad1: There are two different users sharing same secret key and same public
constant, i.e., ∃ i 6= j, i, j ∈ {1, 2, . . . , u} : Ki = Kj , Pi = Pj .

• Bad2 : Two distinct primitive queries lead to a collision after their corre-
sponding feed-forward operations, i.e ∃ (Prim, J, t, x, y, ?) and (Prim, J ′, t′,
x′, y′, ?) such that x⊕ y = x′ ⊕ y′.

• Bad3: There is a collision in one of the KDF calls with a primitive query, i.e.,
∃ (Prim, J, t, x, y, ?) : J = Ki, t = Pi‖0(dn/2−n), for some user i.

• Bad4: There is a collision in the output of a protected block of two differ-
ent users having the same public constant and the same nonce, i.e., ∃ i 6=
j, (D, i, Na

i , A
a
i ,M

a
i , C

a
i ‖Tai ,hai ,kai), (E , j,N b

j , A
b
j ,M

b
j , C

b
j‖Tbj ,hbj ,kbj) such

that kai,0 = kbj,0, N
a
i ‖Pi = N b

j ‖Pj . This condition considers the case of hav-
ing same input for hash for two different users.

• Bad5: There is collision between tweak of two TGF calls, i.e., ∃ (i, Na
i ,

Aai , Ma
i , Cai ‖Tai , hai ,k

a
i) ∈ τd, (j,N b

j , A
b
j ,M

b
j , C

b
j‖Tbj ,hbj ,kbj)) ∈ τe/d such

that hla+va+1‖kla+va+1 = hlb+vb+1‖klb+vb+1, where |Aai | = 4la, |Cai | =
4va, |Abj | = 4lb, |Cbj | = 4vb.

• Bad6: There is key-tweak pair collision among a KDF and TGF query, i.e.,
∃ (i,Na

i , A
a
i ,M

a
i , C

a
i ‖Tai ,hai ,kai) ∈ τd, (j,N b

j , A
b
j ,M

b
j , C

b
j‖Tbj ,hbj ,kbj)) ∈ τc

such that Ki = Kj , hla+va+1‖kla+va+1 = Pj‖0n, for some j ∈ {1, 2, . . . , u}.

16

• Bad7 : There is a collision between a TGF call and a primitive query, i.e.,
∃ (i,Na

i , A
a
i , M

a
i , C

a
i ‖Tagai ,hai ,kai) ∈ τc, (J, t, x, y, ?) ∈ τp such that J = ki,

t = hla+va+1‖kla+va+1‖0(dn/2−2n), for some user i.

We define an event Bad that is true if and only if any of the conditions above is
satisfied. The following lemma bounds the probability of the event Bad:

Lemma 1. It holds that

Pr[Bad] ≤ u2

22n+1
+

4q2

2n
+

2q

2n
+

q2

22n
.

Its proof can be found in Supporting Material C.1. Lemma 2 upper bounds the
probability of forging when Bad did not occur:

Lemma 2. It holds that

Pr[A forges ∧ Bad] ≤ 2q

2n
.

The proof of this lemma can be found in Supporting Material C.2. The result in
Theorem 2 follows directly from Lemma 1 and 2.

6 Confidentiality Analysis of Tweplex

For privacy, we first define nonce-misuse-resilient security under the black-box
assumption. Then, we will show muCCAmL1 security in the presence of leakage
under the bounded-leakage assumption following a standard way as it does not
have much technical novelty.

Theorem 3. Suppose, an adversary A makes at most qe encryption queries,
that contain a total number of primitive calls of at most qp, over at most u
users. Then, for q = max{qp, qe}, we have

Advconf
Tweplex(A) ≤ u2

22n+1
+

4q2 + 2q

2n
+

q2

22n
.

Implication of the bound: This bound shows that we can achieve confiden-
tiality for an adversary under the black-box assumption and up to 2n/2 queries.
We will not consider security beyond the birthday bound since it is out of reach
anyways. Hereafter, we focus on showing that Tweplex achieves muCCAmL1 se-
curity when the number of queries is roughly 2n/2.

Theorem 4. Let Ẽ ∈ TBC({0, 1}n, T , {0, 1}n). Let A be a muCCAmL1 adver-

sary on Π[Ẽ]K = Tweplex[Ẽ]K that is allowed to ask at most qe encryption

queries of at most σ dn-bit blocks and q primitive queries in total. Let F [Ẽ]
denote an iteration of Tweplex for message encryption, and Lin, Lout, and L⊕
be leakage functions. Then

AdvmuCCAmL1
Π[Ẽ]

(A) ≤ Advconf
Π[Ẽ]

(q, σ) + 2σ ·AdvLUP-d
F [Ẽ],Lin,Lout(p, q) +

σ ·AdvXOR$
F [Ẽ],Lout,L⊕(q) + AdvmuCIML2

Π[Ẽ]
(q, σ) ,

where the LUP-d and XOR$ games are given in Algorithms 4 and 5, respectively.

17

The proof follows similar steps as the qCPAmL2 proof by [31] on TEDT2 and
the muCCAmL2 proof on TEDT [8]. However, we consider a multi-user version
and assume that the adversary can query its decryption oracle only with some
previous outputs from the encryption oracle due to the muCIML2 assumption.
Moreover, we assume that the decryption oracle does not give any leakage.
For the proof of the black-box privacy game conf, we first define some Bad events
in the nonce-misuse setting. Then, assuming those events did not happen, we
will study the distinguishing probability under bounded leakage. Let A be a
muCCAmL1 adversary for Tweplex that wants to win the game in Algorithm 3.
A is allowed to make three kinds of queries.

6.1 Query Types and Responses

� Primitive Query: For a primitive query (J, t, x,→), A will get y = ẼJ(t, x)

and for a query of the form (J, t, y,←), A will get x = Ẽ−1
J (t, y). For both kinds

of queries, the challenger will store an entry (Prim, J, t, x, y, dir).

� Encryption Query: For an encryption query of the form (i,N,A,M), A
will get C‖T such that C‖T ← E(i,N,A,M). A will also get the leakage cor-
responding to all internal primitive and other computations. This query will be
stored in the form (E , i, N,A,M,C‖T,L,hk), where hk is the set of all input-key
pairs used during encryption in internal primitive calls and L is the set of all
leakage results during this computation. We divide all encryption queries into
two types: E1, where the adversary can repeat the nonce for the same user and
E2, where the adversary has to make queries for the same user under a fresh
nonce. The E2 queries act as the challenge query for muCCAmL1 security.

� Decryption Query: For a decryption query of the form (i,N,A,C‖T), A
will get M such that M ← D(i,N,A,C‖T). Note that M can be a message or ⊥
depending on whether the authentication has been successful or not, respectively.
A will not receive any leakage during the decryption process.
Note that muCCAmL1 security is defined as the distinguishing advantage be-
tween a real and an ideal world. Without loss of generality, we can assume that
the muCIML2 security of Tweplex as the leakage assumptions are weaker in the
muCCAmL1 model. Then, there will be no valid decryption query. So, it remains
to prove the muCPAmL1 security of Tweplex. For that, we will first upper bound
the probability in nonce-misuse scenario by defining Bad events. Assuming Bad,
we show then that the output of Tweplex is indistinguishable from a randomly
chosen message in the black-box setting. From this, we will argue muCCAmL1 se-
curity in the presence of (bounded) leakage. Let us define two games as follows:

• Game G1 : This is the real-world encryption of a given message M , Real(M).
• Game G4 : This is equivalent to the real-world Real($), that encrypts not the

given M but a randomly chosen message M∗ of the same length as M with
the real encryption algorithm.

It holds that

AdvmuCCAmL1
Ek,Dk,LE (A) = ∆G14 .

18

6.2 Confidentiality under Nonce Misuse and Bounded Leakage

Here, we define Bad events similar to those defined in our CIML2 proof.

• Bad1: There are two different users sharing the same secret key and the same
public constant, i.e., ∃ i 6= j, i, j ∈ {1, 2, . . . , u} : Ki = Kj , Pi = Pj .

• Bad2 : Two distinct primitive queries lead to a collision after their corre-
sponding feed-forward operations, i.e ∃ (Prim, J, t, x, y, ?) and (Prim, J ′, t′,
x′, y′, ?) such that x⊕ y = x′ ⊕ y′.

• Bad3: There is a collision between one of the KDF calls and a primitive
query, i.e., ∃ (Prim, J, t, x, y, ?) : J = Ki, t = Pi‖0(dn/2−n), for some user i.

• Bad4: There is a collision in the output of a protected block of a E2 queries and
another encryption query, along with same public constatnt and same nonce,
i.e., ∃ (E2, i, Na

i , A
a
i ,M

a
i , C

a
i ‖Tai ,L,hkai) the a-th query to a user i and an-

other query (?, j,N b
j , A

b
j ,M

b
j , C

b
j‖Tbj ,L,hkbj) such that kai,0 = kbj,0, N

a
i ‖Pi =

N b
j ‖Pj .

• Bad5 : There is double block collision between an internal (h, k) pair, i.e.,
∃ (E2, i, Na

i , A
a
i ,M

a
i , C

a
i ‖Tai ,L,hkai) the a-th query to user i and another

query ((?, j, N b
j , A

b
j ,M

b
j , C

b
j‖Tagbj ,hkbj)) such that (h′, k′) = (h?, k?), where

(h′, k′) ∈ hkai and (h∗, k∗) ∈ hkbj .

• Bad6: There is a key-tweak pair collision among a KDF and TGF query, i.e.,
∃ (E2, i, Na

i , A
a
i ,M

a
i , C

a
i ‖Tai ,L,hkai) and another query ∃ (?, j,N b

j , A
b
j ,M

b
j ,

Cbj‖Tbj ,L,hkbj) such that (Ki = Kj)∧(Pi‖0n = hla+va+1‖klb+vb+1), for some
i, j ∈ {1, 2, . . . , u}.

• Bad7 : There is collision between TGF call and primitive call, i.e., ∃ (E2, i,
Na
i , Aai , M

a
i , C

a
i ‖Tai ,L,hkai) and (Prim, J, t, x, y, ?) such that t = hla+va+1‖

kla+va+1‖ 0(dn/2−2n) ∧ J = Ki.

We define the event Bad that is true if and only if any one of the conditions
above is satisfied. One can see that these Bad conditions are similar to those of
CIML2. Moreover, note that the adversary can not repeat a nonce for E2 queries
which restrains it from obtaining information compared to a CIML2 adversary.
The probability of these Bad conditions is upper bounded by the probability for
a CIML2 adversary to forge successfully. We obtain

Pr[Bad] ≤ u2

22n+1
+

4q2

2n
+

2q

2n
+

q2

22n
. (1)

If none of these events happen, all outputs from the KDF will be fresh for each E2
query. Moreover, from the absence of Bad2, it follows that all internal primitive
calls are pairwise unique. The tweaks used in the TGF module for every E2 query
is also fresh. Then, there is no difference between Real(M) and Real($) in the
black-box setting under the assumption of nonce-misuse resilience.

19

6.3 Proof Idea of muCCAmL1 Security

A detailed treatment and the game definitions are in Supporting Material E,
where we show that

∆G14 ≤ Advconf
Π[Ẽ]

(q, σ) + 2σ ·AdvLUP-d
F [Ẽ],Lin,Lout(p, q) +

σ ·AdvXOR$
F [Ẽ],Lout,L⊕(q) + AdvmuCIML2

Π[Ẽ]
(q, σ) .

Though, the reductions are standard, and for the sake of space limitations, here,
we provide only the core ideas.

Without leakage and in the absence of Bad, we can ensure indistinguishability
between G1 and G4. In the presence of leakage, we show that the security of the
scheme reduces to the SPA security of a single block-cipher call under the secu-
rity assumption in [6]. Following the definition of multi-user CCAmL1 security,
this is equivalent to the difference between G1 and G4. Now, we will argue the
muCCAmL1 security as follows:

From the definition of muCCAmL1, we consider leakage only in encryption di-
rection. The weaker (bounded-)leakage assumption in muCCAmL1 compared to
CIML2 adversary allows us to reduce security to a CIML2 adversary with equal
resources and assume CIML2 security in the following. We assume the bound
on the leakage function using the hard-to-invert property introduced in [43] and
also used in TEDT [8], TEDT2 [31].

For challenge queries (to E2), the adversary has to submit a fresh nonce. Then,
k0 will be fresh up to the birthday bound as it is the output of a block-cipher call
with the secret key. This k0 will be used as key only in two block-cipher calls with
different inputs for computing (h1, k1). For processing the associated data, some
key ki can be used twice with input hi and hi⊕θ1. Following a similar argument,
two such invocations pass randomness about hi, ki to hi+1, ki+1. Similarly, while
processing messages, the key and chaining values are used only a few times
and are updated in each iteration. Each key ks is used in (d + 1) block-cipher
calls with input hs, hs ⊕ θ1, hs ⊕ θ2, . . . , hs ⊕ θd. Therefore, the secrecy and
randomness will be maintained in the next iteration. Moreover, at the end in
the TGF, there is a protected block-cipher call with the long-term secret key
that is assumed to not leak any significant information. The only remaining
leakage is due to the XORs for creating the ciphertext as Cji ←M j

i ⊕ e1
i where

eji ← E(ka+i−1, t, h
j
a+i⊕ θj)⊕ hja+i⊕ θj for j = 2, 3, . . . , d and e1

i = ha+i, where
subscript i denoted number of block and superscript j denote the number of
sub-block of block i. For these, we use the similar LOR2 leakage assumption
as defined for TEDT [8] and the XOR$ assumption in TEDT2 [31]. Moreover,
those computations involve the hidden internal value ha+i−1. Thus, from the low
probability of the Bad events and the mentioned leakage assumptions above, we
achieve muCCAmL1 security up to the birthday bound.

20

7 Conclusion

We have shown that Multiplex-type constructions that use TBCs with smaller
tweaks than proposed cannot achieve beyond-birthday-bound CIML2 security
but can increase the throughput. We presented Tweplex, a birthday-bound-secure
scheme that uses the minimal tweak length under a higher throughput. It remains
an interesting research problem to find another rekeying or message processing
function that will give a Grade-2 AE scheme with a higher rate and > n/2-bit
security.

References

1. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to Securely Release Unverified Plaintext in Authenticated
Encryption. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT I, volume
8873 of Lecture Notes in Computer Science, pages 105–125. Springer, 2014.

2. Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated En-
cryption Robustness with Minimal Modifications. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO III, volume 10403 of Lecture Notes in Computer Sci-
ence, pages 3–33. Springer, 2017.

3. Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Authenti-
cated Encryption in the Face of Protocol and Side Channel Leakage. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT I, volume 10624 of Lecture Notes
in Computer Science, pages 693–723. Springer, 2017.

4. Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Namprem-
pre. Online Ciphers and the Hash-CBC Construction. In Joe Kilian, editor,
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 292–309.
Springer, 2001.

5. Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien
Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, Charles Momin,
Olivier Pereira, Thomas Peters, François-Xavier Standaert, Balazs Udvarhelyi, and
Friedrich Wiemer. Spook: Sponge-Based Leakage-Resistant Authenticated Encryp-
tion with a Masked Tweakable Block Cipher. IACR Trans. Symmetric Cryptol.,
2020(S1):295–349, 2020.

6. Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun Guo,
Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Mode-Level vs. Implementation-Level Physical Security in Symmetric Cryptog-
raphy - A Practical Guide Through the Leakage-Resistance Jungle. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO I, volume 12170 of Lecture
Notes in Computer Science, pages 369–400. Springer, 2020.

7. Daniel J. Bernstein. CAESAR: Competition for Authenticated Encryption: Se-
curity, Applicability, and Robustness. https://competitions.cr.yp.to/caesar.html,
last update 20 Feb 2019, last accessed 18 July 2023, 2014.

8. Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. TEDT, a Leakage-Resistant AEAD Mode for High Physical Security
Applications. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):256–320, 2020.

9. Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. Ciphertext Integrity with Misuse and Leakage: Definition and

21

Efficient Constructions with Symmetric Primitives. In Jong Kim, Gail-Joon Ahn,
Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim, editors, AsiaCCS,
pages 37–50. ACM, 2018.

10. Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
On Leakage-Resilient Authenticated Encryption with Decryption Leakages. IACR
Trans. Symmetric Cryptol., 2017(3):271–293, 2017.

11. Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi,
Somitra Sanadhya, and Ferdinand Sibleyras. Release of Unverified Plaintext: Tight
Unified Model and Application to ANYDAE. IACR Trans. Symmetric Cryptol.,
2019(4):119–146, 2019.

12. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 398–
412. Springer, 1999.

13. Benôıt Cogliati, Jérémy Jean, Thomas Peyrin, and Yannick Seurin. A Long
Tweak Goes a Long Way: High Multi-user Security Authenticated Encryption
from Tweakable Block Ciphers. IACR Cryptol. ePrint Arch., page 846, 2022.

14. Jean Paul Degabriele, Christian Janson, and Patrick Struck. Sponges Resist Leak-
age: The Case of Authenticated Encryption. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT II, volume 11922 of Lecture Notes in Computer Sci-
ence, pages 209–240. Springer, 2019.

15. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR Trans.
Symmetric Cryptol., 2020(S1):390–416, 2020.

16. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - Towards Side-Channel Secure Authenticated En-
cryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.

17. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. Ascon v1.2 Submission to the CAESAR Competition.
https://competitions.cr.yp.to/round3/asconv12.pdf, September 15 2016. Submis-
sion to the CAESAR competition.

18. Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Beyond Birthday Bound Secure
MAC in Faulty Nonce Model. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT I, volume 11476 of Lecture Notes in Computer Science, pages 437–466.
Springer, 2019.

19. Morris Dworkin. NIST Special Publication 800-38C – Recommendation for Block
Cipher Modes of Operation: The CCM Mode for Authentication and Confiden-
tiality [including updates through 7/20/2007]. Technical report, U.S. National
Institute of Standards and Technology, 2004.

20. Morris Dworkin. NIST Special Publication 800-38D – Recommendation for block
cipher modes of operation: Galois/Counter Mode (GCM) and GMAC. Technical
report, U.S. National Institute of Standards and Technology, 2007.

21. Louis Goubin and Jacques Patarin. DES and Differential Power Analysis (The
”Duplication” Method). In Çetin Kaya Koç and Christof Paar, editors, CHES,
volume 1717 of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

22. Vincent Grosso, François-Xavier Standaert, and Sebastian Faust. Masking vs.
Multiparty Computation: How Large Is the Gap for AES? In Guido Bertoni and
Jean-Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes in Computer
Science, pages 400–416. Springer, 2013.

22

23. Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Au-
thenticated Encryption with Nonce Misuse and Physical Leakage: Definitions, Sep-
aration Results and First Construction - (Extended Abstract). In Peter Schwabe
and Nicolas Thériault, editors, LATINCRYPT, volume 11774 of Lecture Notes in
Computer Science, pages 150–172. Springer, 2019.

24. Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the Impossible:
Automated Search for Full Impossible-Differential, Zero-Correlation, and Integral
Attacks. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT IV, volume
14007 of Lecture Notes in Computer Science, pages 128–157. Springer, 2023.

25. Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES Smart Card
Implementation Resistant to Power Analysis Attacks. In Jianying Zhou, Moti
Yung, and Feng Bao, editors, ACNS, volume 3989 of Lecture Notes in Computer
Science, pages 239–252, 2006.

26. Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Func-
tions. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in
Computer Science, pages 210–225. Springer, 2006.

27. Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust Authenticated-
Encryption AEZ and the Problem That It Solves. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT I, volume 9056 of Lecture Notes in Computer Sci-
ence, pages 15–44. Springer, 2015.

28. Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár. On-
line Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. In Rosario
Gennaro and Matthew Robshaw, editors, CRYPTO I, volume 9215 of Lecture Notes
in Computer Science, pages 493–517. Springer, 2015.

29. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

30. Ted Krovetz and Phillip Rogaway. Ocb (v1.1).
https://competitions.cr.yp.to/round3/ocbv11.pdf, 2016.

31. Eik List. TEDT2 - Highly Secure Leakage-Resilient TBC-Based Authenticated
Encryption. In Patrick Longa and Carla Ràfols, editors, LATINCRYPT, volume
12912 of Lecture Notes in Computer Science, pages 275–295. Springer, 2021.

32. David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer
Science, pages 343–355. Springer, 2004.

33. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight Authenticated En-
cryption Mode Suitable for Threshold Implementation. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT II, volume 12106 of Lecture Notes in Com-
puter Science, pages 705–735. Springer, 2020.

34. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Secret Can Be Public: Low-
Memory AEAD Mode for High-Order Masking. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO III, volume 13509 of Lecture Notes in Computer
Science, pages 315–345. Springer, 2022.

35. Thomas Peters, Yaobin Shen, and François-Xavier Standaert. Mul-
tiplex: TBC-based Authenticated Encryption with Sponge-Like Rate.
https://dial.uclouvain.be/pr/boreal/object/boreal%3A273131/datastream-

/PDF 01/view, 2023.
36. Lingyue Qin, Xiaoyang Dong, Anyu Wang, Jialiang Hua, and Xiaoyun Wang. Mind

the TWEAKEY Schedule: Cryptanalysis on SKINNYe-64-256. In Shweta Agrawal

23

and Dongdai Lin, editors, ASIACRYPT I, volume 13791 of Lecture Notes in Com-
puter Science, pages 287–317. Springer, 2022.

37. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi
Atluri, editor, ACM CCS, pages 98–107. ACM, 2002.

38. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-cipher
mode of operation for efficient authenticated encryption. In Michael K. Reiter and
Pierangela Samarati, editors, CCS, pages 196–205. ACM, 2001.

39. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the
Key-Wrap Problem. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 373–390. Springer, 2006.

40. Yaobin Shen, Thomas Peters, François-Xavier Standaert, Gaëtan Cassiers, and
Corentin Verhamme. Triplex: an Efficient and One-Pass Leakage-Resistant Mode
of Operation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):135–162, 2022.

41. Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, , Lawrence E. Bassham,
Jinkeon Kang, Noah D. Wallerand John M. Kelsey, and Deukjo Hong. NIST IR
8454 – Status Report on the Final Round of the NIST Lightweight Cryptography
Standardization Process. Technical report, US National Institute of Standards and
Technology, June 2023.

42. Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against Side-Channel Attacks: A Comprehensive Study
with Cautionary Note. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT,
volume 7658 of Lecture Notes in Computer Science, pages 740–757. Springer, 2012.

43. Yu Yu and François-Xavier Standaert. Practical Leakage-Resilient Pseudorandom
Objects with Minimum Public Randomness. In Ed Dawson, editor, CT-RSA,
volume 7779 of Lecture Notes in Computer Science, pages 223–238. Springer, 2013.

24

Supporting Material

A Algorithmic Description of muCCAmL1 and muCIML2

Algorithm 2 The muCIML2 experiment GCIML2
Π .

11: procedure Initialize

12: K1,K2, . . . ,Ku
$←− K

13: b← 0
14: S ← ∅

21: function LE(i,Ki, Pi, N,A,M,L)

22: R
$←− R

23: (C, T)← E(Ki, Pi, N,A,M)

24: S
∪←− {(i,N,A,C, T)}

25: L← LEKi
(Pi, N,A,M,R)

26: return (C, T, L)

31: function LD(i,Ki, Pi, N,A,C, T,L)

32: R
$←− R

33: M ← D(Ki, Pi, N,A,C, T)
34: L← LDKi

(Pi, N,A,C, T,R)
35: return (M,L)

41: function Finalize
42: return b

51: function LDch(i,Ki, Pi, N,A,C, T,L)

52: R
$←− R

53: L← LDKi
(Pi, N,A,C, T,R)

54: if (i,N,A,C, T) ∈ S then
55: return (⊥, L)

56: if D(Ki, Pi, N,A,C, T)
?
= ⊥ then

57: return (⊥, L)

58: M ← D(Ki, Pi, N,A,C, T)
59: b← 1
60: return (M,L)

61: function Ẽ(K,T,X)

62: Y ← Ẽ(K,T,X)
63: return Y

71: function Ẽ−1(K,T, Y)

72: X ← Ẽ−1(K,T, Y)
73: return X

B Description of The Modules in Tweplex

B.1 The MBL Compression Function

Multi-block length compression function based on tweakable block cipher, pro-
posed by Peters et al. [35], is used in building a multi-block length hash function
in the ideal cipher model based on a tweakable block cipher with n-bit key and
dn bits tweak. MBL compression function can be regarded as a generalization of
Hirose’s double-block length compression function [26] based on the ideal cipher
model to output arbitrary blocks without increasing the size of key. Let d ≥ 1
be some public parameter and Ẽ : {0, 1}n × {0, 1}dn/2 × {0, 1}n → {0, 1}n be
a tweakable block cipher. Then, F : {0, 1}(d+1)n × {0, 1}n → {0, 1}(d+1)n is a
multi-block compression function such that

(hi, ki, e
1
i , . . . , e

d−1
i) = F (hi−1, ki−1, e

1
i−1, . . . , e

d−1
i−1 , ti),

25

Algorithm 3 The muCCAmL1 experiment.

11: procedure Initialize

12: K1,K2, . . . ,Ku
$←− K

13: b
$←− {0, 1}

14: S1, S2, . . . , Su ← ∅

21: function Ẽ(K,T,X)

22: Y ← Ẽ(K,T,X)
23: return Y

26: function Ẽ−1(K,T, Y)

27: X ← Ẽ−1(K,T, Y)
28: return X

31: function Finalize(b′)
32: return b = b′

41: function LE1(i,Ki, Pi, N,A,M,L)

42: R
$←− R

43: (C, T)← E(Ki, Pi, N,A,M)

44: Si
∪←− N

45: L← LEKi
(Pi, N,A,M,R)

46: return (C, T, L)

51: function LE2(i,Ki, Pi, N,A,M,L)

52: R
$←− R

53: if N ∈ Si then
54: return ⊥
55: if b = 0 then
56: (C, T)← E(Ki, PiN,A,M)
57: else
58: M∗

$←− {0, 1}|M|
59: M ←M∗

60: (C, T)← E(Ki, Pi, N,A,M)

61: Si
∪←− N

62: L← LEKi
(Pi, N,A,M,R)

63: return (C, T, L)

71: function D(i,Ki, Pi, N,A,C, T,L)
72: M ← D(Ki, Pi, N,A,C, T)
73: return M

where hi, ki, e
1
i , . . . , e

d−1
i , ti ∈ {0, 1}n and hi−1, ki−1, e

1
i−1, . . . , e

d−1
i−1 ∈ {0, 1}n are

computed as follows:





hi = Ẽki−1(e1
i−1‖ . . . ‖ed−1

i−1 ‖ti, hi−1)⊕ hi−1

ki = Ẽki−1
(e1
i−1‖ . . . ‖ed−1

i−1 ‖ti, hi−1 ⊕ θ1)⊕ (hi−1 ⊕ θ1)

e1
i = Ẽki−1

(e1
i−1‖ . . . ‖ed−1

i−1 ‖ti, hi−1 ⊕ θ2)⊕ (hi−1 ⊕ θ2)
...

...
...

...

ed−1
i = Ẽki−1

(e1
i−1‖ . . . ‖ed−1

i−1 ‖ti, hi−1 ⊕ θd)⊕ (hi−1 ⊕ θd),

where θ1, θ2, . . . , θd are non-zero distinct constants.

B.2 Key-derivation Function

For a given parameter d, the KDF module of Tweplex first produces an initial
key k0 using a heavily protected TBC that takes a secret key Ki for user i, dn
bits tweak Pi‖0(d−1)n, and nonce N as input. Then, it uses the initial key k0

in the next two mildly protected tweakable block cipher as a key with input
0n and 0n ⊕ θ1, for some publicly chosen constant θ1 and tweak N‖Pi‖0(d−2)n

for user i to both TBC calls. Output of these two TBCs are masked with their
corresponding input to produce the initial key, chaining value pair (h1, k1). Note
that, the use of a heavily protected TBC in the first part of the KDF module is
used to protect the master secret key against leakages.

26

B.3 Message-processing Function

The MPF module of Tweplex consists of two parts: (a) one that processes the
associated data and (b) another one that encrypts message blocks. The initial
input to the module is the key, chaining value pair (h1, k1), which is then feeded
into the Hirose’s compression function to process the associated data blocks such
that the tweak size to each of the tweakable block cipher is dn/2 bits. Followed
by, it computes a multi-block hash function based on the MBL compression
function that is build upon (d + 1) tweakable block cipher calls such that each
of the TBC takes n bit input, n bit key and dn/2 bits tweak. This compression
function is iterated as long as there are message blocks need to be processed.
Note that, at each round of the multi-block hash function d message blocks
are processed to generate d ciphertext blocks. At the end, we use two TBC to
absorb last d block ciphertext in exact similar process. Output of these two TBC
(h′, k′) concatinated with 0(d−2)n becomes the tweak of TGF. We would like to
note here that this multi-block hash funtion is very similar to that of used in
the Multiplex construction except the use of latest cipher text blocks. It is easy
to see that Tweplex achieves a rate of d/(d + 1) using TBC with tweak length
dn/2-bits instead of dn bits as Triplex or Multiplex.

B.4 Tag-generation Function

This module of the construction consists of a single invocation of strongly pro-
tected tweakable block cipher with the master secret key as key, fixed input
0n and the output of the multihash h′‖k′‖0(d−2)n as tweak. As before, strong
protection to the TBC ensures to protect the master secret key from leaking.
Finally, output of this tweakable block cipher is given as the tag.

C Authenticity Proof of Tweplex

C.1 Proof of Lemma 1

Let qc = qe + qd and qp be the number of construction and primitive queries,
respectively. We will bound the probability of Bad as follows:

2 Bounding Bad1: The key and the public values corresponding to an user is
chosen uniformly at random over {0, 1}n×{0, 1}n. Thus, for any two user i and
j, we have Pr[Ki = Kj ∧ Pi = Pj] ≤ 2−2n. As there is a total

(
u
2

)
possible pairs

of users, we have

Pr[Bad1] ≤
(
u

2

)
· 1

22n
≤ u2

22n+1
. (2)

27

2 Bounding Bad2: From the definition of a tweakable block cipher, for any two
(Prim, J, t, x, y) 6= (Prim, J ′, t′, x′, y′) ∈ τp we have

Pr[x⊕ y = x′ ⊕ y′] ≤ 1

2n
.

Moreover there are qp many elements in τp. So

Pr[Bad2] ≤
(
qp
2

)

2n
≤ q2

p

2n+1

2 Bounding Bad3: It is easy to see that for any primitive query (Prim, J, t, x, y),

A can target such user’s secret key whose public parameter satisfy t = Pi‖0(dn
2 −n).

As Ki’s are distributed uniformly, i.e., for any user i, Pr[J = Ki] = 1
2n , we have

Pr[Bad3] ≤ uqp
2n

(3)

2 Bounding Bad4 ∧ Bad1: Let i, j (6= i) be two users such that Na
i ‖Pi =

N b
j ‖Pj . Assuming Bad1, Pi = Pj ensures that Ki 6= Kj . Thus, kai,0 and kbj,0 are

outputs of block-cipher calls under different keys, and the probability that the
outputs match is ≤ 1

2n . A can target at most u users’ secret keys. Hence,

Pr[Bad4 ∧ Bad1] ≤ uqd
2n

. (4)

2 Bounding Bad5 ∧ Bad3: As E is considered as an indistinguishable from a
random tweakable permutation, the probability that E(Ji, Ti, xi)⊕xi = E(Jj , Tj ,
xj) ⊕ xj for some i, j ∈ {1, 2, . . . , qp} is ≤ 1

2n . Moreover collision in tweak of
two TGF calls is equivalent to collision in hash H. Observe that tweak used
for creation of h and tweak used for creation of k are independent. So clearly
Collision in Hash H ⇔ Collision in any one of h, k. Moreover Collision in one of
h, k is equivalent to Bad2. Hence, we have

Pr[Bad5 ∧ Bad3] = 0 .

2 Bounding Bad6 ∧ Bad3 ∧ Bad5: Assuming that Bad3 and Bad6 did not occur,
at least one of hla+va+1, kla+va+1 will differ from all previous outcomes, i.e.,
chosen uniformly at random from a set of size at least (2n − qp). Thus, either
Pr[hla+va+1 = Pj] ≤ 1

2n−qp ≤
1

2n−1 , or Pr[kla+va+1 = 0n] ≤ 1
2n−qp ≤

1
2n−1

(assuming qp ≤ 2n−1). We obtain two cases:

• i = j: In this case, Ki = Kj . Therefore, the target value of A is a unique
value Pi‖0n. Hence

Pr[Bad6 ∧ Bad3 ∧ Bad5|i = j] ≤ 2qc
2n

.

28

• i 6= j: In this case, we have Pr[Ki = Kj] ≤ 1
2n , as secret keys are distributed

uniformly among users. Thus, in this case a collision between KDF and TGF
calls will happen iff Ki = Kj∧hla+va+1 = Pj∧kla+va+1 = 0n. Using a similar
approach as in the previous case for freshness of hla+va+1 or kla+va+1

Pr[Bad6 ∧ Bad3 ∧ Bad5|i 6= j] ≤
(
qc
2

)

22n−1
≤ q2

c

22n
.

Combining the two cases above, we have

Pr[Bad6 ∧ Bad3 ∧ Bad5] ≤ 2qc
2n

+
q2
c

22n
. (5)

2 Bounding Bad7: Due to the uniform distribution of secret keys, we have

Pr[J = Ki] = 1
2n . Now, considering the total of qc construction queries(TGF

calls) and qp primitive queries, we have

Pr[Bad8] ≤ qc · qp
2n

. (6)

Let Bad =
7⋃
i=1

Badi. Then

Pr[Bad] ≤ u2

22n+1
+

q2
p

2n+1
+
uqp
2n

+
uqd
2n

+
2qc
2n

+
q2
c

22n
+
qc · qp

2n

≤ u2

22n+1
+

4q2

2n
+

2q

2n
+

q2

22n
. (7)

C.2 Bounding the Forging Probability when Bad Does Not Occur

Now, we will bound the forging probability when Bad does not occur. Let (D, i, Na
i ,

Aai ,M
a
i , C

a
i ‖Tai ,hai ,kai) be a forgery attempt. We calculate the success probabil-

ity of this forgery to be valid for each of the following cases:

• Case A: (E , i, Na
i , A

a
i , ?, C

a
i ‖Tbi ,hbi ,kbi) is a previous query for the same user

i. In this case, the tweaks used in the TGF for both queries are equal, and
hence, by non-triviality of the forgery attempt Tai 6= Tbi . Hence,

Ẽ−1(Ki, twk,T
a
i) 6= Ẽ−1(Ki, twk,T

b
i)

Thus, in this case A will be successful with probability 0.

• Case B: (D, i, N b
i , A

b
i ,M

b
i , C

a
i ‖Tbi ,hbi ,kbi) is a previous query for the same

user i. In this case, at least one of Tai and Tbi is invalid. Assuming Tbi is

invalid (otherwise, the success probability is 0), Ẽ−1(Ki, twk,T
a
i) should be

fresh, and Pr[Ẽ−1(Ki, twk,T
a
i) = 0n] ≤ 1

2n−qc ≤
2

2n considering qc ≤ 2n−1.

So, in this case A will succeed with probability at most 2/2n.

29

• Case C: If neither of the above two cases happen, then, since Bad does not
occur (and hence, no collision in the hash), the key-tweak pair for the TGF

i.e., (Kj , hla+va+1‖kla+va+1‖0(dn
2 −2n)) differs from all previous tuples (h, k).

Hence, we obtain

Pr[Ẽ−1(Ki, hla+va+1‖kla+va+1‖0(dn
2 −2n), Tagai) = 0n] ≤ 1

2n − qc
≤ 2

2n
.

Combining all cases above, we obtain

Pr[A forges ∧ Bad] ≤
qd∑

1

2

2n
≤ 2qd

2n
≤ 2q

2n
. (8)

D Forgery Algorithms for Multiplex

Case A: ∃ x, y ∈ Ker(f) : g(x) = g(y) Case B: ∃ x, y ∈ Ker(g) : f(x) = f(y)

1 : Choose z ∈ {0, 1}dn : f(z) 6= 0l; Choose z ∈ {0, 1}dn : g(z) 6= 0l ;

2 : Make an Encryption Query (N,A,M = (M1‖ · · · ‖Md));

3 : Let the response be (C = C1‖ · · · ‖Cd, T);

4 : Compute e1 = C1 ⊕M1, . . . , ed = Cd ⊕Md;

5 : Compute M ′1‖ · · · ‖M ′d = (x⊕ z)⊕ (e1‖ · · · ‖ed).
6 : Make an Encryption Query (N,A,M ′ = (M ′1‖ · · · ‖M ′d));
7 : Let the response be (C′, T ′);

8 : Forge (N,A,C′′ = (y ⊕ z), T ′);

Fig. 6: Forgery algorithm in Cases A (without) and B (with the boxed state-
ments) for Multiplex.

30

Case C: Cases A and B do not hold

1 : Make an Encryption Query (N,A,M = (M1‖ · · · ‖Md));

2 : Let the resonse be (C = (C1‖ · · · ‖Cd), T);

3 : Note internal round pair (hα, kα), used to create C1‖ · · · ‖Cd;

4 : Choose z ∈ {0, 1}dn : g(z) 6= 0;

5 : Let a = min{22n−l, 2
n
2 };

6 : Choose distinct x1, x2, . . . , xa ← Ker(g);

7 : Compute ki ← Ẽ(kα, t
i
1, hα), where ti1 ← f(xi ⊕ z), for i = 1, . . . , a;

8 : Find (i, j) such that ki = kj ;

9 : Compute e1 := C1 ⊕M1, · · · , ed := Cd ⊕Md;

10 : Compute M ′1‖ · · · ‖M ′d = (xi ⊕ z)⊕ (e1‖ · · · ‖ed);
11 : Make an Encryption Query (N,A,M ′ = (M ′1‖ · · · ‖M ′d));
12 : Let the response be (C′, T ′);

13 : Forge with (N,A,C′′ = (xj ⊕ z), T ′);

Fig. 7: Forgery algorithm in Case C for Multiplex.

E Details of the muCCAmL1 Security of Tweplex

Before proceeding to the main result, we first define two security notions that
will be useful to state the result.

Definition 2. Let Ẽ ∈ TBC({0, 1}n, T , {0, 1}n). Let Lin and Lout be two sets
of in- and output leakage, respectively. Let A be an adversary that provides
k0, h0 ∈ {0, 1}n and t1, t2, t

′
1, t
′
2, t
′
3 ∈ T and plays LUP-d game, as given in

Algorithm 4, against F [Ẽ], and outputs a set K. The LUP-d advantage of A is
defined as

AdvLUP-d
F [Ẽ]k0,h0

,Lin,Lout(A)
4
= Pr[|K| ≤ q ∧ (h1, k1) ∈ K] .

We define AdvLUP-d
F [Ẽ],Lin,Lout(p, q) as the maximum of all LUP-d adversaries A

on F [Ẽ] that ask at most p queries and output a set of at most q elements each.

Definition 3. Let Ẽ ∈ TBC({0, 1}n, T , {0, 1}n). Let Lout and L⊕ be two sets
of leakage. Let A be an adversary that provides K,M ∈ {0, 1}n and T ∈ T and

plays XOR$ game as given in Algorithm 5 against F [Ẽ], and outputs a bit b′.
The XOR$ advantage of A is defined as

AdvXOR$
F [Ẽ]K,T ,Lout,L⊕(A)

∆
=
∣∣Pr[A 1 = 1]− Pr[A 0 = 1]

∣∣ .

31

Algorithm 4 LUP-d Game.

11: procedure
Initialize(k0, h0, t1, t2, t

′
1, t
′
2, t
′
3)

12: k1
$←− {0, 1}n; h1

$←− {0, 1}n

13: ip1 ← Ẽ−1(k0, t1, k1)

14: ip2 ← Ẽ−1(k0, t2, h1)

21: function
LEAK[Ẽ](Λin, Λout,K, T,X, Y)

22: Rin, Rout
$←− R

23: Lin ← Λin(K,T,X : Rin)
24: Lout ← Λout(K,T, Y : Rout)
25: return (Lin, Lout)

31: function Finalize(K)
32: if |K| ≤ q ∧ (h1, k1) ∈ K then
33: return 1
34: return 0

41: function F [Ẽ](Λin, Λout)
42: for i← 1 . . . p do

43: Rin1 , R
out
1

$←− R
44: k1 ← Ẽ[k0, t1, ip1]

45: L
∪←− Λout(k0, t1, k1 : Rin1)

46: h1 ← Ẽ[k0, t2, ip2]

47: L
∪←− Λout(k0, t2, h1 : Rout1)

48: k2 ← Ẽ(k1, t
′
1, h1)

49: L
∪←− LEAK[Ẽ](Λin, Λout, k1, t

′
1, h1, k2)

50: h2 ← Ẽ(k1, t
′
2, h1 ⊕ θ1)

51: L
∪←− LEAK[Ẽ](Λin, Λout, k1, t

′
2, h1 ⊕ θ1, h2)

52: for j ← 2 . . . d do
53: ej ← Ẽ(k1, t

′
3, h1 ⊕ θj)

54: L
∪←− LEAK[Ẽ](Λin, Λout, k1, t

′
3, h1⊕θj , ej)

55: return (k2, h2, e2, . . . , ed,L)

Algorithm 5 XOR$ Game.

11: procedure Initialize(K,T,M,Λin, Λout, Λ⊕)

12: Y
$←− {0, 1}n; b

$←− {0, 1}
13: M∗ ←M
14: if b=0 then
15: M∗

$←− {0, 1}n

16: X ← Ẽ−1(K,T, Y)

21: function Finalize(b′)
22: return b = b′

31: function F [Ẽ](Λin, Λout, Λ⊕)
32: for i← 1 . . . p do

33: Rin1 , R
out
1 , R⊕

$←− R
34: Y ← Ẽ(K,T,X)

35: L
∪←− Λout(K,T, Y : Rout1)

36: C ← Y ⊕M∗
37: L

∪←− Λ⊕(Y,C : R⊕)

38: return (C,L)

We define AdvXOR$
F [Ẽ],Lout,L⊕(q) as the maximum of all XOR$ adversaries A on

F [Ẽ] that ask at most q queries.

Theorem 5. Let Ẽ ∈ TBC({0, 1}n, T , {0, 1}n). Let A be a muCCAmL1 adver-

sary on Π[Ẽ]K = Tweplex[Ẽ]K that is allowed to ask at most qe encryption

queries of at most σ dn-bit blocks and q primitive queries in total. Let F [Ẽ]
denote an iteration of Tweplex for message encryption, Lin, Lout, and L⊕ be
leakage functions. Then

AdvmuCCAmL1
Π[Ẽ]

(A) ≤ AdvmuCPAmL1
Π[Ẽ]

+ AdvmuCIML2
Π[Ẽ]

≤ Pr[Bad] + 2σ ·AdvLUP-d
F [Ẽ],Lin,Lout(p, q) +

σ ·AdvXOR$
F [Ẽ],Lout,L⊕(q) + AdvmuCIML2

Π[Ẽ]
.

Proof. The proof follows similar steps as the qCPAmL2 proof by [31] on TEDT2
and the muCCAmL2 proof on TEDT [8]. However, we consider a multi-user ver-
sion and assume that the adversary can query its decryption oracle only with

32

Algorithm 6 Real and Ideal worlds.

31: function REAL(h1, k1, A,M)
32: A1‖A2‖ · · · ‖Ada ← PAD(A)
33: M1‖M2‖ · · · ‖Mdm ← PAD(M)
34: for i← 2 · · · a do
35: ti,1 ← msbd′(Ad(i−2)+1‖Ad(i−2)+2‖ · · · ‖Ad(i−2)+d)
36: ti,2 ← lsbd′(Ad(i−2)+1‖Ad(i−2)+2‖ · · · ‖Ad(i−2)+d)

37: ki ← Ẽ(ki−1, ti,1, hi−1)⊕ hi−1

38: L
∪←− LEAK[Ẽ](ki−1, ti,1, hi−1, ki)

39: hi ← Ẽ(ki−1, ti,2, hi−1 ⊕ θ1)⊕ hi−1 ⊕ θ1
40: L

∪←− LEAK(ki−1, ti,2, hi−1 ⊕ θ1, ki)
41: X1 ← msbd′(Ad(a−1)+1‖Ad(a−1)+2‖ · · · ‖Ad(a−1)+d)
42: X2 ← lsbd′(Ad(a−1)+1‖Ad(a−1)+2‖ · · · ‖Ad(a−1)+d)
43: X3 ← X1 ⊕X2

44: for i← 1..m do
45: ka+i ← Ẽ(ka+i−1, X1, ha+i−1)⊕ ha+i−1

46: L
∪←− LEAK(ka+i−1, X1, ha+i−1, ka+i)

47: ha+i ← Ẽ(ka+i−1, X2, ha+i−1 ⊕ θ1)⊕ ha+i−1 ⊕ θ1
48: L

∪←− LEAK(ka+i−1, X2, ha+i−1 ⊕ θ1, ha+i)
49: Cd(i−1)+1 ←Md(i−1)+1 + ha+i
50: L← LEAK-XOR(Cd(i−1)+1,Md(i−1), ha+i)
51: for j ← 2 · · · d do
52: ej ← Ẽ(ka+i−1, X3, ha+i−1⊕θj)⊕ha+i−1⊕θj
53: L← LEAK(ka+i−1, X3, ha+i−1 ⊕ θj , ej)
54: Cd(i−1)+j ←Md(i−1)+j + ej
55: L← LEAK-XOR(Cd(i−1)+j ,Md(i−1)+j , ej)

56: X1 ← msbd′(Cd(i−1)+1‖Cd(i−1)+2‖ · · · ‖Cd(i−1)+d)
57: X2 ← lsbd′(Cd(i−1)+1‖Cd(i−1)+2‖ · · · ‖Cd(i−1)+d)
58: X3 ← X1 ⊕X2

59: twk1 ← Ẽ(ka+m, X1, ha+m)⊕ ha+m
60: L←LEAK(ka+m, X1, ha+m, twk1)

61: twk2 ← Ẽ(ka+m, X2, ha+m ⊕ θ1)⊕ ha+m+1 ⊕ θ1
62: L←LEAK(ka+m, X1, ha+m ⊕ θ1, twk2)
63: twk ← twk1‖twk2
64: C = C1‖C2‖C3‖ · · · ‖Cdm
65: return (C, twk,L)

21: function LEAK[Ẽ](K,T,X, Y)

22: Rin, Rout
$←− R

23: Lin ← Λin(K,T,X : Rin)
24: Lout ← Λout(K,T, Y : Rout)
25: return (Lin, Lout)

31: function Ideal(h1, k1, A,M)
32: A1‖A2‖ · · · ‖Ada ← PAD(A)
33: M1‖M2‖ · · · ‖Mdm ← PAD(M)
34: for i← 2 · · · a do
35: ti,1 ← msbd′(Ad(i−2)+1‖Ad(i−2)+2‖ · · · ‖Ad(i−2)+d)
36: ti,2 ← lsbd′(Ad(i−2)+1‖Ad(i−2)+2‖ · · · ‖Ad(i−2)+d)

37: ki
$←− {0, 1}n

38: L
∪←− LEAK[Ẽ](ki−1, ti,1, hi−1, ki)

39: hi
$←− {0, 1}n

40: L
∪←− LEAK(ki−1, ti,2, hi−1 ⊕ θ1, ki)

41: X1 ← msbd′(Ad(a−1)+1‖Ad(a−1)+2‖ · · · ‖Ad(a−1)+d)
42: X2 ← lsbd′(Ad(a−1)+1‖Ad(a−1)+2‖ · · · ‖Ad(a−1)+d)
43: X3 ← X1 ⊕X2

44: for i← 1..m do
45: ka+i

$←− {0, 1}n

46: L
∪←− LEAK(ka+i−1, X1, ha+i−1, ka+i)

47: ha+i
$←− {0, 1}n

48: L
∪←− LEAK(ka+i−1, X2, ha+i−1 ⊕ θ1, ha+i)

49: Cd(i−1)+1 ←Md(i−1)+1 + ha+i
50: L← LEAK-XOR(Cd(i−1)+1,Md(i−1), ha+i)
51: for j ← 2 · · · d do

52: ej
$←− {0, 1}n

53: L← LEAK(ka+i−1, X3, ha+i−1 ⊕ θj , ej)
54: Cd(i−1)+j ←Md(i−1)+j + ej
55: L← LEAK-XOR(Cd(i−1)+j ,Md(i−1)+j , ej)

56: X1 ← msbd′(Cd(i−1)+1‖Cd(i−1)+2‖ · · · ‖Cd(i−1)+d)
57: X2 ← lsbd′(Cd(i−1)+1‖Cd(i−1)+2‖ · · · ‖Cd(i−1)+d)
58: X3 ← X1 ⊕X2

59: twk1
$←− {0, 1}n

60: L←LEAK(ka+m, X1, ha+m, twk1)

61: twk2
$←− {0, 1}n

62: L←LEAK(ka+m, X1, ha+m ⊕ θ1, twk2)
63: twk ← twk1‖twk2
64: C = C1‖C2‖C3‖ · · · ‖Cdm
65: return (C, twk,L)

41: function LEAK-XOR(C,M, e)
42: for i← 1 . . . p do

43: R⊕
$←− R

44: C ←M ⊕ e
45: L

∪←− Λ⊕(e, C : R⊕)

46: return L)

33

some previous outputs from the encryption oracle due to the muCIML2 assump-
tion. Moreover, we assume that the decryption oracle does not give any leakage.
In the following, we will define and use a sequence of four games G1, G2, G3, and
G4. G1 represents the left-hand side and G4 the right-hand side of Equation (9):

4A (LEK1 , LEK2 ,DK , Ẽ, Ẽ−1,LE ; LEK1 , L$̂KE , $̂
K
D , Ẽ, Ẽ

−1,LE) . (9)

We will move stepwise from game G1 to G4 by defining adversaries Ai,i+1, for
i = 1, 2, 3 that aim at distinguishing between Gi and Gi+1. We will write 4Gi,j
for the maximal advantage over all adversaries Ai,j distinguishing between game
Gi and Gj .

We introduce Real[Ẽ] and Ideal[Ẽ] as defined in algorithm 6, where Real[Ẽ] cor-

responds to message encryption using original Tweplex and Ideal[Ẽ] corresponds
to message encryption with ideal(random) oracle. We denote original message
as M and random message as $. four games are as follows:

• G1 := Real[Ẽ](M),

• G2 := Ideal[Ẽ](M),

• G3 := Ideal[Ẽ]($), and

• G4 := Real[Ẽ]($).

From the muCPAmL1 security definition and the triangle inequality, we have

AdvmuCPAmL1
Π (A) = ∆G1,4 ≤

3∑

i=1

∆Gi,i+1 . (10)

Difference ∆G1,2 : We define the ideal world Ideal. It samples all the internal
successive chaining values h, successive keys k, and values e’s uniformly and inde-
pendently from {0, 1}n. Then, it creates the ciphertext by XORing the message
with the respective chosen e values. It also computes leakage outputs Lin, Lout,
and L⊕ with its primitive oracles Ẽ and Ẽ−1 and collects it as the would-be
leakage in a vector L and outputs the ciphertext C together with L.
From our definition of Bad events in Section 6 and our assumption Bad, it holds
that each primitive query is fresh during the challenge query. This guarantees
that there is no difference between the worlds Real and Ideal when leakage is ab-
sent. However, under leakage and in absence of Bad, there can be a distinguishing
advantage. Though, the distinguishing advantage of A1,2 can be reduced to that
of an LUP-d adversary Aup on an isolated iteration of Tweplex. We can define
Aup, that runs an instance of A1,2 and simulates its oracle as follows:

• For a primitive query of A1,2, Aup will query the same to it’s own primitive
oracle and return the result. Moreover it will store the query in transcript
τp as (k, J,X, Y).

• For a construction query (i,Na
i , A

a
i ,M

a
i) to the user i. WhereMa

1 ← m1‖m2‖
· · · ‖mlm and Aa1 ← A1‖A2‖ · · ·Ala where each Aj and mj ’s are dn-bit block,
Aup will reply as follows:

34

• Aup samples s
$←− [lm], h1, k1

$←− {0, 1}n. Moreover, it initializes an empty
list of leakages L.

• For each dn-bit block of associated data, Aup computes two tweaks t1 ←
msbdn/2(Aj) and t2 ← lsbdn/2(Aj), ∀j = 1, 2, . . . , la − 1. Moreover, Aup

adds the leakage to L.
• It computes kj+1 by querying its own primitive (kj , t1, hj) and computes
kj+1 by querying with (kj , t2, jj + θ1). Moreover, Aup adds the leakage
to L.

• For Ala , Aup computes t1 ← msbdn/2(Aj) and t2 ← lsbdn/2(Aj) and
t3 ← t1 ⊕ t2. Moreover, Aup adds the leakage to L.

• For j = 1 . . . s− 1, Aup queries to its primitive to get kla+j , hla+j , e
2
la+j‖

· · · ‖edla+j . Aup obtains C1
j ← m1

j ⊕hla+j , C
x
j ← mx

j ⊕ exla+j ,∀x = 2 . . . d.
Where mx

j is the x-th d-bit block of mj same for c. Moreover, Aup adds
the leakage to L.

• For j = s, Aup queries its primitive queries to get kla+s and {hla+s, e
2
la+s,

. . . , edla+s}. It computes Cys , ∀y = 1, 2, . . . , d as before. Moreover, Aup

queries its LUP-d challenger with (kla+s−1, hla+s−1, t1, t2, t
′
1, t
′
2, t
′
3) and

receives (kla+s+1, hla+s+1, e
2
la+s+1, e

3
la+s+1, . . . , e

d
la+s+1). Then, it com-

putes Cla+s+1 accordingly. Moreover, Aup adds the leakage to L.
• For j = s + 2 . . . lm, Aup queries its primitive oracle to compute kla+j ,
hla+j , and e2

la+j , . . . , edla+j . It uses those to compute the respective
ciphertexts. Moreover, Aup adds the leakage to L.

• It returns the ciphertext Cai along with the leakage L to A1,2.

At the end of the interaction, Aup outputs a set of h, k values consists of all key
input pair in the primitive querues of A1,2, K = {(k, h) : (k, ∗, h, ∗)τp}.
Clearly, the advantage of A1,2 is inherited by Aup. Moreover, the difference also
consists of the right guess of the index s, for which number of possible values
are maximum σ. Thus, the advantage of A1,2 is upper bounded as follows:

∆G1,2 ≤ Pr[Bad] + σ ·AdvLUP-d
F [Ẽ],Lin,Lout(p, q) . (11)

Difference ∆G2,3 : Since the ideal world Ideal outputs a random key string,
in the black-box setting, its output will be indistinguishable from random. But
under leakage, this may differ. However, we can reduce that distinguishing ad-
vantage to that of an XOR$ adversary. For this purpose, we will follow a similar
approach as in the previous case. First, we define an adversary A⊕ for the XOR$
game, which will then simulate the challenger of the distinguisher A2,3 as follows:

• For a primitive query by A2,3, A⊕ queries its own primitive oracle and relays
the response. Moreover, it stores the query in τp as (k, J,X, Y).
• For a construction query (i,Na

i , A
a
i ,M

a
i) to the user i, where Ma

1 ← (m1‖
m2‖ · · · ‖mlm) and Aa1 ← A1‖A2‖ · · ·Ala where each Aj and mj ’s are dn-bit
block, A⊕ will reply as follows:

• A⊕ samples s
$←− [lm]. Moreover it initializes an empty list of leakage L.

• For j = 1, . . . , la, it chooses hj , kj
$←− {0, 1}n.

35

• For j = 1 . . . s − 1, A⊕, it chooses randomly kla+j , hla+j , (e2
la+j‖ · · ·

‖edla+j) from {0, 1}n. A⊕ obtains C1
j ← m1

j⊕hla+j , C
x
j ← mx

j⊕exla+j ,∀x =
2 . . . d, where mx

j is the x-th d-bit block of mj same for c. Moreover, A⊕
adds the leakage obtained from its primitive oracle as defined in Algo-
rithm 6 to the list L.

• For j = s, A⊕, it chooses kla+s
$←−. It also chooses {hla+s

$←− {0, 1}n. A⊕
get C1

s by quering the XOR$ challenger with (kla+s−1, lsbdn/2(Cs−1),
m1
s). A⊕ also computes t = lsbdn/2(Cs−1) ⊕ msbdn/2(Cs−1). A⊕ will

obtain Cxs , ∀x = 2, . . . , d by querying its XOR$ oracle by (kla+s−1,, t)
and repeating it d − 1 times. Moreover, A⊕ adds the leakage obtained
from its primitive oracle as defined in Algorithm 6 to the list L.
• For j = s + 2 . . . lm, A⊕ will follow the same procedure as the case

1, . . . , s− 1. Moreover, A⊕ adds the leakage obtained from its primitive
oracle as defined in Algorithm 6 to the list L.

• It returns the ciphertext Cai along with the leakage L to A2,3.

At the end of its interaction, A⊕ will relay the response of A2,3 to its own
challenger. Then, the advantage of A⊕ is inherited by A2,3. It also consists of
the right guess of the iteration s among the at most σ possible options. Thus,

∆G2,3 ≤ σ ·AdvXOR$
F [Ẽ],Lout,L⊕(q) . (12)

Difference ∆G3,4 : It is easy to see that this difference is equivalent to the
difference ∆G1,2.
Our claim in Theorem 5 follows from summing up the individual bounds from
Equations (10), (11) and twice that of Equation (12).

36

	On the Security of Triplex- and Multiplex-type Constructions with Smaller Tweaks

