
Concretely Efficient Input Transformation Based
Zero-Knowledge Argument System for Arbitrary

Circuits

Frank Y.C. Lu

YinYao Inc.

Abstract. We introduce a new efficient, transparent, interactive zero-
knowledge argument system that is based on the new input transfor-
mation concept that we will introduce in this paper. The core of this
concept is a mechanism that converts input parameters into a format
that can be processed directly by the circuit so that the circuit output
can be verified through direct computation of the circuit.

In the default setting, our protocol only requires the prover to use vec-
tor commitment to commit to the square root of the polynomial degree
(
√
pd) the circuit generates. Our benchmark result shows our approach

can significantly improve both prover runtime and verifier runtime per-
formance over state-of-the-art by over one order of magnitude while keep-
ing the communication cost comparable with that of the state-of-the-art.

Our approach also allows our protocol to be memory-efficient without
forcing it to require a designated verifier. The theoretical memory cost
of our protocol is O(b), where b is a parameter set by the user. Lower-
ing the b value will result in better prover runtime performance at the
expense of higher communication cost. Our benchmark result shows the
prover speed of our protocol is at least comparable to that of state-of-
the-art VOLE-based protocols, but with much smaller proof size and the
significant advantage of being non-interactive at the same time.

1 Introduction

Ever since the discoveries of interactive proofs (IPs) [23] and probabilistically
checkable proofs (PCPs) [6] [5] [4] [3] in the late last century, there has been
a tremendous amount of research in the area of proof systems. More recently,
the rise of blockchain and Web3 has finally triggered real-world interest in zero-
knowledge systems.

Due to the expensive computation cost in the setup phase of earlier SNARKs
(Succinct Non-Interactive Argument of Knowledge), the industry developed pro-
tocols that have the structured reference string (SRS) be constructible in a “uni-
versal and updatable” fashion. The first such universal SNARK was in Groth
et al. [24], and Maller et al. improved the SRS size from quadratic to linear
in Sonic [27]. More recently developed protocols such as PLONK [21], MAR-
LIN [16] are universal fully-succinct SNARK with significantly improved prover

runtime compared to the fully-succinct Sonic. However, many of these univer-
sal succinct SNARKs systems require trusted setup, and the prover run-time
of these protocols is prohibitively expensive even with the latest improvements
such as HyperPlonk [15], usually takes over 100 seconds on a single-threaded
CPU for a circuit with over 220 constraints.

Other classes of protocols including the Goldwasser, Kalai, and Rothblum
(GKR) class such as Hyrax [32], Virgo [37]; MPC-in-the-head class of Kushile-
vitz, Ostrovsky, and Sahai such as ZKBoo [22] and Ligero/Ligero++ [1] [9] offer
efficient prover runtimes that are at least one order of magnitude more efficient
than pairing-based SNARKs. However, these protocols are largely ignored by the
industry (e.g., the blockchain community) due to their expensive verifier run-
time and high communication cost (hundreds of KBs) compared to fully succinct
SNARK and STARK [8] protocols.

NIZKs such as SpartanNIZK [30] and later Lakonia [31] seem to offer a much
more balanced approach, where they offer efficient prover runtime (6-18 seconds
single thread) and competitive communication costs for large circuits while not
being layer dependent. However, the downside of these protocols is that their
verifier performance is still expensive, usually in the 400+ ms range on a single-
threaded CPU.

Another category of protocols emphasizes on memory-efficiency such as gar-
bled circuits [26] [20] [25] and Vector Oblivious Linear Evaluation (VOLE) proto-
cols [11] [29] [13] [12] [36] [33] [7] [35] generally offer better prover performance.
However, their verifier runtimes are just as expensive and generally require a
designated verifier with very expensive communication cost.

Our aim is to create a new transparent zero-knowledge protocol that of-
fers great flexibility to optimize and the best overall performance while free of
significant performance shortcoming in any area. Specifically, we want to keep
the communication cost comparable to those of the state-of-the-art and greatly
improve both the prover runtime and the verifier runtime over those of the state-
of-the-art. Finally, we also want our new system to be memory-efficient without
requiring a designated verifier like that of VOLE protocols.

2 Summary of Contributions

Our approach is to design a new class of protocols that allows verifiers to validate
circuit outputs by directly examining circuit inputs without going through some
intermediate translation phase. In our protocol, circuit inputs in the Pedersen
commitment form are converted to linear polynomials in Fq so that verifiers can
use standard arithmetic operations in Zq to just “execute” the evaluating circuit
to get its output. Our protocol does not require trusted setup and depends only
on discrete logarithm assumption.

There were past attempts that somewhat enabled verifiers to “validate” each
multiplication gate on its own, such as Cramer and Damg̊ard [17] and more
recent designated-verifier (which is a limitation itself) VOLE (LPZK in particu-
lar) [19] [35] [18] [34] based protocols. In these older strategies, each multiplica-

2

tion gate computation is actually not computed but “confirmed” by the verifier
using transcripts tied to each multiplication gate. As a result, the communica-
tion/verifier costs of these earlier protocols are generally linear in the number of
multiplication gates in a circuit.

On the other hand, the input transformation technique introduced by our
protocol allows verifiers to use transformed inputs to directly (one operation for
each operation, like we do with clear text data) compute the circuit (important),
and the verifier computed output is still bound to the challenge x. This is a
first and brings us three direct benefits; 1) After “computing” the whole circuit
using transformed inputs, the verifier can now validate sub-linear sized proof
transcripts in sub-linear runtime. 2) Since the whole circuit is linearly/directly
computed by the verifier, we can break a large circuit into several smaller sub-
circuits, minimizing the memory footprint to that of a sub-circuit. 3) Because
the circuit is linearly “computed” by both the prover and the verifier, it gives the
developer the power to significantly reduce the size of the circuit by combining
“other” protocols in the middle and bypassing the “inactive” part of the circuit
logic.

In our protocol, we begin by transforming each committed input parameter
in G into its linear polynomial form in Zq. For simple, circuit a1

d + a2
d + a3

d =
r takes inputs a1, a2, a3 and outputs r. In our protocol, inputs a1, a2, a3 and
output r are committed by the prover using Pedersen commitment. The prover
then provides the transformed inputs a1, a2, a3 in the linear polynomial form
a′1, a

′
2, a
′
3 ∈ Zq s.t. a′i = ai + xαi ∈ Zq (αi is its blinding key and x is the

challenge generated during runtime). Since the transformed inputs are in Fq,
the verifier can plug these values directly into the circuit and just “execute”
them to get the output o e.g. a′d1 +a′d2 +a′d3 = o. The circuit output o ∈ Zp is the
evaluation at point x of a degree d polynomial s.t. f(x) = o. The constant term of
this polynomial is the circuit output r and all other d coefficients are its blinding
keys. If the prover can prove 1) it knows all coefficients of the output polynomial
before the evaluation point is given (e.g., using a polynomial commitment) 2)
all input transformations are legit, then we say the proof is legit.

The output polynomial in the example above has a degree of d because
the transformed inputs (linear polynomials) are of degree 1. Taking to its dth
power will give a polynomial with a degree of d. So if the circuit is something
like a1

3 + a2
3 + a3

3+, ...,+at
3 = o, the degree of the output polynomial is 3

regardless of the value of t. Throughout our paper, we use the symbol pd (short
for “polynomial degree”) to denote the degree of the final polynomial that leads
to the circuit output. Precisely, it is actually one less than the degree of the
output polynomial (e.g. if the degree of the output polynomial is 3, then pd = 2).
pd is different from “multiplication depth” or the ‘total number of multiplications
in a circuit‘”. For example, for a circuit a1

3 · a25 + a3
6 = r, pd = 7 (a1

3 · a25 =
a polynomial of degree 8), which is bigger than the multiplication depth (5) but
smaller than the total number of multiplications (12).

3

High performance Unlike other zero-knowledge protocols depends on poly-
nomial commitment, the result of evaluation point x is computed by the verifier
(through direct computation of verified inputs in Zq) not sent by the prover, so it
has to be accurate. In addition, the constant term and degree 1 term coefficients
are also committed by the verifier. This allows us to bypass the expensive poly-
nomial commitment evaluation protocols and only commits to O(b) coefficients,
where b is a parameter set by the user that tells the protocol where to “reset” a
degree d polynomial back to a linear polynomial (degree 1), a technique used to
slow the growth of polynomial degree. In our benchmarking, we set b =

√
pd.

Specifically, when processing a high-depth circuit of 220 sequential multipli-
cation gates (pd = n) with 20 inputs on a single CPU thread, the performance
of our protocol is: 0.7 seconds for the prover runtime cost; 8 milliseconds for the
verifier runtime cost; and 39 kilobytes for the communication cost. To the best of
our knowledge, our protocol offers the best prover/verifier runtime performance
in the literature (transparent/non-interactive/high-depth protocols) by a large
margin.

On the memory side, the theoretical memory cost of our protocol is O(b).
This makes our protocol extremely attractive because VOLE-based memory-
efficient protocols generally require one round of interaction and are extremely
expensive in terms of verifier runtime cost and communication cost.

Same Format for Circuit Inputs and Outputs Having both inputs and
output(s) in the same format (Pedersen Commitment) allows the output(s) of
one circuit be directly reused as inputs to other circuit. This is a really useful
feature in practice when verifying data in a publicly accessible/verifiable data
store (not limited to blockchain). e.g. allows many participants to continuously
manage/update a datastore as long as they can prove these updates were cor-
rectly computed from existing data. While other zero-knowledge protocols may
be able to support such feature in theory by mapping witnesses to some pub-
licly accessible committed/encrypted data, it does not come naturally and will
require additional cost that is not accounted for.

Zero-Knowledgeness Under our protocol, both inputs and outputs are in
the same formats: Pedersen commitment in G (standard format) and linear
polynomial in Fq (transformed format). Since data are perfectly hidden under
both formats, results of direct computation are automatically perfectly hidden.
Therefore, our protocol is zero-knowledge as long as we can ensure transcripts
used for transformations between two formats are zero-knowledge.

We introduce our protocol in an interactive setting where all verifier chal-
lenges are random field elements. In practice, we assume the Fiat-Shamir heuris-
tic is applied to our protocol to obtain a non-interactive zero-knowledge argu-
ment in the random oracle model.

4

3 Preliminaries

3.1 Assumption

Definition 1. (Discrete Logarithmic Relation) For all PPT adversaries A and
for all n ≥ 2 there exists a negligible function negl(λ) s.t.

Pr

[G = Setup(1λ), g0, .., gn−1
$←− G ∃ ai 6= 0

a0, .., an−1 ∈ Zp ∧
∏n−1
i=0 g

ai
i = 1

← A(G, g0, ..., gn−1)

]
≤ negl(λ)

The Discrete Logarithmic Relation assumption states that an adversary can’t
find a non-trivial relation between the randomly chosen group elements g0, ..., gn−1 ∈
Gn, and that

∏n−1
i=0 g

ai
i = 1 is a non-trivial discrete log relation among g0, ..., gn−1.

Please note the generators we use in this paper are g, h, u ∈ G.

3.2 Zero-Knowledge Argument of Knowledge

Interactive arguments are interactive proofs in which security holds only against
computationally bounded provers. In an interactive argument of knowledge for a
relationR, a prover convinces a verifier that it knows a witness w for a statement
x s.t. (x,w) ∈ R without revealing the witness itself to the verifier.

Let (P,V) denote a pair of PPT interactive algorithms, and Setup denotes
a non-interactive setup algorithm that outputs public parameters pp given a
security parameter λ. Let 〈P(pp, x, w),V(pp, x)〉 denote the output of V on in-
put x after its interaction with P, who has knowledge of witness w. The triple
(Setup,P,V) is called an argument for relationR if for all non-uniform PPT ad-
versaries A it satisfies completeness, soundness, and zero-knowledge definitions
defined below:

Definition 2. (Perfect Completeness) The triple (Setup,P,V) satisfies perfect
completeness if for all PPT A:

Pr

[
(pp, x, w) /∈ R or pp← Setup(1λ)

〈P(pp, x, w),V(pp, x)〉 = 1 (x,w)← A(pp)

]
= 1

The soundness notion we consider in this work is computational witness-extended
emulation.

Definition 3. (Computational Witness-Extended Emulation or CWEE) Given
a public-coin interactive argument tuple (Setup,P,V) and arbitrary prover al-
gorithm P∗, let Recorder (P∗, pp, x, s) denote the message transcript between
P∗ and V on shared input x, initial prover state s, and pp generated by Setup.
Furthermore, let E Recorder (P∗, pp, x, s) denote a machine E with a transcript
oracle for this interaction that can rewind to any round and run again with fresh

5

verifier randomness. The tuple (Setup,P,V) has CWEE if for every determin-
istic polynomial time P∗ there exists an expected polynomial time emulator E
s.t. for all non-uniform polynomial time adversaries A the following holds:∣∣∣∣∣Pr

[
pp← Setup(1λ)

A(tr) = 1 (x, s)← A(pp)
tr ← Recorder(P∗, pp, x, s)

]
−

Pr

[A(tr) = 1∧ pp← Setup(1λ)
tr accepting (x, s)← A(pp)

=⇒ (x,w) ∈ R (tr, w)← ERecorder(P∗,pp,x,s)(pp, x)

]∣∣∣∣∣ ≤ negl(λ)

Informally, if an adversary can produce an argument that satisfies the verifier
with some probability, then there exists an emulator producing an identically
distributed argument with the same probability, as well as a witness. The zero-
knowledge property requires that the verifier doesn’t learn anything about the
witness from its interaction with an honest prover.

Definition 4. (Perfect Special Honest Verifier Zero Knowledge for Interactive
Arguments) An interactive proof is (Setup,P,V) is a perfect special honest
verifier zero knowledge (PHVZK) argument of knowledge for R if there exists a
probabilistic polynomial time simulator S such that all interactive adversaries A
have the following property for every (x,w, σ)← A(pp) ∧ (pp, x, w) ∈ R, where
σ stands for verifier’s public coin randomness for challenges

Pr

[
A(tr) = 1 pp← Setup(1λ),

tr ← 〈P(pp, x, w),V(pp, x)〉

]
=

Pr

[
A(tr) = 1 pp← Setup(1λ),

tr ← S(pp, x, σ)

]

Above property states that the adversary chooses a distribution over statements
x and witnesses w but is not able to distinguish between the simulated transcripts
and the honestly generated transcripts for a valid statement/witnesses pair, and
that the simulator has access to the randomness used by the verifier.

Definition 5. (Public Coin) All messages sent from V to P are chosen uniformly
at random and independently of P’s messages.

3.3 Zero Knowledge Proof of Discrete Logarithm

For a prover to prove it has the knowledge of a discrete logarithmic κ of some
group element s = gκ ∈ G. We define the relation for this protocol as RPoD =
{(h, s;κ) : s = gκ}. We also define two functions (ProveDL,V erifyDL) for
provers and verifiers to create and verify proof transcripts:

6

• ProveDL(g, κ) → trκ generates the proof transcript trκ, where κ is the
witness.

• V erifyDL(g, s, trκ) → b ∈ {0, 1} takes a proof transcript trκ and a pair of
group elements with discrete log relation (g, s ∈ G ∧ s = hκ), and outputs
true if the knowledge of the relation is verified, false otherwise.

In this paper, we assume the underlying implementation of the proof of dis-
crete logarithm protocol is Schnorr’s protocol [28]. We know for a fact that
Schnorr’s protocol has perfect completeness, special honest verifier zero knowl-
edge, and computational witness-extended emulation.

3.4 Notations

Let G denote any type of secure cyclic group of prime order p, and let Zp denote
an integer field modulo p. Group elements other than generators are denoted
by capital letters. e.g., C = ua11 u

a2
2 ...u

an
n ∈ G is a commitment committed to

a vector ~a denoted by a capital letter, and B ∈ G is a random group element
also denoted by a capital letter. For generators used as base points to compute
other group elements in our protocol, such as ~g, h ∈ G, we use lower case letters
to denote them. Greek letters are used to label hidden key values. e.g., υ is the
blinding key for Pedersen commitment P on generator h ∈ G s.t. P = gahυ.
Finally, we use standard vector notation ~v to denote vectors. i.e., ~a ∈ Znp is a list
of n values ai for i = {1, 2, ..., n} in Zp.

We write R = {(Public Inputs ;Witnesses) : Relation} to denote the
relation R using the specified public inputs and witnesses.

4 Protocol for Arbitrary Circuits

We first define the relation for the base version of our protocol. For l input
parameters, let CF represent the set of arbitrary arithmetic circuits in F, there
exists a zero knowledge argument for the relation:

{(g, h, u, ~P ,R ∈ G, E ∈ CF ; ~a, ~υ, r, φ ∈ Zp) : E(~a) = r

∧ Pi = gaihυi ∧ R = grhφ}
(1)

g, h, u are initial public parameters pp generated during setup. The above
relation states that each input parameter to a circuit is represented by a com-
mitment Pi in G, which hides each input value ai with a blinding key υi. r is
the output of circuit E computed from inputs ~a, which is also a committed value
R ∈ G with blinding key φ.

The main idea behind the “input transformation” concept is the process
of transforming committed inputs in G to linear polynomials in F, where the
verifier can perform addition and multiplication operations “as is”. For an input
commitment Pi s.t. P = gaihυi ∈ G where ai is the input value and υi is its

7

blinding key, we create a corresponding value in the linear polynomial format
ai
′ ∈ Zq :

ai
′ = ai + x · αi ∈ Zq (2)

x is the challenge provided by the verifier during runtime, and the blinding
key of each input is replaced by a random αi s.t. αi 6= υi. Likewise, the circuit
output commitment R = grhφ ∈ G also has a matching linear polynomial in Zq
with blinding key ε.

r′ = r + x · ε ∈ Zq (3)

Where r′ is “directly computed” from a list of a′i (i = {1, ..., l}) by the
verifier. Since inputs represented by linear polynomials are in Zq, verifiers can
perform arithmetic operations on them just as they do on decrypted numbers.
The output value of a circuit evaluation is now a polynomial with pd+ 1 degrees
evaluated at point x. The constant term of the output polynomial is the circuit
output r, and the coefficient of the degree one term is the blinding key ε of the
circuit output.

In the next two sub-sections, we explain our protocol in two steps: In the
first step, we introduce a sub-protocol (Protocol InputMapping) that allows the
prover to prove each input in G is correctly transformed to that in Zq; In the
second step, we introduce the full protocol (Protocol AriCircuit) that uses the
aforementioned sub-protocol to validate transformed inputs and prove the circuit
output is correctly computed from circuit inputs as relation 1 states.

Note that we use two prime group orders p, q in our protocol. This is because
all transformed inputs are in field Zq and their commitments are in group G of
order p. In the default setting, q is a 61-bit number, which is significantly smaller
than 253-bit p (curve 25519). Therefore, we must ensure operations in G do not
make committed values (including blinding keys) overflow p, because that would
distort the committed values once we convert them back to linear polynomials
in Zq.

4.1 The Sub-Protocol for Linear Polynomial to Pedersen
Commitment Mapping Validation

A sub-protocol that validates committed inputs in G is correctly mapped to
transformed inputs in Zq. The relation we try to prove for this sub-protocol is:

{(g, h, ~P ∈ G,~a ′ ∈ Zq ; ~a, ~α ∈ Zq, ~υ ∈ Zp) : Pi = gaihυi ∧ a′i = ai +Xαi} (4)

X is the challenge generated during runtime, so ~a ′ is only available during
runtime. The relation above says that for any commitment Pi of value ai and
blinding key υi, the prover will provide a′i during runtime that s.t. a′i = ai+xαi
for some random public coin challenge x. Here we also limit ~a ∈ Zq instead of
Zp in relation 1. This is justified if q is large enough (e.g. over 32-bits).

An important requirement for input transformation is that we want to trans-
form the hidden value in Pedersen commitment to a prime field that is friendly

8

to NTT. When multiplying two polynomials of degree pd, the trivial approach
to compute the output polynomial’s coefficients would require a runtime cost
of O(pd

2), whereas the NTT based approach would reduce that to O(pd log pd).
NTT requires a prime modulo q s.t. q = r · 2k + 1 to be the prime order of the
group, where r and k are arbitrary constants, so we need to pick a prime q that
is NTT friendly. Also note that the prime q is expected to be smaller than p
because the smaller the q value in bits, the lower the communication cost.

Setup Phase Before the random challenge x is available, the prover commits
to two sets of group elements. The first element set are blinding elements used to
hide data from other transcripts, and the second element set are commitments
to blinding key ~α, the new blinding keys of ~a ′ in Zq.

On the blinding element, the prover first randomly generates blinding keys
~ω ∈ Zlp and commits them using generator u and the blinding key of input

commitments ~P .

Si = gωi·quυi ∈ G i = {1, ..., l} (5)

Instead of committing the new blinding keys ~α, the prover commits to the
difference between each υi and αi. This will prevent the dishonest prover from
adjusting the value of ~α once x is known, and will also be used to link the
blinding keys of each a′i and Pi.

Ti = gυi−αi ∈ G i = {1, ..., l} (6)

The setup phase of the protocol is detailed below, it is called before the
random challenge x is generated.

Input : (;~a, ~α, ~ω ∈ Zq, ~υ ∈ Zp)
P ′s input : (;~a, ~α, ~ω, ~υ);

P compute :

Si = gωi·quυi ∈ G i = {1, ..., l}
Ti = gυi−αi ∈ G i = {1, ..., l}

P → V : ~S, ~T

Protocol InputMapping - Setup

Once the setup phase completes, the prover then sends Si, Ti for i = {1, .., l}
to the verifier.

Validation Phase After the random challenge x is generated, the prover com-
putes ~a ′ and sends them to the verifier. Next, the protocol checks the mapping
between transformed inputs in Zq to those in group G.

9

The prover and then computes ei for each input ai s.t.:

ei = ((xαi mod q)− xαi) · x+ ωi · q ∈ Zpq i = {1, ..., l} (7)

We label ei ∈ Zpq because the upper bound of ei is p · q. This is because the
size of the first part of ei (((x αi mod q)−x αi) ·x) is very small (around 3|q| or
3 ∗ 61 = 183 bits) compared to the blinding element wq (|p|+ |q| > 313 bits), so
the chance of ei > pq is negligible, and the prover can just re-generate another
ωi if needed.

ei doesn’t break the zero-knowledge requirement since it does not leak any
information to the verifier. This is because the first part of ei: ((x αi mod q)−
x αi) · x is a multiple of q, and is equivalent to (s · q) · x for some s ∈ Zq.
This implies ei = (s · x + ω) · q for some randomly chosen ω. Since ω ∈ Zp
is significantly larger than s · x (|s · x| = 2|q|), it can perfectly hide s · x. In
our benchmarking, we use curve25519 in our implementation, where p is a 2253

bit number. For |q| = 261 and |s · x| = 2122, there is only a negligible chance

(q
2

p ≈ 2−131) that ω ∈ Zp does not perfectly hide s (even if such case happens,

the prover can just randomly choose another ω).
The reason for creating ei ∈ Zpq is that we want the verifier to subtract out

the blinding element (x αi mod q) from a′i (e.g., a′i ·x−ei = (ai+xαi)·x− ωiq =
x(ai + xαi)−ωiq), assuming there is no overflow. The verifier can take out the
remaining blinding element ωiq and replace xαi with Pedersen inputs’ blinding
key xυi using the previously committed values Si, Ti.

ga
′
i·x−ei · T x

2

i · Si = (gx)ai+xυiuυi ∈ G i = {1, ..., l} (8)

With (gx)ai+xυi available, the verifier can trivially divide each Pi and take their
sum with powers of k to get PKυt .

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G (9)

PKυt = (hx/(gx
2

u))υt . The verifier can confirm the correctness of the transfor-

mation if the prover can prove the knowledge of υt on generator hx/(gx
2

u) ∈ G.
Finally, the verifier needs to make sure ei doesn’t alter the value of ai. This

can be done by taking the modulus q of ei and checking if it returns 0. This is
trivial to understand since a′i is in Zq. If ei is a multiple of q then it is obvious
that it cannot alter the value of ai.

if (ei mod q)
?
= 0, then continue (10)

This test also implies the transformation process explained in this section is
sound since the soundness of equation 9 is trivial to prove except for a negligible
probability.

For example, if a′∗i = a∗i + xαi = ai + δ + xαi. Knowing that ei must be a
multiple of q for equation 10 to be true, we have a′∗i ·x−ei = (ai+xαi)·x− ωiq =

10

x(ai + xαi) + xδ. In order for equality 8 to be true, the left side of the equality
8 must offset xδ using committed values Ti and Si, s.t. xδ will be removed
after applying challenge x to these elements (i.e., T x

2

i · Si, note exponents are
different powers of x), which only happens for a negligible chance of 1/q when
the dishonest prover successfully guessed x correctly.

We have so far skipped the overflow problem. If ai + (x αi mod q) > q, then
we will have an overflow problem in equation 8 9 when computing a′i · x− ei. To
get around this, the prover simply needs to check if ai + (x αi) mod q overflows
q, and subtract q · x from ei if that’s the case.

if ai + (xαi mod q) ≥ q, then ei = ei − q · x i = {1, ..., l} (11)

This adjustment does not break the zero-knowledgeness of ei since x ∈ Zq is
significantly smaller than ei’s blinding key ωi ∈ Zp (qp = 2−192), so subtracting
x ·q from ei’s blinding term ωi ·q is perfectly unnoticeable except for a negligible
chance of 2−192.

The validation part of the input-mapping sub-protocol is defined as follows:

Input : (~P , ~S, ~T ∈ G, ~a ′ ∈ Zq;~a, ~α, ~ω ∈ Zq, ~υ ∈ Zp)

P ′s input : (~P , ~S, ~T ;~a, ~α, ~ω, ~υ); V ′s input : (~P , ~S, ~T)

P compute :

ei = ((x αi mod q)− x αi)x + ωi q; i = {1, ..., l}
if ai + (x αi mod q) > q,

then ei = ei − q · x i = {1, ..., l}
P → V : ~e,~a ′

V → P : k
$←− Zp

P compute :

υt =

l∑
i=1

υik
i ∈ Zp

trυt = ProveDL((hx/(gxu)), υt)

P → V : trυt

V verify inputs :

if (ei mod q)
?
= 0, then continue; i = {1, ..., l}

else reject

PKυt =

l∏
i=1

(
P xi

ga
′
i·x−ei · T x2

i · Si

)ki
∈ G

if V erifyDL((hx/(gx
2

u)), PKυt , trυt), then accept

else reject

Protocol for InputMapping - Verify

11

Theorem 1. (The Input-Mapping Protocol). The proof system presented in this
section has perfect completeness, PHVZK, and CWEE.

Proof. The perfect completeness of protocol InputMapping Validation is trivial
to observe.

To prove PHVZK for relation 4, we define a simulator Sinput. To start, sim-

ulator Sinput randomly generates ~S, ~T and sends them to the verifier. After re-
ceiving challenge x from the verifier, the simulator first generates a set of linear
polynomials ~a ′, and then simulates the proof transcripts proving the mapping
between committed values ~P and ~a ′ it generated.

The simulator Sinput randomly generates and sends ~e according to the pro-
tocol specification (ei is generated by first randomly generating a value vi ∈ Zp
and multiplying it by q s.t. ei = vi · q) and sends them to the verifier. When
challenge k is received, the simulator Sinput calls simulator Sdlog to generate
transcript trvt and send it to the verifier.

The verifier then follows the protocol to compute PKvt using transcripts
~S, ~T ,~a ′, ~e and calls the V erifyDL function to test it against the input tran-
script trvt , We already know for a fact that there exists a simulator Sdlog that
can simulate witnesses for any discrete-log relation, and that simulators Sinput
and Sdlog choose all proof elements and challenges according to the random-
ness supplied by the adversary from their respective domains or compute them
directly as described in the protocol. Since all elements in proof transcripts are
either independently randomly distributed or their relationship is fully defined
by the verification equations, we can conclude that protocol InputMapping is
PHVZK.

To prove CWEE, we construct an extractor X that also uses extractor Xdlog
to extract witnesses from proof of knowledge transcripts (which we know exist

for a fact). To start, the extractor X interacts with the prover and receives ~S, ~T
from the prover. The extractor X then generates a challenge x1 and forwards it
to the prover. After receiving ~e1,~a

′
1, the extractor rewinds and repeats this step

with another challenge x2 to retrieve ~e2, ~a′2.

After receiving transcripts ~S, ~T and transformed inputs ~a ′ from the prover,
the extractor generates k1 and then follows the protocol to get trυt1 (from the
prover), PKυt1 . The extractor X then calls the extractor Xdlog to retrieve υt1
from generator hx/(gx

2

u). The extractor then rewinds and repeats this step
l times to retrieve υt2, ..., υtl+1. Through interpolation, the extractor retrieves
witnesses υi for all i in {1, ..., l}. Since we know for a fact that ei cannot alter ai
and committed values ~P , ~S, ~T all applied to different powers of x, a cannot be
altered except for a negligible probability or we find a non-trivial relationship
between generators g, h, u.

Using any two different challenges xi, xi+1 we mentioned earlier, the extractor
gets ~a′1 and ~a′2 from the prover, which we can trivially retrieve ~α for all i =
{1, ..., l} using the equation below.

a′1i − a
′
2i = αi(x1 − x2) (12)

12

With ~a, ~α extracted, we can also extract ω from equation 7. Plugging wit-
nesses ~a, ~α, ~υ, ~ω into generators g, h, u, we can re-write the left and right sides of
equation 9 to:

(hx/(gx
2

u))
∑l

i υi·ki =

l∏
i=1

(
gai·xhυi·x

ga
′
i·x−ei+(υi−αi)·x2+ωi·q · uυi

)ki
∈ G (13)

Take out challenge ki, for each ith input we have:

hx·υi

gx2υiuυi
=

gai·xhυi·x

ga
′
i·x−ei+(υi−αi)·x2+ωi·q · uυi

∈ G

This implies generator g’s exponent in the nominator of the right-hand side
element must cancel out, which automatically implies the g’s exponent in the
denominator of the right hand side element must be ai ·x+x2υi. Since we know
ei cannot alter ai ∈ Zq because ei mod q = 0 and a′i · x = ai · x + α · x2,
we can trivially observe that no other value besides ai in g’s exponent in the
denominator ((a′i) · x− ei + (υi − αi) · x2 + (ωi · q)) is multiplied by the single
power of x. This implies the equality above must be true for a computationally
bounded prover except for a negligible probability of 1

q (adversary guessed x

correctly), or we find a non-trivial relationship between generators g, h, u, and
this satisfies our CWEE definition.

4.2 The Complete Protocol

To prove the circuit output is correctly computed from transformed inputs ~a′,
the prover needs to show it knows all coefficients of the output polynomial. For
example, for a simple circuit that just outputs the sum of two inputs, the prover
needs to show it knows the constant term r and the coefficient of the degree 1
term ε of the output polynomial :

o = a1
′ + a2

′ = r + x · ε (14)

Computing the output polynomial of the addition operation is the same
as adding two polynomials, where r = (a1 + a2) and the blinding key is ε =
(α1 + α2). Likewise, multiplying two inputs a1

′, a2
′ is the same as multiplying

two polynomials:
o = a1

′ · a2′ = r + x · ε+ x2 · τ (15)

Where r = a1 · a2, ε = a2α1 + a1α2, and τ = α1 · α2. We use the label
“o” to represent the circuit output, which is equivalent to the output polynomial
evaluated at a point X. The degree of the polynomial will increase after each
multiplication operation, so the efficiency will drop as the circuit polynomial
degree (pd) increases.

To get the linear polynomial we need from the raw output o, the verifier
needs to subtract out terms with degrees higher than one. In the multiplication
circuit above, the verifier needs to eliminate the term of degree 2 to get the linear

13

polynomial. To do so, the prover commits to τ before the challenge x is known.
When the challenge x is available, the prover sends the evaluation value y to the
verifier and proofs to prove f(x) = x2τ = y. The verifier can subtract y from o
to get the output in linear polynomial form defined in equation 3:

r′ = o− y (16)

This is a kind of ’bootstrapping’. We call value y a “breaker”. Breaker(s) sub-
tracts all “noises” (polynomial terms of degree higher than one) from the raw
output o.

In most arithmetic circuits with both addition/subtraction and multiplica-
tion/division operations, the polynomial degree is likely smaller than the num-
ber of multiplications. This is because every time we add two output wires, their
polynomials get merged (e.g. a71+a2 ·a63+a74 only outputs a polynomial of degree
8, but 21 multiplications are performed). However, there are cases where the pd
value of a circuit exceeds the total number of multiplications of the circuit and
therefore significantly degrade the performance of the protocol.

What we need is 1) a mechanism to allow the prover to repeatedly reset the
polynomial degree back to 1 so that the penalty of high degree polynomials can
be avoided, 2) a mechanism to efficiently commit to pd coefficients.

Breaking a large circuit into pd smaller circuits We can break the circuit
we are evaluating into pd sub-circuits and then batch evaluate pd circuits at once.
So when the polynomial degree of a sub-circuit i reaches degree b + 1, we can
reset it to a linear polynomial of degree 1 by evaluating the sub-circuit and then
use its output as an input to the next sub-circuit (Figure 1).

o1
o2
.
.
opd

=


r1 ε1 τ1,1 τ1,2 . . τ1,b
r2 ε2 τ2,1 τ2,2 . . τ2,b
.
.
rpd εpdx τpd,1 τpd,2 . . τpd,b




1
x
.
.

xb+1


Figure 1

We evaluate each sub-circuit i = {1, ..., pd} in the same way we evaluate the
full circuit. The output of a sub-circuit is also in the linear polynomial form
r′i = ri + x · εi like that of the full circuit 3. Since the output of each sub-circuit
is in the same linear polynomial format as inputs to the circuit, they can be
reused as inputs to subsequent sub-circuits.

Sub-circuits are arranged according to the computation order of the full cir-
cuit. If outputs of sub-circuits are correct, then the output of the final sub-circuit
must also be the output of the full circuit. Under this setup, the output of each
sub-circuit r′i for i = {1, ..., pd} is computed by subtracting the breaker yi of
the sub-circuit from its raw output oi.

r′i = oi − yi for i = {1, ..., pd} (17)

14

Each oi is the output of each sub-circuit at evaluation point x, and each
breaker yi is the evaluation output of that sub-polynomial minus the constant
term (r, sub-circuit output) and the degree 1 term (ε, the blinding key of they
sub-circuit output), see Figure 2.

o1
o2
.
.
opd

=


r1 ε1
r2 ε2
. .
. .
rpd εpd


(

1
x

)
︸ ︷︷ ︸

outputs

+


τ1,1 τ1,2 . . τ1,b
τ2,1 τ2,2 . . τ2,b
. . . .
. . . .

τpd,1 τpd,2 . . τpd,b




x2

x3

.

.
xb+1


︸ ︷︷ ︸

breakers

Figure 2
By proving the knowledge of all coefficients of each sub-circuit (e.g., the prover
and the verifier engage to evaluate the sub-polynomial defined in each row of
Figure 2), we know each sub-circuit output r′i is correct.

It is worth noticing that the prover can set breakers anywhere on the circuit
at any time depending on the application. For simplicity, we assume all breaker
are set at b+ 1 degrees, where b = pd/pd.

Make group exponentiation operations sub-linear to the pd value Using
polynomial evaluation protocol to evaluate each sub-circuit would be expensive.
In our case, the verifiers already have the evaluation result oi of each polynomial
(sub-circuit) available using direct computation of inputs, and the coefficients
for both constant and degree 1 terms are committed values (output of the sub-
circuit). We only need to make sure the prover cannot commit to some altered
circuit output (e.g. r∗i = ri − δi for some arbitrary δi) while the altered breaker
(y′∗i = y′i + δi s.t. r∗i = oi − y′∗) can still be computed from “other” coefficients
(degree 2 to degree b coefficients) of the sub-circuit.

We use two challenges x,w to allow the prover to “commit” to “other”
coefficients of 1, ..., pd polynomials in batches without using expensive ECC op-
erations.

First, we commit to the outputs of sub-circuits. Instead of using Pedersen
commitments to commit on each output as we do with the circuit output R, we
use two vector commitments to batch commit the outputs of sub-circuits. Since
the ECC group we use has an order p, we need to define rpi = ri + x · εi ∈ Zp
s.t. rpi mod q = r′i. The prover will send this value to the verifier.

Since rpi is a raw number with approximately 2|q| bits, anyone can easily ex-
tract witnesses ri, εi with x. This is why we need a blinding key µi that multiplies
the order of the smaller group q to create a blinding value. In our benchmarking
test, we set µi 60-bits longer than q, so it will perfectly hide rpi except for a
negligible chance of 2−60 (even in such a case, only insignificant information may
be leaked, in which case the prover can randomly select another µi).

µi
$←− Zm i = {1, ..., l} (18)

15

r′pi = ri + x · εi + µi · q ∈ Zp i = {1, ..., pd} (19)

Rt =

pd∏
i=1

uri+µi·q
i ∈ G, Et =

pd∏
i=1

uεii ∈ G (20)

Once mod q is applied to r′pi , this blinding value will disappear in r′i.

r′i = rpi mod q ∈ Zq i = {1, ..., pd} (21)

After challenge x is known, the prover sends ~rp
′ to the verifier. The verifier

uses the following equality to check if the set ~rp
′ matches the committed value

and then converts them to ~r ′.

pd∏
i=1

grii =

pd∏
i=1

Ri · Ext (22)

The result oi of each polynomial evaluation at point x is computed by the
verifier directly using inputs and circuit logic. Since r′i is a committed value, this
implies each breaker y′i is also a committed value because it is computed directly
from the evaluation result oi and the committed output r′i.

y′i = oi − r′i for i = {1, ..., pd} (23)

We can observe that if the prover makes the coefficients τi,1, ..., τi,b “com-
mitted” before challenge x is known, then we know y′i = τi,1x

2+, ...,+τi,bx
b+1

except with negligible probability at most q
b (because of possible existence of

polynomial roots). If the breaker is correctly computed, the output r′i must also
be correctly computed.

We use a challenge w that’s made available after the prover commits to
Rt, Et and before the challenge x is known to allow the prover to hide and pass
all coefficients for each degree in one single element zj .

zj =

pd∑
i=1

(τi,j · wi) ∈ Zq j = {1, ..., b} (24)

The verifier also verifies ~y ′ as a single element. The update matrix that the
verifier now needs to verify is depicted in Figure 3.

y′1w
y′2w

2

.

.
y′pdw

pd

=


τ1,1w τ1,2w . . τ1,bw
τ2,1w

2 τ2,2w
2 . . τ2,bw

2

. . . .

. . . .
τpd,1w

pd τpd,2w
pd . . τpd,bw

pd




x2

x3

.

.
xb+1


Figure 3

Challenge x is only made available after ~z are known. The verifier validates ~y ′

16

by multiplying each y′i by wi and each zj by xj+2, their difference must be equal
to 0 ∈ Zq.

b∑
j=1

zj · xj+1 −
pd∑
i

yi · wi mod q = 0 (25)

To show why this is sound for all sub-circuit outputs. Let’s say r∗i = ri − δi
for some arbitrary δi (some of it may be 0), the dishonest prover needs to find

a set ~∆ before challenge x is known s.t.

b∑
j=1

(zj +∆j) · xj+1 =

pd∑
i=1

(yi + δi) · wi ∈ Zq (26)

The equality above can be rewritten as the equality below, which clearly
shows such ~∆ cannot be found without prior knowledge of challenge x.

b∑
j=1

∆j · xj+1 =

pd∑
i=1

δi · wi ∈ Zq (27)

We now have all the necessary pieces to describe our main protocol for arith-
metic circuits.

4.3 The Complete Protocol For Arithmetic Circuits

We define two more functions for our protocol definition. function
computeSubCircuitKeys is used by the prover to compute the keys of each
sub-circuit or “row” in Figure 1, and function
computeSubCircuit is used by the verifier to compute the value of a sub-
circuit at the evaluation point x:
1. function computeSubCircuitKeysi(“input values”, “input keys”): for i =
{1, .., pd}, it takes input values ~a and keys ~α to evaluate the sub-circuit and
outputs ri, εi, ~τi (coefficients of oi).
2. function computeSubCircuiti (“inputs in linear polynomial form”, “output
from the previous computeSubCircuit function”): for i = {1, .., pd}, it trivially
computes the result oi from the inputs to the sub-circuit.

For example, if the logic of the ith sub-circuit is to return the product of
l inputs, then the computeSubCircuiti function simply performs oi = a1 ×
a2×, ...,×al. Since a1, ..., al are linear polynomials evaluated at point X, oi is the
evaluation of the output polynomial at point X, and the computeSubCircuitKeysi
function computes all coefficients of the output polynomial. We are now ready to
introduce the complete version of our protocol - Protocol AriCircuit - as follows:

Input : (~P ,R ∈ G; ~a, ~υ, r, φ ∈ Zp) (28)

P ′s input : (~P ,R; ~a, ~υ, r, φ); V ′s input : (~P ,R) (29)

P compute : (30)

17

µi
$←− Zm, i = {1, ..., pd} (31)

αi
$←− Zq, i = {1, ..., l} (32)

for i = 1, ..., pd { (33)

ri, εi, ~τi = computeSubCircuitKeysi(~a
′, ~α′, ri, εi, ~τi); (34)

εi = (εi − µi) mod p } // note rpd = r (35)

Rt =

pd∏
i=1

uri+µi·q
i ∈ G, Et =

pd∏
i=1

uεii ∈ G (36)

InputMapping-Setup(;~a||rpd , ~α||ε, ~υ||φ)→: ~S, ~T (37)

P → V : Rt, Et, ~S, ~T (38)

V → P : w
$←− Zp (39)

P compute : (40)

zj =

pd∑
i=1

(τi,j · wi) ∈ Zq j = {1, ..., b} (41)

P → V : ~z (42)

V → P : x
$←− Zp (43)

P compute : (44)

a′i = ai + x · αi ∈ Zq i = {1, ..., l} (45)

r′pi = ri + µi · q + x · εi ∈ Zp i = {1, ..., l} (46)

P → V : ~a ′, ~r ′p (47)

V verify final output : (48)

r′i = r′pi mod q ∈ Zq i = {1, ..., pd} (49)

for i = 1, ..., pd { (50)

oi = computeSubCircuiti(~a
′||~r ′) ∈ Zp (51)

y′i = oi − r′i ∈ Zq } (52)

if (

pd∏
i=1

grii
?
=

pd∏
i=1

Ri · Ext) (53)

∧ ((

b∑
j=1

zj · xj+1 −
pd∑
i

yi · wi) mod q = 0) then continue (54)

else reject (55)

if InputMapping-Verify(~P ||R, ~S, ~T ,~a ′||r′pd ;~a||r, ~α||ε, ~υ||φ) (56)

then continue (57)

else reject (58)

Protocol AriCircuit

18

Note that a b degree polynomial can have at most b roots, and therefore there
is a negligible probability of b/p that an attacker can play with coefficients to
pass the validation test of an altered output.

Theorem 2. (Protocol AriCircuit). The proof system presented in this section
has perfect completeness, PHVZK, and CWEE.

Proof. The perfect completeness of protocol AriCircuit is trivial to see.

To prove PHVZK for relation 1, we define a simulator S. Simulator S calls on
simulators Sinput defined earlier to generate transcripts and simulate interactions
in the InputMapping sub-protocol used in our protocol.

We have already shown Sinput can simulate all interactions needed in sub-
protocol InputMapping. We now show how S generates the rest of the transcripts
according to the randomness supplied by the adversary from their respective
domains or computes them directly as described in the protocol.

Simulator S randomly generates random input witnesses ~a ∗, ~α ∗ and com-
putes circuit output witnesses ~r ∗,~ε ∗, ~τ ∗ and creates commitments Rt, Et ac-
cordingly to the protocol specification and sends them to the verifier. The sim-
ulator then follows the protocol to create ~z with challenge w and sends them to
the verifier. After receiving challenge x from the verifier, the simulator computes
~a ′∗, ~rpd

′∗ according to the protocol specification. Note that after randomly gen-
erating input witnesses ~a ∗, ~α ∗, the simulator S just followed the protocol speci-
fication to create all other transcripts needed. The rewinding only takes place in
the simulator Sinput. This implies that if the input-mapping process is PHVZK,
then the whole protocol is PHVZK.

Since all elements in proof transcripts are either independently randomly
distributed or their relationship is fully defined by the verification equations, we
can conclude that the protocol AriCircuit is PHVZK.

To prove CWEE, we define extractor X that calls on extractors Xinput de-
fined earlier to extract witnesses for the two sub-protocols used in the protocol
AriCircuit.

We already know X can extract ~a, ~α, ~υ and ~r,~ε using extractor Xinput from

committed transcripts ~S, ~T . Using input witnesses, we can use the function com-
puteSubCircuitKeys to compute circuit witnesses ~r,~ε, ~τ . Next, we show how these
witnesses must match ones extracted from circuit transcripts ~rp

′, ~z,Rt, Et.

First, the extractor X extracts the same circuit witnesses from transcripts ~z
that still satisfy the relation 25 with transcript ~y ′. The extractor X generates
pd + 1 challenges ~w and forwards them to the prover. After receiving circuit
evaluation transcripts ~τ1 computed from the first challenge w1, the extractor
rewinds and repeats this step pd times to generate challenges w2, ..., wpd+1 and
retrieve witnesses ~τ2, ..., ~τpd+1 from interpolation. Rearrange equality 25 and
substitute ~z for ~τ as specified in 24 we get the following equality:

b∑
j=1

(

pd∑
i=1

τi,jw
i) · xj+1 =

pd∑
i

y′i · wi ∈ Zq (59)

19

Second, the extractor X extracts ~r,~ε from transcripts ~rp
′ that satisfy the

condition held in the committed values in Rt, Et. The extractor X can use a pair
of challenges x1, x2 to trivially extract ~r,~ε from ~rp

′, and they trivially satisfy
the condition held by committed values in Rt, Et or else the equality test TBD
will not stand. With ~r,~ε extracted, the equality 59 is updated to following:

b∑
j=1

(

pd∑
i=1

τi,jw
i) · xj+1 =

pd∑
i

(oi − (ri + x · εi)) · wi ∈ Zq (60)

Knowing that ~o must be true since it was directly computed by the verifier and
that ~r,~ε match the committed values, the coefficients ~τ extracted must satisfy
equation 24 for equality above to be true for any pairs of challenges w, x except
for a negligible probability.

Finally, we check if the extracted circuit witnesses ~r,~ε, ~τ extracted from cir-
cuit transcripts match those computed from input witnesses ~a, ~α using compute-
SubCircuitKeys functions. Since the computed from computeSubCircuitKeys
functions also need to satisfy equality 60 for the same evaluation result ~o and
match the commitments for ~r,~ε given any pairs of challenge w, x. The witnesses
computed from ~a, ~α must match these extracted from circuit transcripts except
for a negligible probability, or else we find a non-trivial discrete log relationship
between generators g, h (for input witnesses).

4.4 Customized Sub-Circuit and The Use of Range Proof for
Comparison Operations

One of the primary reasons for using a boolean circuit over an arithmetic circuit
in the real world (there are no real-world applications of trying to prove a hash)
is the ability to perform comparison operations (>,<,≥,≤,=). Our design al-
lows the use of customized circuit(s) to embed range-proof protocols to evaluate
comparison operations inside the arithmetic circuit being processed. This way,
there will be fewer needs for expensive boolean circuits and/or the expensive
process of decomposing/recomposing integers to bits within a circuit.

The idea is similar to that of “custom gates” found in SNARKs protocols in
principle but very different in implementation. In general, the design goal of a
customized circuit is to utilize existing algorithms/protocols to handle operations
that would otherwise be expensive in our protocol (or any other protocol).

In particular, we can use range proof inside an arithmetic circuit to handle
all comparison operations and decimal point reductions. This is huge in practice
because either using a boolean circuit directly or converting to/from a boolean
circuit inside an arithmetic circuit is expensive.

For example, to prove a1 > a2 (or P1 > P2), the prover can do the following:

1. Commit to their difference C = gchυ s.t. c = a1 − a2 (or compute C from
P1, P2 using additive homomorphism e.g. C = P1/P2).

2. Call protocol InputMapping to check c′ = a′1 − a′2 ∈ Zq maps C ∈ G;

20

3. Use a range-proof protocol to prove C > 0. If returns true, then we know
a1 > a2.

An example usage is as follows:

computeSubCircuit : (~a ′ ∈ Zq, ~C ∈ G)

c′1 = a′1 − a′2 ∈ Zq
if Protocol RangeProof(C1, 0)

c′2 = a′3 − a′4 ∈ Zq
if Protocol RangeProof(C2, 0)

o = do something

else

o = do something else

else

o = do something

if Protocol InputMapping(C1||C2, c
′
1||c′2) return o

else reject

Function computeSubCircuit (Customized)

In the computeSubCircuit function defined above, the circuit first tests if
a′1 > a′2 and then tests if a′3 > a′4. Before the function returns o, it batch checks
the mapping between each c′i and Ci pair. In practice, all calls to range proof
should also be batch verified at the end of the function.

We can bypass the “inactive” part of the circuit (similar to that of suBlonk
(ePrint)). For example, if the first range proof returns false (e.g., a1 < a2),
then both the prover and the verifier can bypass the two ”else” parts of the
circuit above. However, it is worth noticing that using a customized sub-circuit
bypassing parts of the circuit may leak information about data to attackers, so
one must use such a strategy with extreme caution.

We believe combining the arithmetic circuit and range-proof protocols is the
most efficient way to run a zero-knowledge test in the real world. This is much
more powerful than it seems. Besides handling comparison operators, one can
also use embedded range proof to verify floating point operations (perform mul-
tiplication/division operations as full integer operations, then remove decimal
places by proving their range). We believe it will allow us to use arithmetic cir-
cuits to handle almost all types of business logic that would otherwise require
boolean circuits.

It is also not necessary that all breakers y1, ..., ym have the same b value.
For example, if some value ai is taken to its 100th power (a′100i , degree term
pd = 100) and will be used as inputs in multiple places of a circuit, then it
would be wise to use a breaker to cut its degree to 1 (in linear polynomial form
a100i +Xαi) before being used as inputs in other places of a circuit.

21

4.5 Memory Efficiency

The memory consumption cost of our protocol is O(pd). However, our design
approach allows us to improve the memory consumption cost of our protocol to
O(b+2pd). We only need to do two thing to achieve a memory cost of O(b+2pd):
First, delete ~τ from memory in line 34; Second, recompute ~τi after challenge x
is available so that ~y ′ can be computed (in line 41).

for i = 1, ...,m {
ri, εi, ~τi = computeSubCircuitKeysi(~a

′, ~α′);

εi = (εi − µi) mod q ∈ Zq;
~a′ = ~a || ri, ~α′ = ~α || εi;

zj = zj +

pd∑
i=1

(τi,j · wi) ∈ Zq j = {1, ..., b};

}

Since we have b = p =
√
pd in the default setting, the memory cost is ap-

proximately O(3
√
pd).

4.6 Cost Analysis

The prover runtime of our protocol is dominated by O(ι pd log pd + l) field op-
erations and O(b+ l) group exponentiations. We set b =

√
pd in our benchmark

testing, so the cost of group exponentiations grow sub-linearly to the total poly-
nomial degree generated by the circuit. The value of ι depends on how the circuit
is wired. For the sequential multiplication test case that we benchmark against,
ι = m

∑log b
i=1 i; the verifier runtime is dominated by O(n+ l) field operations and

O(m+ b+ l) group exponentiations; and the communication cost is dominated
by O(b+ l) group elements and O(m+ l) field elements.

Our protocol is also natively faster than its asymptotic cost indicates because
group exp. operations of our protocol operate mostly in q (61-bits), which is
significantly smaller than p in ECC. This gives us approximately 2.5X perfor-
mance gains when performing multi-exponentiations over standard ECC mul-
tiplications. Although the verifier runtime is technically linear, it is so efficient
to the point that it is close to SNARKs with trusted setup. This is because all
the asymptotically slow operations are performed at field level (many papers
consider this free).

It is important to note that pd 6= n. For some arithmetic circuits, the total
polynomial degree (pd) can be even smaller than the number of multiplications.
This is because every time we perform the “addition” operation on two output
wires, two polynomials get merged (e.g. circuit a81 + a32 · a53 + a74 + a35 = r only
outputs a polynomial of degree 8, but 27 multiplications are performed). On the
other hand, if pd can be bigger than the total number of gates, we may need to
set breakers more aggressively to cut the pd value down to an acceptable level,
preferably lower than n.

22

It is also worth noting that it is not necessary to set all breakers at some
fixed point b. For example, if we know several output wires with high degrees
are going to get merged through addition operations, we may want to save the
breaker until they are merged together.

5 Performance Comparison

We compare the performance of our protocol to some of the most popular trans-
parent zero-knowledge protocols for which open source codes are available. Our
test runs are performed on an Intel(R) Core(TM) i7-9750H CPU @ 2.60 Ghz.
All tests are run on a single CPU thread. Our test code is a non-interactive
implementation (using Fiat-Shamir heuristic). For group operations, we use the
curve25519-dalek implementation, and Pippenger acceleration is applied to all
sum-of-product group operations. For field operations, we use the Montgomery
algorithm to accelerate modular multiplications on the prime q.

We compare our protocol against Hyrax, Ligero, Aurora, and Spartan-NIZK.
These protocols were chosen because they are the most representative of popular
zero-knowledge protocols and can be verified with open source code. In particu-
lar, Aurora outperforms STARK in all key parameters (prover/verifier runtime,
proof size), and the NIZK version of Spartan offers the most balanced perfor-
mance across all performance parameters. We do not consider SNARKs because
they are hardly efficient after switching to transparent mode.

We didn’t consider protocols that depend on circuit depth, such as GKR-
based protocols, because they cannot handle 220 sequential multiplications.

Spartan++ and Lakonia are two more recent developments that we didn’t
include in our benchmark testing but are worth mentioning. The improvement
of Spartan++ over SpartanNIZK is marginal, and the performance of Lako-
nia is largely comparable to that of SpartanNIZK. (The prover performance of
SpartanNIZK is approximately 3X more efficient, and the verifier performance
is 1.5X more efficient than that of Lakonia, while Lakonia is 4X more efficient
than SpartanNIZK in proof size).

We set the number of inputs to our protocol to 20 integers. The circuit
we use performs n sequential multiplications on l inputs. This is because we
want to demonstrate that our protocol can handle high-depth circuits (e.g.,
pd = n) . If we run a shallow circuit where pd number is small, the benchmark
result will likely be significantly better. For example, if we have a circuit that
computes the sum-of-products of inputs where n = 220 (e.g.,

∑n
i=1 aibi = a1b1+

a2b2.... + anbn), the prover will complete proving such a shallow circuit (one
million multiplications and one million sums) in under 50 milliseconds for such a
shallow circuit with pd = 1 (group exponentiation cost is approaching zero and
NTT is not even necessary for field operations).

As we mentioned earlier, every time an “addition or subtraction” operation
is performed, the pd value of two input wires merges into one. e.g., if the first
input wire a′1

7
has pd = 7 and the second input wire a′1

6
has pd = 6, their sum

is an output wire with pd = 7. In other words, the more addition/subtraction

23

operations evenly distributed in a circuit, the smaller the pd value compared to
n and gets closer to the value of the multiplication depth of the circuit. The
sum-of-products circuit explained earlier has a multiplication depth of 1.

There are special cases where in some sub-circuits we have pd value grow
faster than the number of multiplications performed (e.g., o = (((a′1)2)2)2). In
such cases, we may want to place breakers more aggressively to better handle
the situation. This can be done by either setting fixed b <

√
pd or placing more

breakers inside these uncommon sub-circuits. In a real-world situation where
there are both multiplication and addition operations, it is unlikely that pd is
bigger than n.

To maximize the advantage of the NTT algorithm in computing sequential
multiplications, we process each segment (subCircuiti) of our circuit in binary
tree format to represent layers we would see in the real world. Such tuning will
likely not be required in real-world applications since large circuits are usually
layered and multiplication gates should be somewhat balanced out across layers
already.

5.1 Benchmark at different at balanced b value

We set b = pd =
√
pd to get a more balanced result. Alternatively, one can set

b smaller to get better prover runtime performance in exchange for more ex-
pensive verifier and communication costs (section 5.2). This is because doing so
will 1) may significantly cut down the polynomial degree pd value of the circuit.
2) evade expensive NTT computations at high degrees and better leverage Pip-
penger acceleration in computing Rt, Et, which will continuously improve group
exponentiation operations before peaking out at around m = 214.

Table 1. Prover performance comparison (seconds)

Circuit size 210 212 214 216 218 220

Hyrax 1 2.8 9 36 117 486
Ligero 0.1 0.4 1.6 4 17 69
Aurora 0.5 1.6 6.5 27 116 485

SpartanNIZK 0.02 0.05 0.16 0.6 1.7 6.2
This work 0.004 0.005 0.01 0.03 0.13 0.57

Table 1 shows that as the circuit size gets bigger, the prover performance of
our protocol is becoming increasingly more efficient than all the other protocols
we are comparing against. This is because the cost associated with the number
of inputs to the circuit is fixed (20 inputs), and its impact relative to the cost of
evaluating the whole circuit gradually declines as the circuit size gets bigger (the
same effect will also apply to verifier runtime and proof size benchmarks below).
To the best of our knowledge, our protocol offers the best prover performance
in the non-interactive setting in the literature.

24

Table 2. Proof size comparison (kilobytes)

Circuit size 210 212 214 216 218 220

Hyrax 14 17 21 28 38 58
Ligero 546 1,076 2,100 5,788 10,527 19,828
Aurora 477 610 810 1,069 1,315 1,603

SpartanNIZK 9 12 15 21 30 48
This work 3 4 7 11 19 36

Table 2 shows that the communication cost of our protocol dominates that
of Ligero and Aurora, while being largely comparable to SpartanNIZK and
Hyrax. The fixed cost of one additional input is 112 bytes, you can add or
subtract as many inputs as needed to get the communication cost that fits your
scenario rather than take the default l = 20. Please note that other proto-
cols also incur comparable costs when they map more witnesses to some pre-
committed/encrypted value in the public data store.

Table 3. Verifier performance comparison (milliseconds)

Circuit size 210 212 214 216 218 220

Hyrax 206 253 331 594 1.6s 8.1s
Ligero 50 179 700 2s 7.5s 33s
Aurora 192 590 2s 7.2s 29.8s 118s

SpartanNIZK 7 11 17 36 103 387
This work 1.4 1.4 1.5 1.8 3 12.5

Table 3 demonstrates that our protocol achieves a significant improvement
of over one order of magnitude in verifier runtime compared to other protocols.

The NTT friendly prime number q we used for our benchmark testing is
1945555039024054273, a 61-bit prime that implies the soundness error will be at
most b

q = 2−51 in our test case (b = 210 when pd = 220 and q is a 61-bit prime),
which is good enough for many applications and ones where one interaction is
allowed.

When a soundness error of 2−51 is not enough, the dumb and straight-forward
way is to run the whole protocol twice to get a soundness error of at least
(bq)2 = 2−102. This will almost double the cost of everything (the prover only

needs to compute vector commitment Rt once), but our protocol will still claim
the title of the fastest prover and verifier runtime in the literature by a wide
margin. The more advanced way is to use a bigger q prime. For example, a
90-bit q prime will comfortably increase the soundness error to at least 2−80,
just that there would be a lot of engineering work to get an efficient NTT and
modular arithmetic implementation at a higher bit value. e.g., at 128-bit, which
will require optimization at the assembly level for which no open source code is

25

available at the moment, unlike that for 64-bit (come with the CPU) and 256-bit
(optimized over the years because of ECC).

It is worth noticing that input transformation costs can be shared across
multiple circuits if the inputs are reused as inputs to other circuits, which may
lead to further reductions in communication costs in the real world.

5.2 Benchmark at different b value in memory efficient setting

One of the biggest advantages of our protocol is that it provides a blueprint
for developing a fast, memory-efficient, non-interactive zero-knowledge protocol.
The theoretical memory cost is O(b + 2pd). Using the memory-efficient imple-
mentation mentioned in Section 4.5, we get the results listed in Table 4.

Table 4. Performance comparison in memory efficient setting

b Prover Verifier Communication Cost

210 1.14 s 11 ms 55 KB
29 1.03 s 11 ms 55 KB
28 0.93 s 18 ms 106 KB
27 0.83 s 27 ms 208 KB
26 0.74 s 50 ms 414 KB
25 0.70 s 100 ms 827 KB
24 0.72 s 201 ms 1.6 MB
23 0.91 s 397 ms 3.3 MB

The prover performance shown in Table 5 shows our protocol peaks at around
1.43 million multiplications per second when b = 25, then it starts to increase
again afterwards. This is because the cost of computing the vector commitments
Rt, Et gets increasingly expensive as the number of sub-circuits (m) increases.
Therefore, the cost of performing group exponentiation operations committing
~r,~ε is getting more expensive relative to the shrinking cost of field operations
computing ~r,~ε, ~τ as b decreases.

However, table 4 is a little bit deceiving because the smaller the b may also
lead to a smaller polynomial degree pd value of a circuit (e.g., when some output
of a sub-circuit with a high degree is used multiple times to multiply other values
of a circuit.).

Regardless, the benchmark numbers shown in Table 4 compare well against
top-of-the line VOLE-based protocols (shown in Table 5; reported numbers are
copied directly from their paper [35]), given that our protocol is non-interactive
and offers a significantly smaller proof size without requiring pre-setup like that
of Ant-Man.

Note that there are other techniques for improving prover memory: Commit-
and-prove to glue sub-circuits together (Lunar/Eclipse [14] [2]), streaming SNARKs
(Gemini [10]). However, the reported constructions of these protocols require

26

Table 5. Performance of VOLE protocols (Arithmetic Circuit)

Protocol Size Speed Non-Interactive

Wolverine 4 0.66 M No
Mac’n’Cheese 3 0.4 M No
QuickSilver 1 4.8 M No
This work 1

b
≥ 1.43 M Yes

trusted setup (non-transparent), and the prover runtime cost of these protocols
is magnitudes more expensive.

5.3 Boolean Circuit

Our protocol is optimized for arithmetic circuits, and we believe the best way to
use our protocol in the real world is to run an arithmetic circuit with embedded
range-proof to perform comparison and floating point operations as explained
in Section 4.3. We believe this joined approach can eliminate the need to use
boolean circuits in most use cases (except for things like proof of hash, which
we doubt has any real-world application).

6 Acknowledgments

Special thanks to Danli Xie and Jam Jia for helping out on the coding and
making the code more efficient.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press, Dallas,
TX, USA (Oct 31 – Nov 2, 2017). https://doi.org/10.1145/3133956.3134104

2. Aranha, D.F., Bennedsen, E.M., Campanelli, M., Ganesh, C., Orlandi, C., Taka-
hashi, A.: ECLIPSE: Enhanced compiling method for pedersen-committed zk-
SNARK engines. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part I. LNCS, vol. 13177, pp. 584–614. Springer, Heidelberg, Germany, Virtual
Event (Mar 8–11, 2022). https://doi.org/10.1007/978-3-030-97121-221

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifi-
cation and hardness of approximation problems. In: 33rd FOCS. pp. 14–
23. IEEE Computer Society Press, Pittsburgh, PA, USA (Oct 24–27, 1992).
https://doi.org/10.1109/SFCS.1992.267823

4. Arora, S., Safra, S.: Probabilistic checking of proofs; A new characterization of
NP. In: 33rd FOCS. pp. 2–13. IEEE Computer Society Press, Pittsburgh, PA,
USA (Oct 24–27, 1992). https://doi.org/10.1109/SFCS.1992.267824

5. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: 23rd ACM STOC. pp. 21–31. ACM Press, New Orleans, LA,
USA (May 6–8, 1991). https://doi.org/10.1145/103418.103428

27

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-97121-2_21
https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1145/103418.103428

6. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time
has two-prover interactive protocols. In: 31st FOCS. pp. 16–25. IEEE
Computer Society Press, St. Louis, MO, USA (Oct 22–24, 1990).
https://doi.org/10.1109/FSCS.1990.89520

7. Baum, C., Malozemoff, A.J., Rosen, M.B., Scholl, P.: Mac’n’cheese: Zero-
knowledge proofs for boolean and arithmetic circuits with nested disjunctions.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828,
pp. 92–122. Springer, Heidelberg, Germany, Virtual Event (Aug 16–20, 2021).
https://doi.org/10.1007/978-3-030-84259-84

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III.
LNCS, vol. 11694, pp. 701–732. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 18–22, 2019). https://doi.org/10.1007/978-3-030-26954-823

9. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang,
Y.: Ligero++: A new optimized sublinear IOP. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) ACM CCS 2020. pp. 2025–2038. ACM Press, Virtual Event, USA
(Nov 9–13, 2020). https://doi.org/10.1145/3372297.3417893

10. Bootle, J., Chiesa, A., Hu, Y., Orrù, M.: Gemini: Elastic SNARKs for diverse envi-
ronments. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II.
LNCS, vol. 13276, pp. 427–457. Springer, Heidelberg, Germany, Trondheim, Nor-
way (May 30 – Jun 3, 2022). https://doi.org/10.1007/978-3-031-07085-315

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS
2018. pp. 896–912. ACM Press, Toronto, ON, Canada (Oct 15–19, 2018).
https://doi.org/10.1145/3243734.3243868

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl,
P.: Efficient two-round OT extension and silent non-interactive secure com-
putation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM
CCS 2019. pp. 291–308. ACM Press, London, UK (Nov 11–15, 2019).
https://doi.org/10.1145/3319535.3354255

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–
518. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2019).
https://doi.org/10.1007/978-3-030-26954-816

14. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodŕıguez, H.: Lunar: A tool-
box for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS,
vol. 13092, pp. 3–33. Springer, Heidelberg, Germany, Singapore (Dec 6–10, 2021).
https://doi.org/10.1007/978-3-030-92078-41

15. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: Plonk with linear-time
prover and high-degree custom gates. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part II. LNCS, vol. 14005, pp. 499–530. Springer, Heidelberg, Ger-
many, Lyon, France (Apr 23–27, 2023). https://doi.org/10.1007/978-3-031-30617-
417

16. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.P.: Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Heidel-
berg, Germany, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.1007/978-
3-030-45721-126

28

https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26

17. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic; or: Can
zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462,
pp. 424–441. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 23–27,
1998). https://doi.org/10.1007/BFb0055745

18. Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Improving line-point zero knowledge:
Two multiplications for the price of one. In: Yin, H., Stavrou, A., Cremers, C.,
Shi, E. (eds.) ACM CCS 2022. pp. 829–841. ACM Press, Los Angeles, CA, USA
(Nov 7–11, 2022). https://doi.org/10.1145/3548606.3559385

19. Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its appli-
cations. Cryptology ePrint Archive, Report 2020/1446 (2020), https://eprint.
iacr.org/2020/1446

20. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 191–219. Springer, Heidelberg,
Germany, Sofia, Bulgaria (Apr 26–30, 2015). https://doi.org/10.1007/978-3-662-
46803-67

21. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019), https://eprint.iacr.org/2019/953

22. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069–1083.
USENIX Association, Austin, TX, USA (Aug 10–12, 2016)

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press,
Providence, RI, USA (May 6–8, 1985). https://doi.org/10.1145/22145.22178

24. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–
728. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018).
https://doi.org/10.1007/978-3-319-96878-024

25. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107,
pp. 569–598. Springer, Heidelberg, Germany, Zagreb, Croatia (May 10–14, 2020).
https://doi.org/10.1007/978-3-030-45727-319

26. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-
key cryptosystems. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM
CCS 2013. pp. 943–954. ACM Press, Berlin, Germany (Nov 4–8, 2013).
https://doi.org/10.1145/2508859.2516691

27. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference
strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM
CCS 2019. pp. 2111–2128. ACM Press, London, UK (Nov 11–15, 2019).
https://doi.org/10.1145/3319535.3339817

28. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 20–24, 1990). https://doi.org/10.1007/0-
387-34805-022

29. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE:
Improved constructions and implementation. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019. pp. 1055–1072. ACM Press, London, UK
(Nov 11–15, 2019). https://doi.org/10.1145/3319535.3363228

29

https://doi.org/10.1007/BFb0055745
https://doi.org/10.1145/3548606.3559385
https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2020/1446
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1145/2508859.2516691
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1145/3319535.3363228

30. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 704–737. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21,
2020). https://doi.org/10.1007/978-3-030-56877-125

31. Setty, S., Lee, J.: Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275 (2020), https://eprint.iacr.org/2020/1275

32. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient zk-
SNARKs without trusted setup. Cryptology ePrint Archive, Report 2017/1132
(2017), https://eprint.iacr.org/2017/1132

33. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic cir-
cuits. In: 2021 IEEE Symposium on Security and Privacy. pp. 1074–1091.
IEEE Computer Society Press, San Francisco, CA, USA (May 24–27, 2021).
https://doi.org/10.1109/SP40001.2021.00056

34. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: Interactive zero-
knowledge proofs with sublinear communication. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 2901–2914. ACM Press, Los Angeles, CA,
USA (Nov 7–11, 2022). https://doi.org/10.1145/3548606.3560667

35. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: Efficient and affordable
zero-knowledge proofs for circuits and polynomials over any field. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021. pp. 2986–3001. ACM Press, Virtual Event, Republic
of Korea (Nov 15–19, 2021). https://doi.org/10.1145/3460120.3484556

36. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020. pp. 1607–1626. ACM Press, Virtual Event, USA (Nov 9–
13, 2020). https://doi.org/10.1145/3372297.3417276

37. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: 2020 IEEE Symposium on Security
and Privacy. pp. 859–876. IEEE Computer Society Press, San Francisco, CA, USA
(May 18–21, 2020). https://doi.org/10.1109/SP40000.2020.00052

30

https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2017/1132
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1145/3548606.3560667
https://doi.org/10.1145/3460120.3484556
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1109/SP40000.2020.00052

	Concretely Efficient Input Transformation Based Zero-Knowledge Argument System for Arbitrary Circuits

