
Crystalor: Recoverable Memory Encryption Mechanism with
Optimized Metadata Structure

Rei Ueno
∗

Tohoku University

Sendai, Japan

rei.ueno.a8@tohoku.ac.jp

Hiromichi Haneda

Tohoku University

Sendai, Japan

hiromichi.haneda.r5@dc.tohoku.ac.jp

Naofumi Homma

Tohoku University

Sendai, Japan

naofumi.homma.c8@tohoku.ac.jp

Akiko Inoue

NEC Corporation

Kawasaki, Japan

a_inoue@nec.com

Kazuhiko Minematsu

NEC Corporation

Kawasaki, Japan

k-minematsu@nec.com

ABSTRACT
This study presents an e�cient recoverable memory encryption

mechanism, named Crystalor. Existing memory encryption mech-

anisms, such as Intel SGX integrity tree, o�er neither crash con-

sistency nor recoverability, which results in attack surfaces and

causes a non-trivial limitation of practical availability. Although

the crash consistency of encrypted memory has been studied in

the research �eld of microarchitecture, existing mechanisms lack

formal security analysis and cannot incorporate with metadata

optimization mechanisms, which are essential to achieve a prac-

tical performance. Crystalor e�ciently realizes provably-secure

recoverable memory encryption with metadata optimization. To es-

tablish Crystalor with provable security and practical performance,

we develop a dedicated universal hash function PXOR-Hash and

a microarchitecture equipped with PXOR-Hash. Crystalor incurs

almost no latency overhead under the nominal operations for the

recoverability, while it has a simple construction in such a way

as to be compatible with existing microarchitectures. We evaluate

its practical performance through both algorithmic analyses and

system-level simulation in comparison with the state-of-the-art

ones, such as SCUE. Crystalor requires 29–62% fewer clock cy-

cles per memory read/write operation than SCUE for protecting

a 4 TB memory. In addition, Crystalor and SCUE require 312GB

and 554GB memory overheads for metadata, respectively, which

indicates that Crystalor achieves a memory overhead reduction

of 44%. The results of the system-level simulation using the gem5

simulator indicate that Crystalor achieves a reduction of up to 11.5%

in the workload execution time compared to SCUE. Moreover, Crys-

talor achieves a higher availability and memory recovery several

thousand times faster than SCUE, as Crystalor o�ers lazy recovery.

KEYWORDS
Memory encryption; Crash consistency; Crash window problem;

Parallelizable authentication tree; Secure computer architecture

∗
The present a�liation of Rei Ueno is Kyoto University, Japan, and his present email

address is ueno.rei.2e@kyoto-u.ac.jp.

1 INTRODUCTION
1.1 Background
Memory encryption is an essential security primitive for modern

computers. Owing to extensive attacks on main memory, includ-

ing the cold boot attack, Rowhammer, and RAMbleed [26, 35, 38],

which pose real threats, memory encryption is becoming increas-

ingly relevant in a wide range of computers. Trusted execution

environment (TEE) mechanisms, such as Intel software guard exten-

sion (SGX) and ARM secure encrypted virtualization (SEV), support

main memory (DRAM) encryption for realizing resource isolation,

remote attestation, etc. Moreover, non-volatile and persistent mem-

ories (NVMs), such as MRAM [17], have been deployed and have

attracted substantial attention. In several recent systems, NVMs

have been deployed as main memory in addition to or instead of

DRAM for higher performance, lower power consumption, and

larger capacity, such as NVDIMM and Intel Optane Persistent Mem-

ory [2]. Attacks on main memory are more serious and realistic for

NVM than DRAM owing to the non-volatility. With the advances

in large-scale (persistent) memories, a high demand exists for the

development of e�cient memory encryption mechanism for the

security of modern and future computers.

Conventional security notions. Memory encryption realizes the

con�dentiality and/or authenticity (integrity) of main memory data

based on symmetric cryptography, including encryption, message

authentication code (MAC), and authenticated encryption (AE) [23].

In [5], Avanzi et al. classi�ed and formalized memory protection

into three levels:

• L1: con�dentiality only,

• L2: con�dentiality and integrity,

• L3: con�dentiality, integrity, and replay protection.

For example, AMD–SEV employs AES–XEX for memory encryp-

tion [1], corresponding to L1 security. As well, the Optane module

is equipped with a 256-bit AES–XTS engine for data con�dentiality

without authenticity. However, authenticity is currently considered

to be essential for protecting main memory, as some practical at-

tacks have been reported that exploit the lack of (full) authenticity of

(deterministically) encrypted memory [11, 41, 42, 50, 51, 70]. Here,

replay attack, which involves a data move in the time domain (i.e.,
copy-and-paste of data from past timing), is sophisticated manipula-

tion/forgery. Replay attack cannot be prevented by the simple use of

mailto:ueno.rei.2e@kyoto-u.ac.jp

encryption and MAC (i.e., L2 security), as the manipulated data had

been originally valid. Hence, many studies have been devoted to the

realization of L3 security, which considers the strongest adversary

counteracted bymemory encryption (i.e., an active but non-invasive
hardware attacker AHW

active
[5]), from both cryptographic and mi-

croarchitectural perspectives [14, 15, 21, 23, 24, 32]. For example,

Intel SGX memory encryption, based on the SGX integrity tree

(SIT), achieves L3 security [14].

Memory authentication trees. For an L3-secure memory encryp-

tion, Merkle tree [47, 48] (in combination with an encryption of leaf

nodes) and parallelizable authentication tree (PAT) [27] have been

developed for protection against extensive attacks with a realistic

computational latency. SIT is a popular PAT instance [14, 23, 24].

Each leaf node consists of encrypted data, a counter value (i.e.,
nonce), and a veri�cation tag, whereas each intermediate/root node

consists of a nonce and a tag to verify its child node as security

metadata. When reading (resp. storing) data in a leaf node, all nodes

on the path from the leaf to root nodes are veri�ed (resp. updated).

Such a tree structure enables real-time processing of veri�cation

and update because its path veri�cation is far faster than the MAC

computation for the entire memory. In addition, the root node,

which consists of only several hundred bits, is stored on-chip, as

the attacker supposedly cannot manipulate on-chip data. Thus, the

root node acts as a root of trust to preclude replay attacks.

Crash consistency. The aforementioned L3 security has been con-

sidered as a su�ciently strong goal in the plain model; however,

it is insu�cient for the practice of memory encryption. For sound
availability, memory data should guarantee crash consistency: the
data are not broken after a crash (e.g., sudden power-o�/blackout)

occurs [46]. For this purpose, memory controller in CPU would

equip a write pending queue (WPQ) as an asynchronous DRAM

refresh (ADR) domain to persist data to be stored in main/persis-

tent memory [62]. For encrypted memory based on Merkle tree

or PAT, however, it is mandatory to guarantee the consistency of

all (meta)data, including intermediate nodes. If a tag veri�cation

(on intermediate nodes) fails, the related data (leaf node) becomes

unavailable because it may have been manipulated. However, it

is non-trivial to guarantee crash consistency of the entire tree be-

cause a path is to be updated serially in practice (although the

computation may be parallelized [27]). This is called crash window
problem [30, 46]: there must exist a moment when a path is incon-

sistent (i.e., some nodes are updated while others are not yet). Thus,

it is challenging to e�ciently guarantee consistency against crashes

whenever the system operates.

PAT vs. Merkle tree. In PAT, the MAC tags on a path can be

updated in parallel. PAT enables algorithmically lower latency than

Merkle tree because path update of Merkle tree is not parallelizable,

while crash consistency may be easier for Merkle tree than PAT [19,

78]. In this study, we develop an e�cient recoverable mechanism

of PAT, which is promising to improve memory encryption.

Attack on availability. The security (i.e., con�dentiality and in-

tegrity) of PAT has been proven [27, 32] in the adversarial model

in which the attacker (intentionally) causes crashes and queries

inconsistent trees. However, the crash consistency suggests an addi-

tional security issue with respect to availability; that is, the existing

crash consistency mechanisms (see Section 5) can neither correct

the errors (not owing to crash) nor recover the memory with in-

tegrity. For example, DRAM bits sometimes �ip accidentally due

to soft-error e�ects [61]
1
. In addition, a malicious attacker may

mount a type of denial-of-service (DoS) attack by injecting error(s)

into the tree nodes via, for example, Rowhammer [35] and physical

side-channels, which makes the related data unavailable. Thus, the

L3 memory encryption signi�cantly degrades availability against

malicious attackers and faults, and it is quite important to develop

how to maintain the availability of encrypted memory.

Additional security notion and our motivation. Given the above

observations, we introduce yet another security level for memory

encryption beyond [5]:

• L4: con�dentiality, integrity, replay protection, and recov-

erability.

An encrypted memory is recoverable if the memory data can be

securely recovered and against manipulation and error (except for

leaf nodes) in addition to crash. In particular, the L4 security con-

siders the adversary as in the L3 security (i.e.,AHW

active
), but achieves

a higher availability and resilience against faults and DoS attacks

than L3 secure memory encryption. The goal of this study is to de-

velop an e�cient and recoverable memory encryption mechanism

that achieves L4 security for the practice of memory encryption.

Here, an L4-secure memory encryption should realize recovery

from any manipulation/errors of intermediate nodes and detect

those of leaf nodes, as the leaf node contains data unrelated to the

tree structure. Leaf node recoverability should be maintained by,

for example, an error-correcting code (ECC) and tagged/colored
memory [18, 25, 39, 52, 60]. Note that the crash consistency is not
equivalent to recoverability, as a crash-consistent (but not recov-

erable) memory encryption may not support a recovery but only

supports detection in cases of manipulation and errors.

1.2 State-of-the-art and its limitations
Crash consistency has been studied in the research �eld of microar-

chitecture (see Section 5), but little formal and provable security

analysis has been conducted. In HPCA 2023, Huang and Hua pre-

sented a state-of-the-art crash recovery mechanism for L3-secure
PAT, named shortcut update (SCUE) [30]. SCUE exploits a simple

property of naïve PAT metadata; that is, a parent node counter is

always equal to the sum of the child node counters. SCUE requires

little overhead when applied to a PAT-based secure memory, and

would be currently the most e�cient for L4 memory encryption.

However, SCUE has two major limitations in terms of provable

security and compatibility with existing optimization mechanisms.

SCUE is based on a property of counters in a naïve PAT without op-
timization. Meanwhile, several PAT structural optimizations using

advanced counter mechanisms to compress security metadata have

been presented, which signi�cantly reduce the memory encryption

overhead. Split Counter (SC) is the most typical advanced counter

mechanism [71], followed by, e.g., Vault [64] and Morphable Coun-
ters [59]. As the metadata overhead has a signi�cant impact on

1
Some server-grade memories are equipped with an error-correcting code (ECC) of

single error correction and double error detection (SECDED) to tolerate them, while

it is not for consumer-level devices (e.g., laptop and smartphone). Note that it o�ers

neither correction/detection capabilities nor security against malicious attackers.

2

the latency of memory read/write operations owing to the limited

bandwidth and cache size, the adoption of such optimizations is

crucial for e�cient memory encryption. However, SCUE cannot

incorporate such structural optimizations using advanced counter

mechanisms, which do not preserve the aforementioned simple

property of counters. Other major crash consistency mechanisms

are also incompatible with these optimizations [77].

Indeed, combination of recoverable memory encryption and such
optimization techniques have rarely been studied and exploited to date,
and a mismatch exists between them. In addition, as the SCUE does

not support a lazy recovery (see Section 3.5), the availability should

be maintained in a more e�cient manner. Owing to the advantages

of optimization techniques, it is important for the deployment of

secure main memory to develop a recoverable memory encryption

mechanism for PAT compatible with optimizations.

1.3 Our contributions
We propose a recoverable memory encryption mechanism, named

Crystalor, which stands for CRYptographically Secure Tree-based Au-
thentication with Leaf-Only Recovery. Crystalor e�ciently supports

the recoverability with almost no latency overhead and is designed

to be securely instantiated with any memory authentication tree,

including optimized PAT. Crystalor enables an L4-secure memory

encryption on the basis of an L3-secure PAT, while our L4-secure
memory encryption is compatible with structural optimizations.

Meanwhile, as Crystalor incurs almost no latency overhead for

the recoverability, our L4-secure memory encryption achieves as

e�cient performance as that of L3-secure ones.
Our core concepts are twofold. First, Crystalor does not guar-

antee the consistency/recovery of the entire tree but guarantees

the integrity and recovery of only leaf nodes (i.e., payload data)

using a distinct veri�cation tag, named recovery tag. Second, at

a recovery, Crystalor relinquishes the tree except for leaf nodes

and creates a new tree from the leaf nodes with resilience against

replay attacks. In Section 3, we present our key observations: (1) an

almost universal (AU) hash function [13] is su�cient for provably

secure recovery tag veri�cation, and (2) it is possible to build an

e�cient AU hash function with two properties, namely rate-1 (i.e.,
one block cipher call to process one input block) and incremental

update capability. Accordingly, we develop a (computational) AU

hash function named PXOR-Hash, which is tailor-made for our

purpose. PXOR-Hash is designed similarly to PXOR-MAC, which is

used in the state-of-the-art PAT named ELM [32]; however, PXOR-

Hash achieves another security goal/level that we set and has a

construction di�erent from PXOR-MAC, which yields e�cient im-

plementation. In addition, the recoverability of Crystalor is based

on the cryptographic protection, which enables lazy recovery. The
L4-secure memory encryption based on Crystalor achieves a higher

availability than conventional ones thanks to the lazy recovery.

The performance advantage of Crystalor is evaluated by algorith-

mic analyses and a system-level simulation. Our results reveal that,

for protecting a 4 TB memory as an example, Crystalor achieves

29–62% latency reduction per memory read/write in the algorithmic

level and a 44% reduction in memory overhead compared to SCUE

owing to the compatibility with SC. The system-level simulation

using the gem5 simulator [9] shows that Crystalor achieves at most

Table 1: Notations in this paper

Symbol Meaning Symbol Meaning

 , ! Secret keys V Tree arity

= Block length 3 Tree depth

� Block cipher (AES) ℓ Bit length of leaf node

� AU function : Degree of SC

� Input to � 1 # input blocks to MAC

" [8] ℓ-bit plaintext of 8-th leaf addr[8] address of 8-th node

� [8] ℓ-bit ciphertext of 8-th leaf ctr[8] 8-th counter

) [8] Tag of 8-th node ctrMa [8] 8-th major counter of SC

[8] Nonce of 8-th node ctrmi [8] [9] 9 -th minor counter

of 8-th major counter

11.5% lower latency than SCUE. In addition, Crystalor achieves a

recovery that is several thousand times faster (i.e., a recovery cost

reduction by 90–99.9%) than SCUE owing to metadata structural

optimization and lazy recovery, under same condition/assumption.

1.4 Paper organization
Section 2 introduces the (persistent) memory encryption and secure

memory. Section 3 outlines the proposed crash recovery mechanism

Crystalor, and explains its hardware architecture and operation.

Section 4 demonstrates the algorithm-level evaluation and a system-

level simulation. Section 5 brie�y introduces existing studies related

to this paper. Finally, Section 6 concludes this paper.

2 PRELIMINARIES
Notations used in this paper are summarized in Table 1.

2.1 System and threat models of memory
encryption

Figure 1 shows a system model with memory encryption, which

is simpli�ed, but follows many existing studies and is based on a

formalization in [5, 23]. We omitted CPU core(s) to focus on our

interest. The model separates the memory system into two areas:

the on-chip trusted area and the o�-chip untrusted area. On-chip

data are assumed to be secure and trustable; that is, any attacker can

neither eavesdrop nor manipulate on-chip data. In contrast, he/she

can perform arbitrary eavesdropping and manipulation of o�-chip

data. The goal of memory encryption is to realize the con�dentiality

and integrity of memory data. The on-chip area contains cache(s),

memory protection hardware, SRAM, and a memory controller con-

taining a WPQ
2
. The SRAM stores the secret key and root nonce

of PAT. The memory protection hardware performs cryptographic

computation (i.e., encryption/decryption and MAC). The memory

controller employs a WPQ as an ADR domain to bu�er data from

the cache to memory until it is written, which guarantees the data

persistency at the time of cache data replacement/�ush. This threat

model is compatible with many existing studies on memory en-

cryption [21, 23, 30] and corresponds to the strongest adversary

covered by memory encryption (i.e., AHW

active
formalized in [5]).

It is assumed that the attacker can eavesdrop and manipulate

arbitrary data in the memory, including the leaf and intermediate

nodes of PAT. The goals of memory encryption are its con�dential-

ity and integrity, while the motivation of recoverability is securely

2
Memory protection hardware and the SRAM may be considered as parts of memory

controller as extension.

3

Cache

Untrusted area
(Off-chip)

Trusted area
(On-chip)

Memory protection hardware

Main memory

SRAM
(key, root, etc.)

 Write pending queue (WPQ)
Memory controller

Figure 1: System model of encrypted memory (CPU core(s)
are omitted).

maintaining the availability of encrypted memory against crushes,

memory errors (e.g., manipulation and accidental bit-�ips), and

adversarial DoS attacks targeting memory data. Crystalor can real-

ize recovery against any crashes and any manipulation/errors on

intermediate nodes. Crystalor does not realize recovery frommanip-

ulation/errors on leaf nodes, while Crystalor can detect any manip-

ulation/errors on leaf nodes. We stress that any mechanism cannot

always recover data if encrypted data (i.e., contents unrelated to the
tree structure) is compromised. Our proposed mechanism can incor-

porate with ECC(s) and tagged/colored memory [18, 25, 39, 52, 60],

which o�er an error correction in encrypted data. However, their

error-correction capability is necessarily bounded, and attacker may

manipulate leaf node(s) beyond it. Here, although compromised

leaves are no longer available, PAT suppresses the unavailability

against manipulation/error as payload data encryption is divided

into small leaf nodes. In contrast, one manipulation/error makes all

related memory data unavailable unless recoverability. Thus, the

recoverability of PAT is essential for practical memory encryption,

in addition to ECCs and tagging/coloring for memory. Note that

there exist other types of DoS attack on the system such as system

shutdown by privileged user. As our scope is memory protection,

we do not consider such DoS attacks targeting outside memory,

which should be countered by other means/layer.

Remark 2.1 (Side-channel attacks). We do not consider on-chip

side-channel attacks as in previous studies. For example, power/EM

analyses on memory encryption hardware may steal the secret

key [37]. Microarchitectural attacks represented by Flush+Reload

and Prime+Probe [45, 74], which are exploited by Spectre and Melt-

down [36, 43], may also be a threat to the con�dentiality of payload

data. These side-channel attacks are attempts to eavesdrop on-chip
data. Hence, they are beyond our scope: protection of o�-chip data

against eavesdropping and manipulation. On-chip side-channel

attacks should be countered by di�erent means, such as masking

and cache randomization [12, 55, 69] (while an authentication tree

named MEAS claims a power/EM side-channel security [67]).

2.2 Symmetric cryptography for memory
encryption

Existing works on memory encryption (e.g., [15]) have frequently
employed AES encryption. For con�dentiality, the counter-mode

AES has been utilized owing to its parallelizability and random

accessibility. For integrity, a MAC has been commonly employed.

Note that replay attacks cannot be prevented by simple use of MAC,

because they use a valid triple of ciphertext, nonce, and tag.

For both encrypting and verifying payload data e�ciently, an AE

can be utilized [56] instead of a composition of the counter-mode

AES encryption and a MAC [8]. For e�cient memory encryption,

AE should have two desirable properties: block-level parallelizabil-

ity
3
and rate-1. A parallelizable AE can encrypt several blocks in

parallel, which allows for low-latency implementation using mul-

ticore or pipelining. Rate-1 relates to the number of AES calls to

complete the encryption and tag computation. A rate-1 AE (e.g.,
[58]) has a latency of almost half of a composition of the counter-

mode AES and a MAC. The use of AE signi�cantly improves the

performance of memory encryption, where payload data essentially

requires both con�dentiality and integrity.

Parallelizability and rate-1 are also desirable for MAC to achieve

the integrity of intermediate nodes. In addition, certain MACs have

another desirable property known as incrementality [7]. When a

data block is changed, an incremental MAC can update the tag with

$ (1) calls of the underlying cryptographic primitive if old data,

nonce, and tag are available, whereas non-incremental MAC, such

as CMAC [16], requires$ (<) primitive calls, where< is the number

of input blocks. Namely, the updated tag of incremental MAC can

be computed only from an old tag, old data block, and new data

block, as well as old and new nonces. The number of blocks updated

in a MAC computation is usually one in memory encryption; hence,

incremental MAC signi�cantly improves its performance.

2.3 Parallelizable authentication tree (PAT)
PAT has been employed for memory encryption to realize (1) real-

time processing and (2) protection against replay attacks with a

minimal overhead of on-chip memory. Figure 2 depicts an overview

of PAT with an arity of two as an example. PAT encrypts the leaf

node using an AE and veri�es intermediate nodes using a nonce-

based MAC. The 8-th intermediate of PAT consists of (# [8],) [8]),
where # [8] and) [8] are its nonce and tag, respectively. The 8-th

leaf node of PAT consists of a tuple (# [8],) [8],� [8]), where � [8]
is the ciphertext of payload data. The nonce of each node is given

by a concatenation of its address addr[8] and counter ctr[8] as
[8] = addr[8] ‖ ctr[8], where · ‖ · denotes the bit concatenation4.
The tag of an intermediate node veri�es its child node counters

as the MAC input. In both veri�cation and update, the tag of each

node in a path is computed in parallel as its computation does not

depend on the computation results of any lower-level nodes, which

indicates the node-level parallelizability of PAT.

ELM. ELM is a state-of-the-art PAT proposed by Inoue et al.
[32]. ELM is optimized for low latency and scalability to large

memory. For this purpose, Inoue et al. introduced an AE and in-

cremental MAC named Flat-OCB and PXOR-MAC, respectively. In

addition, ELM uni�es some computations shareable with Flat-OCB

and PXOR-MAC among the entire tree. ELM has a lower latency and

less memory overhead than SIT [14], while both schemes use AES-

128 and have an equivalent provable security reduction to AES.

3
Block-level parallelizability is a property of the mode and MAC, whereas node-level

parallelizability is of the authentication tree.

4
Note that addr[8] does not need storing because it is implicitly determined from its

address [14, 32].

4

M[0]

AE C[0] …

MAC

ctr [0] || ctr [1]

…

…

Root nonce

T[0]N[0]

M[1]

AE C[1]

T[1]N[1]

M[− 1]

AE C[− 1]

T[− 1]N[− 1]

ctr [− 2] || ctr [− 1]

N[] T[]

MAC

NR TR

…

…
…

MAC

N[] T[]

Untrusted area
(Off-chip)

Trusted area
(On-chip)

Trusted area
(On-chip)

Figure 2: Overview of binary PAT. " [8], � [8], # [8], and) [8]
denote plaintext (i.e., payload data), ciphertext, nonce, and
tag of 8-th node, respectively, where # [8] consists of address
addr[8] and counter ctr[8]. #' and)' are root nonce and tag,
respectively. Leaf node is de�ned as (# [8],) [8],� [8]), whereas
other nodes are de�ned as (# [8],) [8]).

Notably, several major previous studies on memory encryption

(e.g., [21, 30]) employed a classical HMAC, which has a larger la-

tency owing to its serial structure and does not have incrementality.

The MAC of ELM (and SIT) is signi�cantly faster than HMAC.

2.4 Split Counter (SC)
SC is the foremost advanced counter mechanism for PAT structural

optimization [71], which compresses the tree size (i.e., suppresses
the memory overhead for metadata) [4, 53, 54]. This contributes to

reduction of the amount of communication between memory and

CPU as well as lower latency of AE/MAC computation.

Figure 3 illustrates an overview of an SC-based PAT with an arity

of two. An SC-based tree splits a counter into major and minor

counters. Minor counter is unique to a node, while major counter is

shared by several nodes. In computing AE for a leaf node, the nonce

is determined by a concatenation of its address, its major counter,

and its minor counter (e.g., addr[0] ‖ ctrMa [0] ‖ ctrmi [0] [0] in
Figure 3) and the input (i.e., data to be encrypted/decrypted and ver-
i�ed) is the payload data (e.g.," [0]). In computing MAC of an inter-

mediate or root node, the nonce is determined by its address, its own

major counter, and its ownminor counter (e.g., addr[8] ‖ ctrMa [8] ‖
ctrmi [8] [0]) and the input (i.e., data to be veri�ed) is a concatenation
of the major counter(s) and all corresponding minor counters of its

child node (e.g., ctrMa [0] ‖ ctrmi [0] [0] ‖ ctrmi [0] [1]). In updating

a node, its minor counter is incremented. Here, if a minor counter

over�ows, then all minor counters that share a major counter are

reset to zero, and the major counter is incremented. Thus, the SC

signi�cantly reduces the total bit length of the counters, thereby

maintaining the uniqueness of the nonce.

Let ;ctr be the bit length of the counter without SC. Let ;Ma
and ;mi be those of the major and minor counters of an SC-based

PAT, respectively. Typically, ;ctr, ;Ma, and ;mi are 64, 56, and 8,

MAC

ctrMa[0] ∥ ctrmi[0][0] ∥ ctrmi[0][1]

addr[0] ∥ ctrMa[0] ∥ ctrmi[0][0] addr[1] ∥ ctrMajor[0] ∥ ctrmi[0][1]

addr[i] ∥ ctrMa[i] ∥ ctrmi[i][0]

ctrMa[i] ∥ ctrmi[i][0] ∥ ctrmi[i][1]

T[j]

AE
C[0]

T[0]

M[0]

AE
C[1]

T[1]

M[1]

Figure 3: Example of SC-based binary PAT, where ctrMa [8]
is 8-th major counter, and ctrmi [8] [9] is 9-th minor counter
sharing ctrMa [8]. MAC input of parent node consists of major
counter(s) and all minor counters of child nodes.

respectively [31, 71]. If : nodes share a major counter, SC reduces

the counter size from :;ctr to ;Ma + :;mi.

2.5 Shortcut update (SCUE)
SCUE is a state-of-the-art recoverable memory encryption mecha-

nism with PAT presented by Huang and Hua in HPCA 2023 [30].

In SCUE, the counter of the nonce in PAT is incremented by one
whenever the node is updated and never decreases under nominal

operation (without any reset nor over�ow). Its security against re-

play relies on the fact that a replay attacker can decrease a counter

of a node by replacing the nonce and tag in the past but cannot

increase it, yet no formal security analysis has been conducted.

The proposals of SCUE include (i) the e�cient integrity veri�ca-

tion of leaf nodes and (ii) the reconstruction of intermediate nodes

from the leaf nodes. The basic concepts underlying SCUE are that

(i) the root counter should be always equivalent to the sum of all

leaf counters and (ii) a parent node counter is always equivalent to

the sum of its child node counters, unless any manipulation/errors.

These facts are apparent as the counter represents the number of

node updates. After a crash, the integrity of leaf node counters is

veri�ed using the MAC with their tags consistently stored in mem-

ory. Assuming the security of MAC, the attacker cannot perform

any forgery except for replay. Then, SCUE recovers the interme-

diate nodes before the crash in a bottom-up manner. Each parent

node counter value is determined as the sum of its child node coun-

ters, termed as dummy counter, because they are always equivalent

unless manipulation. Finally, to detect a replay of leaf nodes, the

SCUE checks the equivalence between the on-chip root counter

and the top dummy counter (i.e., sum of leaf counters). The root

counter is manipulation-free because it is on-chip, and a replay

decreases a counter but cannot increase it, indicating that the sum

of leaf counters must be fewer than the root counter if replayed.

Incompatibility of SCUE with SC. The SCUE is essentially based

on the fact that the sum of the leaf (resp. child node) counters is

always equivalent to the root (resp. their parent node) counter.

However, it does not hold for SC-based PAT. In an SC-based PAT,

all minor counters sharing the same major counter are reset to zero

5

Payload data

M[0]

AE
ctr[0]

C[0]

T[0]

…

…

Recovery tag

Security metadata

ctr[0] ctr[1] ctr[m]…

Root Nonce

Real-time protection based on PAT
during nominal operation

Verification of leaf counters
only after crash

M[1]

AE
ctr[1]

C[1]

T[1]
M[m]

AE
ctr[m]

C[]

T[m]
MAC

…
MAC
…

…

MAC
…PXOR-Hash

Figure 4: Secure memory based on PAT and Crystalor.

when a minor counter over�ows. Here, values of other minor coun-

ters sharing an identical major counter are not preserved but are

discarded regardless of the value; namely, dummy counter would

not be computable. Hence, SCUE can neither verify the integrity

of leaf nodes nor reconstruct intermediate nodes of SC-based PAT;

thus, SCUE cannot work with SC.

3 PROPOSED MECHANISM: CRYSTALOR
3.1 Basic concept of Crystalor
Figure 4 depicts the proposed L4-secure memory encryption named

Crystalor based on PAT. Crystalor distinctly provides crash recov-

erability and security against crashes, while PAT solely provides

con�dentiality and integrity under nominal operation without a
crash. The basic concepts of Crystalor are to use a distinct recovery
tag, which veri�es the leaf node counters only after a crash or PAT
veri�cation error but can be updated with almost no overhead un-

der nominal operations, and to construct a new tree with a proven

resilience against replay following the recovery tag veri�cation.

Our idea is based on the fact that, if we can verify the leaf nodes

regarding replay attacks without intermediate node consistency,

the intermediate node is no longer required. Thus, we disregard the

entire tree consistency, which incurred a non-negligible overhead

in most existing schemes, and relinquish the intermediate and root

nodes. While the integrity of leaf node is veri�ed by AE except

for replay attacks, Crystalor veri�es leaf node counters using the

recovery tag stored on-chip against replay attacks. The recovery tag

veri�cation is only performed after a crash or veri�cation failure,

while PAT provides integrity under nominal operation. This indi-

cates that the recovery tag veri�cation does not require real-time

processing. In contrast, the tag update requires real-time processing

because it should be performed whenever storing data. Thus, we

present an incremental universal hash [13] named PXOR-Hash,

which is tailor-made for an e�cient and optimal realization of

such recovery tag. PXOR-Hash is designed similarly to PMAC (and

PXOR-MAC); however, PXOR-Hash and PMAC achieve di�erent

security goals/levels owing to the di�erence in their contexts (see

Section 3.2), which improves the e�ciency and latency of PXOR-

Hash compared to PMAC. Importantly, PXOR-Hash veri�es any

data regardless of its structure, which enables the integrity veri�ca-

tion of PAT with structural optimizations (in contrast to SCUE).

The proposal of Crystalor includes how to rebuild the entire tree

(i.e., intermediate nodes) from the veri�ed leaf nodes. Recovery of

an SC-based PAT is impossible because minor counter values at

over�ow are discarded, which causes uncertainty on the intermedi-

ate counters. In contrast to existing mechanisms, Crystalor creates

a new tree, where resilience against replay attacks is proven.

3.2 Recovery tag veri�cation using PXOR-Hash
AE can verify leaf nodes (i.e., payload data) with a nonce consisting

of its address and counter. Here, as we use an implicit (i.e., physical)
address for the nonce, we can detect a forgery, including splicing,

but not a replay attack on a leaf node. To detect a replay, we should

verify the integrity of counters using a recovery tag stored on-chip

securely. As the recovery tag is veri�ed only after a crash, only its

update requires real-time processing (whereas its veri�cation does

not). The requirements of recovery tags for security and practical

performance are as follows.

Requirement 1 (Security). Let � denote a function that computes
an =-bit recovery tag from input � , which consists of leaf counter
blocks. For any adversary with practical resources, the probability
of �nding a collision on � (i.e. a distinct pair � and �′ such that
� (�) = � (�′)) is negligible in =.

Requirement 2 (Incremental update). Assume that old tag and
old input blocks are available. If one input block is changed, then the
new tag can be computed with$ (1) calls of symmetric cryptographic
primitive. Note that this assumption is generally true in our context
because old data remains on-chip before the update.

Requirement 3 (Fast recovery). The tag can be computed and
veri�ed with< + $ (1) calls of symmetric cryptographic primitive
(i.e., rate-1), where< is the input length.

Requirement 1 is crucial as it directly represents a forgery of a

recovery tag given an input (i.e., leaf node counters). The function
� is either keyed or unkeyed. In the former case, we assume that

the adversary does not know the (random) key, owing to the avail-

ability of on-chip key register. Here, if � is keyed, Requirement 1

is equivalent to requiring � to be an almost universal (AU) hash

function (See De�nition 1) [13]. AU hash functions have been ex-

tensively studied, which can be e�ciently constructed owing to the

secret key dependency, compared to one-way hash functions such

as SHA-2 or SHA-3. For a keyed function � : K × X → Y where

K is the key space, we write � to denote � (, ·).
De�nition 1 (AU hash function). Let � : K ×D → {0, 1}= be a

function for a key ∈ K and plaintext � ∈ D. The function � is an
n-AU hash function if Pr[← K : � (�) = � (�′)] ≤ n holds for
any � and �′ ∈ D such that � ≠ �′.

We remark that a full-�edged (nonce-based) MAC will also work;

however, an AU hash function is su�cient for our purpose. This

is because, in our architecture, the recovery tag is stored in the

on-chip trusted/secure area, where the adversary in Requirement 1
cannot see nor manipulate it. This feature is crucial because a colli-
sion is usually easy to �nd if the output of the AU hash is visible

to the adversary. A nonce is unnecessary because each leaf node
counter is never repeated under nominal operation. If the recovery
tag was stored o�-chip or the plaintext of � could take the same

value, we would need to employ a conventional MAC, or add a

nonce as a new input of � and employ nonce-based MAC. However,

this will increase the computational cost or latency compared to an

AU hash function. Based on these observations, we develop an AU

hash function PXOR-Hash, which ful�lls these three requirements.

6

D[1] D[2] D[m]

T

L 2 · L m · L

EK EK EK

Figure 5: Block diagram of PXOR-Hash.

Although an AU hash function could be built using algebraic oper-

ations (e.g., GHASH in GCM), such constructions have di�culties

in incremental updates for large inputs. Instead, we adopt a compu-

tational variant of AU hash function, which is a simpli�ed version

of PMAC (i.e., the sum of input-masked AES). This enables incre-

mental updates for large inputs and provable security guarantee

based on the symmetric primitive that we use (namely, AES) [57].

Construction of PXOR-Hash (for Requirement 3). Let � (·) denote
a block cipher encryption using a secret key (typically, � is

AES encryption). Let � [1], � [2], . . . , � [8], . . . , � [<] be input data
blocks to be veri�ed, where< is the number of data blocks. In the

context of Crystalor, each � [8] consists of counters for a leaf node
nonce (see below). Figure 5 and Figure 6 show the block diagram

and algorithmic description of PXOR-Hash, respectively. The tag

of PXOR-Hash is computed as

) = � (! ⊕ � [1]) ⊕ � (2 · ! ⊕ � [2]) ⊕ · · ·
⊕ � (8 · ! ⊕ � [8]) ⊕ · · · ⊕ � (< · ! ⊕ � [<]),

where ! = � (0), the operator ⊕ denotes a bit-wise XOR, and the

multiplication is over F2= (= is the block length of �). Note that !

can be pre-computed and stored in on-chip memory in advance to

remove its latency. Obviously, the tag is computed with< calls of

� , which means rate-1.

Incremental update (for Requirement 2). Given an old tag) , let

us consider updating the 8-th block � [8] to �′ [8]. The new tag is

expressed as

) ′ = � (! ⊕ � [1]) ⊕ � (2 · ! ⊕ � [2]) ⊕ · · ·
⊕ � (8 · ! ⊕ �′ [8]) ⊕ · · · ⊕ � (< · ! ⊕ � [<]) . (1)

Using the old tag) and old data� [8], the new tag) ′ is equivalently
computed as

) ′ =) ⊕ � (8 · ! ⊕ �′ [8]) ⊕ � (8 · ! ⊕ � [8]), (2)

which requires only two � calls, whereas the naïve computation

in Equation (1) requires< calls.

Concrete realization. For the leaf node veri�cation, we compute

and store a recovery tag) using PXOR-Hash on-chip, where the

inputs are ctr[1] ‖ ctr[2] ‖ · · · ‖ ctr[<]. We use AES-128 for a

block cipher, and 64-bit counters (without SC). The input data are

expressed as � [8] = ctr[28] ‖ ctr[28 + 1] for each 1 ≤ 8 ≤ <. If the

28- or (28 + 1)-th node is updated, then � [8] is also updated using

the computation in Equation (2). Also, if we use SC, the 8-th input

data block is given by all node counters related to the 8-th major

counter; that is, � [8] = ctrMa [8] ‖ ctrmi [8] [0] ‖ ctrmi [8] [1] ‖ · · · ‖
ctrmi [8] [:], where : is the number of minor counters. If a leaf node

related to ctrMa [8] and ctrmi [8] [1], ctrmi [8] [2], . . . , ctrmi [8] [:] is

Algorithm TagGen(�, , !)
1) ← 0

=

2 for 8 = 1 to<

3) ← � (8 · ! ⊕ � [8]) ⊕)
4 return)

Algorithm Verify(�, , !,))
1) ′ ← TagGen(�, , !)
2 if) =) ′

3 return >
4 else
5 return ⊥

Algorithm Update(� [8], � ′ [8], 8, , !,))
1) ← � (8 · ! ⊕ � [8]) ⊕)
2) ← � (8 · ! ⊕ � ′ [8]) ⊕)
3 return)

Figure 6: PXOR-Hash algorithms, where � = (� [1], � [2],
. . . , � [<]) and �′ [8] is new data to be updated.

updated, then � [8] is updated. Note that the address is not required
to be input to PXOR-Hash because PXOR-Hash can detect a change

in the block order
5
. If a crash occurs, Crystalor �rst veri�es the leaf

node using the AE and then detects a replay attack by comparing

the on-chip recovery tag and the tag computed by Equation (1).

Security of PXOR-Hash (for Requirement 1). As mentioned previ-

ously, PXOR-Hash is a computational AU hash function, or more

precisely, an almost XOR-universal (AXU) hash function. An AXU

hash function is an AU hash function. Note here that, for a leaf

node with ctrMa [8] and ctrmi [8] [9], 8 and 9 are implicit inputs to

PXOR-Hash (that is, the input order of the major and minor coun-

ters, which represents the node address). As PXOR-Hash can detect

a swap of bits/blocks, Crystalor is secure against splicing. Thus,

PXOR-Hash can detect any manipulation on leaf node counters, if

the collision probability is negligible.

Integrity will be lost if the securely stored hash value (i.e.,))
and output of PXOR-Hash with a modi�ed (forged) input collide.

Concretely, the probability for each forgery attempt is at most

4</2= when< ≤ 2
=−2

, where= = 128 and< is the number of input

blocks, assuming that the underlying AES is computationally secure

(i.e., a pseudorandom permutation). Hence, the collision probability

is negligible in practice if< � 2
=−2 = 2

126
. For example, even for

a very large memory of 1 P bits, the collision probability is less than

2
−83

, which is practically negligible. The collision probability of

PXOR-Hash can be obtained by analyzing (the message hashing

part of) PMAC [57]. Originally the collision probability was at most

<2/2= [57]; Minematsu and Matsushima [49, Lemma 2] improved

it to 4</2= , assuming that < ≤ 2
=−2

. These proofs considered

doubling-based masks, which means that the 8-th input mask is

2
8 · !, where “2” denotes the generator of the �eld GF(2=). This
di�ers from 8 · ! in PXOR-Hash as we adopted it for hardware

suitability. However, the proof of [49, Lemma 2] is applicable to our

case with trivial changes. Hence, we omit the proof here.

If a stronger security bound is required, which may occur when

< is even larger, or if the block size is smaller, we can use stronger

methods, such as (the message hashing part of) PMAC with mul-

tiple masks [22] and TBC-based PHASH [57]. The former could

5
This is because 8 · ! ≠ 8′ · ! holds for any distinct 8 and 8′ (up to 2

128 − 1). To change
the block order of � , attacker needs to �nd 8 and 8′ such that � (8 · ! ⊕ � [8′]) =
� (8′ · ! ⊕ � [8]) , where 8 · ! ≠ 8′ · ! for any 8 and 8′ . This is infeasible without
and ! due to the pseudorandomness of AES. From a provable security perspective,

each block encryption process . [8] = � (8 · ! ⊕ � [8]) implements an encryption

of a tweakable block cipher (TBC) [44] based on AES and is proven secure if AES is a

pseudorandom permutation [57]. This implies that, if 8 ≠ 8′ , TBC outputs (irrespective

of � [8] and � [8′]) are indistinguishable from independent random values.

7

Table 2: Comparison of incremental primitives

PXOR-Hash
(Ours)

PXOR-MAC

[32]

PMAC

[57]

Incremental update # AES calls 2 4 4

Depth 1 1 2

Veri�cation # AES calls m < + 1 < + 1
Depth 1 1 2

Inverse freeness X X -

be instantiated low-latency block ciphers such as Prince [10], and
the latter could be instantiated with a low-latency TBC such as

QARMA [3]. Both methods further reduce the contribution of input

length in the collision bound.

Comparison of PXOR-Hash with other incremental primitives.
PXOR-Hash is a straightforward derivative of PMAC to implement

an incremental AU hash function. Our �nding is that an incremental

AU hash (thus PXOR-Hash) applied for the whole data, not taking

the nonce, su�ces for recovery tag generation. Table 2 displays

the number of AES calls and depth of PXOR-Hash, PXOR-MAC,

and PMAC to process an < block input, which are major incre-

mental primitives. Depth means the number of serial AES calls.

Inverse freeness here means that incremental update does not re-

quire decryption. PXOR-MAC is nonce-based and achieves forgery

resistance in the plain model. However, as mentioned, only colli-

sion resistance (i.e., AU) is su�cient for the security of Crystalor.

In Table 2, PXOR-Hash halves the cost of an incremental update

than PXOR-MAC and PMAC by specializing in Crystalor, which

yields signi�cant advantages (e.g., reductions of latency and energy

consumption to process recovery tag) during nominal operation.

3.3 Memory recovery by constructing new tree
To date, PAT recovery after a crash has been realized by reconstruct-

ing intermediate nodes (i.e., nonce counters) using a redundancy
or the relation between parent and child nodes. For example, Anu-

bis uses a shadow table to preserve the node addresses under up-

dates [77]. SCUE reconstructs intermediate nodes from leaf nodes

in a bottom-up manner, owing to the consistency between the sum

of child node counters and a parent node counter. These existing

methods cannot work with SC because minor counter values are

discarded and reset when an over�ow occurs.

Here, intermediate nodes are not payload data but are only used

for verifying leaf nodes regarding a replay attack. In other words,

the intermediate nodes are unnecessary if we can verify the leaf

nodes in another way (e.g., the recovery tag of PXOR-Hash). There-

fore, Crystalor relinquishes the old tree, except for the leaf node,

and constructs a new tree. However, if an old counter is used in the

new tree, it is exploited by a replay attack, resulting in a feasible

forgery. Thus, we should construct a new tree with counter values

greater than the old ones for resilience against replay.

We derive an upper bound of the number of updates of a node

from its child node counters and propose its use as the new counter

value. Consider a case in which : leaf nodes share a major counter

and the minor counter bit length is ; . A parent node has a major

counter ctrMa [8] and a minor counter ctrmi [8] [9] for each 1 ≤
9 ≤ : . For a PAT with arity of V , it has V child nodes with major

counters ctrMa [8′] and minor counters ctrmi [8′] [9 ′] (1 ≤ 8′ ≤ V/:
and 1 ≤ 9 ′ ≤ :). After a crash, Crystalor computes the maximum

possible number of the parent nodes (i.e., an upper bound), which

is denoted by ctrub [8] [9], as

ctrub [8] [9] =
V/:∑
8′=1

(
ctrMa [8′]

(
: (2; − 1) + 1

)
+

:∑
9 ′=1

ctrmi [8′] [9 ′]
)
.

Crystalor then computes the major and 9-th minor counter values

of the 8-th intermediate node as

ctrMa [8] =
:∑
9=1

⌊
ctrub [8] [9]

2
;

⌋
, (3)

ctrmi [8] [9] = ctrub [8] [9] mod 2
; , (4)

respectively, where b·c is the �oor function. All counters of inter-
mediate and root nodes are computed bottom-up by repeating this

computation from the leaf nodes. This is based on a fact that the

upper bits of nonce are shared as a major counter while the lower ;

bits are unique to each minor counter.

We prove Theorem 1 to validate the security of the recovery of

Crystalor against replay attack.

Theorem 1. Let ctrMa [8] and ctrmi [8] [9] be the 8-th parent node
major and minor counter values computed by Equations (3) and (4),
respectively. Any new tree is resistant to replay attacks.

Proof. First, we consider a single crash. Let 2 be the number of

updates from the previous reset of minor counters until the next

reset (i.e., major counter increment). It always holds 2
; ≤ 2 ≤

: (2; − 1) + 1, because 2 is the minimum if only one node is updated

(and the others are not updated at all), whereas 2 is the maximum

if each of the : minor counters has the maximum value (i.e., 2; − 1).
Let D8′ be the total number of updates of nodes sharing the 8′-th
major counter, which is bounded above as

D8′ ≤ ctrMa [8′]
(
: (2; − 1) + 1

)
+

:∑
9 ′=1

ctrmi [8′] [9 ′],

because ctrMa [8′] denotes the number of minor counter resets. Let

D8, 9 be the number of updates of a parent node with ctrmi [8] [9],
which is bounded above as

D8, 9 ≤
V/:∑
8′=1

D8′ = ctrub [8] [9] .

This indicates that ctrub [8] [9] is greater than or equal to the number

of updates of the node (i.e., the true value of the parent counter ever
before). The equality holds if 2 is the maximum value whenever

and wherever the minor counter resets or if any minor counter

reset has not occurred (i.e., ctrMa [8′] = 0 for all 8′). Thus, for all
1 ≤ 9 ≤ : , the parent node is updated at most ctrub [8] [9] times.

As 2
; ≤ 2 ≤ : (2; − 1) + 1 also holds for the parent node, the

number of updates of the parent major counter must be less than∑:
9=1

⌊
ctrub [8] [9]/2;

⌋
, which indicates that the new major counter

value never appears before the crash. Thus, its replay is impossible.

Next, we consider multiple-crash cases, where the counter values

are given by Equations (3) and (4) in past. If a leaf node counter is

incremented, a corresponding ctrub [8] always has a greater value
than the previous state, because it is monotonically increasing in

terms of both ctrMa [8′] and ctrmi [8′] [9 ′]. This implies that either or

8

both ctrMa [8] and ctrmi [8] [9] are greater than any previous state.

In addition, if a child node is updated, its parent node counter

increases accordingly; however, its increase amount is not as great

as the number of updates, as aforementioned. Thus, the new counter

values determined by Equations (3) and (4) are always new, which

guarantees resistance against replay attacks. �

The integrity of leaf nodes is veri�ed by AE, excluding replay

attacks. The recovery tag veri�cation detects the replay attacks on

leaf nodes. In addition, Theorem 1 states that the counter values

of the new tree are always greater than values before the crash,

which indicates the resistance of the new tree to replay attacks.

Thus, Crystalor provides both crash recoverability and integrity

against anymanipulation attacks. Note that, in a recovery operation,

the new tree construction and leaf node/tag veri�cation should be

carefully executed so as to avoid replay attacks (see Section 3.5).

3.4 Hardware architecture
Figure 7 displays the hardware architecture of Crystalor for L4
memory encryption [32], in which we employ ELM. Crystalor uti-

lizes dedicated hardware components to compute and update the

recovery tag apart from memory protection hardware for ELM

computation, as Crystalor operates distinctly and independently

of PAT. The dedicated hardware consists of an SRAM to store and

update the recovery tag (Recovery TAG register) in addition to the

secret key of PXOR-Hash key (KEY register). PXOR-Hash hard-

ware consists of pipelined AES encryption hardware, which can

process multiple update transactions in parallel in the most e�cient

manner. The recovery tag is stored in both the SRAM and cache

(Recovery TAG register and cache) to improve the tag computation

speeds. This dedicated hardware operates at every timing of leaf

node update (i.e., storing encrypted payload data to memory) to

simultaneously and consistently update/store the recovery tag to

Recovery TAG register and cache. In Figure 7, the recovery tag is

always updated on-chip but is not disclosed to the o�-chip mem-

ory. This is mandatory for security to prevent any manipulation

attack on these data. In other words, as the recovery tag is securely

processed and stored, it does not require as strong protection as

MAC, which leads to an e�cient implementation of PXOR-Hash.

Crystalor requires on-chip SRAM for storing the 128-bit recovery

tag and PXOR-Hash keys (and !). The SRAM overhead is 384

(= 128 × 3) bits in total. Note that PXOR-Hash provides su�cient

security even for long inputs (e.g., a collision probability of 4</2= ≈
2
−89

for 4TB memory); thus, storing only one recovery tag on-

chip is su�cient. Crystalor also utilizes a 128-bit on-chip cache for

Recovery TAG cache and a round-based AES encryption engine [65,

66] for PXOR-Hash, which has a su�ciently low latency regarding

the latency of ELM computation. In addition, it is implemented

with less than 15 K GE, far smaller than ELM hardware [32].

The remaining parts are similar to the existing ones, with some

modi�cations for Crystalor. The ELM hardware includes a 952-bit

cache for storing the ELM secret key and precomputable intermedi-

ate values, and use an (ℓ +64)-bit non-volatile register to protect AE
computation against crashes for the leaf node persistency (see Sec-

tion 3.5). We employ an on-chip WPQ using an ADR to persist data

during store operation [63], namely, to guarantee the consistency of

the leaf nodes with recovery tag. Note that the intermediate nodes

Tree nodes

Encrypted data

Cache WPQ

Secure processor (On-chip)

Main memory
(Off-chip)

Data1 Root+1
Data2 Root+2
Data3 Root+3

MAC
engine

Recovery TAG

Recovery TAG cache

Encryption
engine

PXOR-Hash
accelerator

PXOR-Hash hardware

ELM hardware

KEY

SRAM

Tree root

Memory controller

Figure 7: Crystalor hardware architecture.

are discarded at a crash; hence, they do not require persistency; thus,

MAC outputs (i.e., intermediate nodes) are computed and updated

with background processing and are directly written to memory

without WPQ. We also utilize atomic persistency mechanism(s) and

hardware redo logging as in existing methods.

Remark 3.1 (Combination with other mechanisms). Figure 7 shows

the simplest construction without any optimization mechanism.

Advanced counter mechanisms such as SC, Vault, and Morphable

counters and sophisticated mechanisms to handle metadata (e.g.,
Lelantus [76]) are applicable. The mechanism(s) for atomic data

persistency can be also adopted/combined [28, 33, 34, 68]. As PXOR-

Hash operates distinctly from PAT, such optimization mechanisms

for PAT can be readily incorporated together.

Performance overhead. The latency overhead of Crystalor during
nominal operation solely depends on the computational cost of the

recovery tag update. As mentioned in Section 3.2, the recovery tag

update is completed within only two AES encryption calls for new

and old � [8]’s. The two AES encryptions are performed in parallel

using pipelined AES hardware, which requires signi�cantly smaller

latency of ELM update. Therefore, the latency overhead is negligible

and has no impact on the system performance, as Crystalor and PAT

operate distinctly. Crystalor incurs little overhead in the memory

controller owing to its simplicity.

3.5 Operations
We describe the store and recovery operations of ELM–Crystalor.

Read operation requires no Crystalor operation.

Store operation. For security and recoverability (covering a crash

during AE encryption), we must simultaneously and consistently

update the leaf node counter in the memory and the on-chip recov-

ery tag, which is realized by the following steps:

1. Store operation to the memory is issued. It would corre-

spond to a cache data replacement (i.e., cache miss) or an

explicit instruction to guarantee the data persistency at a

timing, such as clflush and clwb in x86 architecture.

2. (ELM computation) Payload data are encrypted by AE.

The MAC tags of the corresponding intermediate/root

9

nodes are computed in the background, and the corre-

sponding counters are incremented on-chip. When AE

encryption starts, a busy frag (one-bit on-chip NVM) is

raised. AE inputs (i.e., payload data and nonce) are pre-

served in non-volatile register until the result is moved to

WPQ, for recovery from a crash during AE encryption (i.e.,
the leaf node consistency).

3. (PXOR-Hash computation) The new recovery tag is com-

puted from the old tag, old data, and new data. This step

should be computed in parallel with Step 2.

4. (Write to WPQ) The AE encryption result and nonce are

moved toWPQ. The busy �ag is put down when completed.

5. (Recovery tag update) Recovery TAG cache and registers

are updated.

6. (Store data) The WPQ data are stored in memory. The

store operation is completed.

Note that Steps 4 and 5 should be synchronously executed in parallel

for consistency between the recovery tag and leaf counters. Data

can be updated in an atomically persistent manner, with the aid of

some mechanisms for this purpose (e.g., [28, 33, 34, 68]).

Recovery. This is executed after a crash or upon a veri�cation

failure (due to manipulation or fault). Crystalor securely recovers

the memory in an identical manner for both cases as follows.

1. (AE status check) If the busy �ag has been raised, the AE

encryption and PXOR-Hash update are performed using

the payload data and nonce preserved in the non-volatile

register and the result is stored to the memory through the

WPQ, according to the redo logs.

2. (New tree construction) The counter values of interme-

diate and root nodes are derived in a bottom-up manner

according to Section 3.3. The MAC tag of each node is also

computed from the counters and addresses.

3. (Recovery tag veri�cation) The recovery tag of PXOR-

Hash is computed from all leaf node counters, and then the

computed tag is compared to the on-chip Recovery TAG

register value. If these are equivalent, the nominal opera-

tion restarts; otherwise, Crystalor gives an error signal.

The new tree constructed at Step 2 can detect any manipulation on

leaf nodes except for replay during a crash, while Step 3 detects any

replay of leaf counters; thus, all manipulations can be detected by

their combination. Here, we should load the leaf counter only once to
compute both the new tree and recovery tag, which guarantees that

the leaf counter values used in computing them are identical (i.e.,
not tampered/replayed), as the attacker cannot tamper with on-chip

data. If we loaded the leaf counter twice distinctly for computing the

new tree and recovery tag, the attacker could insert replays during

the interval between two loads, resulting in a feasible forgery
6
.

Therefore, execution of Steps 2 and 3 should be parallel using ELM

and PXOR-Hash hardware to prevent any replay. Namely, after a

leaf value is input to the new tree computation, then the leaf value

should be directly sent to on-chip PXOR-Hash hardware to compute

the recovery tag. Note that large on-chip SRAM is not required

6
Namely, a replay attack was feasible if the attacker could insert a leaf node replay for

the timing of load for the new tree computation but the non-tampered counter was

loaded for the recovery tag computation.

for this because PXOR-Hash/MAC is computed by sequentially

summing AES encryption results.

Lazy recovery. Crystalor can detect any counter replay solely by

the recovery tag veri�cation, whereas SCUE computes AE/MAC

for leaf nodes
7
. Hence, upon a reboot, Crystalor does not require

verifying the AE leaf node for protection because it will be veri�ed

before it is actually used. In other words, the leaf node AE veri�ca-

tion can be omitted at the time of recovery, and the veri�cation is

completed lazily and concurrently during nominal operation after

the recovery. Thus, Crystalor does not have to read the leaf node

data nor compute AE at the reboot time. This yields a signi�cant

reduction in the recovery cost (as evaluated in Section 4.3) com-

pared to the non-lazy recovery because the leaf node occupies a

major part of encrypted memory. Such a lazy strategy was adopted

in some previous studies [77], and is covered by the provable se-

curity of PAT. An attacker in a practical use scenario of memory

encryption, who can manipulate o�-chip data and trigger crashes,

cannot bypass the recovery tag veri�cation and PAT veri�cation

simultaneously; thus, their combination detects any replay.

Remark 3.2 (Tradeo� of lazy recovery and intermediate layer consis-

tency). In the SCUE paper [30], they utilized the consistency of the

lowest intermediate nodes (but not leaf nodes at the actual lowest
layer of PAT). This allows for a lazy recovery without computing

AE/MAC for leaf nodes, although guaranteeing the consistency of

intermediate layer(s) would be a non-negligible cost during nominal

operation. Meanwhile, Crystalor o�ers a more e�cient recovery

if utilizing such a consistency of higher layer, because Crystalor

can compute the recovery tag using nonces (counters) of the inter-

mediate layer nodes instead of leaf nodes in this case. Generally, if

lowerF layers are guaranteed to be consistent at a crash, Crystalor

should verify inputs of the (F + 1)-th lowest layer nodes using the

recovery tag, while SCUE recovery would require the AE/MAC

veri�cation of theF-th lowest layer nodes. The height of layer to

be veri�ed is crucial for the e�ciency of the recovery because the

number of nodes is exponentially greater for lower layer. For a

fair and sound comparison, the evaluation in Section 4.3 assumed

F = 1 for both Crystalor and SCUE; that is, only leaf nodes (i.e.,
the lowest layer of PAT) are guaranteed to be consistent, as our

hardware architecture.

4 PERFORMANCE EVALUATION
4.1 Algorithm-level evaluation
We assume to utilize AE and MAC hardware presented in [32] for

the ELM hardware in this evaluation, which is based on an unroll-

pipelined AES architecture that computes one-block per clock cycle

with a latency of 10 clock cycles. For ELM with depth of 3 , we

assume to use one AE and 3 MAC hardwares for a parallelized

computation of path update/veri�cation. We consider a typical SC

parameter [31, 53]: the lengths of major and minor counters (i.e.,

7
Upon a crash, an attacker can insert a replay data without SCUE detected by in-

crementing another leaf node counter, such that the sum of leaf node counters is

preserved. If the replayed node is loaded before detecting the incremented counters,

the replay is not detected. Thus, entire leaf node AE veri�cation is mandatory to detect

such a replay with a counter increment, implying the insecurity of lazy recovery for

SCUE. Hence, SCUE requires verifying the leaf node AE at the timing of recovery.

10

;Ma and ;mi) are 56 and 8 bits, respectively, and the number of nodes

sharing a major counter (i.e., :) is 8.
SC was originally proposed as an optimization method to reduce

the metadata size (i.e., memory overhead). The reduction of meta-

data size also contributes to a latency reduction because the length

of data to be veri�ed by MAC and the amount of communication

between memory and CPU are reduced. We derive the relation

between the covered region size and ELM parameters to calculate

the (optimal) latency of ELM for a given covered region size. Subse-

quently, we can select an optimal parameter that covers the region

with the minimum latency. Note here that the advantages of SC

directly represent the supremacy of Crystalor over SCUE.

Latency and covered region size. Let 1 denote the number of

input blocks to MAC and let ℓ denote the bit length of a leaf node.

Here, 1 is derived from the tree arity V as 1 = V/2 and 1 = V/8
without and with SC, respectively. Without SC, an intermediate

node has 21 child nodes because a counter is represented by 64 bits.

This indicates that the tree has 2
313 leaf nodes. If SC is applied,

an intermediate node can have 81 nodes because an input block

� [8] consists of a 64-bit major counter and 8-bit minor counters of

eight child nodes. This indicates that the tree with SC has 2
3313

leaf nodes. For given 1 and ℓ , ELM can cover a region of 2
313 ℓ

and 2
3313 ℓ bits without and with SC, respectively. Meanwhile, the

update latencies of Flat-OCB and PXOR-MAC hardware in [32]

are 14 + ℓ/128 and 12 + 1 clock cycles, respectively. Note that the

metadata size does not include bits to indicate the address because

it is implicit. Table 3 reports the latency and covered region size for

di�erent values of 1 and ℓ without and with SC, where the latency

means min(14 + dℓ/128e , 12 + 1) as the bottleneck. From Table 3,

we con�rm that SC signi�cantly reduces the latency to cover a

given region. For example, for 3 = 5 and 7, to cover a 4 TB region,

ELM without SC requires at least 78 and 30 clock cycles for the

update, whereas ELM with SC requires only 30 and 22 clock cycles,

respectively. Thus, SC reduces the latency overhead by 38 and 8

cycles for 3 = 5 and 7 (i.e., 62% and 29%), respectively.

Metadata size. We evaluate the contribution of SC to reducing

the memory overhead for storing metadata. Without SC, the meta-

data size is 112

∑3
8=0 V

8 − 56, whereas with SC, it is 72

∑3
8=0 V

8 −
56

∑3−1
8=0 V

8
, according to [31]. For example, to cover a 4 TB region

with a tree of 1 = 4, ELM without and with SC has an overhead of

554GB and 312GB for storing the metadata, respectively, which

indicates a 44% reduction of the overhead by SC. Thus, SC signi�-

cantly improves the memory encryption performance.

Additional latency due to minor counter over�ow. When a major

counter is incremented (i.e., a minor counter over�ows), SC requires

the re-computation of tags related to the major counter. If the 9-

th node of 8-th major counter over�ows, then the major counter

ctrMa [8] is incremented, and the minor counters ctrmi [8] [9] for
all 9 (1 ≤ 9 ≤ :) are reset to zero. We should recompute the

tag of nodes for all 9 , as its nonce counter ctrMa [8] ‖ ctrmi [8] [9] is
updated. This means that:−1MAC/AE updates accompany aminor

counter over�ow. The system-level simulation for the performance

evaluation should regard the latency due to minor counter over�ow.

Nevertheless, the latency overhead by minor counter over�ow is

Table 3: Latency and covered region of ELMwith and without
SC, where 1 is number of input blocks (corresponding to tree
arity), ℓ is bit length of AE, and 3 is tree depth

Covered region [Byte]

ELM w/o SC ELM with SC

1 ℓ Update
†

Verify 3 = 3 3 = 5 3 = 7 3 = 3 3 = 5 3 = 7

4

512 21 18 33 K 2M 134M 2M 2G 2T

1,024 25 22 66 K 4M 268M 4M 4G 4T

2,048 33 30 131 K 8M 537M 8M 8G 9T

4,096 49 46 262 K 17M 1G 17M 17G 18 T

8,192 81 78 524 K 34M 2G 34M 34G 35 T

8

512 22 20 262 K 67M 17G 17M 69G 281 T

1,024 25 22 524 K 134M 34G 34M 137G 563 T

2,048 33 30 1M 268M 69G 67M 275G 1 P

4,096 49 46 2M 537M 137G 134M 550G 2 P

8,192 81 78 4M 1G 274G 268M 1T 5 P

16

512 30 28 2M 2G 2T 134M 2T 36 P

1,024 30 28 4M 4G 4T 268M 4T 72 P

2,048 33 30 8M 9G 9T 537M 9T 144 P

4,096 49 46 17M 17G 18 T 1G 18 T 288 P

8,192 81 78 34M 34G 35 T 2G 35 T 576 P

32

512 46 44 17M 69G 281 T 1G 70 T 5 E

1,024 46 44 34M 137G 563 T 2G 141 T 9 E

2,048 46 44 67M 275G 1 P 4G 281 T 18 E

4,096 49 46 134M 550G 2 P 9G 563 T 37 E

8,192 81 78 268M 1T 5 P 17G 1 P 74 E

64

512 78 76 134M 2T 36 P 9G 2 P 590 E

1,024 78 76 268M 4T 72 P 17G 5 P 1 Z

2,048 78 76 537M 9T 144 P 34G 9 P 2 Z

4,096 78 76 1G 18 T 288 P 69G 18 P 5 Z

8,192 81 78 2G 35 T 576 P 137G 36 P 9 Z

128

512 142 140 1G 70 T 5 E 69G 72 P 76 Z

1,024 142 140 2G 141 T 9 E 137G 144 P 151 Z

2,048 142 140 4G 281 T 18 E 275K 288 P 302 Z

4,096 142 140 9G 563 T 37 E 550K 576 P 604 Z

8,192 142 140 17G 1 P 74 E 1 P 1 Z 1 Y

†
“Update” actually means “Verify then Update,” because PAT requires tag veri�cation

always before update for provable security [14, 32].

not critical as its frequency is low. On average, it incurs less than

one clock cycle latency per store operation.

Remark 4.1 (Tree depth and hardware resource). The tree depth 3

is a parameter that exploits tradeo�s between a hardware resource
(i.e., the number of MAC engines) and covered region/latency, while

1 and ℓ optimal in terms of latency are determined systematically

for a given covered region. In other words, for an optimal �xed 1

and ℓ , we can enlarge the covered region size by increasing 3 , using

3 − 1 parallel MAC engines. Conversely, we can reduce the latency

for a �xed covered size by increasing 3 . Thus, the signi�cance of

covered region size and improvement by SC depend on 3 .

4.2 System-level simulation
We performed system-level simulations using the gem5 simula-

tor [9] for the validation. We simulated a CPU with an encrypted

main memory (NVM) as same as previous studies, while it is appli-

cable to standard DRAM as well. In this simulation, we evaluated

11

the memory encryption mechanisms with ELM, which is the state-

of-the-art and achieves the highest performance among PATs
8
. We

evaluated the proposed and existing methods as follows:

• Insecure: Memory without any security mechanism.

• ELM without SC: ELM not using SC (not recoverable).

• ELM with SC: ELM using SC (not recoverable).

• ELM–SCUE: ELM with SCUE [30] (SC is inapplicable).

• ELM–ASIT: ELM with Anubis [77] (SC is inapplicable).

• ELM–Crystalor (this work): ELM with Crystalor, to which

SC is applied.

Insecure and ELMs (not recoverable) were the baselines to eval-

uate the overhead of PAT and crash recoverability, respectively.

We determined the latency according to the memory capacity (i.e.,
4 TB) and Table 3. When store operation, all schemes are assumed

to perform the path veri�cation before update for the sake of prov-

able security (against replay attacks) [27, 32]. For ease, feasibility,

and reproducibility of the experiment, we employed several sim-

pli�cations for the simulation, similarly to some existing studies.

We virtually inserted the latency of ELM to read and store oper-

ations according to Table 3, while we omitted the simulation of

security metadata packets. For ELMwith SC, to evaluate the latency

about minor counter over�ow, we employed an apportionment, in

which we assumed that the writings to memory were uniformly dis-

tributed, calculated the expected latency due to the minor counter

over�ow, and added the rounded-up value to the latency in Table 3.

Note that the assumption of uniform distribution was used only for

the estimation of minor counter over�ow cost, but the workload

execution times were evaluated using their actual memory accesses.

These simpli�cations were applied to all of the above methods,

which enabled a fair and sound comparison.

We employed a benchmarking workload set, which has been

commonly used in many previous studies as a de facto standard

(e.g., [29, 40, 72, 79]). The workloads include random insertions of

data to a hash table (HT), binary search tree (BST), red-black tree

(RBT), and queue (Queue), each of which has a distinct memory ac-

cess pattern. To analyze the di�erence, we simulated the workloads

with data sizes of 64, 512, 1,024, and 4,096 bytes.

Results. Figure 8 reports the normalized workload execution

times of the gem5 simulation, in which Insecure is the baseline. We

did not evaluate 3 = 3, as ELM with 3 = 3 without SC cannot cover

a 4 TB region with a practical latency (this demonstrates the signi�-

cance of SC). ELM–Crystalor exhibits almost the same performance

as ELMwith SC. Aswell, ELM–SCUE and ELMwithout SC are the al-

most same. As Crystalor and SCUE incur no latency overhead under

nominal operation, the performances of ELM–Crystalor and ELM–

SCUE depend solely on the tree parameter. In contrast, ASIT incurs

a non-trivial latency overhead to verify and update the shadow

table. Comparing ELM with and without SC (i.e., ELM–Crystalor

8
Some previous studies (e.g., [30]) utilized a classical HMAC, which is assumed to

require 40, 80, or 160 clock cycles for Verify and Update. However, its concrete realiza-

tion/implementation was not mentioned, and the number of input blocks to AE/MAC,

which actually determines the latency, was not considered. Thus, its practical validity

is unclear. We employ the ELM-style evaluation to determine the clock cycles for a fair,

modern, and practical performance comparison. Our results are based on the in-depth

evaluation of latency in the ELM paper, which considers a concrete cryptographic

hardware implementation and the number of input blocks to AE/MAC, while previ-

ous studies did not. Note that HMAC is not optimal in terms of latency and is not

incremental, while PXOR-MAC in ELM was proposed for an optimized latency [32].

Table 4: Simulation conditions

CPU and caches

CPU core One core, out-of-order, 2.4 GHz

L1 instruction cache 32 KB, 8-way, 2 cycles

L1 data cache 64 KB, 8-way, 2 cycles

L2 cache 32 KB, 8-way, 2 cycles

Metadata cache 256 kB with cache line 64 byte

Memory controller and main memory (NVM)

WPQ size 8 entries

Memory latency Read 50 ns and Write 150 ns

Memory size (covered region) 4 TB

ELM (3 = 5), to which SC is applied

Update and verify latency 30 and 28 cycles

Tree parameters 1 = 16 and ℓ = 1,024

ELM (3 = 5), to which SC is inapplicable/not applied

Update and verify latency 78 and 76 cycles

Tree parameters 1 = 64 and ℓ = 1,024

ELM (3 = 7), to which SC is applied

Update and verify latency 22 and 20 cycles

Tree parameters 1 = 8 and ℓ = 1,024

ELM (3 = 7), to which SC is inapplicable/not applied

Update and verify latency 30 and 28 cycles

Tree parameters 1 = 16 and ℓ = 1,024

and ELM–SCUE), the performance gain by SC is more signi�cant

when the data size is larger. This is because the reduction in latency

in reading and storing (i.e., verifying and updating) memory data is

more dominant and visible as the numbers of data read and write

increase for a larger data size. In addition, the improvement in

execution time by SC is more signi�cant when 3 = 5 than 3 = 7,

because the reduction ratio of latency by SC is larger when 3 = 5

for covering a 4 TB region. Thus, we con�rm that ELM–Crystalor

can reduce the workload execution time by at most 11.5% compared

to the state-of-the-art mechanism (i.e., ELM–SCUE).

Improved scalability for larger memory. Regarding the tree depth
3 , the performance gain by the proposed method is greater for

a shallower tree (i.e., 3 = 5 in this experiment). Recall that 3 is

a parameter that exploits tradeo�s between a hardware resource

(i.e., the number of MAC engines) and a covered region. As the

cover region size in the experiment is �xed at 4 TB, the size is

relatively larger for 3 = 5, and the latency overhead by PAT-based

protection is larger for 3 = 5. The SC compresses the tree/metadata

size more e�ectively when protecting a larger memory. Hence, the

performance gain by SC (and the proposed method) is greater for

3 = 5. More quantitatively, for a given arity V , the use of SC can

reduce the number of input blocks to PXOR-MAC to 1/4 in the used

parameter. This indicates that the use of SC reduces the latency of

PXOR-MAC asymptotically by 1/4 for a larger V . Thus, the use of SC
(and ELM-Crystalor) reduces the latency of the memory read/write

by up to 1/4 when protecting a larger memory. The experimental

results on 3 = 5 and 7 indicate an improved scalability.

On other CPUs and workloads. We used a simple CPU and com-

mon benchmarking workloads in the simulation. The latency over-

head of memory encryption is mainly incurred by main memory

accesses. In other words, the number of cache misses would be

highly related to the latency overhead. This would indicate that,

for example, a larger (resp. smaller) cache and a better (resp. worse)

cache replacement policy would mitigate (resp. deteriorate) the

latency overhead while other factors (e.g., pipeline stages and the

12

ELM without SC (not recoverable)
ELM with SC (not recoverable)

64 bytes 512 bytes 1,024 bytes 4,096 bytes

ELM–SCUE
ELM–ASIT

ELM–Crystalor

Ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

 b
y

In
se

cu
re

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue

(a) 3 = 5

ELM without SC (not recoverable)
ELM with SC (not recoverable)
64 bytes 512 bytes 1,024 bytes 4,096 bytes

ELM–SCUE
ELM–ASIT

ELM–Crystalor

Ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

 b
y

In
se

cu
re

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue

(b) 3 = 7

Figure 8: Simulated execution times normalized by Insecure, where proposed method is right-most bin for each workload.

number of CPU cores) would have a less impact. In addition, some

other benchmarking workloads have been frequently employed in

the microarchitectural research �eld (e.g., SPEC). The workloads
in our evaluation would require non-trivial memory-access costs,

while some other workloads would be intensive rather in, for ex-

ample, arithmetic operations, which would render the di�erence in

latency overheads smaller. Thus, changes of CPU construction and

workload would have an impact on the magnitude of advantage

of ELM–Crystalor. Meanwhile, the evaluation results would be ba-

sically consistent for other CPU constructions and workloads, as

ELM–Crystalor o�ers faster store and load at the algorithm level.

4.3 Recovery cost estimation
Lazy recovery cost of Crystalor. We here assume that only leaf

nodes are guaranteed to be consistent (see Remark 3.2). Consider

an ELM–Crystalor with SC, whose major and minor counters are

56 and 8 bits, respectively. The recovery time of Crystalor is evalu-

ated by the number of AES calls for PXOR-Hash of recovery tag

veri�cation and PXOR-MAC of a new tree construction. To protect

an"-bit memory, the number of AES calls in PXOR-Hash is"/8ℓ ,
while the leaf node veri�cation by Flat-OCB is not required at the

time of recovery as mentioned in Section 3.5. In addition, for arity

of V , a PXOR-MAC computation requires 1 + V/8 AES calls, while a
new tree construction is realized with

∑3
8=1 V

8−1
PXOR-MAC com-

putations. This indicates that the new tree construction requires

(1+V/8)∑38=1 V8−1 AES calls in total. Moreover, a new tree construc-

tion requires computations of new counter value

∑3
8=1 V

8−1
times.

Recall that " = V3 ℓ . Thus, Crystalor recovery is realized with

V3/8 + (1 + V/8)∑38=1 V8−1 AES calls and

∑3
8=1 V

8−1
new counter

computations, which corresponds to the number of intermediate

nodes (including root node). In addition, Crystalor requires to read

8V3 bits of leaf node metadata frommemory, while Crystalor writes

16(4 + V)∑38=2 V8−1 bits of metadata to memory. Owing to the lazy

recovery, the costs are independent of leaf node bit length (i.e., ℓ).

Recovery cost of SCUE. For comparison, we consider ELM–SCUE

recovery with a 64-bit counter. Its recovery cost is evaluated by

106

107

108

109

1010

1011

1012

1013

1014

2G 275G 18T 563T 1P

ELM–SCUE
ELM–Crystalor

Covered region size [bits]

C
lo

ck
 c

yc
le

s

(a) Computational cost

108

109

1010

1011

1012

1013

1014

1015

1016

2G 275G 18T 563T 1P
Covered region size [bits]

Tr
an

sm
itt

ed
 b

its

ELM–SCUE
ELM–Crystalor

(b) Communication cost

Figure 9: Estimation of recovery costs.

the number of counter-summings and PXOR-MAC computations.

The equivalence check between the root counter and the sum of

leaf node counters requires

∑3
8=1 V

8−1
counter-summings. The tree

recovery performs one counter-summing and one PXOR-MAC

computation per node. A PXOR-MAC requires 1 + V/2 AES calls
and

∑3
8=1 V

8−1
intermediate nodes exist. The leaf node AE veri�ca-

tion requires V3 (dℓ/128e + 1) AES calls. Thus, the computational

cost is 2

∑3
8=1 V

8−1
counter-summings and V3 (dℓ/128e + 1) + (1 +

V/2)∑38=1 V8−1 AES calls. Meanwhile, SCUE reads V3 ℓ + 64V3 bits

from memory and it writes 64(1 + V)∑38=2 V8−1 bits to memory.

Evaluation result. Figure 9a and Figure 9b report the computa-

tional cost (i.e., the number of clock cycles) and the communication

cost between CPU and memory for some covered region sizes, re-

spectively. Here, the throughputs of the counter-summing, new

counter computation, and one block AES encryption are assumed

to be one per clock cycle [14, 32]. In Figure 9b, we evaluated by the

number of transmitted bits, in which the writing cost was tripled as

in Table 4. Crystalor achieved a reduction of 90–99.9% of recovery

costs from SCUE, owing to the lazy recovery. While the computa-

tional and tra�c costs of the leaf node AE veri�cation is a major

part of SCUE (i.e., V3 (dℓ/128e + 1) AES calls and V3 ℓ bits read, re-
spectively), Crystalor does not require them. Thus, we con�rm the

advantage of Crystalor in recovery cost as well as the performance.

13

5 RELATED STUDIES
Crash consistency of encrypted memory. Note that some crash

consistency studies listed here did not address the crash window

problem (See [30]). In [75], Mao et al. presented Osiris, which recov-

ers the tree only from counter values by exploiting error-correcting

code bits equipped with memory. In [73], Yang et al. presented
cc-NVM, which caches �ushed counter values in WPQ and em-

ploys a MAC, in contrast to Osiris. In [6], Awad et al. presented
Triad-NVM for the recovery of Merkle tree, which reconstructs

the tree from �ushed nodes. In [77], Zubair and Awad presented

Anubis. It uses a shadow table in memory, which contains infor-

mation on cached nodes and identi�es and recovers non-updated

nodes. In [72], Yang et al. presented ShieldNVM, which introduces

an epoch-based mechanism to aggressively cache the metadata with

the consistency preserved. In [19], Freij presented Persistent Level
Parallelism (PLP), which realizes an atomically persistent update of

Merkle tree using a pipeline that propagates the updates. In [29],

Huang and Hua presented STAR to achieve a reduction in the write

overhead and fast recovery. It exploits the SIT lazy scheme and

instant persistency for modi�cations in the cache. In [20], Freij et
al. presented Bonsai Merkle Forest, which divides a Merkle tree into

subtrees to e�ciently address the crash window problem of Merkle

tree awith non-volatile metadata caches.

Advanced mechanisms for metadata optimization. The SC, which
is the pioneering advanced counter mechanism [71], compresses

and optimizes the tree/metadata structure by splitting noncecoun-

ters into major and minor counters. In [64], Taassori et al. presented
Vault, which adjusts the tree arity to reduce the frequency of counter
over�ow and improve the capacity of the covered region. aIn [59],

Saileshwar et al. presented an improved counter representation

compared to SC, named Morphable counters. It caches more coun-

ters in a line and reduces the cost of counter over�ows.

Summary. Exiting crash consistency mechanisms incur a non-

negligible latency overhead during nominal operation (except for

SCUE), and do not work with SC-like optimizations. Crystalor e�-

ciently realizes crash recovery while fully exploiting optimizations.

It is an important future work to evaluate a combination of Crys-

talor with other optimization techniques than SC.

6 CONCLUSION
This study presented Crystalor, an L4-secure memory encryption

mechanism. Crystalor incurs almost no latency overhead under

nominal operation and achieves an e�cient recovery. Although

existing mechanisms (e.g., SCUE) are incompatible with structural

optimizations, Crystalor fully exploits its advantages and o�ers

the same security and recoverability. We algorithmically and ex-

perimentally con�rmed that Crystalor has a signi�cant advantage

over conventional mechanisms in terms of the memory overhead

and execution time/latency, with a reduced recovery cost. At the

algorithmic level, for protecting a 4 TB memory with ELM, Crys-

talor requires 29–62% fewer clock cycles per memory read/write

operation than SCUE, while Crystalor and SCUE require 312GB

and 554GB memory overheads for storing metadata, respectively

(namely, Crystalor achieves a 44% reduction of memory overhead).

We performed a system-level simulation using the gem5 simulator.

We con�rmed that Crystalor achieves a reduction in the workload

execution time by at most 11.5% from SCUE. Moreover, Crystalor

o�ers a lazy recovery owing to its cryptographic protection, which

achieved a recovery that is several thousands faster than SCUE.

ACKNOWLEDGMENTS
We are grateful to anonymous shepherd and reviewers for their

care and feedbacks to improve this paper. We also thank Dr. Shinya

Takamaeda for his useful advice and comments. This work has

been partially supported by JSPS Kakanhi Grant No. 19H21526 and

23K18457, and JST CREST No. JPMJCR19K5.

REFERENCES
[1] 2023. AMD Secure Encrypted Virtualization (SEV). https://www.amd.com/en/

developer/sev.html. (2023). Visited in September 2023.

[2] 2023. Intel Optane Technology. https://www.intel.com/content/www/us/en/

architecture-and-technology/optane-technology/optane-for-data-centers.html.

(2023). Visited in September 2023.

[3] Roberto Avanzi. 2017. The QARMA Block Cipher Family. Almost MDS Matrices

Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions

With Non-Involutory Central Rounds, and Search Heuristics for Low-Latency

S-Boxes. IACR Trans. Symmetric Cryptol. 2017, 1 (2017), 4–44.
[4] Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Hector Montaner, Prakash

Ramrakhyani, Francesco Regazzoni, and Andreas Sandberg. 2020. Protecting

Memory Contents on ARM Cores. Real World Crypto (RWC). (2020). https:

//rwc.iacr.org/2020/slides/Avanzi.pdf

[5] Roberto Avanzi, Andreas Sandberg, Ionut Mihalcea, David Schall, and Héctor

Montaner. 2022. SoK: Hardware-Supported Cryptographic Protection of Random

Access Memory. Cryptology ePrint Archive, Paper 2022/1472. (2022).

[6] Amro Awad, Mao Ye, Yan Solihin, Laurent Njilla, and Kazi Abu Zubair. 2019.

Triad-NVM: Persistency for Integrity-Protected and Encrypted Non-Volatile

Memories. In ISCA. 104–115.
[7] Mihir Bellare, Oded Goldreich, and Sha� Goldwasser. 1995. Incremental Cryp-

tography and Application to Virus Protection. In STOC. 45–56.
[8] Mihir Bellare and Chanathip Namprempre. 2008. Authenticated Encryption:

Relations among Notions and Analysis of the Generic Composition Paradigm. J.
Cryptol. 21 (2008), 469–491.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (2011), 1–7.

[10] Julia Borgho�, AnneCanteaut, TimGüneysu, Elif Bilge Kavun,Miroslav Knezevic,

Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian

Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. 2012. PRINCE

- A Low-Latency Block Cipher for Pervasive Computing Applications - Extended

Abstract. In ASIACRYPT 2012. 208–225.
[11] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre Seifert, and Julian Vetter.

2017. Fault Attacks on Encrypted General Purpose Compute Platforms. In

CODASPY ’17. 197–204.
[12] Federico Canale, Tim Güneysu, Gregor Leander, Jan Thoma, Yosuke Todo,

and Rei Ueno. 2023. SCARF: A Low-Latency Block Cipher for Secure Cache-

Randomization. In USENIX Security ’23. 1937–1954.
[13] J. Lawrence Carter and Mark N. Wegman. 1979. Universal classes of hash

functions. J. Comput. System Sci. 18, 2 (1979), 143–0154.
[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology

ePrint Archive, Paper 2016/086. (2016).

[15] Morris J. Dworkin. 2001. SP 800-38A 2001 edition. Recommendation for block
cipher modes of operation: Methods and techniques. Technical Report. National
Institute of Standards & Technology.

[16] Morris J. Dworkin. 2005. SP 800-38B. Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication. Technical Report.

[17] Tetsuo Endoh, Hiroaki Honjo, Koichi Nishioka, and Shoji Ikeda. 2020. Recent

Progresses in STT-MRAM and SOT-MRAM for Next Generation MRAM. In VLSI
Technology. 1–2. https://doi.org/10.1109/VLSITechnology18217.2020.9265042

[18] Ali Fakhrzadehgan, Yale N. Patt, Prashant J. Nair, and Moinuddin K. Qureshi.

2022. SafeGuard: Reducing the Security Risk from Row-Hammer via Low-Cost

Integrity Protection. In HPCA. 373–386.
[19] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin. 2020. Persist

Level Parallelism: Streamlining Integrity Tree Updates for Secure Persistent

Memory. In MICRO. 14–27.
[20] Alexander Freij, Huiyang Zhou, and Yan Solihin. 2021. Bonsai Merkle Forests:

E�ciently Achieving Crash Consistency in Secure Persistent Memory. InMICRO.

14

https://www.amd.com/en/developer/sev.html
https://www.amd.com/en/developer/sev.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://doi.org/10.1109/VLSITechnology18217.2020.9265042

1227–1240.

[21] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srinivas

Devadas. 2003. Caches andHash Trees for E�cientMemory Integrity Veri�cation.

In HPCA 2003.
[22] Peter Gazi, Krzysztof Pietrzak, and Michal Rybár. 2016. The Exact Security of

PMAC. IACR Trans. Symmetric Cryptol. 2016, 2 (2016), 145–161.
[23] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose

Processors. Cryptology ePrint Archive, Paper 2016/204. (2016).

[24] Shay Gueron. 2016. Memory Encryption for General-Purpose Processors. IEEE
Security Privacy 14, 6 (2016), 54–62.

[25] Richard H. Gumpertz. 1983. Combining tags with error codes. In ISCA. 160–165.
[26] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William

Parl, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Felten. 2009. Lest we remember: cold-boot attacks on encryption keys. Commu-
nication of the ACM 52, 5 (2009), 91–98.

[27] W. Eric Hall and Charanjit S. Jutla. 2006. Parallelizable Authentication Trees. In

SAC 2006. 95–109.
[28] Xijing Han, James Tuck, and Armo Awad. 2021. Dolos: Improving the Perfor-

mance of Persistent Applications in ADR-Supported Secure Memory. In MICRO.
1241–1253.

[29] Jianming Huang and Yu Hua. 2021. A Write-Friendly and Fast-Recovery Scheme

for Security Metadata in Non-Volatile Memories. In HPCA 2021. 359–370.
[30] Jianming Huang and Yu Hua. 2023. Root crash consistency of SGX-style integrity

trees in secure non-volatile memory systems. In HPCA 2023. 152–164.
[31] Akiko Inoue, Kazuhiko Minematsu, Maya Oda, Rei Ueno, and Naofumi Homma.

2020. ELM:A Low-Latency and ScalableMemory Encryption Scheme. Cryptology

ePrint Archive, Paper 2020/1374. (2020). Preliminary and long version of a paper

with same title.

[32] Akiko Inoue, Kazuhiko Minematsu, Maya Oda, Rei Ueno, and Naofumi Homma.

2022. ELM: A Low-Latency and Scalable Memory Encryption Scheme. IEEE
Trans. Inf. Forensics Security 17 (2022), 2628–2643.

[33] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng. 2018.

E�cient Hardware-Assisted Logging with Asynchronous and Direct-Update for

Persistent Memory. In MICRO. 520–532.
[34] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:

Atomic Durability in Non-volatile Memory through Hardware Logging. In HPCA.
361–372.

[35] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory

without accessing them: An experimental study of DRAM disturbance errors. In

ISCA 2014. 361–372.
[36] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,Werner Haas,

MikeHamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

IEEE S&P 2019. 1–19.
[37] Paul Kocher, Joshua Ja�e, and Benjamin Jun. 1999. Di�erential Power Analysis.

In CRYPTO 1999. 388–397.
[38] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed:

Reading Bits in Memory Without Accessing Them. In IEEE S&P. 695–711.
[39] Lukas Lamster, Martin Unterguggenberger, David Schrammel, and Stefan Man-

gard. 2023. HashTag: Hash-based Integrity Protection for Tagged Architectures.

In USENIX Security ’23. 2797–2814.
[40] Mengya Lei, Fan Li, Fang Wang, Dan Feng, Xiaomin Zou, and Renzhi Xiao. 2022.

SecNVM: An E�cient and Write-Friendly Metadata Crash Consistency Scheme

for Secure NVM. ACM Trans. Archit. Code Optimization 19, 1 (2022), 1–26.

[41] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-

escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels

on AMD SEV-SNP. In IEEE S&P 2022. 337–351.
[42] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. 2021.

CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the

Ciphertext Side Channel. In USENIX Security ’21. 717–732.
[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In USENIX Security ’18. 973–990.
[44] Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. 2011. Tweakable Block

Ciphers. J. Cryptol. 24, 3 (2011), 588–613.
[45] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In IEEE S&P 2015. 244–256.
[46] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018. Crash Consis-

tency in Encrypted Non-volatile Main Memory Systems. In HPCA 2018. 310–323.
[47] Ralph C. Merkle. 1979. Method of providing digital signatures. US4309569A.

(1979). https://patents.google.com/patent/US4309569.

[48] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption

Function. In CRYPTO ’87. 369–378.
[49] Kazuhiko Minematsu and Toshiyasu Matsushima. 2007. New Bounds for PMAC,

TMAC, and XCBC. In FSE. 434–451.
[50] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. 2018. SEV-

ered: Subverting AMD’s Virtual Machine Encryption. In EuroSec 2018. 1–6.

[51] Mathias Morbitzer, Sergej Proskurin, Martin Radev, Marko Dorfhuber, and Er-

ick Quintanar Salas. 2021. SEVerity: Code Injection Attacks against Encrypted

Virtual Machines. In IEEE S&P Workshops. 444–455.
[52] Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel Med-

wed, and Stefan Mangard. 2021. CrypTag: Thwarting Physical and Logical

Memory Vulnerabilities Using Cryptographically Colored Memory. In ACM
ASIACCS. 200–212.

[53] Qi Pei and Seunghee Shin. 2021. E�cient Split Counter Mode Encryption for

NVM. In ISPASS 2021. 93–95.
[54] Qi Pei and Seunghee Shin. 2021. Improving the Heavy Re-encryption Overhead

of Split Counter Mode Encryption for NVM. In ICCD. 425–432.
[55] Moinuddin K. Qureshi. 2018. CEASER: Mitigating Con�ict-Based Cache Attacks

via Encrypted-Address and Remapping. In MICRO. 775–787.
[56] Phillip Rogaway. 2002. Authenticated-Encryption with Associated-Data. In ACM

CCS. 98–107.
[57] Phillip Rogaway. 2004. E�cient Instantiations of Tweakable Blockciphers and

Re�nements to Modes OCB and PMAC. In ASIACRYPT 2004. 16–31.
[58] Phillip Rogaway, Mihir Bellare, and John Black. 2003. OCB: A Block-Cipher

Mode of Operation for E�cient Authenticated Encryption. ACM Trans. Inf. Syst.
Secur. 6, 3 (2003), 365–403.

[59] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser,

Jose A. Joao, and Moinuddin K. Qureshi. 2018. Morphable counters: enabling

compact integrity trees for low-overhead secure memories. In MICRO. 416–427.
[60] Gururaj Saileshwar, Prashant J. Nair, Prakash Ramrakhyani, Wendy Elsasser, and

Moinuddin K. Qureshi. 2018. SYNERGY: Rethinking Secure-Memory Design for

Error-Correcting Memories. In HPCA 2018. 454–465.
[61] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. 2009. DRAM

errors in the wild: a large-scale �eld study. ACM SIGMETRICS Performance
Evaluation Review 37, 1 (2009), 193–204.

[62] SNIA. 2014. NVDIMM Messaging and FAQ. (2014). https://www.snia.org/sites/

default/�les/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf

[63] Solid State Storage Initiative. 2014. NVDIMM Messaging and FAQ. (Jan. 2014).

[64] Meysam Taassori, Ali Sha�ee, and Rajeev Balasubramonian. 2018. VAULT: Re-

ducing Paging Overheads in SGX with E�cient Integrity Veri�cation Structures.

In ASPLOS. 665–678.
[65] Rei Ueno, Sumio Morioka, Naofumi Homma, and Takasumi Aoki. 2016. A High

Throughput/Gate AES Hardware Architecture by Compressing Encryption and

Decryption Datapaths—Toward E�cient CBC-mode Implementation. In CHES.
538–558.

[66] Rei Ueno, Sumio Morioka, Noriyuki Miura, Kohei Matsuda, Makoto Nagata,

Shivam Bhasin, Yves Mathieu, Tarik Graba, Jean-Luc Danger, and Naofumi

Homma. 2020. High Throughput/Gate AES Hardware Architectures Based on

Datapath Compression. IEEE Trans. Comput. 69, 4 (2020), 534–548.
[67] Thomas Unterluggauer, Mairo Werner, and Stefan Mangard. 2019. MEAS: mem-

ory encryption and authentication secure against side-channel attacks. J. Cryp-
togr. Eng. 9 (2019), 137–158.

[68] Xueliang Wei, Dan Feng, Wei Tong, Jingning Liu, and Liuqing Ye. 2020. MorLog:

Morphable Hardware Logging for Atomic Persistence in Non-Volatile Main

Memory. In ISCA 2020. 610–623.
[69] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel

Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks via

Cache Set Randomization. In USENIX Security ’19. 675–692.
[70] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. 2020.

SEVurity: No Security Without Integrity: Breaking Integrity-Free Memory En-

cryption with Minimal Assumptions. In IEEE S&P 2020. 1483–1496.
[71] Chenyu Yan, D. Englender, M. Prvulovic, B. Rogers, and Yan Solihin. 2006. Improv-

ing Cost, Performance, and Security of Memory Encryption and Authentication.

In ISCA. 179–190.
[72] Fan Yang, Youmin Chen, Haiyu Mao, Youyou Lu, and Jiwu Shu. 2020. ShieldNVM:

An E�cient and Fast Recoverable System for Secure Non-Volatile Memory. ACM
Trans. Storage 16, 2 (2020), 1–31.

[73] Fan Yang, Youyou Lu, Youmin Chen, Haiyu Mao, and Jiwu Shu. 2019. No Com-

promises: Secure NVM with Crash Consistency, Write-E�ciency and High-

Performance. In DAC 2019. 1–6.
[74] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack. In USENIX Security ’14.
[75] Mao Ye, Clayton Hughes, and Amro Awad. 2018. Osiris: A Low-Cost Mechanism

to Enable Restoration of Secure Non-Volatile Memories. In MICRO. 403–415.
[76] Jian Zhou, Amro Awad, and Jun Wang. 2020. Lelantus: �ne-granularity copy-on-

write operations for secure non-volatile memories. In ISCA 2020. 597–607.
[77] Kazi Abu Zubair and Amro Awad. 2019. Anubis: ultra-low overhead and recovery

time for secure non-volatile memories. In ISCA. 157–168.
[78] Kazi Abu Zubair, Sudhanva Gurumurthi, Vilas Sridharan, and Amro Awad. 2021.

Soteria: Towards Resilient Integrity-Protected and Encrypted Non-Volatile Mem-

ories. In MICRO. 1214–1226.
[79] Pengfei Zuo, Yu Hua, and Yuan Xie. 2019. SuperMem: Enabling Application-

transparent Secure Persistent Memory with Low Overheads. InMICRO. 479–492.

15

https://patents.google.com/patent/US4309569
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf
https://www.snia.org/sites/default/files/NVDIMM%20Messaging%20and%20FAQ%20Jan%2020143.pdf

	Abstract
	1 Introduction
	1.1 Background
	1.2 State-of-the-art and its limitations
	1.3 Our contributions
	1.4 Paper organization

	2 Preliminaries
	2.1 System and threat models of memory encryption
	2.2 Symmetric cryptography for memory encryption
	2.3 Parallelizable authentication tree (PAT)
	2.4 Split Counter (SC)
	2.5 Shortcut update (SCUE)

	3 Proposed mechanism: Crystalor
	3.1 Basic concept of Crystalor
	3.2 Recovery tag verification using PXOR-Hash
	3.3 Memory recovery by constructing new tree
	3.4 Hardware architecture
	3.5 Operations

	4 Performance evaluation
	4.1 Algorithm-level evaluation
	4.2 System-level simulation
	4.3 Recovery cost estimation

	5 Related studies
	6 Conclusion
	Acknowledgments
	References

