
A Mempool Encryption Scheme for Ethereum
via Multiparty Delay Encryption

Amirhossein Khajehpour1, Hanzaleh Akbarinodehi2, Mohammad Jahanara3,
and Chen Feng4

1 =nil; Foundation
khajepour.amirhossein@gmail.com
2 University of Minnesota Twin Cities

akbar066@umn.edu
3 Scroll Foundation
mohammad@scroll.io

4 The University of British Columbia, Kelowna
chen.feng@ubc.ca

Abstract. Ethereum is a decentralized and permissionless network of-
fering several attractive features. However, block proposers in Ethereum
can exploit the order of transactions to extract value. This phenomenon,
known as maximal extractable value (MEV), not only disrupts the op-
timal functioning of different protocols but also undermines the stabil-
ity of the underlying consensus mechanism. Furthermore, current block
production architecture allows transaction censorship that compromises
credible neutrality, a fundamental principle of Ethereums design philos-
ophy. In this work, we present a novel mempool encryption scheme to
alleviate the censorship and MEV problem by separating transaction in-
clusion and execution, keeping transactions encrypted before execution.
We formulate the notion of multiparty delay encryption (MDE) and con-
struct a practical MDE scheme based on time-lock puzzles. Our method
excels in scalability (in terms of transaction decryption), efficiency (min-
imizing communication and storage overhead), and security (with min-
imal trust assumptions). To demonstrate the effectiveness of our MDE
scheme, we have implemented it on a local Ethereum testnet and prove
its security under the presence of only one honest attestation aggregator
per Ethereum slot.

Keywords: Maximal Extractable Value · Time-lock Puzzle · Multiparty
Computation.

1 Introduction

Blockchain-based smart contract platforms such as Ethereum offer several at-
tractive features, including integrity and transparency in execution, and im-
mutability. This has enabled a broad range of emerging applications [43,1] such
as decentralized finance (DeFi). Today’s mainstream smart contract platforms

2 Khajehpour et al.

are designed in such a way that (1) pending transactions have no privacy, and
(2) block proposers have unrestricted rights of inclusion and ordering of trans-
actions within their block. More elaborately, users create their transactions in
plain-text and broadcast it to the blockchain network where every node main-
tains its local view of pending transactions in a data structure called mempool5.
Finally, it is up to a block proposer to include those transactions and decide the
ordering. Thus, the block proposer can effectively censor certain transactions
based on their content; or extract value from the ordering of transactions, a
phenomenon frequently referred to as miner/maximal extractable value (MEV)
in the literature [18].

If a substantial portion of block proposers actively censor transactions, mo-
tivated by financial gains or coerced through regulation, it can result in (i) un-
dermining the credible neutrality of Ethereum and (ii) compromising the safety
of time-sensitive DeFi applications operating on Ethereum (e.g. censoring oracle
updates or liquidation transactions). Similarly, the ramifications of MEV ripple
across the security and efficiency of the underlying blockchain platform [34,29],
including (i) destabilization of the consensus mechanism [13], (ii) centralization
of the network [47], and (iii) financial inefficiencies that deteriorate the user
experience [18]. Specifically, in the last few months, almost 70% of blocks in
Ethereum were actively censoring certain transactions [45]. Moreover, as of the
time of this writing, the realized value attributed to MEV since The Merge has
surged past an astonishing 300,000 ETH [20].

Motivated by the adverse implications of censorship attacks and MEV, the
notion of mempool encryption (a.k.a., mempool privacy) was introduced and
studied in the literature [36,7,24]. Mempool encryption, at its core, is a scheme
to encrypt transactions so that their content remains private until their inclusion
is finalized, and inclusion guarantees decryption and execution. One can verify
that an ideal mempool encryption scheme severely limits a proposer’s ability to
censor transactions based on their content or extract MEV. In addition, mempool
encryption removes the burden of policing transactions for proposers under the
risk of regulatory action.

Mempool encryption can be realized using a range of practical and theoretical
approaches. In the following, we review the most prominent ones:

– Threshold encryption. This approach utilizes a threshold public-key en-
cryption (TPKE) scheme. In a TPKE scheme, a committee publishes a pub-
lic key, and each committee member holds a distinct decryption key. An
encrypted message can be decrypted if and only if more than a threshold of
the committee members cooperate.
In a threshold encryption based mempool encryption scheme, users encrypt
their transactions via the committee’s public key. Hence, block proposers
have to determine the order of the transactions without knowing their con-
tents. The committee performs threshold decryption of included transac-
tions, and subsequently, transactions will be executed. In practice, projects

5 Alternatively users can directly send their transactions to trusted third-parties or a
block builder

A Mempool Encryption Scheme for Ethereum via MDE 3

Number of messages
Sound Security assumption

Key Generation
(per round)

Encryption
(per transaction)

Decryption
(per τ transactions)

Ferveo[7] O (1) O (n× τ) ✗ t out of n honest players
ETHTID[42] O

(
n2

)
O (1) O (t× τ) ✗ t out of n honest players

F3B (TDH2)[50] O
(
n2

)
O (1) O (t× τ) ✗ t out of n honest players

F3B (PVSS)[50] O (n) O (n) O (t× τ) ✗ t out of n honest players
tlock[21] O

(
n2

)
O (1) O (t) ✗ t out of n honest players

FairBlock[30] O (n) O (1) O (t) ✗ t out of n honest players.

MDE O (n) O (1) NA6 ✓
1 out of n honest players,
trusted setup

Table 1. Comparison of communication complexity between MDE and number of
other protocols that use threshold encryption approaches. The “Sound” column refers
to whether the scheme is fully censorship-resistant or not. In general, the committee
might decide not to reveal the shares, or the honest quorum might not be formed to
reconstruct the shares, which results in denying the execution of certain transactions.
However, in the case of time-lock encryption, such as MDE, all the encrypted trans-
actions will eventually get decrypted and executed, unless the entire network stops
operating.

such as Shutter network [39], FairBlock [30], and several others [49,4,32,40,7]
utilize threshold mempool encryption. However, this approach has the fol-
lowing shortcomings: (i) It relies on a significant committee’s honest majority
trust assumption. That is, if a majority of committee members collude, they
can violate the mempool’s privacy guarantee by decrypting transactions be-
fore inclusion. Moreover, they can refuse to decrypt included transactions
and stall their execution indefinitely [25,17,37]. (ii) The communication
cost of these schemes is high and grows with the number of committee mem-
bers; thus, the committee has to be relatively small. Table 1 compares the
communication complexity of different threshold encryption based methods
proposed by previous work. This exacerbates the aforementioned problem
regarding the honest majority assumption.

– Trusted Execution Environment (TEE). TEE is a secure area within a
device’s main processor, which guarantees secure storage and processing of
data, and integrity of execution for applications executed on it. Note that the
host processor can not manipulate or inspect data and programs on the TEE.
Additionally, TEEs are shipped with attestation keys provided by the man-
ufacturer that are required to prove their provenance. Some projects have
attempted to leverage TEEs for mempool encryption [46]. In a TEE-based
mempool encryption scheme, block proposers all operate within a TEE, and
users encrypt their transactions with a public key that is created and shared
by TEEs. The challenges of this approach are (i) the security guarantees of
a TEE are contingent on a significant trust assumption about the manu-
facturer; (ii) numerous side-channel attacks were discovered against major
TEEs such as Intel SGX, leaving users question the long-term security [5].

6 The puzzle can be solved offline by everyone; therefore, no message is required.

4 Khajehpour et al.

– Witness encryption. This approach relies on a cryptographic primitive
that is widely believed to be nonpractical and inefficient. Witness encryption,
introduced by Garg et al. [22], allows for the encryption of data in such a way
that the decryption key is not a traditional secret key, but rather a ”witness”
to a particular mathematical statement or problem. In this case, the witness
for each encrypted transaction is an inclusion proof for that transaction in a
block that has been attested to by a large enough number of node operators.

– Time-lock encryption. Time-lock puzzle (TLP) is a cryptographic primi-
tive to encrypt messages into the future [35]. More precisely, the decryption
procedure is inherently sequential and takes an inevitable number of com-
putation levels, that can be utilized to impose a specific delay for which the
message remains encrypted7 Numerous works have utilized TLP to design
mempool encryption schemes. We categorize these works into the following
categories.
(i) One TLP per transaction: In this approach, users have to put their trans-
actions inside a separate TLP and then propagate it, such as the method
proposed in [25]. At each round, the new block includes encrypted trans-
actions and executes now-decrypted transactions from the previous blocks.
Given that each transaction is a separate puzzle, the network participants
have to solve many independent puzzles simultaneously, which renders this
approach resource-intensive and uneconomical.
(ii) One TLP per round: In this approach, the TLP is designed in such a
way that there is only one puzzle to solve per round and it is independent
of the number of transactions. It can be done in two ways: 1) Similar to
the previous approach, one can have each TLP hide a single transaction
while enabling TLPs to be aggregated into one. Consequently, with solving
only the final puzzle, all the individual puzzles will be solved. Following this
approach, Thyagarajan et al.[44] proposed a technique called batch-solvable
time-lock puzzles; however, it scales each TLP’s length linearly by the num-
ber of transactions. This limitation makes their approach impractical to use
in a blockchain setting of thousands of transactions per block. In a subse-
quent work proposed by Srinivasan et al. [41], they overcame this issue at
the expense of relying on purely theoretical cryptographic constructions. 2)
Instead of hiding transactions themselves, another approach is to cleverly
hide the secret key of a publicly known public key inside a time-lock puz-
zle [11]. The puzzle is constructed in a way that no one knows the secret key
in advance. As a result, every transaction that is encrypted via the public
key is guaranteed to be decrypted only once the time-lock puzzle is solved
and the secret key is found. The ideas in this category will be discussed in
more detail in Section 3.

7 Note that utilizing time-lock encryption is only interesting for problems that require
short-term delays. That is because with the advancement in hardware technolo-
gies such as CPUs and ASICs, performing basic math operations would become
faster which results in solving the puzzles faster. In practice, we consider the fastest
hardware technology present to choose the puzzle parameters and also increase the
protocol’s difficulty adaptively.

A Mempool Encryption Scheme for Ethereum via MDE 5

As it was pointed out, current mempool encryption schemes either fail in
maintaining the communication or storage complexity, leverage highly theoret-
ical approaches, or have significant trust issues. In this paper, by introducing a
new time-lock encryption primitive, we present a mempool encryption scheme
that operates under minimal trust assumptions. While our protocol utilizes a
committee, unlike threshold encryption based solutions, it doesn’t rely on an
honest-majority assumption. Instead, it relies solely on the presence of at least
one honest party. In addition, our protocol is highly scalable and bears minimal
communication/storage overhead, only O (n) messages per round of the protocol
for n size of committee. Furthermore, our protocol seamlessly integrates with the
current Ethereum architecture through a straightforward workflow.

Our proposed scheme is initialized with a one-time setup phase that gener-
ates a safe-prime RSA modulus. Then it randomly selects a committee of par-
ties for each round; which collectively generates the current round’s public key
along with a time-lock puzzle concealing their shares of the secret key8. At each
round, users encrypt their transactions using the public key of one of the recent
rounds. Subsequently, block proposers build blocks including encrypted transac-
tions while simultaneously deciphering transactions from the previous round’s
time-lock puzzles.

The main contributions of this work can be summarized as follows.

– Formalization of MempoolEncryption. Assuming a synchronous network
model, we formally define the notion of mempool privacy that captures the
minimum desired properties that we expect from a mempool encryption
scheme.

– Multiparty delay encryption. The notion of multiparty delay encryption
(MDE) is introduced. Then, by leveraging cryptographic time-lock puzzles,
an MDE is designed with its security rigorously established under standard
cryptographic assumptions.

– Scalable MempoolEncryption gadget for Ethereum. Using MDE, we pro-
pose a MempoolEncryption scheme for Ethereum. Importantly, the safety of
this method relies on the presence of only one honest attestation aggregator,
for each slot in today’s Ethereum design, making it a trust-minimized solu-
tion. Additionally, the communication and storage costs of our method are
negligible and it is highly scalable in terms of handling transactions. Table 1
outlines the communication cost involved in each phase of our protocol. The
extra space our approach uses per block header is only 230 KB for 112-bit
security.

The rest of this paper is organized as follows: Section 2 formally defines
mempool encryption. In Section 3, we will discuss the limitations of current time-
lock encryption methods and then give an overview of our method. Section 4
focuses on preliminaries and notations necessary for the rest of the paper. In

8 In the context of Ethereum, the committee members are selected from the set of
attestation aggregators in the current epoch.

6 Khajehpour et al.

Section 5, we will explain how we construct an MDE using our modified time-
lock puzzle primitive based on the previous works. In Section 6, we will show the
implementation details of adding MDE to Ethereum consensus. Later, Finally,
Section 7 concludes this paper and suggests potential future directions.

1.1 Notation

The symbol ∧ is being used as the logical “and” operator. x←$ S is used to show
that x is uniformly sampled from the set S. |S| for the set S indicates the size of
S. |G| for the group G denotes its order. For the group G and α ∈ G, the notion
ordG(α) denotes the order of α in G, and, ⟨α⟩ is the subgroup generated by α.
The set Z∗

N is {x | gcd(x,N) = 1 ∧ x < N}. The group JN = {x|
(

x
N

)
= +1} is all

the elements whose Jacobi symbols with N are +1. Note that |JN | = 1/2|ZN∗ |.
The operator || is used for concatenation. The notion negl(λ) denotes a negligible
function where negl(λ) < 1/p(λ) for every polynomial p. Two groups G1 and G2

are denoted as isomorphic via G1
∼
= G2.

2 Problem Definition

The concept of mempool encryption has been studied before [7,30,39]. However,
to the best of our knowledge, there is no formal and rigorous definition for
mempool encryption. In this section, we formally specify the notion of mempool
encryption.

There are two sets of participants in the network, validators (i.e. miners)
and clients (i.e. users). Time is organized into rounds within a ∆-synchronous
network. This means that any messages between any two participants are guar-
anteed to be delivered within a maximum delay of ∆ rounds. The parameter ∆
represents the network’s delay and is universally known to all parties involved.
Each party following the protocol is called an honest player, and otherwise an
adversary.

A state machine replication (SMR) protocol operates among the validators.
This protocol takes transactions from the clients as input and generates a dis-
tributed ledger L as output. This ledger is an ordered sequence of transaction
groups, each referred to as a block. Henceforth, we call L a blockchain.

Clients generate and broadcast transactions to the network. Furthermore,
they request different validators for their versions of the blockchain. Upon re-
ceiving responses from the requested validators, clients aggregate and process
them using a protocol P, to create their local view of the blockchain. We denote
this local view as Lc

r, representing the blockchain in the view of client c at round
r. 9

Blocks in L are labeled as B0,B1,B2, · · · . Every block comprises two com-
ponents: the body and the header. The body of each block contains an or-
dered sequence of transactions. Additionally, the header includes a reference

9 For example, a client can do one of the following: (i) trust a single RPC provider,
(ii) run a light client for the chain, or (iii) run a full node.

A Mempool Encryption Scheme for Ethereum via MDE 7

to the previous block within L, and also incorporates some protocol-related
metadata. We call a block is valid if it satisfies the protocol-related validity cri-
teriase.g.signatures validations, par. We say L1 is a prefix of L2, denoted by
L1 ⪯ L2, if for all blocks B ∈ L1, we have B ∈ L2. Two ledgers, L1 and L2, are
considered conflicting if neither of them is a prefix of the other.

For each security parameter λ, and ℓ as a polynomial function of λ, we say
that P is ℓ-secure, if P satisfies both of the following properties.

Definition 1. Safety: For any honest clients ci, cj and rounds r, r′ the ledgers
Lci
r and Lcj

r′ are not conflicting. Also, for any client ci and rounds r ≤ r′ the
ledger Lci

r is a prefix of Lci
r′ .

Definition 2. ℓ-Liveness: Assume the transaction tx is created by an honest
client and is received by an honest validator at round r. Then tx should be in-
cluded in Lci

r′ , for any honest client ci, and any round r′ ≥ r + ℓ.

Definition 3. MempoolEncryption: We call the protocol ΠME = (EncryptL, DecryptL)
is a MempoolEncryption protocol for the ℓ-secure and ∆-synchronous blockchain
L, if it provides a transaction encryption protocol such that10:

– Completeness: ΠME.EncryptL takes as input a transaction tx and outputs its
encryption txE . On the contrary, ΠME.DecryptL takes as input a block B ∈ L
whose transactions are [txE0 , tx

E
1 , · · ·], and outputs [tx0, tx1, · · ·] such that for

all j, we have ΠME.Encrypt(txj) = txEj . In addition, for any encrypted block,

the parallel runtime11 of ΠME.DecryptL is bounded by ρ(ℓ), for some fixed
polynomial ρ. Moreover, any encrypted transaction txE included in L gets
decrypted (and executed) before ρ(ℓ) delay.

– Soundness: For any transaction txE that was encrypted at round r, and prop-
agated immediately, there is no parallel algorithm to decrypt it in less than
ℓ+∆ rounds. 12

3 Technical Overview

The initial idea of time-locked puzzles was introduced by Rivest et al. [35].
Informally speaking, a time-lock puzzle hides a message such that it can only
be revealed after performing a time-consuming computation that does not have
any shortcut nor is parallelizable. A naive MempoolEncryption scheme design
is to hide each transaction inside an independent time-lock puzzle with delay
parameter d. However, in this approach, the computation needed to uncover
all transactions, scales linearly with the number of transactions. Ideally, the
objective is to reveal all encrypted transactions at the cost of solving one puzzle!
To this end, we propose MDE, a scheme to hide a secret key inside a time-lock
puzzle, corresponding to a public key. The transactions will be encrypted by the

10 We omit ledger L whenever it is clear from the context.
11 Note that we denominate time in unit of round.
12 In particular, there is no decryption circuit with depth less than d−∆ for EncryptL.

8 Khajehpour et al.

public key, and all of them can be decrypted once the puzzle hiding the secret
key is solved. Our construction is inspired by [28] and utilizes homomorphic
time-lock puzzles, to facilitate multi party generation of the secret key inside
the puzzle, and the corresponding public key. More details of our construction
are in Sections 3.2 and 5.

3.1 Related Work

In a parallel line of work, Doweck et al. [19] introduced the notion of multi-
party timed commitments. Players use a multi-party computation (MPC) scheme
to generate an ElGamal public key, for which the secret key is unknown to
everyone. The secret key can be extracted from the public key by breaking
the computational Diffie-Hellman (CDH) over a carefully chosen group. The
protocol takes a delay parameter as input that specifies the expected time it
takes to extract the secret key. Hence, everyone can encrypt their message by
the public key and expect their message to be revealed with a delay. However,
[19] is not suitable to instantiate a MempoolEncryption scheme, as it can not
guarantee an exact delay time and also the initial MPC relies on multiple rounds
of interaction. Additionally, this scheme is only secure against attackers with
bounded parallelization power. More precisely, the speed of secret key extraction
scales linearly with the parallelization power of the attacker.

Another way to instantiate a MempoolEncryption scheme is using delay en-
cryption [16]. Burdges et al. introduced delay encryption [11]; in which, given a
delay parameter T , the scheme uses a trusted setup to generate a master encryp-
tion key pk and an extraction key ek. Using pk and a session id, one can encrypt
a message. Moreover, using ek and id any encrypted message corresponding to id
can be decrypted, and this operation admits delay T . In [16] Chiang et al. pro-
pose a delay encryption-based MempoolEncryption scheme and study adversarial
block delivery delays in this context, and propose a change to the consensus
mechanism of proof-of-stake networks to circumvent them. Noteworthy, the un-
derlying cryptographic primitive can be replaced trivially with MDE, which uses
a significantly lighter cryptography construction. Moreover, it is not clear how
[16] can be adopted by Ethereum, while our work provides a concrete design for
seamless integration with Ethereum protocol. In addition, the storage require-
ments for delay encryption construction of [11], which has been used in [16],
grows linearly with the delay parameter T , while the storage complexity of our
construction for MDE is independent of the delay parameter T , that can be of
independent interest.

An alternative way to design a MempoolEncryption is to use batch-solvable
time-lock puzzles[44,41], in which independent puzzles can be aggregated to-
gether to generate a batched puzzle that hides all of the messages. Using a
batch-solvable time-lock puzzle in the naive MempoolEncryption, the cost of re-
vealing all of the transactions is the same as the cost of solving one puzzle.
However, the existing constructions for batch solving either rely on in practical
cryptographic primitives such as Indistinguishable Obfuscation (IO) [41,23], or

A Mempool Encryption Scheme for Ethereum via MDE 9

the size of puzzles (size of encrypted transactions) scales linearly with the num-
ber of maximum batchable puzzles (maximum number of transaction per block)
[44]. The latter is particularly problematic for high-throughput blockchains.

3.2 Multiparty Delay Encryption: Informal Description

We introduce the notion of multiparty delay encryption (MDE), in which a group
of n non-trusting participants can generate and publish a pair (pk, ek), where pk
is a public key with its secret key sk hidden inside a time-lock puzzle which can
be obtained from the extraction key ek. Any message m can be encrypted via
pk, and is kept secret until the time-lock puzzle is solved and the value of sk is
extracted.

MDE has an initial setup phase to generate the public parameters of the sys-
tem. Following this, each participant i ∈ [n], individually generatesMDE shares
(pki, eki), which are subsequently aggregated into the final pair (pk, ek). Each
participant is also required to publish a verification proof of their share’s in-
tegrity. Any message can be encrypted by pk. Anyone can extract the secret
key sk from the extraction key ek, which can be used to decrypt all the en-
crypted messages.

An MDE scheme should satisfy the following properties. The formal defini-
tions will be provided in Section 4.

Definition 4. MDE Correctness (Informal): If all the shares (pki, eki) pass
the verification, then for all the messages, the decryption and the encryption
must work properly.

Definition 5. MDE Adaptive Security (Informal): With having at least
one honest party in the committee which generates the shares, the result of en-
cryption of any two messages must be indistinguishable any time earlier than
the time is needed to extract the secret key. Additionally, the malicious parties
have the ability to see honest parties’ messages before taking their actions.

3.3 Construction

Our construction for theMDE is based on homomorphic time-lock puzzles (HTLPs).
In [28], the HTLP is defined as the tuple (u, v) ← (gr mod N, hrN (1 + N)s

mod N2) represents a time-lock puzzle hiding the secret s given the randomness

r, g the generator of JN , h = g2
T

mod N , RSA safe prime modulus N , and the

delay parameter T . The puzzle can be solved by calculating x = u2
T

mod N ,
and then s = (v/xN mod N2 − 1)/N . Additionally, it is easy to verify that the
puzzle pairs are linearly homomorphic. More precisely, assume that we have two
puzzles (u0, v0) and (u1, v1) hiding the secrets s0 and s1 respectively, then the
puzzle (u0u1, v0v1) hides the secret s0 + s1.

A natural approach to build an MDE is to use these HTLPs as MDE shares,
that is (pki, eki)← (ui, vi). Note that each ui ← gri mod N is a valid ElGamal

10 Khajehpour et al.

public key in JN 13. While the shares can be aggregated to obtain pk = g
∑

ri

mod N as desired, we can’t extract sk =
∑

i ri from ek = hskN (1 + N)
∑

si

mod N2. More precisely, unlike
∑
si, the puzzle structure does not provide any

way to extract sk, other than solving a discrete log problem in JN . Therefore, we
need to modify the construction of HTLP to meet all the necessary requirements
of our MDE.

In our proposed construction for HTLP, each puzzle is defined as the tu-
ple (u, v, y, w) ← (gr+s mod N, h(r+s)N (1 + N)s mod N2, gk mod N,
hkN (1 + N)r mod N2), where k ←$ ZN/2 is another randomness factor. In
this construction, the portion u = gr+s mod N is pk, the tuple (u, v, y, w) is
ek, and r + s is sk. To extract sk, first the solver calculates ū = u× y = gr+s+k

mod N , v̄ = v × w = h(r+s+k)N (1 +N)r+s mod N2, and x = ū2
T

mod N .
One can verify that the value of sk is ((v̄/xN mod N2) − 1)/N . Hence after,
we call this protocol a modified linearly homomorphic time-lock puzzle (ΠMTLP)
and provide its detailed explanation and security proofs in Appendix D.

To buildMDE, we use the proposed construction of MLHTLP. More precisely,
each party pi publishes a share including public key pki = ui and extraction key
eki = (ui, vi, yi, wi), along with a zero-knowledge argument of knowledge14 of ri,
si and ki. The aggregated public key and secret key is pk = Πui mod N and
sk =

∑
ri + si, respectively. Similarly, the aggregated extraction key is eki =

(Πui mod N,Πvi mod N2, Πyi mod N,Πwi mod N2). Later in Theorem 2,
we prove that sk will remain hidden as long as we have at least one honest party.

4 Multiparty Delay Encryption: Formal Description

In this section, we provide a formal description of MDE.

Definition 6. Multiparty Delay Encryption. Let M be the message space.
Then, a multiparty delay encryption is a protocol that runs among an arbitrary
number of parties which consists of the tuple (Setup, Gen, Verify, Aggregate,
Encrypt, Decrypt, Extract) such that:

– Setup(1λ, T): A probabilistic algorithm that on receiving the security param-
eter 1λ outputs the system’s public parameters pp according to the delay T .
Setup runs only once at the beginning and can be a potentially distributed
algorithm.

– Gen(n, pp): A probabilistic algorithm that, on receiving the system’s public
parameters pp, and n ∈ N the maximum number of participants in generating
the final public-key, outputs the tuple (ek, pk) such that ek is the extraction
key corresponding to the encryption public-key pk.

13 When N is a safe-prime RSA modulus, the decisional Diffie-Hellman (DDH) problem
is widely believed to be hard in JN [38,9].

14 This proof helps us to show correctness and adaptive security. The cryptographic
primitive for the zero-knowledge proof is similar to the one used in [27].

A Mempool Encryption Scheme for Ethereum via MDE 11

– Verify(n, (ek, pk), pp): A probabilistic protocol that checks the construction
of ek and shows the prover poses the knowledge of sk corresponding to pk
through a zero-knowledge protocol15. If it is according to the protocol, it re-
turns true; otherwise, it returns false. It also needs n, the maximum number
of participants, for some verification.

– Aggregate((ek1, pk1), (ek2, pk2) . . . (ekk, pkk), pp): A deterministic algorithm
that receives system’s public parameters pp, and many (eki, pki) tuples. It
returns an aggregated (ek, pk), which will later be used for message encryp-
tion.

– Encrypt(m, pk): A probabilistic algorithm which on receiving the message m ∈
M and the public-key pk, outputs c ∈ C, the encryption of m, according to
pk.

– Decrypt(c, sk): A deterministic algorithm that decrypts the ciphertext c via
the decryption key sk and returns a message m ∈M.

– Extract(ek, T, pp): A deterministic algorithm which receives the extraction
key ek and system’s public parameters pp along with delay T . Then, outputs
the decryption key sk that corresponds to ek or ⊥.

Definition 7. MDE Correctness. The MDE protocol ΠMDE = (Setup, Gen,Verify,
Aggregate, Encrypt, Decrypt, Extract) is correct if given λ, for all polynomials
T in λ, all messages m ∈ M, all n ∈ N that n = p0(λ) for a fixed poly-
nomial p0, all pp in the support set of ΠMDE.Setup(n, 1

λ, T), and all (eki, pki)
where ΠMDE.Verify(n, (eki, pki), pp) = true, given (ek, pk) ← ΠMDE.Aggregate(
(ek0, pk0) . . . (ekn−1, pkn−1), pp), and sk← ΠMDE.Extract(ek, T pp), the running
time of the algorithm ΠMDE.Extract is bounded with p1(λ, T) for a fixed polynomial
p1 and we have:

ΠMDE.Decrypt(ΠMDE.Encrypt(m, pk), sk) = m. (1)

Definition 8. MDE Adaptive Security. Let the MDE protocol ΠMDE = (Setup,
Gen,Verify, Aggregate,Encrypt, Decrypt, Extract), where E is the extractor of the
Verify algorithm which can extract the witness from the prover. ΠMDE is adap-
tively secure if for any probabilistic polynomial time adversary A = (A1,A2,A3),
where the depth of A2, A3 and E are bounded by T ϵ(λ) from above, where T is
a polynomial, 0 < ϵ < 1, and all n = p0(λ) for a fixed polynomial p0 such that:

15 More precisely, there exist an extractor E of the Verify algorithm which can extract
the witness from the prover

12 Khajehpour et al.

Pr

pp← ΠMDE.Setup(n, 1
λ, T),

τ1 ← A1(T, pp, 1
λ),

(ekn, pkn)← ΠMDE.Gen(n, pp),
∀i∈{1,··· ,n−1}
ΠMDE.Verify(n,
(eki, pki), pp) ((m0,m1), (ek1, pk1), · · ·

= True (ekn−1, pkn−1), τ2)←
A2((ekn, pkn), τ1),

∧
A3(c, τ2) = b (ek, pk)← ΠMDE.Aggregate(

(ek1, pk1), · · · , (ekn, pkn), pp),

b←$ {0, 1},
c← ΠMDE.Encrypt(mb, pk)

≤ 1

2
+ negl(λ).

5 Proposed Solution

In this section, we present the details of MDE and its security and correctness
proofs.

Algorithm 1 Assuming ΠMTLP is our modified linearly homomorphic time-ock
puzzle protocol and ΠERP is any non-interactive zero-knowledge (NIZK) exponent
range proof protocol such that ΠERP.Verify(b, x, a, N) returns true if there exists
e ∈ ZN such that x = be mod N and e < a. Our proposed solution is as
follows:

– Setup(1λ, T): Runs pp← ΠMTLP.Setup(1
λ, T) and returns pp.

– Gen(n, pp): It works similar to the ΠMTLP.Gen with a difference in choosing
the boundries of s and r. More precisely, it samples s, r ←$ ZN/2n and k ←$

ZN/2. Then, outputs (ek, pk) such that ek = (u, v, y, w), pk = u for u =

gr+s mod N , y = gk mod N , v = h(r+s)N (1 + N)s mod N2, and
w = hkN (1 +N)r mod N2. (See Figure 1 for further details.)

– Verify(n, (ek, pk), pp): Let ek compiles into (u, v, y, w). First, it checks that
u and y ∈ JN , and v, w ∈ JN2 . Then, checks the exponent range of u
to be in ZN/n via ΠERP.Verify(g, u,N/n,N). Next, the prover samples x ←$

Z(N/2+N/n)×22λ , t←$ Z(N/n)×22λ and sends a = gx mod N, b = hxN (1 +
N)t mod N2 along with τ = gt mod N to the verifier. Then, on receiving
e ←$ Z2λ from the verifier, returns (α, β) for α = (r + s + k)e + x and
β = (r+s)e+ t. Finally, to verify the puzzle (u, v), returns gα = (uy)e×a ∧
hαN (1 +N)β = (vw)eb ∧ gβ = ue × τ . (See Figure 1 for further details.)

– Encrypt(m, pk, pp): Samples r ←$ ZN/2 and returns (c1, c2) with c1 = gr and
c2 = m× pkr.

A Mempool Encryption Scheme for Ethereum via MDE 13

– Decrypt((c1, c2), sk, pp): Returns c2/c
sk
1 .

– Aggregate((ek1, pk1) . . . (ekn, pkn), pp): Runs ek = ΠMTLP.Aggregate(ek1 . . .
ekn, pp), and returns (ek, pk) for pk = Πpki.

– Solve(ek, pp): Compiles ek into the tuple (u, v, y, w) and returns ΠMTLP.Solve((uy,
vw, ⊥, ⊥), pp).

Note that with the Verify procedure, a party proves the knowledge of sk for
a given ek in zero-knowledge. Its corresponding relation is:

R = {(N, g, h, u, v, y, w) : ∃ r, s, k ∈ N | r + s ∈ ZN/2n

∧ u = gr+s ∧ y = gk ∧ vw = hN(r+s+k)(1 +N)r+s mod N2}

Consider the following theorem.

Theorem 1. Algorithm 1’s Verify procedure is a public-coin honest-verifier
zero-knowledge proof corresponding to the relation R.

Proof. Proof details are in Appendix F.

Remark 1. Note that the Verify procedure can be easily converted to malicious-
verifier zero-knowledge proof via the Fiat-Shamir heuristic.

In the following theorem we show that our proposed algorithm satisfies cor-
rectness and adaptive security.

Theorem 2. Given that ΠMTLP is a secure time-lock puzzle, Algorithm 1 is a
correct and adaptively secure multiparty delay encryption.

Proof. Proof details are in Appendix G.

14 Khajehpour et al.

pp = (N, g, T, h)

1. Prover Verifier

2. Gen(n, pp) :

3. s←$ ZN/2n

4. r ←$ ZN/2n

5. k ←$ ZN/2

6. u← gr+s mod N

7. v ← h(r+s)N (1 +N)s mod N2

8. y ← gk mod N

9. w ← hkN (1 +N)r mod N2

10. (u, v, y, w)

11. Verify(n, (ek, pk), pp):

12. (u, v, y, w)← ek

13. Verify that:

14. u ∈ JN
15. v ∈ JN2

16. y ∈ JN
17. w ∈ JN2

18. x←$ Z(N/2+N/n)∗22λ ,

19. t←$ ZN/n∗22λ

20. a← gx mod N, b← hxN (1 +N)t mod N2

21. τ ← gt mod N

22. (a, b, τ)

23. e←$ Z2λ

24. e

25. α← (r + s+ k)e+ x

26. β ← (r + s)e+ t

27. (α, β)

28. Verify that:

29. gα = (uy)e ∗ a

30. ∧ hαN (1 +N)β = (vw)eb

31. ∧ gβ = ue ∗ τ
32. ∧ a, τ ∈ JN ∧ b ∈ JN2

33. ∧ α ∈ Z(N/2+N/n)∗2λ+(N/2+N/n)∗22λ

34. ∧ β ∈ ZN/n∗2λ+N/n∗22λ

Fig. 1. In illustration of the Gen and Verify algorithms in MDE.

A Mempool Encryption Scheme for Ethereum via MDE 15

6 Mempool Encryption Scheme

In this section, we explain how to utilize aMDE to design a network that satisfies
MempoolEncryption. We first give some background about Ethereum and then
describe the changes that need to be made. Then, we will prove that our design
is indeed an MempoolEncryption. Finally, we discuss encryption efficiency and
spam protection.

6.1 Ethereum Background

In the Ethereum network, after The Merge, time is partitioned into predeter-
mined units called slots, where a single validator is randomly chosen in each slot
to propose a block. At each slot attestation committees16 are formed by ran-
domly grouping validators together, and they collaborate to vote and provide
attestations on blocks. Each validator of an attestation committee individually
provides votes for consensus mechanisms [12]. Attestations are signed with BLS
signatures, hence, the ones that share an identical vote can be instantly aggre-
gated into a single attestation by BLS signature aggregation. In each committee,
a subset of validators are selected at random to perform the task of aggregation,
and they are denoted as attestation aggregators.

λ 512 1024 2048 4096
Public parameters 384 + |T | 768 + |T | 1, 536 + |T | 3, 072 + |T |
Verification proof 1, 024 2, 48 4, 096 8, 192
Share 768 1, 536 3, 072 6, 144
Verification proof + Share 1, 792 3, 584 7, 168 14, 336

Table 2. Space complexities in bytes for different values of λ.

6.2 Protocol

Assume the Ethereum network is ∆-synchronous and l-secure. Let ΠMDE =
(Setup,Gen,Verify,Aggregate,Solve) be anMDE protocol such thatΠMDE.Setup(1

λ)
was already done, and everyone knows the public parameters pp = (N, g, T, h).
Note that the current total supply of ETH is roughly 120M, and every validator
must stake at least 32 ETH; hence, the maximum number of validators at the
time of this writing cannot exceed 120M/32 ≤ 4000000. At each round we need
to aggregate puzzles from all attestation aggregators. Given the aforementioned
upper bound on the number of validators, setting the maximum number of puz-
zles we can aggregate to n = 10000000 is more than enough. Additionally, let
d = ℓ+2∆ and assume the time needed to run ΠMDE.Solve for the delay T is equal

16 They are often called Beacon committees link

https://eth2book.info/capella/part2/building_blocks/committees/

16 Khajehpour et al.

to proposing d slots. Note that even though the cryptographic assumption on
which ΠMDE is relied is not parallelizable, when choosing the value of T we need
to consider the fastest hardware technology present and increase it adaptively
over time. That is because with the advancement in hardware technologies such
as CPUs and ASICs, performing basic math operations would become faster.
We use the notation B−i to represent the ith parent of the block B in the chain.
Below are the actors involved in the ΠME protocol and their corresponding re-
sponsibilities during each Ethereum protocol slot:

– Attestations Aggregator: In addition to their other responsibilities, ag-
gregators collaboratively create the (pk, ek) pair for each slot. More precisely,
each aggregator generates a new share via ΠMDE.Gen and makes a validity
proof for it using ΠMDE.Verify. Then, along with the aggregated attestation,
it signs its MDE share and broadcasts it.

– Block proposer: To propose a new block B, it performs the following:

• It verifies all the MDE shares received from attestation aggregators
via ΠMDE.Verify. If any of the verifications fail, it drops that attestation;
otherwise, it includes the attestation in B’s header. For convenience, we
call the aggregated public key of shares in B via ΠMDE.Aggregate, the
public key proposed in block B.

• Let sk be the result of ΠMDE.Solve on B−d’s aggregated MDE share. The
block proposer must include sk in B’s header as well.

• Decrypts all the encrypted transactions of the blockB−d viaΠMDE.Decrypt,
and executes them.17

• Fills B’s transactions list with the pending transactions in the mempool
that are encrypted via one of the B−1,B−2, . . . , B−2∆ proposed public
keys.

– User: Let B′ be the latest block in the user’s view and pk be its proposed
public key. The user encrypts tx via ΠMDE.Encrypt(tx, pk) and broadcasts it.

Due to network delay, users might not be able to see the latest block. Therefore,
we allow them to encrypt their transactions via the public key included in one
of the most recent d− l blocks. The additional checks described below should be
added to the validation procedure of the block B:

– Verify signatures and validity proofs of all MDE shares included in B. All
shares should be properly signed by their corresponding attestation aggre-
gator’s public key and pass the ΠMDE.Verify check, otherwise the block is
deemed invalid.

– Check the validity of the solution sk. Given (ek, pk) the aggregatedMDE share
of B−d, if the solution is wrong, meaning that pk and sk does not match,
the block B is invalid.

17 The corresponding secret keys of the encrypted transactions in block B−d must have
been revealed in the current or preceding blocks.

A Mempool Encryption Scheme for Ethereum via MDE 17

6.3 Security Proof

In Theorem 3 we prove that the protocol described in the previous subsection is
indeed a MempoolEncryption protocol for the Ethereum network.

Theorem 3. ΠME is a MempoolEncryption protocol for the Ethereum network if
there is at least one honest aggregated attestation included in each slot and given
standard cryptographic assumptions in Theorem 2.

Proof. The correctness of ΠMDE, proved in Theorem 2, implies correctness of ΠME

where ρ = p1.
Now suppose an honest user creates an encrypted transaction txE at round r,
with proposed public key of the last block in its view and propagates it imme-
diately. Furthermore, existing one honest attestation aggregation in each slot
guarantees the adaptive security of ΠMDE. Given that network is ∆ synchronous,
no parallel algorithm can decrypt txE in less than ℓ+∆ rounds; thus, implying
the soundness of ΠME.

λ Gen Solve Aggregate Encrypt Decrypt Verify Solve/ Gen

512 43.157 ms 1.853 s 13.822 µs 1.691 ms 652.461 µs 42.158 ms 42.93

1024 187.265 ms 3.575 s 29.976 µs 8.654 ms 4.688 ms 180.471 ms 19.09

2048 908.347 ms 8.395 s 135.559 µs 27.370 ms 28.586 ms 919.904 ms 9.24

4096 4,613.85 ms 24.398 s 349.99 µs 398.824 ms 206.372 ms 4,626.1 ms 5.28

Table 3. Time complexity of all the operations for different values of λ and T =
0x093226. Experiments were run on a Macbook Pro 2.3 GHz Quad-Core Intel Core i5
CPU.

6.4 Transaction Encryption

Notice that the encrypted transactions still have to pay the fee; otherwise, the
system will be susceptible to Denial-of-Service attacks. To avoid this issue, we
split the fee into two parts, an inclusion fee and an execution fee. The encrypted
transaction pays the inclusion fee by specifying a gas price and having a signature
in the clear. The gas cost of inclusion is a function of the size of the encrypted
transaction. Note that the encrypted transaction will be considered valid only if
its sender can pay for its inclusion. Moreover, the encrypted transaction carries
a normal Ethereum transaction, that can be valid or not and it pays for its
execution. We defer further investigation of encrypting other fields such as value,
sender, nonce, and fee to future research endeavors.

It is essential to highlight that, given the utilization of the ElGamal encryp-
tion scheme, representing every encrypted transaction requires two points in the
group JN which is λ/2 bytes. For transactions with a data field surpassing λ/4
bytes, additional storage is required. Nevertheless, through the integration of
symmetric key cryptography, optimization techniques can also be employed.

18 Khajehpour et al.

6.5 Spam Protection and Meta-Data Privacy

Permissionless blockchains fundamentally need transaction fee to protect them-
selves from spam and denial-of-service attacks. Moreover, it is vital for blockchain
nodes to be able to identify pending invalid transactions and not propagate them
in the network, which includes transactions that are not able to pay the fee or
simply have an incorrect signature or nonce. In other words, nodes need to be
able to verify the validity of pending transactions or else an attacker can flood
the network with invalid transactions with virtually no cost.

A mempool encryption scheme can provide privacy at different levels, de-
pending on which parts of the transaction it hides. For instance, one choice is
to only encrypt fields to, value, and input-data leaving other fields such as
signature18, from, nonce, and gas-limit exposed. This way, it would be pos-
sible to determine whether the transaction has the minimum balance to cover
the execution fee. It is easy to see that such a mempool encryption scheme, leaks
a lot of meta-data about each transaction.

Another approach is to encrypt the whole transaction but ask users to sub-
mit a ZK-SNARK proof of validity for the plain-text transaction. While this ap-
proach provides complete privacy, it involves designing complex circuits, prune
to bugs, and requires client-side proof generation that can be computationally
expensive. Moreover, we have to make sure that each account only makes one
transaction per round19, otherwise a malicious user can flood the network with
many transaction that are individually valid but only one of them can be in-
cluded (e.g. they share the same nonce or there are enough funds in the signer
account to cover fees only for one of the transactions).

We propose an alternative solution, to provide complete privacy. Let us intro-
duce a new type of transaction called transaction-carrying transaction (TCT).
A TCT transaction outer-tx carries an encrypted transaction txE inside, which is
going to be decrypted and executed with a delay. The intent is for the outer-tx
to pay for the inclusion and decryption costs20. Note that the gas price of this
type of transaction has to be adjusted relative to the resources consumed by
such transactions. The fees paid by outer-tx provides protection against invalid
transactions, because regardless of the validity of the txE , an attacker has to pay
for costs incurred by the network.

7 Conclusion and Future Work

We reviewed mempool encryption and defined a new notion calledMempoolEncryption.
Our main contribution starts with the introduction of the mulitparty delay en-
cryption (MDE). Then, we proposed a construction for MDE based on the idea

18 Note that for the purpose of the signature, the hash of transaction is calculated with
the encrypted fields rather than plain-text.

19 This can be done by assigning nullifier to each account that gets used and renewed
by each transaction.

20 This cost can be thought of as the cost of data availability and effort necessary for
decryption.

A Mempool Encryption Scheme for Ethereum via MDE 19

of time-lock puzzles. Next, we adopted our algorithm to minimally change the
current specification of the Ethereum network to achieve censorship and MEV
resistance. We showed that if there is at least one honest attestation aggregator
per slot, and the basic consensus assumptions are held, then our protocol is a
MempoolEncryption for the Ethereum. We mention some of the potential future
works to add to our contributions in the following:

– As it is pointed out in Table 2, even though a share already uses small space,
enabling MDE still might put considerable storage overhead on the ledger
when choosing larger λ. For example, choosing λ = 1024 which gives us 112
bit security will increase the block header’s size by roughly 230 KB 21. A
potential solution for this issue would be to only store a SNARK proof along
with the aggregation result of all the 64 verifiable shares. Additionally, our
current design suggests using ECDSA signature schemes to prove the au-
thenticity of the verifiable shares. Therefore, the block proposer to prove the
signatures are valid can show that the aggregated share is the multiplication
of different values that are signed by a set of known ECDSA public keys.

– Table 3 shows the time needed for different operations of our MDE. We can
apply many optimizations to accelerate the time complexity of the Gen al-
gorithm operations [26,31], which we leave for future work. Note that our
underlying math operations involve raising a fixed generator g and another
fixed number h to powers of two 22.

– The proposed Verify does not allow us to verify the aggregated share. Recent
advancements in composable zero-knowledge proofs [2,8] might enable us to
build composable and recursive proofs that can replace the Verify function-
ality.

– As was mentioned, BLS signatures are aggregatable when the messages to
be signed are identical; however, when combining different shares we can
not leverage this feature. Adopting BLS signature to our scheme to be used
instead of ECDSA signature would be highly of interest.

– Efficiently designing a trustless distributed RSA modulus generation has its
long literature [14,15,10]. However, RSA safe prime modulus generation [3]
has not been fully studied yet which can be another future contribution.

Acknowledgment

We like to express our gratitude to the Ethereum Foundation (Grant ID FY22-
0719) and Aquanow for their generous support, which made this research pos-
sible. Additionally, we appreciate Professor Shahram Khazaei for his valuable
comments and guidance.

21 The average of Ethereum block size is almost 170, 000 bytes [48] and to store 64
aggregated attestations we need 3, 584× 64 = 229, 376 bytes.

22 In practice, we can almost always choose four as the generator g and simplify the
arithmetic operations even more.

20 Khajehpour et al.

References

1. Abou Jaoude, J., Saade, R.G.: Blockchain applications–usage in different domains.
Ieee Access 7, 45360–45381 (2019)

2. Albrecht, M.R., Cini, V., Lai, R.W., Malavolta, G., Thyagarajan, S.A.: Lattice-
based snarks: Publicly verifiable, preprocessing, and recursively composable. In:
Annual International Cryptology Conference. pp. 102–132. Springer (2022)

3. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Annual
International Cryptology Conference. pp. 417–432. Springer (2002)

4. Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O., Tamari,
R., Yakira, D.: A fair consensus protocol for transaction ordering. In: 2018 IEEE
26th International Conference on Network Protocols (ICNP). pp. 55–65. IEEE
(2018)

5. Babel, K., Ji, Y., Juels, Ari Kelkar, M.: Prof: Fair transaction-ordering
in a profit-seeking world (2023), https://initc3org.medium.com/

prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086

6. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: International Conference on the Theory and Application
of Cryptographic Techniques (1997)

7. Bebel, J., Ojha, D.: Ferveo: Threshold decryption for mempool privacy in bft net-
works. Cryptology ePrint Archive (2022)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. Algorithmica 79, 1102–1160 (2017)

9. Boneh, D.: The decision diffie-hellman problem. In: International algorithmic num-
ber theory symposium. pp. 48–63. Springer (1998)

10. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Annual in-
ternational cryptology conference. pp. 425–439. Springer (1997)

11. Burdges, J., Feo, L.D.: Delay encryption. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 302–326. Springer
(2021)

12. Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D.,
Sin, J., Wang, Y., Zhang, Y.X.: Combining ghost and casper. arXiv preprint
arXiv:2003.03052 (2020)

13. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability
of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. pp. 154–167 (2016)

14. Chen, M., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., Shelat, A., Cohen, R.:
Multiparty generation of an RSA modulus. Journal of Cryptology 35(2), 12 (2022)

15. Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., Shelat,
A., Venkitasubramaniam, M., Wang, R.: Diogenes: Lightweight scalable RSA mod-
ulus generation with a dishonest majority. In: 2021 IEEE Symposium on Security
and Privacy (SP). pp. 590–607. IEEE (2021)

16. Chiang, J.H.y., David, B., Eyal, I., Gong, T.: FairPoS: Input Fairness in
Permissionless Consensus. In: Bonneau, J., Weinberg, S.M. (eds.) 5th Con-
ference on Advances in Financial Technologies (AFT 2023). Leibniz In-
ternational Proceedings in Informatics (LIPIcs), vol. 282, pp. 10:1–10:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2023). https://doi.org/10.4230/LIPIcs.AFT.2023.10, https://drops.dagstuhl.

de/entities/document/10.4230/LIPIcs.AFT.2023.10

https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://initc3org.medium.com/prof-fair-transaction-ordering-in-a-profit-seeking-world-b6dadd71f086
https://doi.org/10.4230/LIPIcs.AFT.2023.10
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.10
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2023.10

A Mempool Encryption Scheme for Ethereum via MDE 21

17. Cline, D., Dryja, T., Narula, N.: Clockwork: An exchange protocol for proofs of
non front-running

18. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE Symposium on Security
and Privacy (SP). pp. 910–927. IEEE (2020)

19. Doweck, Y., Eyal, I.: Multi-party timed commitments. arXiv preprint
arXiv:2005.04883 (2020)

20. Flashbots: Mev-explore pre-merge (2023), https://explore.flashbots.net
21. Gailly, N., Melissaris, K., Romailler, Y.: tlock: practical timelock encryption from

threshold bls. Cryptology ePrint Archive (2023)
22. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.

In: Proceedings of the forty-fifth annual ACM symposium on Theory of computing.
pp. 467–476 (2013)

23. Kavousi, A., Abadi, A., Jovanovic, P.: Timed secret sharing. Cryptology ePrint
Archive (2023)

24. Kavousi, A., Le, D.V., Jovanovic, P., Danezis, G.: Blindperm: Efficient mev mit-
igation with an encrypted mempool and permutation. Cryptology ePrint Archive
(2023)

25. Khalil, R., Gervais, A., Felley, G.: Tex-a securely scalable trustless exchange. Cryp-
tology ePrint Archive (2019)

26. Koc, C.K.: High-speed RSA implementation. Tech. rep., Technical Report TR-201,
RSA Laboratories (1994)

27. Liu, Y., Wang, Q., Yiu, S.M.: Towards practical homomorphic time-lock puzzles:
Applicability and verifiability. Cryptology ePrint Archive (2022)

28. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and appli-
cations. In: Annual International Cryptology Conference. pp. 620–649. Springer
(2019)

29. McLaughlin, R., Kruegel, C., Vigna, G.: A large scale study of the Ethereum
arbitrage ecosystem. In: 32nd USENIX Security Symposium (USENIX Security
23). pp. 3295–3312 (2023)

30. Momeni, P., Gorbunov, S., Zhang, B.: Fairblock: Preventing blockchain front-
running with minimal overheads. In: International Conference on Security and
Privacy in Communication Systems. pp. 250–271. Springer (2022)

31. Orup, H.: Simplifying quotient determination in high-radix modular multiplication.
In: Proceedings of the 12th Symposium on Computer Arithmetic. pp. 193–199.
IEEE (1995)

32. Osmosis: The osmosis blockchain is a decentralized network, ran by 100+ validators
and full nodes, with many front-ends and development teams on it. explore our docs
and examples to quickly learn, develop & integrate with the osmosis blockchain.
(2022), https://docs.osmosis.zone/overview/

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Advances in Cryptology-EUROCRYPT’99: International Conference
on the Theory and Application of Cryptographic Techniques Prague, Czech Re-
public, May 2–6, 1999 Proceedings 18. pp. 223–238. Springer (1999)

34. Raun, C., Estermann, B., Zhou, L., Qin, K., Wattenhofer, R., Gervais, A., Wang,
Y.: Leveraging machine learning for bidding strategies in miner extractable value
(mev) auctions. Cryptology ePrint Archive (2023)

35. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

https://explore.flashbots.net
https://docs.osmosis.zone/overview/

22 Khajehpour et al.

36. Rondelet, A., Kilbourn, Q.: Threshold encrypted mempools: Limitations and con-
siderations. arXiv preprint arXiv:2307.10878 (2023)

37. Sekar, V.: Preventing front-running attacks using timelock encryption. Ph.D. the-
sis, University College London (2022)

38. Seurin, Y.: New constructions and applications of trapdoor ddh groups. In: Public-
Key Cryptography–PKC 2013: 16th International Conference on Practice and The-
ory in Public-Key Cryptography, Nara, Japan, February 26–March 1, 2013. Pro-
ceedings 16. pp. 443–460. Springer (2013)

39. Shutter-Network: Introducing shutter network - combating front running and mali-
cious mev using threshold cryptography (2021), https://blog.shutter.network/
introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/

40. Sikka: Sikka projects (2022), https://sikka.tech/projects/
41. Srinivasan, S., Loss, J., Malavolta, G., Nayak, K., Papamanthou, C., Thyagara-

jan, S.A.: Transparent batchable Time-lock Puzzles and Applications to Byzantine
Consensus. In: IACR International Conference on Public-Key Cryptography. pp.
554–584. Springer (2023)

42. Stengele, O., Raiber, M., Müller-Quade, J., Hartenstein, H.: Ethtid: Deployable
threshold information disclosure on ethereum. In: 2021 Third International Con-
ference on Blockchain Computing and Applications (BCCA). pp. 127–134. IEEE
(2021)

43. Tasatanattakool, P., Techapanupreeda, C.: Blockchain: Challenges and applica-
tions. In: 2018 International Conference on Information Networking (ICOIN). pp.
473–475. IEEE (2018)

44. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,
D.: Verifiable timed signatures made practical. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1733–1750
(2020)

45. Toni, W.: Ethereum censorship dashboard (2024), https://censorship.pics/
46. Woetzel, C.: Secret network: A privacy-preserving secret contract & decentralized

application platform. Accessed: Jan 27 (2022)
47. Yang, S., Zhang, F., Huang, K., Chen, X., Yang, Y., Zhu, F.: SoK: MEV counter-

measures: Theory and practice. arXiv preprint arXiv:2212.05111 (2022)
48. ycharts.com: Ethereum average block size (i:ebs) (2023), https://ycharts.com/

indicators/ethereum_average_block_size

49. Zhang, H., Merino, L.H., Estrada-Galinanes, V., Ford, B.: Flash freezing flash boys:
Countering blockchain front-running. In: 2022 IEEE 42nd International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW). pp. 90–95. IEEE
(2022)

50. Zhang, H., Merino, L.H., Qu, Z., Bastankhah, M., Estrada-Galiñanes, V., Ford,
B.: F3b: a low-overhead blockchain architecture with per-transaction front-running
protection. In: 5th Conference on Advances in Financial Technologies (AFT 2023).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2023)

https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://blog.shutter.network/introducing-shutter-network-combating-frontrunning-and-malicious-mev-using-threshold-cryptography/
https://sikka.tech/projects/
https://censorship.pics/
https://ycharts.com/indicators/ethereum_average_block_size
https://ycharts.com/indicators/ethereum_average_block_size

A Mempool Encryption Scheme for Ethereum via MDE 23

A Lemmas

Lemma 1. For every x ∈ N and N ∈ N, xN mod N2 = (x mod N)N

mod N2.

Proof. Assume x = kN + r for k ∈ N, 0 ≤ r < N . Then,

xN mod N2 = (kN + r)N mod N2 = rN+

rN−1 × kN ×N + ... (kN)N mod N2

= rN mod N2 = (x mod N)N mod N2

Lemma 2. Given a cyclic group Gc, its generator g, and an arbitrary element
x ∈ Gc, if x

α = 1, then either gcd(α, |Gc|) ̸= 1 or x is the identity element.

Proof. If x is the identity element, then clearly xα = 1 for any α. There-
fore, assume otherwise. Then, ordGc

(x) should divide α. Additionally, ordGc
(x)

must divide |Gc| according to the Lagrange theorem. Therefore, gcd(α, |Gc|) ≥
ordGc(x) > 1

Lemma 3. Given a cyclic group Gc, its generator g, and arbitrary elements
x, y ∈ Gc such that xα = yβ, if gcd(|Gc|, d) = 1 and d divides both α and β, then
xα/d = yβ/d.

Proof. We have xαy−β = (xα/dy−β/d)d = 1. Via the result of Lemma 2 and con-
sidering the fact that d and |Gc| are coprime, we can conclude that xα/dy−β/d = 1
and finally xα/d = yβ/d

Lemma 4. Assume g is a generator of the cyclic group Gc. For an element
y ∈ Gc where gβ = yα such that α|β, then the discrete logarithm of y in Gc will
be β/α if gcd(α, |Gc|) = 1.

Proof. Since α|β, then there exists some k such that gkα = yα. Therefore,
gkαy−α = 1 and (gky−1)α = 1. Finally, since gcd(α, |Gc|) = 1, via the result of
Lemma 1 we can conclude that gky−1 = 1. Therefore, y = gβ/α

Lemma 5. Assume N is an RSA modulus. With finding a non-trivial square
root of identity in Z∗

N an attacker can defactor N and break the RSA assumption.

Proof. Assume x ∈ ZN∗ is the square root of identity which means that x2 = 1
mod N . Therefore, (x − 1)(x + 1) = 0 mod N . Additionally, we know that
x ̸= ±1. Consequently, factors of N can be computed via gcd(x + 1, N) and
gcd(x− 1, N).

Lemma 6. Given an RSA modulus N in which the RSA strong assumption is
held, and y ∈ ZN∗ , no PPT algorithm can find x ∈ ZN∗ and e′ such that xe = ye

′

and gcd(e, e′) = 1 for a given e.

Proof. Proof by contradiction: Assume an adversary could find x and e′ such
that xe = ye

′
where gcd(e, e′) = 1. Therefore, there are some a and b such that

ea + e′b = 1. Consequently, xbe = ybe
′
= y1−ea =⇒ (xbya)e = y. Therefore,

the attacker can find the e-th root of y, which is xbya, and break the RSA strong
assumption in N .

24 Khajehpour et al.

Lemma 7. Given an RSA safe prime modulus N = p′q′ such that p′ = 2p + 1
and q′ = 2q + 1 for p, q sufficiently large prime numbers, assume e and α are
in N such that e < p, q, e < α, and gα = ue for an arbitrary u ∈ JN and g a
generator of JN . Then, either e must divide α or the strong RSA assumption in
JN will be broken.

Proof. Assume d ← gcd(e, α) and d′ ← gcd(d, |JN |). We know that d′ must be
less than e; accordingly, it only can get the values 2 or 1. Below, each case is
analyzed separately:

– d′ = 1: Via Lemma 3 we can assume that d = 123. Then, given y ← g and
e← e, x← u and e′ ← α are found such that xe

′
= ye where gcd(e, e′) = 1

which contradicts the strong RSA assumption according to Lemma 6
– d′ = 2: Assume d ← 2kd̄ and gdω = udγ such that gcd(d̄, |JN |) = 1 and
gcd(ω, γ) = 1; therefore, via Lemma 3 we can assume that d̄ = 1. Conse-

quently, g2
kω = u2

kγ and therefore (gωu−γ)2
k

= 1. Because g is the genera-
tor, there is some ρ such that gρ = gωu−γ . Since ordJN (g) = |JN | = 2pq,
there must be some k′ that 2kρ = k′2pq. Thus, 2ρ = k′/2k−12pq = k′′2pq,
and finally g2ρ = (gωu−γ)2 = 1. Therefore, (gω + uγ)(gω − uγ) = 0. Clearly,
if non of the gω + uγ and gω − uγ are zero, we could find two non-trivial
factors of N via gcd(N, gω ± uγ). Otherwise:
• gω = uγ : Considering y ← g, e← γ, e′ ← ω, and x← u using Lemma 6

we can break the RSA strong assumption in JN .
• gω = −uγ : Since gcd(ω, γ) = 1, at least one of ω or γ must be odd.
Without loss of generality, assume γ is odd. Then, gω = −uγ = (−u)γ .
Again, via Lemma 6, assuming y ← g, e ← γ, e′ ← ω, and x ← −u we
could break the RSA strong assumption. For the case that ω is odd, we
can use the equation −gω = uγ and reach the same contradiction.

Lemma 8. There is an isomorphism Z∗
N × ZN

∼
= Z∗

N2 [33].

Lemma 9. For the group F← {(1 +N)x mod N2 | x ∈ ZN} and ZN there is
an isomorphism F ∼

= ZN .

Proof. First

(1 +N)x mod N2 = 1 +Nx+ · · ·+Nx mod N2 = 1 +Nx,

Then, we define the isomorphism ψ : F→ ZN such that:

ψ(1 +N)x = x.

Clearly, ψ is bijective. Additionally:

ψ((1 +N)x+y) = x+ y = ψ((1 +N)x) + ψ((1 +N)y),

which shows that ψ is an isomorphism between F and ZN

23 Via taking e as e× d′/d and α as α× d′/d

A Mempool Encryption Scheme for Ethereum via MDE 25

Lemma 10. For every odd N ∈ N,
(
1+N
N2

)
= +1.

Proof. (
1 +N

N2

)
=

(
1 +N

N

)
×

(
1 +N

N

)
=

(
1 +N

N

)2

= +1.

B Basic Definitions

Definition 9. Statistical Distance We show the statistical distance between
two random variables X and Y with ∆(X,Y) which is coming from the following
equation:

∆(X,Y) =
∑
a∈D

|Pr[X = a]− Pr[Y = a]|,

where X and Y are both in the domain D.

Definition 10. Statistically Indistinguishable Two random variables X and
Y in domain D are said to be statistically indistinguishable by parameter λ if:

∆(X,Y) = negl(λ).

Definition 11. Computationally Indistinguishable Two random variables
X and Y in domain D are said to be computationally indistinguishable by the
parameter λ if for every PPT algorithm D:

Pr

 b← {0, 1},
D(α) = b if b = 0 : α←$ X

else : α←$ Y

 ≤ 1

2
+ negl(λ).

We show computational indistinguishability via X ≈c Y

Definition 12. Interactive Proof of Argument Π = (P, V) is an interac-
tive proof of argument for the language L for a PPT algorithm V in the size of
elements in L if:

1. Completness: If x ∈ L, Pr[(P, V)(x) = accept] = 1.
2. Soundness: If x /∈ L for every prover P ∗, Pr[(P ∗, V) = accept] ≤ negl(|x|).

Definition 13. Zero-knowledge An interactive protocol Π = (P, V) for the
language L given view(P, V)(x) as the transcript of executing Π between P and
V is said to be zero-knowledge if there exists a PPT algorithm S (Simulator)
such that for the two probability ensembles view(P, V)(x) and S(x) we have
view(P, V)(x) ≈c S(x).

Definition 14. Zero-knowledge Interactive Protocol The protocol Π(P, V)
is zero-knowledge interactive if it is complete, sound, and zero-knowledge.

26 Khajehpour et al.

Definition 15. Honest Verifier Interactive Zero-knowledge An Interac-
tive zero-knowledge protocol Π = (P, V) is considered honest verifier if in the
transcript between P and V , view(P, V)(x) the randomness being used by V is
also included.

Definition 16. Proof Of Knowledge Given LR = {x : ∃ w s.t. R(x,w) =
accept} for a polynomial-time relation R and language L, the protocol Π =
(P, V) is a proof of knowledge if there exists a PPT extractor algorithm E such
that ∀x∈L R(x, EP (x)) = accept.

Definition 17. Safe RSA Modulus The number N = pq where p and q are
prime numbers is a safe RSA number if p = 2p′+ 1 and q = 2q′+ 1 that both p′
and q′ are also large enough prime numbers.

C Cryptographic Assumptions

Assumption 1 Strong RSA[6] Given an RSA modulus N , and e ∈ Zϕ(N)∗

when e > 2, no PPT algorithm can efficiently find the value of m from c = me

mod N .

Assumption 2 Strong Sequential Squaring[28] Given N a safe RSA mod-
ulus, g a generator of JN , for any PPT A = (A1,A2) which the depth of A2 is
bounded by T ϵ(|N |) from above where T is a polynomial and 0 < ϵ < 1:

Pr

τ ← A1(N,T, g)

x←$ ⟨g⟩, b←$ {0, 1},
A2(x, y, τ) = b if b = 0 :

y ← x2
T

mod N
else : y ←$ ⟨g⟩

≤ 1

2
+ negl(|N |).

Assumption 3 Decisional Composite Residuosity (DCR)[33] Given a
RSA modulus N and any PPT adversary A, the decisional composite residu-
osity assumption over Z∗

N2 states that:

Pr

x←$ ZN∗ ,
b←$ {0, 1},

A(N, y) = b if b = 0 :
y ← xN mod N2

else : y ←$ Z∗
N2

≤ 1

2
+ negl(|N |).

A Mempool Encryption Scheme for Ethereum via MDE 27

D Modified Linearly Homomorphic Time-lock Puzzle

We have borrowed the syntax of the homomorphic time-lock puzzle from [27,28]:

Definition 18. Homomorphic Time-Lock Puzzle (HTLP) Let Cλ for the
security parameter λ ∈ N be a class of circuits and S a finite domain. Then, a
homomorphic time-lock puzzle is a tuple (Setup,Gen,Solve,Aggregate) such that:

– Setup(1λ, T): A probabilistic algorithm that outputs the system’s public pa-
rameter, pp, in a trusted/or distributed fashion according to the chosen delay
value T .

– Gen(s, pp): A probabilistic algorithm that, on receiving the system’s public
parameters pp and any arbitrary s ∈ S, outputs a puzzle z.

– Aggregate(C, z0, z1, .., zn, pp): A probabilistic algorithm that given a circuit
C ∈ Ck, a set of puzzles z0, .., zn, and system’s public parameters pp, outputs
an aggregated puzzle z̄ according to C.

– Solve(z, pp): A deterministic algorithm which receives a puzzle z and system’s
public parameters pp and outputs a solution s ∈ S or ⊥.

Definition 19. HTLP Correctness The HTLP protocol Π = (Setup, Gen,
Solve, Aggregate) is correct if given Cλ a class of circuits, for all polynomi-
als T in λ, all circuits c ∈ Cλ, all inputs (s0, .., sn) ∈ Sn, all pp in the sup-
port of Setup(1λ, T), and all zi in the support of Π.Gen(si, pp), assuming z̄ ←
Π.Aggregate(c, z0, .., zn, pp), the running time of the algorithm Π.Solve(1λ, z̄) is
bounded with p0(λ, T) for a fixed polynomial p0 and for s̄← Π.Solve(z̄, pp):

s̄ = c(s0, .., sn). (2)

Definition 20. HTLP Security The HTLP protocol Π = (Setup, Gen, Solve,
Aggregate) is secure if for any PPT adversary A = (A1,A2) which the depth of
A2 is bounded by T ϵ(λ) from above where T is a polynomial and 0 < ϵ < 1 such
that:

Pr

pp← Π.Setup(1λ, T),

A2(z, τ) = b (m0,m1, τ)← A1(1
λ, T, pp),

b←$ {0, 1}
z ← Π.Gen(mb, pp)

≤ 1

2
+ negl(λ).

Definition 21. HTLP Compactness Given Cλ a class of circuits, the HTLP
protocol Π = (Setup, Gen, Aggregate, Solve) is compact if for all polynomials
T in λ, all circuits C ∈ Cλ, all inputs (s0, .., sn) ∈ Sn, all pp in the support
of Π.Setup(1λ, T), and all zi in the support of Π.Gen(si, pp), assuming z̄ =
Π.Aggregate(C, z0, .., zn, pp) we have:

– The running time of the algorithm Π.Aggregate(C, z0, .., zn, pp) is bounded
by p0(λ, |C|) for a fixed polynomial p0.

28 Khajehpour et al.

– The size of z̄ is bounded by p1(λ, |C(s0, .., sn)|) for a fixed polynomial p1.

Algorithm 2 Modified Linearly Homomorphic Time-lock Puzzle (ΠMTLP)

– Setup(1λ, T): Outputs system’s public parameters pp ← (N, g, T, h). N is a
safe RSA number with |N | = 2λ, g is a generator of the group JN , h ←
g2

T

mod N , and T is the delay parameter (minimum number of modular
squaring needed for solving the puzzle).

– Gen(s, pp): For the secret s ∈ ZN , samples the random numbers r, k ←$ ZN

and outputs (u, v, y, w) such that: u← gr+s mod N , v ← h(r+s)N (1+N)s

mod N2, y ← gk mod N , and w ← hkN (1 +N)r mod N2.
– Aggregate((u1, v1, y1, w1), ..(un, vn, yn, wn), pp): Returns (ū, v̄, ȳ, w̄) for ū←
Π ui mod N , v̄ ← Π vi mod N2, ȳ ← Π yi mod N , and w̄ ← Π wi

mod N2.
– Solve((u, v, y, w), pp): Calculates x← u2

T

mod N and sets

s← v/xN mod N2 − 1

N
. If s ∈ ZN returns s, otherwise returns ⊥.

Note that with having the puzzle z = (u, v, y, w) as the input, the Solve procedure
does not use y and w. We will later see their usage when constructing our MDE.
Additionally, to eliminate the need for trust during the Setup phase, we can use
an untrusted distributed RSA modules generation protocol using MPC [3]. Now,
let’s prove the security and correctness of ΠMTLP:

Theorem 4. Let N be a safe RSA modulus. If the strong sequential squaring
assumption is held in JN and the DCR assumption is held in Z∗

N2 , then ΠMTLP is
a time-lock puzzle entitled to the correctness, security, and compactness require-
ments.

Proof. We start by proving the correctness first.
Correctness: Lemma 11 directly implies the correctness condition.

Lemma 11. Given the puzzle (u, v, y, w) ← ΠMTLP.Gen(s, pp) for s ∈ N, the
output of ΠMTLP.Solve(u, v) will be s mod N .

Proof.

x = u2
T

mod N = (gr+s)2
T

mod N = g(r+s)2T mod N.

According to Lemma 1:

xN mod N2 = (x mod N)N mod N2.

Assume s = qN + k for some q ∈ N and k < N . Therefore:

v/xN mod N2 = h(r+s)N (1 +N)s/g(r+s)N2T mod N2

= (1 +N)s mod N2 = 1 + sN mod N2 = 1 + kN.

Finally:
v/xN mod N2 − 1

N
=
kN

N
= s mod N.

A Mempool Encryption Scheme for Ethereum via MDE 29

Security: To prove the security, we first prove the following lemma:

Lemma 12. For any PPT adversary A = (A1,A2) which the depth of A2 is
bounded by T ϵ(λ) from above where λ is the security parameter, T is a polynomial
and 0 < ϵ < 1:

Pr

pp← ΠMTLP.Setup(1

λ, T),
(s, τ)← A1(1

λ, T, pp),
A2(zb, τ) = b b←$ {0, 1},

z0 ← ΠMTLP.Gen(s, pp),
z1 ←$ JN × JN2

×JN × JN2

≤ 1

2
+ negl(λ).

The proof of this lemma is in Appendix E. In other words, we show that the tuple
(u, v, y, w) does not reveal anything about the secret s. Now, it is time to prove
the main security theorem. We do this by contradiction. Assume the adversary
A = (A1,A2) breaks the security of ΠMTLP. Then we construct a new adversary
A = (A1,A2) to contradict the result of Lemma 12. A1 on receiving (1λ, T, pp)
calls (m0,m1, τ) ← A1(1

λ, T, pp). Without loss of generality, assume A2 can
answer the experiment correctly with non-negligible advantage σ when it is called
by the message m0. Then, A1 returns (m0, τ). Finally, A2 after receiving (zb, τ)
outputs whatever A2(zb, τ) returns. Observe (A1,A2) has at least σ/2 which
proves the security of ΠMTLP.
Compactness: It is easy to verify that the size of the aggregated puzzle via
Aggregate function is polynomial to the circuit length and will not increase by
the number of puzzles. Additionally, note that Aggregate runs in polynomial time
to the circuit size.

E Proof of Lemma 12

Proof. Via a set of hybrids, we have:
Hybrid H0: We begin by setting H0 as the original scheme and sampling z1
from H0. Hence, z1 ← ΠMTLP.Gen(s, pp). Clearly, no adversary can distinguish
between z0 and z1 since they share the exact same distribution.
Hybrid H1: In this hybrid, the tuple (u, v, y, w) is constructed as r, s ←$ ZN ,
k ←$ ZN/2, u ← gr+s mod N , v ← h(r+s)N (1 + N)s mod N2, y ← gk

mod N and w ← cN (1 + N)r mod N2 for c ←$ JN . One can verify that
the only difference from H0 is that w instead of hkN (1 + N)r mod N2 is
w ← cN (1 + N)r mod N2, but for the rest it is the same as H0. Via a re-
duction against the strong sequential squaring assumption in JN we want to
show that given z0 ←$ H0 and z1 ←$ H1 there can not be any efficient dis-
tinguisher A = (A1,A2) who can succeed in distinguishing between z0 and z1.
We now construct the distinguisher R = (R1,R2) who breaks the strong se-
quential squaring assumption as follows. R1 on receiving (N,T, g) calculates

30 Khajehpour et al.

h ← g2
T

mod N, pp ← (N, g, T, h) and calls (s, τ ′) ← A1(1
λ, T, pp), then, re-

turns τ ← (s, pp, τ ′). Next, the challenger calls R2 with (x, y, (s, pp, τ ′)). Then,
R2 constructs ẑ ← (û, v̂, ŷ, ŵ) where r̂,←$ ZN , û← gr̂+s, v̂ ← h(r̂+s)N (1 +N)s

mod N2, ŷ ← x, and ŵ ← (yN mod N2)(1+N)r̂ mod N2. Now, consider two
following cases:

– x ←$ JN , y ← x2
T

mod N : The tuple (N, g, g2
T

, x, y) is a squared tuple.

Therefore, (û, v̂, ŷ, ŵ) is a sample from H0 since ŷ = x and ŵ = xN2T (1 +
N)r̂ mod N2.

– x ←$ JN , y ←$ JN : (N, g, g2
T

, x, y) is a uniform tuple and, consequently,
(û, v̂, ŷ, ŵ) is of the form H1 since ŵ = cN (1 +N)r̂ mod N2 for c = y.

Finally, R2 invokes A2(ẑ, τ
′) and outputs whatever A2 returns. Therefore, R’s

advantage in breaking the sequential squaring assumption in JN is equal to A’s
advantage in distinguishing between H0 and H1.
Hybrid H2: In this hybrid, the tuple (u, v, y, w) is constructed such that r, s←$

ZN , u ← gr+s mod N , v ← h(r+s)N (1 + N)s mod N2, y ←$ JN and w ←
cN (1+N)r mod N2 for c ∈ JN . The only difference between H1 and H2 is that
y is replaced with a uniformly chosen element from JN . Clearly, the distribution
of H2 and H1 are identical.
Hybrid H3: Now, in this hybrid, for the tuple (u, v, y, w) we have r, s←$ ZN , c
←$ JN2 , u ← gr+s mod N, v ← h(r+s)N (1 +N)s mod N2, y ←$ JN , w ←
c(1 + N)r mod N2. The only difference between H2 and H3 is the way w
is constructed. We will focus on the case where z0 is sampled according to H3

and z1 is sampled from H2. We prove the an adversary A = (A1,A2) who can
distinguish between z0, and z1 will break the DCR assumption over Z∗

N2 . Via
proof by contradiction, we construct the PPT adversary R such that on receiving

the input (N, y) chooses T and constructs g ←$ JN and h ← g2
T

mod N
and sets pp ← (N, g, T, h). Then, runs (s, τ ′) ← A1(1

λ, T, pp). Finally, calls
A2(z, τ) and returns the output of A2 where z = (û, v̂, ŷ, ŵ), r̂ ←$ ZN , û← gr̂+s

mod N, v̂ ← hN(r̂+s)(1+N)s mod N2, ŷ ←$ JN , w ← y(1+N)r̂ mod N2. Now,
we show that the inputs of A2 are always according to either H2 or H3:

– x ←$ Z∗
N , y = xN mod N2: Note that with probablity almost 1/2, x ∈ JN .

In that case, ŵ will be xN (1 + N)r mod N2 which has exactly the same
distribution as H2.

– y ←$ Z∗
N2 : Similarly, y ∈ JN2 with 1/2 probability. Then, ŵ = y(1 + N)r̂

mod N2 for a randomly chosen y from JN2 with 1/2 chance which is in the
form of H3.

Therefore, assuming the advantage of A is σ, R will have σ/2 advantage in
breaking DCR assumption over Z∗

N2 .
Hybrid H4: In this hybrid, w is replaced with a randomly chosen element from
JN2 . Therefore, H4 is consist of (u, v, y, w) for r, s←$ ZN , u← gr+s mod N, v ←
h(r+s)N (1+N)s mod N2, y ←$ JN , and w ←$ JN2 . Then, we first prove the be-
low lemma:

A Mempool Encryption Scheme for Ethereum via MDE 31

Lemma 13. For r ∈ ZN call Xr and Y as random variables which represent
x = c(1+N)r mod N2 for c←$ JN2 and y ←$ JN2 respectively. Then, Xr and
Y are statistically indistinguishable.

Proof. First, we know that gcd((1 + N)r, N2) = 1. Additionally,
(

(1+N)r

N2

)
=

+1 according to the result of the Lemma 10 which implies that (1 +N)r ∈ JN2 .
Therefore (1 +N)r has an inverse element in JN2 and consequently, given x ∈
JN2 and r ∈ ZN , there exist a unique c ∈ JN2 such that x = c(1+N)r mod N2.
Thus, for every α ∈ JN2 we have:

Pr
c∈JN2

[c(1 +N)r mod N2 = a| r] = 1

|JN2 |
.

Therefore:

∆(Xr, Y) =
1

2

∑
a∈Z∗

N2

∣∣∣Pr[Xr = a]− Pr[Y = a]
∣∣∣

=
1

2

∑
a∈JN2

∣∣∣ Pr
c∈JN2

[c(1 +N)r mod N2 = a| r]− 1

|JN2 |

∣∣∣
=

1

2

∑
a∈JN2

∣∣∣ 1

|JN2 |
− 1

|JN2 |

∣∣∣ = 0.

As mentioned, the only difference between H3 and H4 is in instantiating w.
Given the random variables Xr and Y as the distribution of w in H3 and H4

respectively, the result of Lemma 13 directly implies that the hybrids H4 and H3

are statistically indistinguishable.
Hybrid H5: In this hybrid, the tuple (u, v, y, w) is constructed as r, s←$ ZN , c←$

JN , u← gr+s mod N, v ← cN (1+N)s mod N2, y ←$ JN , w ←$ JN2 . The
only difference with H4 is the way v is constructed. Instead of h(r+s)N (1 +N)s

mod N2 it is sampled as cN (1 + N)s mod N2 for a random c ∈ JN . We
will show that if we sample z0 ←$ H4 and z1 ←$ H5, then an efficient dis-
tinguisher A = (A1,A2) between z0 and z1 with the advantage σ, has a non-
negligible advantage in distinguishing a squaring tuple in JN . Similar to the
approach we designed between the hybrids H0 and H1, we use the attacker

R = (R1,R2) such that on receiving the tuple (N,T, g), R1 sets h ← g2
T

and
pp← (N, g, T, h). Then, calls (s, τ ′)← A1(1

λ, T, pp) and returns τ ← (s, pp, τ ′).
Then, R2 after receiving (x, y, h) samples the tuple z ← (û, v̂, ŷ, ŵ) such that
û ← x, v̂ ← yN (1 +N)s mod N2, ŷ ←$ JN , and ŵ ←$ JN2 . Finally, returns
the output of A2(z, τ

′). Now, we will show that with 5/8 probability, the inputs
to A2 are distributed according to either H4 or H5:

– x ←$ JN , y ← x2
T

mod N : Assume x = gα mod N for some α ∈ ZN .

Therefore, û = gα mod N and v̂ = gαN2T (1 + N)s mod N2. Since the
distribution of α is close to uniform distribution in ZN/2, and s also comes
uniformly from ZN , with probability 1/4, α ≥ s and we can write û as

32 Khajehpour et al.

g(α−s)+s and v̂ as g((α−s)+s)N2T (1 +N)s mod N2. Consequently, the tuple
(û, v̂, ŷ, ŵ) has identical distribution as H4 with probability 1/4.

– x←$ JN , y ←$ JN : Then û = x and v̂ = yN (1+N)s mod N2 for a randomly
chosen y from JN which clearly implies that (û, v̂, ŷ, ŵ) represents a sample
from H5.

Therefore, with probability 1/2×1/4+1/2 = 5/8, A2 is fed with proper inputs and
can produce σ advantage. Consequently, R must have at least 5σ/8 advantage to
break the strong sequential squaring assumption in JN .
Hybrid H6: Same as H3, we can use v ← c(1 + N)s mod N2 for c ←$ JN2

via a reduction against the DCR assumption in Z∗
N2 .

Hybrid H7: Similar to what we did for H4, according to Lemma 10 we can
replace v with a random sample from JN2 .
Hybrid H8: Finally, it is easy to conclude that there is no information about
the secret s left in u. Therefore, we sample u from JN .

F Proof of Theorem 1

Proof. Clearly, the scheme is public − coin since the verifier only broadcasts a
randomly chosen e. Additionally, we already know that ΠERP.Verify is a succinct
zero-knowledge argument of knowledge which guarantees that the exponent of u,
r + s is in ZN/n .
Correctness: The final step of Verify functionality in Algorithm 1 checks five
conditions which are easy to verify their correctness:

gα = g(r+s+k)e+x = (gr+sgk)e × gx = (uy)e × a,
gβ = g(r+s)e+t = (gr+s)e × gt = ue × τ ,

hαN (1 +N)β = h((r+s+k)e+x)N (1 +N)(r+s)e+t mod N =
h(r+s+k)eN (1 +N)(r+s)e mod N × htN (1 +N)x = (vw)eb.

Soundness: We now try to build an emulator E that will extract the witness
r + s from a potentially malicious prover P ∗. E rewinds P ∗ to line number 23
of Figure 5 until it gets two accepting transcripts (α1, β1, τ1) and (α2, β2, τ2) for
the challenges e1, e2 ←$ Z2λ . Such that gα1 = (uy)e1 × a, gα2 = (uy)e2 × a.
Now, we want to find the discrete log of uy. Assuming e1 > e2, take e

′ = e1−e2,
α′ = α1−α2, and β

′ = β1−β2. Therefore, gα1/gα2 = (uy)e1 × a/((uy)e2 × a) =
gα

′
= (uy)e

′
. Next, according to Lemma 7, e′ must divide α′. Therefore:

– If e′ is odd: Since e′ < p and e′ < q, gcd(e′, |JN |) will be one. Note that the
order of the JN (group generated by g) is ϕ(N)/2 = 2pq. Then, via Lemma 4,
E can extract the discrete log of u as α′/e′.

– If e′ is even: We can write e′ as 2dē. Then given k = α′/e′, gke
′
= (uy)e

′
=

gk2
dē = (uy)2

dē. Therefore, via Lemma 3 and given gcd(ē, |JN |) = 1 we

can say that gk2
d

(uy)−2d = 1. Additionally, there must be some ρ such that
gk(uy)−1 = gρ; therefore, ρ2d = k′ × |JN | = k′ × 2pq for some k′ since |g| =

A Mempool Encryption Scheme for Ethereum via MDE 33

|JN |. Then, 2d−1 should divide k′ since p and q are large prime numbers.
Therefore, we can write 2ρ as k′/2d−12pq = k′′2pq for some integer k′′ =
k′/2d−1. Subsequently, we can conclude that (gk(uy)−1)2 = (gρ)2 = g2ρ = 1.
Via Lemma 5, we know that gk(uy)−1 can be non-trivial with only negligible
probability. Consequently, it must be ±1, which implies that we can find the
discreet logarithm of uy, which is k.

Let d1 ← logg(u) and d2 ← logg(y). Therefore, so far, E could extract the
value of d1 + d2. Using α1 it can further find the value of x as well such that
gx = a. Via similar arguments, E can extract t. Additionally, following the result
of Lemmas 9 and 8, for F = {(1 + N)x | x ∈ ZN} we have Z∗

N × F
∼
= Z∗

N2 .
Note that the group h > is only a subgroup of Z∗

N with exactly 1/4 of the ele-
ments of Z∗

N . Therefore, we can write v as hv1N (1 + N)v2 lv mod N2, w as
hw1N (1+N)w2 lw mod N2, and b as hb1N (1+N)b2 lb mod N2 for some lv, lw
and lb ∈ Z∗

N2 such that for all i, j ∈ ZN , hiN (1 + N)j is co-prime to all of the

lv, lw and lb. Therefore, (vw)
e
1b = h((v1+w1)e1+b1)N (1+N)(v2+w2)e1+b2(lvlw)

e1 lb
mod N2 = hα1N (1 +N)β1 mod N2. It is easy to verify that (lvlw)

e1 lb must
be 1. Since the prover does not know e1 in advance, lvlw = lb = 1; therefore,
(vw)e1b = h((v1+w1)e1+b1)N (1+N)(v2+w2)e1+b2 = hα1N (1+N)β1 mod N2. As
a result, α1 = (v1 + w1)e1 + b1 and β1 = (v2 + w2)e1 + b2. Additionally, we
knew that α1 = (d1 + d2)e1 + x; thus, b1 = x and v1 + w1 = d1 + d2. Addi-
tionally, gβ1 = ue1τ which implies that β1 = d1e+ t. Finally, we can show that
d1e + t = (v2 + w2)e + b2, thus, d1 = v2 + w2 and b2 = t. Furthermore, E can
easily extract the value of v2 + w2 as well using β1. In conclusion, we showed
that E can extract the exponent of u and j in vw = hiN (1 +N)j mod N2 for
some i, and i has to be equal to logg(u).
Zero-knowledge: To show the zero-knowledge property, we use the method in-
troduced in [27]. The transcript of protocol between the prover and the verifier in
Verify consists of T = (a, b, τ, e, α, β). Now we build a simulator to re-construct
a new transcript T ′ = (a′, b′, e′, α′, β′, τ) such that α′ ←$ Z(N/2+N/n)×22λ , β

′ ←$

ZN/n×22λ , τ
′ = gβ

′
/ue

′
, a′ ← gα

′
/ue

′
, b← hα

′N (1+N)β
′
/ve

′
, e′ ←$ Z2λ which

is statistically indistinguishable from T with a set of hybrids:
Hybrid H0: It is the original transcript: a← gx, b← hxN (1 +N)t mod N2,
e← Z2λ , α← se+ x, β ← se+ t mod N, τ ← gt mod N .
Hybrid H1: Unlike the real transcript, sample α←$ [(r+ s+ k)e, (r+ s+ k)e+
(N/2 +N/n)× 22λ) and a← gα−(r+s+k)e. Clearly, H0 and H1 are statistically
indistinguishable.
Hybrid H2: Set a ← gα/(uy)e. It is easy to verify that this new transcript is
the same as H1.
Hybrid H3: This time, we extend the range of sampling α to α←$ Z(N/2+N/n)×22λ .
Then, we prove that the statistical distance between H2 and H3 is negligible. The
only difference between these two is α. Therefore, with having X as the random
variable of α in H2 and Y as the same variable in H3. We show that ∆(X,Y)
is negligible in parameter λ, as follows.

34 Khajehpour et al.

∆(X,Y) =
1

2

∑
α ∈ I1

1

(N/2 +N/n)× 22λ

+
1

2

∑
α ∈ I2

1

(N/2 +N/n)× 22λ
− 1

(N/2 +N/n)× 22λ

+
1

2

∑
α ∈ I3

1

(N/2 +N/n)× 22λ

=
1

(N/2 +N/n)× 22λ
× (r + s+ k)e

≤ 1

(N/2 +N/n)× 22λ
× (N/2 +N/n)× 2λ = 2−λ,

where I1 = [0, (r + s + k)e), I2 = [(r + s + k)e, (N/2 + N/n) × 22λ), and I3 =
[(N/2 +N/n)× 22λ, (r + s+ k)e+ (N/2 +N/n)× 22λ).
Hybrid H4: Similarly, sample β ←$ [(r+s)e, (r+s)e+N/n×22λ) and b← hα(1+
N)β−(r+s)e. It is easy to verify that H3 and H4 are statistically indistinguishable.
Hybrid H5: Set b← hαN (1+N)β/(vw)e and τ = gβ/ue This new transcript is
clearly the same as H4.
Hybrid H6: Finally, we extend the range of sampling α to β ←$ ZN/n×22λ .
Same as before, we can prove that the statistical distance between H5 and H6 is
negligible. The only difference between these two is β. Therefore, with having X
as the random variable of β in H5 and Y as the same variable in H3 below we
show that ∆(X,Y) is negligible in parameter λ as it is shown below:

∆(X,Y) =
1

2

∑
β∈I1

1

N/n× 22λ

+
1

2

∑
α∈I2

1

N/n× 22λ
− 1

N/n× 22λ

+
1

2

∑
β∈I3

1

N/n× 22λ

=
1

N/n× 22λ
× (r + s)e ≤ 1

N/n× 22λ
×N/n× 2λ

= 2−λ, (3)

where I1 = [0, (r+ s)e), I2 = [(r+ s)e, N/n× 22λ), and I3 = [N/n× 22λ, (r+
s)e+N/n× 22λ). Therefore, we proved that the real transcript T is statistically
indistinguishable from the transcript generated by the simulator, T ′.

G Proof of Theorem 2

Proof. Correctness: To the correctness of Theorem 2, assume there are n
number of shares with the extraction, and public keys eki = (ui, vi, yi, wi) and

A Mempool Encryption Scheme for Ethereum via MDE 35

pki, where ∀i Verify(n, (eki, pki), pp) = true, we can conclude that there ex-
ists ri, si, ki ∈ N where ri + si ∈ ZN/2n such that ui = gri+si , yi = gki

mod N, viwi = h(ri+si+ki)N (1 + N)ri+si mod N2 as the result of Theorem 1.
Let ek = (ū, v̄, ȳ, w̄) = Aggregate((ek1, pk1), .. (ekn, pkn)). Then, the output
of Solve(ek, pp) will be s̄ ← Π.Solve(z, pp) for z = (ūȳ, v̄w̄,⊥,⊥). Addition-
ally, according to Lemma 11, s̄ =

∑
ri + si mod N . Also, we know that

ri, si ∈ ZN/2n. Therefore,
∑
ri + si < ZN . Thus, Solve gives us

∑
ri + si.

Moreover, pk = g
∑

si,ri and consequently, pk = gsk. Finally, given a message
m ∈M, Decrypt((c1, c2), sk, pp) for (c1, c2) = Encrypt(m, pk, pp):

c2/c
sk
1 = m× pk r/gr×sk = m× gsk/gsk = m.

Security: We start by proving the security of MDE under non-adaptive
adversary setting via the below lemma. Later, through reduction, we will prove
that our scheme is also adaptively secure.

Lemma 14. MDE Non-Adaptive Security. Let the MDE protocol ΠMDE =
(Setup, Gen,Verify, Aggregate,Encrypt, Decrypt, Extract). Then, for every proba-
bilistic polynomial time adversary A = (A1,A2, A3) which the depth of A2 and
A3 are bounded by T ϵ(λ) from above where T is a polynomial, 0 < ϵ < 1, and
all n = p0(λ) for a fixed polynomial p0:

Pr

pp← ΠMDE.Setup(n, 1
λ, T),

((ek1, pk1) . . . (ekn−1, pkn−1),
τ1)← A1(T, pp, 1

λ),
(ekn, pkn)← ΠMDE.Gen(n, pp),

((m0,m1), τ2)←
A3(c, τ2) = b A2((ekn, pkn), τ1),

(ek, pk)←
ΠMDE.Aggregate((ek1, pk1)

. . . (ekn, pkn), pp),
b←$ {0, 1},

c← ΠMDE.Encrypt(mb, pk)

≤ 1

2
+ negl(λ).

The proof of Lemma 14 is in Appendix H. Next, to show the MDE’s security
under adaptive adversary, we prove it via contradiction. Assume there exist the
adversary A = (A1,A2,A3) who can break the security in the game of Defini-
tion 8 with non-negligible advantage σ. Then, we construct the adversary R =
(R1,R2,R3) to break the security in Lemma 14. First, R1 on receiving (T, pp, 1λ)
calls A1(T, pp, 1

λ) to receive τ1 and then generates n − 1 dummy shares via
∀ (eki, pki)← ΠMDE.Gen(n, pp). Subsequently, returns ((ek1, pk1), . . . , (ekn−1, pkn−1),
(skd, τ1)) for skd = Σi∈{1...n−1}(ri+si). Next, R2 on receiving ((ekn, pkn), (skd, τ1))

calls ((m0,m1), (êk1, p̂k1) . . . (êkn−1, p̂kn−1), τ2) ← A2((ekn, pkn), τ1). Since

36 Khajehpour et al.

∀i∈{1...n−1} ΠMDE.Verify(n, (eki, pki), pp) = True, therefore there is an extrac-
tor E which can extract the values of r̂i and ŝi that A2 used in generating
(êk, p̂k). Since R2 has access to the source code of A2 as well, it can run E
to find ŝk = Σi∈{1...n−1}r̂i + ŝi with probability 1 − δ where δ is negligible. Fi-

nally, R2 returns ((m0,m1), (ŝk, skd, τ2)). Next, when R3 is called with the inputs

(c, (ŝk, skd, τ2)), assuming c = (c0, c1), R3 constructs c̄ = (c̄0, c̄1) as c̄0 = c0 and

c̄1 = c1 × cŝk0 /c
skd
0 mod N . Finally, R3 returns the output of A3(c̄, τ2). The

advantage of R will be the non-negligible value (1− δ)σ which finishes the proof.

H Proof of Lemma 14

Proof. We start by stating another variant of the security for Algorithm 1 whose
proof is in Appendix I:

Lemma 15. Given a MDE protocol ΠMDE, for any PPT adversary A whose
depth is bounded by T ϵ(λ) from above where T is a polynomial, 0 < ϵ < 1, and
n = p0(λ) for a fixed polynomial p0:

Pr

pp← ΠMDE.Setup(n, 1

λ, T),
A(1λ, zb, pp) = b b←$ {0, 1},

z0 ← ΠMDE.Gen(n, pp),
z1 ←$ JN × JN2 × JN × JN2

≤ 1

2
+ negl(λ).

Lemma 15 shows that the tuple (ek, pk) is indistinguishable from a uniform
tuple for the bounded adversary A3. Following the result of Lemma 15, we can
replace (ekn, pkn) with a random sample from JN × JN2 × JN × JN2 . Therefore,
the tuple (ek, pk) also becomes indistinguishable from a random tuple for any A3.
It is obvious to show that the output of ΠMDE.Encrypt(m, pk, pp) will also remain
random which completes the proof.

I Proof of Lemma 15

Proof. Note that the main difference between Lemmas 12 and 15 is the sampling
range of s and r which are now instead from ZN/2n. Let σ be the advantage of
A in the experiment of Lemma 15. Then, using A, we construct the adversary
A = (A1,A2) that engages in the experiment of Lemma 12. A1 upon receiving
the (1λ, T, pp) returns a randomly generated s ←$ ZN/2n and an empty advice

τ ←⊥. Then, A2 on receiving (zb, τ) returns the output of A(1λ, zb, pp). It is easy
to verify that the advantage of A will be σ̄ = σ(1/2× 1/2n+ 1/2). Additionally,
the result of Lemma 12 shows that σ̄ = negl(λ). Therefore, σ(1/2×1/2n+1/2) =
negl(λ) = σ(1/4p(λ) + 1/2); thus, σ = negl(λ) × 4p(λ)/(1 + 2p(λ)) = negl(λ).
Consequently, there cannot be any adversary that succeeds in the experiment of
Lemma 15.

	A Mempool Encryption Scheme for Ethereum via Multiparty Delay Encryption

