
Breaking Parallel ROS: Implication for Isogeny and
Lattice-based Blind Signatures
Shuichi Katsumata1, Yi-Fu Lai2, Michael Reichle3

1PQShield and AIST
shuichi.katsumata@pqshield.com

2Ruhr-Universität Bochum
Yi-Fu.Lai@ruhr-uni-bochum.de

3ETH Zürich
michael.reichle@inf.ethz.ch

October 16, 2023

Abstract

Many of the three-round blind signatures based on identification protocols are only proven to be ℓ-
concurrently unforgeable for ℓ = polylog(λ). It was only recently shown in a seminal work by Benhamouda
et al. (EUROCRYPT’21) that this is not just a limitation of the proof technique. They proposed an
elegant polynomial time attack against the ℓ-concurrently unforgeability of the classical blind Schnorr
protocol for ℓ = poly(λ). However, there are still many blind signatures following a similar recipe to blind
Schnorr where the attack by Benhamouda et al. does not apply. This includes for instance the isogeny-
based blind signature CSI-Otter by Katsumata et al (CRYPTO’23), the lattice-based blind signatures
Blaze+ by Alkeilani et al (ACISP’20) and BlindOR by Alkeilani et al (CANS’20).

In this work, we provide a simple and novel attack on blind signatures based on identification protocols
performing parallel repetition to reduce the soundness error. Our attack translates to a polynomial time
break for the ℓ-concurrent unforgeability of CSI-Otter, Blaze+, and BlindOR for ℓ = poly(λ). More for-
mally, we define an intermediate problem called Parallel Random inhomogeneities in an Overdetermined
Solvable system of linear equations (pROS) problem and show that an attack against pROS implies an
attack to the above blind signatures. One takeaway of our finding is that while parallel repetition allows
to exponentially reduce the soundness error of an identification protocol, this has minimal effect on the
resulting blind signature. Our attack is concretely very efficient and for instance breaks 4-concurrent
unforgeability of CSI-Otter in time roughly 234 hash computations. Furthermore, it can achieve the
same result for Blaze and BlindOR with approximately 243 hash computations, offering a 7% and an
overwhelming chance of success, respectively.

1 Introduction
Blind signature is an interactive signing protocol between a signer and a user with an advanced privacy
feature. Originally envisioned to be used for e-cash in the early 80’s [Cha82], we now have numerous
applications in direct anonymous attestation [BCC04], privacy-preserving authentication tokens [VPN22,
HIP+22], cryptocurrencies and blockchains [CKLR18, YL19, BDE+22], to name a few.

Informally, blindness guarantees that a user with a message can obtain a signature from the signer,
while the signer remains oblivious of the message it signed. Due to blindness, unforgeability can no longer
be defined as in a standard signature; a challenger (playing the role of the signer) cannot decide if the
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forgery is on a message that it has not signed before. To this end, we define ℓ-concurrent unforgeability1,
guaranteeing that if a signer finished ℓ signing sessions, then no user can output ℓ+1 or more valid signatures.
Importantly, we allow the user to concurrently open signing sessions. For instance, a malicious user may try
to concurrently open ℓ signing sessions and mix them together to create ℓ + 1 signatures.
3-Round Protocols. One of the popular approaches to construct blind signatures is to base it on identifica-
tion protocols. Starting with the blind Schnorr protocol based on the Schnorr identification protocol [CP93],
this approach has been very successful, being instantiable from versatile assumptions including post-quantum
assumptions such as lattices and isogenies [AO00, HKL19, HKLN20, AEB20b, AHJ21, KLLQ23]. Compared
to other approaches based on pairing specific techniques [AGHO11, BFPV13, MSF10, SC12, KSD19] and/or
non-interactive zero-knowledge proofs [Fis06, dK22, KRS23, BLNS23, FW22], this approach is easier to
generalize, leads to simpler constructions, and tends to be more efficient.

One peculiarity of many of the blind signatures based on this approach is that they were only proven to
be ℓ-concurrent unforgeable for ℓ = polylog(λ) with λ the security parameter. Interestingly, while the proof
could not tolerate ℓ = poly(λ), it was unclear whether this was an artifact of the proof technique or because
there was a yet to be discovered attack. This issue was undesirable even from a practical point view as we
did not know whether these blind signatures will remain secure when instantiated with concrete parameters,
say what happens if the signer opened 128 concurrent sessions?
The ROS Attack. Schnorr [Sch01] introduced the Random inhomogeneities in an Overdetermined Solvable
system of linear equations (ROSℓ) problem in dimension ℓ, and showed that a ROSℓ solver can be used to
break the ℓ-concurrent unforgeability of the Schnorr signature. Wagner [Wag02] soon after showed that the
ROSℓ problem can be solved in subexponential time when ℓ grows asymptotically faster than polylog(λ).
While this implies a subexponential timed attack on the ℓ-concurrent unforgeability of blind Schnorr for
ℓ = poly(λ), showing the (in)existence of a polynomial time attack remained elusive for nearly two decades.

It was only recently in a seminal work, Benhamouda et al. [BLL+21] proposed an elegant polynomial
time attack against ROSℓ for ℓ = poly(λ), finally “partially” closing the above issue: blind Schnorr is not
ℓ-concurrent unforgeable for ℓ = poly(λ). Their attack is very practical and for instance when ℓ = 128, it
only takes time roughly 232 hash computations to break unforgeability.
Unaffected Schemes by the ROS Attack. The reason why we highlighted that the ROS attack by
Benhamouda et al. is only a partial solution to the issue was because many of the post-quantum blind
signatures [HKLN20, AEB20b, AHJ21, KLLQ23] remain unaffected by the attack. For instance, the lattice-
based blind signature by Hauck et al. [HKLN20] is related to a slightly generalized variant of the ROS
problem for which the ROS attack by Benhamouda et al. does not seem to immediately apply.

The lattice-based blind signatures Blaze+, BlindOR [AEB20b, AHJ21] are even more different. The base
identification protocol underlying these blind signatures has a small challenge set, and therefore, performs
parallel repetition to reduce its soundness error. Due to this parallel repetition, the underlying problem
is no longer the original ROS problem considered by Schnorr [Sch01] and it is unclear whether the ROS
attack of Benhamouda et al. applies. A related question is whether a blind Schnorr protocol constructed
from a Schnorr identification protocol with parallel repetition can resurrect ℓ-concurrent unforgeability for
ℓ = poly(λ): while at the identification protocol layer, parallel repetition exponentially reduces the soundness
error, how would this relate to ℓ-concurrent unforgeability?

Lastly, the recent isogeny-based blind signature CSI-Otter [KLLQ23] also relies on a base identification
protocol with parallel repetition. Adding to the complexity is that unlike lattices and classical groups that are
modules, isogenies have a strictly weaker algebraic structure called group actions. As stated by Katsumata
et al. [KLLQ23], due to the lack of algebraic structures in isogenies, even defining an appropriate ROS
problem underlying the security of CSI-Otter is non-trivial, and they left it as an open problem to examine
the (in)security of their scheme for poly(λ) many concurrent sessions.

1In the literature, this is typically coined as one-more unforgeability. We use our terminology throughout the introduction
to be precise on the value of ℓ and concurrency.
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1.1 Contribution
In this work, we propose the parallel ROS (pROSℓ,ω,C) problem and show that it is solvable in polyno-
mial time for appropriate parameters. As a consequence, we show that the lattice-based blind signatures
Blaze+, BlindOR [AEB20b, AHJ21] and the isogeny-based blind signature CSI-Otter [KLLQ23] are not ℓ-
concurrently unforgeable when ℓ = poly(λ). Our attack is very practical and for instance we can break the
4-concurrent unforgeability of CSI-Otter in time roughly 234 hash computations.

In more detail, the pROSℓ,ω,C problem captures the hardness of the ℓ-concurrent unforgeability of blind
signatures based on an identification protocol with challenge space C performing ω parallel repetitions. For
instance, when ω = 1 and C = Zp, the pROSℓ,ω,C problem is identical to the standard ROSℓ problem, cap-
turing the hardness of the ℓ-concurrent unforgeability of blind Schnorr. As another example, the pROSℓ,ω,C
problem underlying the hardness of the ℓ-unforgeability of CSI-Otter [KLLQ23] is ω = λ and C = {−1, 1}.
To be more precise, as discussed above, since isogenies are algebraically different from lattices and classical
groups, we define two types of pROS problems over different mathematical structures capturing each cases:
Group-pROSℓ,ω,C for group actions (with a twist) and Ring-pROSℓ,ω,C for modules.

Our main technical contribution is showing informally the following results:

• Group-pROSℓ,ω,C can be solved in time ω ·poly(|C|) for any ℓ ≥ ω = poly(λ) and C. When |C| = poly(λ),
the attack runs in polynomial time.

• Ring-pROSℓ,ω,C can be solved in time ω · poly(log(|C|)) for any ℓ ≥ ω · log(|C|) = poly(λ) and C. Even if
|C| = exp(λ), the attack runs in polynomial time.

Importantly, parallel repetition only amplifies linearly the hardness of the ℓ-concurrent unforgeability. An
immediate takeaway is that while parallel repetition allows to exponentially reduce the soundness error of an
identification protocol, this has minimal effect on the resulting blind signature. Moreover, note that when
|C| = poly(λ), our attack against Ring-pROSℓ,ω,C does not take advantage of the module structure as we can
simply break Ring-pROSℓ,ω,C using the algorithm for breaking Group-pROSℓ,ω,C . The technical overview of
our attacks are provide in Section 3, where we further present a modified attack on Group-pROSℓ,ω,C , leading
to very practical attacks.

Using the above attack on the Group-pROS and Ring-pROS problems, we are able to break the ℓ-concurrent
unforgeability for ℓ = poly(λ) of the following schemes:

• The isogeny-based blind signature CSI-Otter by [KLLQ23]. (See Section 4.1.) Concretely, we can break
4-concurrent unforgeability in time roughly 234 hash computations.

• Two lattice-based blind signatures Blaze+, BlindOR [AEB20b, AHJ21]. (See Section 4.2.) Concretely,
we can break 4-concurrent unforgeability of both schemes in time roughly 246 hash computations with
a success probability of roughly 7.3%.

• Blind Schnorr with parallel repetition. (See Section 4.3.) For, e.g., 4 parallel repetitions, we can break
1024-concurrent unforgeability in time roughly 211 hash computations.

We would like to emphasize that our attack does not contradict the security proof of ℓ-concurrent unforge-
ability for ℓ = polylog(λ) provided in previous works. Our asymptotic attack uses the fact that an adversary
can initiate ℓ = poly(λ) concurrent sessions, a setting which previous works do not consider. Though, it is
worth highlighting that our concrete attack indicates that in practice, ℓ can be quite small (i.e., ℓ = 4 for
CSI-Otter and ℓ ≤ 16 for Blaze+, BlindOR) to practically break the schemes.

Future Works. While our attack presents a concretely efficient break to the ℓ-concurrent unforgeability of
the lattice-based blind signatures Blaze+, BlindOR [AEB20b, AHJ21] and the isogeny-based blind signature
CSI-Otter [KLLQ23], there may be ways to fix this using the techniques developed by Abe [Abe01, KLX22b]
or Tessaro and Zhu [TZ22]. By tweaking the original blind Schnorr protocol in different ways, they are able
to prove ℓ-concurrent unforgeability for ℓ = poly(λ) in either the generic group model or in the algebraic
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group model. Considering how simple and efficient Blaze+, BlindOR, and CSI-Otter are, it will be worthwhile
to enhance their security with minimal modification while retaining efficiency.

We also leave analyzing the (in)security of the ℓ-concurrent unforgeability for ℓ = poly(λ) of the lattice-
based blind signature by Hauck et al. [HKLN20] as an important open problem. Assuming the underlying
polynomial ring Rq used in [HKLN20] splits into many fields, it almost seems that our pROS attack applies.
However, due to lattice specific reasons, this attack does not seem to work. As mentioned above, the ROS
attack by Benhamouda et al. [BLL+21] does not immediately apply either.

2 Preliminary
Notation. We denote the set of natural numbers and integers by N and Z, respectively. We define the ring of
integers modulo N , i.e., ZN , with representatives in [−q/2, q/2)∩Z. For a positive integer k, we let [k] denote
the set {1, 2, . . . , k}. For a distribution D, we write x← D to denote x is sampled according to D. For a finite
set S, we denote x← S to sample x uniformly at random over S. We use ⊙ to denote the component-wise
multiplication of vectors in a multiplicative group G. We sometimes use ∥ to denote the concatenation of two
strings. For an element g and vector a = (a1, . . . , an), we use ga as a shorthand for (ga1 , . . . , gan). Moreover,
for any operation ∗ defined between two elements g and h and vectors a = (a1, . . . , an) and b = (b1, . . . , bn),
we use ga ∗ hb as a shorthand for (ga1 ∗ hb1 , . . . , gan ∗ hb1). We extend this notation to matrices naturally.
For readability, we use the arrow notation (e.g. d⃗) or the bold lowercase letters (e.g. e) to denote a vector.
We use the bold uppercase letters (e.g. A) to represent a matrix in the lattice context. For a matrix A,
we denote the i-th row of A to be A[i]. Let (G, ·) be a group. Let a ∈ (G ∪ {⊥})n and b ∈ Gn. We write
∥a∥∞ = 1 if a has at most one non-bot entry α. Then, we define multiplication a · b := (α · bk)k∈[n]. We
extend this notation to matrices naturally.

2.1 Cyclic Effective Group Action Model
To describe the the isogeny-based blind signature CSI-Otter [KLLQ23], we adapt the cyclic effective group
action model given in [DHK+23], which captures the essence of the isogeny group action used in the scheme.

Definition 2.1 (Cyclic Effective Group Action with Twists). Let the group G act on the set X by ⋄.
The tuple (G,X , ⋄, E0) is said to be a cyclic effective group action with twists (CEGAwT) if

1. G is finite and cyclic of order N for some known N ∈ N.

2. There exists a known generator g ∈ G with known representation (i.e. G = ⟨g⟩).

3. There exist efficient algorithms for membership testing and to compute a unique representation for any
element in X .

4. The group action (G,X , ⋄) is regular.

5. E0 is a distinguished element in X with known representation.

6. There exists an algorithm such that for any element a ∈ N and x ∈ X the action ga ⋄ x is efficiently
computable.

7. There exists an efficient twisting algorithm on input x′ = h ⋆ E0 computing h−1 ⋆ E0.

The isomorphism G = ⟨g⟩ ∼= ZN gives a standard representation for G. This, in turn, naturally induecs
a CEGAwT (ZN ,X , ⋆, E0) where the action m ⋆ x := ga ⋄ x. The structure of ZN naturally gives efficient
algorithms for membership testing, random sampling, and equality testing. Hence, on input n ⋆ E0, the
twisting algorithm returns −n ⋆ E0.

Throughout this paper, we will use (ZN ,X , ⋆, E0) to represent a CEGAwT. For the sake of convenience,
for any element x′ = h ⋆ E0 ∈ X , we will use the shorthand x′−1 := h−1 ⋆ E0. The notation is well-defined
since for any h1 ⋆ E0 = h2 ⋆ E0, we have h−1

1 ⋆ E0 = h−1
2 ⋆ E0.
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2.2 Lattices
We give a brief overview of the lattice foundations required to describe Blaze+ and BlindOR [AEB20a,
AEB20b, AHJ21]. For readability, we simplify notation and focus on the essential parts that enable us to
describe our attack. For a detailed overview, we refer to [AEB20a, AEB20b, AHJ21]. For any positive
integer n, consider the polynomial ring Rq = Zq[X]/(Xn + 1). Generally, we assume that n is a power of
two. We consider the lattice Rm

q , where m ∈ N.
Let DZn,σ,c be the discrete Gaussian distribution over Zn with standard deviation σ > 0 and center c.

Throughout, we set χ = DZn,σ,0, for some implicit σ > 0, and χrs = DZn,s∗,0, for some implicit s∗ > σ. We
denote by RejSamp an algorithm that carries out rejection sampling (with implicit parameters).

2.3 Blind Signature
Below, we recall the standard definition of (three-move) blind signatures.

Definition 2.2 (Blind Signature Scheme). A three-move partially blind signature BS = (BS.KGen, BS.S,
BS.U, BS.Verify) with an efficiently decidable public key space PK consists of the following PPT algorithms:

BS.KGen(1λ)→ (pk, sk) : On input the security parameter 1λ, the key generation algorithm outputs a pair of
public and secret keys (pk, sk).

BS.S = (BS.S1, BS.S2) : The interactive signer algorithm consists of two phases:

BS.S1(sk)→ (stS, ρS,1) : On input a secret key sk, it outputs an internal signer state stS and a first-
sender message ρS,1.2

BS.S2(stS, ρU)→ ρS,2 : On input a signer state stS and a user message ρU, it outputs a second-sender
message ρS,2.

BS.U = (BS.U1, BS.U2) : The interactive user algorithm consists of two phases:

BS.U1(pk, M, ρS,1)→ (stU, ρU) : On input a public key pk ∈ PK, a message M, and a first-sender
message ρS,1, it outputs an internal user state stU and a user message ρU.

BS.U2(stU, ρS,2)→ σ : On input a user state stU and a second-signer message ρS,2, it outputs a signature
σ.

BS.Verify(pk, M, σ)→ 1 or 0 : In input a public key pk, a message M, and a signature σ, the verification
algorithm outputs 1 to indicate the signature is valid, and 0 otherwise.

We define correctness, blindness, and one-more unforgeability of a blind signature scheme.
Perfect correctness ensures that when both the signer and the user adhere to the protocol specifica-

tions, the user’s obtained signature will verify correctly. In the lattice-based setting (e.g. [AEB20b, AHJ21,
HKLN20]), it is often acceptable to relax this requirement slightly, allowing for a scenario where the veri-
fication algorithm accepts with an overwhelming probability. Furthermore, it is acceptable that the signer
aborts the protocol in advance.

The blindness property ensures that the signer cannot establish a link between the signing process and
obtained signatures. This property preserves the privacy of the user’s messages. As we are interested in
forgery attacks, this notion is not important in our context and we omit details.

In this work, we focus on the one-more unforgeability (OMUF) notion of a blind signature. OMUF roughly
ensures that at most one valid signature is generated after each full completion of a signing interaction.
Formally, we have the following.

2We assume without loss of generality that sk includes pk and stS includes (pk, sk) and omit it when the context is clear.
Below, we also assume that stU includes M.
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Game ROSA
ℓ,p

1 : T [·] := ⊥

2 :
(
(aj , auxj)j∈[ℓ+1], (ci)i∈[ℓ]

)
← AHros (1λ)

3 : req (aj , auxj)j∈[ℓ+1] are pairwise distinct
4 : req ∀i ∈ [ℓ], ci ∈ Zp

5 : req ∀j ∈ [ℓ + 1], aj ∈ Zℓ
p

6 : for j ∈ [ℓ + 1] do
7 : c∗

j := Hros(aj , auxj)

8 : if


a1
...

aℓ

aℓ+1


︸ ︷︷ ︸

∈Z(ℓ+1)×ℓ
p

·

c1
...

cℓ


︸ ︷︷ ︸

∈Zℓ
p

=


c∗

1
...

c∗
ℓ

c∗
ℓ+1


︸ ︷︷ ︸

∈Zℓ+1
p

then

9 : return 1
10 : return 0

Hros(a, aux)
1 : req a ∈ Zω

p

2 : if T [a, aux] ̸= ⊥ then
3 : return T [a, aux]
4 : c∗ ← Zp

5 : T [a, aux]← c∗

6 : return c∗

Figure 1: Classical ROS problem over Zp. req returns 0 if the requirement does not hold.

Definition 2.3 (One-More-Unforgeability). We define ℓ-one-more unforgeability (ℓ-OMUF) for any ℓ ∈
N of a three-move partially blind signature scheme BS via the following game between a challenger and an
adversary A:

Setup. The challenger samples (pk, sk) ← BS.KGen(1λ) and runs A on input pk. It further initializes
ℓclosed = 0 and openedsid = false for all sid ∈ N.

Online Phase. A is given access to oracles S1 and S2, which behave as follows.

Oracle S1: The oracle samples a fresh session identifier sid. It sets openedsid ← true and generates
(stS,sid, ρS,1)← BS.S1(sk). Then it returns sid and the first-sender message ρS,1 to A.

Oracle S2: On input of a user message ρU and a session identifier sid, if ℓclosed ≥ ℓ or openedsid =
false, then it returns ⊥. Otherwise, it sets openedsid = false. It then computes the second-signer
message ρS,2 ← BS.S2(stS,sid, ρU). If BS.S2 did not abort, then increments ℓclosed and returns ρS,2
to A. Else, returns ⊥.

Output Determination. When A outputs distinct tuples (M1, σ1), . . . , (Mk, σk), we say A wins if k ≥
ℓclosed + 1 and for all i ∈ [k], BS.Verify(pk, Mi, σi) = 1.

We say BS is ℓ-one-more unforgeable (or ℓ-OMUF) if the advantage of A defined as AdvOMUF
A (λ) := Pr[A wins]

is negligible.

2.4 ROS problem
The ROS problem captures a concurrent and algebraic attack on one-more unforgeability of the classical
Schnorr blind signature [Sch01]. That is, if an adversary A can solve the ROSℓ,p problem, then it can also
break one-more unforgeability of the Schnorr blind signature. Here, the parameter p is the order of the
underlying group and ℓ is the number of concurrent signing sessions. The problem is defined in Figure 1.
Later, we define natural extensions of ROS for parallel repetitions.
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3 Parallel ROS
We define two natural variants for the ROS problem for blind signatures based on parallel repetitions. The
first variant Ring-pROS generalizes the standard ROS problem: the underlying algebraic structure is a ring
R and we consider ω parallel repetitions. If we set R = Zp and ω = 1, we obtain the classical ROS problem.
The second variant Group-pROS is a harder variant of Ring-pROS: the underlying algebraic structure is a
(multiplicative) group G. Over groups, we have a single operation and thus, the adversary is much more
restricted in its output (e.g., it cannot output arbitrary linear combinations).

Compared to ROS with a single repetition (i.e., ω = 1), more parallel repetitions ω > 1 require that we
solve an overdetermined linear system with ω additional rows.

Perhaps surprisingly, we give two attacks on Ring-pROS and Group-pROS (with mild requirements). The
first attack applies to both ROS variants and leverages that schemes with parallel repetitions often have a
challenge space of polynomial size. The second attack generalizes the ROS attack from [BLL+21] and applies
even for exponential challenge space. In Section 4, we apply our attacks to concrete schemes.

3.1 Definition of Parallel ROS
We define two problems Ring-pROS and Group-pROS.

3.1.1 For Rings

Let (R, +, ·) be a ring.
Parallel ROS Problem for Rings. We define a ROS problem for rings with parallel repetitions. Let ℓ ∈ N
be the number of concurrent sessions and ω ∈ N be the number of parallel repetitions. Let Rc ⊆ R be the
challenge space. For any adversary A with oracle access to Hros, the problem Ring-pROSA

ℓ,ω,R,Rc
is defined

in Figure 2. We define the advantage of an adversary A against Ring-pROS as

AdvRing-pROS
A,ℓ,ω,R,Rc

:= Pr
[
b← Ring-pROSA

ℓ,ω,R,Rc
(λ) : b = 1

]
.

If the parameters are clear by context, we sometimes write Ring-pROS for short.

Remark 3.1. Note that for ω = 1,R = Rc = Zp, this is the standard ROS problem (cf. Figure 1).

3.1.2 For Group Actions

Let (G, ·) be a group.
Parallel ROS Problem for Group Actions. We define a ROS problem for groups with parallel repetitions.
Let ℓ ∈ N be the number of concurrent sessions and ω ∈ N be the number of parallel repetitions. Let Gc ⊆ G
be the challenge space. For any adversary A with oracle access to Hros, the problem Group-pROSA

ℓ,ω,G,Gc
is

defined in Figure 3. We define the advantage of an adversary A against Group-pROS as

AdvGroup-pROS
A,ℓ,ω,G,Gc

:= Pr
[
b← Group-pROSA

ℓ,ω,G,Gc
(λ) : b = 1

]
.

If the parameters are clear by context, we sometimes write Group-pROS for short.

3.2 Breaking Parallel ROS for Small Challenge Space
We provide an attack on Group-pROS with ℓ := ω concurrent sessions if the challenge space is small, i.e.,
|Gc| = poly(λ). Note that this also implies an attack on Ring-pROS (as the problem is more general) with
the same parameters and complexity.
Overview. Our main observation is that since the challenge space is small, we can enforce specific values
in a single coordinate of c⃗ ∗

i by trying different auxiliary values. Roughly, we set up the first ℓ matrices Aj
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Game Ring-pROSA
ℓ,ω,R,Rc

(λ)
1 : T [·] := ⊥

2 :
(
(Aj , auxj)j∈[ℓ+1], (c⃗i)i∈[ℓ]

)
← AHros (1λ)

3 : req (Aj , auxj)j∈[ℓ+1] are pairwise distinct
4 : req ∀i ∈ [ℓ], c⃗i ∈ Rω

c

5 : req ∀j ∈ [ℓ + 1], Aj ∈ Rω×ωℓ

6 : for j ∈ [ℓ + 1] do
7 : c⃗ ∗

j := Hros(Aj , auxj)

8 : if


A1
...

Aℓ

Aℓ+1


︸ ︷︷ ︸

∈Rω(ℓ+1)×ωℓ

·

c⃗1
...

c⃗ℓ


︸ ︷︷ ︸
∈Rωℓ

c

=


c⃗ ∗

1
...

c⃗ ∗
ℓ

c⃗ ∗
ℓ+1


︸ ︷︷ ︸
∈Rω(ℓ+1)

then

9 : return 1
10 : return 0

Hros(A, aux)
1 : if T [A, aux] = ⊥ then
2 : c⃗ ∗ ←Rω

c

3 : T [A, aux]← c⃗ ∗

4 : return T [A, aux]

Figure 2: Parallel ROS problem over ring (R, +, ·). In the above, req returns 0 if the requirement does not
hold.

such that for each such matrix, we can find a trivial solution, i.e., the first ωℓ rows form an identity matrix
(with ⊥ symbols instead of zeros) and we pick the challenges as c⃗i = c⃗ ∗

i . Next, we construct Aℓ+1 with unit
vectors as rows (with ⊥ symbols instead of zeros) such that the ith row picks a single coordinate from the
ith challenge vector c⃗i. Then, we compute the challenge vector c⃗ ∗

ℓ+1 and sample auxi until each coordinate
in c⃗ ∗

ℓ+1 agrees with the picked coordinate in c⃗i for all i ∈ [ω]. This constitutes a solution to the Group-pROS
problem.

Finally, observe that we can replace all ⊥ values with zeros to obtain a solution to the Ring-pROS problem.
The attack. First, for i ∈ [ω], we denote by e⊥

i := (⊥, · · · ,⊥, 1,⊥, · · · ⊥) ∈ (G∪{⊥})k the vector of dimension
k ∈ N with 1 at position i and all ⊥ entries otherwise. Also, we write

I⊥
ω :=

e⊥
1
...

e⊥
ω

 and I⊥
ωℓ :=

I⊥
ω · · · ⊥
... . . . ...
⊥ · · · I⊥

ω


for identity matrices of dimension ω and ωℓ, respectively, where zeros are replaced with ⊥. Above, e⊥

i is of
dimension ω. Next, set for j ∈ [ℓ] and e⊥

1 of dimension ℓ

Aj =
[
⊥ | · · · | I⊥

ω | · · · | ⊥
]

, Aℓ+1 =

e⊥
1 · · · ⊥
... . . . ...
⊥ · · · e⊥

1

 ∈ (G ∪ {⊥})ω×ωℓ.

Note that in the definition of Aj , the matrix I⊥
ω is placed at columns (j − 1)ω + 1 to jω. Set c⃗ ∗

ℓ+1 =
Hros(Aℓ+1, auxℓ+1) for some arbitrary auxℓ+1. Then, for i ∈ [ℓ], sample auxi until we have that c∗

i,1 = c∗
ℓ+1,i,

where c⃗ ∗
i = Hros(Ai, auxi). Since the size of Gc is polynomial, this sampling is efficient. Then, we have for

d⃗ := ((c⃗ ∗
1 )⊤, · · · , (c⃗ ∗

ℓ )⊤)⊤ that

Aℓ+1 · d⃗ =

e⊥
1 · · · ⊥
... . . . ...
⊥ · · · e⊥

1

 ·
c⃗ ∗

1
...

c⃗ ∗
ℓ

 =

c∗
1,1
...

c∗
ℓ,1

 = c⃗ ∗
ℓ+1 (1)
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Game Group-pROSA
ℓ,ω,G,Gc

(λ)
1 : T [·] := ⊥
2 :

(
(Aj , auxj)j∈[ℓ+1], (c⃗i)i∈[ℓ]

)
← AHros (1λ)

3 : req (Aj , auxj)j∈[ℓ+1] are pairwise distinct
4 : req ∀i ∈ [ℓ], c⃗i ∈ Gω

c

5 : req ∀j ∈ [ℓ + 1], Aj ∈ (G ∪ {⊥})ω×ωℓ

6 : for j ∈ [ℓ + 1] do
7 : c⃗ ∗

j := Hros(Aj , auxj)

8 : for k ∈ [ℓ] do

// check k-th row of Aj has exactly one non-⊥ entry

9 : if ∥Aj [k]∥∞ ̸= 1 then

10 : return 0

11 : if


A1
...

Aℓ

Aℓ+1


︸ ︷︷ ︸

∈(G∪{⊥})ω(ℓ+1)×ωℓ

·

c⃗1
...

c⃗ℓ


︸ ︷︷ ︸
∈Gωℓ

c

=


c⃗ ∗

1
...

c⃗ ∗
ℓ

c⃗ ∗
ℓ+1


︸ ︷︷ ︸
∈Gω(ℓ+1)

then

12 : return 1
13 : return 0

Hros(A, aux)
1 : if T [A, aux] = ⊥ then
2 : c⃗ ∗ ← Gω

c

3 : T [A, aux]← c⃗ ∗

4 : return T [A, aux]

Figure 3: Parallel ROS problem over a group (G, ·). In the above, req returns 0 if the requirement does not
hold. The main difference between the parallel ROS problem over a ring R is highlighted. Recall we extend
the operation · to vectors with the understanding that we ignore the ⊥ /∈ G entries.

Notably, the values (Aj , auxj)j∈[ℓ+1] and (c⃗ ∗
i )i∈[ℓ] form a valid Group-pROS solution since

A1
...

Aℓ

Aℓ+1

 ·
c⃗ ∗

1
...

c⃗ ∗
ℓ

 =
[

I⊥
ωℓ

Aℓ+1

]
· d⃗ =

[
d⃗

Aℓ+1 · d⃗

]

(1)=
[

d⃗
c⃗ ∗

ℓ+1

]
=


c⃗ ∗

1
...

c⃗ ∗
ℓ

c⃗ ∗
ℓ+1


Complexity of the attack. Denote by ξ = |Gc| the size of the challenge space. For ω repetitions, the attack
requires ω concurrent sessions. Also, for some fixed c⃗ ∗

ℓ+1, the probability that c⃗ ∗
i,1 = c⃗ ∗

ℓ+1,i is 1/ξ, where c⃗ ∗
i

is sampled as in the attack. Since we require that this holds for all ω coordinates (i.e., for all i ∈ [ω]), the
attack requires O(ωξ) hash evaluations in expectation. Our attack has success probability 1.

In particular, the attack is PPT if ω = poly(λ) and ξ = poly(λ). We refer to Sections 4.1 and 4.2 for an
application of our attack on schemes from the literature.

Remark 3.2 (Guessing more coordiantes at once). Our attack can be generalized in order to obtain a tradeoff
between the number of required hash evaluations and the number of concurrent sessions. Let N ∈ N. Recall
that we sample c⃗ ∗

i in such a way that c⃗ ∗
ℓ+1,i = c⃗ ∗

i,1. We do this for all i ∈ [ω] in order to cover all coordinates of
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c⃗ ∗
ℓ+1. The idea is to target N coordinates of c⃗ ∗

ℓ+1 at the same time. That is, we sample auxiliary values until
the first N coordinates in c⃗ ∗

i agree with N coordinates in c⃗ ∗
ℓ+1 until all coordinates of c⃗ ∗

ℓ+1 are covered. The
probability that N coordinates agree is 1

ξN and we require ⌈ω/N⌉ concurrent sessions to cover all coordinates
of c⃗ ∗

ℓ+1. The modifications are straightforward and we omit details. In total, we require only ℓ = ⌈ω/N⌉
concurrent sessions and O(ℓ · ξN ) hash evaluations. The success probability remains 1.

While the idea in Remark 3.2 is simple, it is powerful when applied to concrete schemes. For example, for
ω = 128 repetitions and challenge space {±1}, set N = 4. Then, we require only ℓ = 4 concurrent sessions
for an attack that runs in 234 time in expectation.

From the above discussions, we conclude the following statement.

Theorem 3.3. Let N ∈ N and ℓ = ⌈ω/N⌉. When |Gc| = ξ = poly(λ) and ω = poly(λ), there exists an
PPT adversary against Group-pROS, parameterized by (ℓ, ω,G,Gc), that makes O(ℓξN ) queries to the hash
function in expectation, achieving an advantage of 1.

3.3 Breaking Parallel ROS for Large Challenge Space
We provide an attack on Ring-pROS under the condition that non-zero challenge differences are invertible,
i.e.,

(Rc −Rc) \ {0} ⊆ R×. (2)

Also, we assume that the size of the challenge space |Rc| = Ω(2λ) is exponential. In this case, the attack
in Section 3.2 is infeasible 3. Let (Bµ)µ∈[ξ] be a binary generating set for R of size ξ. That is, we assume
that we can represent all elements y ∈ R as y =

∑
µ∈[ξ] Bµ · bµ, where bµ ∈ {0, 1}. For example for R = Zp,

a good choice is Bµ = 2µ−1 with ξ = ⌈log p⌉. We give an attack on the Ring-pROS problem with ℓ = ωξ
concurrent sessions.

Overview. For a single parallel repetition (i.e., ω = 1), the attack is identical to the ROS attack [BLL+21],
albeit some minor changes and generalizations. If ω > 1, we perform ω independent ROS attacks (using ξ
concurrent sessions per attack) each targeting one coordinate of the target vector c⃗ ∗

ℓ+1. We sketch the attack
below.

First, we proceed as in Section 3.2. That is, we pick the the first ℓ matrices Ai such that the first ωℓ
rows form an identity matrix. Also, we pick the challenges as c⃗i = c⃗ ∗

i . This yields ℓ trivial solutions for any
choice of auxi.

Then, we conceptually split the ℓ = ωξ concurrent sessions into ω many sets of ξ concurrent sessions.
For each such set of ξ sessions, we choose two different auxiliary values auxb

i per session which define two
challenge vectors c⃗ b

i , for b ∈ {0, 1}. Then, we compute a linear polynomial f that allows us to express any
element in R, depending on the choice of the auxiliary values auxb

i (within the current set of ξ sessions) using
the binary generating set (Bµ)µ∈[ξ]. This step also requires polynomial interpolation (which in turn requires
Equation (2)).

We do this for all ω sets of ξ sessions and obtain ω polynomials (fκ)κ∈[ω]. Using the fact that each
polynomial is linear, we embed it in into the last matrix Aℓ+1 such that each polynomial fκ allows us to
express one coordinate of the challenge vector c⃗ ∗

ℓ+1 (via the binary choice of either aux0
i or aux1

i per session).
After choosing the right aux0

i or aux1
i according to a binary decomposition with respect to (Bµ)µ∈[ξ], this

yields a solution to the Ring-pROS problem.

The attack. First, we define ℓ matrices Aj such that we can find trivial solutions for ℓ concurrent sessions.
That is, we define for j ∈ [ℓ] the matrix

Aj =
[
0 | · · · | Iω | · · · | 0

]
∈ Rω×ωℓ,

3An exponential challenge space is not required for the attack but it simplifies the description (cf. Remark 3.4).
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where the identity matrix Iω of dimension ω is placed at columns (j−1)ω +1 to jω and the remaining values
are zeros. Set aux0

j ̸= aux1
j arbitrarily, say auxb

j := b for b ∈ {0, 1}, and define c⃗ b
j = Hros(Aj , auxb

j). For some
b⃗ ∈ {0, 1}ℓ, let us denote by

d⃗⃗b = ((c⃗ b1
1 )⊤, · · · , (c⃗ bℓ

ℓ )⊤)⊤ (3)

the vector in which we choose either c⃗ 0
j or c⃗ 1

j depending on bj . Then, for any choice of Aℓ+1 and b⃗, we have
that 

A1
...

Aℓ

Aℓ+1

 ·
c⃗ b1

1
...

c⃗ bℓ

ℓ

 =
[

Iωℓ

Aℓ+1

]
· d⃗⃗b =

[
d⃗⃗b

Aℓ+1 · d⃗⃗b

]
=


c⃗ b1

1
...

c⃗ bℓ

ℓ

Aℓ+1 · d⃗⃗b

 .

If we further have for some choice of b⃗ and auxℓ+1 that

Aℓ+1 · d⃗⃗b = c⃗ ∗
ℓ+1 = Hros(Aℓ+1, auxℓ+1), (4)

then the values (Aj , auxj)j∈[ℓ+1] and (c⃗i)i∈[ℓ] form a valid Ring-pROS solution, where auxi := auxbi
i and

c⃗i := c⃗ bi
i for i ∈ [ℓ]. Let auxℓ+1 be arbitrary. To conclude the attack, we define Aℓ+1 and b⃗ such that

Equation (4) is satisfied.
Recall that ℓ = ωξ. Let κ ∈ [ω]. We construct some polynomial fκ which depends on the challenges

from the κth set of ξ concurrent sessions, i.e., the challenges
{

c⃗ b
(κ−1)ξ+1, · · · , c⃗ b

κξ | b ∈ {0, 1}
}

. For this,
denote by γ⃗b

κ :=
(
cb

(κ−1)ξ+1,1, · · · , cb
κξ,1

)⊤ ∈ Rξ
c the vector which consists of the first coordinate of each

such challenge for b ∈ {0, 1}. Let fκ,µ := Xµ−γ0
κ,µ

γ1
κ,µ−γ0

κ,µ
∈ R[Xµ] for µ ∈ [ξ]. Note that here, we require that

γ1
κ,µ−γ0

κ,µ ∈ R× which holds by assumption (cf. Equation (2)), unless γ1
κ,µ = γ0

κ,µ. The latter happens with
negligible probability because we assume that the challenge space is exponential 4. By construction, we have
fκ,µ(γb

κ,µ) = b. We now define the linear polynomial fκ and parse its coefficients (without the constant term
tκ) in the vector a⃗κ as

fκ :=
∑

µ∈[ξ]

Bµfκ,µ = tκ +
∑

µ∈[ξ]

aκ,µXµ ∈ R[X1, . . . , Xξ].

Let b⃗κ ∈ {0, 1}ξ be arbitrary. (We choose concrete bit vectors later.) We denote by γ⃗⃗bκ
:=

(
γ

bκ,1
κ,1 , · · · , γ

bκ,ξ

κ,ξ

)
the vector in which we choose either γ0

κ,µ or γ1
κ,µ dictated by b⃗κ. Note that we have that〈

a⃗κ, γ⃗⃗bκ

〉
=

∑
µ∈[ξ]

aκ,µ · γbκ,µ
κ,µ

= fκ

(
γ

bκ,1
κ,1 , · · · , γ

bκ,ξ

κ,ξ

)
− tκ

=
∑

µ∈[ξ]

Bµfκ,µ(γbκ,µ
κ,µ )− tκ

=
∑

µ∈[ξ]

Bµbκ,µ − tκ.

(5)

Denote b⃗ = (⃗b1, · · · , b⃗ω)⊤. Next, we embed the coefficient vector a⃗κ in the κth row of Aℓ+1 in such a way
that it lines up with γ⃗⃗bκ

(filling the other coordinates with zeros appropriately), i.e., such that

Aℓ+1[κ] · d⃗⃗b =
〈

a⃗κ, γ⃗⃗bκ

〉
, (6)

4Concretely, we have γ1
κ,µ ̸= γ0

κ,µ except with probability 1/ |Rc| since both values are distributed independently and
uniformly at random in Rc. Since we require this for all ℓ concurrent sessions, a union bound yields that we abort with
probability at most ℓ/ |Rc|. This probability is negligible for ℓ = poly(λ) since we assume |Rc| = Ω(2λ). We refer to Remark 3.4
for a discussion on how to avoid aborts. For readability, we choose to abort here.
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where d⃗⃗b is defined as in Equation (3). Recall that we choose the first coordinate of each challenge vector
to define γ⃗⃗bκ

, so we pad a⃗κ as follows. Let a⃗∗
κ,µ := (aκ,µ, 0, · · · , 0) ∈ Rω and a⃗∗

κ := (⃗a∗
κ,1, · · · , a⃗∗

κ,ξ)⊤ ∈ Rωξ.
Next, recall that each γ⃗⃗bκ

is constructed based on the challenges in the κth set of ξ concurrent sessions.
Thus, to line up each coefficient, we set

Aℓ+1 :=


a⃗∗

1 0 · · · 0
0 a⃗∗

2 0 · · · 0
...

...
...

0 0 0 · · · 0 a⃗∗
ω

 ∈ Rω×ωℓ.

With this choice of Aℓ+1, Equation (6) holds by construction.
We are now ready to choose b⃗κ concretely such that Equation (4) holds. Set c⃗ ∗

ℓ+1 = Hros(Aℓ+1, auxℓ+1).
For κ ∈ [ω], set yκ := c∗

ℓ+1,κ + tκ and decompose yκ =
∑

µ∈[ξ] Bµbκ,µ in binary. Set b⃗κ := (bκ,1, · · · , bκ,ξ).
By construction, we have for κ ∈ [ω] that

Aℓ+1[κ] · d⃗⃗b

(6)=
〈

a⃗κ, γ⃗⃗bκ

〉
(5)=

∑
µ∈[ξ]

Bµbκ,µ − tκ

= yκ − tκ = c∗
ℓ+1,κ.

Since this holds for all κ ∈ [ω], Equation (4) is satisfied and we found a solution to the Ring-pROS problem.

Complexity of the attack. The efficiency of the attack depends on the choice of the generating set. Given
a binary generating set (Bµ)µ∈[ξ] of size ξ, the attack requires ℓ = ωξ concurrent sessions, where ω is the
number of repetitions. Further, it requires 2ℓ+1 hash evaluations, O(ℓ) ring operations and ω decompositions
of some ring element in the basis (Bµ)µ∈[ξ]. The attack succeeds except with probability O( ℓ

2λ ) = negl(λ).

Remark 3.4 (No aborts). We present the attack with negligible abort probability for readability, but this
is not inherent. It is possible to adapt the attack to always succeed. Observe that we abort only if there
is a collision in the first coordinates γ0

κ,µ and γ1
κ,µ of c⃗ 0

i and c⃗ 1
i , respectively, for appropriate i ∈ [ℓ]. A

simple fix is to resample the challenges in this case (by choosing different auxb
i for b ∈ {0, 1}). A more

direct approach is to instead setup the polynomials fκ,µ using another coordinate of c⃗ 0
i and c⃗ 1

i , where both
challenge vectors have distinct values. Then, we have to change where to embed the coefficients in Aℓ+1 but
this is straightforward. In case both challenge vectors agree on all coordinates, we found a trivial collision
(which yields a trivial solution).

We refer to Section 4.3 for an application of our attack with concrete parameters. The above considera-
tions yield the following theorem.

Theorem 3.5. Assume that (Rc−Rc) \ {0} ⊆ R×. Let (Bµ)µ∈[ξ] be a binary generating set for R of size ξ.
Assume that ω = poly(λ) and ξ = poly(λ). Let ℓ = ωξ. There exists an PPT adversary against Ring-pROS,
parameterized by (ℓ, ω,R,Rc), that makes at most 2ℓ+1 queries to the hash function, achieving an advantage
of 1. In total, the adversary performs O(ℓ) ring operations and ω decompositions of some ring element with
respect to (Bµ)µ∈[ξ].

4 Implications of Attack
In this section, we apply our attacks on parallel ROS from Section 3 to several concrete blind signatures
from the literature. In particular, we use the attack in Section 3.2 to provide efficient attacks on CSI-Otter
[KLLQ23], Blaze+ [AEB20a, AEB20b] and BlindOR [AHJ21]. Also, we give an attack on a conceptual
variant of Schnorr with parallel repetitions to illustrate our attack in Section 3.3.
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Signer((X0, X1), (δ, xδ)) User((X0, X1), M)

1 : yδ ← Zω
N

2 : Yδ ← yδ ⋆ E0

3 : (c1−δ, r1−δ)← {−1, 1}ω × Zω
N

4 : Y1−δ ← r1−δ ⋆ X
c1−δ

1−δ

(Y0, Y1)

5 : c = H(Y0, Y1, M)

c

6 : req c⃗ ∈ {−1, 1}ω

7 : cδ = c⊙ c1−δ

8 : rδ = yδ − aδ · cδ

r0, r1, c0, c1

9 : σ ← (cb, rb)b∈{0,1}

KeyGen(1λ) :
1 : δ ← {0, 1}
2 : (x0, x1)← Z2

N

3 : (X0, X1)← (a0 ⋆ E0, a1 ⋆ E0)
4 : return sk = (δ, xδ), pk = (X0, X1)

Verify((X0, X1), σ, M) :
1 : parse σ = (cb, rb)b∈{0,1}

2 : c′ ← H(r0 ⋆ Xc0
0 , r1 ⋆ Xc1

1 , M)
3 : req c0 ⊙ c1 = c′

4 : return 1

Figure 4: The unblinded signing protocol, key generation and verification of CSI-Otter, where H : {0, 1}∗ →
{±1}ω is a collision-resistant hash function. Here, ⊙ denotes the entry-wise multiplication. In the signing
protocol (resp. verification), req aborts (resp. returns 0) if the requirement does not hold.

For each scheme, we first recall the (unblinded) interactive signing protocol. To improve readability, we
only present the signer algorithms, key generation and verification, since these algorithms specify the OMUF
game fully 5. Then, we show that an adversary on Ring-pROS or Group-pROS (with appropriate parameters)
allows to break OMUF of the scheme. Our attacks on Ring-pROS and Group-pROS from Section 3 yield
concrete concurrent attacks on the scheme.

4.1 Isogeny-based Blind Signature: CSI-Otter
Let (ZN ,X , ⋆, E0) be a CEGAwT and H : {0, 1}∗ → {−1, 1}ω be a collision-resistant hash function. We
recall the interactive signing protocol, key generation and verification of CSI-Otter [KLLQ23] in Fig. 4.

Our attack is summarized in the theorem below.

Theorem 4.1. For any PPT adversary A on Group-pROSℓ,ω,{±1},{±1}, there exists a PPT adversary B
against ℓ-OMUF of CSI-Otter such that AdvOMUF

B (λ) = AdvGroup-pROS
A,ℓ,ω,{±1},{±1}(λ) where {±1} forms a group with

the multiplication.
5In particular, we omit the user’s algorithms which specify how a signature can be blinded. Since we provide attacks, these

are not relevant in our context.

13



Proof. Let A be an adversary on Group-pROSℓ,ω,{±1},{±1} for some ℓ ∈ N. The adversary B against ℓ-OMUF
of CSI-Otter with access to A proceeds as follows.

Adversary B. First, B invokes the ℓ-OMUF experiment and obtains a public key (X0, X1). Also, B obtains
access to the hash function H and the signing oracles S1 and S2. Next, B opens ℓ concurrent (signing)
sessions via the S1 oracle and obtains (Yi,0, Yi,1) from the ith session for each i ∈ [ℓ]. Then, B sets up an
empty table T and sets Zb = (Y⊤

1,b, · · · , Y⊤
ℓ,b)⊤ ∈ Zωℓ

N for b ∈ {0, 1}.
Let Q be the number of Hros queries of A (including potential queries for verification of A’s output).

Assume without loss of generality that each Hros query is distinct. Adversary B answers the ith query
(A, aux) as follows. If A /∈ ({±1} ∪ {⊥})ω×ωℓ or ∥A[k]∥∞ ̸= 1 for some k ∈ [ω], returns c⃗ ∗ ← {±1}ω.
Otherwise, parses the kth row of A as (⊥, · · · , αk, · · · ,⊥) = A[k], where αk ∈ {±1} is the non-⊥ entry in
column νk. Computes

Y∗
0 = (Zα1

ν1
, · · · , Zαω

νω
) and Y∗

1 = (Zν1 , · · · , Zνω
). (7)

Note that Y∗
0, Y∗

1 ∈ Xω. Sets M = (aux, i) and c∗ = H(Y∗
0, Y∗

1, M). Inserts T [A, aux] = (Y∗
0, Y∗

1, M) into
the table T and outputs c∗. Note that by design, M is distinct for each distinct query.

After its query phase, A outputs (Aj , auxj)j∈[ℓ+1] and (ci)i∈[ℓ]. Adversary B checks if A succeeds; if not,
outputs ⊥ to the ℓ-OMUF game. Else, B closes the ith session with ci ∈ {±1}ω via the S2 oracle and obtains
(ri,0, ri,1, ci,0, ci,1) in response. Then, for b ∈ {0, 1}, B sets sb = (r⊤

1,b, · · · , r⊤
ℓ,b), db = (c⊤

1,b, · · · , c⊤
ℓ,b)⊤. For

each j ∈ [ℓ + 1], parses Aj as above, i.e., for all rows k ∈ [ω], parses (⊥, · · · , αj,k, · · · ,⊥) = A[k], where
αj,k ∈ {±1} is the non-⊥ entry in column νj,k. To generate the forgeries, for b ∈ {0, 1}, sets

r∗
j,b = (α1−b

j,1 · sb,νj,1 , · · · , α1−b
j,ω · sb,νj,ω ), c∗

j,b = (α1−b
j,1 · db,νj,1 , · · · , α1−b

j,ω · db,νj,ω ) (8)

and parses (Y∗
j,0, Y∗

j,1, Mj) = T [Aj , auxj ]. Finally, B sets σj = (r∗
j,b, c∗

j,b)b∈{0,1} and outputs the forgeries
(σj , Mj)j∈[ℓ+1] to the ℓ-OMUF game.

Success probability. It is easy to see that B simulates Hros perfectly. Thus, it suffices to show that the
signatures (σj , Mj)j∈[ℓ+1] are valid if A’s output forms a valid Group-pROS solution. In that case, we have
that (Aj , auxj)j∈[ℓ+1] are pairwise distinct, ci ∈ {±1}ω and Aj ∈ ({±1} ∪ {⊥})ω×ωℓ with ∥Aj [k]∥∞ = 1
for all k ∈ [ω]. By construction, we know that (Mj)j∈[ℓ+1] are pairwise distinct. Further, we know that for
j ∈ [ℓ + 1] it holds that Aj · d = Hros(Aj , auxj), where d = (c⊤

1 , · · · , c⊤
ℓ )⊤. With the above notation, this is

equivalent to
(αj,k · dνj,k

)k∈[ω] = H(Y∗
j,0, Y∗

j,1, Mj) := c∗
j (9)

by construction. For i ∈ [ℓ], we know that the signer’s output satisfies Yi,0 = ri,0 ⋆ X
ci,0
0 , Yi,1 = ri,1 ⋆ X

ci,1
1

and ci,0 ⊙ ci,1 = ci. With the above notation, this can be rewritten as

Zb = sb ⋆ Xdb

b and d0 ⊙ d1 = d. (10)

We now show that (σj , Mj)j∈[ℓ+1] verify given the above. That is, c∗
j,0 ⊙ c∗

j,1 = c∗
j and that for b ∈ {0, 1},

we have that Y∗
j,b = r∗

j,b ⋆ X
c∗

j,b

b . We verify that this holds for each coordinate. We have for k ∈ [ω] that

r∗
j,b,k ⋆ X

c∗
j,b,k

b

(8)= (α1−b
j,k · sb,νj,k

) ⋆ X
α1−b

j,k
·db,νj,k

b

(10)= Z
α1−b

j,k

b,νj,k

(7)= Y ∗
j,b,k

and

c∗
j,k

(9)= αj,k · dνj,k
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(10)= αj,k · d0,νj,k
· d1,νj,k

(8)= c∗
j,0,k · c∗

j,1,k.

Thus, all signatures verify.

Remark 4.2. The above attack can be extended to encompass the general framework of CSI-Otter, wherein
the groups G and Gc, initially set as {±1}, can be replaced by a cyclic group Cd of a higher order d ∈ N.
This substitution naturally corresponds the fact that the challenge space in CSI-Otter isomorphic to Cd as a
group, where d corresponds to the d-th root of unity used within their generalized blind signature scheme.

Combining Theorem 4.1, Theorem 3.3, and the above remark, we obtain the following lemma.

Corollary 4.3. Let N ∈ N. Let the scheme CSI-Otter be parameterized by the challenge space {±1} with
ω repetitions. Under this parameterization, there exists a PPT adversary against the ℓ-OMUF experiment
of CSI-Otter for ℓ = ⌈ω/N⌉ with expected O(ℓ2N ) queries to the hash function, achieving an advantage of
1. Furthermore, when ζd-CSI-Otter is parameterized by the challenge space ⟨ζd⟩ of size d and ω repetitions,
there exists a PPT adversary against the ℓ-OMUF experiment of ζd-CSI-Otter for ℓ = ⌈ω/N⌉ with O(ℓdN )
queries to the hash functions, achieving an advantage of 1.

Concretely, in CSI-Otter, ω is taken to be 128. With 128 concurrent sessions of CSI-Otter and expected 256
hash queries, we are able to break the 128-one-more unforgeability of it with an overwhelming probability.
Also, with 4 concurrent sessions of CSI-Otter and expected 234 hash queries, we are able to break 4-the
one-more unforgeability of it with an overwhelming probability. In ζ4-CSI-Otter, ω is taken to be 64. With
4 concurrent sessions of ζ4-CSI-Otter, ω and expected 234 hash queries, we are able to break the 4-one-more
unforgeability of it with an overwhelming probability. Note that this does not contradict to the security
proof of CSI-Otter where the reduction loss depends on the number of hash queries as given in [KLX22a].

4.2 Lattice-based Blind Signatures: Blaze+ and BlindOR
In this subsection, we consider the lattice-based blind signatures Blaze+ [AEB20a, AEB20b] and BlindOR [AHJ21].
Let Rq = Zq[X]/(Xn + 1), where n ∈ N is a power of two. We first define the two subsets of Rq

T = {(−1)b ·Xk | b ∈ {0, 1}, k ∈ [0, n− 1]},

C = {c ∈ Rq | c =
∑
i∈[ω]

ĉi for ĉi ∈ T}.

The challenge space of BlindOR is Tω. The challenge space of Blaze+ is C, but during signing, this space
is decomposed into Tω. For this, we define the mapping Decomp : C → Tω. Given c ∈ C, Decomp outputs
(ĉ1, · · · , ĉω) such that c =

∑
i∈[ω] ĉi.

Further, let Bkg < Bver be two real numbers. The value Bkg is a norm bound for the vectors in the
secret key and Bver is a norm bound for the vectors in a signature. Also, we denote the abort probability of
rejection sampling by δrej. We also denote by δver the probability that a signature from an honest unblinded
signing interaction (of Blaze+ or BlindOR) passes verification.

4.2.1 Blaze+.

Here, we give a concrete attack on Blaze+. Let H : {0, 1}∗ → C be a collision-resistant hash function. Note
that to generate the challenge c in Blaze+, the user evaluates the hash function c← H(root, M) on message M
and a vector commitment root (i.e., a Merkle tree) to w ∈ Rq. Instead, we evaluate H on M and w to simplify
presentation. The interactive signing protocol, key generation and verification is given in Figure 5. We stress
that this simplification is purely for readability, and an attack on the scheme in Figure 5 immediately yields
an attack on Blaze+ (by first committing to w in root).
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Signer((a, t), s) User((a, t), M)

1 : for i ∈ [ω]
2 : (ri, e′

i)← χm
rs × χrs

3 : wi = a⊤ri + e′
i

(wi)i∈[ω]

4 : w ←
∑

i∈[ω] wi

5 : c← H(w, M)
6 : (ĉi)i∈[ω] ← Decomp(c)

(ĉi)i∈[ω]

7 : for i ∈ [ω]
8 : req ĉi ∈ T
9 : zi ← s · ĉi + ri

10 : yi ← e · ĉi + e′
i

11 : req RejSamp((zi, yi)i∈[ω]) = 1

(zi, yi)i∈[ω]

12 : (z, y)←
( ∑

i∈[ω] zi,
∑

i∈[ω] yi

)
13 : σ ← (z, y, c)

KeyGen(1λ) :
1 : a← Rm

q

2 : (s, e)← χm × χ

3 : if (∥(s⊤, e)∥ > Bkg) then
4 : goto line 2

5 : t← a⊤s + e

6 : return sk = s, pk = (a, t)

Verify((a, t), σ, M) :
1 : parse σ = (z, y, c)

2 : req ∥(z⊤, y)∥ ≤ Bver

3 : w ← a⊤z + y − tc

4 : req c = H(w, M)
5 : return 1

Figure 5: The unblinded signing protocol, key generation and verification Blaze+, where H : {0, 1}∗ → C is
a collision-resistant hash function and Bkg, Bver ∈ R are fixed norm bounds. We also specify key generation
and verification. In the signing protocol (resp. verification), req aborts (resp. returns 0) if the requirement
does not hold.

Roughly, Blaze+ decomposes c ∈ C into ω monomials in T and runs ω parallel repetitions of a lattice-based
identification protocol. For our attack, we observe that while the final signature in Blaze+ does not have
explicit parallel repetitions, the signing protocol is parallelized. We can leverage this structure to attack the
scheme. In particular, for ℓ ∈ N, we show that a successful adversary on Group-pROSℓ,ω,T,T allows to break
ℓ-OMUF with of Blaze+ with probability δω

ver(1− δrej)ω. Note that this is the probability that the signer does
not abort in ℓ signing sessions and that all obtained signatures verify (i.e., all obtained signatures satisfy
∥(z⊤

δ,i, yδ,i)i∈[ω]∥ ≤ Bver). Then, we can apply the attack from Section 3.2 to obtain a concrete attack.

Theorem 4.4. For any PPT adversary A on Group-pROSℓ,ω,T,T, there is an adversary B against ℓ-OMUF
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of Blaze+ such that AdvOMUF
B (λ) = δℓ

ver(1− δrej)ℓ · AdvGroup-pROS
A,ℓ,ω,T,T (λ).

Proof. Let A be an adversary on Group-pROSℓ,ω,T,T for some ℓ ∈ N. We use A to construct an adversary B
against ℓ-OMUF of Blaze+ as follows.
Adversary B. Adversary B obtains a public key (a, t) and access to oracles H, S1 and S2. Then, B opens ℓ

concurrent (signing) sessions via the S1 oracle and obtains (wi,k)k∈[ω] from the ith session. Next, B generates
a table T initialized with ⊥ entries. Sets v = (w1,1, w1,2, · · · , wℓ,ω) ∈ Rωℓ

q .
Let Q be the number of Hros queries of A (including potential queries for verification of A’s output).

Assume without loss of generality that each Hros query is distinct. For the ith such query (A, aux) to Hros
of A, adversary B proceeds as follows. If A /∈ (T ∪ {⊥})ω×ωℓ or ∥A[k]∥∞ ̸= 1 for some k ∈ [ω], then
returns c⃗ ∗ ← Tω. Else, sets (w∗

1 , · · · , w∗
ω)⊤ = A · v and w∗ ←

∑
k∈[ω] w∗

k. Also, sets M = (aux, i) and
T [A, aux] = (w∗, M). Note that by construction, M is distinct for distinct queries. Sets c∗ = H(w∗, M),
decomposes (ĉk)k∈[ω] = Decomp(c∗) and outputs c⃗ ∗ = (ĉ1, · · · , ĉω)⊤.

After A’s query phase, it outputs (Aj , auxj)j∈[ℓ+1] and (c⃗i)i∈[ℓ]. Adversary B checks if A is successful
and outputs ⊥ to the ℓ-OMUF game if not. If A was successful, then B parses c⃗i as (ĉi,k)k∈[ω] ∈ Tω. Then,
B closes the ith session with (ĉi,k)k∈[ω] via the S2 oracle and obtains (zi,k, yi,k)k∈[ω] if none of the sessions
abort. For all j ∈ [ℓ + 1] and k ∈ [ω], parses the kth row of Aj as (⊥, · · · , αj,k, · · · ,⊥) = Aj [k], where
αj,k ∈ T is the non-⊥ entry at position νj,k. Sets µj,k := (ν′

j,k, ν′′
j,k) = (⌊νj,k/ω⌋ , νj,k mod ω) ∈ [ℓ] × [ω].

We write zµj,k
= zν′

j,k
,ν′′

j,k
for short, and extend this notation to yµj,k

, ĉµj,k
naturally. Using this notation, B

constructs the values
z∗

j =
∑

k∈[ω]

αj,k · zµj,k
and y∗

j =
∑

k∈[ω]

αj,k · yµj,k
. (11)

Also, B parses (w∗
j , Mj) ← T [Aj , auxj ]. Note that by construction, we have that w∗

j =
∑

k∈[ω] αj,k · wµj,k
.

To generate the forgeries, B sets c∗
j ← H(w∗

j , Mj) and σj = (z∗
j , y∗

j , Mj). Finally, B outputs the forgeries
(σj , Mj)j∈[ℓ+1] to the ℓ-OMUF game.
Success probability. Let us analyze the success probability. Recall that the random oracle H maps into C,
and for any c ∈ C we have that Decomp(c) ∈ Tω. Further, Decomp(c) is uniform over Tω for c ← C
drawn at random. Thus, for each distinct Hros query, B outputs a random value in Tω as desired. Set d =
(c⃗⊤

1 , · · · , c⃗⊤
ℓ )⊤. If A is successful, we have that (Aj , auxj)j∈[ℓ+1] are pairwise distinct, (ĉi,k)k∈[ω] = c⃗i ∈ Tω

and Aj ∈ (T ∪ {⊥})ω×ωℓ with ∥Aj [k]∥∞ = 1 for all k ∈ [ω]. By construction, we know that (Mj)j∈[ℓ+1] are
pairwise distinct.

Also, for all j ∈ [ℓ+1] it holds that Aj ·d = Hros(Aj , auxj). With the above notation, this is equivalent to
(αj,k · ĉµj,k

)k∈[ω] = Hros(Aj , auxj). Also, we have that Hros(Aj , auxj) = Decomp(H(w∗
j , Mj)) by construction.

Using both equalities and the definition of Decomp, we obtain for j ∈ [ℓ + 1] that

H(w∗
j , Mj) =

∑
k∈[ω]

αj,k · ĉµj,k
(12)

Also, if none of the ℓ signing sessions abort, we have that for all (i, k) ∈ [ℓ]× [ω] that

wi,k = a⊤zi,k + yi,k − t · ĉi,k (13)

Combining the above observations, we obtain that c∗
j = H(w∗

j , Mj) and

w∗
j =

∑
k∈[ω]

αj,k · wµj,k

(13)=
∑

k∈[ω]

αj,k(a⊤zµj,k
+ yµj,k

− t · ĉµj,k
)

= a⊤(
∑

k∈[ω]

αj,kzµj,k
) + (

∑
k∈[ω]

αj,kyµj,k
)− t · (

∑
k∈[ω]

aµj,k
ĉµj,k

)
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(11)= a⊤z∗
j + y∗

j − t · (
∑

k∈[ω]

aµj,k
ĉµj,k

)

(12)= a⊤z∗
j + y∗

j − t · H(w∗
j , Mj)

= a⊤z∗
j + y∗

j − t · c∗
j

Also, since δrej is the probability that a signing session aborts and since B opens ℓ sessions in total, we have
that no session aborts with probability at least (1 − δrej)ℓ. It remains to show that ∥((z∗

j )⊤, y∗
j )∥ ≤ Bver

with high probability. This follows as in the proof of correctness of Blaze+ [AEB20a, Theorem 1]. Roughly,
observe that the multiplication with αj,k ∈ T does not increase the norm of zµj,k

or yµj,k
. Thus, the

signatures output by B have the same norm distribution as honest (unblinded) signatures and consequently,
the probability that all forgeries are valid is δℓ

ver.

We can now combine Theorem 4.4 with our attack from Section 3.2 to break one-more unforgeability of
Blaze+ in a concurrent setting.

Corollary 4.5. Let N ∈ N and ℓ = ⌈ω/N⌉. There is a PPT adversary on ℓ-OMUF of Blaze+ with success
probability δℓ

ver(1− δrej)ℓ with expected O(ℓ(2n)N ) queries to the hash functions.

Concretely, in the instantiation of Blaze+, we have n = 1024 and ω = 16 for λ = 128. Also, the abort
probability δrej for rejection sampling is at most δrej ≤ 0.47 in their instantiations, and the probability δver
that a honest signature verifies is at least δver ≥ 1 − 2−λ. By taking N = 1, with 16 concurrent sessions of
Blaze+ and an expected number of 215 hash queries, we obtain an attack on 16-one-more unforgeability of
Blaze+ with the probability greater than 2.8 · 10−5. For N = 4, with 4 concurrent sessions of Blaze+ and
an expected number of 246 hash queries, we are able to break the 4-one-more unforgeability of it with the
probability at least 0.073.

Remark 4.6 (Variant with 4 rounds). Note that a 4-move version of Blaze+ is also presented in the appendix
of [AEB20b]. Here, the user has the option to abort in case the blinding procedure fails. In the event of
an abort, the user is required to provide a proof that no valid signature was obtained. Our attack works
without change on this variant.

4.2.2 BlindOR.

Here, we give an efficient attack on BlindOR [AHJ21]. At a high-level, BlindOR runs two instances of Blaze+

in parallel and combines them with the OR-proof technique (similar to CSI-Otter). That is, one instance is
run as usual, whereas the other instance is simulated. Each instance uses one share c0 or c1 as challenge,
where c = c0 ⊙ c1 is output by a hash function. Further, BlindOR makes other design choices listed below.

1. BlindOR uses challenges in Tω instead of C (as this allows to share the challenges multiplicatively over
T). On the other hand, Blaze+ uses a single challenge c ∈ C, but decomposes it into ω challenges in T
during signing.

2. BlindOR performs η-many Blaze+ protocols in parallel in S1, but only a single protocol is completed in
S2. The completed protocol is the first for which rejection sampling succeeds (in random order).

3. Blaze+ is described in the ring lattice setting, whereas BlindOR is described the module lattice setting.

For consistency, we present BlindOR in the ring setting (instead of in the module setting). We stress that
this is purely to keep notation consistent and that it is straightforward to modify the attack to work in the
module lattice setting. Also, since their instantiation uses η = 1, we omit the additional parallel executions
in S1 in our analysis. (We discuss in Remark 4.9 how to adapt the attack for η > 1. ) Let H : {0, 1}∗ → Tω

be a collision-resistant hash function. We describe the unblinded version of BlindOR in Figs. 6 and 7.
For our attack, we proceed as in our attack on Blaze+ (cf. Section 4.2) and handle the OR-proof as in

our attack on CSI-Otter (cf. Section 4.1). We summarize our attack in the theorem below.
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Signer((a, t0, t1), (δ, sδ)) User((a, t0, t1), M)

1 : for i ∈ [ω]
2 : (rδ,i, e′

δ,i)← χm
rs × χrs

3 : wδ,i ← a⊤rδ,i + e′
δ,i

4 : c1−δ ← Tω

5 : (w1−δ,i, z1−δ,i, y1−δ,i)i∈[ω] ← Sim(a, t1−δ, c1−δ)

(w0,i, w1,i)i∈[ω]

6 : c← H((w0,i, w1,i)i∈[ω], M)

c

7 : req c ∈ Tω

8 : cδ ← c⊙ c1−δ

9 : for i ∈ [ω]
10 : zδ,i ← s · cδ,i + rδ,i

11 : yδ,i ← e · cδ,i + e′
δ,i

12 : req RejSamp((zi, yi)i∈[ω])

(z0,i, y0,i, z1,i, y1,i)i∈[ω], c0, c1

13 : σ ← ((z0,i, y0,i, z1,i, y1,i)i∈[ω], c0, c1)

Figure 6: The unblinded signing protocol of BlindOR, where H : {0, 1}∗ → Tω is a collision-resistant hash
function, Bver ∈ R is some fixed norm bound, and ⊙ is the entry-wise product. In the signing protocol, req
aborts if the requirement does not hold. Key generation, verification and the simulator Sim are defined in
Fig. 7

Theorem 4.7. For any PPT adversary A on Group-pROSℓ,ω,T,T, there is an adversary B against ℓ-OMUF
of BlindOR such that AdvOMUF

B (λ) = δ2ℓ
ver(1− δrej)ℓ · AdvGroup-pROS

A,ℓ,ω,T,T (λ).

Proof. Let A be an adversary on Group-pROSℓ,ω,T,T for some ℓ ∈ N. We use A to construct an adversary B
against ℓ-OMUF of BlindOR as follows.
Adversary B. Adversary B obtains a public key (a, t0, t1) and access to oracles H, S1 and S2. Then, B opens
ℓ concurrent (signing) sessions via the S1 oracle and obtains (w0,i,k, w1,i,k)k∈[ω] from the ith session. Next,
B generates a table T initialized with ⊥ entries. Sets vδ = (wδ,1,1, wδ,1,2, · · · , wδ,ℓ,ω) ∈ Rωℓ

q for δ ∈ {0, 1}.
Let Q be the number of Hros queries of A (including potential queries for verification of A’s output).

Assume without loss of generality that each Hros query is distinct. For the ith such query (A, aux) to Hros of
A, adversary B proceeds as follows. If A /∈ (T ∪ {⊥})ω×ωℓ or ∥A[k]∥∞ ̸= 1 for some k ∈ [ω], then returns
c∗ ← Tω. Else, parses the kth row of A as (⊥, · · · , αk, · · · ,⊥) = A[k], where αk ∈ T is the non-⊥ entry in
column νk. Sets w∗

0,k = αkv0,νk
and w∗

1,k = v1,νk
for k ∈ [ω]. Note that (w∗

0,1, · · · , w∗
0,ω) = A · v0. Also,

sets M = (aux, i) and T [A, aux] = ((w∗
0,k, w∗

1,k)k∈[ω], M). Note that by construction, M is distinct for distinct
queries. Sets c∗ = H((w∗

0,k, w∗
1,k)k∈[ω], M) and outputs c∗.

After A’s query phase, it outputs (Aj , auxj)j∈[ℓ+1] and (ci)i∈[ℓ]. Adversary B checks if A is successful and
outputs ⊥ to the ℓ-OMUF game if not. If A was successful, B closes the ith session with ci via the S2 oracle
and obtains ((zi,0,k, yi,0,k, zi,1,k, yi,1,k)k∈[ω], ci,0, ci,1) if none of the sessions abort. For all j ∈ [ℓ + 1] and
k ∈ [ω], parses the kth row of Aj as above, i.e., (⊥, · · · , αj,k, · · · ,⊥) = Aj [k], where αj,k ∈ T is the non-⊥
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Verify((a, b0, b1), σ, M) :
1 : parse σ = ((z0,i, y0,i, z1,i, y1,i)i∈[ω], c0, c1)
2 : for δ ∈ {0, 1}

3 : req ∥(z⊤
δ,i, yδ,i)i∈[ω]∥ ≤ Bver

4 : for i ∈ [ω]

5 : wδ,i ← a⊤zδ,i + yδ,i − tδcδ,i

6 : req c0 ⊙ c1 = H((wδ,i, wδ,i)i∈[ω], M)
7 : return 1

Sim(a, t, c) :
1 : for i ∈ [ω]
2 : (zi, yi)← χrs × χrs

3 : wi = a⊤zi + yi − tci

4 : return (wi, zi, yi)i∈[ω]

KeyGen(1λ) :
1 : a← Rm

q

2 : for δ ∈ {0, 1}
3 : (sδ, eδ)← χm × χ

4 : if (∥(s⊤
δ , eδ)∥ > Bkg) then

5 : goto line 3

6 : tδ ← a⊤sδ + eδ

7 : δ ← {0, 1}
8 : sk = (δ, sδ, eδ)
9 : pk = (a, t0, t1)

10 : return sk, pk

Figure 7: The key generation and verification protocol for BlindOR, where Bkg ∈ R is some fixed norm bound,
and ⊙ is the entry-wise product. We also provide a description of the simulator Sim. In the verification,
req returns 0 if the requirement does not hold. Note that instead of running the simulator again if it aborts
as in [AHJ21], we define Sim such that it does not abort directly. The unblinded signing protocol is defined
in Fig. 6.

entry at position νj,k. For b ∈ {0, 1}, sets µj,b,k := (ν′
j,k, b, ν′′

j,k) = (⌊νj,k/ω⌋ , b, νj,k mod ω) ∈ [ℓ]×{0, 1}×[ω].
For values x indexed over [ℓ] × {0, 1} × [ω], we write xµj,b,k

short for xν′
j,k

,b,ν′′
j,k

. Using this notation, for
j ∈ [ℓ + 1] and k ∈ [ω], adversary B sets

z∗
j,0,k = αj,k · zµj,0,k

z∗
j,1,k = zµj,0,k

, y∗
j,0,k = αj,k · yµj,0,k

y∗
j,1,k = yµj,1,k

and c∗
j,0,k = αj,k · cµj,0,k

c∗
j,1,k = cµj,1,k

(14)

Sets c∗
j,b = (c∗

j,b,1, · · · , c∗
j,b,ω). Also, B parses ((w∗

j,0,k, w∗
j,1,k)k∈[ω], Mj) ← T [Aj , auxj ]. Note that by con-

struction, we have that
w∗

j,b,k = α1−b
j,k · wµj,b,k

. (15)
Finally, B sets σj = ((z∗

j,0,k, z∗
j,1,k, y∗

j,0,k, y∗
j,0,k)k∈[ω], c∗

j,0, c∗
j,1) and outputs the forgeries (σj , Mj)j∈[ℓ+1] to the

ℓ-OMUF game.
Success probability. Let us analyze the success probability. It is easy to check that for each distinct Hros
query, B outputs a random value in Tω as desired. Set d = (c⊤

1 , · · · , c⊤
ℓ )⊤. If A is successful, we have that

(Aj , auxj)j∈[ℓ+1] are pairwise distinct, ci ∈ Tω and Aj ∈ (T ∪ {⊥})ω×ωℓ with ∥Aj [k]∥∞ = 1 for all k ∈ [ω].
Also, we know that (Mj)j∈[ℓ+1] are pairwise distinct by construction. Further, for all j ∈ [ℓ + 1] it holds that
Aj · d = Hros(Aj , auxj) := c∗

j . Using the above notation, this is equivalent to αj,kdνj,k
= c∗

j,k for all k ∈ [ω].
By construction, we have that Hros(Aj , auxj) = H((w∗

j,0,k, w∗
j,1,k)k∈[ω], Mj). Using both equalities, we obtain

for j ∈ [ℓ + 1] that
H((w∗

j,0,k, w∗
j,1,k)k∈[ω], Mj) = (αj,k · dνj,k

)k∈[ω] (16)
Also, if none of the ℓ signing sessions abort, we have that for all (i, b, k) ∈ [ℓ]× {0, 1} × [ω] that

wi,b,k = a⊤zi,b,k + yi,b,k − tb · ci,b,k

ci = ci,0 ⊙ ci,1
(17)

Combining the above observations, we obtain for all j ∈ [ℓ], b ∈ {0, 1}, k ∈ [ω] that

w∗
j,b,k

(15)= α1−b
j,k · wµj,b,k
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(17)= α1−b
j,k (a⊤zµj,b,k

+ yµj,b,k
− tb · cµj,b,k

)
= a⊤(α1−b

j,k · zµj,b,k
) + (α1−b

j,k · yµj,b,k
)− tb · (α1−b

j,k · cµj,b,k
)

(14)= a⊤z∗
j,b,k + y∗

j,b,k − tb · c∗
j,b,k

and

H((w∗
j,0,k, w∗

j,1,k)k∈[ω], Mj) (16)= αj,k · dνj,k

(17)= αj,k · cµj,0,k · cµj,1,k

(14)= c∗
j,0,k · c∗

j,1,k

Also, since δrej is the probability that rejection sampling fails and since B opens ℓ sessions in total, we have
that no session aborts with probability at least (1− δrej)ℓ. We can show that ∥((z∗

j,b,k)⊤, y∗
j,b,k)∥ ≤ Bver as in

the proof of Corollary 4.5 (i.e., our attack on Blaze+). Since we obtain two Blaze+ signatures per signature,
the norm bound holds for all signatures with probability δ2ℓ

ver.

Corollary 4.8. Let N ∈ N and ℓ = ⌈ω/N⌉. There exists a PPT adversary on ℓ-OMUF of BlindOR with
success probability δ2ℓ

ver(1− δrej)ℓ and with expected O(ℓ(2n)N ) queries to the hash functions.

For concrete numbers, we refer to the analysis of Blaze+ (cf. Section 4.2)6. Note that the success
probability is to be multiplied with (1− 2λ)ℓ ≈ 1 due to the additional factor 2 in the exponent of δver.

Remark 4.9. To reduce the abort probability δrej due to the signer’s rejection sampling in S2, BlindOR gives
the option to initiate η > 1 signing sessions of S1 concurrently, but only a single session is finished (if any).
This session is the first session (chosen at random) where rejection sampling does not abort in S2. Our
attack can be adapted to this setting by guessing which session is finished. Then, we can proceed with our
attack as before. The probability that we guess correctly in our attack is at least (1/η)ℓ.

4.3 Blind Signature based on Parallel Schnorr
Let (G, +) be a group with prime order p. We use additive notation. Let g ∈ G be a generator. We
define a natural variant of blind Schnorr with ω parallel repetitions. The interactive signing protocol, key
generation and verification is defined in Figure 8. We also provide a full specification in Figure 9 (without
security proofs). We analyze it exclusively for illustrative purposes and note that the benefit compared to
the original blind Schnorr is marginal.

Conceptually, the use of both parallel repetitions and exponential challenge space should make the
scheme more secure. For example for the standard Schnorr Σ-protocol, the soundness error ε := 1/p can
be exponentially reduced with ω parallel repetitions to εω [Dam02]. Since blind Schnorr remains secure
for o(logp)-many concurrent sessions, perhaps its security can be amplified in a similar manner due to the
exponential challenge space. We show that this intuition is wrong and there is an efficient attack on the
scheme.

In more detail, we show that a successful adversary on Ring-pROSℓ,ω,Zp,Zp
allows to break the ℓ-OMUF

of parallel blind Schnorr with ω repetitions. Then, we can apply the attack from Section 3.3 since Zp is a
field and binary decomposition is efficient over Zp.

Theorem 4.10. For any PPT adversary A on Ring-pROSℓ,ω,Zp,Zp
, there is an adversary B against ℓ-OMUF

of parallel blind Schnorr such that AdvOMUF
B (λ) = AdvRing-pROS

A,ℓ,ω,R,Rc
(λ).

6Since BlindOR runs two Blaze+ instances in parallel, the efficiency of the attack is identical for shared concrete parameters.
Note that we presented our attack in the ring lattice setting, but as mentioned above, it is straightforward to adapt it to the
module lattice setting of the BlindOR instantiation.
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Signer(G, X, x) User(G, X, M)

1 : r⃗ ← Zω
p

2 : R⃗← r⃗G

R⃗

3 : c⃗← H(R⃗, M)

c⃗

4 : req c⃗ ∈ Zω
p

5 : s⃗← x · c⃗ + r⃗

s⃗

6 : σ ← (c⃗, s⃗)

KeyGen(1λ) :
1 : x← Zp \ {0}
2 : X ← xG

3 : return sk = x, pk = X

Verify(X, σ, M) :
1 : parse σ = (c⃗, s⃗)

2 : R⃗← s⃗G− c⃗X

3 : req c⃗ = H(R⃗, M)
4 : return 1

Figure 8: An interactive signing protocol for Schnorr with ω parallel repetitions. We also specify key
generation and verification. In the signing protocol (resp. verification), req aborts (resp. returns 0) if the
requirement does not hold.

Proof. Let A be an adversary on Ring-pROSℓ,ω,Zp,Zp
for some ℓ ∈ N. We construct an adversary B against

ℓ-OMUF of parallel blind Schnorr with ω parallel repetitions using A.

Adversary B. Initially, B obtains a public key X and access to oracles H, S1 and S2. Then, B opens ℓ

concurrent (signing) sessions via the S1 oracle. It obtains R⃗i from the ith session. Then, B generates a table
T initialized with ⊥ entries. Sets S⃗ ← (R⃗⊤

1 , · · · , R⃗⊤
ℓ )⊤ ∈ Gω·ℓ.

Let Q be the number of Hros queries of A (including potential queries for verification of A’s output).
Assume without loss of generality that each Hros query is distinct. For the ith such query (A, aux) to Hros
of A, adversary B proceeds as follows. If A /∈ Zω×ωℓ

p , then returns c⃗ ∗ ← Zω
p . Otherwise, sets R⃗∗ ← A · S⃗

and M = (aux, i). Sets T [A, aux] = (R⃗∗, M). Note that by construction, M is distinct for distinct queries.
Outputs H(R⃗∗, M).

After A’s query phase, it outputs (Aj , auxj)j∈[ℓ+1] and (c⃗i)i∈[ℓ]. Adversary B checks if A is successful
and outputs ⊥ to the ℓ-OMUF game if not. Next, closes the ith session with c⃗i via the S2 oracle and obtains
s⃗i. Sets t⃗← (s⃗⊤

1 , · · · , s⃗⊤
ℓ )⊤. Now, B parses (R⃗∗

j , Mj)← T [Aj , auxj ]. Sets s⃗ ∗
j ← Aj · t⃗, c⃗ ∗

j ← H(R⃗∗
j , Mj), and

σj = (c⃗ ∗
j , s⃗ ∗

j ). Finally, outputs the forgeries (σj , Mj)j∈[ℓ+1] to the ℓ-OMUF game.

Success probability. Let us analyze the success probability. Recall that the random oracle H maps into Zω
p .

Thus, for each distinct Hros query, B outputs a random value in Zω
p as desired. Set d⃗ := (c⃗⊤

1 , · · · , c⃗⊤
ℓ )⊤ ∈ Zωℓ

p .
If A is successful, we have that (Aj , auxj)j∈[ℓ+1] are pairwise distinct, c⃗i ∈ Zω

p and Aj ∈ Zω×ωℓ
p . Also, for

all j ∈ [ℓ + 1] it holds that Aj · d⃗ = Hros(Aj , auxj). Thus, we know that (Mj)j∈[ℓ+1] are pairwise distinct by
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Signer(G, X, x) User(G, X, M)

1 : r⃗ ← Zω
p

2 : R⃗← r⃗G

R⃗

3 : α⃗, β⃗ ← Zω
p

4 : R⃗∗ ← R⃗ + α⃗G + β⃗X

5 : c⃗ ∗ ← H(R⃗∗, M)

6 : c⃗← c⃗ ∗ + β⃗

c⃗

7 : s⃗← x · c⃗ + r⃗

s⃗

8 : req R⃗ + c⃗X = s⃗G

9 : s⃗ ∗ ← s⃗ + β⃗

10 : σ∗ ← (c⃗ ∗, s⃗ ∗)

KeyGen(1λ) :
1 : x← Zp \ {0}
2 : X ← xG

3 : return sk = x, pk = X

Verify(X, σ∗, M) :
1 : parse σ∗ = (c⃗ ∗, s⃗ ∗)

2 : R⃗∗ ← s⃗ ∗G− c⃗ ∗X

3 : req c⃗ ∗ = H(R⃗∗, M)
4 : return 1

Figure 9: The blinded protocol for parallel Schnorr with ω parallel repetitions.

construction. Also, all forgeries are valid since c⃗ ∗
j = H(R⃗∗

j , Mj) and

R⃗∗
j = Aj · S⃗ = Aj · (R⃗⊤

1 , · · · , R⃗⊤
ℓ )⊤

= Aj · ((s⃗1G− c⃗1X)⊤, · · · , (s⃗ℓG− c⃗ℓX)⊤)⊤

= Aj · (⃗tG− d⃗X) = (Aj · t⃗)G− (Aj · d⃗)X
= s⃗ ∗

j G− Hros(Aj , auxj)X
= s⃗ ∗

j G− H(R⃗∗
j , Mj)X = s⃗ ∗

j G− c⃗ ∗
j X.

Set Bµ = 2µ−1. If we combine Theorem 4.10 with Theorem 3.5 (i.e., the attack from Section 3.3 with
binary generating set (Bµ)µ∈[⌈log p⌉]), we obtain an attack on parallel blind Schnorr. Since any value in Zp can
be decomposed in binary efficiently, the attack runs in O(ℓ) for ℓ ≥ ω ⌈log p⌉. Note that in practice, we often
have ⌈log p⌉ = 256 and the attack remains concretely efficient for a large number of parallel repetitions ω.
Corollary 4.11. Let n ∈ N and ℓ ≥ ω ⌈log p⌉. There exists an PPT adversary on ℓ-OMUF of parallel
Schnorr with success probability 1 that runs in time O(ℓ), counting hash queries, binary decompositions and
operations in Zp and G.
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