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ABSTRACT
While secure multi-party computation (MPC) protects the privacy

of inputs and intermediate values of a computation, differential

privacy (DP) ensures that the output itself does not reveal too much

about individual inputs. For this purpose, MPC can be used to

generate noise and add this noise to the output. However, securely

generating and adding this noise is a challenge considering real-

world implementations on finite-precision computers, since many

DP mechanisms guarantee privacy only when noise is sampled

from continuous distributions requiring infinite precision.

We introduce efficient MPC protocols that securely realize noise

sampling for several plaintext DP mechanisms that are secure

against existing precision-based attacks: the discrete Laplace and

Gaussian mechanisms, the snapping mechanism, and the integer-

scaling Laplace and Gaussian mechanisms. Due to their inherent

trade-offs, the favorable mechanism for a specific application de-

pends on the available computation resources, type of function

evaluated, and desired (𝜖, 𝛿)-DP guarantee.

The benchmarks of our protocols implemented in the state-of-

the-art MPC framework MOTION (Braun et al., TOPS’22) demon-

strate highly efficient online runtimes of less than 32 ms/query and

down to about 1ms/query with batching in the two-party setting.

Also the respective offline phases are practical, requiring only 51

ms to 5.6 seconds/query depending on the batch size.

KEYWORDS
Secure Multi-party Computation, Differential Privacy, Noise Sam-

pling, Secure Implementations, Finite-Precision Computing

1 MOTIVATION
The aggregation and statistical analysis of many individuals’ data

became common across multiple industries, e.g., for the detection of

financial frauds [10], the improvement of disease diagnostics [29],

or the matching of organ donors with patients [17]. Such analy-

ses may, however, conflict with data privacy. To complicate the

matter, data is often stored at different locations, e.g., hospitals or

banks, and those parties do not wish or are legally not permitted

to share their information with the other parties. However, col-

laboration is imperative for effectively gaining new insights from

distributed data. Secure multi-party computation (MPC) [6, 21, 36]

offers a cryptographic approach to execute an analysis on data in
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a privacy-preserving manner, even when the data is distributed

among multiple parties. MPC guarantees that no party learns more

than what is revealed by the published analysis output.

MPC protocols usually yield exact results, but provide no pro-

tection against attacks that use these outputs to make inferences

about the individuals that contributed their data to the analysis.

Without additional output privacy measures, published results may

be vulnerable to multiple attacks ranging from simple linkage and

reconstruction attacks [81, 92] to inference and model inversion at-

tacks [49, 58, 91] in machine learning applications. In many of these

scenarios, an adversary may use publicly available information to

fully reconstruct the input data used for the analysis. Differential

privacy (DP) [43] has emerged as the de facto standard for guar-

anteeing that the published output of a function does not reveal

too much information about its input. In fact, companies such as

Google [97] and Apple [93], as well as the US Census Bureau [37],

already use DP in practice.

In many cases, DP is guaranteed by mechanisms that sample

noise from some distribution and add this noise to some computed

function result. When the output of the function to be released is

an integer, noise can be sampled from a discrete distribution, like

the discrete Laplace [52] or discrete Gaussian distribution [26]. If

the function output is not an integer, many DP mechanisms re-

quire noise sampled from a continuous distribution. Representing

real numbers from continuous distributions with only finite preci-

sion, as is necessary on computers, leads to a violation of the DP

guarantee in general [50]. In fact, textbook Laplace and Gaussian

mechanism implementations allow an attacker to recover the en-

tire database [64, 77]. Therefore, we consider five DP mechanisms

in our work that are known to guarantee DP when implemented

on finite-precision computers, two that sample from discrete dis-

tributions, and three that sample from approximated versions of

continuous distributions.

Those five DP mechanisms are, however, designed for a scenario

with a central database which is often not available for real-world

applications where data is held by multiple parties. This scenario is

commonly known as the central DP model [42]. As an alternative

model, local DP [68] drops this assumption, instead requiring each

individual to add noise necessary for preserving DP to their own

data and publish the result, after which the function is computed

on this noisy published data. This approach adds significantly more

noise, resulting in published results with more error and less utility.
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Using MPC, the trusted aggregator in the central DP model can

be replaced by a distributed protocol run by multiple non-colluding

parties. We focus on an outsourcing scenario, where a large number

of data owners secret share their data to a small number of non-

colluding parties. We realize the central DP model where the non-

colluding parties jointly sample noise from a distribution under

MPC with limited precision, such that DP is securely guaranteed

and good utility is preserved.We choose floating-point arithmetic to

implement the above five secure DPmechanisms for two reasons: (1)

it satisfies the accuracy requirement of these DPmechanisms which

is not the case for fixed-point arithmetic; (2) it is more efficient

than the noise sampling methods of [30, 42, 46] that are based on

processing a large sequence of Boolean bits when the required

sampling interval is fairly large, e.g., sampling a geometric random

value in [0, 2128). Besides, existing plaintext sampling algorithms

for DP mechanisms cannot simply be “translated” into an MPC

protocol, so we add multiple optimizations to yield a practically

efficient solution.

Outline and Contributions. After introducing the baseline tech-
niques used in our work in §2 and providing an overview of related

work in §3, we present the following contributions:

(1) MPC-based Noise Sampling with Finite Precision.We introduce

MPC protocols for sampling random integers and floating-point

values from the Laplace and Gaussian distributions in §4. Notably,

our protocols are not susceptible to precision-based attacks (cf. §3),

which was not considered by the MPC community so far.

(2) MPC-Protocols for Discrete Mechanisms. Based on our secure ran-
dom sampling protocols, we design MPC protocols for the discrete

Laplace and Gaussian mechanisms [26] in §4.1, which satisfy DP

for queries returning integer values. We introduce several protocol-

level optimizations, that can halve the circuit size and reduce its

depth by 36−88% depending on the employed MPC technique in §4.

We reduce runtimes by up to 8.6× (cf. §5.2) compared to a naive

implementation.

(3) MPC-Protocols for Continuous Mechanisms. Similarly, we design

the firstMPC protocols for the snapping and integer-scaling Laplace

and Gaussian mechanisms with floating-point arithmetic. Our MPC

protocols for the snapping mechanism by Mironov [77] in §4.2 and

Google’s integer-scaling Laplace and Gaussian mechanisms [55]

in §4.3 are applicable for floating-point arithmetic.

(4) Open-source implementation and benchmarks. We implement

our five MPC-protocols for DP mechanisms with both integer and

floating-point arithmetic in the state-of-the-art MPC framework

MOTION [21]. The implementation will be open-sourced upon

acceptance of our work. Furthermore, we extensively benchmark all

algorithms and experimentally compare them to related work in §5.

All but one of our MPC-based sampling protocols are independent

of the input data, so they can be entirely pre-computed in an offline

phase. The online phases of our MPC-based DP mechanisms are

highly efficient using batching, e.g., 1.4-9.5 ms per query with a

batch size of 30 or 40 (cf. §5.2).

2 PRELIMINARIES
In this section, we summarize the concept of differential privacy

and the cryptographic building blocks used in our work. We con-

sider security from two different perspectives: First, we achieve

computational privacy via MPC, i.e., protecting the input data 𝑋 of

different data owners during the computation. Second, we achieve

output privacy via DP, i.e., the information leakage about the input

data 𝑋 that can be inferred from the output 𝑓 (𝑋 ) is limited by the

DP guarantees.

2.1 Output Privacy
Differential Privacy (DP). Intuitively, DP guarantees that includ-

ing an individual’s data record in an analysis has only a limited

impact on the result of the analysis. Let 𝑋 ∈ 𝐷𝑛
be a database

represented as a vector of 𝑛 entries from some domain 𝐷 . Typically

a domain will be of types {0, 1}𝑑 or R𝑑 . The size of a database 𝑋 is

measured by its ℓ1 norm: ∥𝑋 ∥1 = 𝑛. 𝑋 ′ is a neighboring database of
𝑋 if it differs by one record, such that 𝑋 ′ is constructed by replac-

ing one record of 𝑋 with a different record. For DP, randomized

mechanisms 𝑀 are used to ensure the similarity of the outputs

of a statistical analysis on two neighboring databases 𝑋 and 𝑋 ′.
Differential privacy is formally defined as follows:

Definition 2.1 (Differential Privacy [42, 43]). A randomized algo-

rithm 𝑀 : 𝐷𝑛 → Y is (𝜀, 𝛿)-differentially private if for any two

neighboring databases 𝑋,𝑋 ′ ∈ 𝐷𝑛
, and all sets 𝑇 ⊆ Y,

Pr [𝑀 (𝑋 ) ∈ 𝑇 ] ≤ 𝑒𝜀 · Pr

[
𝑀

(
𝑋 ′

)
∈ 𝑇

]
+ 𝛿. (1)

Smaller 𝜀 values provide a stronger privacy guarantee. 𝜀 is chosen

to be a small, non-negligible constant. 𝛿 should be much smaller

than
1

∥𝑋 ∥1 to prevent the leakage of complete data records.

Discrete Outputs.When functions have discrete outputs, it is possible

to add noise sampled from a distribution of discrete values, avoiding

precision-based attacks on some implementations of continuous

distributions. Take integer outputs for example, the discrete Laplace

or discrete Gaussian distributions can be used for noise addition.

Laplace and Gaussian Mechanisms. Additive Laplace [43] and Gauss-
ian [44] noise satisfy DP by adding noise to the output of a function

𝑓 : 𝐷𝑛 → R𝑘 , that maps a database 𝑋 ∈ 𝐷𝑛
to 𝑘 real numbers.

Thereby, the noise’s magnitude must be chosen based on the ℓ1- and

ℓ2-sensitivities of the function 𝑓 : Δ1 𝑓 = max∥ 𝑓 (𝑋 ) − 𝑓 (𝑋 ′)∥1 and

Δ2 (𝑓 ) = max∥ 𝑓 (𝑋 ) − 𝑓 (𝑋 ′)∥2 for any two neighboring databases

𝑋 and 𝑋 ′. I.e., it measures the maximum difference in the output

that modifying a single record in a database can cause.

While the Laplace mechanism guarantees 𝜖-DP, the Gaussian

mechanism can only offer (𝜖, 𝛿)-DP, aweaker guarantee. The Laplace
distribution overall samples less noise than the Gaussian distribu-

tion for one-dimensional single outputs; however, the Gaussian

mechanism allows for better utilitywhen releasing high-dimensional

outputs, which is relevant for machine learning applications [1, 61,

76]. Furthermore, Gaussian noise has the same distribution as much

naturally occurring noise in datameasurements, and several sources

of Gaussian noise add nicely.

Lemma 2.2 (Laplace Mechanism [43]). Given any function 𝑓 :

𝐷𝑛 → R𝑘 with ℓ1-sensitivity ∆1 𝑓 and a privacy parameter 𝜀, the
Laplace mechanism satisfies (𝜖, 0)-DP and is defined as:

𝑀Lap (𝑋 ) = 𝑓 (𝑋 ) + (𝑌1, . . . , 𝑌𝑘 ) , (2)
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where 𝑌𝑖 are i.i.d. random values drawn from a Laplace distribution

Lap(𝑏) with probability density function 𝑃 (𝑥 | 𝑏) = 1

2𝑏
𝑒−
|𝑥 |
𝑏 and

𝑏 = Δ1 𝑓 /𝜖 .

Lemma 2.3 (Gaussian Mechanism [44]). Given any function
𝑓 : 𝐷𝑛 → R𝑘 with ℓ2-sensitivity ∆2 (𝑓 ) and privacy parameters
(𝜀, 𝛿), the Gaussian mechanism is defined as:

𝑀Gauss (𝑋 ) = 𝑓 (𝑋 ) + (𝑌1, . . . , 𝑌𝑘 ) , (3)

where 𝑌𝑖 are i.i.d. random values drawn from a Gaussian distribution
N

(
𝜇 = 0, 𝜎2

)
with probability density function 𝑃

(
𝑥 | 𝜇 = 0, 𝜎2

)
=

1

𝜎
√

2𝜋
· 𝑒−(𝑥−𝜇 )2/(2𝜎2 ) and 𝜎2 >

2 ln ( 1.25

𝛿 ) · (∆2 (𝑓 ) )2
𝜀2

.

Distributed Computational Differential Privacy. The original def-
inition of differential privacy holds against computationally un-

bounded adversaries. However, efficient MPC protocols are often

only secure against computationally bounded adversaries. Hence,

we use the definition of distributed or computational differential

privacy introduced in [13] that considers computationally bounded

adversaries.

Definition 2.4 (Distributed Computational Differential Privacy
(CDP) [13]). A randomized protocol Π implemented among N com-

putation parties P = {P1, . . . ,PN} satisfies (𝜖, 𝛿 = negl(𝜅)) com-

putational distributed differential privacy w.r.t. a coalition C ⊂ P
of semi-honest computation parties of size 𝑡 , if for every proba-

bilistic polynomial-time distinguisher 𝐷 and for any neighboring

databases 𝑋 , 𝑋 ′ and any possible set of views (e.g., internal state

and exchanged messages of party P𝑖 ) for protocol Π,

Pr

[
𝐷 (VIEWC

Π
(𝑋 )) = 1

]
≤ 𝑒𝜀 ·Pr

[
𝐷 (VIEWC

Π

(
𝑋 ′

)
) = 1

]
+negl(𝜅),

where 𝜅 is a security parameter for computationally bounded

adversaries.

2.2 Computational Privacy
Secure Multi-Party Computation (MPC). MPC enables N ≥ 2 par-

tiesP1, . . . ,PN to securely compute any function𝑦 = 𝑓 (𝑥1, . . . , 𝑥N)
while revealing nothing but the output 𝑦. There are two typical

MPC deployment scenarios: Either, the N data owners jointly run

the computation taking their data as input which is, however, kept

private from each other. Alternatively, MPC can also be used in an

outsourcing scenario [67], where M data owners generate shares

of their private inputs and send the shares to the N non-colluding

computing parties. Those evaluate 𝑓 on the received secret shared

inputs using MPC and obtain the secret shared output while learn-

ing no information. Our benchmarks in §5 use the MPC framework

MOTION [21] that implements mixed-protocol MPC tolerating up

to N − 1 passively corrupted parties. MOTION combines the GMW

protocol [53] in its Boolean and arithmetic versions with the con-

stant round BMR protocol [15].

We can use the result from [13, 42, 95] to prove that a mechanism

remains computationally differentially private when implemented

using a computationally secure MPC protocol.

Theorem 2.5. Define some functionM : 𝐷𝑛 → Y, with input
domain 𝐷 and output domain Y. Let ΠM : (𝐷𝑛/𝑚)𝑚 → Y be an

𝑚-party protocol that computationally securely computesM with
security parameter 𝜅 and security against up to 𝑡 corruptions. IfM is
(𝜖, 𝛿)-DP, and 𝛿𝜅 = negl(𝜅), then ΠM is (𝜖, (exp(𝜖) +1)𝛿𝜅 +𝛿)-CDP
with security against up to 𝑡 corruptions.

A proof sketch is given in Appendix C.

Number Representations. While theMPCprotocols inMOTION [21]

operate over rings (Z
2
ℓ , where ℓ ≥ 1), DPmechanisms require draw-

ing random values from probability distributions [44]. To represent

those, we use integer or floating-point representations.

Floating-Point Representation. According to the IEEE floating-point

standard [73], a floating-point number 𝑢 is represented with a sign

bit 𝑆 , an exponent 𝐸 and significant bits 𝑑1, . . . , 𝑑𝑝 ∈ {0, 1}𝑝 , where
𝑢 = (−1)𝑆 ×

(
1.𝑑1 . . . 𝑑𝑝

)
2
× 2

𝐸
. Essentially, floating-point numbers

can only represent a subset of real numbers leading to limited preci-

sion for the others. A series of works [27, 57, 64, 77] present attacks

against insecure implementations of plaintext DP mechanisms us-

ing floating-point representations (cf. §3).

Since we have to sample from a distribution with finite domain

for MPC, we must account for an error probability when operating

over rings Z
2
ℓ as it is not possible to sample values greater than

2
ℓ
. Therefore, with some small probability 𝛿 ′, a sample will lie

outside the range [0, 2ℓ ), which we have to account for in the failure
probability. The following lemma follows directly from the privacy

ofM and Definition 2.1.

Lemma 2.6. Consider an additive noise mechanismM = 𝑓 (𝑥) +𝑛,
where additive noise 𝑛 ← D is sampled from a distribution that sat-
isfies (𝜖, 𝛿)-DP. Then a mechanismM′ satisfies (𝜖, 𝛿 + 𝛿 ′)-DP, where
𝛿 ′ is the probability with which 𝑛 ← D is out of the range [0, 2ℓ ):

M′ (𝑥) =
{
𝑓 (𝑥) + 𝑛, 𝑛 ← D w.p. 1 − 𝛿 ′

𝑓 (𝑥) w.p. 𝛿 ′ .

3 RELATEDWORK
In this section, we discuss related works on combining DP andMPC,

as well as on the privacy issues of finite-precision implementations

of DP mechanisms.

Combination of DP and MPC. When multiple parties own data,

DP protocols need to either be interactive, assume computationally

bounded adversaries or both [33], as we consider in our work, to

avoid large errors in the released output. Multiple works, e.g., [19,

30, 32, 34, 42, 45, 46, 63, 71, 83, 98] combine MPC techniques with

DP to achieve a similar utility as in the central DP model while

removing the requirement of a trusted aggregator. Dwork et al. [42]

use secret sharing-based MPC for noise generation. Their protocols

generate noise from a Gaussian distribution (approximated with a

binomial distribution) and a discrete Laplace distribution (approx-

imated with a Poisson distribution) by processing a sequence of

unbiased/biased Boolean bits in MPC. Eriguchi et al. [46] improve

the noise generation of [42] by reducing the communication and

round complexity of the MPC protocols as well as removing the

failure probability of the sampling algorithms. However, the proto-

cols of Dwork et al. [42] and Eriguchi et al. [46] rely on Shamir’s

secret sharing [88], which is defined on a field. In contrast, the MPC

techniques used in our work are defined on a ring, significantly im-

proving the efficiency of our MPC-based DP protocols. Champion

3



et al. [30] propose secure computation methods for sampling biased

bits improving previous work by Dwork et al. [42]. However, their

sampling domain is not large enough to support our MPC-based

DP mechanism. For example, for geometric sampling, we require

the sampling domain to be [0, 2128), while a solution based on the

biased bits protocols of [30] can only efficiently support a domain

of size [0, 85). An extension of their protocol to our required do-

main size would have exponential time overhead in MPC. Eigner

et al. [45] propose an architecture called PrivaDA to realize the

Laplace, discrete Laplace, and exponential mechanisms in MPC us-

ing a combination of floating and fixed-point arithmetic operations

for efficiency reasons. Knott et al. [71] propose a machine learning

framework that implements the Gaussian mechanism in MPC. Wu

et al. [98] use Shamir’s secret sharing [88]-based protocols that ap-

proximate the Laplace and Gaussian distributions using the central

limit theorem [9]. However, Eigner et al. [45], Wu et al. [98] and

Knott et al. [71] do not provide an analysis regarding whether the

implementation of arithmetic operations affects the DP guarantee.

In an orthogonal line of work, Pettai et al. [83] and Choquette-Choo

et al. [34] present frameworks where a trusted third party generates

and adds DP noise to the query result which is computed under

MPC. In contrast, our protocols do not rely on a trusted third party.

Although we focus on the central DP model due to its favorable

properties with respect to the accuracy, the local DP model has

also been combined with cryptographic techniques such as homo-

morphic encryption [2, 3, 16, 31, 54, 65, 84, 89, 90, 94], functional

encryption [99, 101], authenticated encryption [14, 25], secret shar-

ing [59], or other MPC techniques [66] to enhance data privacy.

Attacks against DP Mechanisms. The privacy of many DP mech-

anisms is based on two implicit assumptions [44]: (1) computa-

tions are performed on real numbers with infinite precision; (2) the

noise is accurately sampled from a probability distribution (e.g.,

Laplace or Gaussian distribution). However, an implementation of

DP mechanism is typically done with floating-point or fixed-point

arithmetic that only provides finite precision. Mironov [77] demon-

strates that the Laplace mechanism implementations using Laplace

noise 𝑌 ∼ Lap (𝜆) sampled with the textbook algorithms (i.e., com-

pute 𝑌 = (2𝑍 − 1) · 𝜆 ln (𝑈 ) using double-precision floating-point

arithmetic, where 𝑈 ∈ (0, 1] and 𝑍 ∈ {0, 1}) enables an attacker to

recover the entire database. Concretely, Mironov [77] shows that

outputs of such implementations concentrate on a small subset of

floating-point values which are correlated for inputs, leading to

a breach of the DP guarantee. Jin et al. [64] extend the floating-

point attack of Mironov [77] to the implementations of Gaussian

mechanisms that generate Gaussian noise using the Marsaglia po-

lar method [74], Box-Muller method [72], Ziggurat method [75],

etc. Haney et al. [57] present precision-based floating-point attacks

against implementations of several DP mechanisms (e.g., Laplace,

Gaussian, Staircase [51], etc.) that enable an adversary to infer if

the query result 𝑓 (𝐷) equals 1. Casacuberta et al. [27] introduce

another type of attack on DP mechanisms that fail to add a suffi-

cient amount of noise. They exploit the properties (e.g., overflow

or rounding) of integer and floating-point arithmetic operations

that can lead to an underestimation of the sensitivity (cf. §2.1) in

DP mechanisms.

The discussed MPC-based Laplace or Gaussian mechanisms

either do not specify how to correctly/securely sample random

noise and perturb the input [45, 63, 71], assume infinite preci-

sion [83, 98], or rely on a trusted third party that generates and adds

DP noise [34, 83]. We implement existing DP mechanisms that are

known not to be vulnerable to precision based attacks [57, 64, 77]

in MPC protocols.

4 PROTOCOLS
In this section, we present our tailored MPC protocols for three

types of DP mechanisms not vulnerable to the precision-based at-

tacks [57, 64, 77], namely the discrete Laplace and discrete Gaussian

mechanisms [26], the snapping mechanism [77], and the integer-

scaling mechanism [55].

Notation. Here, we introduce the notation used in the remain-

der of this work. The shares of a secret value x held by N par-

ties P1, . . . ,PN are denoted by

〈
xd

〉s
=

(〈
xd

〉s
1
, . . . ,

〈
xd

〉s
N

)
, where〈

xd
〉s
𝑖
is held by party P𝑖 , 𝑖 ∈ [N]. The superscript s ∈ {A,B, Y}

is the secret sharing type. Here, A is Arithmetic sharing and B
is Boolean sharing; both are based on the GMW protocol [53]. Y
is the BMR protocol [15], an extension of Yao’s Garbled Circuits

protocol [100] from two to multiple parties. The second super-

script d ∈ {N,Z,L} indicates the data type in finite domains: N
are unsigned integers, Z are signed integers, and L are floating-

point values. We omit the superscript or subscript of share

〈
xd

〉s
𝑖

when it is clear from the context. ⟨x⟩D ← S2D
(
⟨x⟩S

)
is the con-

version from one secret sharing technique S to another D, S ≠ D
and S,D ∈ {A,B, Y}. Conversions between different data repre-

sentations are presented in the same style. A multiplexer gate

MUX (𝑎, 𝑏, 𝑐) returns 𝑏 if 𝑎 is true or otherwise 𝑐 . An AND gate

is denoted by ∧, an OR gate by ∨, a NOT gate by ¬, and an XOR
gate by ⊕.

Random Number Generation. In our secure DP mechanisms in

§4.1-4.3, we rely on three types of random number generators:

•
(
⟨𝑏0⟩B , . . . , ⟨𝑏ℓ−1⟩B

)
← RandBits (ℓ) (cf. §B.3) generates secret-

shares of an ℓ-bit uniformly random Boolean string 𝑏 ∈ {0, 1}ℓ .
• ⟨𝑥⟩B ← RandInt (𝑚) (cf. §4.1) generates secret-shares of an uni-

formly random unsigned integer 𝑥 ∈ [0,𝑚 − 1] for𝑚 ∈ Z.
•

〈
𝑢L

〉B ← RandFloat (𝑙, 𝑘) (cf. §B.7) generates uniformly random

floating-point values 𝑢 ∈ [0, 1), where 𝑢 has a 𝑙-bit mantissa and a

𝑘-bit exponent.

Computational Privacy. Our protocols have to fulfill both compu-

tational as well as output privacy. With respect to computational pri-
vacy, our protocols leak no intermediate values, i.e., all computation

is run in MPC. Thus, computational privacy follows directly from

the provable security of the employed MPC techniques, namely

the Arithmetic (A), and the Boolean variant (B) of GMW [53] and

BMR [15] (cf. §2) as well as private conversions [21]. We discuss

the output privacy of the protocols in their respective sections.

In Appendix G we give an overview figure showing the noise

generation procedure for the DP mechanisms (cf. §4 and §5).
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4.1 MPC-Based Discrete Laplace/Gaussian
Mechanisms

The discrete Laplace [52] and Gaussian DP mechanisms [26] are

formulated as:𝑀Discrete (𝐷) = 𝑓 (𝐷) +𝑄 , where 𝑓 (𝐷) is the output
of a query function and𝑄 is additive noise sampled from the discrete

Laplace or discrete Gaussian distributions (cf. §A).𝑀Discrete requires

that both the function output 𝑓 (𝐷) ∈ Z𝑘 and the noise 𝑄 ∈ Z𝑘 are

integers.

From an MPC point of view, the critical step is to sample a ran-

dom integer from the discrete Laplace and Gaussian distributions

(cf. §A). Afterwards, the secret-shared random value is securely

added to the share of query output 𝑓 (𝐷), which is a single opera-

tion in MPC. Consequently, we focus on the MPC-based sampling

protocols in the following.

The discrete Laplace and Gaussian distributions (cf. §A) turn

out to be closely related, such that a value sampled from a discrete

Laplace distribution can be transformed into a sample from a dis-

crete Gaussian distribution [26]. First, Prot. 2 generates shares of

a randomly sampled discrete Laplace value

〈
𝑌Z

〉B
, 𝑌 ∼ DLap

(
𝑡
𝑠

)
.

Next, Prot. 3 converts those discrete Laplace value shares

〈
𝑌Z

〉B
into shares of discrete Gaussian value

〈
𝐺Z

〉B
sampled from a dis-

crete Gaussian distribution 𝐺 ∼ DGauss
(
𝜇 = 0, 𝜎2

)
, where the

variance 𝜎2
of added noise is calculated from the desired (𝜖, 𝛿)-DP

guarantee [11].

Our sampling of random discrete Laplace values in Prot. 2 fol-

lows the idea of Canonne et al. [26] because it is more efficient than

the sampling methods of [30, 42, 46] that are based on processing

a sequence of Boolean bits (cf. §1). Besides, we introduce several

optimizations on the MPC side. The authors introduce a rejection

sampling-based [41] approach that first generates geometric ran-

dom values and converts them into discrete Laplace random values.

Therefore, we also split the protocol for sampling from a discrete

Laplace distribution into two sub-protocols. The first one, shown in

Prot. 1, generates secret shares

〈
𝑋N

〉B
of a geometric random value

𝑋 ∼ Geo
(
𝑝 = 1 − 𝑒−

𝑠
𝑡

)
. Afterwards, Prot. 2 converts

〈
𝑋N

〉B
into

shares of a discrete Laplace random value

〈
𝑌Z

〉B
, 𝑌 ∼ DLap

(
𝑡
𝑠

)
.

In this section, we will first present the MPC protocol for sam-

pling from a geometric distribution (cf. §A) including several op-

timizations enhancing its efficiency. Next, we present the MPC

protocol for sampling from a discrete Laplace distribution, which

uses the geometric sampling protocol as a sub-protocol. Last, we

present the discrete Gaussian sampling protocol, which uses the

discrete Laplace sampling protocol as a sub-protocol.

Geometric Sampling. We begin by presenting the challenges and

necessary optimizations involved in generating secret shares of geo-

metric random values, the protocol for which is specified in Prot. 1.

Our sub-protocols for oblivious selection Sel and Boolean-String

multiplication BoolStrMul are presented in §B.6. More concretely,〈
𝑢N

〉B
, ⟨𝑏⟩B ← Sel

(〈
𝑢N

0

〉B
, . . . ,

〈
𝑢N
ℓ−1

〉B
, ⟨𝑏0⟩B , . . . , ⟨𝑏ℓ−1⟩B

)
out-

puts a bit-string𝑢N = 𝑢N
𝑖
and a bit 𝑏 = 𝑏𝑖 , where 𝑖 is the index of the

first non-zero bit𝑏𝑖 for 𝑖 ∈ [0, ℓ − 1]. ProtocolBoolStrMul
(
⟨𝑎⟩B , ⟨𝑏0⟩B ,

Input :𝑠, 𝑡 // Parameters of Geo
(
1 − 𝑒− 𝑠𝑡

)
Output :

〈
𝑋N

〉B
// 𝑋 ∼ Geo

(
1 − 𝑒− 𝑠𝑡

)
or 𝑋 = 0

// Skip 1-st loop if 𝑡 == 1

1 if 𝑡 == 1 then
2

〈
𝑢N

〉B ← 〈
0
N
〉B

3 ⟨𝑏⟩B = 1

4 end
5 else

// Draw 𝜅1 random integers from interval [0, 𝑡 − 1], and 𝜅1

// random bits from a Bernoulli distribution

6 for 𝑖 ← 0 to 𝜅1 − 1 do
7

〈
𝑢N
𝑖

〉B ← RandInt (𝑡)

8 ⟨𝑏𝑖 ⟩B ← Bernoulli ©­«𝑒
UINT2FL

(
⟨𝑢N𝑖 ⟩B

)
−𝑡

ª®¬
9 end

// Set 𝑢 = 𝑢𝑘 and 𝑏 = 𝑏𝑘 if 𝑏𝑘 == 1 for 𝑘 ∈ [0, 𝜅1 − 1]

10
〈
𝑢N

〉B
, ⟨𝑏⟩B ←

Sel
(〈
𝑢N

0

〉B
, . . . ,

〈
𝑢N
𝜅1−1

〉B
, ⟨𝑏0⟩B , . . . ,

〈
𝑏𝜅1−1

〉B)
11 end

// Draw 𝜅2 random bits from a Bernoulli distribution

12 for 𝑗 ← 0 to 𝜅2 − 1 do
13

〈
𝑐 𝑗

〉B ← Bernoulli
(
𝑒−1

)
14

〈
𝑑 𝑗

〉B ← ¬ 〈
𝑐 𝑗

〉B
15 end

// Draw 𝑣 = 𝑣𝑘 ∼ Geo
(
1 − 𝑒−1

)
and set 𝑑 = 𝑑𝑘 if 𝑑𝑘 == 1 for

// 𝑘 ∈ [0, 𝜅2 − 1]

16
〈
𝑣N

〉B
, ⟨𝑑⟩B ←

Sel
(
𝑣0 ← 0, . . . , 𝑣𝜅2−1 ← 𝜅2 − 1, ⟨𝑑0⟩B , . . . ,

〈
𝑑𝜅2−1

〉B)
// Output 𝑋 =

⌊
𝑢+𝑣 ·𝑡

𝑠

⌋
or 𝑋 = 0 if GeometricExp (𝑠, 𝑡 ) fails

17
〈
𝑋N

〉B ←
BoolStrMul

(
Floor

(
⟨𝑢N⟩B+⟨𝑣N⟩B ·𝑡

𝑠

)
, ⟨𝑏⟩B ∧ ⟨𝑑⟩B

)
Protocol 1: GeometricExp — our MPC protocol realizing

Geometric sampling [26].

. . . , ⟨𝑏ℓ−1⟩B
)
[8] computes the multiplication of one Boolean bit 𝑎

with a set of ℓ Boolean bits 𝑏0, . . . , 𝑏ℓ−1.

Our MPC protocols directly implement the steps of the plaintext

sampling algorithms in [26]. We chose algorithms from Canonne

et al. [26] for MPC efficiency reasons. For example, Google’s DP

library [56] also contains securely implemented plaintext discrete

Laplace sampling, but it is based on binary search geometric sam-

pling. A realization in MPC would require computing 52 iterations

(each computing floating-point natural logarithm and exponentia-

tions, thus, an impracticable overhead) as integers up to 2
52

can be

represented precisely in floating-point arithmetic.

To generate samples from a geometric distribution (cf. §A), the

while-loops in Algorithm 2 in [26] repeatedly sample from Bernoulli

distributions until termination conditions are met. Thus, each loop
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generating a random value can in theory run for an infinite number

of iterations with negligible probability. As the number of iterations

is not fixed, a key challenge is to realize it in MPC (1) without

information leakage and (2) in an efficient manner.

An idea is to limit the number of iterations by fixing it to a pre-

defined number𝜅 of iterations. A check inMPC determines whether

the random number has been generated; if it has not, 𝜅 additional

iterations are run. Unfortunately, this strategy is not fully privacy-

preserving, as it leaks one bit of information indicating whether

to continue the computation. Critically, Jin et al. [64] construct

a timing attack against the discrete Laplace mechanism [26] and

show that the magnitude of the generated random value exhibits a

positive linear relation to the number of required iterations, i.e., a

large random value is usually generated in more iterations.

Instead, we omit the check and run the protocol for a fixed

number of iterations 𝜅. This, however, means that the output may

be zero with some failure probability 𝑝failure. We derive 𝑝failure
from 𝜅 for our MPC-protocols that sample random values from the

geometric, discrete Laplace, and Gaussian distributions in §D. We

can guarantee a small failure probability, i.e., 𝑝failure < 2
−40

, by

choosing an appropriate number of iterations 𝜅 . The DP guarantee

will have 𝛿 = 𝑝failure < 2
−40

, which protects individual privacy well

when noise is added to functions of datasets with size ∥𝐷 ∥1 ≪ 2
40
.

Different choices for 𝜅 allow 𝛿 to be adjusted.

Theorem 4.1. Consider mechanismM that is (𝜖, 𝛿)-DP, as well
as mechanismM′ defined as follows:

M′ (𝑥) =
{
M(𝑥) w.p. 1 − 𝑝failure (event ¬𝐸)
𝑓 (𝑥) w.p. 𝑝failure (event 𝐸).

Then mechanismM′ is (𝜖, 𝛿 + 𝑝failure)-DP. The proof is given §C.

We additionally introduce five optimizations on protocol level

to further improve the efficiency of our MPC protocol:

Input :𝑡, 𝑠 // Parameters of DLap
(
𝑡
𝑠

)
Output :

〈
𝑌Z

〉B
// 𝑌 ∼ DLap

(
𝑡
𝑠

)
or 𝑌 = 0

1 for 𝑖 ← 0 to 𝜅3 − 1 do
// Generate sign 𝑆𝑖 for 𝑌 ∼ DLap

(
𝑡
𝑠

)
2 ⟨𝑆𝑖 ⟩B ← RandBits (1)

// Generate the integer part 𝑚𝑖 ∼ Geo
(
1 − 𝑒− 𝑠𝑡

)
for 𝑌

3
〈
𝑚𝑖
N
〉B ← GeometricExp (𝑠, 𝑡)

// Check if 𝑌 = (1 − 2𝑆𝑖 ) ·𝑚𝑖 = (−1) · 0 = −0

4 ⟨𝑓𝑖 ⟩B ← ¬
((
⟨𝑆𝑖 ⟩B

)
∧

(〈
𝑚𝑖
N
〉B

== 0

))
5 end

// If 𝑓𝑘 == 1, set 𝑚 =𝑚𝑘 and 𝑏 = 𝑏𝑘 for 𝑘 ∈ [0, 𝜅3 − 1]

6
〈
𝑚N

〉B ∥ ⟨𝑆⟩B ← Sel
(〈
𝑚0

N
〉B ∥ ⟨𝑆0⟩B , . . . , ⟨𝑓0⟩B , . . .

)
7 Set ¬ ⟨𝑆⟩B as the sign bit of

〈
𝑚N

〉B
// Output 𝑌 = (1 − 2𝑆 ) ·𝑚 or 𝑌 = 0 if DiscreteLaplace (𝑡, 𝑠 )
// fails

8
〈
𝑌Z

〉B ← 〈
𝑚N

〉B
Protocol 2: DiscreteLaplace — our MPC protocol realizing

discrete Laplace sampling [26].

(1) Parallelization. Canonne et al.’s [26] geometric sampling algo-

rithm uses two nested while-loops. The inner loop is run only if the

outer loop was successful. In MPC, we cannot leak if the generation

was successful. Hence, we fix the number of iterations to 𝜅1 and

𝜅2 iterations, which leads to 𝜅1 · 𝜅2 iterations in total. Since the

operations inside the loops are independent, we can run both loops

independently and in parallel, leading to only 𝜅1 +𝜅2 iterations. We

choose 𝜅1 and 𝜅2 to guarantee that both loops output the required

random values with high probability (cf. §D.1). Each loop can be run

using Single Instruction Multiple Data (SIMD [18, 40, 87]), which

fully parallelizes our protocol, enhances computation efficiency,

and reduces memory consumption [40].

(2) Random Integer Generation. The random integer generation in

line 7 of Prot. 1, indicated by RandInt (𝑡), generates a uniformly ran-

dom integer 𝑢 ∈ [0, 𝑡 − 1]. It uses the Simple Modular Method [12]

to generate secret shares of an ℓ-bit random unsigned integer 𝑥 ∈
{0, . . . , 𝑡 − 1} for 𝑡 ∈ Z. We observe that when 𝑡 = 2

𝑘
, the expensive

modular reduction (cf. Tab. 11) operation can be omitted. Now each

party can generate 𝑘 uniform random bits

(
⟨𝑏0⟩B , . . . , ⟨𝑏𝑘−1

⟩B
)
←

RandBits (𝑘) (cf. §B.3) and sets ⟨𝑥⟩B,N = ⟨𝑏0⟩B , . . . , ⟨𝑏𝑘−1
⟩B locally

to create the secret-shared random integer.

(3) Floating-Point Division.We avoid the floating-point division in

line 8 of Prot. 1 by first computing 𝑒−
1

𝑡 in plaintext, followed with

𝑒−
1

𝑡 · 𝑒UINT2FL
(〈
𝑢N
𝑖

〉B)
. The floating-point multiplication is up to

4× faster than the floating-point division in {B, Y} (cf. Tab. 11).
(4) Integer Division. Integer division (Line 17 in Prot. 1) is a very
expensive operation in MPC [21] (e.g., about 54.40 − 70.15 ms for

a single division in B-sharing, cf. Tab. 11). Thus, we first convert
integers from B-sharing to Y-sharing before dividing and rounding

down to the next integer. This approach is up to 20× faster than

integer division in B (cf. §5.2).

(5) Bernoulli Sampling. Canonne et al. [26] propose a Bernoulli

sampling algorithm. However, similar to Prot. 1, it requires a large

number of iterations to guarantee a negligible failure probability.

Instead, we adopt a protocol from CrypTen [71] for sampling a

random value 𝑏 from a Bernoulli distribution with parameter 𝑝

and transfer it from fixed-point to floating-point arithmetic. A ran-

dom value 𝑏 drawn from the Bernoulli distribution equals 1 with

probability 𝑝 and 0 with probability 1 − 𝑝 . This is equivalent to

𝑏 = (𝑥 < 𝑝), where 𝑥 is a uniformly random value in (0, 1). We

further optimize the efficiency of the comparison by purely relying

on integer arithmetic. Concretely, each party locally generates 𝜅

random bits and interprets those as a random unsigned integer

𝑥 . Then, it computes 𝑏 = 𝑥 < (𝑝≪𝜅 ), where 𝑝≪𝜅 is the binary

representation of 𝑝 after a left-shift of 𝜅 bits. Depending on the

MPC technique, our integer comparison-based Bernoulli sampling

protocol (Line 8, 13 in Prot. 1) is up to 4.8 − 6.5× faster than the

naive floating-point comparison-based protocol (cf. Tab. 11).

Discrete Laplace Sampling. Next, we show how to convert the

samples from a geometric distribution to samples from a Laplace

distribution (cf. §A), as specified in Prot. 2. The protocol generates

secret shares of a discrete Laplace random value 𝑌 = (1 − 2𝑆) ·
𝑚 ∼ DLap

(
𝑡
𝑠

)
using the random values drawn from the geometric

distribution𝑚𝑖 ∼ Geo
(
1 − 𝑒−

𝑠
𝑡

)
with Prot. 1, and a random sign
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bit 𝑆𝑖 ∈ {0, 1} (cf. Lines 2 − 3). However, 𝑌 = (1 − 2𝑆) ·𝑚 would

equal 0 with twice the probability as it would occur in the discrete

Laplace distribution [26]. Hence, we check in line 4 if 𝑆𝑖 == 1 and

𝑚𝑖 == 0. If it is the case, we re-sample both values. Otherwise, we

either output 𝑌 = (1 − 2𝑆) ·𝑚 for𝑚 = 𝑚𝑖 and 𝑆 = 𝑆𝑖 , if 𝑓𝑖 == 1

or 𝑌 = 0 otherwise (cf. Lines 6 − 8). 𝜅3 is again set such that

𝑝fail (DiscreteLaplace, Prot. 2) < 2
−40

(cf. §D.2).

Discrete Gaussian Sampling. We generate shares of a discrete

Gaussian random value (cf. §A) using Prot. 3 by adapting the plain-

text Algorithm 3 of Canonne et al. [26] and set 𝜅4 such that Prot. 3

fails with a probability less than 2
−40

(cf. §D.2).

Correctness. Correctness can be derived from the correctness

of outputs from the plaintext algorithms and the MPC techniques

employed. Our MPC-based sampling protocols execute all steps

as specified by the respective plaintext algorithm. The sampling

procedure fails to generate noise from the specified distribution

with only a tunable, small probability, which we set to be negligi-

ble (< 2
−40

) and incorporate into (𝜖, 𝛿)-DP. This negligible failure
probability ensures correctness. Next, we analyze the five optimiza-

tions we introduced for the noise sampling w.r.t. their effect on

correctness. Due to the obliviousness requirement of MPC, i.e., the

control flow of the computation must be independent of the input

data, MPC protocols cannot check and terminate after a successful

random integer generation. Instead, we fix the number of iterations

of both loops generating random integers in Prot. 1, which increases

computation overhead, keeping the behavior of the protocol un-

changed except for the small failure probability. Our parallelization

improves efficiency, but does not affect correctness. The random in-

teger generation as well as the floating-point and integer divisions

optimizations are only transformations of the original formulas, i.e.,

the computation is unchanged. The Bernoulli Sampling protocol

was shown to be correct in [71]. Except for fixing the number of

iterations (where correctness follows from the same arguments

as discussed above
1
), our MPC-based discrete Laplace mechanism

𝑀DLap and discrete Gaussian mechanism 𝑀DGauss in §4.1 are di-

rectly derived from the algorithms in [26].

Output Privacy. Output privacy (quantified by (𝜖, 𝛿)-CDP) fol-
lows directly from the correctness and output privacy of the plain-

text algorithms, as well as Lemma 2.6 and Theorems 2.5 and 4.1.

Concretely, [26] proves that the original mechanisms satisfy (𝜖, 𝛿)-
DP, and our protocols correctly and securely generate noise from

the same distributions except with a small failure probability. Tak-

ing into account the finite domain, our protocols satisfy (𝜖, 𝛿 + 𝛿𝜆 +
𝛿 ′ + 𝑝failure)-CDP, where 𝛿𝜆 is negligible in the security parameter

𝜆 from Theorem 2.5, 𝑝failure is set to some small failure probability

from Theorem 4.1, and 𝛿 ′ is the probability with which the sampled

noise exceeds the maximum value from Lemma 2.6. This bound is

based on the tail bounds of the discrete Laplace and Gaussian dis-

tributions.

4.2 MPC-Based Snapping Mechanism
Mironov [77] proposes the snapping mechanism𝑀Snap as a remedy

for the insecure implementations of the Laplace mechanism using

1
Note that this is true for all cases where the number of iteration is fixed in our

protocols.

Input :𝜎 // Parameter of DGauss
(
𝜇 = 0, 𝜎2

)
Output :

〈
𝐺Z

〉B
// 𝐺 ∼ DGauss

(
𝜇 = 0, 𝜎2

)
or 𝐺 = 0

1 𝑡 ← ⌊𝜎⌋ + 1

2 for 𝑗 ← 0 to 𝜅4 − 1 do

3

〈
𝑌Z
𝑗

〉B
← DiscreteLaplace (𝑡, 𝑠 = 1)

4
〈
𝑎L

〉B ←
(
UINT2FL

(����〈𝑌Z𝑗 〉B����)− 𝜎2

𝑡

)
2

2𝜎2

5
〈
𝑏 𝑗

〉𝐵 ← Bernoulli
(
𝑒−⟨𝑎L⟩

B )
6 end

7
〈
𝐺Z

〉B
, ⟨𝑏⟩B ← Sel

(〈
𝑌Z

0

〉B
, . . . , ⟨𝑏0⟩𝐵 , . . .

)
Protocol 3: DiscreteGaussian — our MPC protocol realizing

discrete Gaussian sampling [26] .

// Secret-shared exact query result, parameters of 𝑀Snap

Input :
〈
𝑓 (𝐷)L

〉B
, 𝜆, Λ, 𝐵

// Secret-shared DP query result

Output :
〈
𝑦LSnap

〉B
// Generate a random floating-point number 𝑈 ∈ (0, 1) and a

// random bit

1
〈
𝑈 L

〉B ← RandFloat
2 ⟨𝑆⟩B ← RandBits (1)

// Bound 𝑓 (𝐷 ) to [−𝐵, 𝐵 ]

3

〈
𝑓 (𝐷)Lclamp

〉B
← Clamp

(
𝐵,

〈
𝑓 (𝐷)L

〉B)
// Generate Laplace noise 𝑌 = 𝑆 · 𝜆 · LN (𝑈 )

4
〈
𝑌Lnoise

〉B ← 𝜆 · LN
(〈
𝑈 L

〉B)
5 Sign

(
⟨𝑆⟩B ,

〈
𝑌Lnoise

〉B)
// Add noise 𝑌noise to the bounded query result 𝑓 (𝐷 )clamp

6
〈
𝑥L

〉B ← 〈
𝑓 (𝐷)Lclamp

〉B
+

〈
𝑌Lnoise

〉B
// Round perturbation result 𝑥 to multiple of Λ

7
〈
𝑥L

Λ

〉B ← ⌊〈
𝑥L

〉B⌉
Λ

// Bound 𝑥Λ to [−𝐵, 𝐵 ]

8

〈
𝑦LSnap

〉B
← Clamp

(
𝐵,

〈
𝑥L

Λ

〉B)
Protocol 4:𝑀Snap — our MPC protocol realizing the snap-

ping mechanism [77].

floating-point arithmetic. The snapping mechanism is parameter-

ized by 𝐵 and 𝜆, which can be chosen in advance, and satisfies(
1

𝜆
+ 2
−49 · 𝐵

𝜆

)
-DP for 𝜆 < 𝐵 < 2

46 · 𝜆. The mechanism is defined

as follows:

𝑀Snap (𝑓 (𝐷) , 𝜆,Λ, 𝐵) = clamp𝐵
( ⌊
clamp𝐵 (𝑓 (𝐷)) + 𝑌noise

⌉
Λ

)
,

𝑌noise = 𝑆 · 𝜆 · ln (𝑈 ) .
(4)

In Eq. 4, 𝑓 (𝐷) is the output of a query function that takes database

𝐷 as input. 𝑌noise is the Laplace noise, 𝑆 is the sign of the noise

and uniformly distributed over {−1, 1}, and 𝑈 is a random real
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number over (0, 1) represented as a floating-point number that is

output with probability proportional to its unit in the last place.

ln(𝑥) is the floating-point natural logarithm with exact rounding,

i.e., ln(𝑥) always rounds the output to the closest floating-point

number. The addition (+) and multiplication (·) operations in Eq. 4

are floating-point arithmetic operations. Function clamp𝐵 (𝑥) limits

the output to the interval [−𝐵, 𝐵] by outputting 𝐵 if 𝑥 > 𝐵, −𝐵 if

𝑥 < −𝐵, and 𝑥 otherwise. Function ⌊𝑥⌉
Λ
rounds 𝑥 to the nearest

multiple of Λ, where Λ is the smallest power of 2 greater than or

equal to 𝜆. Notice that clamping can be done without introducing

additional error based on the choice of parameter 𝐵. To create

the MPC version for the snapping mechanism [77] in Prot. 4, we

first sample 𝑌noise, which can be done independently of the input

and pre-computed in the offline phase. In the online phase, we

must compute and clamp the function output, add 𝑌noise, and clamp

the result clamp𝐵
( ⌊
clamp𝐵 (𝑓 (𝐷)) + 𝑌noise

⌉
Λ

)
. We also encounter

some challenges and introduce protocol optimizations to improve

efficiency as follows:

(1) Floating-Point Arithmetic. The snapping mechanism [77] re-

quires floating-point arithmetic to generate the random noise val-

ues added to the query result. However, floating-point arithmetic in

MPC is expensive [4, 7], somostMPC frameworks [71, 78, 80] prefer

to use fixed-point arithmetic [28]. We extend the MOTION frame-

work [21] to support floating-point arithmetic in {A,B, Y}-sharing.
Specifically, we convert circuits from [38] that support IEEE 754

compliant floating-point arithmetic operations to the Bristol circuit

format used in MOTION for {B, Y}-sharing.
We also implement MPC protocols for logical/arithmetic shifting

from [47] that are needed for the floating-point operations in A-
sharing following ideas of Aliasgari et al. [4]. The difference is that

the protocols in [4] are designed for Shamir’s secret sharing [88],

whereas the operations are performed over a prime field F𝑝 (mod-

ulo 𝑝) that supports the inverse operation, while the A-sharing
operations in the MOTION framework [21] are performed over a

ring (modulo Z
2
ℓ ).

(2) Input Bounding.MPC requires an input-independent program

flow, i.e., branching depending on input values is not possible. Thus,

the MPC-protocol realizing clamp𝐵 must ensure that it does not

leak the interval of the input 𝑥 . We realize this by a multiplexer-

based floating-point comparison protocol.

(3) Rounding to Nearest Multiple of Λ. ⌊𝑥⌉
Λ
rounds floating-point

inputs 𝑥 to the nearest multiple of Λ. As Λ is a power of two, our

protocol can directly compute the rounding on the binary represen-

tation of input 𝑥 . We create new depth- and size-optimized Boolean

circuits with the CBMC-GC circuit compiler [24] to realize ⌊𝑥⌉
Λ

in MPC using {B, Y}-sharing. The program for CBMC-GC [24] is

inspired by Covington’s work [35] that relies on bit manipulation

of the binary representation of floating-point numbers 𝑥 . The bit

manipulation operations are equivalent to first computing 𝑥 ′ = 𝑥
Λ

using floating-point division and then rounding 𝑥 ′ to the nearest

integer. The rounded result can then be obtained by a simple multi-

plication: ⌊𝑥⌉
Λ
= 𝑥 ′ · Λ. Evaluating our circuit for rounding with

MPC is 4.5 − 15.0× faster than the above floating-point operations

(cf. Tab. 11), as it only requires bit-level logical operations such as

bit-shifting, AND, and XOR.

(4) Sign Setting. In Eq. 4, the sign of the Laplace random value𝑌noise
is multiplied by a random value 𝑆 ∈ {−1, 1}. This expensive floating-
point multiplication can be avoided by directly manipulating the

sign bit of 𝑌noise. Concretely, in {B, Y}-sharing (resp. A-sharing)
the Boolean sign bit (resp. the arithmetic share containing the

sign) of ⟨𝑌noise⟩ is simply replaced by a freshly generated random

secret-shared Boolean bit ⟨𝑠⟩ (resp. random arithmetic share), where

𝑠 ∈ {0, 1}. We indicate this operation as Sign (⟨𝑠⟩ , ⟨𝑌noise⟩).
(5) Secret Sharing. A difficult open problem in MPC research is how

to effectively determine the best mix of MPC-techniques for the

most efficient, privacy-preserving instantiation of an algorithm.

First attempts to create automatic compilers [23, 24, 38, 48, 60, 82]

still exhibit significant shortcomings with respect to efficiency com-

pared to protocols where the MPC-techniques have been carefully

combined by hand. Thus, to find the most efficient instantiation

for our MPC protocol of the snapping mechanism [77] (as well

as for our other protocols), we micro-benchmark all relevant sub-

protocols (i.e., floating-point addition, multiplication, and natural

logarithm, Clamp and ⌊𝑥⌉
Λ
) with each sharing ({A,B, Y}) to com-

pose the most efficient mix. The results can be found in §F. Taking

conversion cost into account, using Y in the two-party setting and

B-sharing in the multi-party setting for all parts in a LAN network

(cf. §5.1) leads to the most efficient solution. The benchmark result

of Prot. 4 is given in §5.2.

Correctness. Our snapping mechanism𝑀Snap (cf. Prot. 4) directly

realizes the plaintext algorithm by Mironov [77] in MPC. Our five

optimizations discussed in §4.2 are MPC protocol optimizations,

i.e., formula transformations, efficient circuit generations, and effi-

cient combinations of MPC techniques, which do not change the

underlying computation.

Output Privacy. [77] proves that the original mechanism satisfies

(𝜖, 𝛿)-DP. Taking into account the finite domain, our protocols

satisfy (𝜖, 𝛿 + 𝛿𝜆 + 𝛿 ′)-CDP, where 𝛿𝜆 is negligible in the security

parameter 𝜆 from Theorem 2.5, and 𝛿 ′ is the probability with which

the sampled noise exceeds the maximum value from Lemma 2.6,

which is based on the tail bounds of the Laplace distribution.

4.3 MPC-Based Integer-Scaling Mechanisms
Google [55] introduced a framework to securely realize DP by

adding appropriately scaled discrete noise using floating-point arith-
metic operations. Their integer-scaling Laplace mechanism was

built to address some of the challenges associated with the snap-

ping mechanism [77] and the precision-based attacks [57, 64, 77].

Namely, the snapping mechanism adds more noise than would the-

oretically be necessary for a given DP guarantee, offering a weaker

privacy-utility trade-off than the integer-scaling mechanism [26].

The integer-scaling mechanism also offers a Gaussian variant. In

the following, we call the two mechanisms introduced in [55] the

integer-scaling Laplace mechanism (cf. §4.3) and the integer-scaling

Gaussian mechanism (cf. §E). Both are defined as follows:

𝑀IS (𝑓 (𝐷) , 𝑟 , 𝜀, 𝛿) = 𝑓𝑟 (𝐷) + 𝑖 · 𝑟, (5)
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where discrete random values 𝑖 are scaled by a resolution parameter

𝑟 = 2
𝑘
(for 𝑘 ∈ [−1022, 970]2) which controls the discretization

of the simulated continuous noise.𝑀IS satisfies (𝜀, 𝛿)-DP and the

function 𝑓𝑟 (𝐷) rounds the output of a query function 𝑓 (𝐷) to
the nearest multiple of 𝑟 . The scaled discrete noise 𝑖 · 𝑟 is used to

simulate the continuous noise, e.g., the Laplace noise in Lemma 2.2

or the Gaussian noise Lemma 2.3 with the resolution parameter 𝑟 .

To create MPC protocols for the integer-scaling mechanisms, we

first sample 𝑖 · 𝑟 , which can be done independently of the input and

pre-computed in the offline phase. In the online phase, we must

compute and clamp the function output 𝑓𝑟 (𝐷) and add the noise.

Integer-Scaling Laplace Mechanism. Here, we introduce our MPC

protocol for the integer-scaling Laplace mechanism 𝑀ISLap [55].

Prot. 5 presents our MPC protocol for the integer-scaling Laplace

mechanism using the previously presented sub-protocol (cf. Prot. 2).

The resolution parameter 𝑟 is used to re-scale the exact query result

𝑓 (𝐷) and DP noise 𝑖 . It is set to the smallest power of 2 that is

greater than
∆1 𝑓
2
𝛾𝜖 for 𝛾 ∈ [10, 45], where 𝛾 controls accuracy and

discretization, 𝜀 is the DP parameter, and ∆1 𝑓 is the ℓ1-sensitivity of

𝑓 (𝐷). We first generate shares of a discrete random value

〈
𝑖DLap

〉
using Prot. 2 (cf. Line 1). Then, in line 2,

〈
𝑖DLap

〉
is converted from

integer to floating-point representation. To prevent precision-based

attacks [57, 64, 77], integer 𝑖DLap has to be scaled by 𝑟 without

precision loss, which requires 𝑖DLap ∈
[
2
−52, 252

]
. We use our

MulPow2 protocol (cf. §B.8) to re-scaled 𝑖DLap by a factor 𝑟 = 2
𝑘
,

that is 3.1−20.5× faster than the direct floating-point multiplication

(cf. Tab. 11), as it operates on the exponent part of the floating-point

numbers. Lastly, we compute the DP query result ⟨𝑓𝑟 (𝐷)⟩ after
rounding ⟨𝑓 (𝐷)⟩ to the nearest multiple of 𝑟 by adding the scaled

Laplace noise 𝑌Lap. We use the same rounding operation ⌊·⌉
r
we

presented in §4.2.

We empirically evaluate the efficiency for each sub-protocol for

the different secret sharing techniques. The most efficient approach

is to fully run the protocol in Y-sharing in a LAN network (cf. §5.1)

in the two-party setting or in B in the multi-party setting. The

benchmark results of Prot. 5 are given in §5.2.

Integer-Scaling Gaussian Mechanism. The integer-scaling Gauss-

ian and Laplace mechanisms both use symmetrical binomial DP

noise 𝑖 (cf. Prot. 8). We refer the readers to §E for details.

Correctness. The integer-scaling Laplace mechanism 𝑀ISLap
(cf. Prot. 5) and integer-scaling Gaussian mechanism𝑀ISGauss (cf.

Prot. 7) are directly based on [55].

Output Privacy. [55] proves that the original mechanisms sat-

isfy (𝜖, 𝛿)-DP. Since our protocols correctly and securely generate

noise from the same distributions except with a small failure prob-

ability, taking into account the finite domain, our protocols satisfy

(𝜖, 𝛿 + 𝛿𝜆 + 𝛿 ′ + 𝑝failure)-CDP, where 𝛿𝜆 is negligible in the security

parameter 𝜆 from Theorem 2.5, 𝑝failure is set to some small failure

probability from Theorem 4.1, and 𝛿 ′ is the probability with which

the sampled noise exceeds the maximum value from Lemma 2.6,

based on the tail bounds of the Laplace and Gaussian distributions.

2
[55] sets 𝑘 ∈ [−1022, 1023], but if 𝑖 = 2

52
and 𝑟 = 2

𝑘 = 2
1023

, 𝑖 · 𝑟 cannot be

represented correctly as a double-precision floating point number.

// Secret-shared exact query result, resolution and DP

// parameters of 𝑀ISLap, ℓ1-sensitivity of query function 𝑓

Input :
〈
𝑓 (𝐷)L

〉B
, 𝑟 , 𝜀, ∆𝑓

// Secret-shared DP query result

Output :
〈
𝑦LISLap

〉B
// Generate 𝑖DLap ∼ DLap

(
𝑡
𝑠

)
, where 𝑡

𝑠
=

∆𝑓 +𝑟
𝑟 ·𝜀

1

〈
𝑖NDLap

〉B
← DiscreteLaplace (𝑡, 𝑠)

// Re-scale 𝑌Lap = 𝑖DLap · 2𝑘

2

〈
𝑌LLap

〉B
← MulPow2

(
UINT2FL

(〈
𝑖NDLap

〉B)
, 𝑘 = log

2
𝑟

)
// Round 𝑓 (𝐷 ) to nearest multiple of 𝑟

3

〈
𝑓𝑟 (𝐷)L

〉B
←

⌊〈
𝑓 (𝐷)L

〉B⌉
𝑟

// Perturb 𝑓𝑟 (𝐷 ) with Laplace noise 𝑌Lap

4

〈
𝑦LISLap

〉B
←

〈
𝑓𝑟 (𝐷)L

〉B
+

〈
𝑌LLap

〉B
Protocol 5:𝑀ISLap — ourMPC protocol realizing the integer-

scaling Laplace mechanism [55].

4.4 Summary
In this section, we have introduced MPC protocols for the discrete

Laplace and Gaussian mechanisms (cf. §4.1), the snapping mech-

anism (cf. Prot. 4), and the integer-scaling Laplace and Gaussian

mechanisms (cf. Prot. 5 and Prot. 7).

The best mechanism in practice depends on the type of func-

tion, the available computational resources, as well as the desired

utility and DP guarantees. Therefore, the best choice depends on

similar factors as in implementations of these DP mechanisms with-

out MPC.

For functions that output integer values, the discrete Laplace

and Gaussian mechanisms are a good choice in general. These

mechanisms offer a privacy-utility trade-off corresponding to the

bounds offered by DP, and the computational bottleneck of these

protocols is the large number of floating-point exponentiations.

The noise is also sampled from well-studied discrete distributions,

samples of which are not vulnerable to precision-based attacks in

practical implementations.

For functions that output floating-point values, the snapping

mechanism or integer scaling Laplace or Gaussian mechanisms

can be used. The protocol for the snapping mechanism is the most

efficient (cf. §5.2). However, it offers a sub-optimal privacy-utility

trade-off. The integer-scaling Laplace and Gaussian mechanisms

offer a better privacy-utility trade-off, but they require more itera-

tions with floating-point exponentiation, making the protocols less

efficient.

5 EXPERIMENTAL EVALUATION
To evaluate the efficiency of our MPC protocols for secure DP

mechanisms presented in §4, we provide an implementation and

extensive benchmarks. We aim at high usability and will release
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our code
3
as open-source software under the permissive MIT li-

cense
4
. In this section, we first present our benchmark setup and

give a security and complexity analysis of our MPC protocols be-

fore discussing the experimental results. Our benchmarks evaluate

computation and communication efficiency, including comparisons

to existing MPC protocols for insecure DP mechanisms [45, 71].

5.1 Experimental Setup
Server Configuration.The experiments are run on five servers equipped

with Intel Core i9-7960X processors and 128GB RAM. We consider

three network environments: (1) LAN10: 10-Gbit/s with 1ms RTT,

(2) LAN1: 1-Gbit/s with 1ms RTT, and (3) WAN100: 1-Mbit/s with

100ms RTT. We extend MOTION [21] to 8/16/32/64/128-bit signed

integer and 32/64-bit floating-point arithmetic in {A,B, Y} as well
as conversions between those.

Setting. The implementation of our MPC-based DP mechanisms

generate 64-bit random integer/floating-point values used as DP

noise. They can be run in an outsourcing [67] or a multi-party

computation (N-PC) scenario where N data owners run the com-

putation among themselves. In our experiments, we benchmark

the outsourcing setting where an arbitrary number of data owners

secret share their data (i.e., the query results) and send the shares

to the computing parties instantiated by the servers. Those then

jointly add the noise for guaranteeing DP. Note that the noise shares

can be generated offline (i.e., independently of the input data and,

thus, before receiving the input data shares from the data owners).

Moreover, in this scenario, the noise generation is independent of
the number of data owners. Additionally, pre-computed DP noise

shares can also be transferred to N-PC scenarios as long as the mag-

nitude of the noise, the MPC protocols, and data types are correctly

configured.

Implementation. In our experiments, we compare with the state-

of-the-art, but insecure MPC-based (discrete) Laplace mechanisms

in PrivaDA [45] and Gaussian mechanisms in CrypTen [71]. Note

that although𝑀DLap [45] is not susceptible to the precision-based

attacks [57, 64, 77] discussed in §3, its correctness relies on real

number arithmetic that is not satisfied when using floating-point

arithmetic. We (re-)implement our protocols as well as previous

work in the state-of-the-art full threshold passively secure MPC

framework MOTION [21] for a fair comparison. Note that our

proposed MPC protocols can naturally be translated to frameworks

with stronger security such as ABY3 [78] or MP-SDPZ [70]. We

provide a complexity analysis of circuit size and depth, as well as

experimental communication costs in Appendix I.

5.2 Performance
We benchmark the efficiency of our protocols for the secure DP
mechanisms presented in §4 and §E.

Sharing Techniques. In the two-party (2PC) setting, Yao’s Garbled

Circuit [100] with Three-Halves garbling [86] turned out to be the

most efficient technique for our building blocks in the microbench-

marks (cf. §F). With N ≥ 3 parties, B-sharing was more efficient.

All microbenchmarks for our building blocks can be found in §F.

3
https://github.com/liangzhao2048/Securely-Realizing-Output-Privacy-in-MPC-

using-Differential-Privacy.git

4
https://choosealicense.com/licenses/mit/

Optimization Effects. To evaluate the performance of optimizations

presented in §4, we implement the naive and optimized versions of

𝑀DLap,𝑀DGauss (§4.1),𝑀Snap (§4.2), and𝑀ISLap (§4.3) and𝑀ISGauss
(§E). The naive version refers to the protocols that are transferred

from the plaintext algorithms without optimizations.

Runtimes. The benchmark result of our MPC-based DP mecha-

nisms in LAN10, LAN1 and WAN100 can be found at Tab. 1, Tab. 9

and Tab. 10. We test multiple batch sizes in our experiments, i.e.,

the number of independent random values of DP noise generated in

parallel. As the batch size increases, the overhead per sampled value

decreases, so computation cost amortizes. Therefore, we choose the

largest possible batch size that does not cause a memory overflow

(which is denoted by “-” for no result).

Discrete Laplace/Gaussian Mechanisms. The upper part of Tab. 1

contains the runtime for the naive, optimized, and vulnerable [45]

discrete Laplace mechanisms 𝑀DLap (§4.1). The results in Tab. 1

show that 𝑀DLap (§4.1) runs out of memory when trying to gen-

erate more than one random noise value in the 5PC setting. The

offline runtime of our secure optimized𝑀DLap (§4.1) is 26.8− 42.8×
slower than the insecure𝑀DLap [45]. Tab. 1 also presents the dis-

crete Gaussian mechanism𝑀DGauss (§4.1). In our experiments, the

memory restrictions of our hardware allow us to only generate

Gaussian random value when 𝜎 ≤ 1 (cf. §D.3).

Snapping and Integer-Scaling Laplace Mechanisms. In the lower half,

Tab. 1 contains the runtimes of our MPC protocol for the snapping

mechanism [77] 𝑀Snap (Prot. 4) and the integer-scaling Laplace

mechanism [55]𝑀ISLap (Prot. 5) as well as of the vulnerable version
of the Laplace mechanism𝑀Lap [45] from PrivaDA. We implement

all three mechanisms using floating-point arithmetic in {B, Y}, i.e.,
when the exact query result 𝑓 (𝐷) are 64-bit floating-point numbers.

In the 2PC setting, our optimized version of 𝑀Snap has the best

total runtime. Concretely, it is about 47% faster than our optimized

𝑀ISLap and about 19% faster than the insecure𝑀Lap [45]. In the 5PC

setting, our optimized𝑀Snap is 28% faster and and our optimized

𝑀ISLap is 1.9× slower than the insecure𝑀Lap [45].

Integer-Scaling Gaussian Mechanism. The lower part of Tab. 1 also
presents the runtime of our MPC-based integer-scaling mecha-

nism 𝑀ISGauss (Prot. 7) and the insecure Gaussian Mechanisms

𝑀Gauss [71] of CrypTen. We implement these mechanisms using

floating-point arithmetic in Y in the 2PC setting and in B in the

3PC and 5PC settings for efficiency reasons (cf. §F). Due to mem-

ory restrictions of our hardware, we were not able to run𝑀ISGauss
with more than 2 parties and a batch size of 30 or with 5 parties

and a batch size of 2. The offline runtime of our secure𝑀ISGauss is

44.5 − 287.1× slower than the insecure𝑀Gauss [71].

Offline vs. Online Phase. Note that our MPC-based noise sampling

protocols can fully be run offline before the actual input is avail-

able. Thus, in the time-critical online phase, for the discrete DP

mechanisms (cf. §4.1) only a secure addition of the noise to the

secret-shared function output has to be performed which is a sin-

gle efficient local MPC operation. For the other three mechanisms

(cf. §4.2-4.3), an additional rounding and scaling is needed, but

this only needs between 9 and 55 ms in our MPC-based Laplace

mechanisms (cf. Tab. 1) and between 8 ms and 1.1 seconds for the

Gaussian mechanisms depending on the number of parties.
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Table 1: Total runtimes (ms) per generated noise value in LAN10 (10-Gbit/s with 1ms RTT) averaged over 10 protocols runs of
our MPC-based DP mechanisms using B and Y-sharing among N parties. ✓ are protocols not susceptible to the finite precision
attacks discussed in §3, while ✗ are vulnerable solutions. The best secure results are marked in bold. - denotes memory overflow.

N = 2 N = 3 N = 5

Mechanisms Security Batch Prot. Offline Online Prot. Offline Online Prot. Offline Online

Discrete

𝑀DLap [45] ✗ 40 Y 37.05 1.48 B 225.89 4.24 B 467.88 17.13

𝑀DLap (cf. §4.1, naive) ✓ 1 Y 14051.48 44.46 B 313628.29 376.21 B 472429.32 382.26

𝑀DLap (cf. §4.1, optimized) ✓ 1 Y 1606.00 37.71 B 12266.09 356.29 B 17953.73 378.13
𝑀DLap (cf. §4.1, naive) ✓ 5 Y 8690.86 4.72 B 36109.00 18.07 B — —

𝑀DLap (cf. §4.1, optimized) ✓ 5 Y 1273.36 5.55 B 9662.55 15.46 B — —

𝑀DLap (cf. §4.1, naive) ✓ 40 Y 7235.65 1.46 B — — B — —

𝑀DLap (cf. §4.1, optimized) ✓ 40 Y 991.78 1.41 B — — B — —

𝑀DGauss (cf. §4.1) ✓ 1 Y 6222.30 32.09 B 12459.71 306.06 B 21169.71 414.90
𝑀DGauss (cf. §4.1) ✓ 5 Y 5584.64 31.48 B — — B — —

Continuous

𝑀Lap [45] ✗ 30 Y 62.84 6.57 B 361.54 18.43 B 652.93 20.53

𝑀Snap (cf. §4.2, naive) ✓ 30 Y 72.05 38.64 B 275.51 128.55 B 685.93 167.41

𝑀Snap (cf. §4.2, optimized) ✓ 30 Y 50.63 10.20 B 261.94 33.56 B 468.54 44.28

𝑀ISLap (cf. §4.3, naive) ✓ 30 Y 817.72 55.07 B 12880.42 142.37 B 16836.56 224.10

𝑀ISLap (cf. §4.3, optimized) ✓ 30 Y 95.05 9.52 B 793.43 32.61 B 1239.24 44.17

𝑀Gauss [71] ✗ 30 Y 106.92 7.15 B 397.21 18.07 B 689.55 29.96

𝑀ISGauss (cf. §4.3) ✓ 2 Y 10696.00 408.37 B 97190.00 843.96 B 197842.00 1141.75
𝑀ISGauss (cf. §4.3) ✓ 4 Y 7836.50 166.82 B 82901.92 492.96 B — —

𝑀ISGauss (cf. §4.3) ✓ 30 Y 4712.24 8.56 B — — B — —

Table 2: Total runtimes (ms) per generated noise value in LAN1 (1-Gbit/s with 1ms RTT) averaged over 10 protocols runs of our
MPC-based DP mechanisms using B and Y-sharing among N parties. ✓ are protocols not susceptible to the finite-precision
attacks discussed in §3, while ✗ are vulnerable solutions. The best secure results are marked in bold. - denotes memory overflow.

N = 2 N = 3

Mechanisms Security Batch Prot. Offline Online Prot. Offline Online

Discrete

𝑀DLap [45] ✗ 10 Y 196.03 5.44 B 823.13 23.73

𝑀DLap (cf. §4.1, naive) ✓ 10 Y 12 221.81 4.55 B — —

𝑀DLap (cf. §4.1, optimized) ✓ 10 Y 4 707.46 4.81 B 13 474.59 22.33

𝑀DGauss (cf. §4.1) ✓ 5 Y 11 081.80 17.72 B 17 333.22 42.11

Continuous

𝑀Lap [45] ✗ 30 Y 68.19 6.94 B 380.91 22.65

𝑀Snap (cf. §4.2, naive) ✓ 30 Y 75.46 45.90 B 302.88 140.22

𝑀Snap (cf. §4.2, optimized) ✓ 30 Y 56.13 5.63 B 291.73 37.79

𝑀ISLap (cf. §4.3, naive) ✓ 30 Y 1 101.77 50.05 B 11 877.52 157.30

𝑀ISLap (cf. §4.3, optimized) ✓ 30 Y 373.54 5.23 B 1 114.22 34.50

𝑀Gauss [71] ✗ 30 Y 118.08 4.75 B 381.59 16.58

𝑀ISGauss (cf. §E) ✓ 30 Y 14 219.45 6.10 B — —

6 CONCLUSION
In this work, we introduced five MPC protocols that implement DP

mechanisms that approximate discrete and continuous Laplace and

Gaussian samples. Their different output formats and trade-offs

between utility and efficiency enable a favorable selection based

on the requirements of specific applications. In contrast to prior

works that combine DP and MPC, our protocols are secure against

finite precision attacks [57, 64, 77], which are even able to recover

the entire database. Our MPC-based DP mechanisms transfer and

optimize previous works for finite precision noise generation by

Mironov [77], Canonne et al. [26], and Google [55] from the plain-

text domain to the MPC setting. They offer extremely efficient

online runtimes of only a few milliseconds, and the computation

for sampling noise is largely independent of the function input and

can be pre-computed.

Future Work. Besides random sampling, our MPC protocols and

sub-protocols are deterministic, offering random samples from a

specified distribution. If some additional inaccuracy in the result

can be tolerated, approximating some expensive operations may

improve the efficiency of our protocols. For example, piecewise
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Table 3: Total runtimes (ms) per generated noise value in WAN100 (100-Mbit/s with 100ms RTT) averaged over 10 protocols runs
of our MPC-based DPmechanisms using B and Y-sharing amongN parties. ✓ are protocols not susceptible to the finite-precision
attacks discussed in §3, while ✗ are vulnerable solutions. The best secure results are marked in bold. - denotes memory overflow.

N = 2 N = 3

Mechanisms Security Batch Prot. Offline Online Prot. Offline Online

Discrete

𝑀DLap [45] ✗ 10 Y 622.97 45.89 B 23 436.08 150.22

𝑀DLap (cf. §4.1, naive) ✓ 10 Y 88 752.83 46.96 B — —

𝑀DLap (cf. §4.1, optimized) ✓ 10 Y 42 352.58 47.99 B 82 289.22 153.15

𝑀DGauss (cf. §4.1) ✓ 5 Y 66 792.65 86.63 B 89 240.04 355.12

Continuous

𝑀Lap [45] ✗ 30 Y 301.17 38.13 B 11 520.13 263.17

𝑀Snap (cf. §4.2, naive) ✓ 30 Y 266.34 127.13 B 7 977.09 4 640.57

𝑀Snap (cf. §4.2, optimized) ✓ 30 Y 241.53 42.89 B 7 656.29 572.26

𝑀ISLap (cf. §4.3, naive) ✓ 30 Y 6 862.04 123.97 B 71 937.68 4 477.84

𝑀ISLap (cf. §4.3, optimized) ✓ 30 Y 3 284.79 41.00 B 10 415.45 427.07

𝑀Gauss [71] ✗ 30 Y 370.97 41.90 B 10 360.31 262.90

𝑀ISGauss (cf. §E) ✓ 30 Y 121 444.31 56.75 B — —

polynomials might be used in A-sharing for floating-point expo-

nentiation and division, building on the approach of [85]. New

state-of-art circuit compilers, such as [39, 82], may also reduce the

circuit sizes or multiplicative gate depth of our protocols, further

improving efficiency. MPC protocols for noise generation secure

against malicious adversaries, as well as protocols for other types

of DP mechanisms also remain open directions for the future.
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A STATISTICAL DISTRIBUTIONS
We define the following statistical distributions used in our work

with their probability density functions:

(1) Geometric distribution: Geo (𝑥 | 𝑝) = (1 − 𝑝)𝑥 · 𝑝 .
(2) Discrete Laplace distribution [52]:

DLap (𝑥 | 𝑡) = 𝑒
1

𝑡 − 1

𝑒
1

𝑡 + 1

· 𝑒−
|𝑥 |
𝑡 .

(3) Discrete Gaussian distribution [26]:

DGauss
(
𝑥 | 𝜇, 𝜎2

)
=

𝑒
− (𝑥−𝜇)

2

2𝜎2∑
𝑦∈Z 𝑒

− (𝑦−𝜇)
2

2𝜎2

.

(4) Binomial distribution:

Bino (𝑥 | 𝑛, 𝑝) = 𝑛!

𝑥 ! (𝑛 − 𝑥)! · 𝑝
𝑥 · (1 − 𝑝)𝑛−𝑥 .

(5) Symmetrical binomial distribution:

SymmBino (𝑥 | 𝑛, 𝑝 = 0.5) = Bino (𝑥 | 𝑛, 𝑝 = 0.5) − 𝑛

2

.

B MPC SUB-PROTOCOLS
We construct our MPC-based DP mechanism presented in §4 by

using the following building blocks.

B.1 Prefix-OR.
The function

(
⟨𝑦0⟩B , . . . , ⟨𝑦ℓ−1⟩B

)
← PreOr

(
⟨𝑥0⟩B , . . . , ⟨𝑥ℓ−1⟩B

)
outputs the secret-shares of 𝑦 𝑗 = ∨𝑗𝑘=0

𝑥𝑘 for 𝑗 ∈ [0, ℓ − 1], 𝑦0 = 𝑥0,

i.e., output 𝑦 𝑗 is the prefix OR of the ℓ bits 𝑥0, . . . , 𝑥ℓ−1. We re-

implement the Prefix-OR protocol by Aly et al.[5] in MOTION.

B.2 Hamming Weight
The function

〈
𝑦N

〉B ← HW
(
⟨𝑥0⟩B , . . . , ⟨𝑥ℓ−1⟩B

)
computes the

secret-shared Hamming weight (i.e., the number of bits equal to 1)

of the ℓ input bits 𝑥0, . . . , 𝑥ℓ−1. We use the protocol based on the

plaintext algorithm from Boyar et al. [20].

B.3 Uniform Random Bits
The function

(
⟨𝑏0⟩B , . . . , ⟨𝑏ℓ−1⟩B

)
← RandBits (ℓ) generates secret-

shares of an ℓ-bit random string 𝑏 = (𝑏0, . . . , 𝑏ℓ−1) ∈ {0, 1}ℓ hold by
N parties. Specifically, each party 𝑃𝑖 locally generates a random ℓ-bit

string and sets it as its Boolean shares ⟨𝑏⟩B𝑖 =

(
⟨𝑏0⟩B𝑖 , . . . , ⟨𝑏ℓ−1⟩B𝑖

)
of the secret-shared bit-string 𝑏, where 𝑖 ∈ {1, . . . ,N}. The XOR
of the independently generated Boolean shares 𝑏 = ⊕N

𝑖=1
⟨𝑏⟩B𝑖 is

uncorrelated with any input ⟨𝑏⟩B𝑖 as long as at least one party is

not corrupted.

B.4 Geometric Random Sampling
The function

〈
𝑦N

〉B ← Geometric (𝜅) generates secret-shares of a
random value 𝑦 ∼ Geo (𝑝 = 0.5) drawn from a geometric distribu-

tion (cf. §A), where𝜅 is a security parameter, i.e,Geometric (𝜅) fails
with a probability of 𝑝 = 1 − 1

2
𝜅 . Prot. 6 is based on the plaintext

sampling algorithm of Google’s DP library [56].
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Input :𝜅 // Length of the input bit-string

Output :
〈
𝑥N

〉B
// 𝑥 ∼ Geo (𝑝 = 0.5) or 𝑥 = 𝜅

1

(
⟨𝑢0 ⟩B , . . . , ⟨𝑢𝜅−1 ⟩B

)
← RandBits (𝜅 )

2

(
⟨𝑝0 ⟩B , . . . , ⟨𝑝𝜅−1 ⟩B

)
← PreOr

(
⟨𝑢0 ⟩B , . . . , ⟨𝑢𝜅−1 ⟩B

)
3

(
⟨𝑏0 ⟩B , . . . , ⟨𝑏𝜅−1 ⟩B

)
←

(
¬

(
⟨𝑝0 ⟩B

)
, . . . ,¬

(
⟨𝑝𝜅−1 ⟩B

))
4 ⟨𝑥 ⟩B,N ← HW

(
⟨𝑏0 ⟩B , . . . , ⟨𝑏𝜅−1 ⟩B

)
Protocol 6: Geometric — our MPC protocol realizing Geo-

metric sampling [56].

B.5 Boolean-String Multiplication
The function

(
⟨𝑥0⟩B , . . . , ⟨𝑥ℓ−1⟩B

)
← BoolStrMul

(
⟨𝑎⟩B , ⟨𝑏0⟩B ,

. . . , ⟨𝑏ℓ−1⟩B
)
[8] computes the multiplication of one Boolean bit 𝑎

by a set of ℓ Boolean bits 𝑏0, . . . , 𝑏ℓ−1, i.e., 𝑥0 = 𝑎 ∧ 𝑏0, . . . , 𝑥ℓ−1 =

𝑎 ∧ 𝑏ℓ−1.

B.6 Oblivious Selection
The function

(
⟨𝑦⟩B , ⟨𝑐⟩B

)
← Sel

(
⟨𝑥0⟩B , . . . , ⟨𝑥ℓ−1⟩B , ⟨𝑐0⟩B , . . . ,

⟨𝑐ℓ−1⟩B
)
outputs a bit-string 𝑦 = 𝑥𝑖 and a bit 𝑐 = 𝑐𝑖 , where 𝑖 is

the index of the first non-zero bit 𝑐𝑖 for 𝑖 ∈ [0, ℓ − 1]. If all bits
𝑐0, . . . , 𝑐ℓ−1 are 0, bit-string 𝑦 is set to a string of 0s with the length

of 𝑥0, and bit 𝑐 is set to 0 as well.

Sel deploys an inverted binary tree (inspired by Järvinen et

al. and Mohassel et al. [62, 79] who use the structure for differ-

ent functionalities) with depth

⌈
log

2
ℓ
⌉
, i.e., the leaves (as the 0-th

layer) of the inverted binary tree represent ℓ-pair input elements(
⟨𝑥0⟩B , ⟨𝑐0⟩B

)
, . . . ,

(
⟨𝑥ℓ−1⟩B , ⟨𝑐ℓ−1⟩B

)
and the root (as the last

layer) is the (selected) output elements

(
⟨𝑦⟩B , ⟨𝑐⟩B

)
. The inverted

binary tree is evaluated from the 0-th layer (the layer with leaves)

to the last layer (the root layer). Each intermediate node (between

the leaves and root) 𝑁 (𝑖, 𝑗 )→𝑘 holds two elements

(
⟨𝑧𝑘 ⟩B , ⟨𝑐𝑘 ⟩B

)
,

where 𝑖 and 𝑗 are the index of the connected (intermediate or leaf)

nodes in the upper layer and 𝑘 is the index of node 𝑁 (𝑖, 𝑗 )→𝑘 :

(𝑧𝑘 , 𝑐𝑘 ) =


(𝑧𝑖 , 𝑐𝑖 ) , if 𝑐𝑖 == 1(
𝑧 𝑗 , 𝑐 𝑗

)
, if 𝑐𝑖 == 0 and 𝑐 𝑗 == 1

(0 . . . , 0) if 𝑐𝑖 == 0 and 𝑐 𝑗 == 0,

(6)

which is equivalent to

𝑧𝑘 =
( (
𝑐𝑖 ⊕ 𝑐 𝑗

)
·
(
(𝑧𝑖 · 𝑐𝑖 ) ⊕

(
𝑧 𝑗 · 𝑐 𝑗

) ) )
⊕

( (
𝑐𝑖 ∧ 𝑐 𝑗

)
· 𝑧𝑖

)
,

𝑐𝑘 = 𝑐𝑖 ⊕ 𝑐 𝑗 ⊕
(
𝑐𝑖 ∧ 𝑐 𝑗

)
,

(7)

where 𝑧 · 𝑐 denotes the multiplication (see Boolean-String Multipli-

cation in §B.5) between a bit 𝑐 and a bit-string 𝑧. Finally, the root

node is evaluated in the same manner as the intermediate nodes

and outputs

(
⟨𝑦⟩B , ⟨𝑐⟩B

)
.

B.7 Uniform Random Floating-Point Numbers
The function

〈
𝑢L

〉B ← RandFloat (𝑙, 𝑘) generates secret-shares〈
𝑢L

〉B
of a random floating-point number 𝑢 ∈ [0, 1) (with a 𝑙-bit

mantissa and a 𝑘-bit exponent) following the plaintext algorithms

by Walker and Wu et al. [77, 96]. For instance, to generate B-shares
of double-precision floating-point numbers 𝑢 ∈ [0, 1) (with 𝑙 = 53,

𝑘 = 11), each party generates a 52-bit random string ⟨𝑑⟩B ∈ {0, 1}52

and sets it as its secret-share of the mantissa of

〈
𝑢L

〉B
. Next, the

party generates a geometric random value

〈
𝑥Z

〉B
for 𝑥 ∼ Geo (0.5)

(cf. §B.4) and sets

〈
𝑒Z

〉B
= 1023 −

(〈
𝑥Z

〉B + 1

)
as its share of the

exponent of

〈
𝑢L

〉B
.

B.8 Multiplication with Power of Two
The function

〈
𝑥L

〉B ← MulPow2
(〈
aL

〉
, ⟨m⟩

)
computes the multi-

plication of a floating-point number 𝑎 and 2
𝑚

for𝑚 ∈ Z in MPC.

It first extracts the bits of the exponent

〈
𝑒Z

〉B
of

〈
𝑎L

〉B
, computes〈

𝐸Z
〉B

=
〈
𝑒Z

〉B +𝑚 as secure signed integer addition, and sets〈
𝐸Z

〉B
as the exponent’s bits of the multiplication result

〈
𝑥L

〉B
,

where 𝑥 = 𝑎 · 2𝑚 . Finally, the rest bits of

〈
𝑥L

〉B
(i.e., mantissa and

sign bits) are set the same value as

〈
𝑎L

〉B
. MulPow2 is more effi-

cient than a secure floating-point multiplication as only a 16-bit

integer addition is needed for 64-bit floating-point numbers.

C DP PROOFS
We present a proof sketch of Theorem 2.5.

Proof Sketch. Let 𝑥 ∈ 𝐷𝑛
be an input dataset, where 𝑥𝑖 is the

input value contributed by client 𝑖 and 𝑥𝑖 is the vector of input

shares for server 𝑖 that serves as input to Π. There is a mapping

from 𝑥 ∈ 𝐷𝑛
to 𝑥 ∈ (𝐷𝑛/𝑚)𝑚 .

Each party learns nothing from an MPC protocol Π other than

what is implied by the party’s input and the function output. For

every PPT adversary A controlling parties 𝐶 , there is a simula-

tor 𝑆 such that VIEWA
Π
(𝑥) for any poly-time distinguisher 𝑇 is

indistinguishable from 𝑆 (M(𝑥), {𝑥𝑖 }𝑖∈𝐶 ). Since any 𝑥 ∈ 𝐷𝑛
can be

replaced with a neighboring 𝑥 ′ ∈ 𝐷𝑛
that differs in a single row or

𝑥𝑖 for party with 𝑥𝑖 , we have:

Pr[𝑇 (VIEWA
Π
(𝑥)) = 1]

≤ Pr[𝑇 (𝑆 (M(𝑥), {𝑥𝑖 }𝑖∈𝐶 ) = 1] + negl(𝜅)
≤ (𝑒𝜖 · Pr[𝑇 (𝑆 (M(𝑥 ′), {𝑥 ′𝑖 }𝑖∈𝐶 )) = 1] + 𝛿) + negl(𝜅)

≤ (𝑒𝜖 · (Pr[𝑇 (VIEWA
Π

(
𝑥 ′

)
) = 1] + negl(𝜅)) + 𝛿) + negl(𝜅)

≤ (𝑒𝜖 · Pr[𝑇 (VIEWA
Π

(
𝑥 ′

)
) = 1] + 𝛿) + negl(𝜅) + 𝑒𝜖 · negl(𝜅)

□

We present the proof of Theorem 4.1 (cf. §4.1).

Proof.

𝑃𝑟 [M′ (𝑥) ∈ 𝑆] = 𝑃𝑟 [M′ (𝑥) ∈ 𝑆 ∧ 𝐸] + 𝑃𝑟 [M′ (𝑥) ∈ 𝑆 ∧ ¬𝐸]
≤ 𝑃𝑟 [𝐸] + 𝑃𝑟 [¬𝐸] · 𝑃𝑟 [M′ (𝑥) ∈ 𝑆 |¬𝐸]
= 𝑝failure + 𝑃𝑟 [¬𝐸] · 𝑃𝑟 [M′ (𝑥) ∈ 𝑆 |¬𝐸]
≤ 𝑝failure + 𝑃𝑟 [¬𝐸] (𝑃𝑟 [M′ (𝑥 ′) ∈ 𝑆 |¬𝐸] + 𝛿)
≤ 𝑝failure + 𝑒𝜖𝑃𝑟 [M′ (𝑥 ′) ∈ 𝑆 ∧ ¬𝐸] + (1 − 𝑝failure)𝛿
≤ 𝑒𝜖𝑃𝑟 [M′ (𝑥 ′) ∈ 𝑆] + 𝑝failure + 𝛿

□
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Table 4: Optimization of the pre-computed parameters 𝑠, 𝑡 , 𝜅1, 𝜅2

in Prot. 1. Given failure probability 𝑝fail (GeometricExp, Prot. 1) <

2
−40, the min. values for 𝜅1, 𝜅2 w.r.t different 𝑠

𝑡
values are given.

We test 1 000 random values each for 𝑠
𝑡
from [0, 100], Z+, and the set

{0.125, 0.25, 0.5, 0.75, 1.5, 2.5}. 𝜅∗
1
and 𝜅∗

2
are the maximal values tested.

Best values of 𝜅1 and 𝜅2 are bold.

𝑠
𝑡 𝑠 𝑡 𝜅1 𝜅2

(0, 100] — — 28
∗

30
∗

Z+ — 1 0 28

0.125 1 8 25 30

0.25 1 4 23 29

0.5 1 2 18 28
0.75 3 4 23 29

1.5 3 2 18 28
2.5 5 2 23 29

D FAILURE PROBABILITY DETERMINATION
AND EFFICIENCY OPTIMIZATION

As discussed in §4.1, we fix the number of iterations of our MPC-

based DP mechanism in advance before executing the protocol

to achieve (1) feasible efficiency as well as (2) full computational

privacy, i.e., no leakage about the magnitude of the sampled random

value. To ensure a negligible failure probability 𝑝failure < 2
−40

, we

determine the number of iterations required for each protocol in

the following.

D.1 Geometric
For sampling a randomvalue from the geometric distribution in Prot. 1,

we first derive the failure probability. It is then used to select the pa-

rameter values of Prot. 1 such that it fails with negligible probability

and causes minimal computation costs.

Failure Probability. We compute the failure probability of Prot. 1

as follows: Let 𝐴𝜅1
be the event that the first for-loop (Lines 6-9

of Prot. 1) fails to generate a secret-shared bit𝑏 = 1 (line 10 in Prot. 1)

within 𝜅1 iterations and 𝐵𝜅2
is the event that the second for-loop

(Line 12-15 of Prot. 1) fails to generate 𝑑 = 1 (line 16 in Prot. 1)

within 𝜅2 iterations. As both loops are independent, we have:

𝑝fail (GeometricExp, Prot. 1) = 𝑝
(
𝐴𝜅1
∨ 𝐵𝜅2

)
= 𝑝

(
𝐴𝜅1

)
+ 𝑝

(
𝐵𝜅2

)
− 𝑝

(
𝐴𝜅1
∧ 𝐵𝜅2

)
= 𝑝

(
𝐴𝜅1

)
+ 𝑝

(
𝐵𝜅2

)
− 𝑝

(
𝐴𝜅1

)
· 𝑝

(
𝐵𝜅2

)
=

(
1 − 1

𝑡

1 − 𝑒−1

1 − 𝑒−
1

𝑡

)𝜅1

+ 𝑒−𝜅2

−
(
1 − 1

𝑡

1 − 𝑒−1

1 − 𝑒−
1

𝑡

)𝜅1

· 𝑒−𝜅2 ,

(8)

where

𝑝
(
𝐴𝜅1

)
=

𝜅1∏
𝑖=1

𝑝 (𝐴1)

=

𝜅1∏
𝑖=1

(
𝑡−1∑︁
𝑘=0

𝑝 (𝑢 = 𝑘) · 𝑝 (𝑏0 = 0)
)

=

𝜅1∏
𝑖=1

(
𝑡−1∑︁
𝑘=0

1

𝑡
·
(
1 − 𝑒−

𝑘
𝑡

))
=

𝜅1∏
𝑖=1

(
1 − 1

𝑡

𝑡−1∑︁
𝑘=0

𝑒−
𝑘
𝑡

)
=

𝜅1∏
𝑖=1

(
1 − 1

𝑡

1 − 𝑒−1

1 − 𝑒−
1

𝑡

)
=

(
1 − 1

𝑡

1 − 𝑒−1

1 − 𝑒−
1

𝑡

)𝜅1

,

(9)

and

𝑝
(
𝐵𝜅2

)
=

𝜅2∏
𝑖=1

𝑝 (𝐵1)

=

𝜅2∏
𝑖=1

𝑝 (𝑐0 = 1)

= 𝑒−𝜅2 .

(10)

Optimization. Recall that Prot. 1 generates geometric random

values 𝑋 ∼ Geo

(
1 − 𝑒−

𝑠
𝑡

)
, where 𝑠 , 𝑡 are positive integers. The

efficiency of Prot. 1 can be improved if 𝑡 is a power of 2 and 𝜅1 is

small as we will show in the following.

Our micro-benchmark results in §F show that modular reduction

based RandInt (𝑡) [12] and floating-point exponentiations (Lines 7

and 8 in Prot. 1) are the most expensive primitives of Prot. 1 from a

computational point of view. But, as discussed in §4.1, when 𝑡 = 2
𝑘

for 𝑘 ∈ Z, RandInt (𝑡) becomes a local operation in MPC.

Additionally, we can further reduce the computational cost by

requiring a smaller number of iterations 𝜅1 (line 6 in Prot. 1) as

those determine the number of exponentiations. Following this idea,

we exhaustively compute all combinations of values for𝜅1,𝜅2, 𝑠 and

𝑡 = 2
𝑘
that achieve 𝑝fail (GeometricExp, Prot. 1) < 2

−40
(cf. Tab. 4)

using Eq. 8 and choose the configuration with the smallest 𝜅1. Note

that 𝜅1 = 0 means that the iteration from lines 6 − 9 in Prot. 1 can

be skipped.

D.2 Discrete Laplace
For sampling a random value from the discrete Laplace distribution

in Prot. 2, we first derive the protocol’s failure probability. It is

then used to select the parameter values of Prot. 2 s.t. it fails with

negligible probability and minimizes runtime.

Failure Probability. We compute the failure probability of Prot. 2

as follows: Suppose 𝐴𝜅3
is the event that Prot. 2 fails to output

𝑆 = 1 (Line 6 in Prot. 2) within 𝜅3 iterations. Since each iteration is
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Table 5: Optimization of the pre-computed parameters 𝑠 , 𝑡 , 𝜅1, 𝜅2, 𝜅3

in Prot. 2. Given failure probability𝑝failure < 2
−40 of Prot. 1- 2, themin.

values for𝜅1,𝜅2,𝜅3 w.r.t. different 𝑠
𝑡
values are given. ∆𝑓 and 𝜀 are the

sensitivity and DP parameter of discrete Laplace mechanisms that
use the Laplace random value as DP noise generated with Prot. 2. We
test 1 000 random values each for 𝑠

𝑡
from (0, 5], (5, 10], (10, 10000], Z+,

and the set {0.125, 0.25, 0.5, 0.75, 1.5, 2.5}. 𝜅∗
𝑖
, 𝑖 ∈ [3] are the maximal

values tested. Best values of 𝜅1, 𝜅2, 𝜅3 are bold.

𝑠
𝑡 =

∆𝑓
𝜀 𝑠 𝑡 𝜅1 𝜅2 𝜅3 𝜅1 ∗ 𝜅3

(0, 5] — — 28
∗

30
∗

25
∗

672

(5, 10] — — 28
∗

30
∗

40
∗

1120

(10, 10000] — — 28
∗

30
∗

41
∗

1148

Z+ — 1 0 28 41
∗

0

0.125 1 8 25 30 10 250

0.25 1 4 23 29 13 299

0.5 1 2 18 28 18 324

0.75 3 4 23 29 21 483

1.5 3 2 18 28 30 540

2.5 5 2 18 28 36 648

independent, we estimate 𝑝
(
𝐴𝜅3

)
as follows:

𝑝fail (DiscreteLaplace, Prot. 2) = 𝑝
(
𝐴𝜅3

)
=

𝜅3∏
𝑖=1

𝑝 (𝐴1) ,
(11)

where

𝑝 (𝐴1) = 𝑝 (𝑓0 = 1)
= 𝑝 (𝑆0 = 1) · 𝑝 (𝑚0 = 0 ∧ Prot. 1 succeeds) + 𝑝 (Prot. 1 fails)

=
1

2

·
(
1 − 𝑒−

𝑠
𝑡

)
· 𝑝 (Prot. 1 succeeds) + 𝑝 (Prot. 1 fails)

=
1

2

·
(
1 − 𝑒−

𝑠
𝑡

)
· (1 − 𝑝fail (GeometricExp, Prot. 1))

+ 𝑝fail (GeometricExp, Prot. 1) .
(12)

Optimization. Prot. 1 is the most expensive step in Prot. 2. The

number of iterations 𝜅1 and 𝜅2 in Prot. 1 are fixed to ensure obliv-

iousness while they must be large enough that it only fails with

negligible probability. Those parameter values will also heavily in-

fluence the efficiency of Prot. 2 as already discussed in §D.1. Using

Tab. 4 and Eq. 11, we can compute Tab. 5 to determine the optimal

parameter values for Prot. 2.

D.3 Discrete Gaussian
For sampling a random value from the discrete Gaussian distribu-

tion in Prot. 3, we first derive the protocol’s failure probability. It is

then used to select the parameter values of Prot. 3 s.t. it fails with

negligible probability and minimizes runtime.

Failure Probability. Suppose 𝐴𝜅4
is the event that Prot. 3 fails to

output 𝑏 = 1 within 𝜅4 iterations. Since the iterations are indepen-

dent, the failure probability can be computed as follows:

𝑝fail (DiscreteGaussian, Prot. 3) = 𝑝
(
𝐴𝜅4

)
=

𝜅4∏
𝑖=1

𝑝 (𝐴1) ,
(13)

Table 6: Optimization of the pre-computed parameters 𝜎 , 𝜅1, 𝜅2, 𝜅3,
𝜅4 in Prot. 3. Given failure probability 𝑝failure < 2

−40 of Prot. 1-3, the
min. values of 𝜅1, 𝜅2, 𝜅3, 𝜅4 w.r.t. different 𝜎 values are given. 𝜎 is
a parameter of the discrete Gaussian distribution (cf. §A). We test
1 000 random values each for 𝜎 from (0, 1) , [1, 2], (2, 5], (5, 10] and
(10, 100]. 𝜅∗

𝑖
, 𝑖 ∈ [4] are the maximal values tested. Best values of 𝜅1,

𝜅2, 𝜅3, 𝜅4 are bold.

𝜎 𝜅1 𝜅2 𝜅3 𝜅4

(0, 1) 0 28∗ 25
∗

48
∗

[1, 2] 28
∗ 28∗ 18

∗
36
∗

(2, 5] 28
∗

30
∗

15
∗

25
∗

(5, 10] 28
∗

30
∗

11
∗

21
∗

(10, 100] 28
∗

30
∗ 9∗ 20∗

where

𝑝 (𝐴1) =
∞∑︁

𝑗=−∞
𝑝 (𝑏0 = 0 ∧ 𝑌0 = 𝑗 ∧ Prot. 2 succeeds)

+ 𝑝 (Prot. 2 fails)

=

∞∑︁
𝑗=−∞

𝑝 (𝑏0 = 0) · 𝑝 (𝑌0 = 𝑗) · 𝑝 (Prot. 2 succeeds)

+ 𝑝 (Prot. 2 fails)

=

∞∑︁
𝑗=−∞

©­­«1 − 𝑒−
(
| 𝑗 |− 𝜎

2

𝑡

)
2

2𝜎2

ª®®¬ ·
(
𝑒

1

𝑡 − 1

)
· 𝑒−

| 𝑗 |
𝑡

𝑒
1

𝑡 + 1

· 𝑝 (Prot. 2 succeeds) + 𝑝 (Prot. 2 fails)

=

∞∑︁
𝑗=−∞

©­­«1 − 𝑒−
(
| 𝑗 |− 𝜎

2

𝑡

)
2

2𝜎2

ª®®¬ ·
(
𝑒

1

𝑡 − 1

)
· 𝑒−

| 𝑗 |
𝑡

𝑒
1

𝑡 + 1

· (1 − 𝑝fail (DiscreteLaplace, Prot. 2))
+ 𝑝fail (DiscreteLaplace, Prot. 2) .

(14)

Optimization. Prot. 2 is the most expensive step in Prot. 3 whose

runtime itself is dominated by the number of iterations 𝜅4. 𝜅4 has to

be set based on the required failure probability of Prot. 2-3, cf. Tab. 6.

E MPC BASED INTEGER-SCALING GAUSSIAN
MECHANISM

The integer-scaling Gaussian mechanism [55] is (𝜀, 𝛿)-differentially
private thanks to scaled noise sampled from a symmetric binomial

distribution (§A): SymmBino (𝑛, 𝑝 = 0.5). The scaling factor 𝑟 and
distribution parameter 𝑛 can be estimated using 𝜀 and 𝛿 [11, 56].

Prot. 7 presents our MPC protocol for the integer-scaling Gaussian

mechanism𝑀ISGauss, an adapted version of the plaintext symmetri-

cal binomial sampling algorithm in [55]. It calls Prot. 8 to generate

secret-shares of a symmetrical binomial random value ⟨𝑖⟩B,L. Given
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the value of 𝑛, we first compute the following constant parameters:

𝑚 =

⌊√
2 ·
√
𝑛 + 1

⌋
,

𝑥min = −
√
𝑛 ·

√︁
ln

√
𝑛

√
2

,

𝑥max = −𝑥min,

𝜈𝑛 =
0.4 · 21.5 · ln1.5 (

√
𝑛)

√
𝑛

,

𝑝coe =

√︂
2

𝜋
· (1 − 𝜈𝑛) ·

1

√
𝑛
.

(15)

Failure Probability. For sampling a symmetrical binomial random

value from the symmetrical binomial distribution in Prot. 8, we

derive the protocol’s failure probability based on [22] as follows:

Suppose 𝐴𝜅 is the event that Prot. 8 fails to output 𝑓𝑖 == 1 within

𝜅 iterations. Since each iteration is independent, we compute

𝑝
fail
(SymmetricalBinomial, Prot. 7) =

𝜅∏
1

𝑝 (𝐴1)

=

(
15

16

)𝜅
.

(16)

To guarantee𝑝
fail
(SymmetricalBinomial, Prot. 7) < 2

−40
,𝜅 should

be greater than 430.

// Secret-shared exact query result, resolution parameter of

// 𝑀ISGauss, parameter of SymmBino (𝑛, 𝑝 = 0.5)
Input :

〈
𝑓 (𝐷 )L

〉B
, 𝑟 ,
√
𝑛

// Secret-shared DP query result

Output :
〈
𝑦LISGauss

〉B
1

〈
𝑖NSymmBinoNoise

〉B
← SymmetricalBinomial

(√
𝑛
)

2
〈
𝑌LGaussNoise

〉B ← MulPow2
(
UINT2FL

(〈
𝑖N

〉B)
, 𝑘 = log

2
𝑟

)
3

〈
𝑓𝑟 (𝐷 )L

〉B ← ⌊〈
𝑓 (𝐷 )L

〉B⌉
𝑟

4
〈
𝑦LISGauss

〉B ← 〈
𝑓𝑟 (𝐷 )L

〉B + 〈
𝑌LGaussNoise

〉B
Protocol 7: 𝑀ISGauss — our MPC protocol realizing the

integer-scaling Gaussian mechanism [55].

F MPC MICRO-BENCHMARK RESULTS
To instantiate our general MPC protocols in §4 in the most effi-

cient manner, we micro-benchmark all relevant sub-protocols in

{Y,B,A}-sharing. Results for 64-bit integer arithmetic and 64-bit

floating-point arithmetic are given in Tab. 11. Note that the floating-

point arithmetic operations (e.g., exponentiation and natural log-

arithm) in A that are more than 500× slower than that in {B, Y}
are not listed in Tab. 11. Benchmark results for share conversions

and other primitive operations (e.g., XOR and AND) in different

network environments are given in [21].

G OVERVIEW OF NOISE GENERATION
PROCEDURE.

Fig. 1 shows the noise generation procedure for the secure and

insecure DP mechanisms (cf. §4 and §5).

Input :
√
𝑛 // Parameter of SymmBino (𝑛, 𝑝 = 0.5)

Output :
〈
𝑖Z

〉B
// 𝑖 ∼ SymmBino (𝑛, 𝑝 = 0.5) or 𝑖 = 0

1 for 𝑗 ← 0 to 𝜅 − 1 do
2

〈
𝑠 𝑗
Z
〉B ← Geometric (0.5)

3

〈
𝑆Z
𝑗

〉B
← −

(〈
𝑠Z
𝑗

〉B
+ 1

)
4

〈
𝑏 𝑗

〉B ← RandBits (1)

5

〈
𝑘Z
𝑗

〉B
← MUX

(〈
𝑏 𝑗

〉B
,

〈
𝑠Z
𝑗

〉B
,

〈
𝑆Z
𝑗

〉B)
6

〈
𝑙 𝑗
Z
〉B ← RandInt (𝑚)

7

〈
𝑥Z
𝑗

〉B
←

〈
𝑘Z
𝑗

〉B
·𝑚 +

〈
𝑙Z
𝑗

〉B
8

〈
𝑐𝑜𝑛𝑑𝑥min≤𝑥𝑗 ≤𝑥max

〉B
←

(〈
𝑥Z
𝑗

〉B
≥ 𝑥min

)
∧

(〈
𝑥Z
𝑗

〉B
≤ 𝑥max

)
9

〈
𝑝̃L
𝑗

〉B
← 𝑝̃coe · 𝑒

−
( √

2√
𝑛
·INT2FL

(〈
𝑥Z
𝑗

〉B ))
2

10

〈
𝑐𝑜𝑛𝑑𝑝̃ 𝑗>0

〉B
←

〈
𝑐𝑜𝑛𝑑𝑥min≤𝑥𝑗 ≤𝑥max

〉B
11

〈
𝑝LBern

〉B ← 〈
𝑝̃L
𝑗

〉B
· ©­«©­«2

UINT2FL
(〈
𝑠N
𝑗

〉B )ª®¬ · 𝑚4 ª®¬
12

〈
𝑐 𝑗

〉B ← Bernoulli
(〈
𝑝LBern

〉B)
13

〈
𝑐𝑜𝑛𝑑𝑐 𝑗 ==1

〉B
←

〈
𝑐 𝑗

〉B
14

〈
𝑓𝑗

〉B ← 〈
𝑐𝑜𝑛𝑑𝑥min≤𝑥𝑗 ≤𝑥max

〉B
∧

〈
𝑐𝑜𝑛𝑑𝑐 𝑗 ==1

〉B
15 end

16
〈
𝑖Z

〉B ← Sel
(〈
𝑥0

Z
〉B

, . . . ,
〈
𝑥Z
𝜅−1

〉B
, ⟨𝑓0 ⟩B , . . . , ⟨𝑓𝜅−1 ⟩B

)
Protocol 8: SymmetricalBinomial — our MPC protocol re-

alizing symmetrical Binomial sampling [55].

H RUNTIME BREAKDOWN OF MPC-BASED
DP MECHANISMS

To show the bottleneck of our MPC-based DP mechanisms, we ana-

lyze the runtime breakdown of the secure DPmechanisms presented

in §4 and §E, in the 2PC setting and LAN10 network environment.

Fig. 2a shows the runtime breakdown of the geometric sampling pro-

tocol GeometricExp (cf. Prot. 1 in §4.1). We omit the runtime break-

down of the discrete Laplace mechanism𝑀DLap, discrete Gaussian

mechanisms 𝑀DGauss, and the integer-scaling Laplace 𝑀ISLap as

GeometricExp (§4.1) is the major overhead (>98.3% in the runtimes).

Fig. 2b shows the runtime breakdown of the snapping mechanism

𝑀Snap (cf. Prot. 4 in §4.2). Fig. 2c shows the runtime breakdown of

the integer-scaling Gaussian mechanism𝑀ISGauss (cf. Prot. 7 in §E).

I COMPLEXITY ANALYSIS AND
COMMUNICATION

In this section, we analyze the complexity of our MPC protocols in

terms of circuit size and depth. For Y-sharing, the round complexity

is constant such that the circuit size, i.e., the number of AND gates,

determines performance. In contrast, the circuit depth, which is the

longest path of multiplicative gates such as AND and OR, deter-
mines the number of communication rounds in B-sharing, which
is a dominant factor in its runtime complexity in most cases.

Our analysis results are given in Tab. 8. Overall, our optimized

protocols for the Laplace mechanisms save up to 54% of AND gates
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GeometricExp

(cf. Prot. 1)

𝑀ISLap
(cf. §4.3)

𝑀Lap
[45]

𝑦Lap =

��� 1

ln𝜆
ln𝑈1

��� − ��� 1

ln𝜆
ln𝑈2

���
DiscreteLaplace
(cf. Prot. 2)

𝑀DLap
(cf. §4.1)

𝑀DLap
[45]

𝑦DLap = 𝜆 (ln𝑈1 − ln𝑈2)

DiscreteGaussian
(cf. Prot. 3)

𝑀DGauss
(cf. §4.1)

SymmBino
(cf. Prot. 8)

𝑀ISGauss
(cf. §E)

𝑀Gauss
[71]

𝑦Gauss_1 = 𝜎
√
−2 ln𝑈1 cos (2𝜋 ·𝑈2) + 𝜇

𝑦Gauss_2 = 𝜎
√
−2 ln𝑈1 sin (2𝜋 ·𝑈2) + 𝜇

Figure 1: Blocks are the secure and Blocks are the insecure noise sampling algorithms. Blocks and Blocks are the
corresponding DP mechanisms. We omit the snapping mechanism 𝑀Snap (cf. §4.2) because it is based on 𝑀Lap [45] but with
additional processing steps to guarantee DP security. All noise sampling algorithms use uniform random bits (cf. §B) or uniform
random floating-point numbers (cf. §B), e.g.,𝑈1 and𝑈2, as the source of randomness. 𝜆, 𝜎 , and 𝜇 depend on the DP parameters 𝜖
and 𝛿 .

FL_EXP

53.78%

Bernoulli

26.87%

FL_MUL

16.51%

Others
2.84%

(a) GeometricExp (cf. Prot. 1 in §4.1)

FL_LN

62.91%

FL_MUL

12.92%

RandFloat

12.41%

FL_LT

11.74%

Others
2.00%

(b)𝑀Snap (cf. Prot. 4 in §4.2)

FL_MUL

44.59%

FL_EXP

29.04%

Bernoulli

11.27% Geometric

8.77%

INT_MUL
2.34%

Others
3.99%

(c)𝑀ISGauss (cf. Prot. 7 in §E)

Figure 2: Runtime breakdown (in percentage %) of the geometric sampling protocol GeometricExp (cf. Prot. 1 in §4.1) with
𝜅1 = 25 and 𝜅2 = 30, the snapping mechanism𝑀Snap (cf. Prot. 4 in §4.2), and the integer-scaling Gaussian mechanism𝑀ISGauss
(cf. Prot. 7 in §E) in LAN10 (10-Gbit/s with 1ms RTT) averaged over 10 protocols runs using Y-sharing among two parties. Others
are operations that take < 2% of the total runtime.

in Y-sharing and reduce the depth of the circuit by 36 − 88% in

B-sharing compared to the naive protocols.

For the discrete Laplacemechanism, our optimized𝑀DLap (cf. §4.1)

requires 191× the number of AND gates compared to the vulner-
able 𝑀DLap in the 2PC setting, but its depth of AND and MUX
gates is 29% less than𝑀DLap [45] with N ≥ 3 parties. In N-PC set-

tings, the circuit depth of the discrete Gaussianmechanism𝑀DGauss
(§4.1) is smaller than the discrete Laplace variants, but our runtime

benchmarks in Tab. 1 show it is still slower than those in practice.

The reason is the parallelized circuit construction, i.e., 𝑀DGauss
(cf. Prot. 3 in §4.1) heavily relies on SIMD to guarantee a negligi-

ble failure probability such that communication time becomes a

dominant factor slowing down the execution. Our optimized𝑀Snap
protocol (cf. Prot. 4 in §4.2) reduces the number of AND gates by

about 48% compared to the vulnerable𝑀Lap [45] in the 2PC setting.

With N ≥ 3 parties, the depth of our optimized𝑀ISLap (cf. Prot. 5

in §4.3) is reduced by 52% compared to the vulnerable 𝑀Lap [45].

For the Gaussian mechanism, our private𝑀ISGauss (cf. Prot. 7 in §E)

requires 547× the number of AND gates compared to the vulnerable

𝑀Gauss [71] in the 2PC setting and its depth is 3.78× larger than

𝑀Gauss [71] with N ≥ 3 parties.

Communication Cost. The communication benchmark results of

our MPC-based DP mechanism protocols are given in Tab. 7.𝑀Snap
is most efficient requiring only about 5.3 MB per query in the 2PC

setting, while𝑀DGauss requires 1.5-2 GB of communication.

J PERFORMANCE OF OUR MPC PROTOCOLS
IN LAN1 ANDWAN10

Tab. 9 and Tab. 10 show the runtime of our secure MPC protocols

(cf. §4) in LAN1 and WAN100 network environments.
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Table 7: Communication costs (MB) and the number of messages per generated noise value averaged over 10 runs of our
MPC-based DP mechanisms using B and Y-sharing among N parties. ✓ are protocols not susceptible to the finite precision
attacks discussed in §3, while ✗ are vulnerable solutions. The best secure results are marked in bold.

N = 2 N = 3

Mechanisms Security Batch Prot. Communication Message Prot. Communication Message

Discrete

𝑀DLap [45] ✗ 1 Y 7.57 99112 B 16.76 263620

𝑀DLap (cf. §4.1, optimized) ✓ 1 Y 492.72 27723 B 728.37 232736

𝑀DGauss (cf. §4.1) ✓ 1 Y 1 085.82 27687 B 858.17 104028

Continuous

𝑀Lap [45] ✗ 1 Y 8.27 124163 B 19.90 346736

𝑀Snap (cf. §4.2, optimized) ✓ 1 Y 5.33 78543 B 13.76 239700
𝑀ISLap (cf. §4.3, optimized) ✓ 1 Y 38.73 33739 B 66.97 265020

𝑀Gauss [71] ✗ 1 Y 10.33 152591 B 26.44 460824

𝑀ISGauss (cf. §E) ✓ 1 Y 1 423.88 176477 B 2 009.53 672020

Table 8: Complexity assessment using circuit size (# AND gates) in Y-sharing and the maximum depth of (longest path of
AND andMUX gates) in B-sharing. ✓ are protocols not susceptible to the finite-precision attacks discussed in §3, while ✗ are
vulnerable solutions. The best secure results are marked in bold.

N = 2 N ≥ 3

Mechanisms Security Batch Prot. No. AND Prot. Depth AND +MUX

Discrete

𝑀DLap [45] ✗ 1 Y 97 651 B 1 920+72

𝑀DLap (cf. §4.1, naive) ✓ 1 Y 40 086 526 B 11 187+55

𝑀DLap (cf. §4.1, optimized) ✓ 1 Y 18 645 246 B 1 321+86

𝑀DGauss (cf. §4.1) ✓ 1 Y 13 628 906 B 642+73

Continuous

𝑀Lap [45] ✗ 1 Y 73 940 B 2 840+135

𝑀Snap (cf. §4.2, naive) ✓ 1 Y 97 871 B 3 126+141

𝑀Snap (cf. §4.2, optimized) ✓ 1 Y 53 276 B 1 993+84

𝑀ISLap (cf. §4.3, naive) ✓ 1 Y 3 057 136 B 12 455+114

𝑀ISLap (cf. §4.3, optimized) ✓ 1 Y 1 404 586 B 1 469+89

𝑀Gauss [71] ✗ 1 Y 102 366 B 2 696+137

𝑀ISGauss (cf. §E) ✓ 1 Y 55 974 725 B 10 633+81
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Table 9: Total runtimes (ms) per generated noise value in LAN1 (1-Gbit/s with 1ms RTT) averaged over 10 protocols runs of our
MPC-based DP mechanisms using B and Y-sharing among N parties. ✓ are protocols not susceptible to the finite-precision
attacks discussed in §3, while ✗ are vulnerable solutions. The best secure results are marked in bold. - denotes memory overflow.

N = 2 N = 3

Mechanisms Security Batch Prot. Offline Online Prot. Offline Online

Discrete

𝑀DLap [45] ✗ 10 Y 196.03 5.44 B 823.13 23.73

𝑀DLap (cf. §4.1, naive) ✓ 10 Y 12 221.81 4.55 B — —

𝑀DLap (cf. §4.1, optimized) ✓ 10 Y 4 707.46 4.81 B 13 474.59 22.33

𝑀DGauss (cf. §4.1) ✓ 5 Y 11 081.80 17.72 B 17 333.22 42.11

Continuous

𝑀Lap [45] ✗ 30 Y 68.19 6.94 B 380.91 22.65

𝑀Snap (cf. §4.2, naive) ✓ 30 Y 75.46 45.90 B 302.88 140.22

𝑀Snap (cf. §4.2, optimized) ✓ 30 Y 56.13 5.63 B 291.73 37.79

𝑀ISLap (cf. §4.3, naive) ✓ 30 Y 1 101.77 50.05 B 11 877.52 157.30

𝑀ISLap (cf. §4.3, optimized) ✓ 30 Y 373.54 5.23 B 1 114.22 34.50

𝑀Gauss [71] ✗ 30 Y 118.08 4.75 B 381.59 16.58

𝑀ISGauss (cf. §E) ✓ 30 Y 14 219.45 6.10 B — —

Table 10: Total runtimes (ms) per generated noise value inWAN100 (100-Mbit/s with 100ms RTT) averaged over 10 protocols runs
of our MPC-based DPmechanisms using B and Y-sharing amongN parties. ✓ are protocols not susceptible to the finite-precision
attacks discussed in §3, while ✗ are vulnerable solutions. The best secure results are marked in bold. - denotes memory overflow.

N = 2 N = 3

Mechanisms Security Batch Prot. Offline Online Prot. Offline Online

Discrete

𝑀DLap [45] ✗ 10 Y 622.97 45.89 B 23 436.08 150.22

𝑀DLap (cf. §4.1, naive) ✓ 10 Y 88 752.83 46.96 B — —

𝑀DLap (cf. §4.1, optimized) ✓ 10 Y 42 352.58 47.99 B 82 289.22 153.15

𝑀DGauss (cf. §4.1) ✓ 5 Y 66 792.65 86.63 B 89 240.04 355.12

Continuous

𝑀Lap [45] ✗ 30 Y 301.17 38.13 B 11 520.13 263.17

𝑀Snap (cf. §4.2, naive) ✓ 30 Y 266.34 127.13 B 7 977.09 4 640.57

𝑀Snap (cf. §4.2, optimized) ✓ 30 Y 241.53 42.89 B 7 656.29 572.26

𝑀ISLap (cf. §4.3, naive) ✓ 30 Y 6 862.04 123.97 B 71 937.68 4 477.84

𝑀ISLap (cf. §4.3, optimized) ✓ 30 Y 3 284.79 41.00 B 10 415.45 427.07

𝑀Gauss [71] ✗ 30 Y 370.97 41.90 B 10 360.31 262.90

𝑀ISGauss (cf. §E) ✓ 30 Y 121 444.31 56.75 B — —
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Table 11: Total/online runtimes in ms for 64-bit integer/floating-
point arithmetic in {Y,B,A}. Results averaged over 10 runs in LAN10
(10 Gbit/s, 1 ms RTT). Runtime of a single integer operation is amor-
tized over 1 000 SIMD values, resp. 100 SIMD values for one floating-
point operation. Best total runtimes are bold.

Total Online

Operations N=2 N=3 N=2 N=3

INT_ADDY 0.13 0.38 0.08 0.08

INT_ADDB
0.41 0.44 0.11 0.10

INT_MULY 0.46 11.63 0.37 0.26

INT_MULB 1.46 2.01 0.13 0.24

INT_DIVY 2.72 14.48 1.21 1.53

INT_DIVB 54.40 70.15 52.89 68.41

UINT_MODY 1.49 13.63 0.05 1.56

UINT_MODB
51.86 64.77 50.50 62.95

INT_LTY 0.11 0.40 0.06 0.08

INT_LTB 0.33 0.35 0.15 0.14

INT_EQY 0.09 0.38 0.06 0.07

INT_EQB
0.30 0.31 0.18 0.18

INT2FLY 0.15 2.75 0.07 0.19

INT2FLB 1.26 1.73 0.27 0.40

FL_ADDY 2.05 15.37 0.41 0.72

FL_ADDB
5.89 6.85 3.31 3.12

FL_ADDA
472.41 571.64 1.77 3.23

FL_MULY 1.75 34.86 0.54 1.49

FL_MULB 6.20 8.30 2.36 2.63

FL_MULA 148.44 181.81 0.56 1.01

FL_DIVY 4.97 67.67 1.46 2.85

FL_DIVB 24.96 33.49 17.07 22.91

FL_DIVA 946.76 1 137.44 0.89 2.16

FL_LTY 0.53 2.59 0.08 0.21

FL_LTB 1.91 1.96 0.75 0.39

FL_LTA 149.23 182.59 0.45 0.50

FL_FLOORY 0.44 2.91 0.14 0.34

FL_FLOORB 1.60 2.35 0.40 0.55

FL_FLOORA 457.41 560.97 4.76 6.77

FL_EXPY 5.70 94.82 2.08 3.40

FL_EXPB 41.49 59.26 31.76 44.38

FL2INTY 0.76 5.78 0.17 0.41

FL2INTB 3.29 4.45 0.95 1.48

FL2INTA 768.53 939.83 2.44 4.58

MulPow2Y 0.43 1.70 0.10 0.08

MulPow2B 2.01 2.34 1.10 1.11

RoundToLambdaY 0.61 3.85 0.16 0.39

RoundToLambdaB 1.78 2.40 0.57 0.92
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