
Not Just Regular Decoding:
Asymptotics and Improvements of

Regular Syndrome Decoding Attacks

Andre Esser 1∗ and Paolo Santini 2

1 Technology Innovation Institute, UAE
andre.esser@tii.ae

2 Marche Polytechnic University, Italy
p.santini@univpm.it

Abstract. Cryptographic constructions often base security on structured problem
variants to enhance efficiency or to enable advanced functionalities. This led to the
introduction of the Regular Syndrome Decoding (RSD) problem, which guarantees
that a solution to the Syndrome Decoding (SD) problem follows a particular block-wise
structure. Despite recent attacks exploiting that structure by Briaud and Øygarden
(Eurocrypt ’23) and Carozza, Couteau and Joux (CCJ, Eurocrypt ’23), many questions
about the impact of the regular structure on the problem hardness remain open.
In this work we initiate a systematic study of the hardness of the RSD problem starting
from its asymptotics. We classify different parameter regimes revealing large regimes
for which RSD instances are solvable in polynomial time and on the other hand regimes
that lead to particularly hard instances. Against previous perceptions, we show that a
classification solely based on the uniqueness of the solution is not sufficient for isolating
the worst case parameters. Further, we provide an in-depth comparison between SD
and RSD in terms of reducibility and computational complexity, identifying regimes
in which RSD instances are actually harder to solve.
We provide the first asymptotic analyses of the algorithms presented by CCJ, estab-
lishing their worst case decoding complexities as 20.141n and 20.135n, respectively. We
then introduce regular-ISD algorithms by showing how to tailor the whole machinery
of advanced Information Set Decoding (ISD) techniques from attacking SD to the
RSD setting. The fastest regular-ISD algorithm improves the worst case decoding
complexity significantly to 20.112n. Eventually, we show that also with respect to
suggested parameters regular-ISD outperforms previous approaches in most cases,
reducing security levels by up to 30 bits.

Keywords: Hardness Classification, Information Set Decoding, Code-Based Cryptography

1 Introduction

The Syndrome Decoding Problem (SDP) is one of the most fundamental problems in coding
theory, and as such finds frequent applications as security foundation in cryptographic
∗ Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –

Project-ID MA 2536/12

https://orcid.org/0000-0001-5806-3600
https://orcid.org/0000-0003-0631-3668

constructions. Given the parity-check matrix H of a linear code, a vector (the syndrome) s
and an integer w the SDP asks to recover a vector e of Hamming weight w satisfying He = s.

In recent years, to enable the design and increase the efficiency of (advanced) cryptographic
constructions based on SDP, such as signatures [CCJ23a,CLY+24], efficient MPC [HOSS18],
Vector Oblivious Linear Evaluation (VOLE) [BCGI18], Pseudorandom Correlation Generators
(PCGs) [BCG+19b,BCG+20] or correlated Oblivious Transfer (OT) [BCG+19a,YWL+20],
often a structured version of the problem is considered, known as Regular Syndrome Decoding
(RSD) problem. Initially introduced in the context of the FSB hash function [AFS05], in this
variant the error vector e is known to be regular, i.e., it consists of w consecutive, equally
sized chunks, each of weight exactly one.

Intuition suggests that the introduction of such regular structure decreases the problem
hardness, but this might not hold universally true. For example, in the related LPN (or
LWE) setting [HKL+12,LPR10], even after years of study, attacks on structured ring-variants
are essentially the same as on their non-structured counterparts. A first attempt at the
translation of concepts used in Information Set Decoding (ISD) attacks against SD to the
regular case was given in the security analysis of [HOSS18]. However, the authors eventually
concluded that those attacks, even if tailored to the RSD setting, obtain about the same
complexity as direct SD attacks. Generally, the security analysis of RSD-based constructions
has predominantly been performed in an ad-hoc manner and supported the assumption that
the most efficient attacks on RSD remain the same as those on SD. A more focused study was
then performed in [LWYY24], which, however, also finds standard ISD attacks to perform
best for most of the suggested parameters.

Recently then, Briaud and Øygarden [BØ23] showed that the regular structure allows to
model the problem as a quadratic system of equations, similar to a modeling used by Arora
and Ge [AG11] in the context of the structured LPN assumption. Briaud and Øygarden
further show that the application of algebraic solvers to the resulting system yields for many
of the parameters found in the literature the best running times. At the same time Carozza,
Couteau and Joux (CCJ) [CCJ23a] designed a new signature scheme exploiting the regular
structure of the RSD solution to obtain reduced signature sizes. In the full version of their
work [CCJ23b] the authors give a first hardness classification of the RSDP in comparison to
the SDP: based on the uniqueness of the solution the authors identify three regimes in which
they find either the SDP or the RSDP to be harder, while in the third regime both problems
seem incomparable. Additionally, the authors present three new algorithms for solving the
RSD problem. The first algorithm is based on a linearization technique initially introduced
by Saarinen [Saa07] for attacking the FSB hash function family. Their second approach relies
on enumerating the searched error vector in a meet-in-the-middle fashion, while the third
algorithm is an extension of the enumeration procedure by a nearest-neighbor procedure.
The authors find that this last extension yields the best running times and, therefore, use
it for parameter selection. Note that in the analysis of this third algorithm an optimistic
runtime assumption for nearest-neighbor search with structured differences is used. Since no
constructive algorithm is known that achieves this running time, this third algorithm, while
resulting in conservative parameters, remains non-constructive.

Those recent works made big steps towards classifying the hardness of RSD by showing
that algorithms can indeed be tailored to exploit the regular structure. However, especially
from a theoretical perspective the effect of the regular structure on the problem hardness
remains largely unclear. Naturally, there arise questions about the equivalence of both

2

problems, which were briefly touched in [CCJ23b], or about the amount of structure that
can be induced until the problem hardness collapses. Further, in terms of computational
hardness, Information Set Decoding algorithms are usually the best strategy to solve the
SDP. However, so far it is not known to which extend those can be tailored to exploit the
regular structure in case of RSD.

Our Contribution In this work we initiate the systematic study of the hardness of the regular
syndrome decoding problem. We start this investigation from a theoretical viewpoint that
allows us to isolate instances for which RSD is hard and for which its hardness collapses. This
first asymptotic treatment then forms the foundation for a more comprehensive comparison
between the hardness of SD and RSD for different parameter regimes. In the second part
of this work we then show that against previous perceptions [HOSS18,CCJ23b] essentially
all advanced techniques from ISD algorithms in the non-regular case, can be tailored to the
RSD setting resulting in new regular-ISD algorithms, outperforming the state-of-the-art in
the asymptotics as well as in concrete numbers.

Towards a rigorous hardness classification. We first present our results on the general
hardness of the RSD problem. In particular, we show that there exist large regimes of
parameters for which RSD instances are solvable in polynomial time. One of these regimes
is a direct consequence of the introduced structure: the known block-wise structure of the
solution gives rise to additional linear equations decreasing the dimension of the underlying
code. Once the dimension is small enough, one can solve for e in polynomial time via basic
linear algebra. Note that this is in direct contrast to the SD problem which, for constant
rates, is known to be exponentially hard for any parameters that yield a unique solution, i.e.,
parameters below the Gilbert-Varshamov (GV) bound.

This motivates the question for which parameters RSD remains hard and, in particular,
for which parameters it reaches the worst case. Carozza et al. [CCJ23b] identified an RSD
uniqueness-bound similar to the GV-bound in the SD case and gave a classification of RSD’s
hardness based on this bound. In this context we show that the uniqueness bound alone
unlike the GV-bound in the SD case, does not allow to classify the hardest instances in
the RSD case. We then study how to isolate worst case instances and are able to identify a
regime of parameters which includes the worst case instances, with respect to the proposed
regular-ISD algorithms.

Furthermore, in our classification we identify large regimes in which RSD instances are
actually harder to solve than SD instances with respect to the best algorithms. This is in
contrast to the intuitive perception that exploiting the regular structure by switching from
SD to RSD instances in cryptographic constructions inevitably leads to a decreased security
level. Moreover, when comparing the complexity of the best algorithms on SD and RSD for
their respective worst case parameters, we find that RSD is harder for all code rates larger
than (about) 1

2 and that RSD instances obtain a far larger absolute complexity. This effect
is illustrated in Fig. 1 in which we compare regular-ISD performance on RSD worst case
instances against ISD performance on SD worst case instances.

Eventually, we show that the complexity of SD and RSD with respect to the best
algorithms converges for small w. More, precisely as soon as w is sublinear in the code length
the complexity for solving both problems differs only by second order terms.

3

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

k/n

tim
e

ex
po

ne
nt

c
in

T
=

2c
n

ISD on SD [BM18]
CCJ on RSD [CCJ23b]
Linearization on RSD [CCJ23b]
regular-ISD on RSD (this work)

Fig. 1: Comparison of running time of best ISD algorithm on SD worst case instances and best
regular-ISD algorithm (Section 4.4) and CCJ’s algorithms on RSD worst case instances.

The regular-ISD approach. The second main contribution of this work is the design of
regular-ISD algorithms. In all algorithms we first encode the regularity into the parity-check
matrix, which essentially results in w additional rows. These linear equations have also been
exploited in the algebraic attack by Briaud and Øygarden [BØ23] and in the enumeration
routine by Carozza, Couteau and Joux [CCJ23b]. However, we show that the particular
structure of these equations requires additional care in the analysis and, actually, prevents
the use of some of those equations within the CCJ enumeration algorithm.

We provide the first asymptotic analysis of the CCJ algorithms which establishes the
asymptotic baseline for improvements on solving the RSD problem on worst case instances
with a complexity of 20.135n (linearization) and 20.141n (enumeration) respectively. We are
then able to drastically improve this initial complexity to 20.112n by tailoring the whole
machinery of ISD techniques to the regular setting. A comparison between the complexity of
the algorithms presented in [CCJ23b] and the regular-ISD approach for all rates is illustrated
in Fig. 1.

ISD algorithms usually apply a permutation to the columns of the parity-check matrix
to obtain a permuted instance HP with solution P−1e and then hope for a specific weight
distribution on P−1e. However, as observed in [CCJ23b] random permutations destroy the
regular structure on the solution and might, hence, prevent further exploitation. We therefore
restrict to a specific set of regular permutations, similar to a technique described in [HOSS18],
which exploits the regular structure to enhance the success probability of obtaining the
desired weight distribution. Moreover, any such regular permutation maintains a certain
regular structure on the permuted solution, which we then exploit in order to improve
the commonly applied enumeration subroutine of ISD procedures. We show that the use
of regular permutations enables to leverage all linear equations encoding the regularity of
the solution, regardless of their specific structure. Eventually, we show how to incorporate
the most advanced concepts of representations [MMT11, BJMM12] and nearest-neighbor
search [MO15,BM18] into regular-ISD procedures.

We also provide a concrete cost analysis of the regular-ISD techniques as well as the
CCJ algorithm and evaluate their complexity on parameter sets provided in the literature.

4

source (n, k, w) previous best regular-ISD

[HOSS18] (1280, 860, 80) 132 114

[LWYY24]

(210, 652, 57) 90 76
(210, 652, 106) 129 113
(212, 1589, 172) 132 109
(214, 3482, 338) 135 118
(216, 7391, 667) 139 126

[CCJ23a] (1842, 825, 307) 183 153

Table 1: Bit security for selected instances considering regular-ISD in comparison to previous best
approaches.

In Table 1 we give the complexity of the different approaches on selected parameter sets.
As can be observed regular-ISD obtains significant bit-security reductions of up-to 30 bits,
showing that most of the depicted sets fall below the targeted security threshold. However,
generally, we find that constructions based on RSD followed a (over-) conservative parameter
selection procedure, such that even considering regular-ISD, most parameter sets still obtain
comfortable margins (of up to 270 bits).

Outline. In Section 2 we cover necessary basics on coding theory, the SD and the RSD
problem. Subsequently, in Section 3 we provide a systematic classification of the hardness of
RSD, in particular in comparison to its non-regular counterpart. In Section 4 we present the
regular-ISD algorithms and provide their asymptotic analysis. At the end of that section
we also give the analysis of the CCJ algorithm and an asymptotic comparison to previous
approaches. Eventually, in Section 5, we present results on the performance of regular-ISD
algorithms on suggested parameters.

Artifacts. We provide all used source code, including proof of concept implementa-
tions of the regular-ISD algorithms, numerical optimizations for asymptotic exponents
as well as implementations of the concrete complexity formulas in the git repository
github.com/Memphisd/Regular-ISD. Additionally, we integrated our concrete estimates
into the CryptographicEstimators library [EVZB23], a project consolidating bit security
estimates for various hard problems.

2 Preliminaries

We denote by F2 the binary finite field. Vectors (resp., matrices) are indicated with bold
lowercase (resp., uppercase) letters. Vectors are viewed interchangeably as rows and columns.
The Hamming weight of a vector x corresponds to the number of its non-null entries and is
denoted |x|. For two vectors x and y, we denote their scalar product as ⟨x; y⟩. For a set of
coordinates I we denote by xI the projection of x on the coordinates indexed by I. For an
integer a we let [a] := {1, . . . , a}. We say an event occurs with high probability p(n) if p(n)
approaches 1 for n → ∞.

5

github.com/Memphisd/Regular-ISD

By a linear code C ⊆ Fn
2 , we refer to a linear subspace of the ambient space Fn

2 . Typical
code parameters are the length n, the dimension k = κn, for κ ∈ [0; 1] being the code
rate, and the co-dimension n − k = (1 − κ)n (also called redundancy). Any linear code
can be compactly represented by a parity-check matrix, that is, a full rank H ∈ F(n−k)×n

2
which serves as a basis for the null space of the code: a vector c ∈ Fn

2 is a codeword if and
only if Hc = 0. Linear codes are invariant under changes of basis, i.e., H and SH, with
S ∈ F(n−k)×(n−k)

2 being non singular, are parity-check matrices for the same code.
We say that a set J ⊆ {1, · · · , n} of size k is an information set for a code C if any

two distinct codewords c, c′ ∈ C are different in at least one of the coordinates indexed by
J . This is equivalent to the columns of H which are not indexed by J forming a full rank
(n − k) × (n − k) matrix.

For any vector e ∈ Fn
2 which is not a codeword, we have He = s ̸= 0. The vector s ∈ Fn−k

2
is called a syndrome. The same syndrome correspond to multiple vectors: for any non-null
c ∈ C , e and e + c have the same syndrome. Decoding a given syndrome into an arbitrary
vector in Fn

2 can be done by basic linear algebra. However, the problem becomes hard if the
vector is required to have low Hamming weight, leading to the Syndrome Decoding Problem
(SDP).

Definition 2.1 (Syndrome Decoding (SD)). Let k, n, w ∈ N such that k, w ≤ n. Given
H ∈ F(n−k)×n

2 and s ∈ Fn−k
2 , find a vector e ∈ Fn

2 of Hamming weight w such that He = s.
We refer to the SDP problem with parameters (n, k, w) as SDP(n, k, w).

Motivated by cryptographic constructions we always assume the existence of at least one
solution. Therefore the amount of existing solutions is derived as the maximum of 1 and the
expected amount of solutions, giving

S = max
(

1,
Number of weight-w vectors

Number of syndromes

)
= max

(
1,

(
n

w

)
2−(n−k)

)
.

The best known solvers for SDP(n, k, w) are ISD algorithms. The first algorithm of this class
is due to Prange [Pra62] and finds a solutions to the SDP(n, k, w) in time

T = Õ

((
n
w

)
S ·
(

n−k
w

)) . (1)

The hardest instances of SDP are those where w is chosen as the maximum value which
still leads to a unique solution. This is the case if w is equal to the Gilbert-Varshamov
(GV) bound, which asymptotically gives w = ωn, where ω = h−1(1 − κ) and h(x) :=
−x log2(x) − (1 − x) log2(1 − x) is the binary entropy function.

Regular Syndrome Decoding. For a vector e ∈ Fn
2 we say it is b-regular of weight w ≤ n

b if it
can be written as e =

(
e1, e2, · · · , e n

b

)
, where each ei has length b and Hamming weight at

most one. Furthermore, we simply call a weight-w vector e regular if b = n
w , i.e., each ei is of

Hamming weight exactly one.
Requiring that the solution to SDP is regular, one obtains the Regular Syndrome Decoding

Problem (RSDP).

6

Definition 2.2 (Regular Syndrome Decoding (RSD)). Let k, n, w ∈ N such that
k, w ≤ n

2 . Given H ∈ F(n−k)×n
2 and s ∈ Fn−k

2 , find a regular vector e ∈ Fn
2 of Hamming

weight w such that He = s. We refer to the RSD problem with parameters (n, k, w) as
RSD(n, k, w).

The constraint w ≤ n
2 is implied by the fact that the solution has to be regular (equivalently,

it must be b ≥ 2 hence w = n
b ≤ n

2).

3 Hardness Classification

In this section we present results on the general hardness of the RSD problem and draw
direct comparison to the SD problem. We start by recalling and formalizing the required
conditions to expect uniqueness of the solution in the RSD case.

3.1 Uniqueness bound

The uniqueness bound for RSD marks, analogous to the GV bound in the SD case, the
transition to instances with multiple solutions. Any set of parameters satisfying this bound
is expected to have at most one solution. The bound reads(n

w

)w

≤ 2n−k,

where the left side specifies the amount of regular vectors of weight w, i.e., the search space
size, while the probability that a random element of the search space satisfies all parity
equations is 2−(n−k), leading to the term on the right.

Note that since k = κn, w = ωn and, hence, n/w = 1/ω, the above bound can be rewritten
as −ω log2(ω) ≤ 1 − κ. Therefore, once κ is known, one can determine the maximum value
of ω for which uniqueness of the RSD solution (statistically) holds.

Observe that −ω log2(ω) reaches its maximum at ω = e−1 with a maximum value of
(e · ln 2)−1 ≈ 0.5307. This implies that for any code rate κ ≤ 1 − (e · ln 2)−1 ≈ 0.4693, the
inequality is satisfied for any value of ω. We summarize this in the following proposition.

Proposition 3.1 (Uniqueness bound for RSD). Let k = κn, w = ωn. We expect a
unique solution to RSD(n, k, w) if

−ω log2(ω) ≤ 1 − κ.

For κ < 1 − (e · ln 2)−1, the inequality is satisfied for any choice of 0 < ω ≤ 0.5.

The fact that for sufficiently small code rate, uniqueness is expected regardless of ω is a
remarkable difference to the GV bound in the SD case. Later we show that, also with respect
to the hardness classification of instances, the RSD uniqueness bound and the GV bound in
the SD case behave differently. Indeed, while the GV bound classifies the hardest instances,
at least with respect to known algorithms, worst RSD parameters do not always match the
uniqueness bound.

7

3.2 Instances Solvable in Polynomial Time

In this section, we identify two large regimes of parameters for which RSD is solvable in
polynomial time. One of those regimes is, analogous to the SD case, related to a large amount
of existing solutions; instead, the other regime is specific to the regular structure of the RSD
problem. Let us start with the RSD specific regime.

Encoding Regularity Note that a solution e to the RSD problem is a concatenation of
w unit vectors of length b := n/w. Therefore, for each i ∈ {1, · · · , w}, we can include the
parity-check equation ⟨hi, e⟩ = 1 where

hi =
(

0, 0, · · · , 0︸ ︷︷ ︸
(i−1)b

, 1, 1, · · · , 1︸ ︷︷ ︸
b

, 0, 0, · · · , 0︸ ︷︷ ︸
(w−i)b

)
.

Considering all these additional equations, we obtain a new parity-check matrix H′ with
n − k + w rows and n columns, structured as

H′ =


H

1 1 · · · 1
1 1 · · · 1

. . .
1 1 · · · 1


b b b

w (2)

Analogously, we update the syndrome as s′ = (s, 1, 1, · · · , 1) ∈ Fn−k+w
2 . This results in

a new RSD instance (H′, s′) where the parity-check matrix H′ corresponds to a code of
smaller dimension k′ = k − w (so, smaller rate κ′ = κ − w/n), while maintaining the same
co-dimension n − k and same solution e, i.e., it still holds that H′e = s′.

This encoding of the regular structure leads to a polynomial regime whenever the new
parity check matrix H′ contains more than n rows.

Theorem 3.1. Whenever w ≥ k, RSD(n, k, w) is solvable in polynomial time with high
probability.

Proof. After encoding the regularity, the RSD solution is a solution to a linear system
containing n − k + w equations and n unknowns, represented by the parity check matrix and
the syndrome (H′, s′). Whenever n − k + w ≥ n, which is equivalent to w ≥ k, the system
contains more equations than unknowns.

Note that for random H′ such a system is solvable in polynomial time with high probability.
Therefore, consider the case of w = k, i.e., H′ being a square matrix. The corresponding
system is solvable in polynomial time whenever H′ has rank at least n − ε with ε = O(log n).
Fulman and Goldstein [FG15, Eq. (1)] have shown that this happens with high probability.

The statement of the theorem follows by observing that for our precise choice of H′ this

probability is even higher. Indeed, we have H′ =
(

H
B

)
, where the w × n matrix B contains

the extra parity-check equations and H is a random (n − k) × n matrix. Note that H′ is not
of full rank if either B or H contain linearly dependent rows or if the space generated by the
rows of H intersects with the space generated by the rows of B. However, for our choice of
H′, unlike the random case, all rows of B are linearly independent by construction. ⊓⊔

8

Remark 3.1 (Full Rank H′). In case when H′ is square, asymptotically, for the considered
case of w = Θ(n), the matrix behaves as a random matrix with respect to invertibility.
Indeed, the additional w parity-check equations are linearly independent, i.e., they generate
a space B of dimension w. So, H′ has full rank whenever the rows of H have full rank n − k
and generate a space which intersects trivially with B. This happens with probability(

2n − 2w

2n

)(
2n − 2w+1

2n

)
· · ·
(

2n − 2w+n−k−1

2n

)
=

n−w∏
i=1

1 − 2−i n→∞−−−−→ 0.2887,

which converges to the same limit as for random H′.

Amount of Solutions Intuitively and similar to the SD case, RSD becomes easy whenever
there are too many solutions. We specify this regime of parameters in the following theorem.

Theorem 3.2. Whenever k
n ≥ 1

2 and w > n − k, RSD(n, k, w) with w | k is solvable in
expected polynomial time.

Proof. Note that the existing amount of solutions to a random RSD instance is S =

max
(

1,
(n

w)w

2n−k

)
, as we assume a guaranteed solution. Further, the later introduced The-

orem 4.1 states the expected running time for solving RSD(n, k, w) with w | k (up to
polynomial factors) as

T =
(
1 − k−w

n

)−w

S
.

Therefore as long as T ≤ 1 which is equivalent to(
1 − k − w

n

)w

≥ 2n−k(
n
w

)w , (3)

RSD is solvable in expected polynomial time. Using w ≥ n − k we lower bound the left hand
side of Eq. (3) as(

1 − k − w

n

)w

≥
(

1 − 2k − n

n

)n−k

=
(

2(1 − k

n
)
)n−k

, (4)

as long as k ≥ w, which follows from k ≥ n
2 (since w ≤ n/2), which is equivalent to k

n ≥ 1
2 as

stated in the theorem. Now using w ≥ n − k, we upper bound the right hand side of Eq. (3)
as

2n−k(
n
w

)w ≤ 2n−k(
n

n−k

)n−k
=
(

2(1 − k

n
)
)n−k

. (5)

Finally, observe that (4)≥(5) , which is trivially fulfilled, implies Eq. (3). ⊓⊔

Remark 3.2 (Rounding Issues). Note that the requirement of w | k stems from the fact
that Theorem 4.1 restricts to this case in order to obtain a simplified runtime formula. In
Section 4.6, we derive the runtime formula for all combinations of (w, k) and show that in
most cases the simplified formula yields a valid upper bound, implying that Theorem 3.2
also holds for those cases.

9

Comparison to the Non-Regular Case In the case of SD instances over F2 it is well
known that those are solvable in polynomial time whenever

n − k

2 ≤ w ≤ n + k

2 .

The corresponding algorithm simply solves the system restricted to the first (n − k) × (n − k)
submatrix of H. This solution has expected weight (n − k)/2. Note that arbitrary columns
from the last k columns of H can be added to the syndrome prior to solving the system in
order to increase the solution weight up to a maximum of (n − k)/2 + k = (n + k)/2.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

multiple

solutions

RSD solvable in polynomial time

Theorem 3.1

Theorem 3.2

w/n

1
−

k
/
n

(a) RSD parameter regimes

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

multip
le

sol
utio

ns

SD solvable in
polynomial time

w/n

(b) SD parameter regimes

Fig. 2: Parameter regimes for RSD and SD, where gray shaded area marks instances solvable in
polynomial time, while colored shaded area marks instances where multiple solutions exist. Dashed
lines depict uniqueness bound and GV bound respectively.

In Fig. 2 we compare the regimes of parameters for which instances are solvable in
polynomial time in the RSD and the SD case. The figure visualizes that Theorem 3.2 relates
to a similar regime as the polynomial instances regime in the SD case, enclosed completely
in the region of parameters that give rise to many solutions. In contrast, Theorem 3.1 relates
to the whole regime of parameters lying in the upper gray shaded triangle. Note that for
all included instances the solution is expected to be unique. This shows that a hardness
classification solely based on the uniqueness of the solution is not sufficient in the RSD case.
Moreover, this raises the question about the worst case parameters in term of weight for
RSD instances.

3.3 Worst Case Instances

In the following we answer the question for the worst case weight of RSD instances. That
is, given a dimension k = κn of a linear code, which w∗ = ω∗n leads to the hardest RSD
instance RSD(n, k, w∗).

From the SD case it is known that the hardest instances are those matching the GV
bound. However, for RSD we know from Proposition 3.1 that not for every choice of κ a
corresponding ω matching the uniqueness bound exists.

10

Worst Case for SD Instances Note that there is no proof that SD instances matching
the GV bound form indeed the worst case. However, there is an intuitive argument, which is
further supported by all known algorithms reaching their worst case running time for those
instances.

As long as the weight stays below the GV bound the solution is unique. Now, for increasing
weight, the search space grows exponentially in n, rendering the problem more difficult. On
the other hand if the weight exceeds the GV bound there exist exponentially many solutions,
which makes the problem easier. Therefore it is assumed that the hardest instances are those
whose weight matches the GV bound.

The Case of RSD In the RSD case the same argument fails, as even if the solution is
unique, increasing ω gives rise to more equations encoding the regularity, which may render
the problem easier.

In fact, we find that the worst case weight for the regular-ISD algorithms presented in
Section 4 grows initially (almost) linear with the dimension as ω∗ ≈ c · κ, with c ≈ 1/2.
This trend continues until c · κ exceeds the uniqueness bound, from where ω∗ is equal to the
uniqueness bound. We visualize the worst case weight ωlow for the most basic regular-ISD
algorithm in Fig. 3.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4
1/e

1− 1
e·ln 2

rate κ

re
la

tiv
e

w
ei

gh
t

ω

Uniqueness bound κ/2 ωlow

Fig. 3: Worst case weight ωlow of most basic regular-ISD algorithm (see Algorithm 1 and Theorem 4.1).
From κ ≥ 0.51 onwards ωlow matches the uniqueness bound.

Algorithm dependence. Moreover, we find that the precise weight that leads to the worst
case depends on the considered algorithm. This behavior is similar to the worst case rate
in the SD case, where the exact rate which maximizes the running time is algorithm
dependent. Usually, it lies around 1/2, but seems to be decreasing for more advanced
procedures. Most recent improvements reach their worst case running time for a rate as low
as κ∗ = 0.42 [BM18,CDMHT22,Ess23].

We observe a similar behavior for regular-ISD algorithms where the worst case weight
seems to approach κ/2 for more advanced procedures in the regime κ ≤ 1/2. The most

11

advanced regular-ISD algorithms almost exactly reach ω∗ = κ/2 in that regime. Note that
the translation of this behavior from the worst case rate in the SD case to the worst case
weight in the RSD case is likely to be explained by the regularity encoding equations. Those
set the rate in direct dependence to the weight as the new dimension after encoding regularity
is k′ = k − w.

Worst case weight. Let UB(κ) denote the weight ω ≤ e−1 matching the RSD uniqueness
bound if such an ω exists. We find that the worst case relative weight ω∗ for RSD instances
for all considered algorithms satisfies

ωlow ≤ ω∗ ≤ min
(κ

2 + ε, UB(κ)
)

,

for a very small constant ε. Remember that for κ ≥ 0.51 it holds that ωlow = UB(κ), implying
ω∗ = UB(κ) (compare to Fig. 3). Generally, considering ε = 0 the right side of the inequality
gives a well approximation of the worst case weight of all studied algorithms. This weight is
also visualized in Fig. 3.

Note that this shows that even for the regime where there exist parameters matching the
uniqueness bound, this bound does not suffice to classify the worst case weight. For example,
for a rate of κ = 0.47, we find that the worst case weight is always smaller than ω∗ ≤ 0.235
which is far from the uniqueness bound which would imply a weight parameter of roughly
0.349.

3.4 Hardness Comparison to the Non-Regular Case

In this section we compare the hardness of RSD and SD for fixed parameters. The goal is to
identify those parameter regimes in which SD instances are strictly harder to solve than RSD
instances and vice versa, if such exist. Whenever possible, we use reductions between the
two problems. However, in some regimes (e.g., when both problems have multiple solutions)
we are not able to strictly separate the two problems. In such regimes, we investigate which
problem is harder with respect to the time complexity of known algorithms; for RSD, we
consider the regular-ISD algorithms presented in the subsequent Section 4.

Classification Based on the Amount of Solutions A first step towards a rigorous
hardness classification of RSD was made recently in [CCJ23b], where the authors identify
three regimes in dependence on the amount of existing solutions. For each regime the authors
argue which problem is harder, identifying one regime in which SD is harder, one in which
RSD is harder and one in which both problems are incomparable. However, a proper definition
of problem A being harder than problem B is missing. For some regimes the authors argue
about the existence of polynomial reductions while for others they argue about possible
algorithmic speedups. In the following we recall those regimes and give a slightly different
categorization.

We compare both problems in those regimes with respect to reducibility as well as the
asymptotic complexity of known algorithms to solve those problems.

12

Unique solutions. This first regime corresponds to parameters which yield a unique solution
to both problems, i.e., to a weight below the GV bound.

Note that RSD always polynomially reduces to SD. This reduction permutes the columns
of the parity-check matrix to obtain a randomly distributed solution, i.e., it calls the SD
solver on input (HP, s) with solution P−1e, where P is a random permutation matrix. On
the other hand, there is no polynomial reduction from SD to RSD known in this regime.

Further, since the RSD problem allows to encode the regularity and, as we show in
Section 4, allows for many other speedups, algorithms that exploit RSD specifics are strictly
faster than those solving plain SD in this regime.

Multiple Solutions. This regime corresponds to parameters which yield multiple solutions
to RSD as well as SD. Precisely, this regime corresponds to weights exceeding the RSD
uniqueness bound and is visualized as the red shaded area in Fig. 2a. Note that in this regime
for any given SD instance there likely exist regular solutions. Therefore one can apply any
RSD solver to the given SD instance finding one of those valid regular solutions. This implies
that SD polynomially reduces to RSD in this regime.

However, this reduction works vice-versa as for any RSD instance there likely exist
non-regular solutions and, further, there still exist a reduction from RSD to SD regardless
of the amount of solutions. Therefore in terms of polynomial reducibility RSD and SD are
equivalent in this regime.

Due to the different amount of solutions to the problems and the effect of the reduction on
those amounts, it is not immediately possible to derive a strict separation on the asymptotic
complexity of algorithms solving both problems in this regime. Nevertheless, we find that
for weights exceeding the uniqueness bound either both problems are solvable in polynomial
time, i.e., they are equally hard, or RSD is indeed harder with respect to the best known
algorithms.

Unique RSD but multiple SD solutions The third regime corresponds to the case where SD
has multiple solutions while the RSD solution is still unique. That means, the weight of those
instances exceeds the GV bound but still lies below the uniqueness bound. In this regime
RSD reduces to SD via the outlined reduction but not vice versa.

In terms of asymptotic complexity of algorithms solving both problems again a strict
separation is not possible. Similar to the regime where both problems have multiple solutions
the effect of those can not be quantified directly. We find that this regime contains parameters
that lead to harder SD instances as well as harder RSD instances with respect to known
algorithms.

Classification Based on Known Algorithms In the following we compare the hardness
of RSD and SD based on the asymptotic complexity of known algorithms.

We illustrate in Fig. 4 the different parameter regions and their corresponding hardness
classification. We mark the region in which RSD is solvable in polynomial time (see Theo-
rems 3.1 and 3.2) as a gray shaded area framed by a solid gray line. The GV bound and
the RSD uniqueness bound are depicted as blue dash-dotted and red dashed lines. The blue
shaded area corresponds to weights below the GV bound, in which SD is strictly harder than
RSD. The area underneath the red dashed line marks the regime of parameters that yield

13

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

SD
strictly
harder

RSD
harder

SD and RSD
polynomial

RSD
polynomial

SD harder

w/n

1
−

k
/
n

GV bound Uniqueness bound

Fig. 4: Hardness comparison between RSD and SD with respect to known algorithms.

multiple solutions to both problems. The purple region corresponds to the area in which also
SD is solvable in polynomial time.

Finally, the green shaded region marks the regime in which we find RSD to be harder
than SD. Here the area extending the purple region to a triangle, separated by the dotted
line, includes parameters for which SD is solvable in polynomial time, while RSD instances
remain exponentially hard. The rest of the green area corresponds to parameters where both
problems are exponentially hard and we find RSD instances to be harder than SD instances
based on known algorithms. For this classification we compare the running time of the basic
ISD algorithm by Prange in the SD case (TPrange, see Eq. (1)) against the running time of
the permutation-based regular-ISD algorithm (TPerm, see Algorithm 1 and Theorem 4.1). In
particular, the green double-dashed line marks the equality

log TPrange = h
(w

n

)
−
(

1 − k

n

)
· h

(
w/n

1 − k/n

)
− max

(
0, h

(w

n

)
−
(

1 − k

n

))
= −w log

(
1 − k

n
+ w

n

)
− max (0, −w log(w) − 1 + k) = log TPerm,

where the first part follows from applying the approximation
(

a
b

)
= Θ̃

(
2ah(b/a)) to TPrange,

where h denotes the binary entropy function. Note that, we also performed this comparison
for the most advanced versions of ISD [BM18] and regular-ISD (Algorithm 3) but the picture
remains almost the same with a slight increase of the green area. This indicates that the
RSD case benefits slightly more from advanced techniques, as an enlarging of the green area
corresponds to instances that are closer to the SD worst case (the GV bound) and further
away from the RSD worst case, which is for most of the parameters in this region the RSD
uniqueness bound.

Note that the white unfilled area between the green and blue area corresponds to
parameters where we find SD to be harder with respect to known algorithms.

Comparison for Worst Case Parameters. Fig. 4 shows that there are regimes in which
RSD is harder than SD if comparing the problems with the same parameterization. However,

14

in cryptographic constructions parameters are usually chosen considering the individual
problem properties. Schemes based on SD would craft parameter sets that are specifically
well suited for SD and analogously for RSD. Therefore we compare in following the hardness
of SD and RSD for their respective worst case instances. Again, this comparison is with
respect to known algorithms, where in Fig. 5 we compare the running time of the fastest ISD
algorithm in the SD case by Both-May against the best regular-ISD algorithm (Algorithm 3).
We observe that for small rates SD instances following worst case parameters are generally

0 0.2 0.4 0.6 0.8 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

k/n

tim
e

ex
po

ne
nt

c
in

T
=

2c
n

SD complexity
RSD complexity

Fig. 5: Comparison of complexity of Both-May algorithm [BM18] on SD instances and regular-ISD
algorithm (Algorithm 3) on RSD instances, where instances match respective worst case parameters.

harder with respect to known algorithms. However, interestingly, for all rates κ ≥ 0.49 RSD
instances following worst case parameters are harder to solve.

Comparison for Small Error Weight What is not captured visually in Fig. 4 is that the
asymptotic runtime exponents of the time complexity to solve the respective SD and RSD
instances converge for w/n → 0, i.e., for TSD = 2cSDn+o(n) and TRSD = 2cRSDn+o(n) we have
cSD/cRSD

w/n→0−−−−−→ 1 . Note that this does not contradict the “SD strictly harder” regime, as
for any constant w/n we find cSD/cRSD > 1. But still, it is an indication that the smaller the
solution weight, the closer both problems become in terms of computational complexity. In
fact, for w constant, any random permutation of the columns of H corresponds to a regular
solution with inverse polynomial probability. In turn this yields a polynomial reduction from
SD to RSD. However, since both problems are solvable in polynomial time if w is a constant
the reduction is not very meaningful.

In the following we show that with respect to ISD and regular-ISD algorithms both
problems are solvable in same asymptotic running time as long as w = o(n) is sublinear in n.
Therefore note that in the SD case for w = o(n), a result by Canto-Torres and Sendrier [TS16]
proves that all known ISD algorithms obtain the same asymptotic running time of

TSD =
(

1 − k

n

)−(w+o(w))
.

15

On the other hand Theorem 4.1 states the running time of the permutation-based
regular-ISD algorithm as

TRSD = Õ

((
1 − k − w

n

)−w
)

.

Let k = κn with constant κ and w = o(n) sublinear, then 3

TSD

TRSD
=
(
1 − k−w

n

)w(
1 − k

n

)w =
(

1 + w

n(1 − κ)

)w

= 2w·
(

w
n(1−κ) ln(2) +o(w

n)
)

= 2o(w), (6)

which shows that both complexities differ only by second order terms.

4 Regular Information Set Decoding

In this section we describe the regular-ISD algorithms that exploit the regular structure of
the RSD solution and provide their asymptotic analysis.

The most advanced algorithms following the regular-ISD approach incorporate most mod-
ern techniques, including permutations, enumeration, representations and nearest-neighbor
search tailored to the regular setting. For didactic reasons we provide an incremental de-
scription embedding one technique at a time, following a similar evolution as the ISD
literature.

The algorithms we describe use internal parameters of which some must be integers.
However, in the initial analysis for the sake of clarity, we ignore all rounding issues by
performing computations with non-integer values if necessary. We show in Section 4.6 that
these rounding issues have asymptotic effects: they cause a slight increase in the running time
in some cases, while for many cases resolving those rounding issues leads to a decrease of the
the asymptotic complexity. In any case, especially with respect to the worst case complexity
exponent, we show that the deviation through these rounding issues is very mild.

4.1 Permutation-Based Regular-ISD

This first algorithm aims to find an error-free information set of the solution e by random
selection or permutation of coordinates.

Error-free information sets. An error-free set for e corresponds to a set J such that eJ = 0.
Knowledge of such a set reveals the error vector e if it is an information set. Therefore,
let PJ ∈ Fn×n

2 describe any permutation matrix that permutes eJ to the back of PJe, i.e.,
PJe = (e1, eJ) ∈ Fn−k

2 × Fk
2 .4 In that case we have

He = (HP−1
J)(PJe) = (HP−1

J)(e1, eJ) = H1e1 + H2eJ = H1e1 = s, (7)

where we write (HP−1
J) = (H1H2) with H1 ∈ F(n−k)×(n−k)

2 and H2 ∈ Fk×(n−k)
2 . Note that

H2eJ = 0 since eJ = 0, as J represents an error-free information set. Now, as long as H1 is
3 From Taylor’s expansion, for x = o(1), we get log2(1 + x) = x

ln(2) +O(x2) = x
ln(2) + o(x). In our

case, since w = o(n), we get w/n = o(1).
4 Recall that J being an information set also implies |J | = k.

16

Algorithm 1: Perm: Permutation-based Regular-ISD
Input : Parity-check matrix H′ ∈ F(n−k)×n

2 , syndrome s′ ∈ Fn−k
2 , weight w

Output : Regular vector e ∈ Fn
2 of weight w, such that He = s

1 Let k′ := k − w , v := k′/w

2 Obtain H ∈ F(n−k′)×n
2 , s ∈ Fn−k′

2 from (H′, s′) by encoding regularity
3 repeat
4 Sample random v-regular permutation matrix P
5

(
H1, H2

)
← HP

6 if H1 is non-singular then
7 e1 ← H−1

1 s
8 if |e1| = w and e1 is regular then
9 return P−1(e1, 0k′

)

invertible we can compute e1 = H−1
1 s and the solution as e = P−1

J (e1, 0k). Note that H1
being invertible is the exact definition of J being an information set, and it happens for
random H with constant probability over the choice of J .

The early ISD algorithm by Prange finds the error-free information set by sampling
random permutations P, computing e′

1 = H−1
1 s and checking if |e′

1| = w, in which case it
outputs the solution P−1(e′

1, 0k), otherwise it starts over with a new permutation.

Regular Permutations. In general, permutations disregard the regular structure of the error
and might lead to a decrease in the probability that H1 is invertible. Therefore, note that
the equations added due to regularity are sparse and any permutation P that permutes all
columns belonging to a single block to H2, i.e., to the back of the matrix, leads to an H1
containing zero rows, making it non-invertible.

In order to circumvent this problem and to take advantage of the regular structure of
the solution, we modify how permutations are sampled. Namely, we ensure that for every
permutation the matrix H2 is formed by selecting v = k′

w = k−w
w columns from each block.

Further, to enable later improvements the v columns taken from each block form again a
consecutive block in H2. More formally, we define a v-regular permutation as follows.

Definition 4.1 (Regular Permutation). Let e = (e1, . . . , ew) ∈ (Fb
2)w. For an integer

v ≤ b and a permutation matrix P let

Pe = (e′
1, . . . , e′

w, e′′
1 , . . . , e′′

w),

with e′
i ∈ Fb−v

2 and e′′
i ∈ Fv

2. We call P a v-regular permutation if each e′
i and each e′′

i are
formed only by coordinates from ei.

The algorithm now samples permutations uniformly from the set of v-regular permutations
until an error-free information set is found. The pseudocode of the overall algorithm is given
in Algorithm 1.

17

Theorem 4.1 (Permutation-based Regular-ISD). Algorithm 1 solves RSD(n, k, w)
with w | k in expected time and memory

T = Õ

((
1 − k−w

n

)−w

S

)
and M = Õ (1) ,

where S is the amount of existing solutions.

Proof. The correctness follows from the previous argumentation on error-free information
sets. Therefore note that as long as v = k′/w < n/w − 1 which is equivalent to k/n ≤ 1 and
v being an integer, which follows from w | k, there always exist v-regular permutations that
yield Pe = (e1, 0k′).

The expected complexity is the time per iteration divided by the success probability
per iteration. First note, that the time spent in each iteration is polynomial, and hence,
subsumed in our use of the Landau notation.

An iteration is successful if the chosen permutation distributes the whole support of e
onto the first n − k′ coordinates of Pe and if H1 is invertible. Note that H1, due to our
restriction to regular permutations has a similar structure as H′ from Eq. (2). Therefore, it
is invertible with constant probability as detailed in Remark 3.1. Further, for b = n/w the
probability of the permutation distributing the weight as desired is

q := Pr
[
Pe = (e1, 0k′

)
]

=
((

b−1
v−1
)(

b
v

))w

=
(

1 − v

b

)w

=
(

1 − k′

n

)w

. (8)

Therefore note that the permutation has to distribute the single non-zero entry per block
to the H1 part, which happens with probability (b−1

v−1)
(b

v)
= 1 − v

b per block, while there are
w blocks. Note that in case of S ≥ 1 existing solutions the probability of the permutation
distributing the weight as desired for at least one of the solutions is about q · S.

Therefore the running time of Algorithm 1 is

T = Õ

((
1 − k−w

n

)−w

S

)
,

since k′ := k − w. All stored objects are matrices of size polynomial in n, therefore the
memory complexity is polynomial, i.e., M = Õ (1). ⊓⊔

4.2 Enumeration-Based Regular-ISD

We now extend Algorithm 1 by a meet-in-the-middle enumeration procedure that further
exploits the regular structure of the error. Therefore we allow for a certain weight p, later to
be optimized, within the coordinates of the information set J , i.e., we search for a set J such
that |eJ | = p.

18

Finiasz-Sendrier modeling We follow a modeling by Finiasz and Sendier [FS09] that increases
the size of the set J to |J | = k + ℓ with ℓ being another optimization parameter. Let PJ

again be a permutation matrix such that PJe = (e1, eJ) ∈ Fn−k−ℓ
2 ×Fk+ℓ

2 , now with |eJ | = p.
Further let Q ∈ F(n−k)×(n−k)

2 be a matrix such that

QHP−1
J =

(
In−k−ℓ H1

0 H2

)
, with H1 ∈ F(n−k−ℓ)×(k+ℓ)

2 and H2 ∈ Fℓ×(k+ℓ)
2 .

This modeling allows to re-write the syndrome equation as

QHe = QHP−1
J PJe = (e1 + H1eJ , H2eJ) = (s1, s2) = Qs, (9)

with s1 ∈ Fn−k−ℓ
2 and s2 ∈ Fℓ

2.
This implies that once such a set J is known the solution can be found by enumerating

all possible values for eJ , i.e., all vectors x ∈ Fk+ℓ
2 of weight p that satisfy H2x = s2. Among

those values there must be one x = eJ for which H1x + s2 = e1. Even if e1 is not known,
this x can be efficiently determined by checking if |H1x + s2| = |e1| = w − p. Eventually the
solution can again be reconstructed as P−1

J (e1, eJ).

Regular Enumeration. For finding a suitable permutation that encodes such a set J we again
use the sampling of regular permutations as in Algorithm 1. Recall, that this ensures that
any permutation P permutes exactly v := (k′ + ℓ)/w columns of each block to a consecutive
block within the last k′ + ℓ columns of HP−1. Note that such permutations P reflect the
regular structure to Pe = (e1, e2) ∈ Fn−k′−ℓ

2 ×Fk′+ℓ
2 in the sense that e2 consists of w blocks

of length v each having either weight 0 or weight 1. Put differently, if P encodes such a set J ,
e2 is v-regular of weight p (see Definition 4.1). Similarly, in that case e1 is (n/w − v)-regular
of weight w − p.

We enumerate possible candidates for eJ in a meet-in-the-middle fashion taking into
account the implied regularity. Therefore we write eJ = (z1, z2), with z1, z2 ∈ F(k′+ℓ)/2

2 ,
allowing to rewrite H2eJ = s2 as

H′
2z1 = H′′

2z2 + s2, (10)

where H2 = (H′
2, H′′

2). We then enumerate all possible zi in lists Li, where we only consider
those of certain regularity. The full procedure is detailed in pseudocode in Algorithm 2.

Analysis of Algorithm 2. The correctness of the algorithm follows again from the previous
argumentation. Therefore observe that once the permutation encodes a set J , z1, z2 from
Eq. (10) form v-regular vectors of length- (k′ + ℓ)/2 and weight p/2, which are exhaustively
enumerated in the lists L1, L2.

The expected running time of the algorithm is, analogous to Algorithm 1, the time spend
in each iteration divided by the success probability per iteration. The time per iteration is
dominated by the construction of the three lists L1, L2 and L. Lists L1 and L2 enumerate all
v-regular vectors z1, z2 of length (k′ +ℓ)/2 and weight p/2, where v := (k′ +ℓ)/w. This implies
that |L1| = |L2| =

(
w/2
p/2
)
vp/2. The list L then contains all pairs of elements (z1, z2) ∈ L1 × L2

that satisfy Eq. (10). This list can be constructed in time linear in the involved list sizes,

19

Algorithm 2: Enum: Enumeration-based Regular-ISD
Parameters : ℓ ≤ n− k + w and p ≤ w
Input : Parity-check matrix H′ ∈ F(n−k)×n

2 , syndrome s′ ∈ Fn−k
2

Output : Regular vector e ∈ Fn
2 of weight w, such that He = s

1 Let k′ := k − w, v := (k′ + ℓ)/w

2 Obtain H ∈ F(n−k′)×n
2 , s ∈ Fn−k′

2 from (H′, s′) by encoding regularity
3 repeat

// Permutation and Gaussian Elimination
4 Sample a random v-regular permutation matrix P

5

(
In−k′−ℓ H1

0 H2

)
← QHP−1 , with H1 ∈ F(n−k′−ℓ)×(k′+ℓ)

2 , H2 ∈ Fℓ×(k′+ℓ)
2

6 (s1, s2)← Qs with s1 ∈ Fn−k′−ℓ
2 and s2 ∈ Fℓ

2

// Enumeration

7 Li ← {zi | zi ∈ F(k′+ℓ)/2
2 is v-regular of weight p/2}, i = 1, 2

8 L ← {(z1, z2) ∈ L1 × L2 | H2(z1, z2) = s2}
9 for e2 ∈ L do

10 e1 ← H1e2 + s1
11 if |e1| = w − p and e1 is regular then
12 return P−1(e1, e2)

leading to a time per iteration of Tit = Õ (max(|L1|, |L2|, |L|). The expected size of L is
E[|L|] = |L1×L2|

2ℓ (see Remark 4.1).
An iteration is successful whenever the permutation distributes the weight on Pe =

(e1, z1, z2) such that both z1 and z2 are of weight p/2. This happens with probability

q = Pr [|z1| = |z2| = p/2] =
(

w/2
p/2

)2 (v

b

)p (
1 − v

b

)w−p

. (11)

Therefore note that the probability of a block of length v in z1, resp. z2, being of weight one
is (b−1

v−1)
(b

v)
= v

b and correspondingly it is of weight zero with probability
(
1 − v

b

)
. Now there

are
(

w/2
p/2
)

ways how the p/2 weight-1 blocks can be distributed among the w/2 blocks of z1
or z2, respectively.

In total this leads to a running time of

T = Tit/q = Õ

max
((

w/2
p/2
)
vp/2,

(
w
p

)
vp/2ℓ

)
(

w
p

) (
v
b

)p (1 − v
b

)w−p

 . (12)

Note that here we use the fact that
(

w/2
p/2
)2

= Θ̃
((

w
p

))
. The memory complexity is M =

Õ (|L1|) = Õ
((

w/2
p/2
)
vp/2

)
, as elements of |L| can be checked on the fly for leading to a

solution.

20

Remark 4.1 (Expected Size of L). Note that for a random matrix H2 the probability of
any vector v = (z1, z2) satisfying H2v = s2 is 2−ℓ. In particular this follows from the fact
that then for each row hi of H2 it holds Pr [⟨hi, v⟩ = (s2)i] = 1

2 . In our particular case, we

know that the matrix
(

H1
H2

)
is not random, but it is spanned by n − k′ − w random vectors

wi as well as all vectors ri = (0(i−1)v, 1v, 0(w−i)v), i = 1, . . . , w, due to the fact that the
parity-check matrix encodes the regularity and we chose v-regular permutations. Now, while
for any v-regular vector v we have Pr [⟨ri, v⟩ = 1] = 1, it still holds

Pr [⟨ri + h, v⟩ = 1 + s] = Pr [⟨h, v⟩ = s] = 1
2

for any random parity equation h, formed as a linear combination of the initial random
vectors wi and s ∈ F2. Therefore, as long as no linear combination r of the ri appears in the
span of H2, it still holds Pr [H2v = s] = 2−ℓ for any vector s ∈ Fℓ

2. Finally, the probability
that at least one linear combination of the ri appears in the span of H2 is

⋃
r∈span{ri}i

Pr [r ∈ span(H2)] ≤ 2w · Pr [r1 ∈ span(H2)] = 2ℓ+w

2n−k′ = 2ℓ

2n−k
,

where Pr [r1 ∈ span(H2)] = (1 − 1/2n−k′)2ℓ = 2ℓ/2n−k′ , is equal to the probability that an
arbitrary vector from the full row span (of size 2n−k′) is contained the row span of H2 (of
size 2ℓ). Observe that as long as ℓ ≪ n − k the probability of finding any linear combination
of the ri in the span of H2 is negligible, implying expected list sizes as for a fully random
parity-check matrix with overwhelming probability.

Experimental Verification. We also provide a proof of concept implementation of Algorithm 2.
Using that implementation, we ran experiments to confirm the validity of the above remark
and, ultimately, the validity of the analysis of the whole algorithm. In all considered experi-
ments, we verified that list sizes match the expectation from the uniform random case on
reduced size instances, as indicated by the above remark. Details on the experiments we ran
can be found in Appendix B. For details on the comprehensive tests and all used parameters
we refer to github.com/Memphisd/Regular-ISD.

4.3 Representation-based Regular-ISD

Contrary to previous assumptions [CCJ23b], we show in this section how the enumeration
procedure can be further improved by the use of a technique known as representations.

Representations. While we assume a certain familiarity of the reader with the representation
technique5, let us briefly recall its main idea in the non-regular case. A vector e ∈ Fn

2
of weight-p satisfying He = s is split in the sum of two vectors x1, x2 ∈ Fn

2 of weight
px := p/2 + εx for a small εx that has to be optimized. Therefore we write e = x1 + x2. Note

5 For an introduction we refer to [HJ10,MMT11].

21

github.com/Memphisd/Regular-ISD

that there are multiple choices for the x1, x2 in that equation, called representations of e.
Precisely, there are

Rx =
(

p

p/2

)(
n − p

εx

)
many such representations. The technique builds on the observation that finding one of
those representations reveals e and, hence, aims at enumerating a 1/Rx-fraction of all
representations. This is achieved by only considering those representations which satisfy

Hx1 = rx and Hx2 = s[ℓx] + rx, (13)

where ℓx := log Rx and rx ∈ Fℓx
2 is chosen arbitrarily. Note that the probability for any

representation satisfying Eq. (13) is Pr [Hx1 = rx] = 2−ℓx , as Hx1 = rx together with
He = s implies the second part of the equation.

While the values for x1 and x2 could now, as in the previous section, be enumerated in
a meet-in-the-middle fashion based on the identities from Eq. (13), the technique becomes
most effective if applied recursively. Therefore, the xi are split again into the sum of vectors
yj . More precisely, we write x1 = y1 + y2 and x2 = y3 + y4, where the yi ∈ Fn

2 are of
weight py = px/2 + εy for a εy that has to be optimized. Again each such x1 and x2 have
Ry =

(
px

px/2
)(

n−px
εy

)
representations as (y1, y2) and (y3, y4) respectively. Therefore again

constraints on the exact form of the matrix-vector product Hyi are introduced to only
enumerate a 1/Ry fraction of those representations, still ensuring all xi are constructed.
Precisely, letting ℓy := log Ry and ry ∈ Fℓy

2 the algorithm enforces

Hy1 = ry and Hy2 = (rx)[ℓy] + ry , as well as (14)
Hy3 = ry and Hy4 = (s + rx)[ℓy] + ry. (15)

Analogously to the first application of the technique, for any representation (y1, y2) Eq. (14)
is satisfied with probability 2−ℓy giving the desired fraction of representations, as the second
part of each equation is implied by the first part in conjunction with Eq. (13). Analogously,
the same holds for a representation (y3, y4) and Eq. (15).

Regular Representations. The representation enhanced algorithm for the regular case follows
a similar initial construction as Algorithm 2. As such, it uses the same modeling by Finiasz-
Sendrier and samples the same kind of regular permutations. The adaptation lies in the
enumeration procedure, i.e., the way we enumerate eJ . Recall that eJ is a v-regular vector of
length k′ + ℓ and weight p, with v := (k′ + ℓ)/w, satisfying the identity HeJ = s2. In order
to embed representations into the regular enumeration we split eJ = x1 + x2 in the sum of
two v-regular vectors of same length k′ + ℓ but weight px = p/2 + εx. Therefore we maintain
the regular structure in the addends xi, which reduces the search space for the enumeration,
while still obtaining multiple representations. Note that the number of representations in
such a modeling becomes

Rx =
(

p

p/2

)(
w − p

εx

)
· vεx . (16)

As in the non-regular case the first binomial coefficient counts the possibilities how the p
weight-1 blocks can be distributed equally over the addends x1 and x2. The second coefficient

22

counts the possibilities to position the remaining εx non-zero blocks in which the weight
cancels. Note that each canceling block offers v possibilities to place its weight, which leads to
the final factor. We apply the technique recursively, splitting x1 = y1 + y2 and x2 = y3 + y4,
where we let yi be v-regular vectors of length k′ + ℓ and weight py = px/2 + εy. The vectors
yi are then enumerated in a meet-in-the-middle fashion based on the identities from Eqs. (14)
and (15). A pseudocode description of the full procedure is given in Algorithm 3.

Algorithm 3: Rep: Representation-based Regular-ISD
Parameters : ℓ ≤ n− k + w, p ≤ w, εx ≤ k − w + ℓ− p and εy ≤ k − w + ℓ− p/2− εx

Input : Parity-check matrix H′ ∈ F(n−k)×n
2 , syndrome s′ ∈ Fn−k

2
Output : Regular vector e ∈ Fn

2 of weight w, such that He = s

1 Let k′ := k − w, v := (k′ + ℓ)/w, px := p/2 + εx and py := px/2 + εy
2 Let ℓx = log Rx and ℓy = log Ry for Rx, Ry as in Eqs. (16) and (17)
3 Obtain H ∈ F(n−k′)×n

2 , s ∈ Fn−k′

2 from (H′, s′) by encoding regularity
4 repeat

// Permutation and Gaussian Elimination
5 Sample a regular permutation matrix P ∈ Rv

6

(
In−k′−ℓ H1

0 H2

)
← QHP−1 , with H1 ∈ F(n−k′−ℓ)×(k′+ℓ)

2 , H2 ∈ Fℓ×(k′+ℓ)
2

7 (s1, s2)← Qs with s1 ∈ Fn−k−ℓ
2 and s2 ∈ Fℓ

2

// Enumeration

8 Sample rx ∈ Fℓx
2 ,ry ∈ Fℓy

2

9 Li ← {zi | zi ∈ F(k′+ℓ)/2
2 is v-regular of weight py/2}, i = 1, . . . , 8

10 Let ry1 = ry3 := ry, ry2 = (rx)[ℓy] + ry and ry4 = (s2 + rx)[ℓy] + ry

11 Lyi ← {(z2i−1, z2i) ∈ L2i−1 × L2i | H2(z2i−1, z2i) = ryi}, i = 1, 2, 3, 4

12 Let rx1 := rx and rx2 = (s2)[ℓx] + rx

13 Lxi ←
{

y2i−1 + y2i | yj ∈ Lyj ∧H2(y2i−1 + z2i) = ryi

}
, i = 1, 2

14 LeJ ←
{

x1 + x2 | xj ∈ Lxj ∧H2(x1 + x2) = s2
}

15 for eJ ∈ L do
16 e1 ← H1eJ + s1
17 if |e1| = w − p and e1 is regular then
18 return P−1(e1, eJ)

Analysis of Algorithm 3. The correctness of the procedure follows from the correctness
of Algorithm 2 and the argumentation above. Therefore observe that for the enumeration
procedure we enforce the necessary constraints rx, ry of correct length ℓx := log Rx, ℓy :=

23

log Ry, where

Ry =
(

px

px/2

)(
w − px

εy

)
· vεy , (17)

analogous to Eq. (16). Hence, the enumeration recovers all candidates for eJ in the final lists,
i.e., all v-regular vectors of weight p satisfying HeJ = s2, implying that eJ is found once a
correct permutation is encountered.

The running time is the number of iterations divided by the success probability of each
iteration. An iteration is successful if the permutation distributes the weight as desired, which
we already saw happens with probability q (see Eq. (11)).

The cost per iteration is dominated by the enumeration procedure, that is the construction
of the lists. In the initial lists Li, i = 1, . . . , 8 all v-regular vectors of length (k′ + ℓ)/2 and
weight py/2 are enumerated. Therefore those lists are of size |Li| =

(
w/2
py/2

)
vpy/2. The lists Lyj

are constructed from pairs from lists L2j−1, L2j by enforcing a constraint on ℓy coordinates
and is therefore of expected size |Lyj | = |Li|2/2ℓy . The construction of this list is linear in
the size of the Li and the list Lyj itself, hence it can be performed in time

Ty = Õ (max(|Li|, |Lyi |)) .

Lists Lxj
are similarly constructed from pairs of the lists Ly2j−1 , Ly2j

by enforcing a constraint
on ℓx coordinates. However, note that since every such pair satisfies Eq. (14) (resp. Eq. (15))
it already satisfies the first (resp. second) part of Eq. (13) on ℓy coordinates. Hence only a
new constraint on ℓx − ℓy coordinates is introduced. The construction of list Lxj therefore
comes at a cost of

Tx = Õ
(
max(|Lyi

|, |Lyi
|2/2ℓx−ℓy)

)
.

Observe that not all the |Lyi |2/2ℓx−ℓy constructed elements satisfying the corresponding
part of Eq. (13), have the correct number of non-zero blocks px. This happens in the case
when not exactly εx blocks cancel in the addition of elements from the lists Ly2j−1 , Ly2j

. We
then discard elements that do not form v-regular vectors of weight px. Due to the choice of
constraint-sizes, which ensures that each v regular vector of weight px satisfying Eq. (13) is
constructed, after discarding ill-formed elements the lists Lxj are of size |Lxj | =

(
w
px

)
vpx/2ℓx

Eventually, the final list LeJ
can analogously to list Lxj be constructed in time

TeJ
= Õ

(
max(|Lxj

|, |Lxj
|2/2ℓ−ℓx

)
.

Therefore note that any sum e′
J of elements from lists Lx1 , Lx2 already satisfies the equation

H2e′
J = s2 on ℓx out of ℓ coordinates (compare to Eq. (13)).

The time complexity of the full algorithm is therefore given by
T = Õ

(
q−1 · max(Ty, Tx, TeJ

)
)

= Õ

max
((

w/2
py/2

)
vpy/2,

(
w
py

)
vp

y/2ℓy ,
(

w
py

)2
v2py/2ℓx+ℓy ,

(
w
px

)2
v2px/2ℓ+ℓx

)
(

w
p

) (
v
b

)p (1 − v
b

)w−p

 ,

while the memory complexity is equal to the sizes of Li, Ly, Lx, i.e., M =
Õ (max(|Li|, |Ly|, |Lx|)).

Since for ISD algorithms in the SD context the optimal recursion depth of the repre-
sentation technique differs, we also computed the complexity increasing the depth by one.
However, this variant did not allow to obtain further improvements.

24

4.4 Nearest-Neighbor-Based Regular-ISD

Finally, we achieve a further improvement over Algorithm 3 by leveraging nearest-neighbor
search techniques similar to [MO15].

Nearest-Neighbor-based ISD. Therefore note, that so far Algorithm 3 exploits only the
relation H2eJ = s2 to find the solution, i.e., the second part of Eq. (9). May and Ozerov
observed, that the first part of this equation, namely H1eJ + e1 = s1, can be interpreted as a
nearest-neighbor identity and in turn be exploited in the candidate search for eJ . Therefore
note that if eJ = x1 + x2, then the equation can be rewritten as

H1x1 = H1x2 + s1 + e1.

In other words H1x1 is equal to H1x2 + s1 up to the addition of e1. Now, since e1 is known
to have low Hamming weight those values are actually close.

Therefore, once two lists Lx1 , Lx2 with candidates for x1, x2 are constructed one can
apply a nearest neighbor search to find those elements x′

1, x′
2 for which it holds that H1x′

1 ≈
H1x′

2 + s1.

Integrating Nearest-Neighbor search into Algorithm 3. We embed the nearest-neighbor search
in the same way. Therefore we exchange line 14 in Algorithm 3 with an application of a
nearest neighbor search routine that computes LeJ

as

LeJ
= {x1 + x2 : xi ∈ Lxi

∧ |H1(x1 + x2) + s2| = w − p}.

Note that we do not require the identity H2eJ = s2 in the construction of LeJ
anymore.

Therefore, we set ℓ = ℓx, which ensures that the identity is already satisfied on all coordinates
for any sum of elements from Lx1 , Lx2 . The only change in the complexity of the adapted
algorithm in comparison to Algorithm 3 is with regards to the time to construct LeJ

, which
now becomes

TeJ
= Õ

(
max(|Lxj |, N (|Lx1 |, n − k − ℓ, w − p))

)
.

Here N (|Lx1 |, n − k′ − ℓ, w − p) describes the complexity of the nearest neighbor routine
by May-Ozerov [MO15, Theorem 1] (or see [EKZ21, Theorem 1] for a generalization). In
our case this routine finds all pairs of elements from the two lists of size |Lx1 | containing
length-(n − k′ − ℓ) vectors that sum to weight-(w − p) vectors.

Remark 4.2 (Regular Nearest-Neighbor Search). We note that the difference between H1x1
and H1x2 + s1 is e1, i.e., a (n − k′ − ℓ)/w-regular vector of weight w − p. So far we do not
exploit this structure in the nearest neighbor search. Internally, the May-Ozerov nearest
neighbor search already applies a permutation to both lists that ensures a certain regular
distribution of the difference. More precisely, the algorithm ensures that the difference e1 is
formed by blocks of length v of same weight, where the precise choice of v depends on the
analysis, but a common choice is log2(k′ + ℓ). Note that enforcing such a distribution comes
at a subexponential runtime overhead subsumed in the asymptotic notation (since lists are of
exponential size). How to further exploit the regular structure when v is constant to obtain
an asymptotic speedup is non-obvious. However, the second order terms in the complexity
of the May-Ozerov algorithm can certainly be reduced if the difference is guaranteed to be
regular.

25

4.5 Asymptotic Complexity Comparison

In this section we compare the theoretical runtime exponent of the different improvements
against the state-of-the-art. Therefore note, that the asymptotic complexity of all presented
algorithms can be expressed as 2c(κ,ω)n, where c is a constant depending on the constant
rate κ and the constant relative weight ω, where k = κn and w = ωn.

Obtaining the runtime exponent. We obtain the constant c by a standard procedure in
the context of ISD algorithms. That is by straightforward application of the well-known
approximation

(
a
b

)
= Θ̃

(
2ah(b/a)), to the previously stated runtime formulas, where h denotes

the binary entropy function. Technically, the function c also depends on the optimization
parameters, such as ℓ and p in the case of Algorithm 2. We then model those parameters to
be linear in n, i.e. ℓ = cℓn and p = cpn, where cℓ, cp are constants. For given κ, ω, we then
numerically minimize c(κ, ω) by the choice of cℓ, cp. The values of all optimal parameters
for considered parameters as well as a a python script performing the necessary numerical
optimization for arbitrary inputs is available at github.com/Memphisd/Regular-ISD.

State-of-the-art. Recently, Briaud and Øygarden [BØ23] presented an algorithm modeling
the RSD problem as a multivariate-system. Their algorithm is shown to outperform other
approaches for many parameters in the low rate, low weight regime. At the same time Carozza,
Couteau and Joux [CCJ23b] presented an algorithm that is based on an enumeration approach,
as well as an algorithm using a linearization technique introduced by Saarinen [Saa07] to
attack the FSB hash function. In the following, we briefly recall the enumeration as well as
linearization algorithms and establish their asymptotic complexities.

Asymptotic of the Linearization Algorithm Instead of exploiting the regularity of the
solution in form of adding extra equations, i.e. by encoding the regularity, the linearization
technique leverages the structure differently. The chosen preprocessing reduces the number of
columns of the parity-check matrix as well as the weight of the solution, while still ensuring
that the solution to the reduced instance directly reveals the original solution.

Therefore, the first column from each of the w blocks of the parity-check matrix H is
added to all columns within the corresponding block, as well as to the syndrome s. This
results in an altered instance (H′, s′) for which it still holds that H′e = s′, where e is the
original solution, satisfying He = s. This is because each block contains exactly one non-zero
entry. Further note that the first column of each block of H′ is now zero, and can therefore be
discarded, resulting in a matrix H̃ ∈ F(n−k)×(n−w)

2 . It then holds H̃e′ = s′, where e′ ∈ Fn−w
2

is constructed from e by deleting the first coordinate of every block.
The solution e′ to the resulting instance (H̃, s′) is not exactly regular anymore, but any

block of length n/w − 1 of e′ is known to have weight at most 1, as the deletion might have
lowered the weight. After this preprocessing step, the algorithm essentially samples (k/w −1)-
regular permutations P with the goal to sample a permutation such that Pe′ = (e1, 0k−w).
Once such a permutation is found, the error can be recovered by linear algebra (compare
to Eq. (7)). The Linearization algorithm can therefore be seen as a version of Perm
(Algorithm 1), with a different preprocessing step. The complexity of the algorithm was

26

github.com/Memphisd/Regular-ISD

already derived in [CCJ23b] as

Õ

(((
n/w − 1

n/w − 1 − n−k
w

)/(n/w − 2
n/w − 1 − n−k

w

))w(1−w/n)
)

,

which using
(

a
b

)
/
(

a−1
b

)
= a

a−b can be rewritten as

TLinearization = Õ

((
n − w

n − k

)w(1−w/n)
)

Asymptotic of the Carozza-Couteau-Joux Algorithm The CCJ algorithm follows
a pure enumeration strategy. Therefore, the algorithm relies on a similar technique as the
Finiasz-Sendier modeling. The solution e = (e1, e2) ∈ Fn−k−ℓ

2 ×Fk+ℓ
2 is split in two parts, for

some optimization parameter ℓ. Analogously to Eq. (9) prior to the enumeration a change of
basis Q ∈ Fn−k×n−k

2 is applied that allows to rewrite the syndrome equation as

QHe =
(

In−k−ℓ H1
0 H2

)
(e1, e2) = (H1e2 + e1, H2e2) = (s1, s2) =: Qs. (18)

The algorithm then enumerates all candidates x for e2 exploiting its regularity. Among those
candidates it recovers the one x = e2 that satisfies |H1x + s1| = |e1| = w(1 − k+ℓ

n).
For the enumeration the algorithm uses a meet-in-the-middle strategy, enumerating

n/w-regular vectors e′
2, e′′

2 of length (k + ℓ)/2, where e2 = (e′
2, e′′

2). Therefore the enumerated
lists are of size L = b

k+ℓ
2b =

(
n
w

)w(k+ℓ)
2n . Similar to the Finiasz-Sendrier modeling the algorithm

then finds all pairs between the lists that satisfy

H2(e′
2, 0) = H2(0, e′′

2) + s2.

On expectation there are L2/2ℓ pairs satisfying the above identity, leading to a running time
of

TCCJ = Õ
(
max

(
L, L2/2ℓ

))
= Õ

(
max

((n

w

)w(k+ℓ)
2n

,
(n

w

)w(k+ℓ)
2n

/2ℓ

))
, (19)

while the memory complexity is linear in the list size, i.e., MCCJ = Õ (L) = Õ
((

n
w

)w
(k+ℓ)

2n

)
.

Improvement by adding regularity encoding equations. The authors of [CCJ23b] suggest to
add the regularity encoding equations prior to the modeling from Eq. (18). By doing this,
the new parity-check matrix would have n − k + w = n − k′ rows and the list size would get

reduced to L =
(

n
w

)w(k′+ℓ)
2n =

(
n
w

)w(k−w+ℓ)
2n . However, we note that adding equations that have

support only on their last k+ℓ coordinates does not improve the enumeration procedure. This
is because the enumeration on those coordinates is already restricted to regular vectors which
satisfy those equations by construction. Put differently, the expected number of collisions
would be greater than L2/2ℓ; we prove this fact in the following proposition.

27

Proposition 4.1. Assume the parity check matrix prior to the transformation in Eq. (18)

is extended by the w regularity encoding equations. Further let e′
2, e′′

2 ∈ F
k′+ℓ

2
2 be n/w-regular

vectors. Then, the probability of any such pair (e′
2, e′′

2) satisfying

H2(e′
2, 0) = H2(0, e′′

2) + s2

is 1/2ℓ−u, where u := k−w+ℓ
w .

Proof. We denote by H′ the matrix obtained by appending to H the regularity encoding
parity-check equations ri =

(
0(i−1)b, 1b, 0(w−i)b

)
, with i ∈ {1, · · · , w} and let s′ = (s, 1w)

be the syndrome after that encoding. The CCJ algorithm applies a change of basis Q ∈
F(n−k′)×(n−k′)

2 such that

QH′ =
(

In−k′−ℓ H1
0 H2

)
.

We now observe that, for each ri having support only in {n − k′ − ℓ + 1, · · · , n}, it holds
that ri ∈ Span

(
(0, H2)

)
. Therefore observe that linear combinations of the rows of QH′ can

be expressed as

(x1, x2)
(

In−k′−ℓ H1
0 H2

)
= (x1, x1H1 + x2H2).

Whenever x1 is not null, we obtain a vector that has at least one non-null entry among
the first n − k′ − ℓ positions. However, since the considered equations ri have no support
in {1, · · · , n − k′ − ℓ}, they can only be obtained if x1 is all-zero and, consequently, they
are linear combinations of the rows of (0, H2). This implies that the regularity encoding
equations ri indexed by i = w − u + 1, . . . , w, with u = k′+ℓ

w = k+ℓ
w − 1 live in the span of

(0, H2) .
For convenience, we ignore the initial zero columns in the following and let r′

i for
i = w − u + 1, . . . , w be ri restricted to its last k′ + ℓ entries. Since r′

i ∈ Span(H2), there
exist an invertible Q′ such that

Q′H2 =
(

H′
2

R

)
,

where R ∈ Fu×k′+ℓ
2 contains the r′

i as rows and H′
2 ∈ Fℓ−u×k′+ℓ

2 . Correspondingly, it holds
Q′s2 = (s′

2, 1u), as the syndrome entries added for regular equations are all one.
Now, we have for any pair of regular vectors e′

2, e′′
2

H2(e′
2, 0) = H2(0, e′′

2) + s2 ⇔ Q′H2(e′
2, e′′

2) = Q′s2 ⇔
(

H′
2

R

)
(e′

2, e′′
2) = (s′

2, 1u).

Observe that any regular vector e = (e′
2, e′′

2) satisfies Re = 1u by construction. Hence we
have

Pr
[(

H′
2

R

)
(e′

2, e′′
2) = (s′

2, 1u)
]

= Pr [H′
2(e′

2, e′′
2) = s′

2] = 2−(ℓ−u).

⊓⊔

28

Algorithm κ ω cT (κ, ω) cM (κ, ω) c∗
T

CCJ 0.57 0.1659 0.1404 0.1404 0.1404
Linearization 0.61 0.1350 0.1342 0.0000 –
CCJ-MO 0.58 0.1575 0.1281 0.1054 0.1281

Perm 0.60 0.1421 0.1256 0.0000 0.1268
Enum 0.60 0.1421 0.1225 0.0287 0.1237
Rep 0.59 0.1496 0.1130 0.0714 0.1134
Rep-MO 0.57 0.1659 0.1117 0.0852 0.1119

Table 2: Maximum runtime and corresponding memory exponents for different RSD algorithms.
Runtime resp. memory are of the form 2cT (κ,ω)n and and 2cM (κ,ω)n. Maximum time is obtained for
stated κ and ω. Maximum time exponent after resolving rounding issues is given as c∗

T

Note that the proof of the above proposition shows that the expected list size deviates
from the random case as soon as regularity encoding parity-check equations are added whose
support entirely lies in the last k′ + ℓ coordinates. To avoid any such deviations, we need to
ensure that

n − (k + ℓ − i) ≤ i · b = i · n

w
⇔ i ≤ n − k

n/w − 1 =
(

1 − w

n

)−1
(

1 − k + ℓ

n

)
w,

where i is the number of regularity encoding equations added to the parity check matrix. This
inequality is equivalent to all added vectors having support only on their first n − k − ℓ + i
coordinates, i.e., the part which is not enumerated. The updated parity check matrix therefore
corresponds to a code with dimension k̃ = k −

(
1 − w

n

)−1 (1 − k+ℓ
n

)
w. The runtime formula

after encoding regularity for the CCJ algoirthm is then given by TCCJ form Eq. (19) by
substituting k by k̃.

Improvement by Nearest-Neighbors. Carozza, Couteau and Joux further applied the idea
of nearest neighbor search in the spirit of [MO15]. In particular, this corresponds to the
choice of ℓ = 0 while using only the nearest neighbor identity H1e2 = e1 + s from the
modeling in Eq. (18) for the subsequent matching of lists. In the parameter selection of their
signature scheme they assume this regular nearest-neighbor search can be performed at no
cost. While this leads to conservative parameters it does not yield a constructive algorithm.
In the following we use the May-Ozerov nearest-neighbor search to perform this matching.
Even though we do not exploit the regular structure, we obtain improvements over the pure
enumeration variant. Note that the equations that can be added in this case are k − k̃ as
before, now with the choice ℓ = 0. Further, the nearest-neighbor search comes at a cost of
N := N

(
L, n − k̃,

(
1 − k̃

n

)
w
)

(compare to Section 4.4), which results in a runtime of

TNN = Õ (max (L, N)) . (20)

Asymptotic Comparison In the following we compare the worst case decoding complexity
of the different regular-ISD algorithms from Sections 4.1 to 4.4 against the state-of-the-art.
The worst case complexity corresponds to the runtime exponent maximized over all rates

29

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

rate κ = k/n

tim
e

ex
po

ne
nt

c
in

T
=

2c
n

Perm Enum
Rep Rep-MO

(a) Comparison of regular-ISD from Section 4.

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

rate κ = k/n

CCJ CCJ-MO
Linearization Rep-MO

(b) Comparison against other algorithms.

Fig. 6: Comparison of worst case time complexity exponents for RSD algorithms via approximate
complexity exponents.

for the respective worst case weight ω∗, i.e., maxκ c(κ, ω∗). In the comparison we refer to
the regular-ISD algorithms as Perm (Section 4.1), Enum (Section 4.2), Rep (Section 4.3)
and Rep-MO (Section 4.4), where Rep-MO is the nearest neighbor enhanced variant of
Rep. Further we denote the linearization algorithm by Linearization, while by CCJ we
refer to the Carozza-Couteau-Joux enumeration algorithm [CCJ23b] and by CCJ-MO to the
nearest-neighbor enhanced variant of CCJ instantiated via the May-Ozerov nearest-neighbor
search routine. In Table 2 we compare the obtained worst case time complexity exponents
(and the corresponding memory) for the different algorithms.

We find that CCJ-MO improves on CCJ as well as Linearization in terms of time
complexity. Interestingly, we find that Linearization outperforms plain CCJ, contrary
to the findings in [CCJ23b]. This is related to the fact that CCJ is not able to make use
of all regularity encoding equations (see Proposition 4.1). Overall, we find that regular-
ISD algorithms obtain the best time complexities. Notably, Perm offers a polynomial
memory instantiation while outperforming all non-regular-ISD approaches. Among regular-
ISD approaches we observe a similar behavior as for ISD algorithms in the SD case, where
advanced algorithms obtain the time improvements by spending higher amounts of memory.
However, even the fastest regular-ISD instantiation uses much less memory than the CCJ-style
algorithms.

As indicated in the beginning of Section 4 the analysis of regular-ISD algorithms (as well
as Linearization) neglected rounding issues till now. However, we show in the next section,
how to resolve these rounding issues for the new algorithms, leading to a slight increase in the
worst case decoding exponent. This updated exponent accounting for rounding deviations is
illustrated in Table 2 as c∗

T . Note that CCJ-style algorithms do not suffer any rounding issues,
and therefore it holds c∗

T = cT (κ, ω). Observe that the deviation of the worst case exponent
due to rounding issues for all regular-ISD algorithms lies below 0.98% with a minimum of
0.19% in the case of Rep-MO (more details are given in the following Section 4.6).

In Fig. 6 we compare the time complexity exponent for all possible choices of the rate
(for the respective worst case weight). On the left we compare the regular-ISD algorithms.

30

Interestingly for rates 0.45 ≤ κ ≤ 0.55 Rep outperforms Rep-MO. Since this is in contrast
to similar nearest-neighbor search improvements in the SD case, it is a strong indication
that the used nearest-neighbor routine is suboptimal for the regular case. We pose it as a
further research direction to investigate advanced procedures when the distance is known to
be regular.

On the right, i.e. in Fig. 6b, we compare the CCJ-style algorithms as well as Linearization
against Rep-MO.

4.6 The Asymptotic Effect of Rounding Issues

In the previous sections, for the sake of clarity we ignored all rounding issues. Precisely, we
performed computations with a block size of b = n/w and we assumed that the (information)
set J is formed by the same amount of v = |J|

w coordinates from each block. However, since
|J | and w are linear in n and, hence, b and v are constant, this actually requires n

w and |J|
w

to be integers.
As both constants are raised to a power linear in n, compare e.g. to Eq. (8), the rounding

might affect the asymptotics. In the following we classify the asymptotic effect of rounding
issues by tweaking the analysis to work entirely with integer values. We show that this tweak
in many cases leads to a decrease in the asymptotic runtime exponent, which does not affect
the validity of the upper bounds derived in the previous sections. While on the other hand
increases of the exponents are rather mild, and getting even smaller for more advanced
procedures, with Rep-MO obtaining a maximum increase by 0.79%.

Obtaining integer block size. First, for given integers k = κn and corresponding worst
case weight w∗ = ω∗n we obtain a valid RSD(ñ, k̃, w∗) instance with integer block size and
unique solution by letting

b =
⌈

1
ω

⌉
, ñ = w∗ · b and k̃ = ⌈κ · ñ⌋. (21)

The new instance obtains rate k̃ very close to κ but has a slightly lower relative weight
w∗

n′ ≤ ω∗, yielding a unique solution with high probability. Overall, we expect this to decrease
the obtained complexity exponent slightly as the relative weight does not match the worst
case anymore.

Remark 4.3 (Worst Case Weight). We find that resolving rounding issues in some cases
leads to a slightly shift of the worst case weight in comparison to the value determined in the
previous sections. Namely, using the adaptation from Eq. (21) with b = 1

/ (⌈ 1
ω

⌉
± 1
)

leads
in some cases to a worse complexity. We therefore maximized the complexity exponents in
our comparison over those choices.

Sampling the information set. In case w does not divide k, v = k′

w = k
w − 1 is not

an integer and, hence, the information set J cannot be formed by the same amount of
coordinates from all blocks. In such cases, we select

⌊
k′

w

⌋
coordinates from some blocks, while

31

⌈
k′

w

⌉
from others. Consequently the success probability of sampling an error-free information

set J changes.
Let wf and wc denote the number of blocks from which we select

⌊
k′

w

⌋
and

⌈
k′

w

⌉
coordi-

nates, respectively. Since our selection involves all blocks, and the total amount of selected
coordinates needs to add to |J | = k′, we obtain the relations

wf + wc = w and wf

⌊
k′

w

⌋
+ wc

⌈
k′

w

⌉
= k′,

which together imply wf = w−
(

k′ − w
⌊

k′

w

⌋)
and wc = k′ −w

⌊
k′

w

⌋
. The modified success

probability then becomes (compare to Eq. (8))

q̃ =
(

1 − ⌊k′/w⌋
b

)wf (
1 − ⌈k′/w⌉

b

)wc

. (22)

This leads to a modified time complexity of T̃ = Õ
(

1
q̃

)
= 2c̃n. Let

⌊
k′

w

⌋
= k′

w − ε, for some

ε ∈ [0; 1] and, hence,
⌈

k′

w

⌉
= k′

w − ε + 1. Then we can rewrite q̃ as follows

q̃ =
(

1 − k′/w − ε

b

)w−
(

k′−w
(

k′
w −ε

)) (
1 − k′/w − ε + 1

b

)k′−w
(

k′
w −ε

)
= (1 − κ + (1 + ε)ω)w(1−ε) (1 − κ + εω)εw

.

Hence, it follows that

c̃ = 1
n

log2(1/q̃1) = ω(1 − ε) log2 (1 − κ + (1 + ε)ω) + εω log2(1 − κ + εω). (23)

The joint effect on the runtime exponent of Perm. We now compare the exponent
obtained in the theoretical analysis and the exponent obtained after resolving rounding issues.
The theoretical exponent can be obtained from Theorem 4.1 as

c := 1
n

log2 T = ω log2(1 − κ + ω).

For obtaining the updated exponent incorporating rounding issues, we first update the
instance parameters to obtain integer blocksize and then consider the modified sampling
of the information set. A formula for this exponent is obtained by substituting n, ω, κ in
Eq. (23) by the parameters of the updated instance ñ, ω̃ = w/ñ, κ̃ = k̃/ñ from Eq. (21).

In Fig. 7a we report the relative difference c̃/c − 1 between both exponents. We observe
that for low rates resolving rounding issues leads to an increase in time complexity while for
larger rates the complexity decreases. This is due to the initial adaptation of the instance
parameters. For small rates κ with correspondingly small worst case weight ω∗ the initial
rounding of the block size leads only to a small deviation from the worst case relative weight.
For larger rates and larger ω∗ the deviation becomes more significant. In those cases the
decreased difficulty of the initial instance compensates for the lower success probability

32

caused by the rounding on v = k′/w. The highest increase by 2.43% is obtained for rate
κ = 0.46.

In Fig. 7b we visualize the absolute value of the obtained exponents. Since the rate
which achieves the maximum relative difference does not align with the worst case rate, the
influence on the worst case complexity of Perm is far smaller than 2.43%. In fact we obtain
a new worst case complexity exponent increased by an additive 0.0012 (0.96%) of c̃∗ = 0.1268
obtained for rate κ∗ = 0.599 (as previously reported in Table 2). Generally, this shows that
the complexity formula obtained in Section 4 forms a good approximate upper bound for the
asymptotic complexity.

0 0.2 0.4 0.6 0.8 1

−0.04

−0.02

0.00

0.02

k/n

re
la

tiv
e

di
ffe

re
nc

e
c̃
−

c
c

(a) Relative difference

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

k/n

co
m

pl
ex

ity
ex

po
ne

nt

c̃
c

(b) Absolute value

Fig. 7: Comparison of complexity exponent c obtained via Theorem 4.1 vs. c̃ incorporating rounding
issues.

Similar, but more technical computations can be performed for the other versions Enum,
Rep and Rep-MO. For those variants we find that the impact of rounding issues is decreasing,
which stems from more flexibility in how to account for these issues. In Fig. 8a we illustrate
the relative difference between the complexity exponents after resolving rounding issues
and the approximate exponents obtained in Sections 4.1 to 4.4, while Fig. 8b illustrates
the absolute value of the obtained exponents after resolving rounding issues. We find that
while for Perm the approximate exponent yields a valid upper bound for about 38.6% of all
parameters, for Rep-MO the upper bound holds in more than 55% of all cases. Moreover
the maximum excess of the upper-bound for Rep-MO is only 0.79%. We summarize these
deviation statistics in Table 3. For completeness we provide the full details on how to resolve
rounding issues for these variants in the remainder of this section.

Resolving Rounding Issues for Enum. Recall that for the Enum variant the set J is
chosen of larger size |J | = k′ + ℓ. The vector eJ ∈ Fk′+ℓ

2 is then further split as eJ = (z1, z2),

with z1, z2 ∈ F
k′+ℓ

2
2 each constructed by choosing coordinates from w/2 blocks. In order to

sample exactly k′+ℓ
2 coordinates for z1 and z2 respectively, similar to the Perm case, we

33

0 0.2 0.4 0.6 0.8 1

−0.06

−0.04

−0.02

0.00

0.02

k/n

re
la

tiv
e

di
ffe

re
nc

e
c̃
−

c
c

Perm
Enum
Rep
Rep-MO

(a) Relative difference

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

k/n

co
m

pl
ex

ity
ex

po
ne

nt

Perm
Enum
Rep
Rep-MO

(b) Absolute value

Fig. 8: Complexity exponents c̃ for different regular-ISD variants after resolving rounding issues and
relative difference to approximate exponents obtained in Sections 4.1 to 4.4.

Variant Upperbound
Valid

Maximum
Excess

Below 1%
Excess

Perm 38.6% 2.43% 80.6%
Enum 40.1% 2.21% 83.9%
Rep 47.7% 1.39% 89.5%
Rep-MO 55.2% 0.79% 100 %

Table 3: Deviation statistics of different variants after resolving rounding issues, including percentage
of parameters for which upperbounds derived in Section 4 are valid, the maximum excess in case of
a bound violation and the fraction of parameters lying below a 1% violation of the upperbound.

choose from some blocks v = ⌊ (k′+ℓ)/2
w/2 ⌋ = ⌊ k′+ℓ

w ⌋ and from others v + 1 many coordinates.
More precisely we choose from w+ of the blocks v + 1 coordinates and from w− = w/2 − w+
we choose only v many. Since it holds k′+ℓ

2 = w− · v + w+(v + 1) we obtain

w+ = k′ + ℓ − w · v

2 and w− = w(v + 1) − (k′ + ℓ)
2 .

The probability that zi, i = 1, 2 chosen like this has the desired weight p/2 becomes

p/2∑
i=0

(
w−

i

)(
1 − v

b

)w−−i (v

b

)i
(

w+
p
2 − i

)(
1 − v + 1

b

)w+−(p
2 −i)(v + 1

b

) p
2 −i

.

Here i denotes the number of blocks of length v that contribute to the weight of zi, i.e., the
number of non-zero blocks among the w− length-v blocks. In our adaptation we restrict to a
specific choice of i (later determined by numerical optimization) actually resulting in the

34

probability

Pr [|zj | = p/2] =
(

w−

i

)(
1 − v

b

)w−−i (v

b

)i
(

w+
p
2 − i

)(
1 − v + 1

b

)w+−(p
2 −i)(v + 1

b

) p
2 −i

.

(24)
The lists enumerating all possible candidates for zi are then of size

|Lj | =
(

w−

i

)(
w+

p/2 − i

)
vi(v + 1)p/2−i,

while the final list is of expected size |L| = |L1|·|L2|
2ℓ . This results in a total expected running

time after resolving rounding issues of

T ′ = Õ
(

Pr [|zj | = p/2]−2 · max(|Lj |, |L|)
)

.

Resolving Rounding Issues for Rep In the case of Rep we use the same resolving
strategy for rounding issues with respect to the permutation as for Enum. Therefore the
probability of distributing the weight correctly remains Pr [|zj | = p/2]2 for the probability
specified in Eq. (24). Additionally, we have to adapt the analysis of the enumeration procedure
to the new block structure. Note that eJ = (z1, z2) contains 2w− length-v blocks having a
total weight of 2i, and 2w+ length-(v + 1) blocks together having weight p − 2i. By treating
those different length parts independently we can easily adapt the analysis from Section 4.3
to the new structure.

Therefore, we again split eJ = x1 + x2, but ensure that x1 and x2 follow the same block
structure, i.e., length-x blocks in eJ are formed as sums of two length-x blocks from x1, x2.
Furthermore we enforce that the length v-blocks in xi have a total weight of p−

x = i + ε−
x ,

while the length-(v + 1) blocks total at a weight of p+
x = p/2 − i + ε+

x . Note that this implies
that there are

Rx =
(

2i

i

)(
2w− − 2i

ε−
x

)
· vε−

x

(
p − 2i

p/2 − i

)(
2w+ − (p − 2i)

ε+
x

)
· (v + 1)ε+

x

many different representations of eJ of that form (compare to Eq. (16)).
We continue the analogous splitting of x1 = y1 + y2 and x2 = y3 + y4 from Section 4.3,

where again the yj follow the same block structure. Again, we enforce different weight on the
different sized blocks, namely p−

y = i + ε−
y on length-v blocks and total weight p+

y = i + ε+
y

on length-v + 1 blocks, resulting in

Ry =
(

p−
x

p−
x /2

)(
2w− − 2i

ε−
y

)
· vε−

y

(
p+

x
p+

x /2

)(
2w+ − (p − 2i)

ε+
y

)
· (v + 1)ε+

y ,

different representations of any xj .
The time complexity of the enumeration routine is still following the same dependence

on the list sizes as in Section 4.3, i.e.,

TE = Õ
(
max(|Lj |, |Lyj |, |Lyj |2/2ℓx−ℓy , |Lxj |, |Lxj |2/2ℓ−ℓx)

)
.

35

However, the lists sizes themselves change. Now, the initial lists Lj contain all length (k′ +ℓ)/2
vectors composed of w− length-v blocks of weight p−

y /2 and w+ length-(v + 1) blocks of
total weight p+

y /2. Those lists are therefore of size |Lj | =
(w−

p−
y /2

)
vp−

y /2(w+
p+

y /2

)
(v + 1)p+

y /2.
The lists Lyo

, o = 1, 2, 3, 4 are similarly constructed to before, hence their expected sizes
are |Lyo

| = |Lj |2/2ℓy . Finally, after filtering for the desired weight distribution, i.e., total
weight p−

x on length-v and total weight p+
x on length-(v + 1) blocks, the lists Lxj

are of size
|Lxj | =

(2w−

p−
x

)
vp−

x
(2w+

p+
x

)
(v + 1)p+

x /2ℓx . In total this results in a time complexity after resolving
rounding issues of

T ′ = Õ
(

Pr [|zj | = p/2]−2 · TE

)
.

Resolving Rounding Issues for Rep-MO Note that to resolve the rounding issues
for Rep-MO we proceed exactly as for Rep. The incorporation of the nearest-neighbor
routine described in Section 4.4 does not add additional rounding issues. Therefore the time
complexity stays as stated in Section 4.4 taking into account the updated success probability
and list sizes after resolving the rounding issues as described in the last paragraph.

5 Concrete Complexity of Regular-ISD

We now consider the algorithms introduced in the previous section and derive their concrete
time complexity. For all algorithms, the time complexity is of the form Tit/q, where Tit is
the cost per iteration and q is the success probability. Notice that closed form expressions
for q have already been provided in Section 4. In order to derive estimates for the concrete
cost per iteration, we consider that each Gaussian elimination (as well as Partial Gaussian
elimination) takes time (n−k′)2n and that merging two lists L1 and L2 on an ℓ bit constraint
takes time |L1| + |L2| + |L1×L2|

2ℓ . Further, we assume that all the auxiliary operations, as
computing the lists elements or checking the weight after a merge, come at a computational
overhead of n.6 Taking these considerations into account, deriving concrete expressions for
Tit becomes a simple exercise. For the sake of completeness, we report the full expressions in
Appendix A.

We do not consider Rep-MO and CCJ-MO in the concrete comparison, since the May-
Ozerov nearest-neighbor routine is known to inherit large polynomial overheads [MO15,
EKZ21].

Bit-Security Estimates for RSD Parameters In the following we provide a discussion
on the performance of the different algorithms on the parameters suggested in the literature.
We compare CCJ [CCJ23a], the recently proposed algebraic attacks by Briaud and Øygarden
[BØ23], as well as classical ISD attacks not tailored to the regular case against the regular-ISD
approach from Section 4. Note that Briaud and Øygarden do not provide an estimation
script to estimate arbitrary instances. We therefore include their estimates only for those
parameters provided in their original work. For the estimation of classical ISD attacks, if not
6 More precise estimates would make assumptions on the specific implementation of the algorithm

and make the analysis more involved for an insignificant difference.

36

provided in the work suggesting the parameters, we rely on the CryptographicEstimators
library [EVZB23], which incorporates an extension of the syndrome decoding estimator by
Esser and Bellini [EB22].

The literature suggests a big variety of different parameters. While we provide a discussion
about all of them we display in the tables sometimes only a selection of them for clarity.
However, we provide the estimates of all suggested parameters together with our source code
at github.com/Memphisd/Regular-ISD.

For the concrete parameters, whenever the code length n is not a multiple of w, the
solution is known to be of the form e = (e′, 0n−w·b) for b = ⌊n/w⌋, where e′ is a regular
vector of length w · b and weight w. The known zeros, as well as the corresponding columns
of the parity check-matrix can be safely discarded. This affects both the code length (which
becomes wb) and dimension (which becomes wb − (n − k)), hence, the co-dimension remains
unchanged with n − k.

Rounding Issues. We provide in the following the numbers obtained from the concrete
formulas derived by ignoring rounding issues. We note that since the instances we use as
input have already an integer blocksize (see the paragraph above), the numbers we give
form valid lower bounds for the concrete complexity. Therefore recall, that the down-wards
deviation observed in Section 4.6 only stems from adapting the instance parameters, while
resolving rounding issues for the algorithms themselves only leads to top-wards deviations.
However, to verify that resolving those rounding issues leads only to a slight increase in the
concrete time complexity we provide in Appendix A.2 those numbers for Perm and Enum.

Parameters Suggested in [LWYY24] In Table 4 we provide the estimated bit complexity
of the different approaches on parameters suggested in the context of PCG constructions.
Notice that the code parameters on the top and bottom of the table are the same, but the
values of w are different; therefore, we distinguish between large weight (top) and small
weight (bottom) instances.

We observe that, for almost all instances, regular-ISD either outperforms previous ap-
proaches or obtains a similar running time. The only instances for which this is not the
case are the very low rate instances with higher weight (bottom of top half), for which the
algebraic attack obtains the best performance. In general, regular-ISD obtains the highest
gains if rate and relative weight are moderately large (see first rows of top and bottom halves).
In case rate and relative weight decrease, we find that the performance of regular-ISD and
standard ISD get closer (see last rows of top and bottom halves). This effect can be especially
observed in the bottom half of Table 4 which includes the small weight instances. Recall,
that we have shown in Section 3.4 that the complexities of Perm and general ISD algorithms
converge for small relative weight. The bit-security results seem to further indicate that, as
in the SD case [TS16], enumeration improvements become less effective for small weight,
since also the complexities of Enum and Rep converge to those of ISD.

Parameters Suggested in [HOSS18] The authors of that work propose 32 different
parameter sets for two different MPC protocols, all targeting 128-bit security.

The first twelve sets relate to the first MPC protocol (labeled GMW-style in [HOSS18]).
Among those are seven parameters with high rate κ ≥ 0.96 and small relative weight ω ≤ 0.004.

37

github.com/Memphisd/Regular-ISD

(n, k, w)
previous approaches regular-ISD

ISD Algebraic CCJ Linear. Perm Enum Rep
[LWYY24] [BØ23] [CCJ23b] Section 4

(210, 652, 106) 164 145 129 139 133 115 113
(212, 1589, 172) 135 135 160 132 131 110 109
(214, 3482, 338) 135 138 204 141 140 118 118
(216, 7391, 667) 139 139 249 149 149 126 127
(218, 15336, 1312) 144 122 274 150 150 126 128
(220, 32771, 2467) 148 125 335 164 164 138 141
(222, 64770, 4788) 149 103 360 165 165 140 143

(210, 652, 57) 94 101 90 96 94 77 76
(212, 1589, 98) 86 103 115 96 96 78 78
(214, 3482, 198) 91 106 143 103 103 84 85
(216, 7391, 389) 96 108 171 110 110 90 92
(218, 15336, 760) 101 104 192 114 114 93 97
(220, 32771, 1419) 106 98 216 119 119 98 103
(222, 64770, 2735) 108 103 233 123 123 103 108

Table 4: Comparison of RSD solvers on large weight (top) and small weight (bottom) instances
from [LWYY24].

For those regular-ISD is roughly on par with either CCJ or standard ISD. However, we
find that some of those parameter sets even when considering only ISD do only roughly
match the claimed security, which we show in Table 5. For the remaining four parameter
sets with high rate we find huge margins of more than 110 bits. The parameters with rate
κ < 0.96 use larger (but still small) weight ω < 0.016. For those sets regular-ISD obtains
slight improvements, but still those sets enjoy a comfortable margin of at least 10 bits. A
notable exception is the parameter set (1280, 860, 80), which is the only set using moderate
relative weight of ω = 80/1280 = 0.0625. For this set regular-ISD lowers the bit-security from
132 to 115 and therefore below the security target of 128-bit.

The next twenty suggested parameters relate to the second MPC protocol, labeled
BMR-style in [HOSS18]. Most of the parameters again use high rate, low weight with some
exceptions. Especially, for those exceptions regular-ISD improves on previous techniques,
lowering estimates by up to 11 bits. However, we find that still all sets but two incorporate
huge margins of 60 to 270 bits. The two outliers obtain margins of 18 and 39 bit.

Parameters Suggested in [BCG+19a] The authors suggest in that work sixteen different
parameter sets for a correlated OT application, eight aiming at 80-bit security and eight
aiming for 128-bit. All parameter sets follow rate κ ∈ { 1

2 , 3
4 }, in combination with very low

relative weight ω ≤ 0.0063. Due to the low relative weights, we find that regular-ISD and ISD
algorithms perform roughly on par. All parameters satisfy the security goals, while for 80-bit
instances we find margins between 8 to 29 bits and for 128-bit instances we find margins
ranging from 10 to 42 bits.

38

(n, k, w)
previous approaches regular-ISD

ISD CCJ Linear. Perm Enum Rep
[EB22] [CCJ23b] Section 4

[HOSS18, Tab. 1, (GMW-style)]
(245760, 245460, 15) 127 124 180 179 127 140
(40960, 40660, 20) 126 126 174 172 126 129
(7680, 7380, 30) 127 131 169 166 132 132
(1280, 860, 80) 134 132 141 137 117 114

[YWL+20, Tab. 5]
(609728, 36288, 1269) 147 343 164 164 140 143
(10805248, 589760, 1319) 155 492 176 176 157 164

[CCJ23a, pp. 560]
(1842, 825, 307) 289 193 183 178 156 153

Table 5: Comparison of different approaches on selected instances from the literature.

Parameters Suggested in [YWL+20] This work uses two parameter sets within a
correlated OT construction. For the set used within the setup, regular-ISD lowers the bit-
security estimate from 147 to 140 bit, while for the second parameter set classic ISD leads to
a security estimate of 155 bit as shown in Table 5.

Parameters Suggested in [BCG+22] The authors propose different parameter sets for
their PCG construction. All sets use constant rate R ≥ 0.2 paired with large length n ≥ 220

and small weight w. We find regular-ISD to perform roughly on par with classical ISD, which
obtains the best complexities for those sets. The conservative choices with higher error weight
w ∈ [664, 7326] overachieve the desired 128 bit by a great margin, while we find some of the
aggressive choices using w ∈ [68, 94] to fall short of that threshold.

Parameters Suggested in [CCJ23a] The authors use a single parameter set for their
MPC-in-the-Head based signature construction. The regular-ISD approach lowers the bit-
security estimate notably by 30 bits from 183 to 153 bits (see Table 5). Originally, this
parameter set aims at 128-bit of security. However, the authors followed a conservative
parameter selection in which they considered the running time of CCJ-MO assuming the
nearest neighbor search routine comes at no additional cost (corresponding to N = L in
Eq. (20)). Note that while here this led to conservative parameters, in general this is not
guaranteed. We find several parameters for which regular-ISD significantly outperforms such
an “optimistic” version of CCJ-MO.

Memory Complexity Comparison We now briefly classify the different algorithms
with respect to their memory complexities. Note that Perm as well as Linearization are
memory efficient, as they require only a polynomial amount of memory, roughly as high
as the description size of the problem. In this regard those algorithms behave similarly to

39

(n, k, w) ISD CCJ Linear. Perm Enum Rep
T M T = M M = poly T M T M

[LWYY24, Tab. 1 & Tab. 7]
(210, 652, 106) 164 128 129 139 133 115 31 113 60
(210, 652, 57) 94 51 90 96 94 77 31 76 47

[HOSS18, Tab. 1, (GMW-style)]
(245760, 245460, 15) 127 99 124 180 179 127 119 140 79
(40960, 40660, 20) 126 100 126 174 172 126 125 129 107
(7680, 7380, 30) 127 117 131 169 166 132 117 132 114
(1280, 860, 80) 134 102 132 141 137 117 40 114 68

[YWL+20, Tab. 5]
(609728, 36288, 1269) 147 65 343 164 164 140 59 143 68

(10805248, 589760, 1319) 155 58 492 176 176 157 75 164 89

[CCJ23a, pp. 560]
(1842, 825, 307) 289 143 193 183 178 156 32 153 62

Table 6: Comparison of different approaches on selected instances from the literature including
memory complexity. For CCJ time complexity is equal to its memory complexity. For Linearization
and Perm memory complexity is equal to the problem description size.

the ISD algorithm by Prange. On the other hand Enum and Rep similar to advanced ISD
improvements in the SD case achieve the time complexity improvements by spending higher
amounts of memory. However, for many parameter sets the memory complexity of those
advanced regular-ISD algorithms is lower compared to advanced ISD algorithms (see Table 6).
This stems from the decreased enumeration effort when restricting to regular vectors. The
memory complexity of the algebraic approach by Briaud and Øygarden has not been explicitly
analyzed, yet. While the Wiedemann algorithm used to solve the quadratic system in [BØ23]
generally uses a considerable amount of memory, the authors apply a hybrid technique,
which is memory-efficient and reduces the size of the quadratic system. Therefore a more
detailed study is necessary to make a precise statement. Finally, the memory complexity of
CCJ, which is based on pure enumeration is equal to its time complexity. In Table 6 we give
exemplary parameters stating time and memory complexity of the different approaches.

Acknowledgements We thank the anonymous reviewers of Eurocrypt ’24 and Crypto ’24
for their comments that greatly helped us in improving our work. We also want to express
our sincere gratitude to Pierre Briaud and Martin Øygarden for fruitful discussions that
greatly contributed to the refinement of this work.

References

AFS05. Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A family of fast syndrome based
cryptographic hash functions. In Progress in Cryptology–Mycrypt 2005: First Inter-
national Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia, September
28-30, 2005. Proceedings 1, pages 64–83. Springer, 2005.

40

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of er-
rors. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011,
Part I, volume 6755 of LNCS, pages 403–415. Springer, Heidelberg, July 2011.
doi:10.1007/978-3-642-22006-7_34.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November 2019. doi:
10.1145/3319535.3354255.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 489–518. Springer, Heidelberg, August 2019. doi:10.1007/
978-3-030-26954-8_16.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators from ring-LPN. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
387–416. Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56880-1_14.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and
Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS,
pages 603–633. Springer, Heidelberg, August 2022. doi:10.1007/978-3-031-15979-4_
21.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 896–912. ACM Press, October 2018. doi:10.1145/3243734.3243868.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 520–536. Springer, Heidelberg, April 2012. doi:10.1007/978-3-642-29011-4_
31.

BM18. Leif Both and Alexander May. Decoding linear codes with high error rate and its
impact for LPN security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018, pages 25–46. Springer,
Heidelberg, 2018. doi:10.1007/978-3-319-79063-3_2.

BØ23. Pierre Briaud and Morten Øygarden. A new algebraic approach to the regular syndrome
decoding problem and implications for PCG constructions. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 391–422.
Springer, Heidelberg, April 2023. doi:10.1007/978-3-031-30589-4_14.

CCJ23a. Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures from regular
syndrome decoding in the head. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part V, volume 14008 of LNCS, pages 532–563. Springer, Heidelberg,
April 2023. doi:10.1007/978-3-031-30589-4_19.

CCJ23b. Eliana Carozza, Geoffroy Couteau, and Antoine Joux. Short signatures from regular
syndrome decoding in the head. Cryptology ePrint Archive, Paper 2023/1035, 2023.
https://eprint.iacr.org/2023/1035. URL: https://eprint.iacr.org/2023/1035.

CDMHT22. Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-Pierre Tillich.
Statistical decoding 2.0: Reducing decoding to LPN. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 477–507.
Springer, Heidelberg, December 2022. doi:10.1007/978-3-031-22972-5_17.

41

https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-031-30589-4_14
https://doi.org/10.1007/978-3-031-30589-4_19
https://eprint.iacr.org/2023/1035
https://eprint.iacr.org/2023/1035
https://doi.org/10.1007/978-3-031-22972-5_17

CLY+24. Hongrui Cui, Hanlin Liu, Di Yan, Kang Yang, Yu Yu, and Kaiyi Zhang. Resolved:
Shorter signatures from regular syndrome decoding and vole-in-the-head. Cryptology
ePrint Archive, Paper 2024/040, 2024. https://eprint.iacr.org/2024/040. URL:
https://eprint.iacr.org/2024/040.

EB22. Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In Goichiro Hanaoka,
Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS,
pages 112–141. Springer, Heidelberg, March 2022. doi:10.1007/978-3-030-97121-2_
5.

EKZ21. Andre Esser, Robert Kübler, and Floyd Zweydinger. A faster algorithm for finding
closest pairs in hamming metric. In Mikolaj Bojanczyk and Chandra Chekuri, editors,
41st IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference, volume
213 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.FSTTCS.2021.20.

Ess23. Andre Esser. Revisiting nearest-neighbor-based information set decoding. In IMA
International Conference on Cryptography and Coding, pages 34–54. Springer, 2023.

EVZB23. Andre Esser, Javier Verbel, Floyd Zweydinger, and Emanuele Bellini.
CryptographicEstimators: a software library for cryptographic hardness esti-
mation. Cryptology ePrint Archive, 2023.

FG15. Jason Fulman and Larry Goldstein. Stein’s method and the rank distribution of random
matrices over finite fields. 2015.

FS09. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-
based cryptosystems. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 88–105. Springer, Heidelberg, December 2009. doi:10.1007/
978-3-642-10366-7_6.

HJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks.
In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 235–256.
Springer, Heidelberg, May / June 2010. doi:10.1007/978-3-642-13190-5_12.

HKL+12. Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and Krzysztof Pietrzak.
Lapin: An efficient authentication protocol based on ring-LPN. In Anne Canteaut,
editor, FSE 2012, volume 7549 of LNCS, pages 346–365. Springer, Heidelberg, March
2012. doi:10.1007/978-3-642-34047-5_20.

HOSS18. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys:
A new approach to efficient multi-party computation. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 3–33.
Springer, Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_1.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23. Springer, Heidelberg, May / June 2010. doi:10.1007/978-3-642-13190-5_
1.

LWYY24. Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu. The hardness of LPN over any
integer ring and field for PCG applications. In Marc Joye and Gregor Leander, editors,
Advances in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May
26-30, 2024, Proceedings, Part VI, volume 14656 of Lecture Notes in Computer Science,
pages 149–179. Springer, 2024. doi:10.1007/978-3-031-58751-1_6.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 107–124. Springer, Heidelberg, December 2011. doi:
10.1007/978-3-642-25385-0_6.

42

https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.20
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-031-58751-1_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 203–228. Springer, Heidelberg,
April 2015. doi:10.1007/978-3-662-46800-5_9.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5):5–9, 1962.

Saa07. Markku-Juhani Olavi Saarinen. Linearization attacks against syndrome based hashes.
In K. Srinathan, C. Pandu Rangan, and Moti Yung, editors, INDOCRYPT 2007,
volume 4859 of LNCS, pages 1–9. Springer, Heidelberg, December 2007.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Post-Quantum Cryptography, pages 144–161. Springer, 2016.

YWL+20. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–1626. ACM
Press, November 2020. doi:10.1145/3372297.3417276.

A Concrete Time Complexity Formulas

In this section we provide for completeness the concrete runtime formulas for the regular-ISD
algorithms Perm, Enum and Rep, as well as the formula for CCJ.

A.1 Simplified Formulas Ignoring Rounding Issues

Permutation-based Regular-ISD The most time consuming operation of one iteration
of Algorithm 1 is the Gaussian elimination. All the other operations (e.g., applying the
permutation and checking the weight of e1) are less costly and can, hence, be neglected, so
that Tit = n(n − k′)2.

Enumeration-based Regular ISD In each iteration, the algorithm performs one partial
Gaussian elimination and creates two lists with size |L1| = |L2| =

(
w/2
p/2
)
vp/2, with v := k′+ℓ

w

and k′ = k − w. The lists are then merged into L, with average size |L| = |L1|22−ℓ. Putting
everything together, we have that the cost of each iteration is

Tit = n
(
(n − k′)2 +

(
|L1| + |L2| + |L|

))
= n

(
(n − k′)2 + ·

(
w/2
p/2

)
vp/2 ·

(
2 +

(
w/2
p/2

)
vp/22−ℓ

))
.

The optimal time complexity is achieved when |L| ≈ |L1|, which implies

ℓ ≈ log |L1| = log2

((
w/2
p/2

))
+ p

2 log2

(
k′ + ℓ

2

)
.

Representation-based ISD Again we have v = k′+ℓ
w . For each level, we recall the number

of lists and their average sizes.

43

https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1145/3372297.3417276

- Creating the initial lists: the algorithm starts with 8 lists Li, each with the same size

|L1| =
(

w/2
py/2

)
vpy/2.

- Obtaining Lyi , i = 1, · · · , 4: each list Lyi is obtained as the merge of two of the initial
lists, searching for collisions in ℓy coordinates. The average number of collisions, which
also corresponds to the average size of each Lyi

, is

|Lyi | = |L1|22−ℓy =
(

w/2
py/2

)2
vpy2−ℓy .

- Obtaining Lxi
, i = 1, 2: each of these lists is the merge of a pair of lists Lyi

. The average
number of collisions is

Ny = |Ly1 |22−(ℓx−ℓy) = |L1|42−2ℓy2−(ℓx−ℓy) =
(

w/2
py/2

)4
v2py2−(ℓx+ℓy).

After collisions are filtered for the desired weight px, the expected number of elements in
each list Lxi

is

|Lxi
| =

((
w/2
px/2

)
vpx/2

)2
· 2−ℓx =

(
w/2
px/2

)2
vpx · 2−ℓx .

Here we take into account that only elements balanced elements, i.e., elements with px/2
non-zero blocks on the first and second half of their coordinates can be constructed. This
fact was previously disregarded as it is subsumed in the Landau notation.

- Obtaining LeJ
: the expected number of produced collisions is

Nx = |Lxi |22−(ℓ−ℓx) =
(

w/2
px/2

)4
v2px2−(ℓ+ℓx).

Putting everything together, we get

Tit = n(n − k′)2 + n ·
(
8|L1| + 4|Ly1 | + 2Ny + 2|Lx1 | + Nx

)
.

Substituting each of the above terms, we get

Tit = n(n − k′)2 + n ·

(
8
(

w/2
py/2

)
vpy/2 + 4

(
w/2
py/2

)2
vpy2−ℓy + 2

(
w/2
py/2

)4
v2py2−(ℓx+ℓy)

+ 2
(

w/2
px/2

)2
2−ℓx +

(
w/2
px/2

)4
v2px2−(ℓ+ℓx)

)
Recall that px = p/2 + εx and py = px/2 + εy. Furthermore, ℓx ≈ log Rx and ℓy ≈ log Ry,
where7

Rx =
(

p/2
p/4

)2((w − p)/2
εx/2

)2
vεx and Ry =

(
px/2
px/4

)2((w − px)/2
εy/2

)2
vεy .

7 Here we again account for the fact that we can construct only balanced elements, due to the
meet-in-the-middle enumeration.

44

Linearization algorithm An iteration of the algorithm performs essentially one Gaussian
elimination, plus other operations whose cost can be neglected. So, Tit = n(n − k)2.

CCJ algorithm In this algorithm, lists have size |L1| = |L2| =
(

n
w

)w(k̃+ℓ)
2n , where k̃ =

k −
(
1 − w

n

)−1 (1 − k+ℓ
n

)
w. The average number of collisions is |L| = |L1| · |L2| · 2−ℓ =(

n
w

)w(k̃+ℓ)
n 2−ℓ, so that the cost of one iteration is

Tit = n(n − k̃)2 + n ·
(n

w

)w(k̃+ℓ)
2n ·

(
2 +

(n

w

)w(k̃+ℓ)
2n 2−ℓ

)
.

A.2 Formulas After Resolving Rounding Issues

As we already discussed in Section 4.6, the effect of rounding issues on the time complexity
of the proposed algorithms is expected to be rather mild. Further in Section 5 only rounding
issues regarding the algorithms themselves have been neglected, while an instance adaptation
that leads to integer blocksize has been performed in all cases. Therefore incorporating
rounding issues only leads to an increase in the time complexity. This is confirmed by
numbers we present in Table 7 for the case of Perm and Enum when resolving rounding
issues for the parameters considered in Tables 4 and 5.

The used formulas are obtained similarly to the ones in Appendix A from the formulas
stated in Section 4.6, by additionally resolving asymptotically irrelevant issues related to
w/2 and k′+ℓ

2 being non-integer.
Let v =

⌊
k′+ℓ

w

⌋
and denote by w− and w+ the number of blocks from which we select,

respectively, v and v + 1 coordinates. Since it must be w−v + w+(v + 1) = w, it follows

w− = w(v + 1) − k′ − ℓ, w+ = k′ + ℓ − wv

Further, let w
(1)
− = ⌊w−/2⌋ and w

(1)
+ = ⌈w+/2⌉: to build z1, we sample v coordinates from

w
(1)
− blocks and (v+1) coordinates from w

(1)
+ . With analogous meaning, we set w

(2)
− = ⌈w−/2⌉

and w
(2)
+ = ⌊w+/2⌋.

Then, all the relevant quantities for the enumeration-based algorithm are given by:

Pr [|zj | = p/2] =
min
{

p/2 ; w
(j)
−

}∑
i=max

{
0 ; p

2 −w
(j)
+

}
(

w
(j)
−
i

)(
1 − v(j)

b

)w
(j)
− −i(

v(j)

b

)i

(
w

(j)
+

p
2 − i

)(
1 − v(j) + 1

b

)w
(j)
+ −(p

2 −i)(
v(j) + 1

b

) p
2 −i

.

|Lj | =
min
{

p/2 ; w
(j)
−

}∑
i=max

{
0 ; p

2 −w
(j)
+

}
(

w′
j

i

)(
w′′

j

p/2 − i

)
vi

j(vj + 1)p/2−i.

45

The time complexity of the algorithm is

Tit

Pr [|z1| = p/2] · Pr [|z2| = p/2] =
n
(
(n − k′)2 +

(
|L1| + |L2| + |L1| · |L2|/2ℓ

))
Pr [|z1| = p/2] · Pr [|z2| = p/2] .

(n, k, w) Rounding Issues Remain Rounding Issues Resolved

Perm Enum Perm Enum

(210, 652, 106) 133 115 134 116
(212, 1589, 172) 131 110 132 111
(214, 3482, 338) 140 118 141 118
(216, 7391, 667) 149 126 149 126

(218, 15336, 1312) 150 126 150 126
(220, 32771, 2467) 164 138 164 139
(222, 64770, 4788) 165 140 165 141

(210, 652, 57) 94 77 95 78
(212, 1589, 98) 96 78 96 78
(214, 3482, 198) 103 84 103 84
(216, 7391, 389) 110 90 110 90
(218, 15336, 760) 114 93 114 94
(220, 32771, 1419) 119 98 119 99
(222, 64770, 2735) 123 103 123 103

(245760, 245460, 15) 179 127 179 144
(40960, 40660, 20) 172 126 172 137
(7680, 7380, 30) 166 132 166 136
(1280, 860, 80) 137 117 137 118

(609728, 36288, 1269) 164 140 164 140
(10805248, 589760, 1319) 176 157 176 157

(1842, 825, 307) 178 156 180 159

Table 7: Time complexities of Perm and Enum for the RSD instances from Tables 4 and 5, with
and without rounding issues.

B Experiments

In order to confirm our analysis, especially with respect to Remark 4.1 we provide proof
of concept implementations of the the permutation-based and enumeration-based regular-
ISD algorithms, available at github.com/Memphisd/Regular-ISD. In the experiments, we
considered different RSD parameter regimes, namely, varying code rate and w chosen
according to the uniqueness bound (regime I) as well as fixed code rate and varying w (regime
II). For each considered parameter set, we generated 100 random instances and measured
the number of resulting collisions in an iteration of the Enum algorithm and compared those
against the theoretical prediction. Thereby, the optimization parameters (namely, parameters

46

github.com/Memphisd/Regular-ISD

Regime (n, k, w) (p, ℓ) Theoretical Experimental
Min Avg Max

I

(100, 50, 20) (6, 9) 10.58 10.50 10.58 10.64
(96, 52, 16) (6, 10) 10.74 10.62 10.74 10.83
(96, 57, 12) (4, 7) 9.27 9.14 9.28 9.41
(100, 65, 10) (4, 8) 9.26 9.14 9.26 9.37
(96, 67, 8) (4, 9) 8.52 8.25 8.52 8.67
(85, 63, 5) (2, 2) 7.75 7.51 7.77 8.01
(92, 73, 4) (2, 4) 6.38 5.73 6.37 6.67

II

(144, 57, 8) (2, 1) 8.29 7.66 8.27 8.43
(143, 57, 11) (4, 8) 8.42 8.19 8.42 8.66
(140, 56, 14) (4, 7) 9.00 8.83 9.00 9.15
(136, 54, 17) (4, 5) 10.18 10.05 10.18 10.33
(140, 56, 20) (4, 5) 10.12 10.00 10.12 10.26
(138, 55, 23) (4, 3) 11.22 11.17 11.22 11.30
(130, 52, 26) (4, 2) 10.98 10.93 10.99 11.06
(145, 58, 29) (6, 8) 11.37 11.27 11.37 11.44

Table 8: Number of collisions for several RSD instances, for enumeration-based regular-ISD. The
number of collisions are expressed in log2 units. For each parameter set, we have considered 100
random RSD instances.

p and ℓ) have been chosen in order to minimize the time complexity. For the list sizes, we
used the formulas from Appendix A.2.

In all considered experiments, we verified that list sizes match the expectation from the
uniform random case on reduced size instances, as indicated by Remark 4.1. A subset of
the used parameters and resulting list sizes are reported in Table 8. The code to rerun the
experiments, as well as the results for additional parameter sets are made publicly available
via the GitHub repository.

47

	Not Just Regular Decoding: Asymptotics and Improvements of Regular Syndrome Decoding Attacks

