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Abstract. The Implicit Factorization Problem (IFP) was first intro-
duced by May and Ritzenhofen at PKC’09, which concerns the factor-
ization of two RSA moduli N1 = pi1qi and N2 = p2q2, where p; and
p2 share a certain consecutive number of least significant bits. Since its
introduction, many different variants of IFP have been considered, such
as the cases where p1 and p2 share most significant bits or middle bits
at the same positions. In this paper, we consider a more generalized case
of IFP, in which the shared consecutive bits can be located at any posi-
tions in each prime, not necessarily required to be located at the same
positions as before. We propose a lattice-based algorithm to solve this
problem under specific conditions, and also provide some experimental
results to verify our analysis.

Keywords: Implicit Factorization Problem - Lattice - LLL algorithm -
Coppersmith’s algorithm.

1 Introduction

In 1977, Rivest, Shamir, and Adleman proposed the famous RSA encryption
scheme [RSA83], whose security is based on the hardness of factoring large inte-
gers. RSA is now a very popular scheme with many applications in industry for
information security protection. Therefore, its security has been widely analyzed.
Although it seems infeasible to break RSA with large modulus entirely with a
classical computer now, there still exist many vulnerable RSA instances. For
instance, small public key [Cop96JCop97] or small secret key [BD99] can lead to
some attacks against RSA. In addition, side-channel attacks pose a great threat
to RSA [BJLT14/BB03JCSW17], targeting the decryption device to obtain more
information about the private key.

It is well known that additional information on the private keys or the
prime factors can help attack the RSA scheme efficiently. In 1997, Coppersmith
[Cop97IMay03] proposed an attack that can factor the RSA modulus N = pq
in polynomial time if at least half of the most (or least) significant bits of p
are given. In 2013, by using Coppersmith’s method, Bernstein et al. [BCC™13]



2 Yansong Feng, Abderrahmane Nitaj ®, and Yanbin Pan ®

showed that an attacker can efficiently factor 184 distinct RSA keys generated
by government-issued smart cards.

At PKC 2009, May and Ritzenhofen [MRQ9] introduced the Implicit Fac-
torization Problem (IFP). It concerns the question of factoring two n-bit RSA
moduli N; = p1q1 and No = pago, given the implicit information that p; and
po share yn of their consecutive least significant bits, while ¢; and g2 are an-
bit. Using a two-dimensional lattice, May and Ritzenhofen obtained a heuristic
result that this implicit information is sufficient to factor N; and N; with a
lattice-based algorithm, provided that yn > 2an + 2.

In a follow-up work at PKC 2010, Faugere et al. [FMRI0] generalized the Im-
plicit Factorization Problem to the case where the most significant bits (MSBs)
or the middle bits of p; and ps are shared. Specifically, they established the
bound of yn > 2an + 2 for the case where the MSBs are shared, using a two-
dimensional lattice. For the case where the middle bits of p; and py are shared,
Faugere et al. obtained a heuristic result that ¢; and ¢o could be found from a
three-dimensional lattice if yn > 4an + 6.

In 2011, Sarkar and Maitra [SM11] further expanded the Implicit Factor-
ization Problem by revealing the relations between the Approximate Common
Divisor Problem (ACDP) and the Implicit Factorization Problem, and presented
the bound of v > 2a — a? for the following three cases.

1. the primes p;, po share an amount of the least significant bits (LSBs);

2. the primes p1, pa share an amount of most significant bits (MSBs);

3. the primes p;, ps share both an amount of least significant bits and an
amount of most significant bits.

In 2016, Lu et al. [LPZ"16] presented a novel algorithm and improved the
bounds to v > 2a—2a? for all the above three cases of the Implicit Factorization
Problem. In 2015, Peng et al. [PHL™15] revisited the Implicit Factorization
Problem with shared middle bits and improved the bound of Faugere et al.
[FMRI0] up to v > 4a — 3a?. The bound was further enhanced by Wang et al.
[WQLFIg] in 2018 up to v > 4o — dav/a.

It is worth noting that in the previous cases, the shared bits are located at
the same position for the primes p; and ps.

In this paper, we present a more generalized case of the Implicit Factoriza-
tion Problem that allows for arbitrary consecutive shared locations, rather than
requiring them to be identical in the primes, as in previous research. More pre-
cisely, we propose the Generalized Implicit Factorization Problem (GIFP), which
concerns the factorization of two n-bit RSA moduli Ny = p1q1 and Ny = pago
when p; and ps share yn consecutive bits, where the shared bits are not neces-
sarily required to be located at the same positions. See Fig. [1| for an example,
where the starting positions for the shared bits in p; and py may be different.

We transform the GIFP into the Approximate Common Divisor Problem
and then, employ Coppersmith’s method with some optimization strategy, we
propose a polynomial time algorithm to solve it when v > 4a(1 — /a).
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Fig. 1: Shared bits M for p; and po

In Table [I} we present a comparison of our new bound on v with the known
former bounds obtained by various methods to solve the Implicit Factorization
Problem.

LSBs MSBs both LSBs-MSBs Middle bits  General

May, Ritzenhofen [MR09] 2« - - - -
Faugere, et al. [FMR10] 20 - - %o -
Sarkar, Maitra [SM11] 2a —a® 2a— o 20 — o - -
Lu, et al. [LPZT16]  2a —20® 2o — 207 20 — 20 - -
Peng, et al.[PHLT 15| - - - 4o — 302
Wang, et al.[WQLF18] - - - 4a(1 — y/a) -
This work - - - - da(l — a)

Table 1: Asymptotic lower bound of v in the Implicit Factorization Problem for
n-bit N1 = p1g2 and No = page where the number of shared bits is yn, ¢; and
g2 are an-bit.

It can be seen in Table [I| that the bounds for the Implicit Factorization
Problem for sharing middle bits are inferior to those of other variants. This
is because the unshared bits in the Implicit Factorization Problem for LSBs or
MSBs or both LSBs and MSBs are continuous, and only one variable is necessary
to represent the unshared bits while at least two variables are needed to represent
the unshared bits in the Implicit Factorization Problem sharing middle bits or
GIFP. In addition, our bound for GIFP is identical to the variant of IFP sharing
the middle bits located in the same position. However, it is obvious that the
GIFP relaxes the constraints for the positions of the shared bits.

Therefore, with the same bound for the number of shared bits as in the IFP
sharing middle bits at the same position, we show that the Implicit Factorization
Problem can still be solved efficiently when the positions for the sharing bits are
located differently.

There are still open problems, and the most important one is: can we improve
our bound 4« (1 — /&) for GIFP to 2a — 2a2 or even better? A positive answer
seems not easy since the bound for GIFP directly yields a bound for any known
variant of IFP. Improving the bound for GIFP to the one better than 4a (1 — \/a)
means that we can improve the bound for the variant of IFP sharing the middle
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bits located in the same position, and improving the bound for GIFP to the
one better than 2a — 202 means that we can improve the bound for any known
variant of TFP.

Roadmap Our paper is structured as follows. Section 2 presents some required
background for our approaches. In Section 3, we present our analysis of the
Generalized Implicit Factorization Problem, which constitutes our main result.
Section 4 details the experimental results used to validate our analysis. Finally,
we provide a brief conclusion in Section 5. The source code is available at:

https://github.com/fffmath/gifp.

2 Notations and Preliminaries

Notations Let Z denote the ring of integers, i.e., the set of all integers. We use
lowercase bold letters (e.g., v) for vectors and uppercase bold letters (e.g., A)
for matrices. The notation (TZ) represents the number of ways to select m items

out of n items, which is defined as Wlm), If m > n, we set (:;) =0.

2.1 Lattices, SVP, and LLL

Let m > 2 be an integer. A lattice is a discrete additive subgroup of R™. A
more explicit definition is presented as follows.

Definition 1 (Lattice). Let vi,va,..., vy € R™ be n linearly independent
vectors with n < m. The lattice L spanned by {v1,Va,...,Vn} is the set of all
integer linear combinations of {vi,va,...,vp}, i.c.,
n
E—{VER’” | V—Zaivi,aieZ}.
i=1

The integer n denotes the rank of the lattice £, while m represents its dimen-
sion. The lattice L is said to be full rank if n = m. We use the matrix B € R"*™,
where each vector v; contributes a row to B. The determinant of £ is defined
as det(£) = y/det (BB?), where B! is the transpose of B. If £ is full rank, this
reduces to det(L) = |det (B)].

The Shortest Vector Problem (SVP) is one of the famous computational
problems in lattices.

Definition 2 (Shortest Vector Problem (SVP)). Given a lattice L, the
Shortest Vector Problem (SVP) asks to find a non-zero lattice vector v € L of
minimum FEuclidean norm, i.e., find v € L\{0} such that |v| < ||w]|| for all
non-zero w € L.
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Although SVP is NP-hard under randomized reductions [Ajt98], there exist
algorithms that can find a relatively short vector, instead of the exactly shortest
vector, in polynomial time, such as the famous LLL algorithm proposed by
Lenstra, Lenstra, and Lovasz [LLL82] in 1982. The following result is useful
for our analysis[May03].

Theorem 1 (LLL Algorithm). Given an n-dimensional lattice L, we can find
an LLL-reduced basis {v1,Va,...,vn} of L in polynomial time, which satisfies

n(n—1)
[vil| < 275=0 det(L£)7F—7, for i=1,...,n.

Theorem (1| presents the upper bounds for the norm of the i-th vector in the
LLL-basis using the determinant of the lattice.

2.2 Coppersmith’s method

In 1996, Coppersmith [Cop97/May03] proposed a lattice-based method for
finding small solutions of univariate modular polynomial equations modulo a
positive integer M, and another lattice-based method for finding the small roots
of bivariate polynomial equations. The methods are based on finding short vec-
tors in a lattice. We briefly sketch the idea below. More details can be found in
[May03].

Let M be a positive integer, and f(z1,...,zx) be a polynomial with integer
coefficients. Suppose we want to find a small solution (yi, ..., yx) of the modular
equation f(z1,...,z5) =0 (mod M) with the bounds y; < X; fori=1,... k.

The first step is to construct a set G of k-variate polynomial equations such
that, for each ¢; € G with ¢ = 1,...,k, we have g;(y1,...,yx) = 0 (mod M).

Then we use the coefficient vectors of g;(x1X1,...,2xXg), i =1,...,k, to con-
struct a k-dimensional lattice £. Applying the LLL algorithm to £, we get a
new set H of k polynomial equations h;(x1,...,2%), ¢ = 1,...,k, with integer
coefficients such that h;(y1,...,yx) = 0 (mod M). The following result shows
that one can get h;(y1,...,yx) = 0 over the integers in some cases, where
for h(zy,...,zk) = D25 i ai,.i, ot -2, the Euclidean norm is defined by
A1, mi)ll =2, O

Theorem 2 (Howgrave-Graham [HG97]). Let h(x1,...,zx) € Z[z1,. .., zk]
be a polynomial with at most w monomials. Let M be a positive integer. If there
exist k integers (y1,...,yx) satisfying the following two conditions:

1. h(y1,---,yx) = 0 (mod M), and there exist k positive integers Xy, ..., Xg
such that |y1| < Xi1,..., |yk] < X,

2. |h(z1 X1, ..., 2 Xi)|| < %,

then h(y1,...,yx) = 0 holds over the integers.
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From Theorem we can obtain the vectors vq,va, ..., vk in the LLL reduced
basis of £. This yields k integer polynomials hy(x1,...,x%), ..., he(z1,. .., Tk),
all of which share the desired solution (y1,...,yr), that is h;(y1,...,yx) = 0
(mod M) fori=1,...,k.

To combine Theorem [T] and Theorem [2] for i = k, we set

27T det (L) THT < — .
dim(£)

Ultimately, the attainment of the desired root hinges upon effectively resolv-
ing the system of integer polynomials using either the resultant method or the
Grobner basis approach. However, in order for a Grobner basis computation to
find the common root, the following heuristic assumption needs to hold.

Assumption 1 The k polynomials hi(xy,--- ,xk), i =1,--- |k, that are derived
from the reduced basis of the lattice in the Coppersmith method are algebraically
independent. Equivalently, the common root of the polynomials h;(x1,--- ,x))
can be found by computing the resultant or computing the Grébner basis.

Assumption [1} is often used in connection with Coppersmith’s method in the
multivariate scenario [BD99IMay03/SMITILPZ™16/WQLF18|. Since our attack
in Section [3| relies on Assumption [1} it is heuristic. However, our experiments in
Section [ justify the validity of our attack and show that Assumption [I] perfectly
holds true.

3 Generalized Implicit Factorization Problem

This section presents our analysis of the Generalized Implicit Factorization
Problem (GIFP) in which p; and ps share an amount of consecutive bits at
different positions.

3.1 Description of GIFP

This section proposes the Generalized Implicit Factorization Problem (GIFP),
which concerns the factorization of two m-bit RSA moduli, Ny = piq; and
Ny = pogs, under the implicit hint that the primes p; and py share a specific
number, yn, of consecutive bits.

In contrast to previous studies [FMRIOLPZ™ 16/MR0ISM09a/SMI0|WQLF13],
where the shared bits were assumed to be located at the same positions in p;
and po, the proposed GIFP considers a more general case where the shared bits
can be situated at arbitrary positions.

Definition 3 (GIFP(n,«,7)). Given two n-bit RSA moduli Ny = pi1q1 and
Ny = paqo, where q1 and qo are an-bit, assume that p1 and ps share yn consecu-
tive bits, where the shared bits may be located in different positions of p1 and ps.
The Generalized Implicit Factorization Problem (GIFP) asks to factor Ny and
Ns.
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The introduction of GIFP expands the scope of the Implicit Factorization
Problem and presents a more realistic and challenging scenario that can arise in
practical applications. In real-world settings, it is more probable to encounter
situations where the shared location of bits differs between primes. Therefore, it
is essential to develop algorithms and analysis that can handle such cases where
the shared bits are situated at different positions. By considering the Generalized
Implicit Factorization Problem (GIFP), we need to avoid situations where the
system that creates RSA keys lack entropy.

3.2 Algorithm for GIFP

We will show our analysis of the GIFP in this subsection. The main idea
is also to relate the Approximate Common Divisor Problem (ACDP) to the
Implicit Factorization Problem.

Theorem 3. Under Assumption GIFP(n,a,y) can be solved in polynomial

time when
v > 4o (1 — \/&) ,

provided that a4+ v < 1.
Proof. Without loss of generality, we can assume that the starting and ending
positions of the shared bits are known. When these positions are unknown, we

can simply traverse the possible starting positions of the shared bits, which will
just scale the time complexity for the case that we know the position by a factor
O(n?).

Hence, we suppose that p; shares yn-bits from the 8;n-th bit to (81 +v)n-th
bit, and po shares bits from Byn-th bit to (82 + v)n-th bit, where 51 and s are
known with 51 < 85 (see Fig.[l| ). Then we can write

p1 =1 + Mo25m + J622(f31+7)n7 Do = T3 + My252" +$42(ﬁ2+’y)n7

with My < 27, 21 < 261 gy < 208=F0n g0 < 2P g < 2(6=F2)n where
B =1—a—~. From this, we deduce

2(ﬁ2*ﬁ1)np1 — 1:12(52751)” + M02ﬁ2n + x22(62+7)n
= 3312(52—51)" + (p2 — x5 — x42(52+7)n) + 3322(524-’)’)”
= P2 + (1‘12(62761)n — Ig) + (.1‘2 — :174)2(62+W)n.

Then, multiplying by g2, we get
Ny + (212052700 — 33) gy + (g — w4)go22 ™ = 20%2700np, g,
Next, we define the polynomial

fl@,y,2) = @z + 2002 F00y2 4 Ny,
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which shows that (a:12(B2_B1)” — T3, T2 — T4,q2) is a solutions of
f(@,y,2) =0 (mod 20%==F)mp, ).

Let m and t be integers to be optimized later with 0 < ¢ < m. To apply Copper-
smith’s method, we consider a family of polynomials g; ;j(z,y,z) for 0 < i <m
and 0 <j<m—1:

. . m—1i .
9i (2.9, 2) = (W2) (. 2)" (20 00m) 7 N0,
These polynomials satisfy
Gi.j (9612(52_51)” - T3,T2 — $47(J2)

= (z9 — x4>jq% (2(52—51)np1q2) (2(52-51)”) B N{nax(t*iﬁ)

= (w9 — za) gy g0 (2<52*ﬁ1)")mpi“ax(t_i’o)“

=0 (mod (2(’62_’61)”)mp§).
On the other hand, we have
‘9:12@27&)" - Ig’ < max (x12(’82761)",:c3)

< max (2[31“2(52—51%7 Qﬂm)

- 252n,

and
|xe — x4| < max(xo,x4) = 2(B=Bu)n

Also, we have go = 2?". We then set
X =20y =20=fun_ 7 _ gan,

To reduce the determinant of the lattice, we introduce a new variable w for po,
and multiply the polynomials g; ;(z,y, z) by a power w® for some s that will be
optimized later. Similar to ¢, we also require 0 < s <m

Note that we can replace zw in g; j(z,y, 2)w® by No. We want to eliminate
this multiple. Since ged(Na,2N;) = 1, there exists an inverse of Ny, denoted

as Ny ', such that NoNy ' =1 (mod (Q(ﬁZ*ﬁl)”)me). We then eliminate

(zw)™in(:749) from the original polynomial by multiplying it by N, min(s,¢+7)

(mod (2(52_*’31)”)m Nlt), while ensuring that the resulting polynomial evalua-
tion is still a multiple of (2(62_61 )")m p!. By selecting the appropriate parameter
s, we aim to reduce the determinant of the lattice. To this end, we consider a
new family of polynomials G, ;(z,y,z,w) for 0 <i<mand 0 <j<m—1i:

G,y 2w) = (g2 0" flyy, 2)" (2070 ) T Nt n0) g minGe )

)
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where Ny min(s,149) i computed modulo (2(52’51)”)7” N?t, and each term zw is
replaced by No. For example, suppose s > 1, then

m
GO,l(xvyasz) = yw871N2 (Q(ﬂziﬂl)n> Nsz_l

Next, consider the lattice £ spanned by the matrix B whose rows are the
coefficients of the polynomials G; ;(Xz,Yy, Zz, Ww) where, for 0 < i < m,
0 < j < m—1i, The rows are ordered following the rule that G; ; < Gy j» if i <’
orif i =i and j < j'. The columns are ordered following the monomials so that
iyl it min(s,ig) s —min(s,itg) g gi’yd o345 —min(sd'+5) s —min(s,i'+5) if § < 4
or if i = 4’ and j < j'. Table [2| presents a matrix B with m =3, s =2, t = 2
where * represents a nonzero term.

[ci [ =2 yw uZ e zw Ty wyZz [ @2 [ 2Zyz |25z ]
Go,0|[W2M3INT 0 0 0 0 0 0 0 0 0
Go,1 0 ywM3N2 0 0 0 0 0 0 0 0
Go,2 0 0 y2m3NE 0 0 0 0 0 0 0
Go,3 0 0 0 y3zM3N? 0 0 0 0 0 0
Gi,0 * * 0 0 XWM2N;y 0 0 0 0 0
G1,1 0 * * 0 0 XY M2N; 0 0 0 0
Gi,2 0 0 * * 0 0 Xv2zM2Ny| © 0 0
Ga0 * * * 0 * x 0 x2Mm 0 0
Ga1 0 * * * 0 * * 0 [x2vzM| o
G3 o * * * * * * * * * x3z

Table 2: The matrix of the lattice with m =3, s = 2, t = 2 and M = 2(F2—F1)n,

By construction, the square matrix B is left triangular. Hence, the dimension
of the lattice is

|
.

-3

K2

m m
=07

1:Z(m—i+1):%(m+1)(m+2)
=0

K3

Il
o

and its determinant is

det(B) = det(L) = XXy zezyew 2f2—Bune yen
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with
m o m-— ) 1
eX:Z z:Em(m—Fl)(m—FZ),
=0 j=0
m m-— ) 1
ey =303 5= sm(m - 1)(m+2).
=0 j=0
ez =Y Y (i+j—min(s,i+j))
=0 j=0
1 1 1
= gm(m +1)(m+2)+ 68(8 +1)(s+2) - is(m +1)(m +2),
ew :Z (s —min(s,i+j)) = %s(s+1)(s+2),
i=0 j=0
t m—i 1
eN = (t—i)zat(t+1)(3m—t+4),
=0 j=0
m m-—1 1
em = (m—i):§m(m+1)(m—|—2).
=0 j=0

The former results are detailed in Appendix [A] To combine Theorem [I] and
Theorem [2] we set

(2(52*51)71)7” pﬁ

\/a b

w(w—1) 1
PEICER =) det(ﬁ) PES EAPY
with ¢ = 2. Then

1 wm
det(L) < ———— (2(F2=Fun e
et(£) < sz )

and

Xexyey gezyyew g(Ba=Bnen Nen (202=0m) e ()

1
2T w

Next, we set s = om with 0 < o < 1,¢t = 7m with 0 < 7 < 1, and we use
N~ 2" py 20— x — 9fen y — 9(B=Fuin 7 — gan 7 = 9(l—a)n gnd the
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most significant parts of ex, ey, ez, ew, en, ey as

1

ex = ém?’ + 0(m3) ,
ey = émg‘ +o (m3) ,
ez = %m?’ +gotm? = som® + o0 (m),
ew = %a3m3 +o0 (m3) )
ey = é72<3 —7)md + o (m?),
ent = gm? 4o (m?)
Similarly, we use
mw = %m?’ +0(m?).

Then, after taking logarithms, dividing by nm?, and neglecting the very small
terms, i.e., 0 (m?’)7 the inequality implies

S8+ (8B + a5 + 50" = 30) + 5ot (- @)+ 3 (B2 — B1) + 5723 - 7)
< 5B+ 31—

Using 8 = 1 — a — =, the former inequality is equivalent to
B-71)-31-a)T4+0%—3a0+1—v+a<0.
The left side is optimized for 79 = 1 — y/a and 0¢ = v/, which gives
3a—2av/a—1—-2av/a+1+a—v<0,

and finally
v >da(1-Va).

By Assumption we can get (g, Yo, 20) = (212072 7P — 5 29 — 24, ¢o), SO We
have g2 = 29, and we calculate
Ny
p2 = —-.
a2

Next, we have

Q(ﬁQ*ﬁl)npl = po+ (1.12([32*[31)” —3)+ (19— x4)2(52+7)n = patyo+ 202(’32+7)n.

Therefore, we can calculate p; and ¢; = %. This terminates the proof. a
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4 Experimental Results

We provide some experiments to verify Assumption [If and the correctness of
our analysis. We provide an efficient open source implementation of our algo-
rithm for identifying ideal lattices in SageMath. The source code is available at:
https://github.com/fffmath/gifp.

The experiments were run on a computer configured with AMD Ryzen 5
2500U with Radeon Vega Mobile Gfx (2.00 GHz). We selected the parameter
n = log(N) using gradients, validated our theory starting from small-scale ex-
periments, and continually increased the scale of our experiments. The results
are presented in Table

n an fBn Bin Ban yn m dim(L) Time for LLL(s) Time for Grobner Basis(s)

200 20 40 20 30 140 6 28 1.8620 0.0033
500 50 100 50 75 350 6 28 3.1158 0.0043
500 50 150 50 75 300 6 28 4.23898 0.0048
1000 100 200 100 150 700 6 28 8.2277 0.0147

Table 3: Some experimental results for the GIFP.

As can be seen from Table [3] we chose various values of n, an, fn, Bin,
Bon and yn to investigate the behavior of our proposed algorithm. For each set
of parameters, we recorded the time taken by the LLL algorithm and Grébner
basis algorithm to solve the Generalized Integer Factorization Problem (GIFP).

It is important to note that our paper introduces a new variable, 'w’, to
eliminate some ’z’. Introducing multiple variables may intuitively make it more
challenging to satisfy Assumption [I} However, in practice, it is not necessary to
satisfy Assumption [I| to find the desired 'p’ and ’q’.

For example, we usually yield yz — C' = 0 for some constant C. Then we can
calculate zg by zo = g2 = ged(yozo, N2) = ged(C, N2).

At the same time, if we abandon the introduction of 'w’, the corresponding
bound changes from v > 4a(l — y/a) to v > 2a(2 — /). Even with only three
variables in this case, we can still find 'p’ and ’q’ without satisfying Assumption I}

As the size of the problem increases, the computation time for LLL and
Grobner basis algorithms also increases. Nevertheless, our algorithm’s time com-
plexity grows moderately compared to the problem size. Therefore, we can con-
clude that our algorithm is suitable for practical applications in the Generalized
Integer Factorization Problem (GIFP).

Besides the Generalized Implicit Factoring Problem, we also conducted ex-
periments on a special case, called the least-most significant bits case (LMSBs).
This case is characterized by 81 = 0 and 2 = . The results of these experiments
are outlined below.
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n an fn yn m dim(L) Time for LLL(s) Time for Grébner Basis(s)

256 25 75 156 5 21 1.3068 0.0029
256 25 75 156 5 21 1.2325 0.0023
256 25 75 156 6 21 1.2931 0.0023
512 50 150 212 6 28 2.0612 0.0028
512 50 150 212 6 28 2.4889 0.0086
512 50 150212 6 28 2.0193 0.0022

Table 4: Some experimental results for the LMSBs case.

5 Conclusion and Open Problem

In this paper, we considered the Generalized Implicit Factoring Problem
(GIFP), where the shared bits are not necessarily required to be located at the
same positions. We proposed a lattice-based algorithm that can efficiently factor
two RSA moduli, Ny = piq1 and Ny = poqe, in polynomial time, when the
primes share a sufficient number of bits.

Our analysis shows that if p; and ps share yn > 4a (1 — /a)n consecutive
bits, not necessarily at the same positions, then N7 and N5 can be factored in
polynomial time. However, this bound is valid when p; and ¢;, ¢ = 1,2, are not
assumed to have the same bit length, i.e., Ny and N5 are unbalanced moduli
INA14].

So our work raises an open question on improving the bound 4a (1 — \/a),
which would lead to better bounds for specific cases such as sharing some middle
bits. It is known that the unshared bits in the Most Significant Bits (MSBs) or the
Least Significant Bits (LSBs) are continuous, and only one variable is required
when using variables to represent the unshared bits. This makes the MSBs or
LSBs case easier to solve than the generalized case and achieves a better bound
of 2a (1 — a). However, the bound of the MSBs is not linear with the bound of
the GIFP, which is unnatural. We hope that the gap between the bounds of the
MSBs or LSBs and the GIFP case can be reduced.
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A Detalils of calculations in Section 3.2

In this appendix, we present the details of calculations for the quantities ey,
ey, ez, ew, en, and eps used in Section 3.2. We begin by a lemma that will be
easily proven by induction. This lemma is well-known and can be found in many
textbooks and references on combinatorics and discrete mathematics, such as
Table 174 on page 174 in [GKP94].

Lemma 1. The equation Y., (;) = ("'3"1) holds for any integer n.

Moving on, we provide the calculations for ex as:

The calculation of ey is the same as ex.
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Next, we provide the calculation for ez:

Z_(z + 7 — min(s,i + 7))
7=0

1=0
:Z 7max{i+j—870}
i=0 j=0
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Furthermore, we provide the calculation for ey:

t m—1i t

Z (t —1) Zt—i)(m—i—|—1):Z(t—i)(m+2—i—l)

:(m+2)§(t—i)—§(t—i)(i+l):(m+2)(“2—1> ;tz—i-l +§zz+1
1 t+2 Lofi+1 t+1 t+2 t+2
IR R CURMCURCO Y

- %t(t S 1)(Bm—t+4).

Finally, we provide the calculation for ey;:

eM:Z _(m—i):Z( —i+1)( ZZ( _Z+1>
=0 j=0 =0 =0
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