
AprèsSQI: Extra Fast Verification for SQIsign
Using Extension-Field Signing

Maria Corte-Real Santos1, Jonathan Komada Eriksen2,
Michael Meyer3, and Krijn Reijnders4

1 University College London
maria.santos.20@ucl.ac.uk

2 Norwegian University of Science and Technology
jonathan.k.eriksen@ntnu.no

3 University of Regensburg, Germany
michael@random-oracles.org

4 Radboud University, Nijmegen, The Netherlands
krijn@cs.ru.nl

Abstract. We optimise the verification of the SQIsign signature scheme.
By using field extensions in the signing procedure, we are able to signif-
icantly increase the amount of available rational 2-power torsion in ver-
ification, which achieves a significant speed-up. This, moreover, allows
several other speed-ups on the level of curve arithmetic. We show that
the synergy between these high-level and low-level improvements gives
significant improvements, making verification 2.07 times faster, or up to
3.41 times when using size-speed trade-offs, compared to the state of the
art, without majorly degrading the performance of signing.

Keywords: post-quantum cryptography, isogenies, SQIsign, verification

1 Introduction

Research has shown that large-scale quantum computers will break current
public-key cryptography, such as RSA or ECC, whose security relies on the
hardness of integer factorization or the discrete logarithm, respectively [36].
Post-quantum cryptography seeks to thwart the threat of quantum computers
by developing cryptographic primitives based on alternative mathematical prob-
lems that cannot be solved efficiently by quantum computers. In recent years,
lattice-based cryptography has developed successful post-quantum schemes for
essential primitives such as key encapsulation mechanisms (KEMs) and digital

Work by the researchers formerly known as SICQ.
Author list in alphabetical order; see https://www.ams.org/profession/leaders/

CultureStatement04.pdf. This work has been supported by UK EPSRC grant
EP/S022503/1 and by the German Federal Ministry of Education and Research
(BMBF) under the project 6G-RIC (ID 16KISK033).

Date of this document: 2024-03-05.

https://post-quantum-crypto.com
https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

signatures that will be standardized by NIST. Lattice-based signatures are able
to provide fast signing and verification, but have to resort to larger key and
signature sizes than were previously acceptable in pre-quantum signatures. For
applications where the amount of data transmitted is crucial, these lattice-based
schemes may not be a practical option. NIST is therefore looking for other dig-
ital signature schemes with properties such as smaller combined public key and
signature sizes to ensure a smooth transition to a post-quantum world [39].

A potential solution to this problem is provided by the sole isogeny-based
candidate in NIST’s new call for signatures – SQIsign [21] – as it is currently the
candidate that comes closest to the data sizes transmitted (i.e. the combined size
of the signature and the public key) in pre-quantum elliptic curve signatures [28,
29]. SQIsign is most interesting in scenarios that require small signature sizes
and fast verification, particularly in those applications where the performance
of signing is not the main concern. A few common examples include long-term
signatures, specifically public-key certificates, code updates for small devices,
authenticated communication with embedded devices or other microcontrollers
that solely run verification, and smart cards. For such use cases it is imperative
to bring down the cost of verification as much as possible.

Performance bottlenecks in SQIsign. The bottleneck of verification in
SQIsign is the computation of an isogeny of fixed degree 2e with e ≈ (15/4) log(p),
where p denotes the prime one is working over, e.g. log(p) ≈ 256 for NIST Level
I security. However, the rational 2-power torsion, from here on denoted as the
2•-torsion, is limited, since we work with supersingular elliptic curves over Fp2

of order (p + 1)2 and (p − 1)2. This sets a theoretical limit of 2log p for the 2•-
torsion. Therefore, the verifier needs to perform several blocks of degree 2• to
complete the full 2e-isogeny, where each of these blocks involves costly steps such
as computing a 2•-torsion basis or isogeny kernel generator. Hence, in general,
a smaller number of blocks improves the performance of verification.

On the other hand, the bottleneck in signing is the computation of several
T -isogenies for odd smooth T ≈ p5/4. Current implementations of SQIsign there-
fore require T | (p − 1)(p + 1), such that Fp2-rational points are available for
efficient T -isogeny computations. The performance of this step is dominated by
the smoothness of T , i.e., its largest prime factor.

While this additional divisibility requirement theoretically limits the maximal
2•-torsion to roughly p3/4, current techniques for finding SQIsign-friendly primes
suggest that achieving this with acceptable smoothness of T is infeasible [10, 12,
14, 18, 21]. In particular, the NIST submission of SQIsign uses a prime with
rational 275-torsion and 1973 as largest factor of T . Since e ≈ (15/4) ·256 = 960,
this means that the verifier has to perform ⌈e/75⌉ = 13 costly isogeny blocks.
Increasing the 2•-torsion further is difficult as it decreases the probability of
finding a smooth and large enough T for current implementations of SQIsign.

Our contributions. In this work, we deploy a range of techniques to increase
the 2•-torsion and push the SQIsign verification cost far below the state of the art.

2

Alongside these technical contributions, we aim to give an accessible description
of SQIsign, focusing primarily on verification, which solely uses elliptic curves
and isogenies and does not require knowledge of quaternion algebras.

Even though we target faster verification, our main contribution is signing
with field extensions. From this, we get a much weaker requirement on the prime
p, which in turn enables us to increase the size of the 2•-torsion.

Focusing on NIST Level I security, we study the range of possible 2•-torsion
to its theoretical maximum, and measure how its size correlates to verification
time through an implementation that uses an equivalent to the number of field
multiplications as cost metric. Compared to the state of the art, increasing the
2•-torsion alone makes verification almost 1.7 times faster. Further, we imple-
ment the new signing procedure as proof-of-concept in SageMath and show that
signing times when signing with field extensions are in the same order of mag-
nitude as when signing only using operations in Fp2 .

For verification, in addition to implementing some known general techniques
for improvements compared to the reference implementation provided in the
NIST submission of SQIsign, we show that increasing the 2•-torsion also opens
up a range of optimisations that were previously not possible. For instance, large
2•-torsion allows for an improved challenge-isogeny computation and improved
basis and kernel generation. Furthermore, we show that size-speed trade-offs as
first proposed by De Feo, Kohel, Leroux, Petit, and Wesolowski [21] become
especially worthwhile for large 2•-torsion. When pushing the 2•-torsion to its
theoretical maximum, this even allows for uncompressed signatures, leading to
significant speed-ups at the cost of roughly doubling the signature sizes.

For two specific primes with varying values of 2•-torsion, we combine all
these speed-ups, and measure the performance of verification. Compared to the
implementation of the SQIsign NIST submission [12], we reach a speed-up up
to a factor 2.70 at NIST Level I when keeping the signature size of 177 bytes.
When using our size-speed trade-offs, we reach a speed-up by a factor 3.11 for
signatures of 187 bytes, or a factor 4.46 for uncompressed signatures of 322 bytes.
Compared to the state of the art [31], these speed-ups are factors 2.07, 2.38 and
3.41 respectively.

Related work. De Feo, Kohel, Leroux, Petit, and Wesolowski [21] published
the first SQIsign implementation, superseded by the work of De Feo, Leroux,
Longa, and Wesolowski [22]. Subsequently, Lin, Wang, Xu, and Zhao [31] intro-
duced several improvements for this implementation. The NIST submission of
SQIsign [12] features a new implementation that does not rely on any external li-
braries. Since this is the latest and best documented implementation, we will use
it as a baseline for performance comparison, and refer to it as SQIsign (NIST).
Since the implementation by Lin, Wang, Xu, and Zhao [31] is not publicly avail-
able, we included their main improvement for verification in SQIsign (NIST), and
refer to this as SQIsign (LWXZ).

Dartois, Leroux, Robert, and Wesolowski [19] recently introduced SQIsignHD,
which massively improves the signing time in SQIsign, in addition to a number of

3

other benefits, but at the cost of a still unknown slowdown in verification. This
could make SQIsignHD an interesting candidate for applications that prioritise
the combined cost of signing and verification over the sole cost of verification.

Recent work by Eriksen, Panny, Sotáková, and Veroni [24] explored the fea-
sibility of computing the Deuring correspondence (see Section 2.2) for general
primes p via using higher extension fields. We apply the same techniques and
tailor them to specialised primes for use in the signing procedure of SQIsign.

Overview. The rest of the paper is organised as follows. Section 2 recalls the
necessary background, including a high-level overview of SQIsign. Section 3 de-
scribes how using field extensions in signing affects the cost and relaxes require-
ments on the prime. Section 4 analyses how the size of the 2•-torsion correlates
to verification time. Section 5 presents optimisations enabled by the increased
2•-torsion, while Section 6 gives further optimisations enabled by increased sig-
nature sizes. Finally, Section 7 gives some example parameters, and measures
their performance compared to the state of the art.

Availability of software. We make our Python and SageMath software pub-
lically available under the MIT licence at

https://github.com/TheSICQ/ApresSQI.

2 Preliminaries

Throughout this paper, p denotes a prime number and Fpk the finite field with
pk elements, where k ∈ Z>0.

2.1 Elliptic curves and their endomorphism rings.

We first give the necessary geometric background to understand the SQIsign
signature scheme. For a more general exposition we refer to Silverman [38].

Isogenies. An isogeny φ : E1 → E2 between two elliptic curves E1, E2 is a
non-constant morphism that sends the identity of E1 to the identity of E2. The
degree d = deg(φ) of an isogeny is its degree as a rational map. If the degree
d of an isogeny φ has the prime factorisation d =

∏n
i=1 ℓ

ei
i , we can decompose

φ into the composition of ei isogenies of degree ℓi for i = 1 to n. For every
isogeny φ : E1 → E2, there is a (unique) dual isogeny φ̂ : E2 → E1 that satisfies
φ̂◦φ = [deg(φ)], the multiplication-by-deg(φ) map on E1. Similarly, φ◦ φ̂ is the
multiplication by deg(φ) on E2.

A separable isogeny is described, up to isomorphism, by its kernel, a group of
order d. Given a kernel G of prime order d, we can compute the corresponding
isogeny ϕ : E → E/G using Vélu’s formulas [41] in Õ(d). Bernstein, De Feo,

Leroux, and Smith [8] showed that this can be asymptotically reduced to Õ(
√
d)

using
√
élu formulas. In Section 2.5, we return to the topic of computing isogenies

and give a more detailed discussion.

4

https://github.com/TheSICQ/ApresSQI

Endomorphism rings. An isogeny from a curve E to itself is called an en-
domorphism. For example, for any integer n, the multiplication-by-n map is
an endomorphism. Another, not necessarily distinct, example for elliptic curves
defined over Fq is the Frobenius endomorphism π : (x, y) 7→ (xq, yq).

The set of endomorphisms End(E) of an elliptic curve E forms a ring under
(pointwise) addition and composition of isogenies. The endomorphism ring of
E/Fp is either isomorphic to an imaginary quadratic order, or to a maximal
order in a quaternion algebra ramified at p and ∞ (which will be defined in
Section 2.2). In the latter case, we say that E is supersingular, and from this
point forward, E will denote a supersingular curve.

Supersingular elliptic curves and their isomorphism classes. We will
mostly consider supersingular elliptic curves up to isomorphism, and thus work
with isomorphism classes of these curves. Throughout, we will exploit the fact
that every isomorphism class of supersingular curves has a model over Fp2 , such
that the p2-power Frobenius π is equal to the multiplication-by-(−p) map. Such
curves E are Fp2-isogenous to curves defined over Fp, and satisfy

E(Fp2k) = E
[
pk − (−1)k

] ∼= Z/
(
pk − (−1)k

)
Z⊕ Z/

(
pk − (−1)k

)
Z, (1)

while their quadratic twist over Fp2k , which we will denote Et
k, satisfies

Et
k(Fp2k) = E

[
pk + (−1)k

] ∼= Z/
(
pk + (−1)k

)
Z⊕ Z/

(
pk + (−1)k

)
Z. (2)

For such curves, for any positive integer N | pk ± 1, the full N -torsion group
E[N] is defined over Fp2k , either on the curve itself, or on its twist.

The isogeny problem. The fundamental hard problem underlying the security
of all isogeny-based primitives is the following: given two elliptic curves E1, E2

defined over Fp2 find an isogeny ϕ : E1 → E2. The best classical attack against

this problem is due to Delfs and Galbraith [23] which runs in time Õ(
√
p), and

quantum attack due to Biasse, Jao, and Sankar [9] that runs in Õ(4
√
p). A related

problem, which will be useful in the context of SQIsign, is the endomorphism
ring problem, which asks, given a supersingular elliptic curve E/Fp2 , to find the
endomorphism ring End(E). Wesolowski [43] showed that this is equivalent to
the isogeny problem under reductions of polynomial expected time, assuming the
generalised Riemann hypothesis, and further, Page and Wesolowski [33] recently
showed that the endomorphism ring problem is equivalent to the problem of
computing one endomorphism.

2.2 Quaternion algebras and the Deuring correspondence

We give the necessary arithmetic background to understand the signing proce-
dure of SQIsign at a high level.5 The heart of the signing procedure in SQIsign

5This section is only necessary for Section 2.3 and Section 3, as all other sections
are concerned only with SQIsign verification, which will only use well-known isogeny
terminology. In contrast, signing heavily relies on the arithmetic of quaternion algebras.

5

lies in the Deuring correspondence, which connects the geometric world of super-
singular curves from Section 2.1 to the arithmetic world of quaternion algebras.
For more details on quaternion algebras, we refer to Voight [42].

Quaternion algebras, orders and ideals. Quaternion algebras are four-
dimensional Q-algebras, generated by four elements 1, i, j, k following certain
multiplication rules. For SQIsign, we work in the quaternion algebra ramified at
p and ∞. When p ≡ 3 (mod 4), one representation of such a quaternion algebra
is given by Bp,∞ = Q+ iQ+ jQ+ kQ with multiplication rules

i2 = −1, j2 = −p, ij = −ji = k.

For an element α = x + yi + zj + wk ∈ Bp,∞ with x, y, z, w ∈ Q, we define its
conjugate to be α = x− yi− zj − wk, and its reduced norm to be n(α) = αα.

We are mainly interested in lattices in Bp,∞, defined as full-rank Z-modules
contained in Bp,∞, i.e., abelian groups of the form

α1Z+ α2Z+ α3Z+ α4Z,

where α1, α2, α3, α4 ∈ Bp,∞ are linearly independent. If a lattice O ⊂ Bp,∞ is
also a subring of Bp,∞, i.e., it contains 1 and is closed under multiplication, then
O is called an order. Orders that are not strictly contained in any other order
are called maximal orders. From this point on, we only consider maximal orders.

A lattice I that is closed under multiplication by an order O on the left is
called a left (resp. right) O-ideal. We refer to O as the left (resp. right) order of
I. When O is the left order of I and O′ the right order of I, we define I to be a
connecting (O,O′)-ideal.6 A left O-ideal I that is also contained in O is called
an integral ideal. From this point on, we only deal with integral left ideals and
simply refer to them as ideals.

The norm of an ideal I is the greatest common divisor of the reduced norms
of the elements of I, whereas the conjugate I of an ideal I is the ideal consisting of
the conjugates of the elements of I. Two ideals I and J are said to be equivalent
if I = Jα for some α ∈ B×p,∞ and is denoted I ∼ J . Equivalent ideals have equal
left orders and isomorphic right orders.

The Deuring correspondence. Given an elliptic curve E with End(E) ∼= O,
there is a one-to-one correspondence between separable isogenies from E and left
O-ideals I of norm coprime to p. Given an isogeny φ, we denote the corresponding
ideal Iφ, and conversely, given an ideal I, we denote the corresponding isogeny
φI . The Deuring correspondence acts like a dictionary: a given isogeny φ : E →
E′ corresponds to an ideal Iφ with left order O ∼= End(E) and right order
O′ ∼= End(E′). Furthermore, the degree of φ is equal to the norm of Iφ and the
dual isogeny φ̂ corresponds to the conjugate Iφ = Iφ̂. Equivalent ideals I, J have
isomorphic right orders and the corresponding isogenies φI , φJ have isomorphic
codomains.

6Note that O and O′ need not be distinct.

6

The (generalised) KLPT algorithm. The KLPT algorithm, introduced by
Kohel, Lauter, Petit, and Tignol [30], is a purely quaternionic algorithm, but has
seen a variety of applications in isogeny-based cryptography due to the Deuring
correspondence. Given an ideal I, KLPT finds an equivalent ideal J of prescribed
norm. The drawback is that the norm of the output J will be comparatively large.

For example, the KLPT algorithm is used to compute isogenies between two
curves of known endomorphism ring. Given two maximal orders O,O′, trans-
lating the standard choice7 of connecting ideal I to its corresponding isogeny
is hard. However, by processing I through KLPT first, we can find an equiva-
lent ideal J of smooth norm, allowing us to compute φJ . This is essential for
computing the response in SQIsign.

The original KLPT algorithm only works for O0-ideals, where O0 is a max-
imal order of a special form.8 This was generalised by De Feo, Kohel, Leroux,
Petit, and Wesolowski [21] to work for arbitrary orders O, albeit at the cost of an
even larger norm bound for the output. Note that SQIsign utilizes both versions.

2.3 SQIsign

Next, we give a high-level description of signing and verification in SQIsign.
SQIsign is a signature scheme based on an underlying Sigma protocol that proves
knowledge of a secret (non-scalar) endomorphism α ∈ End(EA) for some public
curve EA. At its core, the prover shows this knowledge by being able to compute
an isogeny φ from EA to some random curve E2.

A high-level description of the SQIsign Sigma protocol is given below(see also
Figure 1) .

Setup: Fix a prime number p and supersingular elliptic curve E0/Fp2 with
known endomorphism ring.

Key generation: Compute a secret key φA : E0 → EA, giving the prover
knowledge of End(EA), with corresponding public verification key EA.

Commit: The prover generates a random commitment isogeny φcom : E0 → E1,
and sends E1 to the verifier.

Challenge: The verifier computes a random challenge isogeny φchall : E1 → E2,
and sends φchall to the prover.

Response: The prover uses the knowledge of φcom and φchall to compute End(E2),
allowing the prover to compute the response isogeny φresp : EA → E2, by
translating an ideal computed using the generalised KLPT algorithm, as
described at the end of Section 2.2.

The verifier needs to check that φresp is an isogeny from EA to E2.
9 Assuming

the hardness of the endomorphism ring problem, the protocol is sound: if the

7I = NOO′, where N is the smallest integer making I integral.
8Specifically, it only works for special, p-extremal orders. An example of such an

order when p ≡ 3 (mod 4) is End(E0) where j(E0) = 1728.
9Additionally, φ̂chall◦φresp needs to be cyclic. Observe that otherwise, the soundness

proof might return a scalar endomorphism.

7

E0 E1

EA E2

φA

φresp

φchall

φcom

Fig. 1: The SQIsign protocol with three phases: commitment φcom, challenge
φchall, and response φresp.

prover is able to respond to two different challenges φchall, φ′
chall with φresp

and φ′
resp, the prover knows an endomorphism of the public key EA, namely

φ̂′
resp ◦ φ′

chall ◦ φ̂chall ◦ φresp. Proving zero-knowledge is harder and relies on the
output distribution of the generalised KLPT algorithm. Note that KLPT is
needed for computing the response:10 while setting φresp = φchall◦φcom◦φ̂A gives
an isogeny from EA to E2, this leaks the secret φA.

11 For a further discussion
on zero-knowledge, we refer to the original SQIsign articles [21, 22].

Remark 1. The best-known attacks against SQIsign are the generic attacks against
the endomorphism ring problem. As discussed in Section 2.1, their run time de-
pends only on the size of p and, with high probability, do not recover the original
secret isogeny, but rather a different isogeny between the same curves. There-
fore, their complexity should be unaffected by the changes we introduce to the
SQIsign protocol in Section 3, as for these attacks it does not matter whether the
original secret isogeny had kernel points defined over a larger extension field. In
short, the changes in this work do not affect the security of SQIsign.

Verification. Using the Fiat–Shamir heuristic, the SQIsign Sigma protocol is
transformed into a signature scheme. This means that a signature on the message
msg is of the form σ = (φresp, msg, E1). For efficiency, φresp is compressed, and
E1 is replaced by a description of φchall. Thus, given the signature σ and public
key EA, the verifier recomputes the response isogeny φresp : EA → E2 and the
(dual of the) challenge isogeny φ̂chall : E2 → E1, and then verifies that the hash
H(msg, E1) indeed generates φchall.

The isogeny φresp is of degree 2e with e = ⌈ 154 log(p)⌉ + 25 [12, §7.2.3],
where 2e corresponds to the output size of the generalised KLPT algorithm.
The bottleneck in verification is the (re)computation of φresp in ⌈e/f⌉ steps of
size 2f . Accelerating this will be the focus of this paper.

10Alternatively, one can replace the connecting ideal with the shortest equivalent
ideal, and translate it by embedding it in an isogeny between higher-dimensional abelian
varieties, as shown in SQIsignHD [19]

11Further, this is not a valid response, since the composition with φ̂chall is not cyclic.

8

2.4 SQIsign-friendly primes

Next, we give more details on the parameter requirements in SQIsign. We refer to
the original SQIsign works [12, 21, 22] for a detailed description of their origins.

SQIsign prime requirements. The main bottleneck of SQIsign is the compu-
tation of isogenies. Recall from Equations (1) and (2) that, when working with
supersingular elliptic curves E/Fp2 , we have E(Fp2) = E[p ± 1]. Thus, to use
x-only arithmetic over Fp2 , SQIsign restricts to computing isogenies of smooth
degree N | (p2−1). Finding SQIsign-friendly primes reduces to finding primes p,
with p2 − 1 divisible by a large, smooth number. More explicitly, for a security
level λ, the following parameters are needed:

– A prime p of bitsize log2(p) ≈ 2λ with p ≡ 3 mod 4.
– The torsion group E[2f] as large as possible, that is 2f | p+ 1.
– A smooth odd factor T | (p2 − 1) of size roughly p5/4.
– The degree of φcom, Dcom | T , of size roughly 22λ ≈ p.
– The degree of φchall, Dchall | 2fT , of size roughly 2λ ≈ p1/2.
– Coprimality between Dcom and Dchall.

To achieve NIST Level I, III, and V security, we set the security parameter as
λ = 128, 192, 256, respectively. Concretely, this means that, for each of these
security parameters, we have log p ≈ 256, 384, 512, and log T ≈ 320, 480, 640,
with f as large as possible given the above restrictions. The smoothness of T
directly impacts the signing time, and the problem of finding primes p with a
large enough T that is reasonably smooth is difficult. We refer to recent work
on this problem for techniques to find suitable primes [10, 12, 14, 18, 21, 22].

The crucial observation for this work is that T occupies space in p2 − 1 that
limits the size of f , hence current SQIsign primes balance the smoothness of T
with the size of f .

Remark 2. SQIsign (NIST) further requires 3g | p+1 such that Dchall = 2f ·3g ≥
p1/2 and Dchall | p + 1. While this is not a strict requirement in the theoretical
sense, it facilitates efficiency of computing φchall. From this point on, we ensure
that this requirement is always fulfilled.

Remark 3. Since the curves E and their twists Et satisfy

E(Fp2) ∼= Z/(p± 1)Z⊕ Z/(p± 1)Z,

and we work with both simultaneously, choosing T and f is often incorrectly
described as choosing divisors of p2 − 1. There is a subtle issue here: even if 2f

divides p2 − 1, E[2f] may not exist as a subgroup of ⟨E(Fp2), ρ−1(Et(Fp2))⟩ ⊆
E(Fp4), where ρ : E → Et is the twisting isomorphism. While this does not
usually matter in the case of SQIsign (we pick 2f as a divisor of p + 1, and T
is odd), this becomes a problem when working over multiple extension fields. In
Section 3.2, we make this precise and reconcile it using Theorem 1.

9

2.5 Computing rational isogenies from irrational generators

Finally, to facilitate signing with field extensions, we recall the techniques for
computing Fp2-rational isogenies, i.e., isogenies defined over Fp2 , generated by
irrational kernel points, that is, not defined over Fp2 . In the context of this
paper, we again stress that such isogenies will only be computed by the signer;
the verifier will only work with points in Fp2 .

The main computational task of most isogeny-based cryptosystems (includ-
ing SQIsign) lies in evaluating isogenies given the generators of their kernels.
Explicitly, given an elliptic curve E/Fq, a point K ∈ E(Fqk) such that ⟨K⟩ is
defined over Fq,

12 and a list of points (P1, P2, . . . , Pn) in E, we wish to compute
the list of points (φ(P1), φ(P2), . . . , φ(Pn)), where φ is the separable isogeny
with kerφ = ⟨K⟩. Since we work with curves E whose p2-Frobenius π is equal to
the multiplication-by-(−p) map (see Section 2.1), every subgroup of E is closed
under the action of Gal(F̄p2/Fp2), hence every isogeny from E can be made
Fp2-rational, by composing with the appropriate isomorphism.

Computing isogenies of smooth degree. Recall from Section 2.1 that the
isogeny factors as a composition of small prime degree isogenies, which we com-
pute using Vélu-style algorithms. For simplicity, for the rest of the section, we
therefore assume that ⟨K⟩ is a subgroup of order ℓ > 2, where ℓ is a small prime.

At the heart of these Vélu-style isogeny formulas is evaluating the kernel
polynomial. Pick any subset S ⊆ ⟨K⟩ such that ⟨K⟩ = S ⊔−S ⊔ {∞}. Then the
kernel polynomial can be written as

fS(X) =
∏
P∈S

(X − x(P)). (3)

Here, the generator K can be either a rational point, i.e., lying in E(Fq), or an
irrational point, i.e., lying in E(Fqk) for k > 1, but whose group ⟨K⟩ is defined
over Fq. Next, we discuss how to solve the problem efficiently in the latter case.

Irrational generators. For K /∈ E(Fq) of order ℓ, we can speed up the com-
putation of the kernel polynomial using the action of Frobenius. This was used
in two recent works [6, 24], though the general idea was used even earlier [40].

As ⟨K⟩ is defined over Fq, we know that the q-power Frobenius π acts as an
endomorphism on ⟨K⟩ ⊆ E(Fpk) and thus maps K to a multiple [γ]K for some
γ ∈ Z. This fully determines the action on ⟨K⟩, i.e., π|⟨K⟩ acts as P 7→ [γ]P for
all P ∈ ⟨K⟩. For the set S as chosen above, this action descends to an action on
its x-coordinates XS = {x(P) ∈ Fqk | P ∈ S} and thus partitions XS into orbits
{x(P), x([γ]P), x([γ2]P), . . .} of size equal to the order of γ in (Z/ℓZ)×/{1,−1}.

If we pick one representative P ∈ S per orbit, and call this set of points S0, we
can compute the kernel polynomial (3) as a product of the minimal polynomials

12That is, the group ⟨K⟩ is closed under the action of Gal(F̄q/Fq).

10

µx(P) of the x(P) ∈ Fqk for these P ∈ S0, with each µx(P) defined over Fq, as

fS(X) =
∏

P∈S0

µx(P)(X), (4)

where µβ denotes the minimal polynomial of β over Fq.
To compute fS(α) for α ∈ Fq, we only require the smaller polynomial fS0

(X)
and compute NormF

qk
/Fq

(fS0(α)), as

NormF
qk

/Fq
(fS0(α)) =

∏
π∈G

π(fS0(α)) =
∏

P∈S0

∏
π∈G

(α−π(x(P))) =
∏

P∈S0

µx(P)(α),

where G = Gal(Fqk/Fq), as per Banegas, Gilchrist, Le Dévéhat, and Smith [6].
This allows us to compute the image under fS of x-values of points in E(Fq),
but only works for values in Fq. To evaluate fS(α) for general α ∈ Fp, i.e. to
compute the image of a point in E(Fp), we instead use the larger polynomial
fS(X), which we compute, as in Equation (4), as a product of the minimal
polynomials µx(P), where we use Shoup’s algorithm [37] to compute each µx(P)

given x(P). Computing fS(X) requires a total of O(ℓk) + Õ(ℓ) operations, with

k such that each x(P) ∈ Fqk . Evaluation fS at α takes Õ(ℓk′) operations, with
k′ the smallest value such that α ∈ Fqk′ [24, Section 4.3].

Remark 4. The biggest drawback to using this technique is that
√
élu is no

longer effective, as we would need to work in the smallest field where both the
isogeny generator and the x-value of the point we are evaluating are defined in.

3 Signing with extension fields

By allowing torsion T from extension fields, we enable more flexibility in choos-
ing SQIsign primes p, thus enabling a larger 2•-torsion. Such torsion T requires
us to compute rational isogenies with kernel points in extension fields Fp2k . This
section describes how to adapt SQIsign’s signing procedure to enable such isoge-
nies, and the increased cost this incurs. In particular, we describe two approaches
for T : allowing torsion T from a particular extension field Fp2k , or from all ex-
tension fields Fp2n for 1 ≤ n ≤ k. The first approach means that we can look for
T dividing an integer of bit size Θ(k log p), and the second approach allows for
Θ(k2 log p). In Section 4, we explore how increased 2•-torsion affects verification.

Throughout this section, we will reuse the notation from Section 2.4 to de-
scribe the various parameters related to SQIsign.

3.1 Changes in the signing procedure

Recall from Section 2.3 that the signing operation in SQIsign requires us to work
with both elliptic curves and quaternion algebras, and to translate back and
forth between these worlds. Note that the subroutines that work solely with
objects in the quaternion algebra Bp,∞, including all operations in KLPT and

11

Algorithm 1 IdealToIsogenyD(I)

Input: I a left O0-ideal of norm dividing D
Output: φI

1: Compute α such that I = O0⟨α,nrd(I)⟩
2: Let A = [1, i, i+j

2
, 1+k

2
] denote a basis of O0

3: Compute vᾱ := [x1, x2, x3, x4]
T ∈ Z4 such that Avᾱ = ᾱ

4: for ℓe || D do
5: ᾱ|⟨Pℓe ,Qℓe ⟩ := x1I+ x2(i|⟨Pℓe ,Qℓe ⟩) + x3(

i+j
2
|⟨Pℓe ,Qℓe ⟩) + x4(

1+k
2
|⟨Pℓe ,Qℓe ⟩)

6: Let a, b, c, d be integers such that ᾱ|⟨Pℓe ,Qℓe ⟩ =

(
a b
c d

)
7: Kℓe := [a]Pℓe + [c]Qℓe

8: if ord(Kℓe) < ℓe then
9: Kℓe = [b]Pℓe + [d]Qℓe

10: Set φI to be the isogeny generated by the points Kℓe .
11: return φI

its derivatives, are indifferent to what extension fields the relevant torsion groups
lie in. Hence, a large part of signing is unaffected by torsion from extension fields.

In fact, the only subroutines that are affected by moving to extension fields
are those relying on Algorithm 1, IdealToIsogenyD, which translates O0-ideals I
of norm dividing D to their corresponding isogenies φI . IdealToIsogenyD is not
used during verification, and is used only in the following parts of signing:

Commitment: The signer translates a random ideal of norm Dcom to its cor-
responding isogeny, using one execution of IdealToIsogenyDcom

.
Response: The signer translates an ideal of norm 2e to its corresponding isogeny,

requiring 2 · ⌈e/f⌉ executions of IdealToIsogenyT .13

Remark 5. We will choose parameters such that 2f | p+ 1 and Dchall | p+ 1, so
that E[2f] and E[Dchall] are defined over Fp2 . As a result, the verifier only works
in Fp2 and the added complexity of extension fields applies only to the signer.

Adapting ideal-to-isogeny translations to field extensions. To facilitate
signing with field extensions, we slightly adapt IdealToIsogenyD so that it works
with prime powers separately. Note that the additional cost of this is negligible
compared to the cost of computing the isogeny from the generators because find-
ing the action of the relevant endomorphisms consists of simple linear algebra.
See Algorithm 1 for details.

In Line 5 of Algorithm 1, the notation β|⟨Pℓe ,Qℓe ⟩ refers to the action of
an endomorphism β on a fixed basis Pℓe , Qℓe of E[ℓe]. This action is described
by a matrix in M2(Z/ℓeZ). These matrices can be precomputed, hence the only
operations in which the field of definition of E[ℓe] matters are the point additions
in Lines 7 and 9, and isogenies generated by each Kℓe in Line 10.

13The technical details are given by De Feo, Leroux, Longa, and Wesolowski [22].

12

3.2 Increased torsion availability from extension fields

Next, we detail the two approaches to allow torsion groups from extension fields,
which permits more flexibility in choosing the final prime p.

Working with a single field extension of Fp2 . Although the choice of solely
working in Fp2 occurs naturally,14 there is no reason a priori that this choice
is optimal. Instead, we can choose to work in the field Fp2k . We emphasise
that this does not affect signature sizes; the only drawback is that we now
perform more expensive Fp2k -operations during signing in IdealToIsogeny. The
upside, however, is a relaxed prime requirement: we are no longer bound to
E[T] ⊆ ⟨E(Fp2), ρ−1(Et(Fp2))⟩ and can instead use

E[T] ⊆ ⟨E(Fp2k), ρ−1(Et(Fp2k))⟩.

By Equations (1) and (2), we have E(Fp2k) ∼= E[pk ± 1] and Et(Fp2k) ∼=
E[pk ∓ 1], thus we simply get

E[T] ⊆ E

[
p2k − 1

2

]
,

since ⟨E[A], E[B]⟩ = E[lcm(A,B)]. Hence, by using torsion from E(Fp2k), we
increase T | (p2 − 1)/2 to T | (p2k − 1)/2. This implies there are 2(k − 1) log p
more bits available to find T with adequate smoothness.

Working with multiple field extensions of Fp2 . Instead of fixing a single
higher extension field Fp2k , we can also choose to work with multiple field exten-
sions, in particular all fields Fp2n , where 1 ≤ n ≤ k. The torsion group we can
access by this relaxed requirement is described by the following definition.

Definition 1. Let E be a supersingular elliptic curve over Fp2 and let Et
n denote

an arbitrary quadratic twist of E over Fp2n with respect to the twisting isomor-
phism ρn : E → Et

n. We define the k-available torsion of E to be the group
generated by E(Fp2n) and ρ−1

n (Et
n(Fp2n)) for 1 ≤ n ≤ k.

Any point P in the k-available torsion can thus be written as a sum

P =

k∑
i=1

(Pi + ρ−1
n (P t

i))

of points Pi ∈ E(Fp2n) and P t
i ∈ Et

n(Fp2n). Since the twisting isomorphism
keeps the x-coodinate fixed, the computation of this isomorphism can be ignored
when using x-only arithmetic, and we simply obtain a sum of points whose x-
coordinates lie in Fp2n for 1 ≤ n ≤ k. This justifies the name k-available torsion,

14It is the smallest field over which every isomorphism class of supersingular elliptic
curves has a model.

13

as we do not have to go beyond Fp2k to do arithmetic with P by working with
the summands separately.

The structure of the k-available torsion is completely captured by the follow-
ing result.

Theorem 1. Let p > 2 be a prime, and let E/Fp2 be a supersingular curve
with tr(π) = ±2p, where π is the Frobenius endomorphism. Then the k-available
torsion is precisely the group E[N] with

N =

k∏
n=1

Φn(p
2)/2,

where Φn denotes the n-th cyclotomic polynomial.

Lemma 1. For any integer m ≥ 2, we have the following identity

lcm
(
{mn − 1}kn=1

)
=

k∏
n=1

Φn(m)

where Φn denotes the n-th cyclotomic polynomial.

Proof. We denote the left-hand side and right-hand side of the equation in the
statement of the lemma by LHS and RHS, respectively. We show that any prime
power dividing one side, also divides the other.

For any prime ℓ and e > 0, if ℓe divides the LHS, then, by definition, it
divides mi−1 =

∏
d|i Φd(m) for some 1 ≤ i ≤ k. Hence, it also divides the RHS.

Conversely, if ℓe divides the RHS, then ℓe also divides the LHS. To show this,
we need to know when Φi(m) and Φj(m) are coprime. We note that

gcd(Φi(m), Φj(m)) | R

where R is the resultant of Φi(X) and Φj(X), and a classic result by Apostol [2,
Theorem 4.], tells us that

Res(Φi(X), Φj(X)) > 1⇒ i = jm

for i > j and some integer m.
Using this, if ℓe divides the RHS, then it will also divide the product

⌊k/d⌋∏
n=1

Φdn(m),

for some integer d, and this product divides the LHS, as it divides md⌊k/d⌋ − 1.
⊓⊔

We can now conclude the proof of Theorem 1.

14

Proof. From the structure of E(Fp2n) (see Remark 3), where E is as in the
statement, the k-available torsion can be seen as the group generated by the full
torsion groups

E[pn ± 1]

for 1 ≤ n ≤ k. Using the fact that

⟨E[A], E[B]⟩ = E[lcm(A,B)],

we see that the k-available torsion is E[N] where

N = lcm
(
{pn − 1}kn=1 ∪ {pn + 1}kn=1

)
= lcm

(
{p2n − 1}kn=1

)
/2,

where the last equality only holds for p > 2. Applying Lemma 1 with m = p2,
we obtain

N =

n∏
k=1

Φk(p
2)/2,

⊓⊔

We find that using all extension fields Fp2n , for 1 ≤ n ≤ k, increases T | p2 − 1
to T | N , with N as given by Theorem 1. Given that

log(N) =

k∑
n=1

log(Φn(p
2)/2) ≈ 2

k∑
n=1

ϕ(n) log(p),

and the fact that
∑k

n=1 ϕ(n) is in the order of Θ(k2), where ϕ denotes Euler’s
totient function, we find that T | N gives roughly k2 log(p) more bits to find T
with adequate smoothness, compared to the log(p) bits in the classical case of
working over Fp2 , and k log(p) bits in the case of working over Fp2k . Due to this,
we only consider working in multiple field extensions from this point on.

3.3 Cost of signing using extension fields

In SQIsign, operations over Fp2 make up the majority of the cost during sign-
ing [22, Section 5.1]. Hence, we can roughly estimate the cost of signing by ignor-
ing purely quaternionic operations, in which case the bottleneck of the signing
procedure becomes running IdealToIsogenyT as many times as required by the
IdealToIsogenyEichler algorithm [22, Algorithm 5] in the response phase. In other
words, we estimate the total signing cost from the following parameters:

– f , such that 2f | p+ 1.
– T , the chosen torsion to work with.
– For each ℓeii | T , the smallest ki such that E[ℓeii] is defined over Fp2ki .

Since Algorithm 1 works with prime powers separately, we can estimate the cost
of a single execution by considering the cost per prime power.

15

Cost per prime power. For each ℓeii | T , let ki denote the smallest integer so
that E[ℓeii] ⊆ E(Fp2ki), and let M(ki) denote the cost of operations in Fp2ki in
terms of Fp2-operations. Computing the generator Kℓ

ei
i

consists of a few point

additions in E[ℓeii], hence is O(M(k) · e log ℓ), while the cost of computing the
isogeny generated by Kℓ

ei
i

comes from computing e isogenies of degree ℓ at a

cost of O(ℓk) + Õ(ℓ), using the techniques from Section 2.5.

To compute the whole isogeny, we need to push the remaining generators
K

ℓ
ej
j
, through this isogeny. To minimize the total cost, we pick the greedy strat-

egy of always computing the smaller ℓ first. This bounds the cost of evaluating
Kℓe in other isogenies by O(M(k) · ℓ).

Total cost of signing. Based on the analysis above, we let

Costp(ℓ
ei
i) = c1M(ki)e log ℓ+ c2eiℓiki + c3eiℓi log(ℓi) + c4M(ki)ℓ

where ki, and M(k) are as before, and ci are constants corresponding to the
differences in the asymptotic complexities. Since we can estimate the total cost
of executing IdealToIsogenyT by summing the cost of each maximal prime power
divisor of T , and observing that signing consists of executing IdealToIsogenyDcom

one time, and IdealToIsogenyT a total of 2 · ⌈e/f⌉ times, we get a rough cost
estimate of signing as

SigningCostp(T) = (2 · ⌈e/f⌉+ 1) ·
∑
ℓ
ei
i |T

Costp(ℓ
ei
i).

In Section 7, we use this function to pick p and T minimising this cost. While
this cost metric is very rough, we show that our implementation roughly matches
the times predicted by this function. Further, we show that this cost metric
suggests that going to extension fields gives signing times within the same order
of magnitude as staying over Fp2 , even when considering the additional benefit
of using

√
élu to compute isogenies in the latter case.

4 Effect of increased 2•-torsion on verification

In Section 3, we showed that signing with extension fields gives us more flexibility
in choosing the prime p, and, in particular, allows us to find primes with rational
2f -torsion for larger f . In this section, we analyse how such an increase in 2•-
torsion affects the cost of SQIsign verification, e.g., computing φresp and φ̂chall, in
terms of Fp-multiplications,15 taking the SQIsign (NIST) implementation (with
no further optimisations) as the baseline for comparison.

15As standard, we denote multiplications by M, squarings by S, and additions by a.

16

4.1 Detailed description of verification

Before giving an in-depth analysis of verification performance, we give a detailed
description of how verification is executed. Recall that a SQIsign signature σ for
a message msg created by a signer with secret signing key φA : E0 → EA proves
knowledge of an endomorphism on EA by describing an isogeny φresp : EA → E2

of degree 2e(see Figure 1). A given message msg is hashed on E1 to a point Kchall

of order Dchall, hence represents an isogeny φchall : E1 → E2. A signature is valid
if the composition of φresp with φ̂chall is cyclic of degree 2e ·Dchall.

Thus, to verify a signature σ, the verifier must (a) recompute φresp, (b)
compute the dual of φchall, to confirm that both are well-formed, and finally (c)
recompute the hash of the message msg to confirm the validity of the signature.

In SQIsign, the size of the sample space for φchall impacts soundness, a key
security property for signature schemes. In SQIsign (NIST), to obtain negligible
soundness error (in the security parameter λ) the message is hashed to an isogeny
of degree Dchall = 2f · 3g so that the size of cyclic isogenies of degree Dchall is
larger than 2λ. In contrast, when f ≥ λ, we can simply set Dchall = 2λ.

The signature σ consists of a compressed description of the isogenies φresp

and φ̂chall. For f < λ and Dchall = 2f · 3g it is of the form

σ = (b, s(1), . . . , s(n), r, b2, s2, b3, s3)

with s(j), s2 ∈ Z/2fZ, s3 ∈ Z/3gZ, r ∈ Z/2f3gZ, and b, b2, b3 ∈ {0, 1}. If f ≥ λ,
we set Dchall = 2f and have s2 ∈ Z/2λZ and r ∈ Z/2fZ, while b3, s3 are omitted.
Algorithmically, the verification process mostly requires three subroutines.

FindBasis: Given a curve E, find a deterministic basis (P,Q) of E[2f].
FindKernel: Given a curve E with basis (P,Q) for E[2f] and s ∈ Z/2fZ, compute

the kernel generator K = P + [s]Q.
ComputeIsogeny: Given a curve E and a kernel generatorK, compute the isogeny

φ : E → E/⟨K⟩ and φ(Q) for some Q ∈ E.

Below we detail each of the three verification steps (a)-(c).

Step (a). Computing φresp is split up into n − 1 blocks φ(j) : E(j) → E(j+1)

of size 2f , and a last block of size 2f0 , where f0 = e − (n − 1) · f . For every
φ(j), the kernel ⟨K(j)⟩ is given by the generator K(j) = P (j) + [s(j)]Q(j) for a
deterministic basis (P (j), Q(j)) of E(j)[2f].

In the first block, after sampling (P (1), Q(1)) via FindBasis, the bit b indi-
cates whether P (1) and Q(1) have to be swapped before running FindKernel. For
the following blocks, the verifier pushes Q(j) through the isogeny φ(j) to get
a point Q(j+1) ← φ(j)(Q(j)) on E(j+1) of order 2f above (0, 0).16 Hence, for
j > 1 FindBasis only needs to find a suitable point P (j) to complete the basis
(P (j), Q(j)). Furthermore, K(j) is never above (0, 0) for j > 1, which ensures
cyclicity when composing φ(j) with φ(i−1). In all cases we use s(j) from σ to
compute the kernel generator K(j) via FindKernel and φ(j) via ComputeIsogeny.

16A point P is said to be above a point R if [k]P = R for some k ∈ N.

17

The last block of degree 2f0 uses Q(n) ← [2f−f0]φ(n−1)(Q(n−1)) and samples
another point P (n) as basis of E(n)[2f0]. In the following, we will often assume
f0 = f for the sake of simplicity.17 An algorithmic description of a single block
of SQIsign (NIST) is given in Algorithm 2 in Appendix B.

Step (b). Computing φ̂chall requires a single isogeny of smooth degree Dchall ≈
2λ. For the primes given in SQIsign (NIST), we have E2[Dchall] ⊆ E2(Fp2). Thus,
we compute φchall by deterministically computing a basis (P,Q) for E2[Dchall]
and finding the kernel ⟨K⟩ for φ̂chall : E2 → E1. For f < λ, we have Dchall =
2f · 3g, and split this process into two parts.

Given the basis (P,Q) for E2[Dchall], we compute (P2, Q2) = ([3g]P, [3g]Q)
as basis of E2[2

f], and use K2 = P2+[s2]Q2, where b2 indicates whether P2 and
Q2 have to be swapped prior to computing K2. We compute φ2 : E2 → E′

2 with
kernel ⟨K2⟩, and P3 = [2f]φ2(P) and Q3 = [2f]φ3(Q) form a basis of E′

2[3
g].

Then b3 indicates a potential swap of P3 and Q3, while K3 = P3 + [s3]Q3 is the
kernel generator of the isogeny φ3 : E′

2 → E1. Thus, we have φ̂chall = φ3 ◦φ2. If
f ≥ λ, we require only the first step.

We furthermore verify that the composition of φresp and φ̂chall is cyclic, by
checking that the first 2-isogeny step of φ2 does not revert the last 2-isogeny
step of φ(n). This guarantees that φ̂chall ◦φresp is non-backtracking, hence cyclic.

Step (c). On E1, the verifier uses the point Q′ ← φ̂chall(Q
′), where Q′ is some

(deterministically generated) point, linearly independent from the generator of
φ̂chall, and r (given in σ) to compute [r]Q′, and checks if [r]Q′ matches the
hashed point Kchall = H(msg, E1) with hash function H.

4.2 Impact of large f on verification

The techniques of Section 3 extend the possible range of f to any size below
log(p). This gives two benefits to the cost of verification, especially when f ≥ λ.

Number of blocks in φresp. The larger f is, the fewer blocks of size 2f are
performed in Step (a). Per block, the dominating part of the cost are FindBasis
and FindKernel as we first need to complete the torsion basis (P (j), Q(j)) for
E(j)[2f] (given Q(j) if j > 1), followed by computing K(j) = P (j)+[s(j)]Q(j). By
minimizing the number of blocks n, we minimize the amount of times we perform
FindBasis and FindKernel, and the cost of each individual FindKernel only mildly
increases, as s(j) increases in size. The overall cost of ComputeIsogeny, that is,
performing the n isogenies of degree 2f given their kernels K(j), only moderately
increases with growing f .

We further note that larger f requires fewer T -isogeny computations for the
signer, hence signing performance also benefits from smaller n.

17In contrast to earlier versions, SQIsign (NIST) fixes f0 = f . However, our analysis
benefits from allowing f0 < f .

18

Challenge isogeny. When f ≥ λ, we can simply set Dchall = 2λ, which has
two main benefits.

– The cost of FindBasis for this step is reduced as finding a basis for E[2λ] is
much easier than a basis search for E[2f · 3g].

– The cost for ComputeIsogeny for φchall decreases as we only have to compute
a chain of 2-isogenies instead of additional 3-isogenies.

4.3 Implementation and benchmark of cost in Fp-multiplications

To measure the influence of the size of f on the performance, we implemented
SQIsign verification for the NIST Level I security parameter set in Python, closely
following SQIsign (NIST). As is standard in isogeny-based schemes, we use x-
only arithmetic and represent points and curve coefficients projectively. The
benchmark counts Fp-operations and uses a cost metric that allows us to estimate
the runtime of real-world implementations for 256-bit primes p(f), where p(f)

denotes a prime such that 2f divides p(f) +1. We benchmark primes p(f) for all
values 50 ≤ f ≤ 250. These results serve as a baseline to which we compare the
optimisations that we introduce in Sections 5 and 6.

We briefly outline how SQIsign (NIST) implements the three subroutines
FindBasis, FindKernel, and ComputeIsogeny.

FindBasis. We search for points of order 2f by sampling x-coordinates in a
specified order,18 and check if the corresponding point P lies on E (and not on
its twist Et). We then compute P ← [p+1

2f
]P and verify that [2f−1]P ̸=∞. Given

two points P,Q ∈ E of order 2f , we verify linear independence by checking that
[2f−1]P ̸= [2f−1]Q, and discard and re-sample the second point otherwise.

FindKernel. Given a basis (P,Q), FindKernel computes K = P + [s]Q via the
3ptLadder algorithm as used in SIKE [27]. In addition to the x-coordinates xP

and xQ of P and Q, it requires the x-coordinate xP−Q of P − Q. Hence, after
running FindBasis, we further compute xP−Q as described in SQIsign (NIST) [12].

ComputeIsogeny. Given a kernel generator K of order 2f , ComputeIsogeny fol-
lows the approach of SIKE [27], and computes the 2f -isogeny φ(j) as a chain
of 4-isogenies for efficiency reasons. If f is odd, we further compute a single
2-isogeny. Following SQIsign (NIST), ComputeIsogeny proceeds as follows:

1. Compute R = [2f−2]K and the corresponding 4-isogeny φ with kernel ⟨R⟩.
Note that the point (0, 0) might be contained in ⟨R⟩ for the first block in
φresp, which requires a special 4-isogeny formula. Thus, we check if this is
the case and call the suitable 4-isogeny function. We set K ← φ(K).

18SQIsign (NIST) fixes the sequence xk = 1 + k · i with i ∈ Fp2 such that i2 = −1
and picks the smallest k for which we find a suitable point.

19

2. If f is odd, we compute R = [2f−3]K, the 2-isogeny φ with kernel ⟨R⟩, and
K ← φ(K).

3. Compute the remaining isogeny of degree 2f
′
with even f ′ as a chain of

4-isogenies, where (0, 0) is guaranteed not to lie in any of the kernels.

In the last step, SQIsign (NIST) uses optimal strategies as in SIKE [27] to com-
pute a chain of 4-isogenies. Naive multiplicative strategies would compute R =
[2f

′−2j]K, the 4-isogeny φ with kernel ⟨R⟩, and K ← φ(K) for j = 1, . . . , f ′/2.
However, this strategy is dominated by costly doublings. Instead, we can save
intermediate multiples of K during the computation of R = [2f

′−2j]K, and push
them through isogenies to save multiplicative effort in following iterations. Opti-
mal strategies that determine which multiples are pushed through isogenies and
minimise the cost can be found efficiently [20, 27].

We note that for f < λ the computation of φ̂chall requires small adapta-
tions to these algorithms to allow for finding a basis of E[Dchall] and comput-
ing 3-isogenies. Most notably, SQIsign (NIST) does not use optimised formulas
or optimal strategies for 3-isogenies from SIKE [27], but uses a multiplicative
strategy and general odd-degree isogeny formulas [16, 32]. We slightly deviate
from SQIsign (NIST) by implementing optimised 3-isogeny formulas, but note
that the performance difference is minor and in favor of SQIsign (NIST).

Cost metric. In implementations, Fp2 -operations usually call underlying Fp-
operations. We follow this approach and use the total number of Fp-operations
in our benchmarks. As cost metric, we express these operations in terms of Fp-
multiplications, with S = 0.8 ·M, ignoring Fp-additions and subtractions due to
their small impact on performance. Fp-inversions, Fp-square roots, and Legendre
symbols over Fp require exponentiations by an exponent in the range of p, hence
we count their cost as log p Fp-multiplications. In contrast to measuring clock
cycles of an optimised implementation, our cost metric eliminates the dependence
on the level of optimisation of finite field arithmetic and the specific device
running SQIsign, hence, can be considered more general.

Benchmark results. Figure 2 shows the verification cost for the NIST Level
I-sized primes p(f) for 50 ≤ f ≤ 250, fixing e = 975, using our cost metric. For
more efficient benchmarking, we sample random public key curves and signatures
σ of the correct form instead of signatures generated by the SQIsign signing
procedure.

The graph shows the improvement for f ≥ 128. Furthermore, we can de-
tect when the number of blocks n decreases solely from the graph (e.g. f =
122, 140, 163, 195, 244). The cost of sampling a 2f -torsion basis is highly variable
between different runs for the same prime, which is visible from the oscillations
of the graph. The performance for odd f is worse in general due to the inefficient
integration of the 2-isogeny, which explains the zigzag-shaped graph.

From the above observations, we conclude that f ≥ λ is significantly faster
for verification, with local optima found at f = 195 and f = 244, due to those
being (almost) exact divisors of the signing length e = 975.

20

50 75 100 125 150 175 200 225 250
0

200

400

600
·103

f

C
o
st

Fig. 2: Cost in Fp-multiplications for verification at NIST Level I security, for
varying f and p(f), averaged over 1024 runs per prime. The green vertical lines
mark f = 75 as used in SQIsign (NIST) for signing without extension fields, and
f = λ = 128, beyond which we can set Dchall = 2λ. The dotted graph beyond
f = 75 is only accessible when signing with extension fields.

Remark 6. The average cost of FindBasis differs significantly between primes p
even if they share the same 2f -torsion. This happens because SQIsign (NIST)
finds basis points from a pre-determined sequence [x1, x2, x3, . . .] with xj ∈ Fp2 .
As we will see in Section 5, these xj values can not be considered random: some
values xj are certain to be above a point of order 2f , while others are certain
not to be, for any supersingular curve over p.

5 Optimisations for verification

In this section, we show how the improvements from Section 3 that increase f
beyond λ together with the analysis in Section 4 allow several other optimisations
that improve the verification time of SQIsign in practice. Whereas the techniques
in Section 3 allow us to decrease the number of blocks, in this section, we focus
on the operations occurring within blocks. We optimise the cost of FindBasis,
FindKernel and ComputeIsogeny.

We first analyse the properties of points that have full 2f -torsion, and use
these properties to improve FindBasis and FindKernel for general f . We then
describe several techniques specifically for f ≥ λ. Altogether, these optimisa-
tions significantly change the implementation of verification in comparison to
SQIsign (NIST). We remark that the implementation of the signing procedure
must be altered accordingly, as exhibited by our implementation.

21

Notation. As we mostly focus on the subroutines within a specific block E(j) →
E(j+1), we will omit the superscripts in E(j),K(j), P (j), . . . and write E,K,P, . . .
to simplify notation.

For reference throughout this section, the pseudocode for a single block in
the verification procedure of SQIsign (NIST) and of our optimised variant is in
Appendix B as Algorithm 2 and Algorithm 3, respectively.

5.1 Basis generation for full 2-power torsion

We first give a general result on points having full 2f -torsion that we will use
throughout this section. This theorem generalises previous results [17, 31] and
will set the scene for easier and more efficient basis generation for E[2f].

Theorem 2. Let E : y2 = (x − λ1)(x − λ2)(x − λ3) be an elliptic curve over
Fp2 with E[2f] ⊆ E(Fp2) the full 2-power torsion. Let Li = (λi, 0) denote the
points of order 2 and [2]E denote the image of E under [2] : P 7→ P +P so that
E \ [2]E are the points with full 2f -torsion. Then

Q ∈ [2]E if and only if xQ − λi is square for i = 1, 2, 3.

More specifically, for Q ∈ E \ [2]E, Q is above Li if and only if xQ−λi is square
and xQ − λj is non-square for j ̸= i.

Proof. It is well-known that Q = (x, y) ∈ [2]E if and only if x − λ1, x − λ2

and x − λ3 are all three squares [26, Ch. 1, Thm. 4.1]. Thus, for Q ∈ E \ [2]E,
one of these three values must be a square, and the others non-squares (as their
product must be y2, hence square). We proceed similarly as the proof of [31,
Thm. 3]. Namely, let P1, P2 and P3 denote points of order 2f above L1 = (λ1, 0),
L2 = (λ2, 0) and L3 = (λ3, 0), respectively, of order 2. A point Q ∈ E \ [2]E
must lie above one of the Li. Therefore, the reduced Tate pairing of degree 2f

of Pi and Q gives a primitive 2f -th root of unity if and only if Q is not above
Li. Let ζi = e2f (Pi, Q), then by [25, Thm. IX.9] we have

ζ2
f−1

i = e2(Li, Q).

We can compute e2(Li, Q) by evaluating a Miller function f2,Li
in Q, where

div f2,Li
= 2(Li) − 2(O). The simplest option is the line that doubles Li, that

is, f2,Li
(x, y) = x− λi, hence

e2(Li, Q) = (xQ − λi)
p2−1

2 .

Applying Euler’s criterion to this last term, we get that if xQ − λi is square,
then ζi is not a primitive 2f -th root and hence Q must be above Li, whereas if
xQ−λi is non-square, then ζi is a primitive 2f -th root and hence Q is not above
Li. ⊓⊔

Note that for Montgomery curves y2 = x3 + Ax2 + x = x(x− α)(x− 1/α), the
theorem above tells us that non-squareness of xQ for Q ∈ E(Fp2) is enough to
imply Q has full 2f -torsion and is not above (0, 0) [31, Thm. 3].

22

Finding points with 2f -torsion above (0, 0). We describe two methods to
efficiently sample Q above (0, 0), based on Theorem 2.

1. Direct x sampling. By deterministically sampling xQ ∈ Fp, we ensure that
xQ is square in Fp2 . Hence, if Q lies on E and xQ − α ∈ Fp2 is non-square,
where α is a root of x2 +Ax+1, then Theorem 2 ensures that Q ∈ E \ [2]E
and above (0, 0).

2. Smart x sampling. We can improve this using the fact that α is always
square [3, 15]. Hence, if we find z ∈ Fp2 such that z is square and z − 1 is
non-square, we can choose xQ = zα square and in turn xQ − α = (z − 1)α
non-square. Again, by Theorem 2 if Q is on E, this ensures Q is above (0, 0)
and contains full 2f -torsion. Hence, we prepare a list [z1, z2, . . .] of such values
z for a given prime, and try xj = zjα until xj is on E.

Both methods require computing α, dominated by one Fp2-square root. Direct
sampling computes a Legendre symbol of x3 + Ax2 + x per x to check if the
corresponding point lies on E. If so, we check if x − α is non-square via the
Legendre symbol. On average, this requires four samplings of x and six Legendre
symbols to find a suitable xQ with Q ∈ E(Fp2), and, given that we can choose
xQ to be small, we can use fast scalar multiplication on xQ (see Appendix A).

In addition to computing α, smart sampling requires the Legendre symbol
computation of x3 +Ax2 + x per x. On average, we require two samplings of an
x to find a suitable xQ, hence saving four Legendre symbols in comparison to
direct sampling. However, we can no longer choose xQ small, which means that
improved scalar multiplication for small xQ is not available.

Finding points with 2f -torsion not above (0, 0). As shown in [31], we find
a point P with full 2f -torsion not above (0, 0) by selecting a point on the curve
with non-square x-coordinate. Non-squareness depends only on p, not on E, so
a list of small non-square values can be precomputed. In this way, finding such
a point P simply becomes finding the first value xP in this list such that the
point (xP ,−) lies on E(Fp2), that is, x3

P +Ax2
P + xP is square. On average, this

requires two samplings of x, hence two Legendre symbol computations.

5.2 General improvements to verification

In this section, we describe improvements to SQIsign verification and present new
optimisations, decreasing the cost of the three main subroutines of verification.

Known techniques from literature. There are several state-of-the-art tech-
niques in the literature on efficient implementations of elliptic curve or isogeny-
based schemes that allow for general improvements to verification, but are not
included in SQIsign (NIST). We implemented such methods, e.g., to improve
scalar multiplication P 7→ [n]P and square roots. The details are described in
Appendix A. In particular, we use that P 7→ [n]P is faster when xP is small.

23

Improving the subroutine FindBasis. In SQIsign (NIST), to find a complete
basis for E[2f] we are given a point Q ∈ E[2f] lying above (0, 0) and need to
find another point P ∈ E(Fp2) of order 2f not lying above (0, 0). We sample P
directly using xP non-square, as described above and demonstrated by [31], and
in particular can choose xP small. We then compute P ← [p+1

2f
]P via fast scalar

multiplication to complete the torsion basis (P,Q).

Improved strategies for ComputeIsogeny. Recall that ComputeIsogeny fol-
lows three steps in SQIsign (NIST): it first computes a 4-isogeny that may contain
(0, 0) in the kernel, and a 2-isogeny if f is odd, before entering an optimal strat-
egy for computing the remaining chain of 4-isogenies. However, the first two
steps include many costly doublings. We improve this by adding these first two
steps in the optimal strategy. If f is even, this is straightforward, with a simple
check for (0, 0) in the kernel in the first step. For odd f , we add the additional
2-isogeny in this first step.19 For simplicity of the implementation, we determine
optimal strategies as in SIKE [27], thus we assume that only 4-isogenies are used.

Note that techniques for strategies with variable isogeny degrees are available
from the literature on CSIDH implementations [13]. However, the performance
difference is very small, hence our simplified approach appears to be preferable.

In addition to optimising 4-isogeny chains, we implemented optimised 3-
isogeny chains from SIKE [27] for the computation of φ̂chall when f < 128.

5.3 To push, or not to push20

In SQIsign (NIST), the pointQ is pushed through φ so that we easily get the basis
point above (0, 0) on the image curve, and we can then use Theorem 2 to sample
the second basis point P . Instead of pushing Q, one can also use Theorem 2
to efficiently sample this basis point Q above (0, 0). Although pushing Q seems
very efficient, for larger f we are pushing Q through increasingly larger isogeny
chains, whereas sampling becomes increasingly more efficient as multiplication
cost by p+1

2f
decreases. Furthermore, sampling both P and Q allows us to use

those points as an implicit basis for E[2f], even if their orders are multiples of
2f , as described in more detail below. We observe experimentally that this makes
sampling Q, instead of pushing Q, more efficient for f > 128.

Using implicit bases. Using Theorem 2, it is possible to find points P and
Q efficiently so that both have full 2f -torsion. The pair (P,Q) is not an explicit
basis for E[2f], as the orders of these points are likely to be multiples of 2f .
However, instead of multiplying both points by the cofactor to find an explicit
basis, we can use these points implicitly, as if they were a basis for E[2f]. This
allows us to compute K = P + [s]Q first, and only then multiply K by the

19In particular, we compute R′ = [2f−3]K and R = [2]R′, a 4-isogeny with kernel
⟨R⟩, push R′ through, and compute a 2-isogeny with kernel ⟨R′⟩.

20–that is, the Q.

24

cofactor. This saves a full scalar multiplication by the cofactor p+1
2f

. We refer to

such a pair (P,Q) as an implicit basis of E[2f]. Algorithmically, implicit bases
combine FindBasis and FindKernel into a single routine FindBasisAndKernel.

5.4 Improved challenge for f ≥ λ

Recall from Section 4.2 that when f ≥ λ, we can simply set Dchall = 2λ. This
decreases the cost of FindBasis for the challenge computation considerably, as we
can now use Theorem 2 to find a basis for E[2λ].

Improving FindBasis for the challenge isogeny when f ≥ λ. We use
Theorem 2 twice, first to find P not above (0, 0) having full 2f -torsion and
then to find Q above (0, 0) having full 2f -torsion. We choose xP and xQ small
such that faster scalar multiplication is available. We find the basis for E[2λ]
by P ← [p+1

2f
]P followed by f − λ doublings, and Q ← [p+1

2f
]Q followed by

f − λ doublings.21 Alternatively, if Q is pushed through isogenies, we can reuse
Q← φ(n)(Q(n)) ∈ E[2f] from the computation of the last step of φresp, so that
we get a basis point for E[2λ] by f −λ doublings of Q. Reusing this point Q also
guarantees cyclicity of φ̂chall ◦ φresp.

Remark 7. For SQIsign without extension fields, obtaining f ≥ λ seems infea-
sible, hence the degree D of φchall is 2f · 3g. Nevertheless, some optimizations
are possible in the computation of φchall in this case. FindBasis for E[2f · 3g]
benefits from similar techniques as previously used in SIDH/SIKE, as we can
apply known methods to improve generating a torsion basis for E[3g] coming
from 3-descent [17, § 3.3]. Such methods are an analogue to generating a basis
for E[2f] as described in Theorem 2 and [31, Thm. 3].

6 Size-speed trade-offs in SQIsign signatures

The increase in f also enables several size-speed trade-offs by adding further
information in the signature or by using uncompressed signatures. Some trade-
offs were already present in earlier versions of SQIsign [21], however, by using
large f and the improvements from Section 5, they become especially worthwhile.

We take a slightly different stance from previous work on SQIsign as for many
use cases the main road block to using SQIsign is the efficiency of verification
in cycles. In contrast, in several applications the precise size of a signature is
less important as long as it is below a certain threshold.22 For example, many
applications can handle the combined public key and signature size of RSA-2048
of 528 bytes, while SQIsign (NIST) features a combined size of only 241 bytes.
In this section, we take the 528 bytes of RSA-2048 as a baseline, and explore
size-speed trade-offs for SQIsign verification with data sizes up to this range.

We note that the larger signatures in this section encode the same information
as standard SQIsign signatures, hence have no impact on the security.

21Algorithmically, this is faster than a single scalar multiplication by 2f−λ · p+1

2f
.

22See https://blog.cloudflare.com/sizing-up-post-quantum-signatures/.

25

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

6.1 Adding seeds for the torsion basis in the signature

We revisit an idea that was previously present in SQIsign verification [21] (but
no longer in [12] or [22]), and highlight its particular merits whenever f ≥
λ, as enabled by signing with extension fields. So far, we have assumed that
completing or sampling a basis for E[2f] is done by deterministically sampling
points. Recall from Section 5.1 that sampling xP resp. xQ (when not pushing Q)
on average requires the computation of several Legendre symbols resp. square
roots. We instead suggest using a seed to find xP (when pushing Q) or xP and xQ

(otherwise), which we include in the signature, so that the verifier saves all of the
above cost for finding xP , resp. xQ. Finding these seeds adds negligible overhead
for the signer, while verification performance improves. Signer and verifier are
assumed to agree upon all precomputed values.

Seeding a point not above (0, 0). For xP not above (0, 0), we fix a large
enough k > 0 and precompute the 2k smallest values uj ∈ Fp such that uj + i ∈
Fp2 is non-square (where i is the same as in Section 5). During signing, we pick
the smallest uj such that xP = uj + i is the x-coordinate of a point P ∈ E(Fp2),
and add the index j to the signature as a seed for xP . Theorem 2 ensures that
any P ∈ E(Fp2) for non-square xP is a point with full 2f -torsion not above
(0, 0). This furthermore has the advantage of fast scalar multiplication for xP as
the x-coordinate is very small.

Seeding a point above (0, 0). As noted above, when f is large, it is faster to
deterministically compute a point of order 2f above (0, 0) than to pushQ through
φ. We propose a similar seed here for fixed large enough k > 0, using Theorem 2
and the “direct sampling” approach from Section 5.1. During signing, we pick
the smallest j ≤ 2k such that xQ = j is the x-coordinate of a point Q ∈ E(Fp2)
and xQ − α is non-square. We add xQ = j to the signature as seed.

Note that when using both seeding techniques, we do not explicitly compute
[p+1
2f

]P or [p+1
2f

]Q, but rather use the seeded points P and Q as an implicit basis,
as described in Section 5.3.

Size of seeds. Per seeded point, we add k bits to the signature size. Thus, we
must balance k such that signatures are not becoming too large, while failure
probabilities for not finding a suitable seed are small enough. In particular,
seeding xP resp. xQ via direct sampling has a failure probability of 1

2 resp. 3
4 per

precomputed value. For the sake of simplicity, we set k = 8 for both seeds, such
that every seed can be encoded as a separate byte.23 This means that the failure
rate for seeding Q is (34)

256 ≈ 2−106.25 for our choice, while for P it is 2−256.
Theoretically it is still possible that seeding failures occur. In such a case, we
simply recompute KLPT. We furthermore include similar seeds for the torsion
basis on EA and E2, giving a size increase of (n+ 1) · 2 bytes.

23Note that for equal failing rates the number of possible seeds for P can be chosen
smaller than for Q, hence slightly decreasing the additional data sizes.

26

The synergy with large f now becomes apparent. The larger f gets, the
fewer blocks n are required, hence adding fewer seeds overall. For f = 75,
the seeds require an additional 28 bytes when seeding both P and Q. For
f = 122, 140, 163, 195, 244 this drops to 18, 16, 14, 12, and 10 additional bytes,
respectively, to the overall signature size of 177 bytes for NIST Level I security.

Remark 8. Instead of using direct sampling for Q with failure probability 3
4 , we

can reduce it to 1
2 via “smart sampling” (see Section 5.1). However, this requires

the verifier to compute α via a square root to set xQ = zα with seeded z. We
thus prefer direct sampling for seeded Q, which incurs no such extra cost.

6.2 Uncompressed signatures

In cases where f is very large, and hence the number of blocks is small, in
certain cases it is worthwhile to replace the value s in the signature by the full
x-coordinate of K = P +[s]Q. In essence, this is the uncompressed version of the
SQIsign signature σ, and we thus refer to this variant as uncompressed SQIsign.

Speed of uncompressed signatures. Adding the precise kernel point K re-
moves the need for both FindBasis and FindKernel, leaving ComputeIsogeny as
the sole remaining cost. This speed-up is significant, and leaves little room for
improvement beyond optimizing the cost of computing isogenies. The cost of ver-
ification in this case is relatively constant, as computing an 2e-isogeny given the
kernels is only slightly affected by the size of f , as is visible in the black dashed
line in Figure 3. This makes uncompressed SQIsign an attractive alternative in
cases where the signature size, up to a certain bound, is less relevant.

Size of uncompressed signatures. Per step, this increases the size from
log(s) ≈ f to 2 · log(p) bits, which is still relatively size efficient when f is close
to log(p). For recomputing φchall, we take a slightly different approach than
before. We add the Montgomery coefficient of E1 to the signature, and seeds
for a basis of E[2f]. From this, the verifier can compute the kernel generator of
φchall, and verify that the j-invariant of its codomain matches E2. Hence this
adds 2 · log(p) bits for E1 and two bytes for seeds to the signature, for a total of
(n+ 1) · (log p/4) + 2 bytes.

For f = 244, this approach less than doubles the signature size from 177
bytes to 322 bytes for NIST Level I security, for f = 145, the signature becomes
approximately 514 bytes, while for the current NIST Level I prime with f = 75,
the size would become 898 bytes. When adding the public key size of 64 bytes,
especially the first two cases still appear to be reasonable alternatives to RSA-
2048’s combined data size of 528 bytes.

Remark 9. Uncompressed signatures significantly simplify verification, as many
functionalities required for compressed signatures are not necessary. Hence, this
allows for a much more compact code base, which might be important for use
cases featuring embedded devices with strict memory requirements.

27

7 Primes and Performance

In this section we show the performance of verification for varying f , using the
optimisations from the previous sections. Further, we find specific primes with
suitable f for n = 4 and n = 7, and report their signing performance using our
SageMath implementation, comparing it with the current SQIsign (NIST) prime.

7.1 Performance of optimised verification

To compare the verification performance of our optimised variants with com-
pressed signatures to SQIsign (NIST) and SQIsign (LWXZ),24 we run benchmarks
in the same setting as in Section 4.3. In particular, Figure 3 shows the cost of
verification for the NIST Level I primes p(f) for 50 ≤ f ≤ 250. As before, we
sample random public key curves and signatures σ of the correct form instead
of using signatures generated by the SQIsign signing procedure.

For the sake of simplicity, Figure 3 displays only the fastest compressed
AprèsSQI variant, namely the version that does not push Q through isogenies
and uses seeds to sample P and Q. This variant significantly outperforms both
SQIsign (NIST) and SQIsign (LWXZ) already at f = 75, at the cost of slightly
larger signatures. A detailed description and comparison of all four compressed
variants is in Appendix C, which shows that our unseeded variants achieve sim-
ilar large speed-ups with no increase in signature size. Lastly, the uncompressed
variant achieves the fastest speed, although at a significant increase in signature
size.

7.2 Finding specific primes

We now give two example primes, one prime optimal for 4-block verification, as
well as the best we found for 7-block verification. The “quality” of a prime p is
measured using the cost metric SigningCostp defined in Section 3.3.

Optimal 4-block primes. For 4-block primes, taking e = 975 as a baseline,
we need f bigger than 244. In other words, we are searching for primes of the
form

p = 2244N − 1

where N ∈ [24, 212] (accepting primes between 250 and 256 bits). This search
space is quickly exhausted. For each prime of this form, we find the optimal
torsion T to use, minimising SigningCostp(T). The prime with the lowest
total cost in this metric, which we denote p4, is

p4 = 2246 · 3 · 67− 1

24Our implementation of SQIsign (LWXZ) [31] is identical to SQIsign (NIST) except
for the improved sampling of P described in Section 5.1.

28

50 75 100 125 150 175 200 225 250
0

200

400

600
·103

f

C
o
st

Fig. 3: Extended version of Figure 2 showing the cost in Fp-multiplications for
verification at NIST Level I security, for varying f and p(f), averaged over 1024
runs per prime. In addition to SQIsign (NIST) in blue, it shows the performance
of SQIsign (LWXZ) in red, our fastest compressed AprèsSQI variant in brown,
and uncompressed AprèsSQI in black.

Balanced primes. Additionally, we look for primes that get above the signifi-
cant f > 128 line, while minimizing SigningCostp(T). To do this, we adopt the
“sieve-and-boost” technique used to find the current SQIsign primes [12, §5.2.1].
However, instead of looking for divisors of p2− 1, we follow Theorem 1 and look
for divisors of

k∏
n=1

Φn(p
2)/2

to find a list of good candidate primes. This list is then sorted with respect
to their signing cost according to SigningCostp. The prime with the lowest
signing cost we could find, which we call p7, is

p7 = 2145 · 39 · 593 · 3113 · 3173 · 5033 − 1.

Remark 10. This method of searching for primes is optimised for looking for
divisors of p2−1, hence it might be suboptimal in the case of allowing torsion in
higher extension fields. We leave it as future work to find methods which further
take advantage of added flexibility in the prime search.

7.3 Performance for specific primes

We now compare the performance of the specific primes p4, p7, as well as the
current NIST Level I prime p1973 used in SQIsign (NIST).

29

Table 1: Comparison between estimated cost of signing for three different primes.

p largest ℓ | T largest Fp2k SigningCostp(T) Adj. Cost Timing

p1973 1973 k = 1 8371.7 1956.5 11m, 32s
p7 997 k = 23 4137.9 - 9m, 20s
p4 2293 k = 53 9632.7 - 15m, 52s

Signing performance. We give a summary of the estimated signing costs in
Table 1. For p1973, we include the metric “Adjusted Cost”, which we compute
as SigningCost with the isogeny computations scaling as

√
ℓ log ℓ to (rather

optimistically) account for the benefit of
√
élu. Further, we ran our proof-of-

concept SageMath implementation on the three primes, using SageMath 9.8, on
a laptop with an Intel-Core i5-1038NG7 processor, averaged over five runs. An
optimised C implementation will be orders of magnitude faster; we use these
timings simply for comparison.

We note that the SigningCost-metric correctly predicts the ordering of the
primes, though the performance difference is smaller than predicted. A possible
explanation for this is that the SigningCost-metric ignores all overhead, such
as quaternion operations, which roughly adds similar amounts of cost per prime.

Our implementation uses
√
élu whenever the kernel generator is defined over

Fp2 and ℓ is bigger than a certain crossover point. This mainly benefits p1973,
as this prime only uses kernel generators defined over Fp2 . The crossover point
is experimentally found to be around ℓ > 300 in our implementation, which
is not optimal, compared to an optimised C implementation.25 Nevertheless,
we believe that these timings, together with the cost metrics, provide sufficient
evidence that extension field signing in an optimised implementation stays in
the same order of magnitude for signing time as staying over Fp2 .

Verification performance. In Table 2, we summarise the performance of ver-
ification for p1973, p7, and p4, both in terms of speed, and signature sizes.

Two highlights of this work lie in using p7, both with and without seeds,
having (almost) the same signature sizes as the current SQIsign signatures, but
achieving a speed-up of factor 2.37 resp. 2.80 in comparison to SQIsign (NIST)
and 1.82 resp. 2.15 in comparison to SQIsign (LWXZ), using p1973. Another in-
teresting alternative is using uncompressed p4, at the cost of roughly double
signature sizes, giving a speed-up of factor 4.46 in comparison to SQIsign (NIST)
and 3.41 in comparison to SQIsign (LWXZ).

Remark 11. We analyse and optimise the cost of verification with respect to
Fp-operations. However, primes of the form p = 2f · c − 1 are considered to be
particularly suitable for fast optimised finite field arithmetic, especially when
f is large [4]. Hence, we expect primes like p4 to improve significantly more in

25For instance, work by Adj, Chi-Domı́nguez, and Rodŕıguez-Henŕıquez [1] gives the
crossover point at ℓ > 89, although for isogenies defined over Fp.

30

Table 2: Comparison between verification cost for different variants and different
primes, with cost given in terms of 103 Fp-multiplications, using S = 0.8 ·M.

p f Implementation Variant Verif. cost Sig. size

p1973 75

SQIsign (NIST) [12] - 500.4 177 B
SQIsign (LWXZ) [31] - 383.1 177 B

AprèsSQI unseeded 276.1 177 B
AprèsSQI seeded 226.8 195 B

p7 145
AprèsSQI unseeded 211.0 177 B
AprèsSQI seeded 178.6 193 B
AprèsSQI uncompressed 103.7 514 B

p4 246
AprèsSQI unseeded 185.2 177 B
AprèsSQI seeded 160.8 187 B
AprèsSQI uncompressed 112.2 322 B

comparison to p1973 in low-level field arithmetic, leading to a larger speed-up
than predicted in Table 2. Furthermore, other low-level improvements, such as
fast non-constant time GCD for inversions or Legendre symbols, will improve
the performance of primes in terms of cycles, which is unaccounted for by our
cost metric.

Acknowledgements. We thank Craig Costello for helpful suggestions and com-
ments on an earlier version of this work. We thank the anonymous Eurocrypt
2024 reviewers for their constructive feedback.

References

[1] Gora Adj, Jesús-Javier Chi-Domı́nguez, and Francisco Rodŕıguez-
Henŕıquez. “Karatsuba-based square-root Vélu’s formulas applied to two
isogeny-based protocols”. In: J. Cryptogr. Eng. 13.1 (2023), pp. 89–106.
doi: 10.1007/S13389-022-00293-Y. url: https://doi.org/10.1007/
s13389-022-00293-y.

[2] Tom M. Apostol. “Resultants of cyclotomic polynomials”. In: Proceedings
of the American Mathematical Society 24.3 (1970), pp. 457–462.

[3] Roland Auer and Jaap Top. “Legendre Elliptic Curves over Finite Fields”.
In: Journal of Number Theory 95.2 (2002), pp. 303–312. issn: 0022-314X.
doi: https://doi.org/10.1006/jnth.2001.2760. url: https://www.
sciencedirect.com/science/article/pii/S0022314X0192760X.

[4] Jean-Claude Bajard and Sylvain Duquesne. “Montgomery-friendly primes
and applications to cryptography”. In: J. Cryptogr. Eng. 11.4 (2021),
pp. 399–415. doi: 10.1007/s13389-021-00260-z. url: https://doi.
org/10.1007/s13389-021-00260-z.

31

https://doi.org/10.1007/S13389-022-00293-Y
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/https://doi.org/10.1006/jnth.2001.2760
https://www.sciencedirect.com/science/article/pii/S0022314X0192760X
https://www.sciencedirect.com/science/article/pii/S0022314X0192760X
https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.1007/s13389-021-00260-z
https://doi.org/10.1007/s13389-021-00260-z

[5] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja
Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková. “CTIDH:
faster constant-time CSIDH”. In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021.4 (2021), pp. 351–387. doi: 10.46586/tches.v2021.i4.351-
387. url: https://doi.org/10.46586/tches.v2021.i4.351-387.

[6] Gustavo Banegas, Valerie Gilchrist, Anaëlle Le Dévéhat, and Benjamin
Smith. “Fast and Frobenius: Rational Isogeny Evaluation over Finite
Fields”. In: LATINCRYPT 2023 - 8th International Conference on Cryp-
tology and Information Security in Latin America. Springer. 2023, pp. 129–
148.

[7] Daniel J. Bernstein. Differential addition chains. 2006. url: http://cr.
yp.to/ecdh/diffchain-20060219.pdf.

[8] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
“Faster computation of isogenies of large prime degree”. In: Open Book
Series 4.1 (2020), pp. 39–55.

[9] Jean-François Biasse, David Jao, and Anirudh Sankar. “A quantum algo-
rithm for computing isogenies between supersingular elliptic curves”. In:
International Conference on Cryptology in India. Springer. 2014, pp. 428–
442.

[10] Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Ko-
mada Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner.
“Cryptographic Smooth Neighbors”. In: IACR Cryptol. ePrint Arch.
(2022), p. 1439. url: https://eprint.iacr.org/2022/1439.

[11] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez,
Luca De Feo, Francisco Rodŕıguez-Henŕıquez, and Benjamin Smith.
“Stronger and Faster Side-Channel Protections for CSIDH”. In: Progress
in Cryptology - LATINCRYPT 2019 - 6th International Conference on
Cryptology and Information Security in Latin America, Santiago de Chile,
Chile, October 2-4, 2019, Proceedings. Ed. by Peter Schwabe and Nico-
las Thériault. Vol. 11774. Lecture Notes in Computer Science. Springer,
2019, pp. 173–193. doi: 10.1007/978-3-030-30530-7_9. url: https:
//doi.org/10.1007/978-3-030-30530-7_9.

[12] Jorge Chavez-Saab, Maria Corte-Real Santos, Luca De Feo, Jonathan Ko-
mada Eriksen, Basil Hess, David Kohel, Antonin Leroux, Patrick Longa,
Michael Meyer, Lorenz Panny, Sikhar Patranabis, Christophe Petit, Fran-
cisco Rodŕıguez-Henŕıquez, Sina Schaeffler, and Benjamin Wesolowski.
SQIsign: Algorithm specifications and supporting documentation. National
Institute of Standards and Technology. 2023. url: https://csrc.nist.
gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-

files/sqisign-spec-web.pdf.
[13] Jesús-Javier Chi-Domı́nguez and Francisco Rodŕıguez-Henŕıquez. “Opti-

mal strategies for CSIDH”. In: Adv. Math. Commun. 16.2 (2022), pp. 383–
411. doi: 10.3934/amc.2020116. url: https://doi.org/10.3934/amc.
2020116.

32

https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
https://eprint.iacr.org/2022/1439
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116

[14] Craig Costello. “B-SIDH: Supersingular Isogeny Diffie-Hellman Using
Twisted Torsion”. In: Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7-11, 2020, Pro-
ceedings, Part II. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12492.
Lecture Notes in Computer Science. Springer, 2020, pp. 440–463. doi: 10.
1007/978-3-030-64834-3_15. url: https://doi.org/10.1007/978-
3-030-64834-3_15.

[15] Craig Costello. “Computing Supersingular Isogenies on Kummer Sur-
faces”. In: Advances in Cryptology - ASIACRYPT 2018 - 24th Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceed-
ings, Part III. Ed. by Thomas Peyrin and Steven D. Galbraith. Vol. 11274.
Lecture Notes in Computer Science. Springer, 2018, pp. 428–456. doi: 10.
1007/978-3-030-03332-3_16. url: https://doi.org/10.1007/978-
3-030-03332-3_16.

[16] Craig Costello and Hüseyin Hisil. “A Simple and Compact Algorithm
for SIDH with Arbitrary Degree Isogenies”. In: Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part II. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Vol. 10625. Lecture Notes in Computer Science. Springer,
2017, pp. 303–329. doi: 10.1007/978-3-319-70697-9_11. url: https:
//doi.org/10.1007/978-3-319-70697-9_11.

[17] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,
and David Urbanik. “Efficient Compression of SIDH Public Keys”. In:
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I. Ed. by Jean-
Sébastien Coron and Jesper Buus Nielsen. Vol. 10210. Lecture Notes in
Computer Science. 2017, pp. 679–706. doi: 10.1007/978-3-319-56620-
7_24. url: https://doi.org/10.1007/978-3-319-56620-7_24.

[18] Craig Costello, Michael Meyer, and Michael Naehrig. “Sieving for Twin
Smooth Integers with Solutions to the Prouhet-Tarry-Escott Problem”.
In: Advances in Cryptology - EUROCRYPT 2021 - 40th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I. Ed. by
Anne Canteaut and François-Xavier Standaert. Vol. 12696. Lecture Notes
in Computer Science. Springer, 2021, pp. 272–301. doi: 10.1007/978-3-
030-77870-5_10. url: https://doi.org/10.1007/978-3-030-77870-
5_10.

[19] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin
Wesolowski. “SQISignHD: New Dimensions in Cryptography”. In: IACR
Cryptol. ePrint Arch. (2023), p. 436. url: https://eprint.iacr.org/
2023/436.

33

https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-03332-3_16
https://doi.org/10.1007/978-3-030-03332-3_16
https://doi.org/10.1007/978-3-030-03332-3_16
https://doi.org/10.1007/978-3-030-03332-3_16
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/978-3-030-77870-5_10
https://eprint.iacr.org/2023/436
https://eprint.iacr.org/2023/436

[20] Luca De Feo, David Jao, and Jérôme Plût. “Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies”. In: J. Math.
Cryptol. 8.3 (2014), pp. 209–247. doi: 10.1515/jmc-2012-0015. url:
https://doi.org/10.1515/jmc-2012-0015.

[21] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Ben-
jamin Wesolowski. “SQISign: Compact Post-quantum Signatures from
Quaternions and Isogenies”. In: Advances in Cryptology - ASIACRYPT
2020 - 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7-
11, 2020, Proceedings, Part I. Ed. by Shiho Moriai and Huaxiong Wang.
Vol. 12491. Lecture Notes in Computer Science. Springer, 2020, pp. 64–93.
doi: 10.1007/978-3-030-64837-4_3. url: https://doi.org/10.
1007/978-3-030-64837-4_3.

[22] Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski.
“New Algorithms for the Deuring Correspondence - Towards Practical and
Secure SQISign Signatures”. In: Advances in Cryptology - EUROCRYPT
2023 - 42nd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Pro-
ceedings, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008.
Lecture Notes in Computer Science. Springer, 2023, pp. 659–690. doi: 10.
1007/978-3-031-30589-4_23. url: https://doi.org/10.1007/978-
3-031-30589-4_23.

[23] Christina Delfs and Steven D. Galbraith. “Computing isogenies between
supersingular elliptic curves over Fp”. In: Designs, Codes and Cryptography
78 (2016), pp. 425–440.

[24] Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia
Veroni. “Deuring for the People: Supersingular Elliptic Curves with Pre-
scribed Endomorphism Ring in General Characteristic”. In: IACR Cryptol.
ePrint Arch. (2023), p. 106. url: https://eprint.iacr.org/2023/106.

[25] Steven D. Galbraith. Advances in Elliptic Curve Cryptography, Chapter
IX. Ed. by Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Vol. 317.
Cambridge University Press, 2005.

[26] Dale Husemöller. Elliptic Curves, 2nd edition. Springer, 2004.
[27] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca

De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik,
Geovandro Pereira, Koray Karabina, and Aaron Hutchinson. SIKE. Tech.
rep. available at https://csrc.nist.gov/Projects/post-quantum-

cryptography/round-4-submissions. National Institute of Standards
and Technology, 2022.

[28] Don Johnson, Alfred Menezes, and Scott A. Vanstone. “The Elliptic Curve
Digital Signature Algorithm (ECDSA)”. In: Int. J. Inf. Sec. 1.1 (2001),
pp. 36–63. doi: 10.1007/s102070100002. url: https://doi.org/10.
1007/s102070100002.

34

https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.1007/978-3-031-30589-4_23
https://eprint.iacr.org/2023/106
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002

[29] Simon Josefsson and Ilari Liusvaara. “Edwards-Curve Digital Signature
Algorithm (EdDSA)”. In: RFC 8032 (2017), pp. 1–60. doi: 10.17487/
RFC8032. url: https://doi.org/10.17487/RFC8032.

[30] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol.
“On the quaternion-isogeny path problem”. In: LMS Journal of Compu-
tation and Mathematics 17.A (2014), pp. 418–432.

[31] Kaizhan Lin, Weize Wang, Zheng Xu, and Chang-An Zhao. A Faster
Software Implementation of SQISign. Cryptology ePrint Archive, Paper
2023/753. 2023. url: https://eprint.iacr.org/2023/753.

[32] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In:
Progress in Cryptology - INDOCRYPT 2018 - 19th International Con-
ference on Cryptology in India, New Delhi, India, December 9-12, 2018,
Proceedings. Ed. by Debrup Chakraborty and Tetsu Iwata. Vol. 11356.
Lecture Notes in Computer Science. Springer, 2018, pp. 137–152. doi: 10.
1007/978-3-030-05378-9_8. url: https://doi.org/10.1007/978-3-
030-05378-9_8.

[33] Aurel Page and Benjamin Wesolowski. “The supersingular Endomor-
phism Ring and One Endomorphism problems are equivalent”. In: CoRR
abs/2309.10432 (2023). doi: 10.48550/arXiv.2309.10432. arXiv: 2309.
10432. url: https://doi.org/10.48550/arXiv.2309.10432.

[34] Joost Renes and Benjamin Smith. “qDSA: small and secure digital signa-
tures with curve-based Diffie–Hellman key pairs”. In: International Con-
ference on the Theory and Application of Cryptology and Information Se-
curity. Springer. 2017, pp. 273–302.

[35] Michael Scott. “A note on the calculation of some functions in finite fields:
Tricks of the trade”. In: Cryptology ePrint Archive (2020).

[36] Peter W. Shor. “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer”. In: SIAM review 41.2 (1999),
pp. 303–332.

[37] Victor Shoup. “Efficient computation of minimal polynomials in algebraic
extensions of finite fields”. In: Proceedings of the 1999 international sym-
posium on Symbolic and algebraic computation. 1999, pp. 53–58.

[38] Joseph H. Silverman. The arithmetic of elliptic curves. Vol. 106. Springer,
2009.

[39] National Institute of Standards and Technology (NIST). Call for Ad-
ditional Digital Signature Schemes for the Post-Quantum Cryptography
Standardization Process. 2022. url: https://csrc.nist.gov/csrc/
media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-

sig-sept-2022.pdf.
[40] Kiminori Tsukazaki. “Explicit isogenies of elliptic curves”. PhD thesis.

University of Warwick, 2013.
[41] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes-Rendus

de l’Académie des Sciences 273 (1971), pp. 238–241.
[42] John Voight. Quaternion algebras. Springer Nature, 2021.

35

https://doi.org/10.17487/RFC8032
https://doi.org/10.17487/RFC8032
https://doi.org/10.17487/RFC8032
https://eprint.iacr.org/2023/753
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.48550/arXiv.2309.10432
https://arxiv.org/abs/2309.10432
https://arxiv.org/abs/2309.10432
https://doi.org/10.48550/arXiv.2309.10432
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

[43] Benjamin Wesolowski. “The supersingular isogeny path and endomor-
phism ring problems are equivalent”. In: 2021 IEEE 62nd Annual Sympo-
sium on Foundations of Computer Science (FOCS). IEEE. 2022, pp. 1100–
1111.

36

A Curve arithmetic

In this section we describe in detail the known techniques from literature that
allow for general improvements to verification, but that are not included in
SQIsign (NIST).

We use xDBL(xP) to denote x-only point doubling of a point P and similarly
xADD(xP , xQ, xP−Q) to denote x-only differential addition of points P and Q.
We use xMUL(xP ,m) to denote x-only scalar multiplication of a point P by the
scalar m.

A.1 Faster scalar multiplications

We describe three improvements to the performance of xMUL, that can be applied
in different situations during verification.

1. Affine A. Throughout verification and specifically in FindBasis and FindKernel,
we work with the Montgomery coordinate A in projective form. However,
some operations, such as computing the point difference xP−Q given xP and
xQ require A in affine form. Having an affine A allows an additional speed-
up, as xDBL requires one Fp2-multiplication less in this case. Thus, xMUL with
affine A is cheaper by 3 M per bit of the scalar.

2. Affine points. Using batched inversion, whenever we require A in affine
form we can get xP and xQ in affine form for almost no extra cost. An xMUL

with affine xP or xQ saves another Fp2-multiplication, hence again 3 M per
bit of the scalar.

3. Small x-coordinate. For a point P with xP = a + bi with small a and b,
we can replace an Fp2-multiplication by xP with a + b additions. This, in
turn, saves almost 3 M per bit of the scalar in any xMUL of xP .

As we can force P and Q to have b ∈ {0, 1} and small a when sampling them
in FindBasis, these points are affine and have small x-coordinates. Together with
the affine A, this saves almost 9 M per bit for such scalar multiplications, saving
roughly 27% per xMUL. We call such an xMUL a fast xMUL. Whenever xMUL uses
2 of these optimisations, we call it semi-fast.

Whenever possible, we use differential addition chains [7] to improve scalar
multiplications by certain system parameters, such as p+1

2f
. In particular, we

will only need to multiply by a few, predetermined scalars, and therefore we
follow the method described by Cervantes-Vázquez, Chenu, Chi-Domı́nguez, Feo,
Rodŕıguez-Henŕıquez, and Smith [11, §4.2]. Our optimal differential addition
chains were precomputed using the CTIDH software [5].

A.2 Faster square roots

We apply several techniques from the literature to further optimise low-level
arithmetic in all of verification. The most significant of these is implementing
faster square roots in Fp2 [35, §5.3], which decreases the cost of finding square
roots to two Fp-exponentiations and a few multiplications.

37

A.3 Projective point difference

The implementation of SQIsign (NIST) switches between affine and projective
representations for xP , xQ and A within each block. It does so to be able to
derive the point difference xP−Q from xP and xQ in order to complete the basis
P,Q in terms of x-coordinates. However, it is possible to compute the point
difference entirely projectively using Proposition 3 from [34]. This allows us to
stay projective during the SQIsign (NIST) verification until we reach E2, where
we do normalization of the curve. This saves costly inversions during verification
and has the additional benefit of improved elegance for SQIsign (NIST).

However, in our variant of verification, we make no use of projective point
difference, as the improvements of Section 5 seem to outperform this already.

B Algorithms

The bottleneck of SQIsign verification is the computation of an isogeny of fixed
degree 2e, which is computed as ⌈e/f⌉ isogenies of degree 2f , where f ≤ e. Each
such 2f -isogeny is called a block. In this section, we present algorithms for the
computation of a single block in verification of SQIsign (NIST) (see Algorithm 2)
and the computation using the improvements described in Sections 5 and 6 (see
Algorithm 3).

Algorithm 2 Single block in verification of SQIsign (NIST)

Input: Affine coeff. A ∈ Fp, a basis xP , xQ, xP−Q for EA[2
f] with Q above (0, 0) and

s ∈ Z/2fZ defining a kernel
Output: Affine coeff. A′ ∈ Fp as the codomain of EA → EA′ of degree 2f , with a

basis xP , xQ, xP−Q for E′
A[2

f] with Q above (0, 0)
1: K ← 3ptLadder(xP , xQ, xP−Q, s, A)
2: Aproj., xQ ← FourIsogenyChain(K,xQ, A)
3: A, xQ ← ProjectiveToAffine(Aproj., xQ)
4: xP , xP−Q ← CompleteBasis2f (xQ, A)
5: return A, xP , xQ, xP−Q

C Performance of optimised verification

The optimisations for compressed variants from Section 5 and Section 6 allow
for several variants of verification, depending on using seeds and pushing Q
through isogenies. We summarise the four resulting approaches and measure
their performance.

38

Algorithm 3 Single block in verification using improvements of Section 5

Input: Projective coeff. A ∈ Fp, a seed (n,m) and s ∈ Z/2fZ defining a kernel
Output: Affine coeff. A′ ∈ Fp as the codomain of EA → EA′ of degree 2f

1: xP ← SmallNonSquare(m), xQ ← n
2: xP−Q ← PointDifference(xP , xQ, A) ▷ implicit basis xP , xQ, xP−Q

3: K ← 3ptLadder(xP , xQ, xP−Q, s, A)
4: K ← xMUL(xK , p+1

2f
, A) ▷ semi-fast xMUL

5: Aproj. ← FourIsogenyChain(K,A)
6: A← ProjectiveToAffine(Aproj.)
7: return A

C.1 Four approaches for verification

To obtain our measurements, we combine our optimisations to give four different
approaches to perform SQIsign verification, specifically optimised for f ≥ λ.
Firstly, we either push Q through φ in every block, or sample Q. Secondly, we
either sample the basis or seed it.

Pushing Q, sampling P without seed. This variant is closest to the original
SQIsign (NIST) and SQIsign (LWXZ) implementations. It is the optimal version
for non-seeded verification for f ≤ 128, using the general optimisations from Sec-
tion 5.2 and the challenge optimisations from Section 5.4.

Not pushing Q, sampling both P and Q without seed. This variant
competes with the previous version in terms of signature size. Due to Section 5.3,
sampling a new Q is more efficient than pushing Q for large f .26 This is the
optimal version for non-seeded verification for f > 128, and additionally uses
the optimisations from Section 5.3.

Pushing Q, sampling P with seed. This variant only adds seeds to the
signature to describe xP . As such, it lies between the other three variants in terms
of both signature size and speed. The signature is 1 byte per block larger than
the unseeded variants, and 1 byte per block smaller than the variant where xQ is
seeded too. In terms of speed, it is faster than the variants where P is unseeded,
but slower than the variant where Q is seeded too. It uses the optimisations
from Sections 5.2 and 5.4, but cannot benefit from the kernel computation via
implicit bases from Section 5.3.

Not pushing Q and sampling both P and Q with seed. This is the
fastest compressed version that we present in this work. Although it adds 2 bytes
per block, the small number of blocks n for large f makes the total increase

26Based on benchmarking results, we sample Q with x = nα for f < 200 and directly
for f ≥ 200.

39

50 75 100 125 150 175 200 225 250
0

100

200

300

400

500

600
·103

f

C
o
st

Fig. 4: Extended version of Figure 3 showing the cost in Fp-multiplications for
verification at NIST-I security level, for varying f and p(f), averaged over 1024
runs per prime. In addition to SQIsign (NIST) in blue, and SQIsign (LWXZ) in
red, it shows all AprèsSQI variants: In purple is the performance of AprèsSQI
when pushing Q, with dashed blue when not seeding P . In brown is the perfor-
mance of AprèsSQI when not pushing Q, with dashed brown when not seeding
P,Q. The performance of uncompressed AprèsSQI is shown in black.

in signature size small. All the optimisations from Section 5 now apply: we
additionally have fast xMUL for Q, as well as the optimised implicit basis method
to compute the kernel and optimised challenge. An algorithmic description of a
single block in this version is given in Algorithm 3.

C.2 Performance benchmark

We benchmarked these four approaches according to our cost metric by taking
the average over 1024 random signatures. The results are given in Figure 4
showing the significant increase in performance compared to SQIsign (NIST) and
SQIsign (LWXZ), as well as the additional performance gained from seeding. For
comparison, we also show the performance when using uncompressed signatures,
serving as a lower bound for the cost.

40

Table 3: Torsion groups E[N] and their minimal field E(Fp2k) for the prime p7

k N

1 37, 532, 593, 61, 79, 283, 3113, 3173, 349, 5032, 859, 997
3 13, 109, 223, 331
4 17
5 11, 31, 71, 241, 271
6 157
7 72, 29, 43, 239
8 113
9 192

10 54, 41
11 23, 67
12 193
13 131
15 181
18 37, 73
23 47

D Detailed information on primes

We give more details on the specific primes used in Section 7.

D.1 Details on p7

The prime p7 is used for a verification with n = 7 blocks. It achieves f = 145,
with T given as below.

p7 = 0x309c04bcaedbb0134cca8373e439ffffffffffffffffffffffffffffffffffff

T = 37 · 54 · 72 · 11 · 13 · 17 · 192 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 532 · 593 · 61 · 67
· 71 · 73 · 79 · 109 · 113 · 131 · 157 · 181 · 193 · 223 · 239 · 241 · 271 · 283 · 3113

· 3173 · 331 · 349 · 5032 · 859 · 997
SigningCostp7(T) = 4137.91235

The field of definition for the various torsion groups we work with can be found
in Table 3.

41

D.2 Details on p4

The prime p4 is used for a verification with n = 4 blocks. It achieves f = 246,
with T given as below.

p4 = 0x323fff

T = 33 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67 · 71
· 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113 · 127 · 149 · 151 · 157 · 163 · 181
· 197 · 211 · 229 · 241 · 271 · 317 · 397 · 577 · 593 · 641 · 661 · 757 · 1069 · 2293

SigningCostp4(T) = 9632.7307

The field of definition for the various torsion groups can be found in Table 4.

42

Table 4: Torsion groups E[N] and their minimal field E(Fp2k) for the prime p4

k N

1 67, 73, 757
2 317, 2293
3 37, 127, 1069
4 593
5 11, 31, 71, 661
6 13
7 43
8 17, 113
9 33, 19, 181, 577
10 52, 61, 641
11 23, 89
14 29, 197
18 397
19 229
20 41
21 72

23 47
25 151
26 53
27 109, 163, 271
29 59
30 241
35 211
37 149
39 79, 157
41 83
48 97
50 101
51 103
53 107

43

	AprèsSQI: Extra Fast Verification for SQIsign Using Extension-Field Signing

