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ABSTRACT
We propose Cornucopia, a distributed randomness beacon protocol

combining accumulators and verifiable delay functions. Cornucopia

extends the Unicorn protocol of Lenstra and Wesolowski, utilizing

an accumulator to enable efficient verification by each participant

that their randomness contribution has been included in the beacon

output. The output is unpredictable as long as at least one partici-

pant is honest, yielding a highly scalable distributed randomness

beacon with strong security properties. The security of this con-

struction reduces to a novel property of accumulators, insertion
security. We first show that not all accumulators are insertion-

secure. We then prove that common constructions (Merkle trees,

RSA accumulators, and bilinear accumulators) are either naturally

insertion-secure or can be made so with trivial modifications. Fi-

nally, we give two generic constructions for insertion-secure accu-

mulators, from universal accumulators and vector commitments

respectively.

1 INTRODUCTION
The goal of distributed randomness beacons (DRBs) is to enable a

group of 𝑛 mutually untrusting participants to jointly compute a

random output (which we denote Ω) which cannot be predicted or

biased by any participant or any coalition of participants. Among

many important applications of DRBs are cryptographically verifi-

able lotteries and leader election in distributed consensus protocols.

A classic approach to constructing DRBs is commit-reveal [8].
First, all participants publish a cryptographic commitment to a

random value 𝑟𝑖 . Participants then reveal their 𝑟𝑖 values, and the

result is Ω = Combine(𝑟1, . . . , 𝑟𝑛) for some suitable combination

function (such as exclusive-or or a cryptographic hash). Commit-

reveal protocols are simple and efficient, and remain secure as long

as at least one participant chooses a random 𝑟𝑖 value and all partic-

ipants always open their commitments. However, the output can

be biased via a so-called last-revealer attack, in which a participant

observes all other 𝑟𝑖 values during the reveal phase and drops out

if the impending value of Ω is not to their liking. The protocol can

either finish without the missing 𝑟𝑖 , or restart and remove them

from future protocol runs. Either way, the attacker obtains 1 bit of

bias on Ω.
Most approaches to avoiding last-revealer attacks relax the secu-

rity model by assuming most participants are honest and enabling

a majority coalition to recover a withholding participant’s contribu-

tion. However, this means that a malicious majority can privately

compute Ω early and potentially bias it. Protocols of this type also

typically require communication and computation superlinear in 𝑛

(though some amortize this over multiple rounds).

A fundamentally different approach to constructing DRBs uses

time-based cryptography, specifically using delay functions to pre-

vent manipulation. The simplest example is Unicorn [37], a one-

round protocol in which each participant directly publishes (within

a fixed time window) a random input 𝑟𝑖 to a public bulletin board.

The result is computed as Ω = Delay(Combine(𝑟1, . . . , 𝑟𝑛)). By as-

sumption, a participant cannot compute the Delay function before

the deadline to publish their contribution 𝑟𝑖 and therefore cannot

predict Ω or choose 𝑟𝑖 in such a way as to manipulate it. This pro-

tocol retains the strong 𝑛 − 1 (dishonest majority) security model of

commit-reveal, but with no last-revealer attacks. It is remarkably

simple and, using modern verifiable delay functions [9], the result

can be efficiently verified. The downside is that Θ(𝑛) contributions
must be posted to the public bulletin board per protocol run.

Our approach.We formalize the approach of using a cryptographic

accumulator (for example, a Merkle tree) to publish a succinct com-

mitment to all users’ contributions, retaining the security advan-

tages of Unicorn while reducing the storage overhead (on the public

bulletin board) from Θ(𝑛) to 𝑂 (1). We call this general protocol

Cornucopia, with a general structure as follows:

• Each participant sends their contribution 𝑟𝑖 to a coordinator
before a time deadline 𝑇0.

• The coordinator accumulates all of the contributions into a

succinct commitment 𝑅 and publishes it to a public bulletin

board. It sends each user a proof 𝜋𝑖 that their value 𝑟𝑖 is

included in 𝑅.

• After time 𝑡 passes, the result Ω = Delay(𝑅) is published
as well as a proof 𝜋Ω .

• Users check both that their contribution was included in 𝑅

and that Ω was properly computed from 𝑅.

While this is a small change to Unicorn, it is powerful: individual

users can now be convinced that Ω is truly random with sublinear

verification costs. Observe that since security requires only one

honest participant, individuals only need to verify that they them-
selves participated in the protocol (assuming they trust that their

own device has not been compromised). A malicious coordinator

and any number of other malicious participants in the protocol

cannot manipulate the DRB output.

A malicious coordinator might exclude all honest users from

participating, but these users can easily see that they have been

excluded and know not to trust the DRB output. For this reason,

the coordinator can be viewed as semi-trusted; it is trusted for

availability but not for security.

This approach opens the door to massive open-participation ran-

domness protocols. For example, every user buying a lottery ticket

might contribute randomness, or every user in a massively multi-

player online (MMO) game might contribute randomness to seed
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the game engine. These applications might include millions of par-

ticipants, which would not be feasible with an honest majority

requirement or linear verification costs per user. Cornucopia, by

contrast, can offer constant or logarithmic verification costs (de-

pending on the choice of accumulator) thus making planet-scale

distributed randomness generation possible. The coordinator does

face at least linear costs to compute the accumulator and per-user

proofs, but for certain accumulators [50, 53], the coordinator can

efficiently batch compute all users’ witnesses.

Related work. There is a large and growing literature on ran-

domness beacons, dating to the seminal proposal by Rabin [46] and

foundational work on distributed coin tossing [3, 4, 20, 22, 30, 32, 33].
Several recent surveys cover modern DRBs [19, 34, 47]. Most of this

work is orthogonal, with protocols operating without the benefit

of delay functions and hence assuming honest majorities [2, 6, 7,

14, 17, 21, 23, 29, 31, 49, 52] or economic incentives [1, 45, 55].

Unicorn [37] introduced delay-based DRBs. Several extensions to

Unicorn work in a similar model. Bicorn [18] extends Unicorn with

a fast optimistic case, avoiding the delay function if all participants
are honest. RandRunner [48] also enables avoiding a delay function

per beacon output although it does not support flexible participation

and allows a withholding leader to affect the protocol.

HeadStart [36] is the most similar DRB construction to Cornu-

copia, also using Merkle trees and a multi-round pipelined protocol

to scale up Unicorn by combining many users’ contributions in a

succinct commitment. We adopt the same conceptual approach as

HeadStart, but our approach differs in offering a generic construc-

tion from any accumulator and developing precise security notions

required of accumulators for use with DRBs.

Our contributions.

• We formalize the concept of combining a VDF with an

accumulator as Cornucopia (Section 3).

• We prove (in Section 4) that this approach is secure when in-

stantiated with any VDF and any accumulator that satisfies

a natural security notion that we develop, called insertion
security.

• We prove (in Section 5) that the most commonly used ac-

cumulator constructions either naturally feature insertion

security (Merkle trees ) or need only trivial modifications

to achieve it (RSA accumulators, bilinear accumulators, and

accumulators from vector commitments), meaning Cor-

nucopia is practical to build from standard cryptographic

assumptions and implementations. Furthermore, the effi-

ciency of Cornucopia can take likely take advantage of

future accumulator schemes (assuming insertion security

can be proven).

• We compare performance implications of different accu-

mulators (Section 6). Since Cornucopia can be instantiated

with any insertion-secure accumulator, the protocol can be

tailored to different settings by choosing an accumulator

to optimally trade off communication and computation.

Finally, we conclude in Section 7 with discussion about some

protocol extensions and open problems.

Gsequential
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,𝑡,VDF (𝜆)

pp
$←− VDF.Setup(𝜆, 𝑡 )

𝛼
$←− A0 (pp)

𝑥
$←− 𝑈

𝑦̃
$←− A1 (𝛼, 𝑥 )

𝑦, 𝜋 ← VDF.Eval(pp, 𝑥 )

return 𝑦̃ = 𝑦

Figure 1: VDF sequentiality game

2 PRELIMINARIES
To define Cornucopia, we first need to define verifiable delay func-

tions (VDFs) [9] and accumulators [5]. Both rely on public parame-

ters pp which all functions take implicitly, though we will typically

omit this for brevity. We use 𝜆 to denote a security parameter, and

poly(𝜆) and negl(𝜆) to denote polynomial and negligible functions

of 𝜆, respectively. We use

$←− (or

$−→) to denote the output of a ran-

domized algorithm, or sampling uniformly at random from a range.

We use 𝛼 to denote an advice string passed from a precomputation

algorithm to a later online algorithm. We assume all adversaries

are limited to running in probabilistic polynomial time (PPT) in

the security parameter 𝜆; some adversaries are further limited to

running in 𝜎 (𝑡) steps on at most 𝑝 (𝑡) parallel processors where
noted. We let [𝑘] denote the set {1, . . . , 𝑘}.

2.1 Verifiable delay functions
Definition 1 (Verifiable delay function [9]). A verifiable

delay function (VDF) [9] is a tuple of algorithms (Setup, Eval,Verify)
where:

VDF.Setup(𝜆, 𝑡) → pp takes as input 𝜆 and a time parameter 𝑡 and
outputs public parameters pp.

VDF.Eval(pp, 𝑥) → (𝑦, 𝜋) takes as input 𝑥 and produces an output𝑦
and optional proof 𝜋 . This function should run in 𝑡 sequential
steps.

VDF.Verify(pp, 𝑥,𝑦, 𝜋) → {true, false} takes an input 𝑥 , output 𝑦,
and optional proof 𝜋 , and returns true if (𝑦, 𝜋) is a genuine
output of Eval.

VDFs must satisfy the following three properties:

Verifiability. The verification algorithm is efficient (at most poly-

logarithmic in 𝑡 and 𝜆) and always accepts when given a

genuine output from VDF.Eval.
Uniqueness. VDF evaluation must be a function, meaning that

VDF.Eval is a deterministic algorithm and it is computation-

ally infeasible to find two pairs (𝑥,𝑦), (𝑥,𝑦′) with 𝑦 ≠ 𝑦′

that VDF.Verify will accept.

Sequentiality. VDFs must impose a computational delay. Roughly

speaking, computing a VDF successfullywith non-negligible

probability over a uniformly distributed challenge 𝑥 should

be impossible without executing 𝑡 sequential steps. For-

mally (adapted from [9]):

Definition 2 (VDF seqentiality [9]). AVDF is (𝑝, 𝜎)-sequential
if for all randomized algorithmsA0 which run in total time𝑂 (poly(𝑡, 𝜆)),
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Gacc

A,Acc (𝜆)

pp
$←− Acc.Setup(𝜆)

𝑆, 𝑥, 𝑤
$←− A(pp)

𝐴← Acc.Accumulate(𝑆 )

return
Acc.MemVer(𝐴,𝑥, 𝑤 ) ∧ 𝑥 ∉ 𝑆

Figure 2: Accumulator security game

and A1 which run in parallel time 𝜎 (𝑡) on at most 𝑝 (𝑡) processors:

Pr

[
GsequentialA0,A1,𝑡,VDF

(𝜆) = 1

]
≤ negl(𝜆)

where GsequentialA0,A1,𝑡,VDF
(𝜆) is defined in Figure 1.

2.2 Accumulators
Definition 3 (Accumulator [5, 13]). Given a data universe 𝑈 ,

an accumulator [5] is a tuple of algorithms
(Setup,Accumulate,GetMemWit,MemVer) where:
Acc.Setup(𝜆) → pp takes as input 𝜆 and outputs public parameters

pp.
Acc.Accumulate(𝑆) → 𝐴 takes as input a set 𝑆 ⊆ 𝑈 to be accumu-

lated. It outputs 𝐴, an accumulator value for 𝑆 .
Acc.GetMemWit(𝑆,𝐴, 𝑥) → 𝑤 takes as input a set 𝑆 ⊆ 𝑈 , an ac-

cumulator value 𝐴 for 𝑆 , and an element 𝑥 ∈ 𝑆 . It outputs a
membership witness𝑤 for 𝑥 .

Acc.MemVer(𝐴, 𝑥,𝑤) → {true, false} takes as input an accumula-
tor value 𝐴, an element 𝑥 , and a membership proof (mem-
bership witness) 𝑤 . It outputs true if 𝑥 is included in the
accumulated set represented by 𝐴 and false otherwise.

We describe here only the accumulator functionality necessary

for our purposes. Accumulators generally also support an incremen-

tal Update function to add additional elements to the accumulated

set and dynamic accumulators support a Delete function to remove

elements [13]. Cornucopia does not require either capability; we

assume in each run of the protocol the coordinator collects all ran-

domness contributions (the set being accumulated), accumulates

them in one batch operation and never deletes.

An accumulator is correct ifMemVer always accepts for elements

included in honestly accumulated sets. An accumulator is computa-
tionally correct if it is computationally infeasible to find a set such

that an honestly generated inclusion proof for an element in that

set does not verify. The key security property of an accumulator is

that for an honestly generated accumulator value for some set 𝑆 , it

is infeasible to find a membership proof for an element not in 𝑆 :

Definition 4 (Accumulator security [13]). An accumulator
Acc is secure if no PPT adversary A can succeed with non-negligible
probability in GaccA,Acc (𝜆) as defined in Figure 2.

A universal accumulator [38] also supports non-membership

proofs; that is, it supports two additional functions:

Acc.GetNonMemWit(𝑆,𝐴, 𝑥 ′) → 𝑤 ′ takes as input a set 𝑆 ⊆ 𝑈 ,

an accumulator value 𝐴 for 𝑆 , and an element 𝑥 ′ ∉ 𝑆 . It

outputs a non-membership witness𝑤 ′ for 𝑥 ′.

Acc.NonMemVer(𝐴, 𝑥 ′,𝑤 ′) → {true, false} takes as input an ac-

cumulator value 𝐴, an element 𝑥 ′, and a non-membership

proof (non-membership witness)𝑤 ′. It outputs true if 𝑥 ′ is
not included in the accumulated set represented by 𝐴 and

false otherwise.

For Cornucopia itself, a universal accumulator is not required

as there is no reason for the coordinator to prove to any user that

their contribution is not included. However, in Section 5.5 we show

a generic transformation from any universal accumulator to an

insertion-secure accumulator.

A universal accumulator is correct if, in addition to MemVer
accepting for all included elements, NonMemVer accepts for all
non-included elements. Security requires (in addition to basic accu-

mulator security) that no adversary can find valid membership and

non-membership proofs for the same element:

Definition 5 (Universal accumulator security [38]). A uni-
versal accumulator Acc is secure if for all PPT adversaries A:

Pr


pp

$←− Acc.Setup(𝜆)
𝐴, 𝑥,𝑤,𝑤 ′

$←− A(pp)
Acc.MemVer(𝐴, 𝑥,𝑤) ∧ Acc.NonMemVer(𝐴, 𝑥,𝑤 ′)

 ≤ negl(𝜆)

2.3 Vector commitments
We present only the functionality of vector commitments necessary

for our applications.

Definition 6 (Vector commitment [15]). Given a message
spaceM, a vector commitment is a tuple of algorithms including:

KeyGen(𝜆, 𝑠) → pp takes in the security parameter 𝜆 and the size 𝑠
of the committed vector, and outputs public parameters pp.

Com(𝑚1, . . . ,𝑚𝑠 ) → 𝐶, aux takes as input a vector of 𝑠 messages in
M, and outputs a commitment 𝐶 and some auxiliary infor-
mation aux.

Open(𝑚, 𝑖, aux) → 𝜋𝑖 takes as input a message𝑚 ∈ M, an index
𝑖 , and some auxiliary information aux. It outputs a proof 𝜋𝑖
that the 𝑖th component of the committed vector is𝑚.

Ver(𝐶,𝑚, 𝑖, 𝜋𝑖 ) → {true, false} takes as input a commitment, a mes-
sage𝑚, an index 𝑖 , and a proof that the 𝑖th component of the
committed vector is𝑚. It outputs true if and only if the proof
verifies.

A vector commitment must satisfy correctness, which requires

that honestly generated proofs for correct components of honestly

generated vector commitments verify. A vector commitment must

also satisfy position binding, which requires that an adversary can-

not produce a (possibly maliciously formed) commitment and two

proofs of distinct values for the same component.

Definition 7 (Position binding [15]). A vector commitment
satisfies position binding if for all 𝑖 ∈ [𝑠] and for all PPT adversaries
A:

Pr


pp

$←− Acc.Setup(𝜆)
𝐶,𝑚,𝑚′, 𝑖, 𝜋𝑖 , 𝜋 ′𝑖

$←− A(pp)
Ver(𝐶,𝑚, 𝑖, 𝜋𝑖 ) ∧ Ver(𝐶,𝑚′, 𝑖, 𝜋 ′𝑖 ) ∧𝑚 ≠𝑚′

 ≤ negl(𝜆)
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Gindist

A,𝑡,𝑏,DRB (𝜆)

pp
$←− Setup(𝜆, 𝑡 )

𝑟1
$←− Prepare(pp)

𝛼0

$←− A0 (pp)
𝛼1, 𝑅, 𝜋1

$←− A1 (𝛼0, 𝑟1 )
Ω0, 𝜋0 ← Finalize(pp, 𝑅)
Ω1

$←− 𝑈

𝑏′
$←− A2 (𝛼1,Ω𝑏 )

return 𝑏 = 𝑏′

∧ Verify(pp, 𝑅,Ω0, 𝜋0, 𝑟1, 𝜋1 )

Figure 3: Security game for (𝑝, 𝜎)-indistinguishability

3 TIMED DRBS: DEFINITIONS AND
CONSTRUCTIONS

We first define timed DRBs using a generalized syntax.
1

Definition 8 (Timed DRBs). A timed DRB protocol is a tuple of
algorithms (Setup, Prepare, Post, Finalize,Verify):

Setup(𝜆, 𝑡) $−→ pp: The setup algorithm can be run once and outputs
public parameters pp used for multiple protocol runs.

Prepare(pp) $−→ 𝑟𝑖 : The prepare algorithm is run by each participant
to produce a randomness contribution 𝑟𝑖 . This contribution is
submitted during the contribution phase, which is bounded
in length by the time parameter 𝑡 .

Post({𝑟𝑖 }) → (𝑅, {𝜋𝑖 }): The post algorithm is run by a coordi-
nator immediately after the end of the contribution phase,
producing a commitment 𝑅 to all users’ contributions and
(optionally) a list of user-specific proofs 𝜋𝑖 . Typically, this
value 𝑅 will be posted to a public bulletin board, whereas 𝜋𝑖
will be made privately available.

Finalize(pp, 𝑅) → (Ω, 𝜋Ω): The finalize algorithm is run after the
post algorithm, evaluating a delay function on 𝑅 to produce
a final DRB output Ω and (optionally) a proof 𝜋Ω . It is a
deterministic algorithm running in time (1 + 𝜖)𝑡 for some
small 𝜖 .

Verify(pp, 𝑅,Ω, 𝜋Ω, 𝑟𝑖 , 𝜋𝑖 ) → {true, false}: Individual users should
verify both the final DRB output Ω as well as that their con-
tribution 𝑟𝑖 was correctly included, possibly with the help of
an auxiliary user-specific proof 𝜋𝑖 .

A timed DRB has the following security properties (shown in

Figures 4 and 3):

Definition 9 ((𝑝, 𝜎)-unpredictability). The (𝑝, 𝜎)-unpredictability
game tasks an adversary with predicting the final output Ω exactly, al-
lowing it control of all but a single honest participant (which publishes
first). This adversary’s computation is broken into two phases. In the
precomputation phase, before the adversary sees the honest contribu-
tion 𝑟1, it may run an algorithmA0 that runs in time poly(𝜆, 𝑡). This
algorithm outputs some advice string. After seeing 𝑟1, the adversary
is limited to running for 𝜎 (𝑡) steps on at most 𝑝 (𝑡) parallel processors,

1
Note that our syntax here is specific to one-round timed DRBs. Some timed DRBs

such as Bicorn [18] have an optional second communication round.

Gunpred

A,𝑡,DRB (𝜆)

pp
$←− Setup(𝜆, 𝑡 )

𝑟1
$←− Prepare(pp)

𝛼0

$←− A0 (pp)
Ω̃, 𝜋Ω̃, 𝑅, 𝜋1

$←− A1 (𝛼0, 𝑟1 )

return Verify(pp, 𝑅, Ω̃, 𝜋Ω̃, 𝑟1, 𝜋1 )

Figure 4: Security game for (𝑝, 𝜎)-unpredictability

Setup(𝜆, 𝑡 ) $−→ pp
pp← VDF.Setup(𝜆, 𝑡 )

Prepare( ) $−→ 𝑟𝑖

𝑟𝑖
$←− 𝑈

Post({𝑟𝑖 }) → (𝑅,∅)
𝑅 ← {𝑟𝑖 }

Finalize(𝑅) → (Ω, 𝜋Ω )
Ω, 𝜋Ω ← VDF.Eval(𝐻 (𝑅) )

Verify(pp, 𝑅,Ω, 𝜋Ω, 𝑟𝑖 , 𝜋𝑖 ) → {true, false}
return 𝑟𝑖 ∈ 𝑅 ∧ VDF.Verify(𝐻 (𝑅),Ω, 𝜋Ω )

Figure 5: The Unicorn timed DRB protocol [37]

exactly like the adversary for VDF sequentiality (Definition 2). The

adversary’s advantage is: AdvunpredA,𝑡,DRB (𝜆) = Pr

[
GunpredA,𝑡,DRB (𝜆) = 1

]
.

As the (𝑝, 𝜎)-unpredictability property does not guarantee the

DRB output is indistinguishable from random, we define a stronger

(𝑝, 𝜎)-indistinguishability property in which the adversary must

distinguish a DRB output from a random output, again allowing

the adversary control of all but one participant.

Definition 10 ((𝑝, 𝜎)-indistinguishability). The
(𝑝, 𝜎)-indistinguishability game is exactly like the (𝑝, 𝜎)-unpredictability
game, except with an extra input bit 𝑏. The challenger provides the
adversary the genuine output of Finalize if 𝑏 = 0 and a random output
if 𝑏 = 1. The adversary must, after running for at most 𝜎 (𝑡) steps on
at most 𝑝 (𝑡) parallel processors, output a guess 𝑏′ for which output it
received. We define the adversary’s advantage as:

AdvindistA,𝑡,DRB (𝜆) =
���Pr [GindistA,𝑡,1,DRB (𝜆) = 1

]
− Pr

[
GindistA,𝑡,0,DRB (𝜆) = 1

] ���
As observed by Boneh et al. [9], there is a generic transformation

in the random oracle model in which a timed DRB which satisfies

(𝑝, 𝜎)-unpredictability can be transformed generically into onewith

(𝑝, 𝜎)-indistinguishability by applying the random oracle to the

output.

3.1 Unicorn
As a warm-up, we describe Unicorn [37] succinctly as a timed DRB

in our framework in Figure 5. Note that the the original Unicorn

proposal used the delay function Sloth, which computes modular

square roots modulo a prime. We describe Unicorn here using a

modern VDF instead [9].
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Setup(𝜆, 𝑡 ) $−→ pp
pp← (VDF.Setup(𝜆, 𝑡 ),Acc.Setup(𝜆) )

Prepare( ) $−→ 𝑟𝑖

𝑟𝑖
$←− 𝑈

Post({𝑟𝑖 }) → (𝑅, {𝜋𝑖 })
𝑅 ← Acc.Accumulate({𝑟𝑖 })
𝜋𝑖 ← Acc.GetMemWit({𝑟 𝑗 }, 𝑅, 𝑟𝑖 )

Finalize(𝑅) → (Ω, 𝜋Ω )
Ω, 𝜋Ω ← VDF.Eval(𝐻 (𝑅) )

Verify(pp, 𝑅,Ω, 𝜋Ω, 𝑟𝑖 , 𝜋𝑖 ) → {true, false}
return VDF.Verify(𝐻 (𝑅),Ω, 𝜋Ω ) ∧ Acc.MemVer(𝑅, 𝑟𝑖 , 𝜋𝑖 )

Figure 6: The Cornucopia protocol

Intuitively, Unicorn is secure because every user can check that

their value is included in the posted set {𝑟𝑖 }. A VDF is evaluated

on a hash of this set. A single honest user is enough to ensure

this hashed value cannot have been predicted and precomputed by

the adversary. Lenstra and Wesolowski prove security of Unicorn

in a slightly different model [37]. We note that its security is also

implied by our security proof for Cornucopia in Theorem 4.1, as

Unicorn is a special case using the “concatenation accumulator”

which simply concatenates all accumulated values.

The primary downside of Unicorn is the fact that |𝑅 | = Θ(𝑛).
The goal of Cornucopia is to achieve the same security as Unicorn

while storing only Θ(1) data on the public bulletin board.

3.2 Cornucopia
Cornucopia, shown in Figure 6, improves on Unicorn by having

the coordinator accumulate all user contributions into a succinct

commitment 𝑅 using a cryptographic accumulator scheme (see Sec-

tion 2). Because |𝑅 | does not grow with the number of participants,

Cornucopia makes it easy to scale to many users with low publish-

ing costs and low costs for users to verify that the beacon output

Ω incorporates their contribution 𝑟𝑖 . Our indistinguishability and

unpredictability definitions ensure that the protocol is secure as

long as a single honest user contributes, so any honest user can be

convinced the final result is random as long as they are convinced

that their contribution was included.

4 CORNUCOPIA SECURITY
Towards proving that Cornucopia is a secure timed DRB, we first

must define a novel security property for accumulators, insertion
security:

Definition 11 (Insertion Security). An accumulator is insertion-
secure if for any PPT algorithm A, the probability of A winning the
insertion security game (Figure 7) is negligible:

Pr

[
GinsertA,Acc (𝜆) = 1

]
≤ negl(𝜆)

To win the insertion security game (Figure 7), the adversary must

produce an accumulator value 𝐴 such that it can supply a mem-

bership proof for a randomly chosen element with non-negligible

probability. Note that the adversary is not limited to producing 𝐴

Ginsert

A,Acc (𝜆)

pp
$←− Acc.Setup(𝜆)

𝐴← A(pp)
𝑥

$←− 𝑈

𝑤 ← A(pp, 𝐴, 𝑥 )

return Acc.MemVer(𝐴,𝑥, 𝑤 )

Figure 7: Insertion security game

via the normal Accumulate function; it can produce 𝐴 using any

procedure at all. We will prove this property holds for concrete

accumulators in Section 5, for now we will assume we have access

to an accumulator which satisfies this property.

We next prove two useful lemmas. The first is that if Cornucopia

is constructed using an insertion-secure accumulator, an adversary

cannot guess a satisfactory 𝑅 before seeing the randomness contri-

bution 𝑟1. Insertion security implies that it is difficult to precompute

an accumulator value for which one can provide a membership

proof of a random element revealed later. The second states that

if the adversary does not query 𝑅 to the random oracle in its pre-

computation phase, it cannot output Ω̃ = VDF.Eval(𝐻 (𝑅)). This
is because after the precomputation phase, the adversary is (𝑝, 𝜎)-
sequential and therefore cannot evaluate the VDF; thus, to prove

this lemma we invoke VDF sequentiality.

Lemma 1. Let E1 be the event thatGunpredA,𝑡,CC (𝜆) = 1 andA0 queried
𝑅 to the random oracle. If Cornucopia (CC) is instantiated with an
insertion-secure accumulator, then Pr [E1] ≤ negl(𝜆).

Proof. Suppose for the sake of contradiction that for some

constant 𝑐 > 0,

Pr

[
GunpredA,𝑡,CC (𝜆) = 1 ∧ A0 queried 𝑅 to the random oracle

]
≥ 1

𝜆𝑐

We define an adversary B that breaks insertion security of the accu-

mulator scheme by simulating the challenger in GunpredA,𝑡,CC and using

A = (A0,A1). B first receives Acc.pp in GinsertB,Acc (𝜆). It samples

VDF.pp ← VDF.Setup(𝜆, 𝑡) and passes pp = (Acc.pp,VDF.pp)
to A0. B simulates the challenger in GunpredA,𝑡,CC (𝜆) and records the

queries 𝑞1, . . . , 𝑞𝑘 that A0 makes to the random oracle. B also

receives 𝛼0 as the output of A0. B then chooses some query 𝑞𝑖
uniformly at random from the queries made by A0 and outputs

𝐴 = 𝑞𝑖 as its accumulator value in GinsertB,Acc (𝜆). B then receives 𝑥

from the challenger in GinsertB,Acc (𝜆), and it continues simulating the

GunpredA,𝑡,CC (𝜆) challenger by passing 𝛼0 and 𝑟1 = 𝑥 to A1. B receives

(Ω̃, 𝑅,𝑤1) as the output of A1.

SinceA succeedswith at least probability
1

𝜆𝑐
, Pr[MemVer(𝑅, 𝑥,𝑤1) =

true∧A0 queried 𝑅 to the random oracle] ≥ 1

𝜆𝑐
. Let 𝑞(𝜆) be some

polynomial upper bounding the number of queries that A0 makes

to the random oracle; this polynomial must exist since A0 runs

in polynomial time. Since B’s random choice of 𝑞𝑖 is indepen-

dent of A, Pr[MemVer(𝑅, 𝑥,𝑤1) = true ∧ 𝐴 = 𝑅] ≥ 1

𝜆𝑐
· 1

𝑞 (𝜆)
which is non-negligible. Thus, with non-negligible probability,

GinsertB,Acc (𝜆) = 1. □
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Lemma 2. Let E2 be the event that GunpredA,𝑡,CC (𝜆) = 1 andA0 did not
query 𝑅 to the random oracle. If CC is instantiated with an insertion-
secure accumulator and a (𝑝, 𝜎)-sequential VDF, then Pr [E2] ≤
negl(𝜆).

Proof. Suppose for the sake of contradiction that for some

constant 𝑐 > 0,

Pr

[
GunpredA,𝑡,CC (𝜆) = 1 ∧ A0 did not query 𝑅 to the random oracle

]
≥ 1

𝜆𝑐

Wedefine an adversaryB = (B0,B1) that breaks (𝑝, 𝜎)-sequentiality
of the VDF by simulating the challenger and random oracle in

GunpredA,𝑡,CC and using A = (A0,A1). When A evaluates the hash

function it must query B. B responds in a way that is indistinguish-

able (to A) from a random function.

B0 first receives (𝜆,VDF.pp, 𝑡) from the VDF challenger in

GsequentialB0,B1,𝑡,VDF (𝜆). B0 samples Acc.pp ← Acc.Setup(𝜆) and passes

pp = (VDF.pp,Acc.pp) to A0. B0 answers A0’s random oracle

queries using uniformly random values. It records these queries

and their responses in a list𝑄 . If any query is repeated, B0 answers
consistently with its previous response in 𝑄 . A0 outputs an advice

string 𝛼0, which B0 outputs as part of its advice string 𝛼 = (𝛼0, 𝑄).
Now, the VDF challenger samples a random input 𝑥 which

is passed to B1 along with VDF.pp and 𝛼 . B1 passes 𝛼0 and a

randomly-generated value 𝑟1
$←− Prepare(pp) to A1. B1 then sim-

ulates the random oracle for A1, with one key modification: B1
chooses an index 𝑖 ≤ 𝑝 (𝑡) · 𝑡 uniformly at random

2
and answers

A1’s 𝑖
th
random oracle query 𝑞𝑖 with 𝑥 (provided that 𝑞𝑖 has not

been previously queried, otherwise it responds with the appro-

priate value from 𝑄). It answers any future repeated queries 𝑞𝑖
similarly. For all other queries, B1 answers randomly the first time

and then consistent with its stored responses in 𝑄 . When A1 out-

puts (Ω̃, 𝑅,𝑤1), B1 outputs Ω̃.

B properly simulates the random oracle.. Since 𝑥 is a uniformly

random value and all other queries receive random responses, B1
does not change the output distribution of the random oracle and

hence does not affect A1’s behavior.

If A succeeds, B succeeds with non-negligible probability..
We now argue that ifA winsGunpredA,𝑡,CC,B winsGsequentialB0,B1,𝑡,VDF (𝜆) with
non-negligible probability. First, recall that if A wins, DRB.Verify
holds. By uniqueness of the VDF, the probability thatA1 outputs a

proof 𝜋Ω such that

VDF.Verify(VDF.pp, 𝐻 (𝑅), Ω̃, 𝜋Ω) = 1 yet Ω̃ ≠ VDF.Eval(𝐻 (𝑅))
is negligible. Thus, since DRB.Verify holds, A1 must have output

Ω̃ = VDF.Eval(𝐻 (𝑅)).
We now show that the fact that A1 outputs VDF.Eval(𝐻 (𝑅))

implies that B breaks (𝑝, 𝜎)-sequentiality of the VDF. Because the

index 𝑖 of the query to be replaced was chosen uniformly and

independently of A1, 𝑞𝑖 was chosen to be the first instance that

𝑅 was queried by A1 with probability at least
1

𝑝 (𝑡 ) ·𝑡 . Since A0

did not query 𝑅, we can indeed make this replacement. Therefore,

with non-negligible probability B1 simulates the random oracle to

answer 𝑅 with 𝑥 , and Ω̃ = VDF.Eval(𝑥) as desired.
2
We use 𝑝 (𝑡 ) · 𝑡 as a generous upper bound on the number of random oracle queries

made by A1 , if every processor queries the oracle in every time step.

Thus, for (Ω̃, 𝑅,𝑤1) output by A1, it holds that

Pr

[
Ω̃ = VDF.Eval(𝐻 (𝑅)) ∧ A0 did not query 𝑅 to the RO

]
≥ 1

𝜆𝑐

In the above, we assumed thatA1 queried 𝑅 to the random oracle. If

A1 did not query 𝑅 to the random oracle, it has anyways succeeded

in computing the VDF output on 𝐻 (𝑅) which is a random value

and identically distributed to 𝑥 .

□

Theorem 4.1 (Unpredictability of Cornucopia). Cornucopia
is (𝑝, 𝜎)-unpredictable when instantiated with an insertion-secure
accumulator, a (𝑝, 𝜎)-sequential VDF, and a hash function modeled
as a random oracle.

Proof. Let E1 be the event that GunpredA,𝑡,CC (𝜆) = 1 andA0 queried

𝑅 to the random oracle. Let E2 be the event that GunpredA,𝑡,CC (𝜆) = 1

and A0 did not query 𝑅 to the random oracle.

Observe that Pr[GunpredA,𝑡,CC (𝜆) = 1] = Pr[E1]+Pr[E2]. By Lemma 1,

Pr[E1] ≤ negl(𝜆). By Lemma 2, Pr[E2] ≤ negl(𝜆). Therefore,
Pr[GunpredA,𝑡,CC (𝜆) = 1] ≤ negl(𝜆). □

Corollary 12. Cornucopia is (𝑝, 𝜎)-indistinguishable when a
random oracle is applied to its output.

5 INSERTION-SECURE ACCUMULATORS
We now turn to the question of instantiating accumulators satisfy-

ing insertion security (Definition 11).

5.1 Accumulators without insertion security
Given any secure accumulator scheme Acc, it is trivial to construct

an accumulator Acc’ which is not insertion-secure, but otherwise

satisfies the standard security definitions of an accumulator. One

approach is to add a special symbol 𝜖 which is defined as the ac-

cumulation of the entire data universe 𝑈 . Acc’.MemVer(𝐴, 𝑥,𝑤)
is defined to be 1 if 𝐴 = 𝜖 (regardless of the value of 𝑥 or 𝑤 ), and

otherwise is equal to Acc.MemVer(𝐴, 𝑥,𝑤). The scheme Acc’ can
be used exactly as Acc in normal operation, with the extra prop-

erty that 𝜖 is a “shortcut” to computing an accumulation of the

entire data universe. RSA accumulators naturally feature such a

shortcut: 𝜖 = 1. A valid membership witness for any 𝑥 is 𝑤 = 1,

since𝑤𝑥 = 1
𝑥 = 1. Although we will prove RSA accumulators can

easily be made insertion-secure by disallowing an accumulator of

1, technically they are not insertion-secure as commonly specified.

Bilinear accumulators have the same shortcut, which we remove

with the same modification.

A second example, potentially of practical interest, is a range
accumulator. A range accumulator can be defined from any accumu-

lator scheme and for any data universe with a known total ordering

(for example, any fixed subset of the integers such as {0, 1}𝑘 ). With

a range accumulator, the value 𝐻 (𝑥,𝑦) can be accumulated, which

is interpreted as adding a range [𝑥,𝑦] (the value 𝐻 (𝑥, 𝑥) can be

accumulated to add a single element 𝑥 ). Given any value 𝑧, proving

membership can be achieved by providing a witness𝑤 ′ = (𝑤, 𝑥,𝑦)
where 𝑤 = Acc.GetMemWit(𝑆,𝐴, 𝐻 (𝑥,𝑦)) for 𝑥 ≤ 𝑧 ≤ 𝑦. This

concept is quite natural and efficient, though it is also trivially not

insertion-secure: an adversary can win GinsertA,Acc (𝜆) with probability
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1 by accumulating the value 𝐻 (𝑥min, 𝑥max) for the smallest and

largest data elements in𝑈 , effectively accumulating the entire data

universe in constant time.
3

5.2 Merkle trees
Lemma 3. AMerkle tree of bounded depth 𝑘 = poly(𝑛) is insertion-

secure in the random oracle model.

Proof. Wework in the random oracle model, supposing that the

Merkle tree uses a random oracle O : {0, 1}2𝑛 → {0, 1}𝑛 . Let 𝐴 be

the accumulator output by an adversaryA in GinsertA,Acc (𝜆). We show

that for a uniform 𝑥 ∈ {0, 1}𝑛 , the adversary can provide a verifying
witness𝑤 = (𝑤1, . . . ,𝑤𝑘 ) for 𝑥 with only negligible probability. For

a verifyingwitness, it must hold thatO(𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥))) =
𝐴. We’ll show that with overwhelming probability (over choice of

𝑥 ), no query to O involved in the witness verification was made by

the adversary in step 2 of GinsertA,Acc (𝜆).
This can be shown by induction. Let 𝑎1, . . . , 𝑎ℓ be the adversary’s

queries to the random oracle in step 2. Let 𝑏1, . . . , 𝑏𝑘 be the queries

to the random oracle in the Merkle membership proof verification;

that is, 𝑏𝑖 = 𝑤𝑖 | |O(𝑤𝑖−1 | | . . .). Let 𝑝 (𝜆) be a polynomial upper

bound on the total number of queries made by the adversary to

the random oracle throughout the game. Observe first that Pr[𝑏1 =
𝑎 𝑗 for some j] = ℓ

2
𝜆 since 𝑏1 = 𝑤1 | |𝑥 and 𝑥 is chosen at random.

Assume that the probability that 𝑏𝑖 is equal to any 𝑎 𝑗 is at most

𝑖ℓ ·𝑝 (𝜆)
2
𝜆 . If this event does not occur, thenO(𝑏𝑖+1) = O(𝑤𝑖+1 | |O(𝑏𝑖 ))

is a freshly random value, and the probability that 𝑏𝑖+1 = 𝑎 𝑗 for any

𝑗 is at most
ℓ ·𝑝 (𝜆)
2
𝜆 (since A can try up to 𝑝 (𝜆) values for𝑤𝑖+1).

Pr

[
𝑏𝑖+1 = 𝑎 𝑗 for some 𝑗

]
≤ ℓ · 𝑝 (𝜆)

2
𝜆

Pr

[
𝑏𝑖 ≠ 𝑎 𝑗 for all 𝑗

]
+ Pr

[
𝑏𝑖 = 𝑎 𝑗 for some 𝑗

]
≤ ℓ · 𝑝 (𝜆)

2
𝜆
+ 𝑖ℓ · 𝑝 (𝜆)

2
𝜆

=
(𝑖 + 1)ℓ · 𝑝 (𝜆)

2
𝜆

since Pr[𝑏𝑖 = 𝑎 𝑗 for some 𝑗] ≤ 𝑖ℓ ·𝑝 (𝜆)
2
𝜆 by assumption. Therefore,

the probability that any of the (polynomially bounded) 𝑘 queries

involved in witness verification was queried in step 2 is at most

𝑘ℓ ·𝑝 (𝜆)
2
𝜆 ≤ negl(𝜆).
In order for witness verification to pass, the last query must

match the root; that is, O(𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥))) = 𝐴. Since the

above argument shows that (𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥))) was never
queried in step 2, at the end of which A outputs 𝐴, for each choice

of 𝑤𝑘 , O(𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥))) is a uniformly random value

independent of𝐴 and equals𝐴 with only negligible probability. □

5.3 RSA accumulators
In a standard RSA accumulator [13, 39], Setup(𝜆) generates a ran-
dom group of unknown order and a generator 𝑔 for this group

using some group generation algorithm GenGroup. The data uni-
verse is Π𝜆 , the set of all 𝜆-bit primes. The accumulator value for

a set 𝑆 is 𝐴 = 𝑔
∏

𝑥 ∈𝑆 𝑥 , and the witness𝑤 for an element 𝑥 for the

3
The adversary can in fact win with non-negligible probability by accumulating any

range whose size is a constant fraction of |𝑈 | .

value 𝐴 is𝑤 = 𝑔
∏

𝑥 ′ ∈𝑆\{𝑥 } 𝑥
′
= 𝐴1/𝑥

. Add(𝐴𝑡 , 𝑥) outputs 𝐴𝑡+1 = 𝐴𝑥
𝑡 .

Thus, the accumulator value for a set 𝑆 can be obtained by starting

with the value 𝐴0 = 1 and adding each 𝑥𝑖 ∈ 𝑆 to 𝐴𝑖=1 to ob-

tain 𝐴𝑖 , repeating until we reach 𝐴 |𝑆 | . UpdWit(𝐴𝑡 , 𝑥,𝑤
′
𝑡 ) outputs

𝑤 ′
𝑡+1 = (𝑤

′
𝑡 )𝑥 . MemVer(𝐴, 𝑥,𝑤) outputs 1 if and only if𝑤𝑥 = 𝐴. A

non-membership witness for 𝑥 with respect to𝐴 = 𝑔
∏

𝑠∈𝑆 𝑠 is {𝑎, 𝐵}
where 𝑎 and 𝑏 are Bézout coefficients for (𝑥,∏𝑠∈𝑆 𝑠), and 𝐵 = 𝑔𝑏 .

NonMemVer(𝐴, {𝑎, 𝐵}, 𝑥) outputs 1 if and only if 𝐴𝑎𝐵𝑥 = 𝑔.

To make RSA accumulators insertion-secure, we add a second

condition toMemVer(𝐴, 𝑥,𝑤): It now outputs 1 if and only if𝑤𝑥 =

𝐴 and 𝐴 ≠ 1. This requirement that 𝐴 ≠ 1 allows us to reduce

insertion security to the Adaptive Root Assumption.

Assumption 1 (Adaptive Root Assumption [10]).

Pr


G

$←− GenGroup(𝜆)
(𝑣, 𝑠𝑡) ← A0 (G)

𝑢𝑙 = 𝑣 ≠ 1 : 𝑙
$←− Π𝜆 = Primes(𝜆)

𝑢 ← A1 (𝑣, 𝑙, 𝑠𝑡)


≤ negl(𝜆)

Lemma 4. Suppose a standard RSA accumulator is modified so
that the algorithm MemVer(𝐴, 𝑥,𝑤) outputs 1 if and only if𝑤𝑥 = 𝐴

and 𝐴 ≠ 1. The modified RSA accumulator is insertion-secure if the
Adaptive Root Assumption holds for the group generation algorithm
GenGroup.

Proof. Suppose that there exists a PPT adversary A that wins

GinsertA,Acc (𝜆) with probability at least
1

poly(𝜆) when the data universe

is Π𝜆 , the set of all 𝜆-bit primes. We construct a pair of adversaries

B0,B1 that uses A to break the Adaptive Root Assumption. B0
draws G

$←− GenGroup(𝜆). B0 passes G to A and obtains an ac-

cumulator value 𝐴. B0 outputs 𝑣 = 𝐴 and 𝑠𝑡 as its current state.

B1 draws a random 𝑙
$←− Π𝜆 and passes 𝑥 = 𝑙 to A. A outputs an

alleged witness𝑤𝑥 which B1 outputs directly as 𝑢 in the Adaptive

Root Game.

Recall that ifA winsGinsertA,Acc (𝜆), it means thatMemVer(𝐴, 𝑥,𝑤𝑥 ) =
true. For RSA accumulators,MemVer(𝐴, 𝑥,𝑤𝑥 ) = true if and only

if (𝑤𝑥 )𝑥 = 𝐴 and 𝐴 ≠ 1. This implies that 𝑢𝑙 = 𝑣 where 𝑣 ≠ 1, and

(B0,B1) win the Adaptive Root Game. SinceA wins with probabil-

ity at least
1

poly(𝜆) , (B0,B1) win with probability at least
1

poly(𝜆) ,
violating the Adaptive Root Assumption.

□

Corollary 13. The modified RSA accumulator is insertion-secure
in the Algebraic Group Model (AGM), since the Adaptive Root As-
sumption holds in the AGM [24].

5.4 Bilinear accumulators
We show that bilinear accumulators [41, 51] with a small modifica-

tion are insertion-secure in the AGM, under the Bilinear 𝑞-Strong

Diffie-Hellman Assumption. The standard bilinear accumulator

was defined by Nguyen [41], and we follow [43] in its presenta-

tion. Let G,G be cyclic multiplicative groups of prime order 𝑝 , and

let 𝑒 : G × G → G be a bilinear pairing. Let 𝑠
$←− Z∗𝑝 , and let 𝑔

be a generator of G. Let srs = [𝑔,𝑔𝑠 , . . . , 𝑔𝑠𝑞 ] be the structured

reference string, where 𝑞 is an (polynomial in 𝜆) upper bound on
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the number of accumulated elements. The public parameters are

(𝑝,G,G, 𝑒, 𝑔, srs). Note that 𝑠 must be kept secret even to the coor-

dinator, and therefore a trusted setup is required.

This accumulator has data universe𝑈 = Z∗𝑝\{−𝑠}. To accumulate

a set 𝑋 ⊂ 𝑈 , where |𝑋 | ≤ 𝑞, one computes 𝐴 = 𝑔
∏

𝑥𝑖 ∈𝑋 (𝑥𝑖+𝑠 ) .
The witness for an element 𝑥 ∈ 𝑋 is𝑊 = 𝑔

∏
𝑥𝑖 ∈ (𝑋 \{𝑥 }) (𝑥𝑖+𝑠 ) . To

verify a witness, one checks that 𝑒 (𝑊,𝑔𝑠+𝑥 ) = 𝑒 (𝐴,𝑔). To make this

accumulator insertion-secure, we also check that 𝐴 ≠ 1.

In the Algebraic Group Model (AGM) [27], the adversary is con-

strained to perform only algebraic operations within the given

group. That is, the adversary is given some group elements as input,

and for any element that it outputs, it must provide a description

of the operations used to obtain that element. In our setting, the al-

gebraic adversary is given as input [1, 𝑔, 𝑔𝑠 , . . . , 𝑔𝑠𝑞 ]. For any group
elementℎ that the adversary outputs, it must provide a scalar vector

𝑣 ∈ Z∗𝑝 such that ℎ =
∏𝑞

𝑖=0
𝑔𝑣𝑖 ·𝑠

𝑖
. We refer the reader to [27, 28] for

a more formal definition. Observe that the 𝑣𝑖 ’s can be interpreted

as the coefficients of a polynomial of degree 𝑞 evaluated at 𝑠 . We

use this interpretation in the following proof.

Assumption 2 (𝑞-Discrete Logarithm Assumption (𝑞-DLOG)

[27]). The 𝑞-DLOG assumption holds in a group G if for every p.p.t.
adversary A,

Pr

𝑠←Z∗𝑝

[
A

(
𝑔,𝑔𝑠 , . . . , 𝑔𝑠

𝑞
)
→ 𝑠

]
≤ negl(𝜆) .

Lemma 5. The bilinear accumulator of [41] is insertion-secure in
the AGM, under the 𝑞-DLOG Assumption.

Proof. Let A be an algebraic adversary that takes srs as input
and outputs 𝐴 such that with non-negligible probability, A can

produce a verifying witness𝑊 for a randomly chosen 𝑥 ∈ Z∗𝑝 . Since
A is algebraic, it must output vectors which we interpret as polyno-

mials 𝛼 (𝑆),𝑤 (𝑆) of degree at most 𝑞 such that 𝐴 = 𝑔𝛼 (𝑠 ) and𝑊 =

𝑔𝑤 (𝑠 ) . Since the witness verifies, 𝑒 (𝑊,𝑔) (𝑠+𝑥 ) = 𝑒 (𝑔𝛼 (𝑠 ) , 𝑔); that
is, 𝑒 (𝑔,𝑔)𝑤 (𝑠 ) (𝑠+𝑥 ) = 𝑒 (𝑔,𝑔)𝛼 (𝑠 ) . Furthermore, 𝛼 (𝑆) is a nonzero
polynomial since verification requires that 𝐴 ≠ 1.

Observe that since 𝑥 is chosen randomly from an exponentially

large set, and 𝛼 is a nonzero polynomial of polynomially bounded

degree, (𝑆 + 𝑥) divides 𝛼 (𝑆) with only negligible probability by

the Schwartz-Zippel lemma. Therefore, 𝑤 (𝑆) (𝑆 + 𝑥) − 𝛼 (𝑆) is a
nonzero polynomial that has 𝑠 as a root. The adversary can factor

𝑤 (𝑆) (𝑆 + 𝑥) − 𝛼 (𝑆) in polynomial time to find 𝑠 . □

5.5 From generic universal accumulators
Finally, we show how to construct an insertion-secure accumulator

Acc′ from any universal accumulator Acc. The core idea is to map

each element 𝑥 to two pseudorandom sets (𝑆+𝑥 , 𝑆−𝑥 ), each a subset of

the data universe𝑈 . Proving membership of 𝑥 for Acc′ in requires

showing inclusion of all elements of 𝑆+𝑥 in Acc and exclusion of all

elements of 𝑆−𝑥 in Acc. Intuitively, breaking insertion security by

accumulating the entire data universe in Acc does not work because
it will make the required non-membership proofs impossible. The

best attacker strategy is to accumulate a random subset of half the

elements of𝑈 , but this will mean that each item in 𝑆+𝑥 is wrongly

excludedwith probability
1

2
and each item in 𝑆−𝑥 is wrongly included

with probability
1

2
. By setting ensuring the sizes of 𝑆+𝑥 , 𝑆

−
𝑥 , we can

amplify security to ensure such an adversary has only a negligible

probability of correctly showing inclusion of a random element.

In more detail, letAcc be a universal accumulator scheme for data

universe 𝑈 . Here, we let the data universe for Acc′ be 𝑈 ′ = {0, 1}𝜆 .
Let𝐻 : [𝜆]×𝑈 ′ → 𝑈 be a hash function that we will model as a ran-

dom oracle. For any 𝑥 ∈ 𝑈 ′, let 𝑆+𝑥 :=

{
𝑦 : 𝐻 (𝑖, 𝑥) = 𝑦 for 𝑖 ∈ [ 𝜆

2
]
}
,

and let 𝑆−𝑥 :=

{
𝑦 : 𝐻 (𝑖, 𝑥) = 𝑦 for 𝑖 ∈

{
( 𝜆
2
+ 1), . . . , 𝜆

}}
(assume

for convenience that 𝜆 is even). We specify the functions of Acc′ as
follows:

Setup: uses the same setup function as Acc.
Accumulate(S′): Let 𝑆 =

⋃
𝑥∈𝑆 ′ 𝑆

+
𝑥 . Outputs𝐴 = Acc.Accumulate(𝑆).

GetMemWit(S′,A, x): Outputs a vector of witnesses w of length

𝜆 where:

• For 𝑖 ≤ 𝜆
2
, 𝑤𝑖 = Acc.GetMemWit(𝑆,𝐴, 𝐻 (𝑖, 𝑥)) is a

membership proof for 𝐻 (𝑖, 𝑥)
• For 𝑖 > 𝜆

2
,𝑤𝑖 = Acc.GetNonMemWit(𝑆,𝐴, 𝐻 (𝑖, 𝑥)) is

a non-membership proof for 𝐻 (𝑖, 𝑥)
MemVer(𝐴, 𝑥,w): Outputs true if and only if the following holds

for all 𝑖 ∈ [𝜆]:
• For 𝑖 ≤ 𝜆

2
, Acc.MemVer(𝐴,𝐻 (𝑖, 𝑥),𝑤𝑖 ) = true.

• For 𝑖 > 𝜆
2
, Acc.NonMemVer(𝐴,𝐻 (𝑖, 𝑥),𝑤𝑖 ) = true.

Lemma 6. If Acc is a secure universal accumulator and 𝐻 is mod-
eled as a random oracle, Acc′ is insertion-secure.

Proof. Suppose for the sake of contradiction that Acc′ is not
insertion-secure, and let A be an adversary that wins the insertion

game with probability at least
1

𝜆𝑐
for some constant 𝑐 > 0, condi-

tioned on the event that it does not query 𝑥 before it outputs 𝐴.

(Since A is polynomially-bounded, this event fails to occur with

only negligible probability). Thus, treating 𝐻 as a random oracle,

𝐻 (𝑥) is a 𝜆-length tuple of truly random independent values𝑦𝑖 ∈ 𝑈 ,

where 𝑦1, . . . , 𝑦 𝜆
2

should be included, and 𝑦 𝜆
2
+1, . . . , 𝑦𝜆 should be

excluded.

Equivalently, we can think of drawing y = 𝑦1, . . . , 𝑦𝜆 (uniform

and i.i.d. from𝑈 ) and subsequently drawing a uniformly random

vector b of Hamming weight
𝜆
2
, where 𝑦𝑖 should be included if and

only if 𝑏𝑖 = 1.

By an averaging argument, wemust have that for a non-negligible

fraction of y ∈ 𝑋 , A succeeds with non-negligible probability over

subsequent choice of b ∈ {0, 1}𝜆 . Let E[𝐴, y, b,w] denote the event
that Acc.MemVer(𝐴,𝑦𝑖 ,𝑤𝑖 ) = true for all 𝑖 such that 𝑏𝑖 = 1, and

Acc.NonMemVer(𝐴,𝑦𝑖 ,𝑤𝑖 ) = true for all 𝑖 such that 𝑏𝑖 = 0. The

success of A in GinsertA,Acc′ (𝜆) implies that E[𝐴, y, b,w] occurs for its
choice of 𝐴 and w, and the random choice of y, b. Thus,

Pr

pp
$←−Setup(𝜆)

y

[
A outputs 𝐴 such that

Prb [w← A ∧ E[𝐴, y, b,w]] ≥ 1

𝜆𝑐

]
≥ 1

𝜆𝑐

We now construct an adversary B that breaks universal secu-

rity of Acc by producing an accumulator value, an element, and

both membership and non-membership proofs for that element.

Let B first generate setup parameters and run A on these param-

eters to obtain an accumulator value 𝐴. Let B choose y as above

and b1, b2 uniformly random vectors of Hamming weight
𝜆
2
. B
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runs A on inputs (y, b1) and (y, b2) to obtain w1 and w2 respec-
tively. With probability at least

1

𝜆𝑐
, B chose pp and y such that

Prb [w← A ∧ E[𝐴, y, b,w]] ≥ 1

𝜆𝑐
. In this event, the probability

that bothw1 andw2 verify is at least
1

𝜆2𝑐
. As b1 = b2 with only neg-

ligible probability (since

( 𝑛
𝑛/2

)
≥ 2

𝑛/2
), with overwhelming probabil-

ity there is some 𝑖 such that (𝑏1)𝑖 ≠ (𝑏2)𝑖 . However, we have (with-
out loss of generality) both that Acc.MemVer(𝐴,𝑦𝑖 , (𝑤1)𝑖 ) = true
and Acc.NonMemVer(𝐴,𝑦𝑖 , (𝑤2)𝑖 ) = true. This happens with prob-

ability at least
1

𝜆𝑐
· 1

𝜆2𝑐
·
(
1 − 1

2
𝜆

)
, which is non-negligible. This

contradicts universal security of Acc.
□

Correctness. Accumulators typically require correctness, which
says that given an honestly-generated accumulator value for a

set, honestly-generated membership proofs for elements in that

set should verify under MemVer; similarly, honestly-generated

non-membership proofs for elements not in that set should verify

under NonMemVer. We note that Acc′ has only computational
correctness, since there may be some 𝑥1, 𝑥2 for which the same 𝑦 is

included in 𝑆+𝑥1 and 𝑆
−
𝑥2
. This is problematic, since the membership

proofs for 𝑥1, 𝑥2 would require a membership proof and a non-

membership proof for 𝑦 (with respect to Acc), which should be

difficult by security of Acc, and hence 𝑥1 and 𝑥2 cannot both be

included in the accumulator. In Cornucopia, if one user chose 𝑥1
and another user chose 𝑥2, the coordinator could not satisfy both

users.

Fortunately, collision resistance of 𝐻 ensures that actually find-

ing such 𝑥1, 𝑥2 is computationally hard: finding 𝑥1, 𝑥2 such that

𝑦 ∈ 𝑆+𝑥1 and 𝑦 ∈ 𝑆−𝑥2 would involve finding 𝑖1 ≠ 𝑖2 such that

𝑦 = 𝐻 (𝑖1, 𝑥1) = 𝐻 (𝑖2, 𝑥2), which yields a collision of 𝐻 . Compu-

tational correctness is sufficient for use in Cornucopia (and most

other applications), as polynomially-bounded users would not be

able to find 𝑥1 and 𝑥2 resulting in the above issue.

5.6 From vector commitments
Vector commitments (VCs) [15] can be used to construct an insertion-

secure accumulator for sets of bounded size ≤ 𝑘 for any 𝑘 polyno-

mial in 𝜆. Let the message spaceM underlying our VC have size

exponential in 𝜆, and assume there is some total ordering overM.

To accumulate a set 𝑆 ⊆ M, we order this set to obtain a vector and

commit to this vector. The witness for an element 𝑥 ∈ 𝑆 is an index

𝑖 ≤ 𝑘 and a VC opening proof for that index. To verify this witness,

one verifies the opening proof. This scheme is detailed below:

Setup(𝜆) : Output pp← VC.Setup(𝜆).
Accumulate(𝑆) : Interpret 𝑆 as an ordered list 𝑠1, . . . , 𝑠 |𝑆 | , and let

𝑣 = [𝑠1, . . . , 𝑠 |𝑆 | , 0, . . . , 0] be a vector of length 𝑘 . Compute

𝐶, aux← VC.Commit(𝑣).
GetMemWit(𝑆,𝐴, 𝑥): Compute 𝐶, aux from 𝑆 as above. Let 𝑖 be

such that 𝑥 = 𝑠𝑖 . Compute 𝜋𝑖 ← VC.Open(𝑥, 𝑖, aux) and
output (𝑖, 𝜋𝑖 ).

MemVer(𝐴, 𝑥, (𝑖, 𝜋𝑖 )) : Output VC.Ver(𝐴, 𝑥, 𝑖, 𝜋𝑖 ).
Position binding of vector commitments says that it is infeasible

for a PPT adversary to produce any (possiblymaliciously-generated)

𝐴, distinct values 𝑥, 𝑥 ′, an index 𝑖 , and accepting proofs 𝜋𝑖 , 𝜋
′
𝑖
that

the vector committed to by 𝐴 has 𝑥 and 𝑥 ′ respectively as its 𝑖th

component. We prove insertion security by showing that an adver-

sary that breaks insertion security of this accumulator can be used

to break position binding of the underlying VC scheme.

Theorem 5.1. When constructed with a vector commitment over
an exponentially large data universe, this accumulator scheme is
insertion-secure.

Proof. Suppose that Pr

[
GinsertA,Acc (𝜆) = 1

]
is non-negligible. Let

E𝑖 denote the event that A outputs a proof for index 𝑖 . Then there

must be some accumulator 𝐴 and index 𝑖 such that

Pr

pp←Setup(𝜆)
𝐴←A(pp)

[
Pr

[
GinsertA,Acc (𝜆) = 1 ∧ E𝑖

��� pp, 𝐴] ≥ 1

𝜆𝑐1

]
≥ 1

𝜆𝑐2

for some constants 𝑐1, 𝑐2 > 0.

Consider drawing pp← Setup(𝜆) and runningA(pp) to obtain
𝐴. As stated above, with non-negligible probability, there exists

some 𝑖 such that with non-negligible probability given this choice of

pp, 𝐴 the adversary produces a verifying proof for index 𝑖 . Consider

running A twice from this point, for two independently drawn

𝑥1, 𝑥2 ← 𝑈 . With probability at least
1

𝜆2𝑐1
, A produces verifying

opening proofs 𝜋1, 𝜋2 that the 𝑖
th

index of the committed vector

equals 𝑥1 and 𝑥2 respectively. Since𝑈 is exponentially large, 𝑥1 ≠ 𝑥2
with overwhelming probability. Therefore, we have found a vector

commitment 𝐴 and proofs 𝜋1, 𝜋2 that the same component takes

on two distinct values, contradicting position binding of the vector

commitment. □

6 EFFICIENCY COMPARISON OF
ACCUMULATOR CONSTRUCTIONS

Cornucopia can be constructed from any insertion-secure accumu-

lator. In Table 1 we compare efficiency trade-offs between Merkle

trees, RSA accumulators, bilinear accumulators, and a construction

from a vector commitment called Hyperproofs. All of these schemes

require only 𝑂 (1) space on the public bulletin board, regardless

of the number of participants, though the concrete size varies. In

practice, each offers different trade-offs which might be attractive

for different applications.

Merkle trees.Merkle trees are optimal in terms of the commitment

size (32 bytes) and require no trusted setup or public parameters.

They are also the most efficient for the coordinator to compute wit-

nesses, both in asymptotic and concrete terms. The only downside

of Merkle trees is logarithmic witness sizes. Overall, we expect this

to be the simplest and best approach for many applications, unless

clients are extremely bandwidth-limited or the number of users is

very large.

RSA accumulators. By contrast, RSA accumulators offer constant

witness sizes, potentially offering the capability to scale to more

users without imposing extra bandwidth requirements on clients.

However, we note that the large size of RSA groups considered

to offer 128-bit security (3072 bit moduli) means that Merkle tree

proofs are shorter in practice with fewer than ≈ 2
12

users partici-

pating. RSA proofs also require computing modular exponentiation

on large integers. This is relatively poorly supported by today’s

smart contract platforms like EVM, but we observe that these only

ever need to be verified off-chain by users. Still, proof verification is
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Trusted |commitment| Witness size |Public params| Witness gen. time

Scheme setup? (bytes) (asymp.) (bytes) (asymp.) (asymp.)

Merkle tree no 32 𝑂 (log𝑛) 32 · ⌈log𝑛⌉ 𝑂 (1) 𝑂 (𝑛 log𝑛)
RSA Accumulator yes

†
384 𝑂 (1) 384 𝑂 (1) 𝑂 (𝑛2)

Bilinear Accumulator yes 48 𝑂 (1) 48 𝑂 (𝑛) 𝑂 (𝑛 log𝑛)
Hyperproofs [50] yes 48 𝑂 (log𝑛) 48 · ⌈log𝑛⌉ 𝑂 (𝑛) 𝑂 (𝑛 log𝑛)

Table 1: Comparison of accumulator options for Cornucopia, at a security level of 𝜆 = 128 bits. Witness generation time is the
time required to compute all 𝑛 witnesses. †RSA accumulators can be instantiated using class groups [40], which do not require
trusted setup. We report numbers here for the classic RSA group Z∗

𝑁
.

expected to be roughly an order of magnitude slower than Merkle

proofs which only require hashing (though both are very efficient

in concrete terms).

Furthermore, the size of the public commitment is over 10 times

larger than for Merkle trees. This cost can be significant if the public

bulletin board is an L1 blockchain such as Ethereum, where every

32-byte word stored on-chain costs over US$2 at today’s gas prices.

RSA accumulators also impose the highest costs on the coordinator

(𝑂 (𝑛2)) to compute witnesses, which may limit scalability.

RSA accumulators also require a trusted setup. This can be done

for traditional RSA groups Z∗
𝑁

as a multiparty ceremony [16]. De-

ployments may also use class groups of imaginary quadratic or-

der [12, 40], which avoid the need for trusted setup but have higher

concrete overhead and lack well-understood security parameters.

Finally, we note that there may be interesting optimizations

when combining RSA accumulators with RSA-based VDFs [44, 54],

such as offering a combined proof of inclusion and VDF evaluation.

Bilinear accumulators. Bilinear accumulators can offer the com-

bination of small (48 byte) commitments and constant-sized mem-

bership proofs (48 bytes) along with the same asymptotic efficiency

as Merkle trees for computing membership proofs (𝑂 (𝑛 log𝑛)). Bi-
linear accumulators offer higher concrete overhead than for Merkle

trees. In particular, they require pairing operations which are rela-

tively expensive compared to hashing (though still cheap in con-

crete terms). However, the only pairing operation required is a

single operation done by the verifier.

The downside is that bilinear accumulators require a trusted

setup of an 𝑂 (𝑛)-sized structured reference string. This powers-

of-tau string is common to many protocols and there are many

approaches to generating it in a distributed manner [35, 42]. For

example, the FileCoin setup generated 2
27

powers of tau which can

be used in a bilinear accumulator with up to 2
27 ≈ 130 million par-

ticipants [25]. Ethereum generated a smaller string with 2
12

powers

of tau in a community setup [26]. While the coordinator must store

this entire structured reference string, participants need only store

𝑂 (1) terms from this string to verify that their contributions were

included.

Hyperproofs. Finally, Hyperproofs [50] is a vector commitment

scheme with the feature that witnesses can be generated in batch

very efficiently—generating all 𝑛 witnesses takes 𝑂 (𝑛 log𝑛) time.

Concretely, computing all 𝑛 witnesses takes 0.7 hours for 𝑛 = 2
22

and 2.7 hours for 𝑛 = 2
24

as implemented in [50]. Verifying wit-

nesses takes on the order of milliseconds. This efficiency is immedi-

ately inherited by the accumulator constructed using our approach

in Section 5.6. The drawback of Hyperproofs is that it requires linear-

sized public parameters thatmust be generated using a trusted setup.

Merkle trees and bilinear accumulators also allow all witnesses to

be batch computed in 𝑂 (𝑛 log𝑛) time.

7 CONCLUDING DISCUSSION
We introduced Cornucopia, a simple but powerful framework for

VDF-based DRBs, using accumulators to construct participatory

randomness beacon protocols at massive scale. Our work shows

that this paradigm is secure, and it can be instantiated with practi-

cally efficient accumulators. We discussed the efficiency of common

accumulator constructions in Section 6. We note that there is no ob-

vious accumulator construction that is superior performance-wise

in all scenarios. We further note that the performance bottleneck

in practice for very large deployments (e.g. millions or billions of

users) is likely to be inclusion proof generation by the coordinator.

Constructing an accumulator of a large set and batch-computing all

witnesses appears to be an under-studied problem; our work might

serve as motivation to revisit accumulator constructions with this

goal in mind.

We discuss two possible extensions to the Cornucopia frame-

work, leaving a complete analysis to future work.

Public verifiability.As proposed, Cornucopia only offers meaning-

ful security guarantees to participants who themselves contributed

randomness to the protocol. Passive observers will have no idea if

the coordinator actually included any honest participant’s values

in the published commitment.

We can provide a slightly weaker security guarantee to purely

passive participants by introducing a subset of notarized participants
with some public reputation for honesty. These participants may be

organizations such as nonprofits or government bodies who commit

to participating in the protocol regularly. Each notarized participant,

after verifying its inclusion proof showing that its contribution was

included by the coordinator in the accumulator value, signs the

accumulator value. These signatures might be collected by the

coordinator or posted to the public bulletin board. To save space,

they can be compressed using using a signature scheme such as

BLS that supports succinct multi-signatures [11], resulting in only

𝑂 (1) additional overhead.
Any observer can now verify the set of notarized participants

who have contributed to the beacon output. As long as one of an
observer’s trusted notaries is honest, and the VDF output is valid,

the output of Cornucopia must be secure. In practice, using BLS

multi-signatures, this would be about as efficient to verify as a
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state-of-the-art honest majority protocol like drand [23], while

offering much stronger security (any honest notarized participant

vs. a majority of honest nodes in drand).

Note that this discussion assumes that notaries are perfectly

reliable and never go offline. Tolerating aminority of offline notaries

requires relaxing the assumptions further, but not necessarily to

an honest majority assumption. Tolerating 𝑘 notaries going offline

requires trusting that at least 𝑘 + 1 notaries are honest.

Improving liveness with multiple coordinators. A malicious

coordinator can prevent individuals from contributing to the proto-

col, or even withhold the commitment 𝑅 and prevent the protocol

from finishing at all. The coordinator can’t do so conditionally based

on the impending outcome, but they can try to block all honest

participants. As noted, the coordinator is trusted for availability,

but not for security.

A natural way to mitigate denial-of-service is to introduce mul-

tiple coordinators, each of which posts a commitment 𝑅𝑖 . The final

beacon output is then computed asΩ = Delay(Combine(𝑅1, . . . , 𝑅𝑛)),
passing a the concatenation of these commitments to the VDF. Note

that in the limit, every user might in fact be their own coordina-

tor, in which case the protocol is exactly the original Unicorn pro-

posal [37]. This makes it easy to see, informally, that extra malicious

coordinators cannot undermine security of the protocol as long as

the VDF is secure.

Indeed, there is no security reason to limit the number of coor-

dinators, only efficiency considerations. It would be possible in a

distributed setting, for example, to enable any party act as a co-

ordinator as long as they are willing to pay the cost (e.g. gas) of

posting their accumulation 𝑅𝑖 to the bulletin board. Now, as long

as at least one coordinator posts a commitment that has at least

one honest randomness contribution, the beacon output is unpre-

dictable. Users can submit contributions to multiple coordinators

and trust the final output Ω as long as at least one coordinator

includes their contribution.

Another benefit of this multi-coordinator design is that coordi-

nators can use different accumulators. This allows users to choose

their desired efficiency trade-off. For example, a user participating

across many epochs may prioritize shorter witnesses and opt for

the bilinear accumulator with its constant-sized witnesses. Another

user who participates only once may opt for a coordinator using a

Merkle tree, requiring an 𝑂 (log𝑛)-sized witness, which is a small

one-time cost, and avoiding the need for a trusted setup.

Incentives. Finally, while we note that analyzing incentives in pub-

lic randomness generation is an important open problem, not just

for Cornucopia-style protocols but for DRBs in general. First, it is

necessary in Cornucopia to incentivize the coordinator(s) to provide

a highly reliable service and expend non-trivial effort computing

inclusion proofs. This problem is somewhat similar to incentivizing

nodes to participate in an honest-majority DRB such as drand. In

general, randomness beacons are a public good in that they are

non-rivalrous (their value is not decreased as more users rely on

them) and non-excludable (it is difficult to prevent anybody from

utilizing them for their own purposes). Standard economic theory

predicts that public goods are susceptible to free-riding: users may

not want to contribute to funding a coordinator if they can rely on

the efforts of others to do so and still utilize the randomness bea-

con. We hope that the relatively low costs of running a coordinator

means it might attract corporate sponsorship for publicity, be run

by a foundation, or receive government support.

Second, it is necessary to incentivize users to regularly contribute

randomness and to ensure their local machine is uncompromised

and generating randomness correctly. The potentially large scale

of Cornucopia instances might paradoxically decrease user moti-

vation: if the protocol is secure as long as at least one other user

is honest, why expend the effort to contribute at all? This is a ver-

sion of the bystander effect, whereby opening participation to more

parties which can contribute security means all of them may figure

somebody else will do it. Hopefully, the open nature of Cornucopia

may provide a new type of incentive, as by participating users

themselves gain trust that the result is secure.
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