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Abstract

Private information retrieval (PIR) allows a client to read data from a server, without re-
vealing which information they are interested in. A PIR is doubly efficient if the server runtime
is, after a one-time pre-processing, sublinear in the database size. A recent breakthrough result
from Lin, Mook, and Wichs [STOC’23] proposed the first-doubly efficient PIR with (online)
server computation poly-logarithmic in the size of the database, assuming the hardness of the
standard Ring-LWE problem.

In this work, we consider the problem of doubly efficient batched PIR (DEBPIR), where
the client wishes to download multiple entries. This problem arises naturally in many prac-
tical applications of PIR, or when the database contains large entries. Our main result is a
construction of DEBPIR where the amortized communication and server computation overhead
is Õ(1), from the Ring-LWE problem. This represents an exponential improvement compared
with known constructions, and it is optimal up to poly-logarithmic factors in the security pa-
rameter. Interestingly, the server’s online operations are entirely combinatorial and all algebraic
computations are done in the pre-processing or delegated to the client.

1 Introduction

Private information retrieval (PIR) [12] enables a client to download an element from a public
database without revealing to the database server which record is being requested. Beyond its
direct applications to private database queries, PIR serves as a core building block in a wide range
of privacy-preserving applications such as anonymous messaging [1,2,21,24], contact discovery [7,13]
and safe browsing [20]. As an illustration, suppose a client wishes to retrieve a video from YouTube
without revealing which specific video they are interested in. The goal of PIR is to solve this
problem with low communication complexity, sub-linear in the database size N , and ideally just
polynomial in logN . However, PIR comes with a major limitation: It inherently requires the server
to read the entire database DB during every protocol execution. In our working example, YouTube
would have to perform extensive computations across its entire video database merely to provide a
single video to a client.

To overcome this limitation, the concept of doubly efficient PIR (DEPIR) was pioneered by
Beimel, Ishai and Malkin [6]. In the DEPIR scheme [6, 8, 11, 22], the database DB ∈ {0, 1}N is
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preprocessed into some static data structure D̃B that is stored by the server. Subsequently, any
client can run a PIR protocol with the server to retrieve the value DB[i] without revealing the index
i, where both the communication and the server/client computation during the protocol are sub-
linear in the database size N , and ideally polynomial in logN . In particular, this means that during
each PIR protocol execution, the server merely accesses a sub-linear number of locations in the data
structure D̃B. Constructing a DEPIR with poly-logarithmic complexity has been a long-standing
open problem for more than two decades, and it was recently solved in the breakthrough result of
Lin, Mook and Wichs [22], who proposed a construction from the Ring-LWE assumption. More
precisely, their scheme achieves server/client computation poly(λ, logN), where λ is the security
parameter. For single-bit queries, the complexity of this scheme is optimal up to polynomial factors
in λ.

In this work, we are interested in the settings of batched PIR where clients want to retrieve
multiple entries from the same database [1, 2, 15, 16, 25]. Batched PIR matches the use case of
many practical applications and holds the potential for substantial efficiency improvements over
PIR in terms of amortized cost per query. Our motivations are two-fold: On the one hand, many
applications of DEPIR naturally require multiple queries from the same database. For instance,
fetching multiple messages from an anonymous messaging system [3], downloading multiple ads [26],
checking which contacts signed up for a service [17], or checking all passwords at once against a
database of breached passwords [20]. On the other hand, in the settings of multiple entries (or,
equivalently, of large entries) we can hope to amortize the computation/communication of the
server, to achieve even better asymptotics. However, the current best solution is to simply run the
protocol from [22] in parallel. Motivated by this state of affairs, we ask the following question:

Can we construct a batched DEPIR with optimal amortized complexity?

1.1 Our Contributions

In this work, we construct the first doubly efficient batched PIR (DEBPIR) scheme with an amor-
tized server response time and communication cost of poly(log λ), assuming the hardness of the
standard Ring-LWE assumption [23], with quasi-polynomial approximation factors. Compared to
the recent work of [22], which has a poly(λ) overhead even in the amortized settings, our result
represents an exponential improvement in the server efficiency and it is in fact optimal up to poly-
logarithmic factors in λ. Similarly to [22], our protocol consists only of two messages from the
client to the server and back. Below, we summarize the main result of this work.

Theorem 1.1 (Informal). Assuming Ring-LWE with quasi-polynomial approximation factors,
there exists a DEBPIR scheme such that, after offline preprocessing of the database, for secu-
rity parameter λ and a database of size N = poly(λ), the amortized response time of the server
and the amortized communication cost are

poly(log λ, logN) = poly(log λ) = Õλ(1).

At a technical level, our result builds on a new variant of (somewhat) homomorphic encryption,
that we refer to as Vectorized Algebraic Somewhat Homomorphic Encryption (VASHE), which com-
bines the Brakerski Gentry Vaikuntanathan (BGV) scheme [9] with plaintext packing techniques.
We then obtain our main result by coupling this scheme with a new variant of the pre-processing
algorithm introduced by Kedlaya and Umans [18, 19]. Interestingly, the online operations of the
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server are entirely combinatorial in nature, whereas all algebraic operations are delegated to the
client. Next, we give a more detailed overview of our techniques.

1.2 Technical Overview

The starting point of our construciton is the DEPIR scheme from [22], so we begin by recalling the
high-level idea of their approch. Their scheme proceeds in three steps:

• Pre-processing: First, the server encodes the database DB into a m-variate polynomial fDB

of individual degree < d over Zd via multi-variate polynomial interpolation such that

fDB(i1, . . . , im) = DB[i],

where (i1, . . . , im) is the base-d decomposition of i. Then it pre-processes the evaluation of
this polynomial using the techniques introduced by Kedlaya and Umans [18,19].

• Query: The client formulate its query by encrypting the base-d m-variate representation of
its index under an algebraic homomorphic encryption scheme. The crucial property of this
scheme is that the homomorphic evaluation of fDB is itself an evaluation of a multi-variate
polynomial (possibly over a different ring).

• Response: The server responds by simply evaluating fDB on the point specified by the ci-
phertext sent by the client. Leveraging the result from [18,19], this step can be done in online
time poly-logarithmic in the size of the database.

By a careful parameter selection, one can ensure that the server computational overhead is bounded
by poly(λ), when compared to the insecure scheme (where the clients simply send their indices in
the plain). When considering n parallel queries, the trivial solution would be to run the DEPIR
protocol multiple times in parallel. However, its amortized computation/communication of the
server still remains at poly(λ). A naive attempt to improve this, would be to couple DEPIR
with a batching technique for homomorphic encryption, called Single Instruction Multiple Data
(SIMD) [29] , which is able to reduce the amortized server response time by a factor n, by setting
n to be also the number of slots in the SIMD encoding. Unfortunately, this approach falls short at
achieving our goal: The response time of the server in DEPIR depends polynomially (as opposed to
linearly) in the number of parallel queries n, thereby nullifying the savings of the SIMD technique.

To overcome this challenge, we proceed in two steps. First, we design a variant of the [18, 19]
polynomial pre-processing algorithm, where the polynomial evaluation is split into three subrou-
tines: CRT-decomposition, fast evaluation, and CRT-reconstruction. Then the decomposition and
reconstruction subroutines are delegated to the client whereas the server only performes the fast
evaluation. Interestingly, this is an entirely combinatorial subroutine, where the server simply
fetches some values from the pre-processed database. Then, we combine it with a carefully crafted
vectorized algebraic somewhat homomorphic encryption (VASHE) scheme that leverages the SIMD
encoding to achieve an almost-optimal complexity of evaluation. We provide more details in the
remaining part of the technical overview. Next, we review the results of [18, 19] on polynomial
preprocessing for fast evaluation. Then, we discuss the construction of VASHE from Ring-LWE.
Finally, we explain the construction of doubly efficient batched PIR using VASHE.
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1.2.1 Fast Polynomials Evaluation with Preprocessing

Consider the problem of preprocessing multi-variate polynomials f(X1, . . . , Xm) over a ring

R = Zq[Y,Z]/(E1(Y ), E2(Z))

for monic polynomials E1, E2. The output of this procedure is a data structure T that enables
highly efficient evaluation of the polynomial on any given input (α1, . . . , αm) ∈ Rm, achieving an
online time complexity that is sublinear in the description length of the polynomial. Let r = |R| be
the cardinality of the ring, and let e1 and e2 denote the degrees of E1 and E2, respectively. Assume
that f(X1, . . . , Xm) has an individual degree of less than d in each variable. Describing such a
polynomial requires N = dm coefficients, so evaluating it naively would require at least Ω(N log r)
time. Kedlaya and Umans [19] demonstrate how to preprocess this polynomial in

S := N ·O(m(logm+ log d+ log log r))m · poly(d,m, log r)

time, resulting in a data structure T with size at most S. With this data structure, for any
input (α1, · · · , αm) ∈ Rm, one can evaluate f(α1, · · · , αm) in just poly(d,m, e1, e2, log q) time.
Unfortunately, this is insufficient for us. In particular, constructing a doubly efficient batched PIR
requires us to improve the dependency on e1 and e2 to be quasi-linear, as opposed to an arbitrary
polynomial (see Section 5 for a more detailed analysis).

In a nutshell, we achieve this by splitting the polynomial evaluation into three separate al-
gorithms: Decomp,Eval, andReconst, where the running time of our Eval will have the desired
efficiency. Next, we provide a more detailed sketch of our approach. Initially, we focus on the
special case where R = Zq, and we will briefly discuss how to address the general case later in
this outline. We choose M to be dmqm(d−1)+1, and let p1, ..., ph be the distinct primes less than
16 logM for some h ∈ N. This choice ensures that

h∏
i=1

pi ≥M.

We reinterpret the polynomial f ∈ Zq[X1, ..., Xm] of individual degree less than d, as a polynomial
over the integers Z, where the coefficients and inputs are taken from the set {0, . . . , q − 1}. To
evaluate the polynomial f over the integers, it suffices to evaluate it modulo each of the primes pi
separately and then reconstruct the answer over the integers using the Chinese Remainder Theorem
(CRT). For each i ∈ [h], we apply the fast Fourier transform (FFT) on Zm

pi to evaluate f (mod pi)
on all points of Zm

pi and store the evaluations in a table T . In this way, we preprocess f into a data
structure T .

The Decomp algorithm first lifts the input α ∈ Zm
q to α ∈ Zm and then outputs the query

vector
vα = {αi := α (mod pi)|i ∈ [h]},

which represents the CRT components of α with respect to primes p1, . . . , ph. Given the query
vector vα = {vi}i∈[h], the Eval algorithm obtains f i(vi) ∈ Zpi by performing a table lookup in T .
The algorithm then outputs

vf(α) := {f i(vi) | i ∈ [h]}.

Given an encoding vector vβ = {vβi
}i∈[h], the Reconst algorithm reconstructs the smallest β ∈ Z

such that β ≡ vβi
(mod pi) for all i ∈ [h] and outputs β modulo q. To further decrease the runtime

4



of preprocessing and the size of the data structure T , we apply the aforementioned approach
recursively to transform the problem of evaluating the polynomial f modulo each prime pi into
evaluating it modulo a different set of even smaller primes p′j .

Finally, the result extends to rings R = Zq[Y ]/(E(Y )) by reducing the problem over such
rings to that over Zr, where r is much greater than q and depends on |R|. Instead of evaluating
f(α1, . . . , αm) over R, we evaluate it over Zr by substituting Y = M for some sufficiently large
integer M ∈ Z and performing the computation modulo r. This ensures there is no wrap-around.
The output is an integer with baseM digits that correspond to the coefficients of Y in the correct
evaluation of f(α1, . . . , αm) over R. We can extend the result to R = Zq[Y,Z]/(E1(Y ), E2(Z))
analogously.

1.2.2 Constructing VASHE

We now turn to the problem of constructing VASHE, which we obtain by combining the BGV
scheme [9, 22] with the SIMD encoding. Concretely, we take the most basic symmetric-key BGV
of [22] and slightly modify it to handle a plaintext space Zp[Z]/(Zn + 1) for some prime p with
p ≡ 1 (mod 2n), which can be decomposed into n copies of Zp via the Chinese Remainder Theorem
(CRT). SIMD, a CRT-based batching technique, allows us to perform multiplications and additions
over Zp[Z]/(Zn + 1) as operations over n slots. We denote the rings

Q := Zq[Z]/(Zn + 1) and R := Q[Y ]/(Y D + 1) ∼= Zq[Y, Z]/(Zn + 1, Y D + 1),

where q ≫ p is a relatively prime number to p. We describe the scheme as a symmetric encryption,
which is anyway sufficient for our goal.

• The secret key is a random ring element s← Q.

• Use SIMD encoding to encode n messages m1, · · · ,mn ∈ Zn
p to a plaintext µ ∈ Zp[Z]/(Zn+1).

The decoding is just the inverse operation.

• To encrypt µ ∈ Zp[Z]/(Zn+1), choose a random a← Q, sample e from an error distribution
χ and output

b− a · Y ∈ R,

where b = a · s+ p · e+ µ.

• To decrypt ct(Y ) ∈ R, evaluate it on the secret key s and output ct(s) modulo p.

In the VASHE scheme, the ciphertexts are polynomials of a formal variable Y instead of tuples of
elements inQ. By adding and multiplying such ciphertext polynomials, we can add and multiply the
corresponding encrypted messages component-wise. The degree of the ciphertext as a polynomial
over Q[Y ] and the magnitude of the error grow with the number of multiplications.

To handle the error growth of homomorphically evaluating polynomials of total degree < D, we
will set q = 2poly(D,log p). For polynomials of degree < D, modding out by (Y D+1) does not have any
affect on the homomorphic polynomial evaluation. In detail, for any polynomial f(X1, . . . , Xm) over
Zp of total degree < D, we first lift f ∈ Zp[X1, . . . , Xm] to f ∈ R[X1, . . . , Xm]. Given ciphertexts
ct1, . . . , ctm ∈ R encrypting plaintext µ1, . . . , µm ∈ Zp, respectively, the homomorphic polynomial
evaluation EvalP simply evaluates f over the ciphertexts, resulting in ct∗ = f(ct1, . . . , ctm) such
that ct∗ ∈ R is an encryption of f(µ1, · · · , µm).
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The encryption, decryption, encode and decode time and the bit-size of ring elements can
be bound by poly(λ, p,D), growing polynomially with the security parameter λ, the size of the
plaintext space Zp, and the total degree D. However, the runtime of EvalP is O(dm) ·poly(λ, d,m),
which is not efficient enough for the construction of DEBPIR. Fortunately, we can leverage the
preprocessing algorithm as outlined above, to derive a more efficient alternative, that we refer to
as EvalFP, where the computation complexity is bounded by Õλ(n), as desired.

1.2.3 Putting Things Together

We conclude this overview by presenting a sketch of our DEBPIR protocol, combining the tools
that we built to far. In a preprocessing phase, the server encodes the database DB into a m-
variate polynomial fDB of individual degree < d over Fp such that fDB(i1, . . . , im) = DB[i], where
(i1, . . . , im) is the base-d decomposition of i and p is the plaintext modulus of the VASHE. In the
basic batched PIR scheme, the query of the client consists of n indices i(1), . . . , i(n) ∈ JNK written in

base-d as i(j) = (i
(j)
1 , . . . , i

(j)
m ) for j ∈ [n]. The digits (i

(1)
k , . . . , i

(n)
k ) can be encoded into a plaintext

and then encrypted into a single ciphertext ctk for k ∈ [m]. To give a PIR response, the server
computes

ct∗ ← VASHE.EvalP({ct1, . . . , ctm}, fDB).

The client decrypts ct∗ and then decodes the plaintext to message vector b ∈ {0, 1}n, where

b[j] = fDB(i
(j)
1 , . . . , i

(j)
m ) = DB[i(j)] since VASHE satisfies the SIMD property.

Preprocessing the polynomial fDB into a data structure D̃B allows us to replace VASHE.EvalP
with VASHE.EvalFP, i.e. fast polynomial evaluation with preprocessing [19], which upgrades the
base scheme into DEBPIR. To be more specific, the client breaks ct1, . . . , ctm down into CRT
components1 instead of sending the query ciphertexts to the server directly, the server obtains the
CRT encoding vct∗ of ct∗ by looking up the preprocessed data structure D̃B in the online response
phase and the client performs the CRT reconstruction to recover ct∗ from its CRT form before the
decryption.

A careful balancing of the parameters allows us to take advantage of the SIMD encoding, to
pack multiple plaintext query indices into a single encrypted query vector. Overall, we obtain an
amortized server complexity of poly(log λ) = Õλ(1), which is an exponential improvement over
prior work.

1.3 Related Works

We compare DEBPIR with some previous PIR protocols.

Multi-server PIR. A series of works [5, 14, 27] considered multi-server PIR protocols where the
database is replicated across multiple servers. In general settings, multi-server constructions have
reduced computational overhead and can often achieve information-theoretic security. However,
the drawback is their reliance on having multiple non-colluding servers; this assumption can be
challenging to realize in practice. Conversely, single-server protocol DEBPIR assumes a client-
server architecture, provides computational security guarantees and do not assume non-colluding
servers.

1Technically, we first turn cti ∈ R into an element of Zr for some large r and then break it down into CRT
components.
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DEPIR. The seminal work of Lin, Mook and Wichs [22] constructed DEPIR under the standard
Ring-LWE [23] assumption with quasi-polynomial approximation factors. For any constant ϵ > 0,
they get a scheme where, for a database DB ∈ {0, 1}N , the preprocessing run-time and the size of
the preprocessed data structure D̃B are O(N1+ϵ), while the client and server run-times as well as the
communication-complexity of each PIR query are just poly(λ, logN). Compared with DEPIR [22],
our DEBPIR allows the client query several indices of the dababase in one batch and is able to
achieve poly(log λ, logN) amortized server online response time and amortized communication cost.

Batched PIR. A series of works [16,25] considered batched PIR protocols where the client wants
to download multiple entries from the server in one batch. However, the communication and
computation cost of their schemes are still poly(

√
N), while the amortized server online response

time and amortized communication cost of our DEBPIR scheme are poly(log λ, logN), which is an
exponential improvement compared with previous batched PIR protocols.

2 Preliminaries

We use the following notations for sets of numbers: N for positive integers, Z for integers, and R
for real numbers. For an integer n ∈ N, we write [n] = {1, . . . , n}, and JnK = {0, . . . , n − 1}. We
treat numbers such as n1/2 and n/k as integers, ignoring issues of integrality, since we can always
round numbers with negligible asymptotic loss. We use poly(·) to denote a fixed polynomial in its
argument. For a finite set X, the notation x ← X denotes an independent and uniform random
draw from X. Unless specifically stated otherwise, all logarithms mentioned are in base 2, and
log n denotes log2 n. We define the norm of a =

∑n−1
i=0 aiZ

i ∈ Zq[Z] as ∥a∥∞ := max{|ai|}, where
we identify ai ∈ Zq with its integer representative in the range (−q/2, q/2].

We index an array A ∈ {0, 1}n starting from 0, such that A[i] denotes the i-th bit in the array.
For any q ∈ N, we let Zq denote the ring Z/qZ, and for a prime p, we let Fp denote the finite field of
order p. A function v : N→ N is called negligible, denoted as v(n) = negl(n), if for every positive
polynomial p(·) and sufficiently large n, it holds that v(n) < 1/p(n). We use the abbreviation PPT
for probabilistic polynomial time, and denote the security parameter as λ. For two distributions
X and Y that are parameterized by λ, we say that they are computationally indistinguishable,
denoted by X ≈c Y , if for every PPT distinguisher D, we have

|Pr[D(X) = 1]− Pr[D(Y ) = 1]| = negl(λ).

2.1 Ring-LWE

The security of many lattice-based cryptographic schemes is based on the hardness of the decisional
Ring Learning With Errors (Ring-LWE) problem, which has become a standard building block in
cryptography. The Ring-LWE problem is a mathematical problem proposed by Lyubashevsky et
al. [23], which is an algebraic variant of the Learning With Errors (LWE) problem [28].

Let Q := Zq[Z]/(Zn +1) for some integer q. A distribution χ over Q is said to be β-bounded if
Pr [∥e∥∞ ≤ β : e← χ] = 1. Ring-LWE essentially states that given a secret s ← Q, the following
two distributions are computationally indistinguishable: the distribution of pairs (a, b := as+ e) ∈
Q2, where a ← Q and e ← χ, and the distribution of uniformly sampled pairs (a, b) ← Q2. We
now formally define the computational problems that we discussed above.
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Definition 2.1 (Ring-LWE Distributions). For s ∈ Q, a sample from the Ring-LWE distribution
An,q,χ over Q2 is obtained by uniformly sampling an a ∈ Q, sampling e ∈ Q from χ, and outputting
the pair (a, as+ e).

Definition 2.2 (Decisional Ring-LWEn,q,χ Problem). Given access to polynomially many samples
from Q2, the decisional Ring-LWEn,q,χ problem is to distinguish between the distributions An,q,χ

and the uniform distribution of Q2.

There is a quantum reduction from the approximate shortest vector problem (SVP) on ideal lat-
tices to the Ring-LWE problem [23]. Informally, this means that the decisional Ring-LWE problem
is hard, assuming that worst-case problems on ideal lattices are hard for quantum computers. To
be more specific, the decisional Ring-LWE problem with some β-bounded error distribution χ is
implied by the worst-case hardness of the approximate shortest vector problem in an ideal lattice
with approximation factor ≈ q/β.

Theorem 2.3 ( [23]). For any n that is a power of two, ring Q = Z[Z]/(Zn + 1), prime integer
q ≡ 1 (mod n), and β = ω(

√
n log n), there is an efficiently samplable β-bounded distribution χ

over Q, such that there is a quantum reduction from the nω(1) · (q/β)-approximate worst-case SVP
in ideal lattices over Q to Ring-LWEn,q,χ, where the reduction runs in time poly(n, q).

We let Ring-LWE assumption with quasi-polynomial approximation factors refer to the as-
sumption that, given any security parameter λ and any gap parameter t, we can, in poly(λ, t)
deterministic time, find parameters: n = poly(λ, t), β = poly(λ, t), a β-bounded distribution χ
that is efficiently samplable in poly(λ, t) time, and q = λpoly(t) with q > (2βn)t, such that for any
t(λ) = poly(log λ) the corresponding Ring-LWEn,q,χ assumption holds. The Ring-LWE assump-

tion with quasi-polynomial approximation factors is implied by the worstcase 2poly(logn) quantum
hardness of the approximate SVP in an ideal lattice with approximation factors 2poly(logn).

The Ring-LWEn,q,χ assumption is known to be equivalent to a Hermite normal form variant
where we sample s ← χ from the error distribution rather than uniformly at random from the
ring [4,23]. It is also equivalent to a scaled error variant where instead of adding the errors ei ← χ
we add p · ei for some integer p relatively prime to q [10].

2.2 Single Instruction Multiple Data (SIMD)

In [29], Smart and Vercauteren introduced a packing technique called Single Instruction Multiple
Data (SIMD) for homomorphic encryption (HE) schemes. The technique decomposes the plaintext
space using the Chinese Remainder Theorem (CRT), which allows multiple values to be encrypted
simultaneously into one ciphertext and enables arithmetic operations to be performed homomor-
phically. Specifically, by applying a single instruction to a ciphertext, we can perform computations
on large amounts of data simultaneously. Since HE schemes typically embed relatively small data
within large ciphertexts, allowing each ciphertext to represent multiple independent data enables
a more efficient use of both space and computational resources.

We denoteRp := Zp[Z]/(Φm(Z)), where Φm(Z) is the reduction modulo p of them-th cyclotomic
polynomial. They proposed a CRT-based packing method that decomposes the ring into smaller
components, enabling parallel execution of multiple computations. If p and m are co-prime, then
the m-th cyclotomic polynomial Φm(Z) can be decomposed into irreducible coprime factors modulo
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p

Φm(Z) ≡
l∏

i=1

fi(Z) (mod p),

where degZ(fi) := d = ϕ(m)/l for all i ∈ [l]. Thus,

Rp
∼= Zp[Z]/(f1(Z))× Zp[Z]/(f2(Z))× · · · × Zp[Z]/(fl(Z)). (2.1)

To construct a doubly efficient batched PIR, our focus is on the case where the m-th cyclotomic
polynomial Φm(Z) splits completely modulo p. To begin with, we will consider Lemma 2.4, which
provides the necessary condition for Φm(Z) to completely split modulo p.

Lemma 2.4. If gcd(m, p) = 1 and p is prime, then the following are equivalent:

1. p ≡ 1 (mod m).

2. Φm(Z) splits completely in Fp.

3. Φm(Z) has a root in Fp.

Furthermore when these conditions are satisfied, the roots of Φm(Z) in Fp consist of the primitive
m-th roots of unity.

Therefore, we choose a prime number p and set n = 2r in a way that ensures p ≡ 1 (mod 2n).
According to Lemma 2.4, we obtain

Φ2n(Z) = Zn + 1 ≡
n∏

i=1

fi(Z) (mod p),

where fi(Z) is a linear polynomial for i ∈ [n]. Therefore, it follows from the CRT isomorphism
(2.1) that Rp

∼= Fn
p . In this way, we can pack n elements into these n slots, and multiplications and

additions over Rp correspond to component-wise operations over the n slots. We now describe the
encoding and decoding algorithms in the SIMD scheme.

• SIMD.Encode: for msg = (m1,m2, . . . ,mn) ∈ Fn
p , encode msg into µ ∈ Rp with the inverse

of the CRT isomorphism (2.1).

• SIMD.Decode: for µ ∈ Rp, decode µ into msg ∈ Fn
p with the CRT isomorphism (2.1).

3 Multi-variate Polynomial Evaluation and Interpolation

3.1 Fast Polynomial Evaluation with Preprocessing

Our work, following [22], builds upon a technique developed by Kedlaya and Umans [19]. Their
method involves preprocessing a multivariate polynomial f into a static data structure T that allows
for efficient evaluation of f(α) for any input α provided later. The evaluation time is sublinear with
respect to the length of the polynomial’s description. In this work, we will rely on this result for
multivariate polynomials f over rings of the form R := Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩, where q ∈ N and
E1(Y ) and E2(Z) are arbitrary non-constant monic polynomials of degree e1 and e2, respectively.
Note that this result includes the rings Zq and Zq[Y ]/(E(Y )) as a special case.
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We now describe the syntax and the efficiency requirement for a fast polynomial evaluation
with preprocessing (FPE) scheme. An aspect that is new to our work, is the fact that we split the
evaluation of the polynomial in three subroutines (Decomp, Eval, and Reconst), and we impose
stronger efficiency requirements for Eval.

Definition 3.1. The fast polynomial evaluation with preprocessing (FPE) scheme is a tuple of
deterministic algorithms (Setup, Prep, Decomp, Eval, Reconst) with the following syntax:

• aux← Setup(R): Output some public auxiliary information aux.

• T ← Prep(f, aux;R): Given auxiliary information aux and a polynomial f ∈ R[X1, ..., Xm]
with degXi(f) < d, outputs a data structure T .

• vα ← Decomp(α, aux;R) : Given an evaluation point α ∈ Rm, outputs an encoding vector
vα.

• vf(α) ← Eval(vα, T, aux;R): Given random access to T and an encoding vector vα, outputs
an encoding vector vf(α) of f(α).

• β ← Reconst(v, aux;R) :Given an encoding vector v as the input, outputs β ∈ R.

The algorithms (Setup,Prep,Decomp,Eval,Reconst) should satisfy the following properties:

• Correctness: Given a fixed polynomial f ,

Reconst(Eval(Decomp(α, aux;R), T, aux;R), aux;R) = f(α)

for all α ∈ Rm and T ← Prep(f,R).

• Efficiency: We require that the run-time of Decomp and Reconst are both bounded by
poly(m, d, e1, e2, log q), the run-time of Eval is bounded by Õ(e1e2) · poly(m, d, log q), and
the output size of Decomp,Eval are bounded by Õ(e1e2) · poly(m, d, log q). Additionally, we
require that the run-time and space complexity of Prep is bounded by

dm · poly(m, d, log |R|) ·O(m(logm+ log d+ log log |R|))m.

The FPE algorithm of [19], and used in [22], is not directly applicable for our construction
of doubly efficient batched PIR, as we require the runtime of evaluation algorithm to be quasi-
linear in e1 and e2. Therefore, we modify the FPE algorithms in [19] and [22] by breaking their
evaluation algorithm into three separate algorithms: Decomp, Eval, and Reconst. This allows us
to delegate some of the server’s work to the client, which ultimately reduces the server’s run time
and communication cost and resulted in a more efficient scheme. Before giving a precise statement
of our results we recall a Lemma from [19].

Lemma 3.2 (Product of small primes [19]). For all integers M ≥ 2, the product of the primes less
than or equal to 16 logM is greater than M . That is,

M <
∏

p≤16 logM, p∈PRIME

p.

We now summarize our results about the FPE scheme into the following theorem.
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Theorem 3.3. Let the ring R := Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩ for two monic polynomials E1(Y ) and
E2(Z) with the degree e1 and e2 respectively. Let f(X1, . . . , Xm) ∈ R[X1, . . . , Xm] be a fixed
polynomial with degXi(f) < d. Then, there exists an FPE scheme satisfies the following properties.
The preprocessing algorithm Prep runs in time

S = dm · poly(m, d, log |R|) ·O(m(logm+ log d+ log log |R|))m

and outputs a data structure T of size at most of S. The running time of Decomp is bounded by

O(e1e2(log q + log e1 + log e2)
2 · poly(d,m, log log q)).

The running time of Eval is bounded by

O(e1e2(log q + log e1 + log e2))poly(m, d).

The running time of Reconst is bounded by

poly(m, d, e1, e2, log q).

Furthermore, the output size of Setup is bounded by O(e21e
2
2 · (log q + log e1 + log e2)) · poly(m, d),

and the output size of Decomp and Eval are bounded by

O(e1e2(log q + log e1 + log e2)) · poly(m, d).

In the following we only provide a sketch of the proof of Theorem 3.3, but we refer the reader
to Appendix A for a complete argument. In Table 1 and 2 we provide a complete overview of the
time and space complexity of our algorithms (for several types of rings R = Zq, R = Zq[Y ]/(E(Y ))
and R = Zq[Y, Z]/(E1(Y ), E2(Z))).

Proof. Let us first consider the special case R = Zq, and we will show how to handle the general
case towards the end of this outline. We now give a high-level overview of the algorithms, along
with their complexities.

• In the Setup algorithm, we choose M to be dmqm(d−1)+1, and let p1, ..., ph be the distinct
primes less than 16 logM for some h ∈ N. We then output the auxiliary information aux =
(M, {p1, ..., ph}). The size of aux is bounded by

logM +
∑

log pi ≤ O(d ·m · log q).

• In the Prep algorithm, we preprocess the coefficients of a polynomial f into a data structure
T . We then lift f ∈ Zq[X1, . . . , Xm] to f ∈ Z[X1, . . . , Xm] by lifting the corresponding
coefficients of f from Zq to Z. For each i ∈ [h], we take every coefficient of f modulo pi
and get fi ∈ Zpi [X1, . . . , Xm] such that fi = f modulo pi. Moreover, we use the fast Fourier
transform (FFT) on Zm

pi to evaluate fi(a) on all points a ∈ Zm
pi and store the evaluations in a

table
Ti := {fi(a) : a ∈ Zm

pi}.

The data structure T consists of p1, p2, . . . , ph, T1, T2, . . . , Th. This algorithm is unchanged
from [19,22], and therefore the running time and output size of Prep are bounded by

O(md log q)m · poly(m, d, log q).
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• Given any point α ∈ Zm
q , the Decomp algorithm lifts α to α ∈ Zm and outputs the CRT

form of α with respect to primes p1, . . . , ph, i.e. we output the encoding vector vα = {αi := α
(mod pi)|i ∈ [h]}. The time complexity of Decomp is bounded by

h∑
i=1

m ·O(log pi log q) ≤ O((log q)2) · poly(m, d).

The size of output is bounded by

m ·
∑
i

log pi ≤ O(log q) · poly(m, d).

• Given the encoding vector vα = {vi}i∈[h], the Eval algorithm obtains f i(vi) ∈ Zpi by looking

it up in table Ti and outputs vf(α) := {f i(vi) | i ∈ [h]}. The time complexity of Eval is
bounded by

O(h) +m ·
∑
i

log pi ≤ O(log q) · poly(m, d).

The size of the output of Eval is bounded by∑
i

log pi ≤ O(log q) · poly(m, d).

• Given an encoding vector v = {vi}, the Reconst algorithm uses CRT reconstruction to find
the smallest β ∈ Z such that β ≡ vi (mod pi) for all i ∈ [h] and outputs β modulo q. The
running time of Reconst is bounded by poly(m, d, log q).

The correctness of the above algorithm is seen as follows. Because the coefficients of the lifted
polynomial f and the components of the lifted point α are in {0, . . . , q − 1}, and f has individual
degree < d, we can bound the lifted evaluation over Z by 0 ≤ f(α) < M . By Lemma 3.2, we then
have

f(α) < M <
∏
i∈[h]

pi.

Note that f(α) ≡ fi(αi) (mod pi) for all i ∈ [h]. Also, by CRT, there is a unique solution for

z <
∏
i∈[h]

pi s.t. z ≡ fi(αi) (mod pi),∀ i ∈ [h].

Recalling that fi(αi) are correctly computed by the FFT evaluation, we have z = f(α) by the
uniqueness. Correctness follows since z = f(α) mod q = f(α).

An important aspect that we have glossed over, is that the size of the data structure T is
O(md log q)m · poly(m, d, log q), which does not satisfy our efficiency requirements. To fix this, we
can apply the above idea recursively to replace the (log q)m factor in the preprocessing run-time
and output size by a (log log q)m factor.

We then extend the result to rings R = Zq[Y ]/(E(Y )), by reducing the problem over such rings
to that over Zr for some r ≫ q that depends on |R|. Instead of evaluating f(α1, . . . , αm) over R,
we evaluate it over Zr by taking all the coefficient/input ring elements and substituting Y = M for

12



some sufficiently large integer M ∈ Z and doing all the computation modulo r for some sufficiently
large r ≫ M , such that there is no wrap-around. The output is an integer whose baseM digits
correspond to the coefficients of Y in the correct evaluation of f(α1, . . . , αm) over R. We can further
extend the result to R = Zq[Y, Z]/(E1(Y ), E2(Z)) analogously.

Zq Zq[Y ]/⟨E1(Y )⟩ Zq[Y, Z]/⟨E1(Y ), E2(Z)⟩
Setup O(md log q) O(e2(log qe))poly(m, d) O(e21e

2
2 · (log qe1e2)) · poly(m, d)

Prep dm · poly(m, d, log q) ·O(m(log d log q))m dm · poly(m, d, log |R|)O(m(log(md log |R|)))m dm · poly(m, d, log |R|)O(m(log(m log |R|)))m
Decomp O(log q)poly(m, d) O(e(log qe))poly(m, d) O(e1e2 log(qe1e2))poly(m, d)

Eval O(log q)poly(m, d) O(e(log qe))poly(m, d) O(e1e2 log(qe1e2))poly(m, d)

Table 1: Space Complexity

Zq Zq[Y ]/⟨E1(Y )⟩ Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩
Prep dm · poly(m, d, log q) ·O(m(logmd log q)m) dm · poly(m, d, log |R|)O(m(log(md log |R|)))m dm · poly(m, d, log |R|)O(m(log(m log |R|)))m

Decomp O(log2 q)poly(m, d) O(e2(log e)2)poly(m, d) O((e1e2 log(qe1e2))
2)poly(m, d)

Eval O(log q)poly(m, d) O(e(log qe))poly(m, d) O(e1e2 log(qe1e2))poly(m, d)
Reconst poly(m, d, log q) poly(m, d, e, log q) poly(m, d, e1, e2, log q)

Table 2: Time Complexity

3.2 Multivariate Polynomial Interpolation

Assume we are provided with a set of dm values y(x1, ..., xm) ∈ Fp for all xi ∈ JdK. Under these con-
ditions, there exists a distinct m-variables polynomial denoted as f(X1, ..., Xm) ∈ Fp[X1, ..., Xm],
where the degree of each variable is strictly less than d, satisfying the equation f(x1, ..., xm) =
y(x1, ..., xm). This is possible due to the existence of a one-to-one correspondence between the
dm coefficients of such polynomials and the dm evaluations obtained for all possible inputs. Fur-
thermore, it is feasible to devise an algorithm that efficiently determines the coefficients of the
polynomial f(X1, ..., Xm) based on the dm evaluations in quasi-linear time.

A similar statement is proven in [22]. However, their result requires the degree d to equal the
prime modulus p, which is too restrictive for us, as we need to choose p such that p ≡ 1 modulo a
power of two. In the following we generalize their result and provide a simple proof. The algorithm
is recursive and uses single-variate polynomial interpolation in the base case.

Lemma 3.4. (Univariate polynomial interpolation). Let Fp be a field of prime order p, then
there is an interpolation algorithm such that takes as input any distinct a1, . . . , an ∈ Fp, and any
b1, . . . , bn ∈ Fp for n ≤ p, outputs the n coefficients of a univarite polynomial g of degree < n, such
that g(ai) = bi for all i ∈ [n] in time n · poly(log n, log p).

Proof. See Corollary 10.12 of [30].

Lemma 3.5. (Multivariate polynomial interpolation). Let Fp be a field of prime order p, and let
m ∈ N be an integer. Let S = {(x1, ..., xm) | xi ∈ JdK} ⊂ Fm

p and let {y(x1,...,xm) ∈ Fp}(x1,...,xm)∈S
be any set of dm values. Then there is an algorithm that runs in quasi-linear time

O(dm ·m · poly(log p, log d))

and recovers the coefficients of a polynomial f(X1, ..., Xm) ∈ Fp[X1, ..., Xm] with degXi(f) < d such
that

f(x1, ..., xm) = yx1,...,xm
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for all (x1, ..., xm) ∈ S.

Proof. We use the following algorithm to interpolate f given values {y(x1,...,xm) ∈ Fp}(x1,...,xm)∈S :

1. Base case: if m = 1, run the univariate polynomial interpolation (Lemma 3.4) to recover the
coefficients of the univariate polynomial f(X) of degree < d such that f(x1) = yx1 for all
x1 ∈ JdK.

2. Otherwise, if m > 1:

(a) For each (x1, ..., xm−1) ∈ Fm−1
p with xi ∈ JdK, run the univariate polynomial interpolation

(Lemma 3.4) to recover the coefficients of a univariate polynomial gx1,...,xm−1(X) =
d−1∑
i=0

cx1,...,xm−1,iX
i of degree d such that

gx1,...,xm−1(xm) = y(x1,...,xm)

for all xm ∈ JdK.
(b) For each i ∈ JdK, recursively call this algorithm with input

{cx1,...,xm−1,i}(x1,...,xm−1)∈Fm−1
p ,xi∈[d]

to interpolate a polynomial fi(X1, ..., Xm−1) of individual degree < d such that

fi(x1, ..., xm−1) = cx1,...,xm−1,i

for all (x1, ..., xm−1) ∈ Fm−1
p with xi ∈ JdK.

(c) Output f as

f(X1, ..., Xm) =

d−1∑
i=0

fi(X1, ..., Xm−1)X
i
m.

To see the efficiency, let T (m) be the running time for m-variate polynomials. We have

T (m) =

{
d · poly(log p, log d) m = 1

dm · poly(log p, log d) + d · T (m− 1) m > 1

Solving the recursion equation, we get T (m) = dm ·m · poly(log p, log d) as claimed.

4 Vectorized Algebraic Somewhat Homomorphic Encryption

In this section, we define and construct a modified homomorphic encryption scheme, called Vec-
torized Algebraic Somewhat Homomorphic Encryption (VASHE). Our construction is based on the
BGV [9] scheme combined with the SIMD encoding, to achieve multiplication and addition oper-
ations with good amortized complexity. For convenience, in this work we focus on the simplified
variant where (i) encryption requires a secret key, and (ii) we only homomorphically evaluate poly-
nomials of some fixed degree (i.e., we only construct a symmetric-key somewhat homomorphic
encryption). Both restrictions can be easily avoided with standard key-switching and bootstrap-
ping techniques. However, in this work, we chose to concentrate on the simplified variant, since it
suffices for our application.
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4.1 Definition

In the following, we define the notion of Vectorized Algebraic Somewhat Homomorphic Encryption.

Definition 4.1 (VASHE). A Vectorized Algebraic Somewhat Homomorphic Encryption (VASHE)
is a symmetric-key CPA-secure encryption scheme consisting of a tuple of PPT algorithms (Setup,
KeyGen,Encode,Decode,Encrypt,Decrypt, EvalP) with the following syntax:

• params← Setup(1λ, 1d, 1m): Given a security parameter λ, individual degree d, and number
of variables m, the algorithm deterministically fixes certain public parameters params, which
implicitly define the total degree D = dm, the plaintext space Zp[Z]/(Zn + 1) for a power-
of-two n and prime p satisfying p ≡ 1 (mod 2n), as well as a ring R of the form R =
Zq[Y, Z]/(Y D + 1, Zn + 1) for some q ∈ N. All other algorithms implicitly take params as
input even when not explicitly stated.

• sk ← KeyGen(params): Output a secret key sk.

• µ ← Encode(m1, · · · ,mn): Given mi ∈ Zp for i ∈ [n], deterministically outputs a plaintext
µ ∈ Zp[Z]/(Zn + 1).

• (m1, · · · ,mn) ← Decode(µ): Given µ ∈ Zp[Z]/(Zn + 1), deterministically outputs mi ∈ Zp

for i ∈ [n].

• ct ← Encrypt(sk, µ): Given a secret key sk and a plaintext µ ∈ Zp[Z]/(Zn + 1), outputs a
ciphertext ct ∈ R.

• µ← Decrypt(sk, ct): Given a secret key sk and a ciphertext ct ∈ R, deterministically outputs
a plaintext µ ∈ Zp[Z]/(Zn + 1).

• ctf ← EvalP(ct, f): Given a polynomial f ∈ Zp[X1, · · · , Xm] with individual degree less than
d and ct ∈ Rm, deterministically outputs a ciphertext ctf ∈ R.

We require that the scheme satisfies the following properties:

• Correctness: For all params in the support of Setup and all sk in the support of KeyGen(params):

1. For all messages msg = (m1, . . . ,mn) ∈ Zn
p ,

Pr

[
Decode(Decrypt(sk, ct)) = msg :

µ ← Encode(msg)
ct ← Encrypt(sk, µ)

]
= 1.

2. For all messages msg1, · · · ,msgm ∈ Zn
p where msgj = (mj1, . . . ,mjn) for j ∈ [m] and

for any polynomial f(X1, . . . , Xm) over Zp with individual degree less than d. Further-
more, we denote m′

i = f(m1i, ...,mmi) for i ∈ [n]. Then it holds that

Pr

 Decrypt(sk, ctf ) = f(µ1, ..., µm) ∧
Decode(f(µ1, ..., µm)) = (m′

1, ...,m
′
n)

:
µj ← Encode(msgj)
ctj ← Encrypt(sk, µj)
ctf ← EvalP ({ctj}, f)

 = 1.

• Security: We require the standard symmetric-key IND-CPA security for the encryption
scheme (KeyGen,Enc,Dec) when params ← Setup(1λ, 1d, 1m) for any p = poly(λ), d =
poly(log λ), m = poly(log λ).
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• Efficiency: We require that the description length of ring elements, the run-time of the
ring operations, and the run-time of Setup, KeyGen, Encode, Decode, Encrypt, Decrypt are
all bounded by poly(λ, d,m). Furthermore, the runtime of EvalP is bounded by O(dm) ·
poly(λ, d,m).2

4.2 Construction

Overview. The starting point of our construction is the leveled FHE from Ring-LWE of Brakerski,
Gentry and Vaikuntanathan (BGV) [9,22]. We only make a slight modification to the BGV scheme:
the plaintext space of the BGV scheme is Zd, but we choose a prime p such that p ≡ 1 (mod 2n)
and set the plaintext space to be Zp[Z]/(Zn + 1), in order to make it compatible with SIMD. In
BGV, a ciphertext is of the form ct = (c0, c1) where c0, c1 ∈ Q := Zq[Z]/(Zn + 1), whereas we
introduce a formal varible Y to interpret ct = c0 + c1 · Y as a linear polynomial of Y , and general
ciphertexts as polynomials in Q[Y ] of degree < D, i.e. elements of the ring R := Q[Y ]/(Y D + 1) =
Zq[Y,Z]/(Zn + 1, Y D + 1).

In BGV scheme, homomorphic multiplication consists of two steps, after the first step, the
ciphertext ct′mult is a degree-2 polynomial in Y . Then the second step key-switching/relinearization
is required to convert ct′mult to a degree-1 polynomial ctmult, using some evaluation keys. However,
the relinearization step is not an “algebraic” operation, which is crucial to do fast polynomial
evaluation with preprocessing and benefit from the FPE algorithm from Theorem 3.3.

Fortunately for us, the relinearization algorithm is not necessary for the special task of EvalP,
which involves homomorphic low-degree multi-variate polynomial evaluation. By additionally har-
nessing the efficiency of SIMD encoding, we can perform simultaneous computations on multiple
plaintext data for each instruction applied to a single ciphertext, thereby enhancing both space and
computational efficiency.

Our Construction. For the construction of VASHE, we will identify elements of Zq with their
representative in the range (−q/2, ..., q/2] ∩ Z, and similarly for Zp. This allows us to reinterpret
an element µ ∈ Zp as an element of Zq by taking the representative of µ and reducing it modulo
q (and vice versa). Similarly, we can naturally reinterpret elements µ ∈ Zp as elements of Q =
Zq[Z]/(Zn + 1) or R = Zq[Y,Z]/(Zn + 1, Y D + 1) by first reinterpreting µ as an element of Zq

and then interpreting it as a constant polynomial in Q or R respectively. We now describe the
construction in detail.

• params ← Setup(1λ, 1d, 1m) : Denote D = dm, and N = dm. We set the gap parameter
t := D log p+ d logm+log p+1 and choose n = poly(λ, t), q = λpoly(t) and a β-bounded error
distribution χ so that q > (2βn)t > 2Nd(d(β + 1)n)D and q is relatively prime to p. Define
the rings

Q := Zq[Z]/(Zn + 1), R := Q[Y ]/(Y D + 1) = Zq[Y,Z]/(Zn + 1, Y D + 1).

• sk ← KeyGen(params): Sample sk ← Q uniformly at random.

• µ← Encode(m1, . . . ,mn): Given (m1, ...,mn) ∈ Zn
p , outputs

µ ∈ Zp[Z]/(Zn + 1)← SIMD.Encode(m1, ...,mn).
2EvalP is not efficient enough for the construction of DEBPIR, hence we propose a more efficient alternative called

EvalFP at the end of this section.
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• m1, . . . ,mn ← Decode(µ): Given µ ∈ Zp[Z]/(Zn + 1), outputs

(m1, ...,mn) ∈ Zn
p ← SIMD.Decode(µ).

• ct← Encrypt(sk, µ): Reinterpret µ ∈ Zp[Z]/(Zn+1) as an element of Q. Sample a← Q, e←
χ. Let

b = a · s+ p · e+ µ ∈ Q.

Define ct ∈ R as the formal polynomial with a symbolic variable Y via:

ct(Y ) = −a · Y + b

• µ← Decrypt(sk, ct): Interpret ciphertext ct ∈ R as a formal polynomial ct(Y ) ∈ Q[Y ]/(Y D+
1), evaluate ct(Y ) at s ∈ Q and get g = ct(sk) ∈ Q. Interpret g ∈ Q as a formal polynomial
g(Z) ∈ Zq[Z]/(Zn + 1). Reinterpret g as an element of Zp[Z]/(Zn + 1) and output it.

• ctf ← EvalP(ct, f): Given a polynomial f ∈ Zp[X1, · · · , Xm] with individual degree less
than d and ct = (ct1, · · · , ctm) ∈ Rm, we first lift every coefficient of f from Zp to R and
get f . Outputs the result ciphertext of homomorphic multi-variate polynomial evaluation
ctf = f(ct1, · · · , ctm) ∈ R.

Theorem 4.2 (VASHE from Ring-LWE). The above scheme is a VASHE for poly-logarithmic
degree under Ring-LWE with quasi-polynomial approximation factors.

Proof. We argue that the scheme satisfies the correctness, security and efficiency properties of
Definition 4.1.

Correctness: Let f ∈ Zp[X1, . . . , Xm] be any polynomial of total degree < D with individual
degree < d over Zp. Lift f to f ∈ R[X1, . . . , Xm]. Fresh encryptions cti = cti(Y ) outputted by
VASHE.Encrypt are degree-1 polynomials in Y . Without loss of generality, we analyze correctness
assuming all operations are done in Q[Y ]. This is because ctf (Y ) = f(ct1, ..., ctm) has degree
< D in Y , hence modding out by (Y D + 1) does nothing, and ctf is the same whether we do the
computation over R = Q[Y ]/(Y D + 1) or simply over Q[Y ].

We say that a ciphertext ct(Y ) is an encryption of µ ∈ Zp[Z]/⟨Zn+1⟩ with noise γ if ∥ct(s)∥∞ ≤
γ and Dec(s, ct) = µ. A freshly encrypted ciphertext ct(Y ) of a message µ has noise γ = p(β+1) <
q/2, hence ct can be correctly decrypted. We can show the correctness property (1) by additionally
noting the fact that SIMD encoding and decoding are ring isomorphisms between Zp[Z]/(Zn + 1)
and Zn

p .
Assume ct1, ct2 are γ1, γ2 noisy encryptions of µ1, µ2 respectively. Then ct1+ct2 is an encryption

of µ1 + µ2 with noise γ+ = (γ1 + γ2) as long as γ+ < q/2 since

(ct1 + ct2)(s) = ct1(s) + ct2(s) = (pe1 + µ1) + (pe2 + µ2) = p(e1 + e2) + (µ1 + µ2).

Similarly, ct1 · ct2 is an encryption of µ1 · µ2 with noise γ× = nγ1γ2 as long as γ× < q/2. For the
above, we rely on the fact that for a, b ∈ Zq[Z]/(Zn + 1) with ∥a∥∞ < γa and ∥b∥∞ < γb, we have
∥a·b∥∞ < nγaγb. Lastly, if a ∈ Zp is a constant then a·ct is an encryption of aµ with noise γC = pγ as
long as γC < q/2. Therefore, if cti are fresh encryptions of µi, then ctf = EvalP({(ct1, ..., ctm)}, f)
is an encryption of f(µ1, ..., µm) with noise γf = N · p(pn(β + 1))D, as long as γf < q/2, which
is ensured by our choice of parameters. The SIMD encoding and decoding make sure that the
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multiplications and additions over ciphertext ring R correspond to the component-wise operations
over n slots. The correctness property (2) then follows from the above discussion.

Security: Security follows directly from the (scaled error variant of the) Ring-LWE assumption.
In particular, the ciphertexts consist of ai ← Q, bi = ai ·s+p ·ei+µi which is indistinguishable from
uniform under RingLWE. In general, we can bound t = D log p+ d logm+ log p+ 1 = poly(log λ)
and therefore we need to rely on RingLWE with quasi-polynomial approximation factors.

Efficiency: By the definition of Ring-LWE, we can determine the parameters n, q, χ in poly(λ, t) =
poly(λ, d,m) time, which also bounds the efficiency of sampling from λ. We have q = λpoly(t) =
λpoly(d,m,log λ) and n = poly(λ, t) = poly(λ, d,m, log p). The cardinality of the ring R is qDn and
therefore the ring elements have description length Dn log q = poly(λ, d,m, log p) bits. The run-
time of ring operations and the algorithms Setup, KeyGen, Encode, Decode, Encrypt, Decrypt are
therefore also bounded by poly(λ, d,m). The run-time of EvalP is bounded by O(dm) ·poly(λ, d,m).

Homomorphic Polynomial Evaluation with Preprocessing. For a fixed polynomial f ∈
Zp[X1, · · · , Xm] with individual degree less than d, we note that EvalP first lifts f to f ∈ R[X1, · · · , Xm]
and outputs ctf = f(ct1, · · · , ctm) ∈ R, which is nothing but multi-variate polynomial evaluation
over R. It turns out that the batched PIR problem can be converted into the evaluation of a mul-
tivariate polynomial for a fixed polynomial fDB that is only related to the database DB. However,
the efficiency of the multi-variate polynomial evaluation algorithm EvalP is not powerful enough to
meet the efficiency requirement of DEBPIR. To overcome this challenge, we leverage the FPE algo-
rithm developed in Theorem 3.3, to speed up the evaluation via pre-processing and by delegating
some of the work to the client.

For the fixed polynomial f , the computation efficiency of homomorphic low-degree multi-variate
polynomial evaluation can be improved by applying the fast multi-variate polynomial evaluation
with preprocessing. In detail, we lift f to f and then use the Prep algorithm (Theorem 3.3) during
the offline phase to obtain the preprocessed data structure Tf . The client applies the FPE.Decomp
algorithm to the ciphertexts {ct1, . . . , ctm} ∈ Rm and sends the resulted query vector vct to the
server.

The server invokes FPE.Eval to obtain an encoding vector of vf(ct) by looking up the data
structure Tf . We denote this subroutine by

vf(ct) ← EvalFP(Tf ,vct).

Finally, the client receives vf(ct) and performs the CRT reconstruction to obtain f(ct) by
calling FPE.Reconst, which is exactly the output of EvalP. Through the use of FPE, some work
is delegated to the client, thus reducing the run-time of the server during the online phase to
O(n(log q + log n + logD)) · poly(m, d). In particular, the amortized time complexity of EvalFP
becomes O(log q + log n + logD) · poly(m, d). We then apply the above choices of parameters,
resulting in poly(log λ) amortized time complexity of EvalFP.

5 Doubly Efficient Batched PIR

In this section, we formally define a batched PIR scheme called doubly efficient batched private
information retrieval (DEBPIR) and give a generic construction from VASHE, via fast polynomial
evaluation with preprocessing.
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5.1 Definition

At high level, a DEBPIR scheme is a protocol between a server and a client. The protocol consists
of four algorithms: Prep, Query, Resp and Dec, and the algorithms are performed in two phases,
offline and online, illustrated as follows.

Offline: The server has a database DB = {0, 1}N . In the offline preprocessing phase, server
runs the deterministic algorithm D̃B← Prep(1λ, DB) and stores D̃B in the random-access memory.

Online: The client holds indices {i(j) ∈ [N ]}j∈[n], and wants to learn DB[i(j)] without revealing

i(j) for j ∈ [n].

1. The client runs (vct, s)← Query(1λ, N, {i(1), ..., i(n)}) to generate encrypted query vector vct

(i.e. CRT form of query ciphertext) that it sends to Server, and a secret key s that it keeps
locally.

2. The server responds with the answer ans← Resp(D̃B,vct).

3. The client decrypts the answer using the algorithm Dec(s, ans) to learn DB[i(j)] for all j ∈ [n].

We next describe the definition formally. Our definition is based on those of [22], with two main
differences. First of all, DEBPIR is a batched PIR scheme where the client can query the database
at n indices at the same time, hence for efficiency we also consider the amortized response time
of the server for a single index. Secondly, although the online phase of DEBPIR also consists of
three subroutines (Query,Resp,Dec), the input and output is not a HE ciphertext, but encrypted
vectors which are of CRT form with respect to some public parameters.

Definition 5.1. (DEBPIR). A doubly efficient batched private information retrieval scheme (DEBPIR)
is a tuple of algorithms (Prep, Query, Resp, Dec) with the following syntax.

1. D̃B ← Prep(1λ, DB) takes the security parameter 1λ and a database DB = {0, 1}N , and
deterministically outputs a preprocessed database D̃B.

2. (vct, s)← Query(1λ, N, {i(1), ..., i(n)}) takes the security parameter 1λ, a database size N and
n indices {i(j) ∈ [N ]}j∈[n]. It outputs an encrypted query vector vct and a secret key s.

3. ans← Resp(D̃B,vct) takes the preprocessed database D̃B stored in a random-access memory
and a query vct. It responds with an answer ans.

4. b← Dec(s, ans) takes the secret key s and the answer ans and outputs decode bits b ∈ {0, 1}n.

The algorithms should satisfy the following properties.

• Correctness: Honest execution of Prep, Query, Resp and Dec successfully recovers requested
data items with probability 1. That is, for every DB ∈ {0, 1}N and every sequence {i(j) ∈
[N ]}j=1,··· ,n, it holds that:

Pr

b[j] = DB[i(j)] for j ∈ [n] :

D̃B ← Prep(1λ, DB)

(vct, s)← Query(1λ, N, {i(1), ..., i(n)})
ans← Resp(D̃B,vct)

b← Dec(s, ans)

 = 1.
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• Security: No efficient adversary can distinguish the queries output by Query on input index
{i(1), ..., i(n)} and {j(1), ..., j(n)}. Namely, we define the following game between a challenger
and an adversary A.

1. (I := {i(1), ..., i(n)}, J := {j(1), ..., j(n)}, 1N , aux)← A(1λ): A selects a sizeN , a challenge
index sequence I, J , and auxiliary information aux.

2. t ← {0, 1}; (vct, s) ← Query(1λ, N, it): The challenger selects a random bit b and gen-
erates a sample encrypted query vector vct for the chosen index sequence (I if t = 0,
otherwise J).

3. t′ ← A(aux,vct): A outputs a guess for t, given the encrypted query vector vct.

We require that for every PPT adversary A, there exists a negligible function negl such that
the distinguishing advantage of A in the above security game is |Pr[t′ = t]− 1/2| ≤ negl(λ).

• Efficiency: Suppose that Resp is given random accesses to D̃B. We say the batched PIR
scheme (Prep,Query,Resp,Dec) is doubly efficient if the running time of Prep is poly(λ,N),
and Query,Resp,Dec run in time poly(λ, logN). Furthermore, we require that the amortized
Resp run-time and the amortized communication cost are poly(log λ, logN).

5.2 Construction

We now construct the DEBPIR scheme. The construction relies on combining SIMD with the
DEPIR scheme in [22]. We plan to construct DEBPIR in three steps:

• Express the function fDB(i) = DB[i] as an m-variate polynomial of individual degree < d
over Fp, where the inputs are the base-d digits of the index i and p is the plaintext modulus
of the VASHE scheme.

• Construct a basic batched PIR scheme by using VASHE.EvalP to homomorphically evaluate
the polynomial fDB over the encryptions of the base-d digits of n indices simultaneously.

• Preprocess the polynomial fDB into a data structure D̃B, using Theorem 3.3 so that we can
replace VASHE.EvalP with fast polynomial evaluation with preprocessing (VASHE.EvalFP),
upgrading the basic batched PIR into a DEBPIR.

We first give a construction overview for each of the steps, introducing some useful notation
and claims along the way. We choose parameters d,m such that dm > N . Let D = dm. Let
R = Zq[Y,Z]/(Zn + 1, Y D + 1) and p ≡ 1 (mod 2n) is the plaintext modulus of VASHE scheme.

Encoding the Database as a Polynomial. The server encodes the database into a polyno-
mial fDB over Fp through multivariate polynomial interpolation. For i ∈ JNK, let (i1, · · · , im) =
based,m(i) be the based-d representation of i such that

i =

m∑
j=1

ijd
j−1 with ij ∈ JdK.

The polynomial fDB satisfies fDB(based,m(i)) = DB[i] and moreover we can find the coefficient
representation of this polynomial efficiently. The following lemma is a slight modification of Claim
4.2.1 in [22], which shows the correctness of this step and bounds the efficiency of the encoding
procedure.
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Lemma 5.2. For any DB ∈ {0, 1}N , any d,m such that dm ≥ N , there exists a m-variate
polynomial fDB(X1, · · · , Xm) with individual degree < d in each variable over Fp for some prime
p > d such that for all i ∈ JNK, it holds that fDB(i1, · · · , im) = DB[i] where (i1, · · · , im) =
based,m(i). Moreover, there is an multivariate polynomial interpolation algorithm that outputs the
coefficients of fDB in time O(dm ·m) · poly(log p, log d).

Proof. We invoke multivariate polynomial interpolation from Lemma 3.5. Define the dm evaluation
points {y(x1,··· ,xm) ∈ Fp}(x1,··· ,xm)∈Fm

p ,xi∈JdK via y(x1,··· ,xm) = DB[i] when (x1, · · · , xm) = based,m(i)

for i ∈ [N ] and y(x1,··· ,xm) = 0 else. The lemma says that in time O(dm · m · poly(log p, log d))
we can interpolate the coefficients of a polynomial fDB(X1, · · · , Xm) such that fDB(x1, · · · , xm) =
y(x1,··· ,xm) for all (x1, · · · , xm) ∈ Fm

p and xi ∈ JdK.

Basic Batched PIR. The client uses a VASHE scheme to encrypt m base-d digits of indices
and sends the ciphertext vector to the server. The server responds by invoking VASHE.EvalP
to homomorphically evaluate the polynomial fDB, and sending the homomorphically evaluated
ciphertext to the client. The client uses VASHE.Decrypt and VASHE.Decode to recoverDB[i(j)] =
fDB(based,m(i(j))) for j ∈ [n]. As mentioned above, this simple scheme does not satisfy the strong
efficiency requirements of DEBPIR. Therefore, our next step is to preprocess the polynomial fDB,
and upgrade the basic batched PIR into a doubly efficient batched PIR by replacing VASHE.EvalP
with VASHE.EvalFP.

Upgrading to DEBPIR. Lastly, we take the basic batched PIR scheme above and upgrade it to
DEBPIR by preprocessing the polynomial fDB. We improve the server’s efficiency and accelerate
the computation of ct∗ := fDB(ct1, · · · , ctm) by preprocessing fDB into some data structure D̃B
using Theorem 3.3. Furthermore, the server relegates some work of computation of ct∗ to the client,
which is a re-balance of the work in favor of the server.

In detail, the client first breaks the query ciphertext vector into CRT form as a encrypted query
vector. Then the server sends the output3 of VASHE.EvalFP instead of VASHE.EvalP to client.
At the end, the client does the CRT reconstruction to get ct∗. In the process of homomorphically
evaluating the polynomial fDB, the server only does the VASHE.EvalFP, which is nothing but
looking up some pre-computed tables. Consequently, the amortized run-time of Resp will become
poly(log λ, logN). We present the full construction below.

Algorithm 1: DEBPIR from VASHE

Parameters: The size of database is N , and it determines the parameters d and m such that
dm ≥ N . Let params ← VASHE.Setup(1λ, 1d, 1m), which determines a ring R = Zq[Y,Z]/(Zn +
1, Y D + 1), total degree D = dm, plaintext modulus p and the number of slots n. Without loss
of generality, we implicitly assume all algorithms have access to these parameters, which they can
derive from λ, N .

Prep(1λ, DB) :

1. Use polynomial interpolation to obtain fDB ∈ Fp[X1, ..., Xm] such that f(based,m(i)) = DB[i]
for every i ∈ JNK. Note that degXi(fDB) < d for all Xi, hence the total degree of fDB < D.

2. Lift fDB to fDB.

3The output is also of CRT form.
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3. aux← FPE.Setup(R), output D̃B ← FPE.Prep(fDB, aux;R).

Query(1λ, N, {i(1), ..., i(n)}):

1. Let (i
(j)
1 , ..., i

(j)
m ) = based,m(i(j)) be the based-d digits of i(j) for each j ∈ [n].

2. Sample s← VASHE.KeyGen(params).

3. For each j ∈ [m], encode (i
(1)
j , ..., i

(n)
j ) by invoking

µj ← VASHE.Encode(i
(1)
j , ..., i

(n)
j ).

4. For each j ∈ [m], encrypt µj by invoking ctj ← VASHE.Encrypt(s, µj).

5. Output vct ← FPE.Decomp(ct = {ct1, ..., ctm}, aux;R).

Resp(D̃B,vct):

1. Output vctf ← FPE.Eval(vct, D̃B, aux;R).

Dec(s,vctf ):

1. ctf ← FPE.Reconst(vctf ).

2. µ← VASHE.Decrypt(s, ctf ).

3. Output VASHE.Decode(µ).

Correctness. Consider any DB ∈ {0, 1}N and any i ∈ JNK with (i1, . . . , im) = based,m(i).
Let D̃B ← Prep(1λ, DB), (vct, s) ← Query(1λ, N, {i(1), ..., i(n)}), vctf ← Resp(D̃B,vct), b =
Dec(s,vctf ). By Lemma 5.2, we know that the polynomial fDB computed during preprocessing
satisfies fDB(i1, . . . , im) = DB[i]. Also, by the correctness of fast polynomial evaluation with
preprocessing (Theorem A.3), we have that the encrypted query vector vct computed during Query
is the CRT form of the query ciphertexts (ct1, . . . , ctm), the result vctf of Resp is the CRT encoding

of fDB(ct1, · · · , ctm). Hence, by the definition of correctness for VASHE (Definition 4.1), we have
that for j ∈ [n],

b[j] = VASHE.Decode(VASHE.Decrypt(s,FPE.Reconst(vctf )))[j]

= fDB(i
(j)
1 , . . . , i(j)m )

= DB[i(j)].

Security. The security of the DEBPIR follows directly from that of VASHE, since the adversary
sees m encrypted query vectors and can only reconstruct m VASHE ciphertexts with public pa-
rameters. Notice that the adversary runs in time poly(λ) and chooses the bound 1N , meaning that
N = poly(λ). Depending on the choice of d, m and q such that d,m = poly(logN) = poly(log λ)
and q = λpoly(log λ), we can rely on VASHE security for polylogarithmic degree.

Efficiency. We calculate the computation time and output size for each algorithm. Recall that,
by the definition of VASHE efficiency, the bit-length of ring elements and the run-time of the ring
operations are bounded by poly(λ, d,m). For any constant ϵ > 0, we can choose the same d and m
as in [22], such that d = O(log2/εN), m = ⌈logd(N)⌉ = ϵ

2 logN/ log logN +O(1).
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1. Prep: The multivariate polynomial interpolation takes time dmm · poly(log p, log d).
The preprocessing run-time and the server storage are bounded by

dm ·mm · poly(m, d, |R|) ·O(logm+ log d+ log log |R|)m

= dm ·mm · poly(m, d, λ) ·O(logm+ log d+ log λ)m

+O(N1+ϵ)poly(λ, logN).

where we bound

mm ≤ O(logN)m ≤ (logN)
ϵ
2
logN/ log logN+O(1) ≤ N

ϵ
2 poly(logN),

and similarly

O(logm+ log d+ log λ)m ≤ O(logN)m ≤ N
ϵ
2 poly(logN).

2. Query: The run-time of the Query is bounded by that of VASHE.KeyGen, that of running
m copies of VASHE.Encrypt and that of FPE.Decomp, which is bounded by

O((nD · (log q + log n+ logD))2) · poly(d,m) + poly(d,m, log |R|)
= poly(λ, logN).

3. Resp: The run-time is bounded by O((nD · (log q+ log n+ logD))) · poly(d,m). As DEBPIR
satisfies SIMD and is a batched PIR scheme, one running of the Resp algorithm corresponds
to the responses of n indices, hence the amortized run-time is poly(log λ, logN).

4. Dec: The rum-time of Dec is bounded by poly(λ, d,m) = poly(λ, logN).

The communication cost is bounded by O((nD · (log q+log n+logD))) ·poly(d,m). The amortized
communication cost is poly(log λ, logN).

Theorem 5.3. Assuming VASHE for polylogarithmic degree, for any constant ϵ > 0, there is a
DEBPIR scheme such that, for a database of sizeN and security parameter λ, the preprocessing run-
time and the server storage are bounded by O(N1+ϵ)poly(λ, logN), the query time is bounded by
poly(λ, logN), the amortized response time is bounded by poly(log λ, logN) and the decrypt time is
bounded by poly(λ, logN). The amortized communication cost is bounded by poly(log λ, logN). In
particular, such a scheme exists assuming Ring-LWE with quasi-polynomial approximation factors.

The server response time and the communication cost (in amortization) of DEPIR [22] are
poly(λ, logN). This is in contrast with what we obtain in this work, which is poly(log λ, logN) =
poly(log λ) = Õλ(1), since N = poly(λ). Therefore the amortized response time of the server
and the amortized communication cost become Õλ(1). This is an exponential improvement from
previous schemes and it is optimal up to some polylogarithmic terms.
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A Fast Polynomial Evaluation with Preprocessing

We prove Theorem 3.3, restated below.

Theorem 3.3. Let the ring R := Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩ for two monic polynomials E1(Y ) and
E2(Z) with the degree e1 and e2 respectively. Let f(X1, . . . , Xm) ∈ R[X1, . . . , Xm] be a fixed
polynomial with degXi(f) < d. Then, there exists an FPE scheme satisfies the following properties.
The preprocessing algorithm Prep runs in time

S = dm · poly(m, d, log |R|) ·O(m(logm+ log d+ log log |R|))m

and outputs a data structure of size at most of S. The running time of Decomp is bounded by

O(e1e2(log q + log e1 + log e2)
2 · poly(d,m, log log q)).

The running time of Eval is bounded by

O(e1e2(log q + log e1 + log e2))poly(m, d).

The running time of Reconst is bounded by

poly(m, d, e1, e2, log q).

Furthermore, the output size of Setup is bounded by O(e21e
2
2 · (log q + log e1 + log e2)) · poly(m, d),

and the output size of Decomp and Eval are bounded by

O(e1e2(log q + log e1 + log e2)) · poly(m, d).

We now give a full proof of the theorem. We first consider the special case R = Zq, and then
we will show how to handle the general case.

A.1 Polynomials over Zq

We begin with a special case, where R = Zq. We fix the parameters d,m as additional input.

Theorem A.1. Let R = Zq. Let f(X1, ..., Xm) ∈ R[X1, ..., Xm] be a fixed polynomial with
degXi(f) < d. Then, the preprocessing algorithm Prep(f, aux;Zq) runs in time

S = O(md log q)m · poly(m, d, log q).

and outputs a data structure of size at most S.
The running time of Decomp is bounded by

O((log q)2) · poly(m, d).

The running time of Eval is bounded by

O(log q) · poly(m, d).

The running time of Reconst is bounded by

poly(m, d, log q).

Moreover, the output size of Setup is bounded by O(d ·m · log q), and the output size of Decomp
and Eval are bounded by O(log q) · poly(m, d).
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Proof. Setup(Zq) :

1. Let M := dmqm(d−1)+1, and let p1, ..., ph be the distinct primes less than 16 logM for some
h ∈ N.

2. Output aux = (M, {p1, ..., ph}).

The size of aux is bounded by logM +
∑

log pi ≤ O(d ·m · log q).
Prep(f, aux;Zq) :

1. Lift f to f ∈ Z[X1, ..., Xm], and denote f i = f (mod pi) for i ∈ [h].

2. Using FFT on Zm
pi , evaluate fi(a) on the all points a ∈ Zm

pi . Store the evaluations in a table

Ti, i.e. Ti = {f i(a) | a ∈ Zm
pi}.

3. Output T = {Ti | i ∈ [h]}.

The running time of Prep is bounded by

S = O(md log q)m · poly(m, d, log q).

The size of output of Prep is bounded by S.
Decomp(α, aux;Zq) :

1. Lift α ∈ Zm
q to α ∈ Zm.

2. For i ∈ [h], compute αi = α (mod pi) ∈ Zm
pi .

3. Output vα = {αi|i ∈ [h]}.

The time complexity of Decomp is bounded by
h∑

i=1
m ·O(log pi log q) ≤ O((log q)2) ·poly(m, d). The

size of output is bounded by m ·
∑

log pi ≤ O(log q) · poly(m, d).
Eval(v = {vi}i∈[h], aux;Zq) :

1. Obtain f i(vi) ∈ Zpi by looking it up in table Ti.

2. Output vf(α) := {f i(vi) | i ∈ [h]}.

The time complexity of Eval is bounded by O(h) +m ·
∑

log pi ≤ O(log q) · poly(m, d). The size of
the output of Eval is bounded by

∑
log pi ≤ O(log q) · poly(m, d).

Reconst(vz, aux;Zq) :

1. Use CRT to find the smallest z ∈ Z+ such that for all i ∈ [h]

z ≡ vz[i] (mod pi).

2. Output z (mod q).

The running time of Reconst is bounded by poly(m, d, log q).

We now apply the theorem A.1 recursively to replace the (log q)m factor in the preprocessing
run-time by a (log log q)m factor.
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Theorem A.2. Let R = Zq. Let f(X1, ..., Xm) ∈ R[X1, ..., Xm] be a fixed polynomial with
degXi(f) < d. Then, the preprocessing algorithm Prep runs in time

S = dm · poly(m, d, log q) ·O(m(logm+ log d+ log log q))m

and outputs a data structure of size at most S.
The running time of Decomp is bounded by

O(log q)2 · poly(d,m).

The running time of Eval is bounded by

O(log q) · poly(m, d).

The running time of Reconst us bounded by

poly(m, d, log q).

Moreover, the output size of Setup is bounded by O(log q) · poly(m, d), and the output size of
Decomp and Eval are both bounded by

O(log q) · poly(m, d).

Proof. To compute the data structure from the coefficients of f , we introduce a level of recursion
by applying the theorem A.1, instead of invoking FFT directly.

Setup(Zq) :

1. Firstly, apply the algorithm in theorem A.1 by pp← Setup(Zq).

2. For each pi, we compute ppi ← Setup(Zp1).

3. Output aux← {pp, ppi | i ∈ [h]}.

The size of aux is bounded by dm(log q +
∑

log pi) ≤ O(log q) · poly(m, d).
Prep(f, aux;Zq) :

1. Lift f to f ∈ Z[X1, ..., Xm], and denote f i = f (mod pi) for i ∈ [h].

2. Use Theorem A.1 to construct the data structure for f i over Zpi : Ti ← Prep(f i, aux;Zpi).

3. Output T = {Ti | i ∈ [h]}.

By Theorem A.1, the data structure Ti can be computed in time Si = O(md log pi)
m·poly(m, d, log pi),

and takes at most Si space. Hence the running time of Prep is bounded by

S = dm · poly(m, d, log q) ·O(m(logm+ log d+ log log q))m.

The total size of all h data structures is bounded by S.
For the Decomp algorithm, we also need to recursively invoke the algorithm Decomp in Theorem

A.1.
Decomp(α, aux;Zq) :
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1. Lift α ∈ Zm
q to α ∈ Zm.

2. For i ∈ [h], compute αi = α (mod pi).

3. Output vα = {Decomp(αi, aux;Zpi)|i ∈ [h]}.

The time complexity of Decomp is bounded by∑
pi

O((log pi)
2) · poly(m, d) ≤ O((log q)2) · poly(m, d).

The output size is bounded by
∑

pi
O(log pi) · poly(m, d) ≤ O(log q) · poly(m, d).

For the Eval algorithm, we need to recursively invoke the algorithm Eval in Theorem A.1 rather
than looking up the table directly.

Eval(v = {vi}i∈[h], aux;Zq) :

1. For each i ∈ [h], we denote vf i(α)
← Eval(vi, aux;Zpi) by using the algorithm in Theorem

A.1.

2. Output vf(α) := {vf i(α)
| i ∈ [h]}.

The time complexity of Eval is bounded by∑
pi

O(log pi) · poly(m, d) ≤ O(log q) · poly(m, d).

The output size of Eval is bounded by
∑

pi
O(log pi) · poly(m, d) ≤ O(log q) · poly(m, d).

Reconst(vz = {vi i ∈ [h]}, aux;Zq) :

1. Use the algorithm Reconst in Theorem A.1 to obtain vi ← Reconst(vi, aux;Zpi)

2. Use CRT to find the smallest z ∈ Z+ such that for all i ∈ [h]

z ≡ vi (mod pi).

3. Output z (mod q).

The running time of Reconst is bounded by poly(m, d, log q).

A.2 Polynomials over Extension Rings with one variable

In this section, we will consider the case R = Zq[Y ]/⟨E(Y )⟩, where E(Y ) is a monic polynomial
with degree e.

Theorem A.3. Let R = Zq[Y,Z]/⟨E(Y )⟩ for a monic polynomial E(Y ) with the degree e > 0. Let
f(X1, ..., Xm) ∈ R[X1, ..., Xm] be a fixed polynomial with degXi(f) < d. Then, the preprocessing
algorithm Prep runs in time

S = dm · poly(m, d, log |R|) ·O(m(logm+ log d+ log log |R|))m.

and outputs a data structure of size at most S.
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The running time of Decomp is bounded by

O(e2(log q + log e)2 · poly(m, d)).

The running time of Eval is bounded by

O(e(log q + log e) · poly(m, d)).

The running time of Reconst is bounded by

poly(m, d, e, log q).

Moreover, the output size of Setup is bounded by O(e2 · (log q + log e)) · poly(m, d), and the
output size of Decomp and Eval are both bounded by

poly(logm, log d, log e, log log q).

Proof. Setup(Zq[Y ]/⟨E(Y )⟩) :

1. Let M := dm(e(q − 1))(d−1)m+1 + 1, D := (e− 1)((d− 1)m+ 1) and let r = MD+1.

2. Output aux = {{M i | i ∈ {0, · · · , e− 1}}, D, r, Setup(Zr)}.

Thus, the output size of Setup(Zq[Y ]/⟨E(Y )⟩) is bounded by

O(e2 logM) +O(dem logM) +O(dm log r)

≤ O(e2 · (log q + log e)) · poly(m, d).

Prep(f, aux;Zq[Y ]/⟨E(Y )⟩) :

1. Lift f ∈ R[X1, ..., Xm] to f̃ ∈ Z[Y ][X1, ..., Xm].

2. Compute f ∈ Zr[X1, ..., Xm] by reducing f̃ modulo the ideal (r, Y −M).

3. Output T ← Prep(f, aux;Zr).

The output size and the running time are bounded by S = dm · poly(m, d, log |R|) · O(m(logm +
log d+ log log |R|))m.

Decomp(α, aux;Zq[Y ]/⟨E(Y )⟩) :

1. Lift α ∈ Rm to α̃ ∈ Z[Y ]m.

2. Compute α by reducing each coordinate of α̃ modulo the ideal (r, Y −M).

3. Output vα ← Decomp(α, aux;Zr).

The running time of Decomp(α, aux;Zq[Y ]/⟨E(Y )⟩) is bounded by

me ·O(log q) +O((log r)2) · poly(m, d)

≤ O(e2 · (log q + log e)2) · poly(m, d).

The output size of Decomp is bounded by O(e · (log e+ log q)) · poly(m, d).
Eval(v, T, aux;Zq[Y ]/⟨E(Y )⟩) :
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1. Output Eval(v, aux;Zr).

The running time of Eval(v, T, aux;Zq[Y ]/⟨E(Y )⟩) is bounded by O(e · (log e+ log q)) · poly(m, d).
The output size is bounded by O(e · (log e+ log q)) · poly(m, d).

Reconst(v, aux;Zq[Y ]/⟨E(Y )⟩) :

1. β ← Reconst(v, aux;Zr) and lift it to β̃ ∈ Z.

2. Let β̃0, · · · , β̃D ∈ [M ] be the digits of β̃ written in base M so that β̃ =
D∑
i=0

β̃iM
i.

3. Construct the polynomial Q(Y ) =
i=D∑
i=0

β̃iY
i ∈ Z[Y ]. Output Q(Y ) mod (q, E(Y )).

The running time of Reconst(v, aux;Zq[Y ]/⟨E(Y )⟩) is bounded by poly(m, d, e, log q).

A.3 Polynomials over Extension Rings with two variables

Finally, we are ready to consider the main theorem. In this case, we denoteR = Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩
where E1, E2 are monic polynomials with degree e1, e2.

Theorem A.4. Let the ring R := Zq[Y, Z]/⟨E1(Y ), E2(Z)⟩ for two monic polynomials E1(Y )
and E2(Z) with the degree e1 and e2 respectively. Let f(X1, ..., Xm) ∈ R[X1, ..., Xm] be a fixed
polynomial with degXi(f) < d. Then, the preprocessing algorithm Prep runs in time

S = dm · poly(m, d, log(|R|)) ·O(m(logm+ log d+ log log |R|))m

and outputs a data structure of size at most of S.
The running time of Decomp is bounded by

O((e1e2 · (log q + log e1 + log e2))
2) · poly(d,m).

The running time of Eval is bounded by

O((e1e2 · (log q + log e1 + log e2))) · poly(d,m).

The running time of Reconst is bounded by

poly(m, d, e1, e2, log q).

Moreover, the output size of Setup is bounded by O(e21e
2
2 · (log q + log e1 + log e2)) · poly(m, d),

and the output size of Decomp and Eval are both bounded by

O((e1e2 · (log q + log e1 + log e2))) · poly(d,m).

Proof. Setup(Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩) :

1. LetM := dm(e1e2(q−1))(d−1)m+1+1, D1 := (e1−1)((d−1)m+1), D2 := (e2−1)((d−1)m+1)
and let r := MD2+1. Also let R′ = Zr[Z]/(ZD2+1 + 1).

2. Output aux← {{M i | i ∈ [e1]}, D1, D2, r,Setup(R
′)}.
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The size of aux is bounded by

O(D2
2(log r + logD2)) · poly(m, d) + e21 logM ≤ O(e21e

2
2 · (log q + log e1 + log e2)) · poly(m, d).

Prep(f, aux;Zq[Y, Z]/⟨E1(Y ), E2(Z)⟩) :
1. Lift f ∈ R[X1, ..., Xm] to f̃ ∈ Z[Y,Z][X1, ..., Xm].

2. Compute f ∈ R′[X1, ..., Xm] by reducing f̃ modulo the ideal (r, Y −M,ZD2+1 + 1).

3. Output T ← Prep(f, aux;Zr[Z]/⟨ZD2+1 + 1⟩).
The output size and the running time are bounded by S = dm · poly(m, d, log |R|) · O(m(logm +
log d+ log log |R|))m.

Decomp(α, aux;Zq[Y, Z]/⟨E1(Y ), E2(Z)⟩) :
1. Lift α ∈ Rm to α̃ ∈ Z[Y, Z]m.

2. Compute α ∈ (R′)m from α̃ by reducing modulo the ideal (r, Y −M,ZD2+1 + 1).

3. Output Decomp(α, aux;Zr[Z]/⟨ZD2+1 + 1⟩).
The running time of Decomp(α, aux;Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩) is bounded by

O(me21e2 · log q · logM) +O(D2
2 · (log r + logD2)

2) · poly(d,m)

≤ O((e1e2 · (log q + log e1 + log e2))
2) · poly(d,m).

The output size is bounded by O(e1e2 · (log e1 + log e2 + log q)) · poly(m, d).
Eval(v, aux;Zq[Y,Z]/⟨E1(Y ), E2(Z)⟩) :
1. Output Eval(v, aux;Zr[Z]/⟨ZD2+1 + 1⟩).

The running time of Eval(v, aux;Zq[Y,Z]/⟨E1(Z), E2(Y )⟩) is bounded by

O(e1e2 · (log e1 + log e2 + log q)) · poly(d,m).

The output size is bounded by

O(e1e2 · (log e1 + log e2 + log q)) · poly(d,m).

Reconst(v, aux;Zq[Y,Z]/⟨E1(Y ), E1(Z)⟩, e1, e2) :

1. β ← Reconst(v, aux;Zr[Z]/⟨ZD2+1 + 1⟩) and lift it to β̃ =
D1∑
i=0

ciZ
i ∈ Z[Z].

2. For each i ∈ {0, ..., D2}, let ci,0, ..., ci,D1 be the digits of ci written in base M so that ci =
D1∑
j=0

ci,jM
j .

3. Construct the polynomial Q(Y,Z) =
D1∑
i=0

D2∑
j=0

ci,jY
iZj , and output

Q(Y,Z) mod (q, E1(Y ), E2(Z)).

The running time of Reconst(v, aux;Zq[Y,Z]/⟨E1(Y ), E1(Z)⟩, e1, e2) is bounded by

poly(m, d, e1, e2, log q).
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