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Abstract. The Boomerang attack was one of the first attempts to visu-16

alize a cipher (E) as a composition of two sub-ciphers (E1 ◦E0) to devise17

and exploit two high-probability (say p, q) shorter trails instead of relying18

on a single low probability (say s) longer trail for differential cryptanaly-19

sis. The attack generally works whenever p2 ·q2 > s. However, it was later20

succeeded by the so-called “sandwich attack” which essentially splits the21

cipher in three parts E′
1 ◦ Em ◦ E′

0 adding an additional middle layer22

(Em) with distinguishing probability of p2 · r · q2. It is primarily the gen-23

eralization of a body of research in this direction that investigate what24

is referred to as the switching activity and capture the dependencies and25

potential incompatibilities of the layers that the middle layer separates.26

This work revisits the philosophy of the sandwich attack over multiple27

rounds for NLFSR-based block ciphers and introduces a new method to28

find high probability boomerang distinguishers. The approach formal-29

izes boomerang attacks using only ladder/And switches. The cipher is30

treated as E = E1 ◦ Em, a specialized form of a sandwich attack which31

we called as the “open-sandwich attack”. The distinguishing probability32

for this attack configuration is r · q2.33

Using this innovative approach, the study successfully identifies a deter-34

ministic boomerang distinguisher for the keyed permutation of the Tiny-35

Jambu cipher over 320 rounds. Additionally, a 640-round boomerang with36

a probability of 2−22 is presented with 95% success rate. In the related-37

key setting, we unveil full-round boomerangs with probabilities of 2−19,38

2−18, and 2−12 for all three variants, demonstrating a 99% success rate.39

Similarly, for KATAN32, a more effective related-key boomerang spanning40

140 rounds with a probability of 2−15 is uncovered with 70% success rate.41

Further, in the single-key setting, a 84 round boomerang with probability42
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mrahman454@gmail.com
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2−30 found with success rate of 60%. This research deepens the under-43

standing of boomerang attacks, enhancing the toolkit for cryptanalysts44

to develop efficient and impactful attacks on NLFSR-based block ciphers.45

Keywords: MILP · Boomerang · Sandwich · KATAN · TinyJAMBU ·46

Symmetric-Key Cryptanalysis47

1 Introduction48

The introduction of the Boomerang attack by Wagner [22] marked a significant49

milestone in the field of block cipher cryptanalysis. This technique was notable50

because it allowed cryptanalysts to view a cipher as a composition of two sub-51

ciphers, thereby enabling the analysis of differential trails on orthogonal planes52

within the so-called Boomerang-Cube framework. This insight revealed that us-53

ing shorter, high-probability differential trails on orthogonal planes of the sub-54

ciphers was more effective than relying on longer, lower-probability trails con-55

fined to a single plane of the entire block cipher. This idea led to the development56

of the ‘Boomerang Quartet’ ‘Boomerang Quartet’, which became a foundation57

for extensive research. This research provided deeper understanding and pow-58

erful distinguishers for block ciphers through the use of the Boomerang-Cube59

structure. In the classical Boomerang attack, a block cipher E is viewed as a60

composition of two sub-ciphers, E = E1 ◦E0. The input difference δ0 is assumed61

to propagate through E0 to a difference δ1 with probability p, and a difference62

∇0 is assumed to propagate through E1 to δ1 with probability q. This setup is63

illustrated in Figure 1. The expected success probability of the attack is given by64

Equation 1, which states that by making approximately 1
p2·q2 adaptively chosen65

plaintext and ciphertext queries — using difference δ0 for encryption and δ1 for66

decryption — an attacker can effectively distinguish the cipher E from an ideal67

cipher. A crucial factor in the success of Boomerang-style attacks lies in carefully68

selecting differential characteristics for E0 and E1 that maximize the likelihood69

of forming a right quartet. It is also important to note that the computation of70

the overall probability assumes that E0 and E1 are statistically independent.71

The introduction of the Boomerang attack by Wagner [22] was an important72

moment in the history of block cipher cryptanalysis. This was primarily because73

it allowed us to interpret a cipher as a composition of sub-ciphers showcasing74

the interaction of differential trails on orthogonal planes of the Boomerang-Cube.75

This demonstrated that shorter (and hence high probability) trails on orthogo-76

nal plane of the sub-ciphers were better than longer (and hence low probability)77

rails on a single plane of the full block cipher. Thus was born the ‘Boomerang78

Quartet’ whose analysis spawned an entire body of research giving us further79

insight into Boomerang-Cube and its exploitation to deliver some of the best80

distinguishers on block ciphers reported in literature. In the classical boomerang81

attack, the cipher E is considered as a composition of two sub-ciphers E0 and E1,82

i.e., E = E1◦E0, where we suppose that the input difference ∆0 is propagated to83

the difference ∆1 by E0 with probability p and the difference ∇0 is propagated84
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to ∇1 by E1 with probability q. This is described in Figure 1 while the expected85

probability of this attack is shown below. Equation 1 shows that by performing86

1
p2·q2 number of adaptively chosen plaintext/cipertext queries with the ∆0 differ-87

ence on the encryption queries and the ∇1 difference on the decryption queries,88

the attacker can distinguish E from the ideal cipher. The most important part of89

this boomerang-style attacks is to select suitable differential characteristics for90

E0 and E1 so that the probability of obtaining a right quartet will be maximized.91

Also, in this type of attacks, the overall probability was calculated based on the92

assumption that the two sub-ciphers E0 and E1 are independent.93

Pr[E−1(E(x)⊕∇1)⊕ E−1(E(x⊕∆0)⊕∇1) = ∆0] = p2 · q2. (1)

One direction in boomerang research entailed improving the boomerang trails94

by the relaxing the assumptions at the edge of the sub-ciphers (like the Amplified95

Boomerang [17] attack) while another attempt was to convert the Boomerang96

attack to a chosen plaintext attack (Rectangle Attack [3]) with the penalty of an97

increased complexity. Yet another direction was inspired by Murphy’s work [18]98

on the impossible Boomerang Quartet (showing incompatibilities between upper99

and lower trails due to incorrectness of the independence assumption). Research100

in this direction lead to many interesting contributions which let to the plane101

at the edge of the sub-ciphers in the Boomerang-Cube to be inflated to a cube102

in itself. This view allowed capture the various dependencies between the upper103

and lower trails and also resolved the problem of incompatible trails.104

Research Exploiting Inter-trail Dependencies in the Boomerang-Cube One of105

the first exploitations of trail dependencies was due to Biryukov et al. in the106

middle round S-box trick [5]. Besides, many improvements taking advantages of107

the dependency between the two differential characteristics have been proposed,108

such as the ladder switch, S-box switch, and the Feistel switch in [6]. The basic109

idea is that the boundaries of E0 and E1 do not need to be defined on a state,110

instead, the state can be further divided into words, and some words can be in111

E0 and others can be in E1. Suppose, in a boomerang trail, half of the state112

is active in the upper trail E0, the other half is active in the lower trail E1, in113

between them only S-box layer is there. In this case, the probability on all the114

active S-boxes becomes 1. This technique is called ladder switch. Further, in the115

S-box switch, when both the characteristics for E0 and E1 activate the same116

S-box with an identical input difference and an identical output difference, the117

probability of this S-box to generate a quartet becomes p′ instead of p′2.118

Later, in [12,13], Dunkelman et al. formalised the above observations, and119

captured in the framework of sandwich attack. In this attack, the target cipher120

E can be further decomposed into three parts, i.e., E = E1 ◦ Em ◦ E0 where121

the middle part Em consists of relatively short transformations (as depicted in122

Figure 2). Let (x1, x2, x3, x4) and (y1, y2, y3, y4) be the input and the output123

quartet values for Em respectively such that yi = Em(xi). Thus, the probability124

of a valid boomerang quartet would be p2 ·q2 ·r, where r denotes the probability125

of Em satisfying some differential propagation among four texts and is computed126
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as follows.127

r = Pr[(x3 ⊕ x4 = ∆1)|(x1 ⊕ x2 = ∆1) ∧ (y1 ⊕ y3 = ∇0) ∧ (y2 ⊕ y4 = ∇0)]. (2)

Therefore, the boomerang switching effects can be integrated as the depen-128

dency between the two characteristics of E0 and E1 which now lie in Em. To129

calculate the probability r of Em in a systematic way, as well as for finding the130

other switches to increase r, Cid et al. in [9] first proposed an efficient technique,131

called Boomerang Connectivity Table (BCT) to capture the boomerang switches132

of Em. The BCT can capture both the incompatibility, indroduced by [18] and133

the observations by [6]. Moreover, BCT shows that the switching effect can be ap-134

plied to increase the probability even when∆1 cannot be propagated to∆2 in the135

DDT. The drawbacks of BCT is that the incompatibility can be avoided by upto136

one round, but it cannot capture the incompatibility when multiple rounds of Em137

are considered. In [23], Wang et al. proposed a modified tool, called Boomerang138

Difference Table (BDT) to improve the BCT when considering multiple rounds.139

Several other improvements on the middle layer for boomerang switch can be140

found in [21,26].141

NLFSR-based Designs. Securing low-end devices like RFID tags is challenging due142

to their constrained environment. The ideal security solution must be compact,143

low-power, and fast enough for real-time protocols. In this context, NLFSR-based144

designs are a suitable choice. They offer several advantages such as low hardware145

cost, efficient parallel computation of rounds, and easy loading of stream input146

data into the state during state updates. These characteristics make NLFSR-147

based designs well-suited for compact, low-power, and real-time protocol require-148

ments. Some well-known NLFSR-based designs include Grain, Trivium, KATAN,149

and TinyJambu. In we demonstrate the application of generalized boomerang150

switch techniques on the NLFSR-based block cipher KATAN, which is a highly151

efficient hardware-oriented cipher. Additionally, we explore the keyed permuta-152

tion of TinyJambu, which was one of the ten finalists in the NIST lightweight153

authenticated encryption competition [2].154

1.1 Our Contributions155

Our contributions in this work can be summarized as follows:156

– Comprehensive Analysis of Switching Techniques for NLFSR-based ciphers: We157

provide a comprehensive analysis of boomerang attacks, particularly in the158

context of NLFSR-based ciphers. By investigating the impact of different159

switch techniques, we deepen the understanding of how these attacks work160

and how the interdependencies between characteristics influence their suc-161

cess.162

– Introducing the Open-Sandwich Attack: We introduce a novel approach to163

identify boomerang distinguishers by exclusively utilizing the path through164

ladder or And switches. This approach, called as the “open-sandwich attack”,165

offers a new perspective on attack modeling and provides a new way to166

uncover vulnerabilities in ciphers.167
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– Best distinguishers on TinyJambu and KATAN32: Using our approach, we suc-168

cessfully identify better boomerang distinguishers for ciphers, like TinyJambu169

and KATAN32. A brief comparison of these attacks are presented in Table 1.170

These discoveries highlight the practical applicability of our methods and171

their potential to uncover weaknesses in real-world cryptographic systems.172

1.2 Outline of the Paper173

The structure of this paper is outlined as follows. In Section 2, we establish the174

foundational knowledge necessary for constructing a novel sandwich attack tai-175

lored for NLFSR-based block ciphers. Section 3 is dedicated to a comprehensive176

discussion on the development of a Mixed Integer Linear Programming (MILP)177

model, effectively dissecting the sandwich attack through the utilization of var-178

ious switches. Section 4 presents empirical results derived from our innovative179

technique, applied to both the related-key and single-key settings for the Tiny-180

Jambu cipher. Additionally, Section 5 extends our methodology to explore and181

discover optimal boomerangs for the KATAN32 cipher under both key settings.182

Subsequently, in Section 6, we engage in a discussion encompassing potential en-183

hancements and future research challenges pertinent to our technique. Finally,184

Section 7 offers concluding remarks that summarize the key findings and impli-185

cations of our work.186

2 Preliminaries187

In this section, we begin by providing a concise overview of the framework of188

boomerang attacks. Following that, we delve into the categorization of the gener-189

alized switching effects for a single AND-based non-linear feedback shift register190

(NLFSR). This discussion aims to lay the foundation for a comprehensive under-191

standing of boomerang attacks and their applicability in cryptographic analysis.192

2.1 Differential Propagation through AND Gates193

Differential cryptanalysis was first proposed by Biham and Shamir in the early194

1990s in [4]. It is one of the most fundamental cryptanalytic approach to eval-195

uate the security of block ciphers. For differential cryptanalysis, the basic idea196

is to find the higher probability differential trails by assuming that the state197

differences spreading through the rounds in a cipher are independent. This prob-198

ability comes due to some active non-linear components through the rounds for199

iterated ciphers, and is inversely proportional to the number of rounds. Thus,200

the resistance against differential cryptanalysis for iterated ciphers (based on201

the non-linear components like S-box/Addition/AND operations) is highly de-202

pendent on the non-linearity features of these operations. For an n-bit S-box203

S : {0, 1}n → {0, 1}n, the differential properties of S are typically represented204

by the 2n × 2n Difference Distribution Table (DDT) T , where a row represents205
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Table 1: Comparison of Attacks against KATAN32 and TinyJambu variants. Here
SK, RK, KP, ACP represent Single-key, Related-key, Known Plaintext and Adap-
tive Chosen Plaintext respectively

Cipher Techniques
Attack

Model
Key Size Rounds

Distinguishing

Probability
References

T
in
yJ
am

bu

Differential

RK

128 1024
2−16 [11]

2−14 [16]

192
1152 2−12 [11]

2−10 [16]

256
1280 2−10 [11]

2−8 [16]

SK 128

384 2−19 [19]

384 2−14

[16]640 2−42

1024 2−108

Slide

KP 128 ∞ 2−64

[20]ACP 192 ∞ 2−65

ACP 256 ∞ 2−67.5

Boomerang
RK

128 1024 2−19

This Work

Section 5

192 1152 2−18

256 1280 2−12

SK 128 640 2−22

K
A
T
A
N
32

Boomerang

RK 80 140

2−27.2 [15]

2−26.58 [8]

2−15
This Work

Section 6

SK
80

83† 2−21.78 [8]

84 2−30
This Work

Section 6

†The given trail has probability much lower than 2−32.

the input difference (∆i) and a clomun represents the output difference (∆o).206

The entries in T are defined by T (∆i, ∆o) = #{x : S(x)⊕ S(x⊕∆i) = ∆o}.207

Thus, the probability for any given difference pair (∆i, ∆o), i.e., the input dif-208

ference ∆i propagates to the output difference ∆o is T (∆i,∆o)
2n . Also, for an AND209

gate, if (∆a,∆b) denotes the input difference and ∆z as its output difference,210
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then we have,211

∆z = a · b⊕ (a+∆a) · (b+∆b) = a ·∆b⊕ b ·∆a⊕∆a ·∆b. (3)

The differential properties of AND gate can also be represented by 4 × 2 DDT212

table T , which is given in Table 2. The entries in the table T are defined by213

T ((∆a,∆b), ∆z) = #{(a, b) : a · b⊕ (a⊕∆a) · (b⊕∆b) = ∆z}.

(∆a, ∆b) ∆z = 0 ∆z = 1

(0, 0) 4 0

(0, 1) 2 2

(1, 0) 2 2

(1, 1) 2 2

Table 2: Difference Distribution Table of AND Gate

Therefore, the probability for the input difference (∆a,∆b) propagates to214

the output difference ∆z will be T ((∆a,∆b),∆z)
4 . According to the Table 2, the215

output difference ∆z follows a uniform distribution for any given non-zero input216

difference (∆a,∆b).217

P1

P2

P3

P4∆0

∆0

E0

E0

E0

E0

∆1
∆1

E1

E1

E1

E1

C1

C2

C3

C4

∇0

∇0

∇1

∇1

Fig. 1: Boomerang Attack

P1

P2

P3

P4∆0

∆0

E0

E0

E0

E0

∆1
∆1

x1

x2

y1

y2

x3

x4

y3

y4

Em

Em

Em

Em

E1

E1

E1

E1

C1

C2

C3

C4

∇0

∇0

∇1

∇1

Fig. 2: Sandwich Attack

218
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(x1, y1)

(x2, y2)

(∆l
1 , ∆l

2 )

∆3

(x3, y3)

(x4, y4)

(∆r
1 , ∆

2)r

∆4

(∇f
1 ,∇f

2 )

(∇b
1,∇b

2)

∇3

∇4

Fig. 3: A Valid Boomerang Quartet of Em as One Round NLFSR

2.2 Boomerang Attack219

Now, we give a brief overview of the boomerang attack. Let EK(P ) and EK(C)220

denote the encryption of P and the decryption of C under a key K, respectively.221

Suppose ∆K, ∇K are the master key differences of the differentials. Then, the222

boomerang distinguisher is mounted as follows:223

1. Ask for the ciphertexts C1 = EK(P1) and C2 = EK(P2), where P2 = P1⊕∆0.224

2. Ask for the plaintexts P3 = E−1
K (C3) and P4 = E−1

K (C4), where C3 = C1⊕∇1225

and C4 = C2 ⊕∇1.226

3. Check whether P3 ⊕ P4 = ∆0.227

Also, the boomerang framework in the related-key setting works as follows:228

1. K1 ← K, K2 ← K1 ⊕∆K, K3 ← K1 ⊕∇K, K4 ← K1 ⊕∆K ⊕∇K.229

2. Ask for the ciphertexts C1 = EK1
(P1) and C2 = EK2

(P2), where P2 =230

P1 ⊕∆0.231

3. Ask for the plaintexts P3 = EK−1
3

(C3) and P4 = EK−1
4

(C4), where C3 =232

C1 ⊕∇1 and C4 = C2 ⊕∇1.233

4. Check whether P3 ⊕ P4 = ∆0.234

Switching in Boomerang Attacks. Here, we give a brief overview of the235

switching techniques that are employed in the boomerang attacks tailored for236

Substitution-Permutation Network (SPN) based ciphers. Consider a cipher E237

and its decomposition E = E1 ◦Em ◦E0 (refer to Fig. 2) as formalised in [12,13].238

Assume that the last substitution layer partitions x1 into t words, i. e., x1 =239

x0
1|| · · · ||xt−1

1 . Similarly, xi’s (2 ≤ i ≤ 4), yj ’s (1 ≤ j ≤ 4), ∆1 and ∇0 can be240

partitioned into t words (assume that the corresponding s-box is ν×ν). Consider241

the following relation for the k-th word-242

8



xk−1
1 ⊕ xk−1

2 = ∆k−1
1

For satisfying the E0 trail (in the return path of the boomerang), the following243

relation must hold for 1 ≤ k ≤ t-244

S−1(S(xk−1
1 )⊕∇k−1

0 )⊕ S−1(S(xk−1
2 )⊕∇k−1

0 ) = ∆k−1
1 (4)

where S is the substitution operation applied on each word. Now consider245

the following two cases-246

– Case I:When xk−1
1 = xk−1

2 , Eq. 4 holds with probability one. This particular247

case is designated as ladder switch.248

– Case II: When S(xk−1
1 )⊕S(xk−1

2 ) = ∇k−1
0 , Eq. 4 holds with probability µ

2ν ,249

where µ is entry in the difference distribution table (DDT) of S with ∆k−1
1250

and ∇k−1
0 as the input and output differences, respectively. This particular251

case is designated as s-box switch.252

Next, we introduce a notion similar to these switches when the non-linear253

layer of a cipher consists of AND operations.254

3 Introducing Generalized Switching in NLFSR255

Consider the middle layer Em in a sandwich attack which is composed of a
single round NLFSR-based cipher which has only one AND gate as the non-linear
component, given in Figure 3. The target cipher is divided into three parts E0,
Em, and E1. Let (x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ {0, 1}2 are the inputs to
the four AND gates of Em such that x1 ⊕ x2 = x3 ⊕ x4 = ∆l

1=∆r
1 = ∆1 (say),

y1 ⊕ y2 = y3 ⊕ y4 = ∆l
2 = ∆r

2 = ∆2, x1 ⊕ x3 = x2 ⊕ x4 = ∇f
1 = ∇r

1 = ∇1

and y1 ⊕ y3 = y2 ⊕ y4 = ∇f
2 = ∇r

2 = ∇2. Also, let z1, z2, z3, z4 ∈ {0, 1} are the
corresonding output differences such that z1 ⊕ z2 = ∆3 and z3 ⊕ z4 = ∆4. For
(x, y) ∈ {0, 1}2, the output difference of the AND operation in the left plane is
given by

∆3 = x · y ⊕ (x⊕∆1) · (y ⊕∆2).

Similarly,

∆4 = (x⊕∇1) · (y ⊕∇2)⊕ (x⊕∇1 ⊕∆1) · (y ⊕∇2 ⊕∆2).

In order to obtain a right quartet, we can obtain a necessary condition similar
to Equation 4 for such NLFSR-based ciphers-

∆3 = ∆4

=⇒ x · y ⊕ (x⊕∆1) · (y ⊕∆2) = (x⊕∇1) · (y ⊕∇2)⊕ (x⊕∇1 ⊕∆1) · (y ⊕∇2 ⊕∆2)

Then, the probability that the above condition holds is given by:256
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(∇1,∇2)

(0,0) (1,0) (0,1) (1,1)

(∆
1
,∆

2
)

(0,0) 4 4 4 4

(1,0) 4 4 0 0

(0,1) 4 0 4 0

(1,1) 4 0 0 4

Table 3: Boomerang Connectivity Table of Single AND-based NLFSR

Pr[∆3 = ∆4]

=
#{(x, y) : (x ⊕ ∇1) · (y ⊕ ∇2) ⊕ (((x ⊕ ∆1) ⊕ ∇1) · ((y ⊕ ∆2) ⊕ ∇2)) = (x · y) ⊕ ((x ⊕ ∆1) · (y ⊕ ∆2))}

22
.

(5)

The evaluation of Equation 5 is illustrated in Figure 2. This is exactly the257

r in Equation 2, when Em is a single AND layer. Similar to the DDT, we eval-258

uate the Boomerang Connectivity Table (BCT) using Equation 5 for all pairs259

of (∆1, ∆2) and (∇1,∇2) as shown in Table 3. Further, according to Figure 3260

different generalized switching techniques are introduced here.261

Trivial switch:262

{∆3 = ∆4 = ∇3 = ∇4 = 0 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) = (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) = (0, 0).

Ladder switch:263 {
∆3 = ∆4 = 0,∇3 = ∇4 if (∆l

1, ∆
l
2) = (∆r

1, ∆
r
2) = (0, 0), (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) ̸= (0, 0),

∆3 = ∆4,∇3 = ∇4 = 0 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) ̸= (0, 0), (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) = (0, 0).

AND Switch:264

{∆3 = ∆4 = ∇3 = ∇4 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) = (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2) ̸= (0, 0).

Trail Switch:265 

1∆3 ̸= ∆4,∇3 ̸= ∇4 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) ̸= (0, 0),

(∇f
1 ,∇

f
2 ) = (∇b

1,∇
b
2) ̸= (0, 0), (∆l

1, ∆
l
2) ̸= (∇f

1 ,∇
f
2 ),

∆3 = ∆4,∇3 ̸= ∇4 if (∆l
1, ∆

l
2) = (∆r

1, ∆
r
2), (∇

f
1 ,∇

f
2 ) ̸= (∇b

1,∇
b
2),

∆3 ̸= ∆4,∇3 = ∇4 if (∆l
1, ∆

l
2) ̸= (∆r

1, ∆
r
2), (∇

f
1 ,∇

f
2 ) = (∇b

1,∇
b
2),

∆3 ̸= ∆4,∇3 ̸= ∇4 if

{
(∆l

1, ∆
l
2) ̸= (∆r

1, ∆
r
2), (∇

f
1 ,∇

f
2 ) ̸= (∇b

1,∇
b
2),

(∆l
1, ∆

l
2) = (∆r

1, ∆
r
2) ̸= (∇f

1 ,∇
f
2 ) = (∇b

1,∇
b
2).

1 This sub-case of the Trail Switch category covers all switches except Trivial, Lad-
der, and AND when we require two opposite plane differences to be equal (refer to
Table 4). The remaining sub-cases within the Trail Switch category occur when no
specific conditions are imposed on opposite plane differences.
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In the context of distinguishing probability, the various switches play a sig-266

nificant role within the framework of the boomerang attack. The objective in267

forming a boomerang quartet is to maintain equal parallel plane (state) differ-268

ences in both the segments. Considering a one-round operation denoted as Em269

(refer to Figure 3), and omitting the shifting operation within the state, taking270

a special case where ∆l
1 = ∆r

1, ∆
l
2 = ∆r

2, ∇f
1 = ∇b

1, and ∇f
2 = ∇b

2, the probabil-271

ities for the corresponding output differences that will be the same under these272

switches are summarized in Figure 4.273

∆1 ∆2 ∇1 ∇2 Switch Pr[∆3 = ∆4,∇3 = ∇4]

0 0 0 0 - 1

0 0 0 1 Ladder 1

0 0 1 0 Ladder 1

0 0 1 1 Ladder 1

0 1 0 0 Ladder 1

0 1 0 1 And 1

0 1 1 0 Trail 0

0 1 1 1 Trail 0

1 0 0 0 Ladder 1

1 0 0 1 Trail 0

1 0 1 0 And 1

1 0 1 1 Trail 0

1 1 0 0 Ladder 1

1 1 0 1 Trail 0

1 1 1 0 Trail 0

1 1 1 1 And 1

Table 4: Different Switching Probabilities to Maintain Equal Plane Differences
in Em.

4 Slicing the Sandwich Attack274

In the context of the sandwich attack, the cipher E is conceptualized as the com-275

position of three subciphers: E0, Em, and E1, represented as E = E0 ◦Em ◦E1.276

The intermediary component Em is utilized to incorporate a small number of277

rounds via various switch techniques, directly enhancing the probability of the278

boomerang distinguisher. For ciphers based on Sbox, when only ladder switches279

occur in Em, the value of r becomes 1. Consequently, the distinguishing prob-280

ability simplifies to p2 · q2 · r = p2 · q2. Furthermore, the Sbox or other new281

switches within Em can also contribute to improving the value of r, although282

not significantly compared to the ladder switch. Thus, for the sandwich attack283

(as illustrated in Figure 2), constructing single or very few rounds of Em using284

Sbox or other new switches is relatively straightforward. However, employing285
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Fig. 4: Open-Sandwich Attack

switch techniques for a large number of rounds in Em can introduce compat-286

ibility challenges. To address this, several systematic techniques [21,23,14] are287

introduced to effectively resolve these incompatibility issues as the number of288

rounds increases.289

For NLFSR-based block ciphers, it is important to highlight that only ladder290

or And switches have the potential to enhance the value of r in Em and simulta-291

neously maintain equality in their opposite plane (state) differences. In contrast,292

other switch cases result in unequal opposite plane differences. While employing293

other switch techniques might allow the attacker to obtain the input difference294

∆0 through boomerang-style attacks, the resulting distinguishing probability is295

notably lower compared to the scenarios where only ladder or And switches are296

used.297

In this study, our primary focus is to delve into the discussion of boomerang298

attacks exclusively through the utilization of ladder or And switches. Within299

the scope of this work, we particularly concentrate on exploring and analyzing300

these switches. It is worth noting that in the pursuit of identifying the optimal301

boomerang for NLFSR-based block ciphers, a useful approach is to conceptualize302

the cipher E as the composition of Em and E1, expressed as E = Em ◦ E1.303

This framework essentially constitutes a special case of a sandwich attack, with304

E0 being omitted. We refer to this technique as the “open-face sandwich at-305
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tack”. The distinguishing probability of this attack will be r · q2. This attack is306

demonstrated in Figure 4.307

4.1 Our Observations308

Consider a straightforward boomerang structure E = E0 ◦ E1 (as depicted in309

Figure 1), which corresponds to optimal differentials ∆0 → ∆1 of E0 with a310

probability of p, and ∇0 → ∇1 of E1 with a probability of q. In this context,311

the probability of success for this boomerang distinguisher can be approximately312

evaluated using the formula p2·q2. Now, for the simple boomerang within NLFSR-313

based block ciphers, let p represent the count of active AND gates for the differ-314

ential ∆0 → ∆1 in one of the two opposing upper planes within E0. Likewise,315

let q denote the count of active AND gates for the differential ∇0 → ∇1 in one316

of the two opposing lower planes within E1. However, it is important to note317

that in this scenario, the actual probability of satisfying this boomerang tends318

to be notably higher than the theoretical probability p2 · q2. This discrepancy319

between theoretical and actual probabilities sparked our curiosity to further ex-320

plore the behavior of such boomerang attacks within NLFSR-based ciphers and321

to accurately estimate the theoretical probability.322

In NLFSR-based block ciphers, AND gates constitute the sole non-linear op-323

erations utilized within the cipher structure. When examining a boomerang sce-324

nario (as illustrated in Figure 4), consider the differential ∆0 → ∆1 pertaining325

to Em and the differential ∇0 → ∇1 associated with E1. Within the boomerang326

quartet, the plane differences in each round align with the category of distinct327

switches mentioned earlier.328

Boomerangs involving trail switches cause the opposite plane differences to329

become unequal, simultaneously compelling the increase of trail switches across330

rounds. Consequently, these trail switch-based boomerangs lead to a significant331

reduction in the overall probability. As a result, the quest for an improved332

boomerang distinguisher involves seeking a promising differential boomerang333

path that traverses through various switches while excluding the other switches.334

Upon discovering such an optimal boomerang path, characterized by the right335

number of ladder or And switches, the probability can be precisely computed336

using the formula r · q2.337

4.2 Searching of Good Boomerang Trails338

In our pursuit of identifying effective boomerang trails for the cipher, our strat-339

egy revolves around optimizing the number of ladder or And switches necessary340

to create a boomerang effect. To accomplish this, we have developed a straight-341

forward model that employs mixed-integer linear programming (MILP) to search342

for the optimal boomerang trails.343

In this MILP model, a pragmatic approach is taken: we maintain four state344

differences and focus on optimizing the plane differences by assigning appropriate345

weights to the ladder or And switches. Specifically, when dealing with rounds of346

Em, we assign a weight of 1 to the ladder or And switches. Conversely, for the347
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lower part (E1), we assign a weight of 2 to the ladder or And switches. Within348

the framework of the optimal boomerang trail, let us denote w1 and w2 as the349

cumulative weights of Em and E1, respectively. Consequently, the probability350

associated with the boomerang trail can be expressed as r · q2 = 2−w1−w2 . This351

formulation allows us to effectively determine and optimize the probability of352

the boomerang trail.353

It is important to note that this probability accurately represents the boomerang’s354

success when both differences ∆1 and ∇1 are predetermined. However, if ∆1 and355

∇1 are arbitrary differences, the calculated probability can potentially experi-356

ence a notable enhancement due to the existence of multiple paths within the357

boomerang or due to the inclusion of trail switches. In such scenarios, the actual358

probability of obtaining a right boomerang quartet could be higher than the359

calculated value due to the increased flexibility introduced by these variations.360

5 Attacks on TinyJambu361

The TinyJambu [25] is an authentication scheme that is chosen as one of the fi-362

nalists in the NIST lightweight cryptography (LWC) competition. It employs an363

NLFSR-based keyed permutation as its internal structure, without a key sched-364

ule function. TinyJambu provides three versions with key sizes of 128, 192, and365

256 bits respectively. During initialization, the initial version of TinyJambu [24]366

utilizes 384 rounds to process the nonce and associated data, while for process-367

ing the message, it employs 1024/1152/1280 rounds depending on the key size368

of 128/192/256 bits. However, in 2020, Saha et al. [19] demonstrated a forgery369

attack on the full-round TinyJambu scheme with a probability close to 2−70.64,370

indicating a security level near 64 bits. In response, the designers increased the371

number of rounds from 384 to 640 to enhance the scheme’s security. For a more372

comprehensive understanding of TinyJambu’s specifications, please refer to [25].373

Regarding the keyed permutation of TinyJambu in the secret key setting, further374

research has revealed certain vulnerabilities. In the work [20], key-recovery at-375

tacks on all variant sizes were presented, achieving results close to the birthday376

bound of 264.377

Dunkelman et al. [10] demonstrated a zero-sum distinguisher for 544 rounds378

out of the 1024-round TinyJambu keyed permutation, achieving this with a com-379

plexity of 223. Furthermore, in their work [11], the authors revealed related-key380

forgery attacks targeting various TinyJambu variants. These attacks exhibited381

differential probabilities of 2−16, 2−12 and 2−10 for 128, 192, and 256-bit keys,382

respectively, emphasizing potential security concerns.383

In another development, Jana et al. [16] identified a full-round differen-384

tial trail within the 1024-round TinyJambu keyed permutation. This trail dis-385

played an exceptionally low probability of 2−108, revealing non-random prop-386

erties within the keyed permutation. Additionally, in this attack, the authors387

demonstrated improved related-key differential probabilities of 2−14, 2−10 and388

2−8 for 128, 192, and 256-bit keys, respectively, highlighting potential vulnera-389

bilities in TinyJambu’s security characteristics.390

14



127 91 85 70

NAND

46 0

Ki (mod |K|)

Fig. 5: The Permutation P ki

In this section, our focus is on the TinyJambu keyed permutation, where we391

investigate the application of different switch techniques to explore boomerang392

properties. By employing these techniques, we achieve significant advancements393

in the analysis of TinyJambu with 640 rounds in the secret-key settings, surpass-394

ing the success rates of previous attacks. Furthermore, we present the related-key395

boomerang attacks for all the TinyJambu variants.396

5.1 Specification397

TinyJambu is an authenticated encryption with associated data (AEAD) scheme,398

featuring a 128-bit non-linear feedback shift register (NLFSR)-based keyed per-399

mutation with a 128-bit state size and 32-bit message block size. It was se-400

lected as one of the top ten finalists in the NIST Lightweight Cryptography401

(LWC) competition, competing among 56 submissions. The 128-bit keyed per-402

mutation, represented as PK
l , comprises l rounds, with the secret key K be-403

longing to F|K|
2 , where K is defined as (k|K|−1, k|K|−2, · · · , k1, k0). This per-404

mutation offers support for three key sizes: 128 bits, 192 bits, and 256 bits.405

In this work, we denote an l-round keyed permutation of TinyJambu as Pl.406

Each round of the permutation, PK
l : F128

2 → F128
2 , transforms an initial state407

(s127, s126, · · · , s1, s0) into a final state (sf , s127, s126, · · · , s2, s1), where sf is408

calculated as s0 ⊕ s47 ⊕ s70s85 ⊕ s91 ⊕ ki mod |K|. Figure 5 refers to a visual409

representation of this permutation.410

TinyJambu offers three variants, denoted as TinyJambu-128, TinyJambu-192,411

and TinyJambu-256, each defined by specific parameters listed in Table 5. The412

encryption process in TinyJambu involves four main phases: Initialization, Asso-413

ciated Data Processing, Encryption, and Finalization. We refer to Figure 6 for414

an overview of the TinyJambu mode’s overall structure. Detailed specifications415

for the permutations Pl and P̂l can be found in Table 5. The complete details of416

this scheme can be found in [25].417

5.2 MILP Modelling418

When employing MILP modeling for a boomerang attack on TinyJambu, there419

are several approaches to consider.420

One approach involves utilizing MILP modeling to discover optimal differen-421

tial trails for both the upper part (E0) and the lower part (E1) of the TinyJambu422
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Table 5: TinyJambu Variants
AEAD Variants of Size in bits Number of Rounds in

TinyJambu Mode State Key Nonce Tag Pl P̂l

TinyJambu-128 128 128 96 64 640 1024
TinyJambu-192 128 192 96 64 640 1152
TinyJambu-256 128 256 96 64 640 1280
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Fig. 6: The Description of TinyJambu Mode

cipher. This optimization of differential trails can significantly enhance the ef-423

fectiveness of the attack. Another approach entails partitioning the TinyJambu424

cipher into four separate planes, each corresponding to an individual TinyJambu425

function. In this setup, the MILP model is responsible for determining the mini-426

mum count of active AND gates in Em and E1. However, it is worth noting that427

as the number of variables and constraints increases, this model might experience428

a notable slowdown in computational speed.429

To enhance the computational efficiency of the MILP model and reduce the430

required computational time, it is possible to implement the attack by focusing431

on two planes rather than four. By minimizing the ladder/And switches, an effi-432

cient and effective boomerang distinguisher can be developed while maintaining433

a reasonable level of modeling speed. In essence, the objective of implementing434

the boomerang attack using MILP modeling for TinyJambu is to treat the Tiny-435

Jambu cipher as Em ◦ E1, with a focus on minimizing the ladder/And switches436

to create a potent boomerang distinguisher that is both efficient and effective.437

5.3 Results on TinyJambu438

Single-key Boomerang Attacks By employing our proposed MILP modeling,439

we have successfully identified a boomerang distinguisher for TinyJambu span-440

ning up to 320 rounds. Our optimal solution involves 6 ladder switches occurring441

at specific rounds: 0, 32, 47, 168, 200, and 215. Additionally, the second best so-442

lution consists of 7 ladder switches at rounds 107, 122, 144, 159, 168, 200, and443

215. These boomerang trails are detailed in Table 6.444

2 Sub-optimal solution due to MILP solver limitations.
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Table 6: Boomerang Distinguishers of TinyJambu through MILP Search

Rounds
Ladder

Switch

And

Switch

Distinguishing

Probability

Input Difference

(Upper Plane)

Output Difference

(Lower Plane)

Success

Probability

320

6 0 2−9
∆0 = 0x00000120 00000000 02000000 00000400 ∇0 = 0x00000001 20000000 00020000 00000004

99.9%
∆1 = 0x00000000 00000000 00000400 00000020 ∇1 = 0x00000000 00000000 00000004 00000000

7 0 2−10
∆0 = 0x00004000 00000000 80000000 00000000 ∇0 = 0x00000001 20000000 00020000 00000004

99.9%
∆1 = 0x00000000 80000000 04000020 00204000 ∇1 = 0x00000000 00000000 00000004 00000000

384

8 0 2−12
∆0 = 0x00000241 00020000 04000000 00000800 ∇0 = 0x00020010 00000004 80000000 00080000

99.9%
∆1 = 0x00000000 00000800 00000040 00020002 ∇1 = 0x00000000 00000000 00000010 00000000

4 4 2−12
∆0 = 0x00020010 00000004 80000000 00080000 ∇0 = 0x00200100 00000048 00000000 00800000

100%
∆1 = 0x00000000 00000000 00000010 00000000 ∇1 = 0x00000000 00000000 00000100 00000008

6401 24 2 2−39
∆0 = 0x00001000 80000000 24000000 00004000 ∇0 = 0x00008004 00000001 20000000 00020000

–
∆1 = 0x04000000 00204000 00010000 80000810 ∇1 = 0x20000000 01020000 00080004 00004081

Table 7: Amplified Boomerang Distinguishers of TinyJambu

Rounds
Distinguishing

Probability

Input Difference

(Upper Plane)

Output Difference

(Lower Plane)

Success

Probability

288 1 ∆0 = 0x00004000 00000000 80000000 00000000 ∇1 = 0x00000000 00000000 00000400 00000020 100%

320
1

∆0 = 0x00001000 00000000 20000000 00000000 ∇1 = 0x00000000 00000000 00000040 00000002 100%

∆0 = 0x00004000 00000000 80000000 00000000 ∇1 = 0x00000000 00000000 00000004 00000000 100%

2−4 ∆0 = 0x00000120 00000000 02000000 00000400 ∇1 = 0x00000000 00000000 00000004 00000000 99.8%

384
2−4 ∆0 = 0x00000241 00020000 04000000 00000800 ∇1 = 0x00000000 00000000 00000010 00000000 98%

2−4
∆0 = 0x00020010 00000004 80000000 00080000 ∇1 = 0x00000000 00000000 00000100 00000008 97.6%

640
2−22

∆0 = 0x00048200 04000008 00000000 00100000 ∇1 = 0x00000000 00000000 20000000 01000000 95%

2−24 ∆0 = 0x00001000 80000000 24000000 00004000 ∇1 = 0x20000000 01020000 00080004 00004081 95%
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Our search approach treats E as two equal subciphers: Em and E1. For the445

optimal solution, we find three ladder switches in each of Em and E1. This446

results in r = 2−3 and q = 2−3, yielding a distinguishing probability of r · q2 =447

2−9. Similarly, for the second best solution, we have r = 2−4, q = 2−3, and a448

probability of 2−10.449

Alternatively, if we consider the boomerang trail as two distinct differentials450

of 160 rounds each, denoted as E = E0 ◦ E1, the distinguishing probability451

becomes p2 · q2, where p = Pr(∆0 → ∆1) and q = Pr(∇0 → ∇1). For the first452

320-round boomerang distinguisher in Table 6, we have p = 2−3 and q = 2−3,453

resulting in a probability of 2−12. Similarly, for the second distinguisher of 320454

rounds, with p = 2−4 and q = 2−3, the probability is 2−14.455

In our comprehensive investigation, we have delved into the intricacies of456

boomerang paths, particularly focusing on larger rounds, namely 384 rounds457

and 640 rounds. For the 384-round scenario, our diligent analysis led to the dis-458

covery of an optimal boomerang path, meticulously comprising 8 ladder switches459

strategically activated at specific rounds: 31, 46, 159, 174, 215, 230, 262, and 277.460

When considering fixed values for ∆1 and ∇0, this carefully designed boomerang461

path yields a probability for the boomerang distinguisher, precisely calculated as462

r · q2 = 2−4 · 2−8 = 2−12. This finding underscores that even with a substantial463

number of cipher rounds, the likelihood of success for this boomerang attack464

remains relatively low.465

In a more extensive scenario involving 640 rounds, our investigation led to466

the identification of an intricate boomerang trail. This path involves the acti-467

vation of 26 ladder/And switches, consisting of 24 ladder switches and 2 And468

switches, thoughtfully positioned throughout the rounds. The resulting distin-469

guishing probability for this extensive boomerang path is significantly lower,470

quantified as 2−41. This difference emphasizes the escalating difficulty and dimin-471

ishing success rate associated with boomerang attacks as the number of rounds472

in the cipher increases. Our approach to identifying these optimal boomerang473

trails through various switches effectively captures the probability distribution,474

shedding light on the challenging landscape of NLFSR-based cryptographic ci-475

pher analysis.476

Moreover, we have explored the concept of amplified boomerangs in this477

context to enhance the overall probability of boomerang distinguishers. Our ap-478

proach involves deliberately seeking suboptimal solutions from our MILP search.479

The goal is to create a boomerang with the input difference ∆0 and the output480

difference ∇1 that possesses numerous alternate paths. This strategic manipu-481

lation has led to notably improved probabilities for these rounds of TinyJambu,482

which are detailed in Table 7.483

Related-key Boomerang Attacks In a similar manner, we applied the MILP484

model to investigate related-key boomerang trails for the TinyJambu-128 cipher.485

For a 384-round cipher, we identified an optimal solution that resulted in a486

deterministic boomerang trail, requiring no ladder or And switches.487
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In the case of a 512-round cipher, our analysis yielded an optimal solution488

involving four ladder switches positioned at 21, 36, 261, and 502. In this specific489

path, two switches were activated during the initial 256 rounds, while the other490

two switches became active during the final 256 rounds. This configuration led491

to a boomerang distinguisher with a probability of 2−2 · 2−4 = 2−6.492

In addition to our findings for various round counts, we encountered intrigu-493

ing results when exploring boomerang distinguishers in a 640-round cipher. The494

optimal solution in this scenario featured five ladder switches strategically po-495

sitioned at rounds 12, 172, 187, 476, and 491. Within this trail, three of these496

switches were actively involved during the initial 320 rounds, while the remaining497

two switches occured in the final 320 rounds. As a result, this arrangement gave498

rise to a boomerang distinguisher with a probability calculated as 2−3·2−4 = 2−7.499

For a cipher spanning 1024 rounds, we uncovered a sub-optimal boomerang500

path characterized by the presence of sixteen ladder switches. Eight of these501

switches were active during the initial 512 rounds, and the remaining eight502

switches came into play during the subsequent 512 rounds. This specific config-503

uration led to a boomerang distinguisher with a probability of 2−8 · 216 = 2−24.504

Table 9: Related-key Amplified Boomerang Distinguishers of TinyJambu Vari-
ants

V
ar
ia
n
ts

R
o
u
n
d
s

D
is
ti
n
g
u
is
h
in
g

P
ro
b
ab

ili
ty Upper trail Input Difference

Lower Trail Output Difference

Upper Key Difference

Lower Key Difference S
u
cc
es
s

P
ro
b
ab

ili
ty

T
in
yJ
am

bu
12
8

384 1
∆0 = 0x00102400000000204000000000000000 0x00000400000000204000000000000000

100%

∇1 = 0x00000000000000000000020000000010 0x04000000000000000000020000000000

512 2−6
∆0 = 0x00090000000000100000000000200000 0x00000000000000000000000000200000

99%

∇1 = 0x00000000000000000010000000008000 0x00000000000000000010000000000000

640 2−7
∆0 = 0x40000000120000000000200000000000 0x40000000020000000000200000000000

62%

∇1 = 0x00000000000000000000020000000010 0x20000000000040000000020000000000

1024 2−19
∆0 = 0x00000000000000000000080000000000 0x00000000040000000000000000000040

99%

∇1 = 0x00000000000000000000080000000000 0x00000000040000000000000000000040

T
in
yJ
am

bu
19
2

512 1
∆0 = 0x40902201800081204c00000000000000 0x00000401800081204c000000000000000000000000000000

100%

∇1 = 0x00000000000000000000040000000020 0x000000000000000000000400000000000800000000000000

640 2−6
∆0 = 0x12000000000020000000000040000000 0x000000000000000000000000400000000000000000000000

99%

∇1 = 0x00000000000000000004000000002000 0x000400000000000000000000000000000000000000000000

1152 2−18
∆0 = 0x00000000000000000000000000040000 0x000020000000000200000000000400000000000000040000

99%

∇1 = 0x00000000000002000000000000000000 0x010000000000020000000000000002000000001000000000

T
in
yJ
am

bu
25
6

640 1
∆0 = 0x40180400220080300800000000000000 0x0000000022008030080000000000000000000000000000000000000000000000

100%

∇1 = 0x00000000000000000000000d26c00020 0x00000000000000000000000d26c0002080000000000000000000000000000000

1280 2−12
∆0 = 0x00000000000000004000000000000000 0x0000200000000000400000000000000000000000000000004000000002000000

99%

∇1 = 0x00000000000000000000000000000000 0x0100000000080000000000800000000001000000000000000000000000000000
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Furthermore, our exploration extended to related-key boomerang distinguish-505

ers, where we successfully identified deterministic distinguishers spanning 512506

and 640 rounds for TinyJambu-192 and TinyJambu-256, respectively. In the507

case of full rounds for TinyJambu-192, we discovered a sub-optimal boomerang508

path featuring twelve ladder switches, resulting in a distinguishing probability of509

2−18. Similarly, for the complete rounds of TinyJambu-1280, we encountered a510

sub-optimal solution characterized by eight ladder switches, resulting in a prob-511

ability of 2−18.512

We have summarized these discovered trails and their respective character-513

istics in Table 8. Furthermore, our exploration extended to finding amplified514

boomerang trails by considering sub-optimal solutions, thereby increasing the515

overall probability of these distinguishers. Detailed information about these am-516

plified boomerang trails and their success probabilities can also be found in517

Table 9.518

Experimental Results Under both single-key and related-key settings, we519

have rigorously conducted practical verifications for all the boomerang paths520

of TinyJambu presented in Tables 6,8. These paths were discovered using the521

MILP (Mixed-Integer Linear Programming) search method. This meticulous val-522

idation process ensures the reliability and practical applicability of our reported523

boomerang paths. Furthermore, we have subjected our findings related to the524

best amplified boomerang attacks on TinyJambu, as outlined in Tables 7,9, to525

thorough validation across scenarios involving both single-key and related-key526

settings. For a comprehensive understanding of our verification process, as well527

as access to detailed results and supporting information, we refer to [1]. These528

verifications constitute substantial evidence that our reported boomerang paths,529

success rates, and findings have undergone rigorous real-world testing and anal-530

ysis, affirming their reliability and practical utility.531

6 Attacks on KATAN532

The KATAN cipher, as described in [7], is a family of NLFSR-based block ciphers533

with three variants corresponding to block sizes of 32, 48, and 64 bits. The534

state of the KATAN cipher consists of two registers, namely L1 and L2, which535

have different sizes based on their state sizes. All variants of KATAN employ536

254 rounds and use an 80-bit key to derive 508 subkey bits through a linear537

feedback shift register (LFSR) in the key schedule function. In the round function538

of KATAN, both registers, L1 and L2, function as NLFSRs. The feedback bit of539

L1 is fed into the least significant bit (LSB) of L2, and vice versa. Additionally,540

the state bits are shifted by one position from the least significant bit (LSB) to541

the most significant bit (MSB) in each round. For the KATAN48 and KATAN64542

variants, the round function is repeated 2 and 3 times respectively, using the543

same subkeys. For more detailed information about the KATAN cipher, please544

refer to [7].545
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In previous research, Isobe et al.[15] introduced a related-key boomerang546

distinguisher for KATAN32 consisting of 140 rounds, achieving a distinguisher547

probability of 2−27.2. Building upon their work, Chen et al.[8] further enhanced548

the boomerang distinguisher by employing the branch-and-bound method, re-549

sulting in an improved probability of 2−26.58. These advancements demonstrated550

the vulnerability of KATAN32 to related-key boomerang attacks.551

In a distinct research direction, a recent work by Jana et al. [16] introduced552

the DEEPAND model, specifically designed for analyzing the impact of multiple553

AND gates within NLFSR-based ciphers like KATAN. This model capitalizes on554

exploiting correlations among these AND gates to enhance the probability of555

differential trails. Through this technique, the researchers successfully elevated556

the efficiency of a differential trail. Leveraging the capabilities of the DEEPAND557

model, the authors achieved significant advancements. They managed to iden-558

tify and establish highly effective differential trails, encompassing a remarkable559

70 rounds. This achievement resulted in the development of a notably potent560

related-key boomerang distinguisher. By employing this innovative approach, a561

deeper understanding of the cipher’s vulnerabilities was obtained, and this, in562

turn, facilitated the creation of more powerful and effective attack strategies.563

6.1 Specification564

The KATAN family is an efficient hardware-oriented block cipher, featuring three565

variants: KATAN32, KATAN48, and KATAN64, designed for 32-bit, 48-bit, and566

64-bit block sizes, respectively. All variants employ 254 rounds and utilize the567

non-linear functions NF1 and NF2. They share a common LFSR-based key568

schedule that takes an 80-bit key as input. The fundamental structure of the569

KATAN cipher involves loading plaintext into two registers, L1 and L2. During570

each round, several bits from these registers are processed by the non-linear571

functions NF1 and NF2, and the results are loaded into the least significant572

bits of the registers. The key schedule function expands the 80-bit user-provided573

key ki (0 ≤ i < 80) into a 508-bit subkey ski (0 ≤ i < 508) using specific linear574

operations.575

ski =

{
ki, 0 ≤ i < 80

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13, 80 ≤ x < 508.

Also, the two non-linear functions are defined as follows:

NF1(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

NF2(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6]))⊕ kb,

The KATAN cipher employs a predefined round constant known as IR (details576

provided in []), along with two subkey bits, ka and kb, in its operations. The577

selection of specific bits, denoted as xi for 1 ≤ i ≤ 5 and yi for 1 ≤ i ≤ 6,578

is variant-specific and outlined in Table 10. In the case of KATAN32, the i-th579

round function, illustrated in Figure 7, assigns ka the value of k2i and kb the580
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Fig. 7: Round Function of KATAN [32]

value of k2i+1. After 254 rounds, the values contained in the registers are output581

as ciphertext. In KATAN48, a unique feature is the application of the non-linear582

functions NF1 and NF2 twice within a single round. Initially, the first pair of583

NF1 and NF2 is applied, and following the update of the registers, they are584

reapplied using the same subkeys. Likewise, in the KATAN64 variant, each round585

involves three consecutive applications of NF1 and NF2 with the same key bits.586

More details regarding the specifications of the KATAN family of ciphers can be587

found in [7].588

Table 10: Parameters of KATAN Variants
KATAN Variants | L1 | | L2 | x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN [32] 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN [48] 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN [64] 25 39 24 15 20 11 9 38 25 33 21 14 9

6.2 MILP Modelling589

In our approach to attacking KATAN, we have chosen to simplify things by590

narrowing our focus from four planes to just two. This decision aims to make the591

attack more efficient in terms of both computation and time. When it comes to592

using MILP modeling for attacking KATAN, we follow a straightforward strategy.593

We treat the KATAN cipher as if it is the middle part, denoted as Em, in the594

model. The main goal is to reduce the use of ladder/And switches as much as595

possible. This emphasis on minimizing these specific switches helps us create596

a powerful boomerang distinguisher that is not only efficient but also highly597

effective in exploiting the cipher’s vulnerabilities.598
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Table 11: Related-key Boomerang Distinguishers of KATAN32 through MILP
Search

Rounds
Ladder

Switch

And

Switch

Distinguishing

Probability

Upper Trail

Differences

Upper Trail

Differences

Key Difference

(Upper Trail)

Key Difference

(Lower Trail)

Success

Probability

120

5 2 2−11
∆0 = 0x00042000 ∇0 = 0x8400c010

0x40110020000000000802 0x026008401808a041a660 86.6%

∆1 = 0x08000002 ∇1 = 0x01000002

5 2 2−11
∆0 = 0x00004000 ∇0 = 0x20058400

0x00010044008000000200 0x241157c289ba4c354b3b 86.5%

∆1 = 0x00f80084 ∇1 = 0x01000000

1401

14 0 2−21
∆0 = 0x00062000 ∇0 = 0xa4024010

0x4051 00200000 0000080a 0x63c4 cf451630 862a0c25 97%

∆1 = 0x00400801 ∇1 = 0x00b80084

10 4 2−21
∆0 = 0x80031000 ∇0 = 0xa4024010

0x0140 00800000 00002029 0x63c4 cf451630 762a0c25 25%

∆1 = 0x01200400 ∇1 = 0x00b80084

6.3 Results on KATAN599

Related-key Boomerang Attacks Through the application of our MILP600

model to KATAN32, we have successfully uncovered a related-key boomerang601

distinguisher spanning up to 120 rounds. Our optimal solution entails the acti-602

vation of two And switches at positions 32 and 35, as well as five ladder switches603

at positions 57, 61, 64, 66, and 68. Additionally, we have identified another op-604

timal solution with the same configuration: two And switches at positions 95605

and 98, and five ladder switches at positions 25, 28, 56, 60, and 62. Notably, in606

both cases, three switches are engaged in the first 60 rounds, while four switches607

are triggered in the subsequent 60 rounds. Consequently, the probability of the608

boomerang distinguisher is determined to be r · q2 = 2−3 · 2−8 = 2−11.609

In our pursuit of effective boomerang trails spanning 140 rounds, we have610

uncovered multiple optimal solutions using our MILP search. Among these, one611

solution stands out prominently. This particular solution involves the activation612

of fourteen ladder switches at distinct positions: 32, 35, 57, 60, 62, 69, 71, 74, 76,613

78, 105, 108, and 136. This boomerang boasts a probability of r·q2 = 2−7 ·2−14 =614

2−21. Another noteworthy solution we have identified features four And switches615

at positions 1, 58, 61, and 136, accompanied by ten ladder switches at positions616

33, 36, 63, 68, 71, 74, 76, 78, 105, and 108. These intricate details of the optimal617

boomerang trails for 140 rounds are meticulously documented in Table 11.618

Table 12: Related-key Amplified Boomerang Distinguishers of KATAN32

Rounds
Distinguishing

Probability

Input Difference

(Upper Trail)

Output Difference

(Lower Trail)

Key Difference

(Upper Trail)

Key Difference

(Lower Trail)

Success

Probability

120 2−7 ∆0 = 0x00042000 ∇1 = 0x01000002 0x4011 00200000 00000802 0x0260 08401808 a041a660 64%

140 2−15 ∆0 = 0x00062000 ∇1 = 0x00b80084 0x4051 00200000 0000080a 0x63c4 cf451630 862a0c25 70%
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Table 13: Single-key Boomerang Distinguishers of KATAN32 through MILP
Search

Rounds
Ladder

Switch

And

Switch

Distinguishing

Probability

Upper Trail

Differences

Lower Trail

Differences

Success

Probability

60

9 4 2−19
∆0 = 0x00020040 ∇0 = 0x0001a020

71%
∆1 = 0x00100210 ∇1 = 0x00080108

8 5 2−19
∆0 = 0x00034040 ∇0 = 0x00018020

70%
∆1 = 0x00100210 ∇1 = 0x00080108

72 13 9 2−31
∆0 = 0x00020040 ∇0 = 0x8004c600

−−
∆1 = 0x0420840a ∇1 = 0x00080108

84 14 10 2−34
∆0 = 0x10042080 ∇0 = 0x10068080

−−
∆1 = 0x00400840 ∇1 = 0x00400840

Our dedicated efforts are directed towards identifying efficient and potent619

boomerang distinguishers within the domain of cryptographic ciphers. Addition-620

ally, we have explored amplified boomerang trials through suboptimal solutions,621

further enhancing the overall probability of these distinguishers. A comprehen-622

sive list of these trails, along with their amplified probabilities, is provided in623

Table 12.624

Single-key Boomerang Attacks In the context of single-key settings, we625

employed an MILP model to successfully identify a boomerang distinguisher for626

various numbers of rounds. Here are the details of our findings:627

For a 60-round cipher, we discovered two optimal solutions for the boomerang628

distinguisher. In the first solution, the boomerang path involved nine ladder629

Table 14: Amplified Boomerang Distinguishers of KATAN32

Rounds
Distinguishing

Probability

Input Difference

(Upper Trail)

Output Difference

(Lower Trail)

Success

Probability

60
2−14 ∆0 = 0x00020040 ∇1 = 0x00080108 72%

2−14 ∆0 = 0x00034040 ∇1 = 0x00080108 70%

72 2−24 ∆0 = 0x00020040 ∇1 = 0x00080108 65%

84 2−30 ∆0 = 0x10042080 ∇1 = 0x00400840 60%
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switches occurring at positions 18, 21, 24, 29, 33, 35, 37, 49, and 52, along with630

four AND switches at positions 2, 4, 6, and 55. In the second solution, the path631

consisted of eight ladder switches at positions 18, 21, 24, 29, 33, 35, 37, and 49,632

along with five AND switches at positions 2, 4, 6, 52, and 55. In both cases, seven633

switches were active during the initial 60 rounds, and six switches were active634

during the latter 60 rounds. As a result, the probability of the distinguisher was635

computed as r · q2 = 2−7 · 2−12 = 2−19.636

Similarly, for a 72-round cipher, we identified a boomerang path comprising637

a total of twenty-two ladder and AND switches. Thirteen switches were active638

during the first 36 rounds, and nine switches were active during the last 36639

rounds. This yielded a probability of 2−13 · 2−18 = 2−31 for the distinguisher’s640

success.641

Finally, in the case of an 84-round cipher, our investigation led to the dis-642

covery of a boomerang path involving thirty-four ladder and AND switches.643

Fourteen switches were active during the upper 42 rounds, and ten switches644

were active during the lower 42 rounds. Consequently, the probability of this645

boomerang distinguisher was calculated as 2−14 · 2−20 = 2−34.646

We also delved into the exploration of amplified boomerang trails through647

optimal solutions to enhance the overall probability of these distinguishers. The648

details of these trails and their amplified probabilities are given in Table 14.649

Experimental Results We have meticulously conducted practical validations650

for all the boomerang paths associated with KATAN32, as presented in Tables 13651

and 11. These paths were discovered using the MILP (Mixed-Integer Linear Pro-652

gramming) search method, and we rigorously assessed their validity under both653

single-key and related-key settings. This comprehensive validation process en-654

sures the dependability and practical applicability of the reported boomerang655

paths. Furthermore, our investigations into the best amplified boomerang attacks656

on KATAN32, which are detailed in Tables 14 and 12, have undergone extensive657

verification across various scenarios, encompassing both single-key and related-658

key settings. For a more comprehensive understanding of our validation process,659

detailed results, and supporting information, we refer to [1]. These rigorous val-660

idations provide robust evidence that our reported boomerang paths, success661

rates, and discoveries have been subjected to stringent real-world testing and662

analysis, affirming their practical relevance and reliability.663

7 Discussion664

The findings presented in this work represent a significant leap forward in the665

field of cryptanalysis, specifically in the domain of boomerang attacks on non-666

linear feedback shift register (NLFSR)-based block ciphers such as TinyJambu and667

KATAN32. The successful identification of enhanced boomerang distinguishers668

through our proposed methodology underscores its effectiveness. This discussion669

will delve into the implications of these discoveries, their broader relevance within670

the cryptographic landscape, and potential areas for future research.671
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Our approach employs a two-plane method in the Mixed Integer Linear Pro-672

gramming (MILP) search, a strategy aimed at optimizing efficiency and expand-673

ing the scope of coverage across rounds. However, it is worth noting that in674

certain instances, the success rate of the boomerang path identified through675

the MILP search may be relatively low. One possible reason behind this phe-676

nomenon is that, for the upper part (i.e., the Em part) of the cipher, a ladder677

or And switch at a specific round may transform into Trail switch due to the678

differential propagation through the lower part (E1). To present a more accu-679

rate model, assumptions considering equal differences in the opposite planes can680

be relaxed which can leverage on the Trail switches. This presents an intrigu-681

ing open problem: how can constraints be integrated into the MILP model to682

effectively bypass these paths and discover the optimal boomerang path? Ad-683

ditionally, there is room for improving the MILP model’s efficiency to facilitate684

the exploration of a larger number of rounds.685

Another avenue for future research lies in the exploration of unequal round686

allocations between Em and E1. Currently, our approach assumes an equal num-687

ber of rounds for both components. Investigating whether an uneven distribution688

of rounds can lead to the discovery of superior boomerang paths is an intriguing689

question that merits further investigation.690

The practical implications of the improved boomerang distinguishers are sub-691

stantial. They empower cryptanalysts with more potent tools to assess the secu-692

rity of cryptographic algorithms, potentially revealing vulnerabilities that may693

have remained hidden using conventional boomerang methods. Addressing the694

challenge of the vast number of variables in the MILP approach, we intend to695

explore the utilization of four planes within the MILP to refine the search for696

optimal boomerang paths through various switches, including other switches.697

Additionally, our future work will focus on systematically calculating the overall698

probability for amplified boomerangs, further enhancing our ability to analyze699

and assess the security of cryptographic systems.700

Finally, this research demonstrates the evolving landscape of cryptanalysis701

and underscores the need for continued innovation in the quest for robust cryp-702

tographic solutions. The challenges identified here offer exciting opportunities703

for future investigations, ultimately contributing to the advancement of crypto-704

graphic theory and practice.705

8 Conclusion706

To sum up, our study focused on a technique called boomerang attacks, which707

are used to break block ciphers. Specifically, we were interested in ciphers that708

use a particular structure known as NLFSR. We investigated different ways to709

make these attacks more effective, with a special focus on a type of operation710

called ladder or And switches.711

In our exploration, we made an interesting discovery. The usual method to712

calculate the likelihood of success in these attacks might not always give us the713

right answer. We came up with a new way to estimate this probability, which714
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turned out to be different from what was commonly thought. This finding has715

implications for how well these attacks can work in practice.716

We then introduced a new approach to these attacks. We concentrated on717

using ladder or And switches exclusively. This approach is somewhat similar to718

crafting a unique type of sandwich attack. By doing this, we were able to uncover719

vulnerabilities in NLFSR-based ciphers like TinyJambu and KATAN32.720

In conclusion, Our study does not just provide new insights into these boomerang721

attacks; it equips experts with improved strategies for making attacks more suc-722

cessful. In the future, these findings will play a vital role in enhancing the security723

of NLFSR-based block ciphers.724
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