ELCA: Introducing Enterprise-level Cryptographic
Agility for a Post-Quantum Era

Dimitrios Sikeridis*, David Ott!, Sean Huntley*, Shivali Sharma*, Vasantha Kumar Dhanasekar*,
Megha Bansal*, Akhilesh Kumar*, Anwitha U N*, Daniel Beveridgei, Sairam Veeraswamy*
{sikeridisd, dott, shuntley}@vmware.com

* VMware xLabs, Palo Alto, California, USA
T VMware Research, Palo Alto, California, USA
I VMware Incubation, Palo Alto, California, USA

Abstract—Given the importance of cryptography to modern
security and privacy solutions, it is surprising how little at-
tention has been given to the problem of cryptographic agility,
or frameworks enabling the transition from one cryptographic
algorithm or implementation to another. In this paper, we argue
that traditional notions of cryptographic agility fail to capture
the challenges facing modern enterprises that will soon be forced
to implement a disruptive migration from today’s public key
algorithms (e.g., RSA, ECDH) to quantum-safe alternatives (e.g.,
CRYSTALS-KYBER). After discussing the challenge of real-
world cryptographic transition at scale, we describe our work on
enterprise-level cryptographic agility for secure communications
based on orchestrated cryptographic providers. Our policy-driven
approach, prototyped in service mesh, provides a much-needed
re-envisioning for cryptographic agility and highlights what’s
missing today to enable disruptive cryptographic change at scale.

I. INTRODUCTION

Cryptography algorithms and standards (e.g., RSA, ECDH,
DSA) have become so widely deployed and deeply woven
into modern security solutions that it’s hard to imagine the
world without them. From data encryption and secure com-
munications to identity management and decentralized ledgers,
enterprise security solutions across the board rely on well-
designed and -implemented cryptography standards. Yet de-
spite our ubiquitous dependence on a handful of widely used
cryptography standards, it is surprising how little attention has
been given to the problem of cryptographic agility or securely
transitioning a system or application from one cryptographic
algorithm or implementation to another.

Historically, industry-wide transitions have been periodic
and ongoing. For example, MD5 was deprecated after crypto-
graphic attacks were discovered [[63]. It was replaced by the
SHA-1 standard initially announced by the National Institute
of Standards and Technology (NIST) in 2001 [7]. However,
subsequent collision attacks [66] led NIST to deprecate its use
in 2013 in favor of SHA-2, with certificate authorities follow-
ing suit in 2016 [12], [64]. Other historical transitions include
the broader adoption of ECC (e.g., ECDH), the deprecation
of DES and 3DES in favor of AES and its variants, and the
IETF’s evolving TLS standards—SSL 3.0 followed by TLS 1.0,
then TLS 1.1 then TLS 1.2 and now TLS 1.3.

The latest disruptive change to public key cryptography is
NIST’s introduction of post quantum cryptography (PQC). In-

tended to protect against attack by scaled quantum computers,
NIST announced four candidate algorithms for standardization
in July of 2022: CRYSTALS-KYBER for key-establishment,
CRYSTALS-Dilithium for digital signatures, and alternate
signature schemes Falcon and SPHINCS+. Complicating the
picture, these algorithms will likely be deployed in hybrid form
with existing RSA, EC, ECDH, DSA, ECDS standards before
eventually becoming de facto standalones.

Companies, organizations, and governments around the
world now face the problem of cryptographic transition in the
complex infrastructures and software deployments they oper-
ate. For instance, the Biden National Security Memorandum
(NSM-10) of May 2022 instructs a broad gamut of federal
and civilian agencies to provide annual reporting on progress
migrating to the new NIST PQC standards.

In this paper, we address the question of whether the
frameworks for cryptographic transition even exist for enabling
organizations to implement this transition at the size and scale
of modern enterprise computing. In particular, we consider the
domain of secure communications where enterprise transition
to PQC is especially needed to avoid data exposure to future
QC-enabled adversaries.

Traditional notions of cryptographic agility approach the
problem of transition from software architecture and endpoint-
based communication protocol points of view. The former
addresses a developer challenge: how to encapsulate cryptog-
raphy components in a software architecture and how to mod-
ify libraries without re-implementing the system. The latter
addresses how two endpoints can interact with one another to
negotiate the use of a new cryptographic standard as part of an
authentication and key establishment sequence. TLS’s cipher
suite negotiation is a well-known example, although the pattern
is reused elsewhere.

But while the developer-centric and protocol-centric no-
tions of cryptographic agility are obviously important, are they
adequate in addressing the holistic challenge faced by enter-
prises around the world — implementing the transition across
complex enterprise computing infrastructures? For example,
organizations deploy hundreds of applications, many of which
do not expose cryptographic configuration or do not support
PQC. Modern applications are increasingly deployed as the
co-mingling of multiple services and clustered compute hosts.
We believe that migration in these scaled domains represents

an important gap in applied cryptography.

In this paper, we address a complex, real-world challenge
facing enterprises around the world — one that, to our knowl-
edge, has not been addressed previously. We propose organiz-
ing this problem space through a new notion of enterprise-level
cryptographic agility. Our contributions are as follows:

* We identify an expanded set of requirements for crypto-
graphic agility, one that articulates the challenge from an
operator point of view and comprehends scale,

* We present a key building block for decoupling cryptographic
configuration from an application and supporting library exten-
sibility,

* We use this building block to create a distributed management

scheme that addresses the problem of orchestration in scaled
enterprise infrastructure,

* We implement our scheme in service mesh using a modified
version of Envoy proxy and evaluate overheads introduced by
our cryptographic abstraction layer.

II. RELATED WORK

In this section, we discuss prior bodies of work related to
the challenge of enterprise-level cryptographic agility. In recent
years, the notion of cryptographic agility has been associated
with multiple contexts and has expanded to include various
properties, fail-safes, and use-case-specific attributes. We note,
however, that academic research better defining the challenge
and examining the design space from a computer science and
security point of view is noticeably weak.

A. Cryptographic Agility

Brian Sullivan used the term in 2009 to describe an appli-
cation design practice that would allow developers to “replace
broken algorithms on the fly without having to recompile” [61]],
[62 While initially, he describes how such practice can
abstract .NET code from using hard-coded schemes like hash
algorithms (e.g., MDS5), he also makes the case that the same
logic can be applied to all cryptographic algorithm types, i.e.,
symmetric, asymmetric, hash-based message authentication
codes, or keyed hashes.

Informational RFC 6421 [44] defines cryptographic agility
as “the ability of a protocol to adapt to evolving cryptog-
raphy and security requirements”. The author also describes
it as a modular way to avoid disruptions in implementations
when algorithms need to be updated for security reasons.
RFC 7696 [27] presents guidelines for ensuring that security
protocols can transition from an old suite of algorithms to
updated versions or completely new schemes when desired.

NAS authors from the 2017 workshop on “Cryptographic
Agility and Interoperability” [43]][§ 3.1] also approach the
problem from the perspective of the protocol implementer.
Design concerns include the ability to add new schemes
following verification and designing protocols that sift through
old, new, or mandatory algorithms providing interoperability.

Uhttps://infocondb.org/con/black-hat/black-hat-usa-2010/cryptographic-
agility-defending-against-the-sneakers-scenario

In [43][§ 2.1], Kerry McKay from NIST expands the
notion of cryptographic agility to include: (a) real-time security
scheme selection based on the system’s security guidelines,
(b) the ability to add new cryptographic schemes, and (c)
the ability to retire obsolete or vulnerable cryptosystems
efficiently. Authors in [47] and [38] add various abstract
properties to the functional requirements of a cryptographic
agility framework: enforceability, heterogeneous environment
support, performance awareness, policy awareness, scalability,
and full automation.

B. Risk Assessment Frameworks

Another body of related work examines cryptographic
agility as a resource allocation problem from the prism of
enterprise risk assessment evaluation. Authors in [37] present
an enterprise-level framework that can proactively evaluate
risks due to cryptographic transitions and draft a response
strategy that will fit specific business needs. The proposed
response consists of a five-phase solution that includes threat
identification, available asset inventory, estimation of risk, risk
mitigation, and results in the development of an organizational
roadmap. Authors in [26] similarly introduce a maturity model
for inferring an IT infrastructure’s readiness for transition.

C. Implementation Frameworks

Prior treatments of cryptographic agility as a framework
for transition are scattered and cross-cutting. Notions are
seen in various spheres, from hardware modules to gateway
applications to abstraction at a service software layer, to name
but a few.

Several internet protocols adopt algorithm agility to enable
replacement due to newfound insecurities or to enable more
attractive alternatives, for example, new algorithms offering
smaller signatures or keys. Cases statues can be seen in
SSH [25], [9], [30] and TLS [54]], [20] where cipher nego-
tiation mechanisms have been integrated into the handshake
protocol managing communication setup. The scheme can be
used to enable the transition to PQC key exchange and authen-
tication schemes in a straightforward way [38]]. X.509v3 digital
certificate extensions provide an additional agility mechanism
for transition to PQC in PKI and network-based authentication
schemes [47]]. [42] looks at how DNSSEC has achieved partial
algorithmic agility at the moment.

On the Industry side, Senetas offers a hardware encryptor
that provides a Field Programmable Gate Arrays architecture
[S6] for network encryption and hardware agility. The solu-
tion, however, requires proprietary and dedicated hardware.
Cryptomatic offers a gateway that utilizes a cryptographic
control point to act as a policy manager and Hardware Security
Module service[l7]. The solution is, however, limited by
the cryptographic algorithm and keys used in each specific
application endpoint.

On the other hand, there is relatively little research on
practical crypto-agility approaches, especially in enterprise
contexts. In [36], the authors discuss security considerations of
a cryptographic API, while in [50]], the authors support the idea
of crypto-agility APIs that are developer-friendly in terms of
source code adjustments and maintenance. The authors of [[68]]

introduce eUCRIT a general-purpose API for Java aimed at
enabling crypto-agility for developers. CogniCrypt [34] is a
framework that simplifies the use of crypto APIs through an
Eclipse plugin. The framework generates secure implemen-
tations for simple cryptography-related programming tasks.
The authors in [53|] present EverCrypt, a provider of cryp-
tographic functionalities that offers an API for both choosing
among various implementations of an algorithm and choosing
between different algorithms for the same functionality. The
authors validate their design via case studies that consider the
performance of QUIC’s transport security and cryptographic
operations in Merkle trees.

Another body of related work has looked at cryptographic
libraries that simplify the use of cryptography via simpler
interface design, including Charm[8] for Python and Key-
czar [19]] for Python, Java, and C++, or Tink [10] for mul-
tiple languages. This is achieved through handling routine
tasks, default configuration support, exclusion of unsafe suites,
schemes, or algorithms, and reducing the volume of the inputs
for the developers. However, most of these schemes have
shortcomings, namely simplified use for limited operations
only. Tink and Keyczar support only signing, message authen-
tication codes, hybrid encryption, and shared key authenticated
encryption, while Charm only supports the latter. Finally, the
authors in [31] introduce high-level abstractions for crypto-
graphic operations to simplify their use with full declarative
configurations. The abstractions can be implemented on top of
any crypto library and language, leading to simplified writing
of security protocols with a small computational overhead.

Lastly, the recent release of OpenSSL 3.0 is a testament
to the need for additional implementation agility with the
introduction of providers that implement an abstraction
for accessing different algorithm implementations[2]. This is
achieved through OpenSSL’s high-level API, with providers
able to be loaded at any time, while parameter passing is sup-
ported in an implementation-agnostic logic. Some OpenSSL’s
3.0 providers are the legacy provider for algorithms that have
commonly fallen out of use, the default provider, the FIPS
provider for schemes that conform to the Federal Information
Processing Standard FIPS 140-2, and the base provider that
supplies the encoding for OpenSSL’s asymmetric cryptogra-
phy [65].

D. Post-Quantum Cryptography Transition

In anticipation of NIST’s quantum-resistant public key
standards [435]], more and more authors discuss how enterprises
should be planning for transition to a whole new era of
cryptography. Unsurprisingly, nearly all mention cryptographic
agility as a de facto path for transition.

In [51]], for instance, authors focus on a financial insti-
tution’s networking infrastructure and investigate its quantum
resistance as a function of its current cryptographic agility. The
importance of agility in cryptosystems is also highlighted in
[SO] from the domain of industrial automation where produc-
tion system components are becoming Web accessible.

[47] aims to inform enterprises of the post-quantum era in
cryptography and guide them through an organization roadmap

Zhttps://cspub.h-da.io/eucrite/

that includes a migration plan, actions on long-lived digital
assets, and embracing crypto agility. Similarly, Joseph et al.
in [28]] provide recommendations on the transition to post-
quantum schemes, with crypto-agility being the first men-
tioned. The authors suggest adopting abstraction layers on
toolkits that are managed centrally —e.g., crypto libraries
that abstract algorithms from infra teams— and underline
the need for embedding crypto-agility in any new standard
like 6G. Crypto-agility is also identified as a PQC migration
solution by Brian Lamacchia in [35] under the condition that
possible adversarial tampering and the introduction of new
attack surfaces are thoroughly investigated.

In [46], Ott et al. extensively discuss the challenges
associated with PQC migration, also considering complex
infrastructures. In addition, the authors reintroduce the notion
of crypto agility in the context of the upcoming public key
cryptographic algorithm replacement and expand its definitions
to eight possible scopes, among them being implementation
and compliance agility [46]. Finally, the authors in [68] offer
a survey of existing works on PQC and crypto agility.

While the discussion on PQC migration is intensifying,
none of the above literature offers detailed blueprints of how an
enterprise-level cryptographic agility scheme is implemented
or integrated into existing software solutions, which is pre-
cisely the gap that this work targets to fill.

III. ENTERPRISE REQUIREMENTS

For clarity, we define an enterprise as an organization (e.g.,
a small- or medium-sized business, a multi-national company,
a government entity, a university) overseeing a compute in-
frastructure in service of its day-to-day business functions.
For example, a large- or mid-sized company will employ
an IT operations team to procure and manage on-premise
data centers, cloud hosting, and service arrangements, client
devices for employees, edge office or retail deployments, and
more. Today’s enterprises, furthermore, make use of hundreds
(sometimes thousands) of software applications and services
to manage customer accounts, personnel, internal communi-
cations, web content, product support, and much more. Some
companies additionally develop in-house software, but most
rely on third-party suppliers.

As seen in section 2, cryptographic agility is often loosely
thought of as a system attribute: the ability of a system,
application, or protocol to securely transition from one crypto-
graphic algorithm or implementation to another. In this paper,
we propose defining crypto-agility as an architectural frame-
work for implementing cryptographic transition and change.
That discussion of crypto-agility can and should be a discus-
sion of architectural schemes for enabling change within a
system or application.

We furthermore make the distinction between monolithic
cryptographic agility frameworks and enterprise-level frame-
works. Prior work on cryptographic agility looks largely at how
a software library can be organized to facilitate changes by an
application developer or how a communication protocol can
be designed to add or deprecate a cipher suite within a secure
connection. This first essential building block for cryptographic
agility can be summarized as follows:

* Cryptographic Transition. Enables transition from one
cryptographic algorithm to another.

To add scale, we propose the notion of enterprise-level cryp-
tographic agility (ELCA) to address the problem of crypto-
graphic migration across larger units of enterprise infrastruc-
ture. We see ELCA as adding four key requirements to address
the problems of scale, control, policy, and monitoring:

* Enterprise Control. Enterprise operators are given control
over the cryptographic configuration of their infrastructure.

* Orchestrated Migration. Operators can migrate larger units
of infrastructure (e.g., data center, mesh) in coordinated ways.

* Policy Governance. Configuration can be expressed as poli-
cies that map infrastructure to cryptographic configurations.

* Monitoring/Auditing. Infrastructure configuration is trans-
parent and tools are available to monitor and audit configura-
tion state.

The above list of ELCA requirements reflect our belief that
the problem of cryptographic migration across complex infras-
tructures is an enterprise-level challenge that cannot be solved
by the aforementioned building blocks. As such, frameworks
should be designed to enable enterprise operators to have full
control over the cryptographic configuration. This may seem
obvious, but recall that agility in software library domains
largely serves developers, and many software applications
and services put cryptographic configuration in the software
provider’s hands. In fact, many enterprise operators find cryp-
tographic change daunting exactly because it means corralling
hundreds of software providers to support the change and with
very little control over the process.

We argue, furthermore, that only enterprise operators can
know the domain-specific considerations underlying configu-
ration decisions. For example, early PQC protections against
harvest now, decrypt later attacks imply an understanding
of where long-lived information assets flow over the wire
and where FIPS protection (without PQC overhead) is more
desirable.

The scope of migration for ELCA is expanded from single-
application or single-connection contexts to larger units of
infrastructure. For example, orchestrated migration may be
needed for a cluster of web or content caching servers, a
large pool of client devices, or a set of data centers dis-
tributed across North America. Alternatively, migration may
be applied to bundled software services hosted within private
cloud infrastructure or across services hosted by a public
cloud provider. Enterprises may divide their configuration
domains by geography, applications, data classification, logical
subnet, administrative domain, or myriad other schemes. A
common consideration will be compliance domains defined by
government (e.g., NIST) or industry (e.g., HIPAA, PCI DSS)
regulatory bodies.

To address large domains of configuration and to better aid
in defining principled configuration, ELCA frameworks should
support the creation, deployment, and maintenance of enter-
prise policies. A policy (discussed in Section [V)), encapsulates
a cryptographic configuration that will be deployed across a
unit of enterprise infrastructure. It might, for example, include

a designated public key cryptography algorithm, secure hash
function, acceptable TLS version, and more.

Finally, ELCA frameworks must provide monitoring and
auditing capabilities for an enterprise operations or SOC team.
First, the framework should allow an operator to know where
cryptography is used within an infrastructure and the current
configuration state. Second, it should provide verification ar-
tifacts — preferably those with cryptographic proofs ensuring
authenticity and integrity — that document configuration state
and reconfiguration events. These can be used for verification,
third-party auditing, and general debugging.

A summary of comparison points between monolithic and
enterprise-level cryptographic frameworks is shown in Tab. [I}

Application-level Enterprise-level

Admin Control: Developer Enterprise IT/SOC
Configuration: Direct Policy-based
Deployment: Manual Orchestrated
Monitoring: App-specific Infrastructure-wide

Table I: Comparing application-level and enterprise-level crypto-
graphic agility

IV. CRYPTOGRAPHIC PROVIDER

To address the above requirements, we have developed an
enterprise-level cryptographic agility framework based on the
notion of a cryptographic provider. The provider decouples
cryptographic services from the application and creates a con-
figurable control point for enterprise operators. It also provides
such features as routing calls across cryptographic libraries,
the use of policy-based configuration, and monitoring services.
In this section, we describe the basic architectural scheme,
including its key components and interfaces. In Section 5, we
will describe how the architectural primitive can be scaled to
support orchestrated agility across larger units of enterprise
infrastructure.

A. Architecture

A functional diagram and overview of the Cryptographic
Provider is shown in Fig. [2] A key point to note is the need
for application independence. As mentioned above, enterprise
control over cryptographic configuration implies the need to
decouple the cryptographic module from application control,
thus migrating configuration decisions from the developer to
the enterprise deployer and user of the software. While some
argue that developer decisions on behalf of a naive user
may be a good thing, we believe that developers frequently
lack the information they need to anticipate the configuration
needs of an enterprise. For example, an enterprise IT team
may have differentiated compliance requirements to observe
across deployment geographies, specific roadmaps for PQC
testing and migration, fast-paced remediation procedures for
an unexpected library vulnerability discovery, or even custom
cryptography libraries to integrate.

The decoupled Crypto Provider can be integrated with
the application in multiple ways. Our work has experimented
with a wide variety of configurations exploring both in-
process and out-of-process alternatives, statically linked and
dynamically linked modules, and proxy-based schemes that
provide cryptographic agility to key segments of the end-to-end
communication path. While configuration control is given to

Application
Application
Crypto Consumer/Caller
Crypto Consumer/Caller

Crypto Library

Crypto
Library A

Crypto
Library B

1
1
1
1
1
1
|
1
: Crypto Provider
1
1
1
1
1
1
1
1

Figure 1: (a) Conventional crypto library usage. (b) Application-
independent Crypto Provider framework.

r Crypto Provider

Interpreter Lib Crypto
Crypto Lib A BEGRIETYY-Y
Interpreter Lib Crypto
Crypto Crypto Lib B [RERIEIVA=]
Router

) Interpreter Lib Crypto
Policy Crypto Lib C SRV
Config

_____Adaptor _____1
Application GCP Interface

Application

Configuration
Instructions

Crypto Consumer/Caller

Management Interface System Services Interface

SecOps-admin Monitoring

Figure 2: Generic Cryptographic Provider Functional Diagram

the enterprise, application developers may or may not directly
integrate the Crypto Provider into their code. As described in
Section 6, our Envoy-based implementations combine several
of these alternatives in a proxy-based scheme that can be used
with unchanged legacy applications.

In what follows, we describe the internal components
and interfaces of the Cryptographic Provider by tracing an
application crypto call toward execution. An application can
directly interact with CP’s Application Interface, which ex-
poses a set of high-level cryptography interfaces that abstract
the complexities of the underlying crypto implementations
from the developer. The generic crypto service call will then
be passed on to the Crypto Router component, which is
responsible for a runtime decision on which crypto library will
service the call and the details of the call to be executed. This
decision will be made using a configuration lookup scheme.
There the CP maps information about the caller and the
cryptographic service requested to an available crypto library
and a specific algorithmic standard to be used (e.g., ciphers,
key sizes, protocol versions). For example, a TLS connection
should use TLS v. 1.3 and the ECDHE-RSA-CHACHA20-
POLY 1305 cipher suite in OpenSSL 1.0.2 (e.g., see Figure [
for a detailed illustration). In that sense, the CP should be
considered a cryptographic Policy Enforcement Point (PEP)
where policies defined at the management layer (see section [V]
for our definition of policy) are translated to detailed crypto
configurations ready to be applied to the different data-streams.

The crypto call and associated configuration information
are then passed to the Interpreter for the selected backend
library. The Interpreter translates the information to a cor-
responding low-level function call (or set of function calls)
in terms that are customized to the individual library. An
Interpreter mapping generic calls and configuration informa-

tion to a specific crypto library is needed but can be written
once and widely reused across CPs. The appropriate set of
functions are executed by the backend crypto library to perform
the requested crypto service, while the results of the call are
passed, through the component chain, back to the application
via the original API call.

To enable enterprise operators to create, delete, and update
cryptography policies and therefore adjust crypto configuration
on the CP, a Management Interface is introduced. The interface
is also used to manage crypto libraries, for example, adding an
additional OpenSSL version library or updating a library with a
patch to address a recently announced vulnerability. A Systems
Services Interface is also provided within the Cryptographic
Provider to manage reporting and auditing functions. With this
API, an enterprise operator application can inventory the policy
configuration of the current CP instance and obtain crypto call
statistics. The mechanism provides information in a digitally
signed fashion and leverages modern attestation methods.

Finally, to avoid the need for application code changes
(e.g., the case of legacy applications), there can be an optional
Adapter component. This component will translates a library-
specific crypto call to a generic Crypto Provider (CP) call and
thus acts as a shim between an application and the CP.

B. Proxy-based Crypto Agility

Since implementing cryptographic transition for legacy
applications is a crucial challenge for enterprise operators, our
approach to Cryptographic Provider design options explores
the use of proxies in data communications. In this scheme,
an application TLS connection is segmented or tunneled so
as to provide configurable cryptographic protections for data
traveling over a public network, through an untrusted provider
network, or across broadcast wireless networks. The CP-
enabled proxy can be placed in front of one or both endpoints
of the end-to-end communication.

A key benefit of this scheme is that it can be used to address
the widespread problem facing enterprise operators of what to
do with hundreds of legacy applications that do not support
quantum-safe cryptographic configurations (i.e., PQC). But the
scheme also addresses the problem of scalability in migration
since automation and scaling, as described in Section |Z|, can
be used to relieve operators of the burden of re-configuring
hundreds of applications on a per-application basis, each with
slightly different configuration schemes. We believe that proxy
schemes can be a crucial component in PQC migration broadly
as the industry slowly improves its support for PQC standards
across thousands of application domains and industry products.

V. SCALING TO ENTERPRISE-LEVEL AGILITY

In this section, we discuss how the Crypto Provider of
Section [[V] can be scaled to provide enterprise operators with
cryptographic agility for larger units of infrastructure. As
discussed in Section we’re looking to support orchestrated
migration and policy support in a way that addresses the prob-
lem of cryptographic migration in realistic enterprise operating
environments.

The challenge of scale may be thought of as a distributed
control problem where a centralized agent (i.e., the infosec op-
erator) must coordinate a replicated set of control points (i.e.,

Policy and Management Dashboard

(SecOps admin)

Audit and Monitoring
Application

: Crypto Provider
——— : Configuration Channel

: Monitoring Channel | Native CP Integration

,,

On-Premise Datacenter

‘ Service - ‘
L !

Cloud Provider A - US

: Service i l

Load
Balancer |1

L
[
N T =l
Balancer [-
[[L

Microservice Cluster

VM Cluster
@— sc K&

(v B
T L
g - &= |
im N 2
(- I
1 - P

C

Legac Legac:
Appy " Appy App

Container Pod

Cloud Provider B - EU e ———— r”

c

Legacy
yri K
i
Service — i 3 i
[

’
!
'
|
1
'
'
|
'
1
'
|
'
'
|
1
'
'
|
1
1
'

Load m ,ij:ff:fff:ff:ff:, —
Balancer Employee L
Endpoint -VPN m P

T

Service —— i,f‘

FE P gy g L e

App

App

Figure 3: Enterprise-scale CP deployment: On-Premise Datacenter (left), Cloud Providers A and B (center), Edge Deployments (right)

Cryptographic Providers) distributed across the infrastructure.
Our work draws upon extensive literature in this space to define
a distributed control plane supporting a centralized dashboard
for infrastructure operators and automated mechanisms to
manage configuration, policy definition, and monitoring across
CP nodes.

Fig. [3] illustrates the framework across three illustrative
modern Enterprise environments: an on-premise data center,
a public cloud provider, and an edge computing environment.
At the upper left are the administrative applications serving
the centralized operations team: the Policy and Management
Dashboard application which provides an enterprise operations
team with tools for defining custom units of infrastructure
and policies that will govern their cryptography configuration
and the Audit and Monitoring Application which will provide
inventory, monitoring, and audit services across the infrastruc-
ture. With these tools, SecOps admins can create and transition
cryptography configurations based on the application context,
differentiated data protection needs, geographic location, reg-
ulatory considerations (e.g., FIPS), and more.

Within the on-premise datacenter, we observe that Crypto
Providers can be deployed in various ways to provide con-
figurable protection for data in motion. A CP may be de-
ployed within a network demilitarized zone (DMZ) on behalf
of external-facing services and leveraging secure tunnel or
proxy-based communications. It may be placed alongside
web application firewalls (WAFs) or load-balancers, which
are also common staples in enterprise networks. For modern
applications, CPs can be instrumented within microservices
and or within individual VMs as part of the operating system
communications stack. Finally, a legacy application can use a

CP either through code native application support or the use
of a proxy mechanism (see Section [VI| for our prototype).

The same range of options extends to cloud provider and
edge computing environments, as shown in the middle and
to the right of Fig. 3] Within the former, Crypto Providers
may be placed at load balancers, WAFs, within containers,
or directly within an application architecture. For the latter,
CPs may be used within enterprise tunnel or proxy software,
integrated into VMs or containers, used as part of a service
mesh proxy scheme, or used directly with a specific application
architecture. In addition, the proposed CP component can
be easily modified to be integrated into databases, or even
handle low-level crypto calls outside of the narrow encrypted
communication spectrum.

Our discussion here is necessarily high-level, and the
details of any given context of CP deployment and integration
warrant further description. But we argue that the use of Crypto
Providers can be integrated into many well-studied and widely
deployed components within enterprise networks.

A. Policy Handling

In this section, we describe our notion of a cryptographic
policy, the process of distributing that policy to CPs, and the
lifecycle management behind enterprise configuration manage-
ment at scale.

Broadly, a policy is created by the enterprise security
operator and is deployed across a cluster or grouping of
Cryptographic Providers. We refer to this distributed config-
uration scheme as the management plane. Note that a given

o o) 1
R GBI "groupNane"s "My Envoy Group", 1
“policyDescription”: "FIPS Quantum Resistant Policy", IUEECIARES B Ty "app_configs” : [
e T T s & “groupDescription”: "Group of WMs", {
tlsMinVersion®: "TLSv1_2", “nodeSelectionCriteria": [“app_id" : "test_app",
tlsMaxVersion": "TLSv1_3", { “downstream_context" : {
“certType": "X509", "memberType": "Datacenter_Nodes", "library_name" : "openssl_pqc",
“cipherSuites": [“"key": "name", "library_version" : "1.0.2",
"TLS_p384_kyber768_rsa3072_dilithium3_WITH_CHACHA20_POLY1305_SHA256" “value": "On_Premise" “tls_minimum_protocol_version" : "TLSv1_2",
I 9 “tls_maximum_protocol_version" : "TLSv1 3",
“groups": [{ “cert_type" : "X509",
"p384_kyber768" “memberType": "Cluster_Nodes", “cipher_suites" : ["TLS-p384-kyber768-rsa3072-dilithium3-WITH-CHACHA20-POLY1305-SHA256"],
1. . “"key": “name", - “"groups" : ["p384_kyber768" 1,
‘“”E;;i";;z;l‘x;’;;:t 60 “value": "WM_Cluster” “server_sni_names" : ["example.com"]
- },
‘]';nJNamcs"; [1, ’ “upstream_context" : {
“example. con" “"appSelectionCriteria”: [“Ubrary_name" : “openssi,
1 { "library_version" : "3.0",
b “memberType": "ALL_Envoy_Apps", “tls_minimum_protocol_version" : "TLSv1 2",
“upstreamAttributes": { “key": “app", “tls_maximum_protocol_version" : "TLSv1 3",
“"tisMinVersion": "TLSv1 2", “value": "envoy" “cert_type" : "X509",
“"tlsMaxVersion": "TLSv1 3", } “cipher_suites" : ["TLS-ECDHE-RSA-WITH-CHACHA20-POLY1305-SHA256" 1,
“certType": "X509",] “curves" : ["X25519" 1,
“cipherSuites": [) (b) “"server_sni_names" : ["x"]
“TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256" }
1,
“curves": [R
| X25519° 7) (d)
0 “policyMappingName": "PQC FIPS Mapping",
“complianceRequirement": [wpolicyName": "pqc-fips-policy"
"FIPS_140-2" '
1 “groupName": "My Envoy Group"
“sniNanes": [} (©)
g
1
- @ Set

Figure 4: Illustration of policy-related management structure samples: (a) Single policy definition, (b) Cryptography group, (c) Group-Policy

Mapping, (d) Get policy updates response

CP receives only necessary configuration information and is
not necessarily aware of the overall global policy set by the
operator for the infrastructure as a whole.

The proxy-based approach we explore positions the Crypto
Provider between the production Internet and an application.
Hence, a cryptographic policy must define the configuration to
be used by two different communications interfaces: incoming
connections from a remote endpoint and outgoing connections
from the application server. (In Envoy parlance, these are
referred to as “downstream” and “upstream”, respectively.)
Fig[] shows an illustrative policy.

In section (a) of the policy, the TLS configuration is defined
for outbound traffic (downstream), including the cryptographic
library and version to be used, the TLS protocol version(s)
that are acceptable, the cipher suite and elliptic curves to be
used, any compliance requirements, the cert type to be used,
and so on. In addition, as part of the policy, the operators can
specify Server Name Indications (sni) or specific IPs for a more
fine-grained application of the policy on incoming connections.
Similarly, the TLS configuration is also shown for the backend
traffic (upstream) with a similar set of configuration items.

Note that the policy as a whole is titled ’pqc-fips-policy”
because it requires the use of PQC on the inbound configura-
tion but fips-only configuration on the inbound configuration.
The idea is to protect information assets as they are transmitted
across the production internet while not requiring PQC on the
internal communication with the application server.

Section (b) of the policy defines the infrastructure domain
over which the policy will be applied. In other words, it names
the set of CP nodes that will receive the configuration, includ-
ing both the CP nodes themselves and the application end-
points that they will be communicating with. In our example,
the policy refers to selection criteria with member components
defined using a key-value format. Here, the example refers
to a node as any machine equipped with the proposed CP
component that runs cryptography-enabled applications. The

application is simply a test application referred to as “gcltest”.

Finally, section (c¢) of the policy creates the mapping
between the cryptographic configuration and the unit of in-
frastructure to be configured. It maps the defined policy name
(’pgc-fips-policy”) to the CP node group ("Dev Group”).
Note that the scheme supports the creation of many different
configuration policies and infrastructure groupings and that an
operator can select mappings in any way required to meet the
crypto configuration requirements of their infrastructure. For
example, policy mappings may be used to cover each of the
infrastructure types seen in Fig[3] We envision a user-friendly
graphical application ("Policy and Management Dashboard” in
B) to aid the operator in creating and managing policies.

Section (d) of FigH]shows the report generated by querying
a configured CP using systems Services Interface described in
Section 4.1. Once again, we envision a user-friendly graphical
application ("Audit and Monitoring Application” in [3) to
aid the operator in querying the current configuration state
for a given infrastructure grouping or specific CP node and
application pairing.

VI. IMPLEMENTATION

In this section we present a prototype implementation
of our proposed crypto agility framework in the context of
Envoy Proxy [32]. Note that our work implements a subset
of the proposed interfaces—specifically those that enable an
operator to characterize performance for new cryptographic
configurations.

A. Cryptographic Provider API

The Cryptographic Provider must expose a generic set of
interfaces that service a wide range of application cryptography
calls. Our prototype has focused on those interfaces required
to implement cryptographic operations in secure communica-
tions, and specifically the cryptographic libraries needed for
SSL/TLS. Table [summarizes the minimal set of API calls

Functionality

CP API

OpenSSL Mapping

GnuTLS Mapping

Server context
creation

gcl_create_server_context

SSL_CTX_new

SSL_CTX_use_certificate_file
SSL_CTX_use_PrivateKey_file

gnutls_certificate_allocate_credentials
gnutls_certificate_set_x509_trust_file

gnutls_certificate_set_x509_key_file

SSL_CTX_set_verify

Session creation
per socket
(Server)

gcl_create_session
gcl_read

gcl_write

SSL_new
SSL_set_fd
SSL_accept
SSL_read
SSL_write

gnutls_init
gnutls_credentials_set
gnutls_transport_set_int
gnutls_handshake
gnutls_record_recv

gnutls_record_send

Client context creation

gcl_create_client_context

SSL_CTX_new

Session creation
per socket
(Client)

gcl_create_session
gcl_read

gcl_write

SSL_new
SSL_set_fd
SSL_connect
SSL_read
SSL_write

gnutls_init
gnutls_server_name_set
gnutls_session_set_verify_cert
gnutls_transport_set_int
gnutls_handshake
gnutls_record_recv

gnutls_record_send

Modify Cipher
Key exchange
TLS version

Not exposed
(Managed through config)

APIs available

APIs available

Cert Validation
CRL/OCSP stapling

Not exposed
(Managed through config)

APIs available

APIs available

Non-blocking
Read/Write

gcl_create_session_async

gcl_read_async

SSL_read

gcl_write_async SSL_write

gnutls_handshake
gnutls_record_recv

gnutls_record_send

TLS session Not exposed

management

SSL_CTX_set_session_cache_mode

SSIL_set_session

Table II: Abstracted CP API and Functionality Mapping

that were created to support the functionality of TLS-based
client-server communications. Note that our CP component
reduces the number of cryptographic calls made by the actual
application as the individual functionality is implemented
under the hood (i.e., by the CP as it translates a generic call
to a library-specific call or sequence of calls).

In our implementation, the application consumes the CP
as a shared library, while the exact configuration instructions
are provided by a configuration file that is loaded during
initialization. (This emulates future management interface op-
erations.) This is a JSON file that contains the specific library
to be loaded, along with information related to cryptographic
operations such as key-value pairs that vary depending on the

’ OpenssL D

Load Library into memory:

lApphca(\onl ’ CP shared lib l lCryplo—Conﬁgl

T T T
1 1
—— InitLibrary ———] 1
Fetch library info—>l

Return success/failure

e B

—— InitServer ———]
Identify certs/ciphers for server—p

—————— Certs/ciphers IDs ======

Load cert, keys ———————————————%
1 1

SO SV SN SR

Figure 5: Sequence diagram of the CP component prototype
consumption in a Server establishment use-case.

utilized library. Following that, the specified crypto library
is dynamically loaded at runtime from the predefined path.
Fig. E] shows the initialization steps, and the relations between
the application, the generic cryptography provider, and the
underlying libraries.

Initiating a server with a cryptographic library typically
requires a certificate and an associated private key. In our
CP prototype, these two parameters are provided by the CP
layer, while the certificate’s common name (CN) is provided
by the application layer. Using this name, the certificate can be
extracted from the certificate repository available at the node.
The certificates for a given node are fetched from the policy
service, a mechanism we have simplified by using a simple
configuration file. The overall intention is that no information
is needed from the application as the CP configuration is de-
coupled entirely from the application code. The CP certificate,
for example, can be updated independently. This allows a
SecOps admin to switch from one crypto implementation to
another using the Management Dashboard.

B. Envoy Proxy Integration

1) Understanding Envoy Proxy: Envoy is an open-source
proxy designed for high-performance large-scale service-mesh
deployments[33]], [22]. In this context, it is a self-contained
process that runs as a sidecar alongside a specific service or
application server. The communication mesh created by all the
sidecars enables applications to exchange messages without the
need for network topology information. Envoy is widely used
for application layer load-balancers, ingress/egress proxying,
HTTP application layer routing, and TLS termination. It is

also popular for its management, service discovery, and load
observability functions within edge computing environments.

Envoy is typically deployed in front of application servers
that serve clients’ requests. The main Envoy building blocks
that guide client requests to their respective endpoints are
Listeners, Routes, and Clusters. Listeners are essentially named
network locations (e.g., Unix domain sockets, ports, etc.)
where clients will make requests or connect. Routes are
attached to listeners and use rules to map virtual hosts to
Clusters, which are groups of logically similar upstream hosts
which manage requests in a load-balanced manner. Finally,
traffic is diverted to an Endpoint (i.e., physical IP address)
within a Cluster.

Finally, critical to Envoy’s request handling architecture is
the notion of Filtersﬂ which are a set of stages that requests go
through at different abstraction layers. There are three types of
filters that form a hierarchical chain in request handling. First,
Listener filters access raw data and manipulate metadata in
Layer 4 connections. For example, the TLS inspector filter is
able to identify a connection’s encryption scheme and extract
TLS attributes. Network filters that work on raw data are in
the transport layer. For example, the TCP proxy filter can
route client connection data to upstream hosts and generate
connection statistics. HTTP filters operate at the application
layer and are used for all HTTP-related processing, from
manipulating HTTP requests/responses to finalizing request
route selection to clusters.

2) Prototype Implementation : Request handling in our
prototype follows the Envoy functionality. A TCP connection
is accepted by an Envoy Listener, which applies filter chain
actions. There may be multiple filter chains per Listener to
support different functionalities, different IP ranges, and spe-
cific server name indication (SNI) groups or ports. Associated
with each chain is a transport socket that is in charge of reading
and writing into the network buffer and keeping track of all
lifecycle events for the TCP connection.

Support for encrypted tunnels is handled by Envoy’s TLS
transport socket, which first decrypts data read from an
incoming TCP connection to create a decrypted stream for fur-
ther processing and then encrypts outgoing data streams before
writing them to the appropriate TCP socket. As such, it is the
TLS transport socket that handles TLS handshakes for
Envoy in both directions.

Our initial Crypto Provider prototype within Envoy was
statically linked to BoringSSL, but later work introduced
a dynamically linked mechanism and multiple versions of
OpenSSL intended to offer enterprise operators configuration
and compliance options. In both cases, the integration is
achieved through the TLS transport socket that ex-
poses abstract interfaces to handle incoming and outgoing
traffic.

Fig. [6] shows our integration of the CP into Envoy. The
TLS transport socket natively consumes a subset of BoringSSL
APIs to satisfy a set of configuration requirements for handling
the traffic. In our prototype implementation, these API calls
were replaced with the equivalent CP calls (see Table [[I) to

3https://www.envoyproxy.io/docs/envoy/latest/api-v3/config/filter/filter

Crypto Provider

Interpreter
OpenSSL Ope
Config A
TLS Crypto _| terpreter
— 1/0 > transport —»| Router BoringSSL Bo
socket config B
Envoy Interpreter oa
0QS OpenSSL Ope
config C

Management Interface

1
1
[Cconfig A] [[configB] [[configC |

Figure 6: Cryptographic Provider Integration into Envoy

accommodate the equivalent functionality. Our initial proto-
type offers support for OpenSSL, BoringSSL, and the post-
quantum crypto-enabled variant of OpenSSL known as OQS
OpenSSL [52].

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed architecture
for enterprise-level cryptographic agility. First, we measure
the overhead introduced by the Crypto Provider using an
implementation for Envoy Proxy. Next, we examine the full
distributed architecture using a modern application driver
within the context of a Kubernetes cluster and a service mesh
architecture.

A. Cryptographic Provider Overhead

In this section, we evaluate the performance impact of
introducing a cryptographic services component into the end-
to-end TLS communication path. Our experimental testbed
consists of a remote AWS instance running Ubuntu 18.04 on
an x86_64 hardware platform equipped with an Intel Skylake
Xeon (4 cores at 2.0 GHz) and 16 GB RAM. We utilize
two Envoy variants: (a) the original open-source Envoy 1.20.4
that utilizes BoringSSL, and (b) our CP implementation that
made use of Envoy 1.20.4 and two additional cryptographic
libraries, namely the OpenSSL 1.1.1m, and the PQC-equipped
OQS OpenSSL 1.1.1K*| Additionally, we made use of two load
testing/benchmarking utilities to measure the overhead of our
proposed solution in client-server communication scenarios,
namely SiegeE[24], and Nighthawkﬁl].

We used Siege to simulate multiple clients and set up con-
current TLS connections with web server endpoints running
on four remote cloud instances. We picked clients that were
relatively close to the server to emulate location-based content
hosting and services. The clients were uniformly distributed
across the four locations. Simultaneous TLS connections were
attempted with the server for one minute. The requested web
pages had a size of 0.6KB, while for all experiments, we
utilized ECDH with the NIST P-256 curve for key exchange,
and RSA 2048 for authentication. The aim was to capture the
request rate that the server was able to handle, i.e., the number
of successful transactions per second. In addition, we captured

“https://github.com/open-quantum-safe/openssl
Shttps://www.joedog.org/siege-home/
Shttps://github.com/envoyproxy/nighthawk

=0b=—===06=-0="0=0--0--0- -

[o]

o

o
T

D
o
(=]
T
|

n

o

o
T

—— Classic Envoy
—0- Crypto-Agile Envoy (OpenSSL)
L L L

Transactions/sec
N
o
o

0 Il Il
0 200 400 600 800 1000

Number of Clients

Figure 7: Transaction rate vs Number of consecutive clients

—0— Classic Envoy
—0- Crypto-Agile Envoy (OpenSSL)

N
T

—_
-

TLS Handshake
Failure Rate (%)
o
(6)]

0 200 400 600 800 1000
Number of Clients

Figure 8: TLS handshake failure rate vs Number of consecutive
clients

the server’s overall availability by measuring the number of
TLS handshake failures during the load-testing period.

Fig. [7] shows the achievable transaction rate for the two
different configurations of Envoy as the total number of clients
increases from 20 to 1000. In addition, Fig. |§| shows the asso-
ciated failure rate of TLS handshakes for an unmodified Envoy
server versus a crypto-agile server using our CP component.
During periods of low load, the performance of both versions
is identical. However, as the saturation point of the server
is reached, we observe a relatively minor impact to the CP-
enabled version as its transaction rate is reduced by ~4% and
the TLS handshake failure rate is increased by ~7%.

Next, we used Envoy’s Nighthawk tool to examine the
CP’s performance impact on client request rate. We used a
client request rate of 1000 requests per second. Fig. [0] shows
the cumulative density function of response times for the
different configurations of Envoy tested. Again, we observe
that responses for the crypto-agile version of Envoy are only
marginally slower compared to unmodified Envoy with a
difference of ~5 msec in the 50" percentile.

Overall, our measurements indicate that the introduction
of CP-based request handling has only a moderate impact on
performance at the highest load levels. Cryptographic agility
using a proxy-based approach appears feasible and without
undue tradeoffs for the flexibility and features introduced.

B. Modern Application Integration

In this section, we demonstrate and evaluate our full
cryptographic agility framework in the context of a real-world
application architecture.

Modern cloud applications rely on the microservice archi-
tecture where internal functional components are organized
into loosely coupled services that communicate via remote

= Classic Envoy
= =Crypto-Agile Envoy (OpenSSL)

1

, -
0.9995 1
0.999 1
0

0.02 0.04 0.06 0.08 0.1

0.05 0.1 0.15 0.2 0.25
Envoy response time (sec)

Figure 9: Empirical CDF of Envoy response times

API calls [[18]], [39]. Microservices are commonly implemented
using Linux containers [[13]] while automatic deployment, man-
agement, and scaling is done through Kubernetes [4]], [L6].
Communication between microservices is handled by proxy-
based mediator services known as sidecars. Recently, sidecar
connectors have become platforms for enabling service-to-
service communications (i.e., a service mesh [[15]], [40], [41]),
offering security, monitoring, failure handling, and other func-
tions.

Our prototype implements these concepts using the ACME
Fitness Store application [3|], a showcase open-source, dis-
tributed application in which every function is a microservice.
Fig. [T0] shows the architecture, including the communication
links between microservices. Service-to-service communica-
tions are mTLS [67] encrypted using Tanzu Service Mesh
(TSM) [6], [, which is based on Istio. All services were
deployed as part of the same Kubernetes cluster residing on
Google Cloud Platform and managed by the Tanzu Mission
Control service. Cluster on-boarding into the Tanzu Service
Mesh automatically injects Envoy containers into each mi-
croservice pod. Note that the attached sidecars included our
Cryptographic Provider prototype (see Section [VI) with the
same Envoy and crypto library versions as mentioned in
Subsection [VII-A] Envoy sidecar services are given an upper
resource limit of 2 CPU cores and 1 GB of RAM.

During the default service mesh onboarding process, the
developer normally selects an mTLS configuration for the end-
to-end encryption of application communications. However,
our prototype modifies Envoy to enable policy-based TLS
configuration at any time. To enable such policy orchestration
across sidecars, we further modified Tanzu’s Management
Plane to create a pipeline that transfers crypto policy infor-
mation from the admin through the TSM controller to each
Crypto Provider’s management interface. Specifically, a secu-
rity administrator will create a cryptography policy capturing
the low-level configuration details for incoming and outgoing
sidecar connections. This policy is applied to a targeted set
of microservices through a Crypto Policy Mapping as seen in
Section [V

To communicate the Crypto Policy Mapping to CP-enabled
Envoy sidecars, we utilize the Kubernetes Custom Resource
Deﬁnitionsﬂ a mechanism that allows for retrieval and storage
of structured data. The Crypto Policy Mapping is passed to the
backend service running in the TSM Management Plane and
gets stored as a Custom Resource Definition in Management

7https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/

| Tanzu Service Mesh Controller |

!

Crypto Policy ‘

LB Edge
WAF/FW/LB

|

Tanzu Service Mesh Gateway

f | Frontend |1
: Service | !

! Order
H Service
Envoy Sidecar
Order DB Cart Redis Catalog DB
Service Service Service

Figure 10: ACME application architecture

—y

= =Lk e
J = e
w 08 : 1
[m) 4
(;) 06 r, R B
8 T
504+ R 1
IS) 1 CP/Service
Wo2r- s F - = 6 CPs/Services |
o 11 CPs/Services
0 I - Ly I I T T
20 25 30 35 40 45 50 55
Policy Enactment Time (sec)

Figure 11: Empirical CDF of new Crypto Policy enactment times

Plane’s datastore. A watcher service on the TSM Management
Plane replicates the Custom Resource Definition to the Control
Plane as soon as a new instance of Policy Mapping is found. In
turn, the TSM Controller service reads a new Policy Mapping
Custom Resource Definition and translates it to an EnvoyFilter,
a mechanism that customizes sidecar proxy configuration
Finally, the new Mapping is passed to the Istio Pilot Agen
which translates the EnvoyFilter to an Envoy cryptographic
configuration and applies it to the target microservice sidecars.

1) Addressing ELCA Requirements: In this section, we
briefly point out how our prototype addresses the ELCA
requirements described in Section 3. Enterprise administra-
tors are given configuration control through the Tanzu Ser-
vice Mesh Controller interface. As described in the previous
section, differentiated configuration policies may be created
and pushed to any arbitrary microservice within the ACME
Fitness Store application through a Policy Mapping. Orches-
trated migration may be implemented through the creation of
new policies and mappings that are automatically loaded by
the TSM Management Plane. Finally, monitoring is handled
through the TSM management and control planes which, for
now, simply produce detailed logs. In addition, Kubernetes
container pods are able to produce monitoring logs, while
Envoy offers the capability of Telemetry Filters. Future work

8https://istio.io/latest/docs/reference/config/networking/envoy-filter/
“https:/fistio.io/latest/docs/reference/commands/pilot-agent/

11

etps{/35.238.170.69

Certificate Viewer: example.com falcon_CA

nnnnnn Details

Certificate Hierarchy

example.com falcon_CA

Field Value

0ID1.39999.3.1

NEW ARRIVALS

Free shipping on all

Figure 12: ACME app page authenticated with the PQC Falcon-512
digital signature algorithm

will focus on the CP System Services API on each sidecar
to support a complete auditing and monitoring structure as
imagined in Fig. 3]

2) Demonstrating Scaled Orchestration: A major feature
of our approach, as mentioned above, is the automated de-
ployment of enterprise operator-defined configuration policies.
To showcase the practicality of the approach, in this section,
we present measurement data on the time taken to push a
configuration policy across multiple CPs. More specifically,
we measure the delay between the command to update a
cryptographic policy and the actual enactment of the new
crypto configurations in TLS. Our experiments compare the
number of CPs configured within the ACME application,
where each CP is associated with a different microservice.
In each policy change the OQS OpenSSL 1.1.1k library and
the regular OpenSSL 1.1.1m are enforced alternately, and for
each case, we performed 100 policy transitions.

Fig. [T1] shows the empirical cumulative density function
of the crypto policy enactment times for simultaneous policy
change of 1, 6 and 11 sidecar CPs. In the latter case, the entire
ACME application is configured, including the CP integrated
into the TSM Gateway service. As seen, the actual time to
make the crypto transition is a function of the number of
constituent CPs (microservices). Specifically, when moving
from setting policy to one provider (single microservice) to
six of them, we observe a 4% increase in the median case
of enactment duration and a 5% in the 95" percentile. In
addition, when configuring the whole ACME application (i.e.,
all 11 microservices/CPs), the median is increased by 11%,
while in the 95" percentile the policy enactment time is
increased by 14.4% in comparison to the single CP case.

The takeaway here is, in contrast to the manual configura-
tion of cryptographic libraries within a microservice infrastruc-
ture, our orchestrated agility framework handles configuration
scaling with relative ease. Future work can consider even larger
scaling factors and potential optimizations which were out of
scope for our initial prototype.

3) Case Study: Enterprise PQC Migration Testing: In
this section, we illustrate how our proposed cryptographic

agility framework might be used by an enterprise to facilitate
migration testing for quantum-safe cryptography. In practice,
an infosec team might begin migration by provisioning a
realistic staging environment to deploy PQC libraries and
investigate impacts across specific applications. They might
want to compare the impacts of different PQC algorithm
settings and roll back configuration changes at will. Our ELCA
framework easily facilitates this through features described in
Sections [VIl and

In the case of our deployed ACME application, a simple
policy update was generated, changing the cryptographic li-
brary from BoringSSL (i.e., the Envoy default) to the OQS
OpenSSL alternative. Specifically, this translates to conven-
tional ECDH with the X25519 curve and the newly selected
quantum-resistant Falcon 512. Fig. [I2] shows the ACME a
frontpage as accessed by the OQS Chromium web browse@
that is able to support the majority of the new NIST PQC
schemes[45]. (Note that the page warnings are due to the
fact that the utilized certificate is self-signed.) The certificate’s
Object Identifier (OID) confirms that it was signed with
Falcon 51 To the best of our knowledge, this is the first
microservices-based app able to swap cryptographic schemes
and support mTLS with pure PQC algorithms.

Finally, we further demonstrate the flexibility in setting
specific crypto configurations, especially in the case of the
various PQC algorithm combinations available today. To do
so, we setup the PQC-equipped OQS CURL applicatio to
request data from the ACME frontpage from a client-side
by specifying specific crypto algorithm configurations. The
client was a local host running Ubuntu 18.04 on the x86_64
architecture, equipped with an Intel i7-8665u that utilized two
cores at 1.9 GHz each, and 4 GBs of RAM. The average
round trip time between the client and the ACME -cluster
was measured at 64.2 ms. In all cases, we configured the
ACME app through a policy update to only accept incoming
connections with specific key exchange/signature algorithm
combinations. Apart from conventional crypto schemes, we
considered the PQC algorithms selected by NIST [45], namely
Dilithium (dil2) [21]], Falcon (fal512) [23]], and SPHINCS™
(sph128) [L1] for authentication, and Kyber [14] for key-
exchange. In addition, since the majority of existing PQC mi-
gration strategies consider the use of hybrid key exchange [60],
[48], where conventional key agreement (i.e., ECDH with
p256 curve here) is combined with a PQC KEM algorithm
(Kyber) to principally protect against “record now, decrypt
later” attacks [47]].

Fig. [I3] shows the 50th and 95th percentiles of the time
to the first byte for the examined cryptographic policies. We
observe that our measurements are in agreement with more
extensive PQC performance studies found in literature [48]],
[591, 1581, [49], [29]. The main differentiating factor concern-
ing performance lies to the different certificate sizes among
the authentication algorithms. For instance, SP generates larger
certificates and about ~ 30 times more authentication data
during the TLS handshake [57] leading to more roundtrips,
and thus a larger TTFB for the client.

10https://github.com/open-quantum-safe/oqs-demos/tree/main/chromium
1See Codepoints and OIDs section in [69].
12https://github.com/open-quantum-safe/oqs-demos/tree/main/curl

12

0.35

T 03 [IMedian
3025 . o5t PQGC-only Hybrid KEM
o U.
=
@ 02
®
ic 0.15
2 o1
£ ﬂ
= 0.05

0

N W (AT R W A 0P
‘%3(?9 63'\?;6\"2, 1\,&\6 ,Q,Q‘(\\ 6‘\@’6 "L’S\")\B ,59\(\\
ol SRR S o
oF AT N g o 0w
Q QQ’ Qrf.) -

Figure 13: Time to First Byte for different cryptographic policies

The point here is to demonstrate that such experiments
are readily enabled by the cryptographic framework described.
Both infrastructure-wide impacts and in-depth studies of algo-
rithms and parameters, for example, are now easily managed
given an agile framework and policy-driven automation. Enter-
prises now have a productive framework making the challenge
of PQC migration approachable.

VIII. FUTURE WORK: SECURITY PROTECTIONS

The cryptographic agility framework presented in this
paper will require additional work to address security protec-
tions for the components and mechanisms we describe. These
protections represent a significant body of forthcoming future
work, and we describe a few preliminary directions below.

The Cryptographic Provider scheme described in Fig. 2 will
need robust access control protections that enable exclusive
access for security operators interacting with the Management
Interface in order to set policy configuration and manage
cryptographic libraries. Operators will also need a certificate
management framework to address, among other things, au-
thentication between CPs and backend sidecars. We believe
that existing technologies can be leveraged to address these
issues since we are not the first to face the challenge of
access control in distributed proxies (e.g., load balancers, web
proxies).

Mechanisms are needed to verify the authenticity and
integrity of CP modules implementing configuration manage-
ment. We believe that confidential computing attestation [55]
and associated building blocks could be leveraged as robust
verification mechanisms. In such approaches, cryptographic
proofs signed by trusted agents or platform components are
used to verify the integrity and authenticity of software com-
ponents, configuration data, and the parties involved.

Another area to be addressed is denial-of-service (DDoS).
DoS attacks could be used to block CP availability. Notice that
this can happen when the application is not able to reach the
provider to perform crypto operations, or when configuration
instructions from the management plane cannot reach the CP.
Once again, we believe existing approaches can be leveraged
since other distributed schemes share the same threat.

IX. CONCLUSION

We have argued that traditional notions of cryptographic
agility, while providing essential building blocks, are hardly

adequate for addressing the challenges facing modern enter-
prises in transitioning to quantum-safe public key cryptogra-
phy. Our work highlights what’s missing and formulates an ex-
panded vision that we refer to as enterprise-level cryptographic
agility. We propose an orchestrated, proxy-based architecture
that highlights key features and requirements in enabling and
managing cryptographic migration at scale. Some of these
include policy definition and governance, orchestrated con-
figuration management, monitoring and auditing capabilities,
and enterprise administrative control. Using service mesh, we
demonstrate how future cryptographic agility frameworks can
be constructed to better address the real-world needs of scale.

[1]

[2]

[3]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

“Nighthawk: A 17 (http/https/http2) performance charac- terization
tool,” |https://github.com/envoyproxy/nighthawk, 2022, Web page. Ac-
cessed 2022-02-06.

“Openssl 3.0.0 design,”
OpenSSL300Design.html, 2022.

“Acme fitness store,” https://github.com/vmwarecloudadvocacy/acme_
fitness_demo, 2023, Web page. Accessed 2023-02-06.

“Kubernetes: Production-grade container orchestration,”
https://kubernetes.io/, 2023, Web page. Accessed 2023-02-06.

“Tanzu service mesh materials,” https://github.com/
Tanzu- Solutions-Engineering/tanzu-service-mesh, 2023, Web page.
Accessed 2023-02-06.

“Vmware tanzu service mesh,” jhttps://tanzu.vmware.com/service-mesh,
2023, Web page. Accessed 2023-02-06.

D. E. E. 3rd and P. Jones, “US Secure Hash Algorithm 1 (SHAL),”
RFC 3174, Sep. 2001. [Online]. Available: https://www.rfc-editor.org/
info/rfc3174

J. A. Akinyele, C. Garman, 1. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly proto-
typing cryptosystems,” Journal of Cryptographic Engineering, vol. 3,
no. 2, pp. 111-128, 2013.

M. R. Albrecht, J. P. Degabriele, T. B. Hansen, and K. G. Paterson,
“A surfeit of ssh cipher suites,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 1480-1491.

H. Andrianakis, D. Bleichenbacher, T. Duong, and e. a. Holenstein,
Thomas, “Tink cryptographic library,” 2018, https://developers.google.
com/tink.

J.-P. Aumasson, D. J. Bernstein, C. Dobraunig, M. Eichlseder,
S. Fluhrer, S.-L. Gazdag, A. Hiilsing, P. Kampanakis, S. Kolbl,
T. Lange et al., “SPHINCS+ - Submission to the 2nd round
of the NIST post-quantum project,” https://sphincs.org/data/sphincs+
-round2-specification.pdf, 2019, Specification document (part of the
submission package).

https://www.openssl.org/docs/

E. Barker and A. Roginsky, “Transitioning the use of cryptographic
algorithms and key lengths,” National Institute of Standards and Tech-
nology, Tech. Rep., 2018.

D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,”
IEEE cloud computing, vol. 1, no. 3, pp. 81-84, 2014.

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a cca-secure
module-lattice-based kem,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). 1EEE, 2018, pp. 353-367.

L. Calcote, The enterprise path to service mesh architectures. O’Reilly
Media, Incorporated, 2020.

C. Carrién, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Computing Surveys, vol. 55, no. 7, pp. 1-37, 2022.

Cryptomatic, “Csg case study,” 2021, https://www.cryptomathic.com/
hubfs/Documents/Case_Studies/Cryptomathic_CSG_Case_Study_-_
Barclays.pdf.

A. Detti, L. Funari, and L. Petrucci, “bench: An open-source factory of
benchmark microservice applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 34, no. 3, pp. 968-980, 2023.

13

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]
[34]

[35]

[36]

[37]

(38]

[39]

A. Dey and S. Weis, “Keyczar: A cryptographic toolkit,” as early as,
2008, |https://www.webencrypt.org/resource/keyczarO5b.pdf.

M. Driscoll, “The Illustrated TLS 1.3 Connection: Every byte ex-
plained,” https://tls13.ultheim.net, 2018, Web page. Accessed 2019-21-
08.

L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “CRYSTALS-Dilithium Algorithm Specifications and
Supporting Documentation,” https://pg-crystals.org/dilithium/resources.
shtml, 2018, Submission to round 2 of the NIST post-quantum project.

A. Ellis, “Emplacing new tracing: Adding opentelemetry to envoy,”
Ph.D. dissertation, Tufts University, 2022.

P-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon:
Fast-Fourier lattice-based compact signatures over NTRU,” https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions,
2018, Specification v1.1.

J. Fulmer, “Siege HTTP regression testing and benchmarking utility,”
https://www.joedog.org/siege-home/, 2019, Web page. Accessed 2019-
02-09.

O. Gasser, R. Holz, and G. Carle, “A deeper understanding of ssh:
Results from internet-wide scans,” in 2014 IEEE Network Operations
and Management Symposium (NOMS). 1EEE, 2014, pp. 1-9.

J. Hohm, A. Heinemann, and A. Wiesmaier, “Towards a maturity model
for crypto-agility assessment,” arXiv preprint arXiv:2202.07645, 2022.

R. Housley, “Guidelines for Cryptographic Algorithm Agility and
Selecting Mandatory-to-Implement Algorithms,” RFC 7696, Nov. 2015.
[Online]. Available: https://www.rfc-editor.org/info/rfc7696

D. Joseph, R. Misoczki, M. Manzano, J. Tricot, F. D. Pinuaga,
O. Lacombe, S. Leichenauer, J. Hidary, P. Venables, and R. Hansen,
“Transitioning organizations to post-quantum cryptography,” Nature,
vol. 605, no. 7909, pp. 237-243, 2022.

P. Kampanakis and D. Sikeridis, “Two post-quantum signature use-
cases: Non-issues, challenges and potential solutions,” Cryptology
ePrint Archive, Report 2019/1276, 2019. https://eprint. iacr. org ...,
Tech. Rep., 2019.

P. Kampanakis, D. Stebila, M. Friedl, T. Hansen, and D. Sikeridis,
“Post-quantum public key algorithms for the secure shell (ssh) proto-
col,” Internet Engineering Task Force, Internet-Draftdraft-kampanakis-
curdle-pq-ssh-00, 2020.

C. Kane, B. Lin, S. Chand, S. D. Stoller, and Y. A. Liu, “High-level
cryptographic abstractions,” in Proceedings of the 14th ACM SIGSAC
Workshop on Programming Languages and Analysis for Security, 2019,
pp. 31-43.

M. Klein, “Lyft’s envoy: Experiences operating a large service mesh.”
San Francisco, CA: USENIX Association, Mar. 2017.

——, “Lyft’s envoy: Experiences operating a large service mesh,” 2017.

S. Kriiger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Gopfert,
F. Giinther, C. Weinert, D. Demmler et al., “Cognicrypt: Supporting
developers in using cryptography,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 1EEE,
2017, pp. 931-936.

B. LaMacchia, “The long road ahead to transition to post-quantum
cryptography,” Communications of the ACM, vol. 65, no. 1, pp. 28—
30, 2021.

K. Lee, Y. Lee, J. Park, K. Yim, and I. You, “Security issues on the
cng cryptography library (cryptography api: Next generation),” in 2013
Seventh International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, 2013, pp. 709-713.

C. Ma, L. Colon, J. Dera, B. Rashidi, and V. Garg, “Caraf: Crypto
agility risk assessment framework,” Journal of Cybersecurity, vol. 7,
no. 1, p. tyab013, 2021.

T. Macaulay and R. Henderson, “Cryptographic agility in practice:
emerging use-cases.” Infosec Global, 2021, https://assets.website-files.
com/612fec6a451c71c9308f4b69/614b712e53ce8t7tad0c3cda ISG
AgilityUseCases_Whitepaper- FINAL.pdf,

N. Mendonca and C. Aderaldo, “Towards first-class architectural
connectors: The case for self-adaptive service meshes,” in Proceedings
of the XXXV Brazilian Symposium on Software Engineering, ser. SBES
’21. New York, NY, USA: Association for Computing Machinery,

https://github.com/envoyproxy/nighthawk
https://www.openssl.org/docs/OpenSSL300Design.html
https://www.openssl.org/docs/OpenSSL300Design.html
https://github.com/vmwarecloudadvocacy/acme_fitness_demo
https://github.com/vmwarecloudadvocacy/acme_fitness_demo
https://kubernetes.io/
https://github.com/Tanzu-Solutions-Engineering/tanzu-service-mesh
https://github.com/Tanzu-Solutions-Engineering/tanzu-service-mesh
https://tanzu.vmware.com/service-mesh
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc3174
https://developers.google.com/tink
https://developers.google.com/tink
https://sphincs.org/data/sphincs+-round2-specification.pdf
https://sphincs.org/data/sphincs+-round2-specification.pdf
https://www.cryptomathic.com/hubfs/Documents/Case_Studies/Cryptomathic_CSG_Case_Study_-_Barclays.pdf
https://www.cryptomathic.com/hubfs/Documents/Case_Studies/Cryptomathic_CSG_Case_Study_-_Barclays.pdf
https://www.cryptomathic.com/hubfs/Documents/Case_Studies/Cryptomathic_CSG_Case_Study_-_Barclays.pdf
https://www.webencrypt.org/resource/keyczar05b.pdf
https://tls13.ulfheim.net
https://pq-crystals.org/dilithium/resources.shtml
https://pq-crystals.org/dilithium/resources.shtml
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://www.joedog.org/siege-home/
https://www.rfc-editor.org/info/rfc7696
https://assets.website-files.com/612fec6a451c71c9308f4b69/614b712e53ce8f7fad0c3c4a_ISG_AgilityUseCases_Whitepaper-FINAL.pdf
https://assets.website-files.com/612fec6a451c71c9308f4b69/614b712e53ce8f7fad0c3c4a_ISG_AgilityUseCases_Whitepaper-FINAL.pdf
https://assets.website-files.com/612fec6a451c71c9308f4b69/614b712e53ce8f7fad0c3c4a_ISG_AgilityUseCases_Whitepaper-FINAL.pdf

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

2021, p. 404-409. [Online]. Available: https://doi.org/10.1145/3474624.
3477072

W. Morgan, “The service mesh: What every software engineer
needs to know about the world’s most over-hyped technology,”
URL: https://buoyant. io/servicemesh-manifesto (visited on 2021-05-
07), 2019.

F. Moyer, “Comprehensive container-based service monitoring with
kubernetes and istio,” USENIX Association: Berkeley, CA, USA, 2018.

M. Miiller, W. Toorop, T. Chung, J. Jansen, and R. van Rijswijk-Deij,
“The reality of algorithm agility: Studying the dnssec algorithm life-
cycle,” in Proceedings of the ACM Internet Measurement Conference,
2020, pp. 295-308.

E. National Academies of Sciences and Medicine, Cryptographic Agility
and Interoperability: Proceedings of a Workshop, A. F. Johnson and L. L.
Millett, Eds. Washington, DC: The National Academies Press, 2017.
[Online]. Available: |https://nap.nationalacademies.org/catalog/24636/
cryptographic-agility-and-interoperability-proceedings- of-a- workshop
D. B. Nelson, “Crypto-Agility Requirements for Remote Authentication
Dial-In User Service (RADIUS),” RFC 6421, Nov. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6421

NIST, “Post-Quantum Cryptography selected algorithms 2022,
2022, https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022,

D. Ott, D. Moreau, and M. Gaur, “Planning for cryptographic readiness
in an era of quantum computing advancement.” in ICISSP, 2022, pp.
491-498.

D. Ott, C. Peikert et al., “Identifying research challenges in post quan-
tum cryptography migration and cryptographic agility,” arXiv preprint
arXiv:1909.07353, 2019.

C. Paquin, D. Stebila, and G. Tamvada, “Benchmarking post-quantum
cryptography in tls,” in International Conference on Post-Quantum
Cryptography. Springer, 2020, pp. 72-91.

S. Paul, Y. Kuzovkova, N. Lahr, and R. Niederhagen, “Mixed certificate
chains for the transition to post-quantum authentication in tls 1.3,” in
Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, 2022, pp. 727-740.

S. Paul and M. Niethammer, “On the importance of cryptographic
agility for industrial automation,” ar-Automatisierungstechnik, vol. 67,
no. 5, pp. 402-416, 2019.

K. Petrenko, A. Mashatan, and F. Shirazi, “Assessing the quantum-
resistant cryptographic agility of routing and switching it network
infrastructure in a large-size financial organization,” Journal of Infor-
mation Security and Applications, vol. 46, pp. 151-163, 2019.

O. Project, “OQS OpenSSL,” https://github.com/open-quantum-safe/
openssl, 2020, Web page. Accessed 2020-02-06.

J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Four-
net et al., “Evercrypt: A fast, verified, cross-platform cryptographic
provider,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 983-1002.

E. Rescorla, H. Tschofenig, and N. Modadugu, “The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3,” Internet
Engineering Task Force, Internet-Draft draft-ietf-tls-dtls13-00, Apr.
2017, work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/html/draft-ietf-tls-dtls 13-00

M. Schneider, R. J. Masti, S. Shinde, S. Capkun, and R. Perez, “Sok:
Hardware-supported trusted execution environments,” 2022. [Online].
Available: https://arxiv.org/abs/2205.12742

Senetas, “Certified high-assurance network encryption,”
https://www.senetas.com/wp-content/uploads/Certified_High_
Assurance_Encryption.pdf.

D. Sikeridis, S. Huntley, D. Ott, and M. Devetsikiotis, “Intermediate
certificate suppression in post-quantum tls: an approximate membership
querying approach,” in Proceedings of the 18th International Confer-
ence on emerging Networking EXperiments and Technologies, 2022, pp.
35-42.

D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Assessing the
overhead of post-quantum cryptography in tls 1.3 and ssh,” in Pro-
ceedings of the 16th International Conference on emerging Networking
EXperiments and Technologies, 2020, pp. 149-156.

2021,

14

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

, “Post-Quantum Authentication in TLS 1.3: A Performance
Study,” in Network and Distributed Systems Security (NDSS) Sympo-
sium 2020 23-26 February 2020, San Diego, CA, USA. The Internet
Society, 2020.

D. Stebila, S. Fluhrer, and S. Gueron, “Hybrid key exchange in
TLS 1.3,” Internet Engineering Task Force, Internet-Draft draft-ietf-tls-
hybrid-design-05, Aug. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/05/

B. Sullivan, “Cryptographic agility,” MSDN Magazine, vol. 24, 2009,
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/august/
cryptographic-agilityl

——, “Cryptographic agility: Defending against the sneakers scenario,”
in BLACK HAT USA 2010, 2010.

S. Turner, “Updated Security Considerations for the MD5 Message-
Digest and the HMAC-MDS5 Algorithms,” RFC 6151, Mar. 2011.
[Online]. Available: https://www.rfc-editor.org/info/rfc6151

L. Velvindron, K. Moriarty, and A. Ghedini, “Deprecating MD5 and
SHA-1 Signature Hashes in TLS 1.2 and DTLS 1.2,” RFC 9155, Dec.
2021. [Online]. Available: https://www.rfc-editor.org/info/rfc9155

J. Walden, “Openssl 3.0.0: An exploratory case study,” in Proceedings
of the 19th International Conference on Mining Software Repositories,
ser. MSR °22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 735-737. [Online]. Available: https://doi.org/10.
1145/3524842.3528035

X. Wang and Y. Yin, “H. yu. finding collisions in the full sha-1. in proc,”
in 25th Annual International Cryptology Conference (Crypto’05), 2005,
https://www.iacr.org/archive/crypto2005/36210017/36210017.pdf.

D. Warburton, “What is mtls?” https://www.f5.com/labs/
learning-center/what-is-mtls, 2023, Web page. Accessed 2023-02-06.

A. Wiesmaier, N. Alnahawi, T. Grasmeyer, J. Geil3ler, A. Zeier, P. Baus-
pieB, and A. Heinemann, “On pqc migration and crypto-agility,” arXiv
preprint arXiv:2106.09599, 2021.

wolfSSL Manual, “Experimenting with post-quantum cryptography,”
https://www.wolfssl.com/documentation/manuals/wolfssl/appendix07.
html, 2023, Web page. Accessed 2023-02-06.

https://doi.org/10.1145/3474624.3477072
https://doi.org/10.1145/3474624.3477072
https://nap.nationalacademies.org/catalog/24636/cryptographic-agility-and-interoperability-proceedings-of-a-workshop
https://nap.nationalacademies.org/catalog/24636/cryptographic-agility-and-interoperability-proceedings-of-a-workshop
https://www.rfc-editor.org/info/rfc6421
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://github.com/open-quantum-safe/openssl
https://github.com/open-quantum-safe/openssl
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-00
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-00
https://arxiv.org/abs/2205.12742
https://www.senetas.com/wp-content/uploads/Certified_High_Assurance_Encryption.pdf
https://www.senetas.com/wp-content/uploads/Certified_High_Assurance_Encryption.pdf
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/05/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/august/cryptographic-agility
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/august/cryptographic-agility
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc9155
https://doi.org/10.1145/3524842.3528035
https://doi.org/10.1145/3524842.3528035
https://www.iacr.org/archive/crypto2005/36210017/36210017.pdf
https://www.f5.com/labs/learning-center/what-is-mtls
https://www.f5.com/labs/learning-center/what-is-mtls
https://www.wolfssl.com/documentation/manuals/wolfssl/appendix07.html
https://www.wolfssl.com/documentation/manuals/wolfssl/appendix07.html

	Introduction
	Related Work
	Cryptographic Agility
	Risk Assessment Frameworks
	Implementation Frameworks
	Post-Quantum Cryptography Transition

	Enterprise Requirements
	Cryptographic Provider
	Architecture
	Proxy-based Crypto Agility

	Scaling to Enterprise-level Agility
	Policy Handling

	Implementation
	Cryptographic Provider API
	Envoy Proxy Integration
	Understanding Envoy Proxy
	Prototype Implementation

	Experimental Evaluation
	Cryptographic Provider Overhead
	Modern Application Integration
	Addressing ELCA Requirements
	Demonstrating Scaled Orchestration
	Case Study: Enterprise PQC Migration Testing

	Future Work: Security Protections
	Conclusion
	References

