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Abstract

We present a verifiable delay function based on isogenies of supersin-

gular elliptic curves, using Deuring correspondence and computation of

endomorphism rings for the delay. For each input x a verifiable delay

function has a unique output y and takes a predefined time to evaluate,

even with parallel computing. Additionally, it generates a proof π by

which the output can efficiently be verified. In our approach the input is

a path in the 2-isogeny graph and the output is the maximal order iso-

morphic to the endomorphism ring of the curve at the end of that path.

This approach is presumably quantum-secure, does not require a trusted

setup or special primes and the verification is independent from the delay.

It works completely within the isogeny setting and the computation of the

proof π causes no overhead. The efficient sampling of challenges however

remains an open problem.

Keywords: Verifiable delay function, isogeny walks, modular polynomi-

als, Deuring correspondence.

1 Introduction

A verifiable delay function (VDF) is a function which requires some specified
time to be computed yet its output can be verified fast. Such functions have in-
teresting applications such as resource-efficient blockchains or randomness bea-
cons. Further use cases and more details can be found in [2]. In this work we
propose a construction of a VDF using endomorphism rings of supersingular
elliptic curves. Its security is based on problems in isogeny-based cryptography,
thereby offering a scheme being presumably quantum-resistant.

As defined by [2] a VDF consists of three algorithms Setup, Eval, Verify.
The Setup provides some public parameters based on the desired security λ
and delay t. Then Eval takes the public parameters and a challenge x ∈ X as
input and produces a response y ∈ Y with a proof π. Finally Verify checks if a
presented response and proof are valid with respect to the challenge. While the
algorithms Setup, Verify and the creation of challenges have to be efficient,
Eval should require the desired time t. The VDF should also be correct, i.e.
Verify accepts the output of Eval if the protocol is followed through as in-
tended, sound, i.e. Verify will accept something that is not the output of Eval
only with negligible probability, and sequential, i.e. a polynomially bounded ad-
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versary has only negligible chance to forge a correct response in time less than t,
even with parallel computation.

The first approaches towards practical VDFs are based on group actions in
groups of unknown order. They use for example repeated squaring and the
proof contains intermediate steps [2, 16]. The downside of these approaches is
that they are not quantum-secure. Isogeny-based cryptography is comparatively
slow, but allows to build quantum-secure protocols, so it seems to be a natural
candidate for VDFs. There are already several approaches to realise a VDF
based on isogenies. De Feo, Masson, Petit and Sanso [8] use the evaluation of an
isogeny of large degree at a given point and verify the result with pairings. This
scheme needs a trusted setup, is not quantum-secure and its Setup takes the
same time as its Eval. Shani [13] presents a hybrid VDF, but it is not quantum-
secure and deviates from the original definition. In the paper by Chavez-Saab,
Rodŕıguez-Henŕıquez and Tibouchi [5] a walk on the isogeny graph is defined
via modular polynomials (similar to the hash function by Charles, Goren and
Lauter [4]) and verified with SNARGs that are computed along the way. Here
the running time of Verify depends on the delay and we need SNARGs in
addition to the already involved topic of isogenies. Decru, Maino and Sanso
propose a novel isogeny-based VDF [10], where verification uses Kani’s criterion
for abelian surfaces. It employs a purely algebraic construction, yet requires a
trusted setup and its implementation poses some challenges.

In this work we use a similar Setup as in [5] but in addition to the starting
curve an effective representation of its endomorphism ring is given. The modular
polynomials are then used as a hash function to implicitly describe a path in
the supersingular 2-isogeny graph. The input of the hash function and the final
j-invariant are the input to Eval. The challenge is then to give a representation
of the endomorphism ring of a supersingular elliptic curve with the given j-
invariant. Finding the endomorphism ring is as hard as finding an isogeny from
a curve with known endomorphism ring to that curve and both problems are
considered hard [17]. This so-called endomorphism ring problem is also the
foundation for CSIDH [3] and SQISign [9, 6]. Thus the easiest way to compute
the endomorphism ring appears to push the generators of the endomorphism
ring of the starting curve through the isogeny walk defined by the modular
polynomials. Then Verify checks if the presented endomorphisms belong to a
curve with the right j-invariant and generate its endomorphism ring.

This approach is presumably quantum-secure, does not need a trusted setup
or special primes and the algorithms Setup and Verify are fast. It works
completely within the isogeny setting and the time for verification is independent
from the delay t. Also the computation of the proof π causes no overhead, since
it is already part of computing the response y. An important issue however
remains to find an efficient way to sample challenge inputs to Eval that include
enough information for fast verification.

In the following we first give proper definitions for a VDF and a description
of our idea on an abstract level. Then we provide the preliminaries of isogeny-
based cryptography, including its quaternion aspects and some computational
problems. With these we can present our VDF, discuss the three parts Setup,
Evaluation and Verification and make a brief security analysis. Next we show
how this can be implemented before finally giving a summary and outlook for
future research.
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2 Verifiable Delay Functions

Let us recall the original definition by Boneh, Bonneau, Bünz and Fisch [2]. We
have three algorithms Setup, Eval, Verify and want Verify (and Setup) to be
fast, while Eval should be exponentially slower, or more formally:

Setup(λ, t) −→ pp = (ek,vk) polynomial in λ (t is subexponential in λ)

Eval(ek, x) −→ (y, π) with parallel time t on poly(λ, log t) processors

Verify(vk, x, y, π) −→ (valid/invalid) polynomial in λ and log t

Here λ is the security parameter and t is a delay parameter. The evaluation key
ek and the verification key vk can be identical and the public parameters pp
should define a challenge space X and a response space Y such that x ∈ X and
y ∈ Y . The proof π is allowed to be empty.

In addition, the algorithms have to satisfy the following properties: Honest
outputs should be accepted, y is unique or at least hard to forge and y cannot
be found significantly faster than with Eval.

Definition 2.1 (Correctness) For all λ, t, x if (ek,vk) ← Setup(λ, t) and
(y, π)← Eval(ek, x) then Verify(vk, x, y, π) outputs valid.

Definition 2.2 (Soundness) For all adversaries A(λ, t,pp) −→ (x, y, π) poly-
nomial in λ, t the probability to find a y that gets accepted by Verify(vk, x, y, π),
but differs from the output of Eval(ek, x) under the condition that pp is honestly
generated is a negligible function in λ.

Definition 2.3 (Sequentiality) For σ(t) . t and p(t) polynomial in t a VDF
is called (σ, p)-sequential, if for all adversaries A0(λ, t,pp) −→ L polynomially
bounded in λ, t (preprocessing pp) and A1(pp, L, x) −→ yA with parallel time
σ(t) on at most p(t) processors the probability that yA is equal to the output of
Eval(ek, x) is a negligible function in λ.

The name delay function is based on the idea that we have an actual function
f : X → Y in the mathematical sense and Eval has to evaluate f at x and
present a proof π to verify the result f(x) = y. Since Eval needs a challenge
x ∈ X as input, Setup should also provide an efficient algorithm Sample or
Hash to select a random element from X or to have a function h : S → X that
maps some seed s ∈ S to an element in X, respectively. This might depend on
the application of the VDF.

3 Basic Idea

We start with an abstract high-level description of our approach that might also
allow for different applications, and fill in the details in a later section.

Let G be a connected graph with vertex set V . We need a function g : V → Y
that is hard to compute, i.e. given v ∈ V it is difficult to obtain g(v). However,
the values g(v) can be transported along a path in the graph (for a cost poly-
nomial in its length) as follows. If γ is a path in G from v0 to v1, then there is
a computable map γ̃ : Y → Y such that g(v1) = γ̃(g(v0)), so that the diagram
in Figure 1 commutes.
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Figure 1: The function g can be transported along a path γ if the diagram
commutes.

The idea is to have a starting vertex v0 with known g(v0) = y0 in the
public parameters and the challenge x = (γx, vx) is a path γx on the graph
starting at v0 and ending at some vertex vx. Then the evaluator has to compute
g(vx) = yx and provide additional information π such that verification is fast.
The corresponding algorithms are

Setup(λ, t) −→ pp = ek = vk = (v0, y0, X, Y, Sample/Hash)

Sample −→ x = (γx, vx)

Hash(s) −→ x = (γx, vx)

Eval(ek, x) −→ (yx, πx)

Verify(vk, x, yx, πx) −→ (valid/invalid)

where the delay is encoded in the length of the paths in X.
Whether or not the protocol is correct or sound depends heavily on the

details of Verify. Since g is hard to compute, a faster way to get g(vx) = yx is
to move y0 along the path γx. In fact this intended way has to be the fastest
one, in order to achieve sequentiality. Therefore the path γx has to be given in a
way that does not allow to find shortcuts easily. So either it has to be loop-free
or given implicitly, i.e. not as a list of vertices. In addition finding a different,
shorter path from v0 to vx has to be at least as hard as using γx. If this is true
then the protocol is sequential if the transport γ̃ in Figure 1 is sequential.

Letting X be the set of all pairs (γx, vx) with γx a path in G starting from v0
and ending in vx ∈ V , this VDF thus computes the function

f : X → Y, (γx, vx) 7→ γ̃x(y0) = g(vx).

4 Isogeny-based Cryptography

In this section we provide the necessary basics for isogeny-based cryptography,
quaternion algebras and the Deuring correspondence. We also discuss some
computational problems in this area.

4.1 Elliptic Curves

Elliptic curves have ties to different fields resulting in several equivalent defini-
tions. We will mostly follow the notation of Silverman [14], but restrict ourselves
to aspects relevant for this paper.
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Definition 4.1 (Elliptic Curve) An elliptic curve is a pair (E,O), where E
is a curve of genus one and O ∈ E. It is defined over a field K, if it is defined
over K as a curve and O ∈ E(K).

We can define an addition of points on the curve making (E,+) an additive
group where O is the neutral element. This permits scalar multiplication written
as [m] : E → E and torsion subgroups E[m] := {P ∈ E | [m]P = O}.

Definition 4.2 (Isogeny) Let E and E′ be elliptic curves. Then a morphism
ϕ : E → E′ such that ϕ(O) = O is called an isogeny. If a non-zero isogeny
ϕ : E → E′ exists, then E and E′ are called isogenous.

In fact, every isogeny between two curves is also a group homomorphism. The
isogenies from a curve E into itself form the endomorphism ring EndE. Isoge-
nies can be written as rational maps and their degree is defined by this map.
Thus, the degree deg(ϕ ◦ ϕ′) = degϕdegϕ′ is multiplicative. In addition each
isogeny ϕ : E → E′ has a unique dual isogeny ϕ̂ : E′ → E such that the com-
position ϕ̂ ◦ ϕ = [degϕ] is the multiplication by the degree. The isogenies of
degree 1 are the isomorphisms, and each isomorphism class can be labelled by
the so-called j-invariant. This allows to construct the ℓ-isogeny graph that has
those j-invariants as vertices and isogenies of degree ℓ as edges.

Definition 4.3 (Supersingularity) Let K be a field of characteristic p and E
an elliptic curve defined over K. The curve E is supersingular if the tor-
sion group E[p] is trivial. Equivalently, this means that the endomorphism ring
EndE is an order in a quaternion algebra.

Many isogeny-based protocols rely on secret walks in isogeny graphs of
supersingular elliptic curves. The fact that the endomorphism ring is non-
commutative gives rise to presumably quantum-secure protocols and the graphs
have fast mixing properties, meaning that we reach an almost uniform distribu-
tion on the graph after a short random walk.

For the rest of this paper p > 3 will be a large prime. This allows us to
write every elliptic curve in short Weierstraß form as E : y2 = x3 + Ax + B
with j(E) = 108(4A)3/(4A3 + 27B2). For supersingular curves there is always
a representation with A,B, j in Fp2 . In this setting we have the isogenies

[−1] : (x, y) 7→ (x,−y) ,
[i] : (x, y) 7→ (−x, iy) and

φ : (x, y) 7→ (xp, yp)

where φ is called Frobenius map. Note that

[i] ◦ [i] = [−1] ,
φ ◦ φ = [−p] for supersingular curves,

[i] ◦ φ = [−1] ◦ φ ◦ [i] for p ≡ 3 mod 4

and [i] is not necessarily an endomorphism.
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4.2 Quaternion Algebras

We have already seen in Definition 4.3 that supersingular curves are related to
quaternion algebras. We are interested in the quaternion algebra Bp,∞ ramified
at p and infinity with Q-basis {1, i, j, k} such that

i2 = −1, j2 = −p, k = ij = −ji.
The (reduced) norm of an element α = a1 + a2i + a3j + a4k ∈ Bp,∞ is given by
αᾱ for ᾱ = a1 − a2i − a3j − a4k. An order in Bp,∞ is a lattice that is also a
subring, and it is maximal if its discriminant equals p.

An elliptic curve E is supersingular if and only if EndE is isomorphic to
a maximal order O in Bp,∞, i.e. Q ⊗ EndE ∼= Bp,∞. If E : y2 = x3 + Ax and
p ≡ 3 mod 4 we have seen that there are the isogenies [i] and φ with the same
properties as i and j. Deuring even proved that the isomorphism classes of super-
singular elliptic curves correspond to the isomorphism classes of invertible left
O-ideals in the quaternion algebra [11]. This so-called Deuring correspondence
also gives us that an ℓ-isogeny ϕ starting at E corresponds to a left ideal Iϕ of
norm ℓ in O ∼= EndE and the image curve has an endomorphism ring isomor-
phic to the right order OR(Iϕ) = {α ∈ Bp,∞ | Iϕα ⊆ Iϕ} of Iϕ, see [15, Ch. 42]
for more details.

Both orders and ideals can also be written as lattices such that

(α1 α2 α3 α4) = (1 i j k)L

is a basis of the lattice and L is a 4× 4 matrix over Q. We will identify a lattice
with this matrix and always use Hermite normal form of L to have a unique
representation.

4.3 Computational Problems

In this subsection we list some (relevant) computational problems in the field of
isogeny-based cryptography. This toolbox will then be used to build the VDF.
They are grouped into three categories: easy, medium and hard.

The easy problems can be solved fast and have a polynomial or even constant
complexity.

Easy 1: Compute isogenies of small or smooth degree.

Easy 2: Given two elliptic curves E,E′, an isogeny ϕ : E → E′ as well as the
corresponding order O ∼= EndE and ideal Iϕ, compute O′ ∼= EndE′.

Easy 3: Given two elliptic curves E,E′, and the corresponding orders O ∼=
EndE, O′ ∼= EndE′, compute a connecting ideal I corresponding to an
isogeny ϕI : E → E′.

Easy 4: Given a left ideal I of a maximal order O ⊂ Bp,∞, find an equivalent
ideal such that its norm is small or a prime power.

Easy 1 can be solved using Vélu’s formulae. For Easy 2 we can compute O′ as
OR(Iϕ) and the connecting ideal I in Easy 3 satisfies O = OL(I), where the left
order OL(I) is defined analogously to the right order OR(I), and O′ = OR(I).
Easy 4 is solved by the KLPT algorithm [12]. For VDFs we need moderately
hard problems, which are still polynomial in complexity but might take a con-
siderable time to compute. In [6] the last one is mentioned as bottleneck.

6



Medium 1: Compute isogenies of medium or non-smooth degree.

Medium 2: Given O ∼= EndE, translate between isogenies ϕ : E → E′ and
their corresponding left O-ideals Iϕ.

Depending on the degree we can use Vélu’s formulae or the
√
élu algorithm [1]

to solve Medium 1. Meduim 2 is the core of our approach and is discussed in
more detail in Section 6.4. The hard problems are the basis for encryption or
signature schemes like CSIDH [3] or SQISign [6] and are equivalent [17].

Hard 1: Given two (isogenous) supersingular elliptic curves E,E′ and a prime
ℓ, find a path from E to E′ in the ℓ-isogeny graph.

Hard 2: Given a supersingular elliptic curve E, find four endomorphisms that
generate EndE as a lattice.

Hard 3: Given a supersingular elliptic curve E, find four quaternions in Bp,∞
that generate a maximal order O such that O ∼= EndE.

Remark 4.4 Knowledge of endomorphism rings can break the hard problems.
If we know both endomorphism rings the first hard problem becomes medium
using Easy 3, 4 and Medium 2. If we know an isogeny from a curve with known
endomorphism ring to our curve also the second hard problem becomes medium
by Medium 2 and Easy 2. The third hard problem reduces to the second via
Medium 2.

Finding supersingular elliptic curves can be done in two ways. One can reduce
an elliptic curve in characteristic 0 modulo a prime and check if the resulting
curve is supersingular, or take a random isogeny starting at one of these curves.
In both cases the endomorphism ring of the final curve can be computed either
via reduction or by transport along the isogeny. But as discussed in Remark 4.4
this weakens the hard problem cryptosystems may be based on and hence those
require curves with unknown endomorphism ring. This in turn forces them to
use a multi-party computation or a trusted authority in their setup to ensure
that no single participant knows a complete path from a curve with known
endomorphism ring to the one used.

5 VDF from Endomorphism Rings

The idea for our protocol is to exploit the fact that we can compute the endo-
morphism ring for the image curve of any known isogeny. Broadly speaking,
the Setup should provide a starting curve E0, some information about its endo-
morphism ring EndE0 and an algorithm Hash to generate paths in the isogeny
graph starting at E0 and ending at some other curve Ex. Eval then has to
compute EndEx and finally Verify checks this result. A schematic overview is
given in Figure 2.

5.1 Setup

The Setup takes two arguments as input. The security parameter λ influences
the size of prime p, i.e. the characteristic of the underlying field, and the delay
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Figure 2: Main idea of our VDF using endomorphism rings.

parameter t governs the length of the paths generated by Hash. For the start-
ing curve any supersingular curve with known endomorphism ring can do, but
we will take E0 : y

2 = x3 + x. Since Definition 2.3 permits adversaries with
polynomial precomputation, we may give all (useful) information regarding the
endomorphism ring of E0. This can include a generating set of endomorphisms,
the corresponding set of ideals generating the order O0

∼= EndE0 and an explicit
and efficiently computable isomorphism ι0 between these two representations.

For generating a challenge x ∈ X we will use a hash function. If we need
random elements, we can take a random seed. Our Hash will be either the
function described in [4] or a similar one constructed in [5]. Both take a binary
string as input and output a j-invariant jx. Internally they walk a path in the
2-isogeny graph that starts at j(E0) and ends at the output jx, thus implicitly
describing an isogeny from E0 to a curve Ex with j(Ex) = jx. Since the zeroth
step is always to j-invariant 287496, i.e. E1 : y

2 = x3 + 11x ± 14i, Setup will
precompute O1

∼= EndE1 and we say that Hash starts at E1.
Written as algorithms we have Setup(λ, t) −→ pp = (E0, D0, X, Y, Hash)

and Hash(s) −→ x = (s, jx) where E0 is the curve y2 = x3 + x and D0 =
(O0, E1,O1). For paths of length n the input for Hash is s ∈ S = {0, 1}n
and the output is in X = S × V with V the vertex set of the 2-isogeny graph
labelled by j-invariants. A response y ∈ Y = Mat4×4(Q) is the unique lattice
basis y = H in Hermite normal form of Ox

∼= EndEx. Note that we do not have
a fast and secure way to implement Hash yet. See Section 6 for more details.

5.2 Evaluation

Our idea is to iteratively translate the path or isogeny implicitly given by Hash

into the corresponding ideal and use that to compute Ox. For a VDF to be
sequential the intended way to find y also has to be the fastest one. Since
finding the endomorphism ring of a random curve is hard, we have to use an
isogeny from a curve with known endomorphism ring to compute it. Finding
an isogeny between two curves with at least one unknown endomorphism ring
is hard too and to shorten an isogeny one has to translate it into an ideal first.
So we can enforce the usage of the long isogeny given by Hash and translating
it into an ideal will be the first step in any reasonable approach. Therefore this
is the primary source for our delay and thus allows us to adjust the delay via
the length of the path.

Hence, the algorithm Eval(E0, D0, Hash, (s, jx)) −→ (H,Ex) first extracts
an (iterated) isogeny ϕ1 ◦ · · · ◦ ϕn = ϕ : E1 → Ex with j(Ex) = jx from Hash

with input s ∈ {0, 1}n and ϕi : Ei → Ei+1 of degree 2. Then for each step it
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uses Oi to translate ϕi into the corresponding ideal Ii and computes Oi+1 as
the right order of Ii. This is done with the algorithms explained in Section 6
which are similar to those in SQISign [6]. Finally for En+1 = Ex it computes
the order Ox. This is a lattice and we can give a basis Ax for it in terms of
{1, i, j, k}. If we interpret Ax as a matrix with the basis vectors as columns we
can compute its Hermite normal form H. This gives a unique basis for Ox and
will be the unique part y = H of the output. The proof π contains additional
information for faster verification. In our case we have π = Ex and this causes
no overhead, since computing Ex is part of finding Ox.

5.3 Verification

The verifier has to check thatH is a basis for Ox
∼= EndEx and that Ex is a valid

curve. This can be done as follows: First check if j(Ex) = jx, |Ex(Fp2)| = (p+1)2

and if H is in Hermite normal form. To do this it is necessary that jx is
either part of the challenge x = (s, jx) or that it can be validated in an other
efficient way, i.e. not computing the hash function. Then we can compute the
order generated by H and verify that its discriminant is p. This proves that
it is a maximal order. Finally we check that the columns of H correspond
to endomorphisms of Ex/Fp2 . We do this by computing their action on a set
of points {P,Q} generating the Fp2 -rational points of Ex. In total this allows
the algorithm Verify((s, jx), H,Ex) −→ (valid/invalid) to verify that Ex and
Ox
∼= EndEx have been computed correctly.

5.4 Security Analysis

In this subsection we discuss the correctness, soundness and sequentiality of
our protocol. Since there are no heuristic processes involved, our mathematical
foundation provides correctness.

The only responses (y, π) = (H,Ex) that get accepted have to have j(Ex) =
jx, |Ex(Fp2)| = (p+1)2 and Ox

∼= EndEx a maximal order in Bp,∞. We require
curves Ex with the right j-invariant, that are isogenous to E0 over Fp2 , i.e. also
having (p + 1)2 Fp2 -rational points. These curves are isomorphic over Fp2 and
post-composing an isogeny from E0 to Ex with an isomorphism does not change
is kernel. Thus, the corresponding ideals I and their right orders OR(I) = O
are the same. Fixing the isomorphism ιx : Ox → EndEx by mapping i to [i] and
j to the Frobenius map φ also fixes Ox. The Hermite normal form then gives a
unique representation of the lattice basis of Ox. This makes y = H unique and
our protocol sound.

The sequentiality is based on the hard problems presented in Section 4.3. As
mentioned in Section 5.2, computing the order Ox directly is hard and finding
a path from E0 to Ex is also hard, since we do not know Ox yet. So we have
to use the long path defined by the hash function. The number of steps should
be in log p and the number of vertices in the 2-isogeny graph is roughly p/12.
Due to the fast mixing properties of the graph, the probability of having a loop
in the path is negligible for sufficiently large p. To find an equivalent isogeny
with smaller degree, we have to translate the path into an isogeny and then
into a single large ideal to use algorithms like Algorithm 8 from [6] to get an
equivalent ideal of smaller norm. Another option is to map all four generating
endomorphism αi to ϕ◦αi◦ϕ̂/degϕ (either iteratively or in one go) and translate
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these into ideals. The last two approaches need points of large order, which only
exist over field extensions of Fp2 . This makes every computation slower and is
at least as hard as using the small steps directly as intended. Also there is not
much improvement to be gained using parallel computing since most of the steps
are intrinsically sequential. Regarding precomputation we could only provide
the first m possible steps of the hash function, but since there are 2m options
this would need sufficient time and memory to compute and store 2m elliptic
curves and their corresponding orders. This also becomes infeasible quite fast
and therefore does not constitute a significant advantage.

6 Implementation

We provide a proof-of-concept implementation, while the optimised algorithms
used in SQISign will also improve our approach even though the parameters
might be different. We mostly follow the notation of SQISign. Our Sage imple-
mentation can be found at https://git.fim.uni-passau.de/zumbraegel/defend.

We have a toy example and one that resembles the final protocol more closely.
The toy example adopts the above algorithms more naively and does everything
in one big step instead of the iterated approach with the hash function. This has
the advantage that we can do almost everything on E0 and O0. The downside
is that almost everything can be precomputed, so there is not much delay, but
it shows all the necessary computations for an individual step in the proper
protocol. It samples a point P on E0 of given order D as the kernel of our
isogeny ϕ : E0 → Ex, translates that into one O0-ideal Iϕ and computes the
order Ox directly as OR(Iϕ). The other example uses small parameters and
not-optimised algorithms, but comprises all the parts of the final protocol.

6.1 Parameters

As mentioned before we take E0 : y
2 = x3 + x. Our prime p has to satisfy p ≡

3 mod 4 to have [i]◦φ = −φ◦ [i] and EndE0 isomorphic to O0 = 〈1, i, i+j

2
, 1+k

2
〉Z.

Other than that we have no restrictions on p, since we only need 2-isogenies and
the 2-torsion is always rational over Fp2 . The security parameter λ governs the
size of p as log p ≈ λ and the delay parameter t = n should be polynomial in
log p. The isomorphism mapping O0 to EndE0 is given by sending i to [i] and
j to the Frobenius map φ. This also implies an isomorphism O → EndE for
curves E via an isogeny ϕ : E0 → E [6]. In a slight abuse of notation elements
α ∈ O are also used as maps α ∈ EndE implicitly applying this isomorphism.

6.2 Precomputation

To speed-up the following computations and reduce the advantage a possible
attacker might have, we can provide auxiliary information. As stated earlier we
will precompute the zeroth (internal) step of the hash function from E0 : y

2 =
x3+x with j-invariant 1728 to E1 : y

2 = x3+11x± 14i with j-invariant 287496
and give a lattice basis of O1

∼= EndE1.
For our toy example we can precompute a generating set {PD, QD} for the

D-torsion group E0[D] and the evaluation of θ0 = j + 1+k
2

and η0 = i at those
points.
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6.3 Hash Function

The first live operation is the hash function based on modular polynomials like
in [5]. An ℓ-isogeny graph is ℓ + 1 regular and the modular polynomial for a
curve in that graph is of degree ℓ+1 and has the ℓ+1 neighbouring j-invariants
as roots. We work with the 2-isogeny graph and in our path we already know
the j-invariant we came from. Therefore we can factor out this root, solve a
quadratic equation and label the solutions with 0 and 1, allowing us to encode
a path of length n in the 2-isogeny graph by a binary string s = {0, 1}n. The
curve E0 is special, as it has one 2-isogeny connecting back to itself and two
2-isogenies to the same j-invariant. So we can factor out its own j-invariant
and consider this as the zeroth step. The first proper step of Hash starts at E1

with j(E1) = 287496.
However, this way of generating a challenge x = (s, jx) requires Ω(n) opera-

tions, like Eval, and is therefore slow. Moreover, it allows the generator of the
challenge to cheat and always evaluate faster. A possible solution would be an
efficient way to verify the final j-invariant without computing the hash function,
thereby allowing to simply take X = S as the challenge space. A less elegant
workaround would be to have a trusted authority (that must not participate in
computing Eval) sampling and publishing the challenges x = (s, jx). This does
not solve the problem of Hash being slow and therefore challenges still take a
long time to compute.

6.4 Isogeny to Ideal

Second is the translation of a (separable) isogeny ϕ : E → E′ of degree 2 into
its corresponding ideal Iϕ. The general description Iϕ = {α ∈ O | α(P ) =
O for all P ∈ kerϕ} does not really help with computing it, but we follow the
approach of SQISign to write it as as Iϕ = O〈α, 2〉.

The kernel of ϕ is generated by a point P of order 2 and α(P ) should be O.
To find this P we can simply check the codomain of the three isogenies, whose
kernels are generated by one of the three non-trivial points in E[2]. This can
be done in parallel for a more reliable timing. Note that this also gives us the
proof π = Ex

For isogenies starting at E0 in SQISign one takes θ0 = j + 1+k
2

and η0 = i
orthogonal to θ0 to have a basis {P, θ0(P )} of E0[2]. Then one solves [a]P +
[b]θ0(P ) = η0(P ) to get α = a+ bθ0− η0. This is useful for the precomputation,
but for the following steps we have to take the corresponding elements/maps of
O ∼= EndE.

In our toy example this can be sped-up by using the precomputed basis
{PD, QD} of E0[D] with precomputed θ0(PD), θ0(QD), η0(PD), η0(QD) to write
P as P = [u]PD + [v]QD and solve

[a]([u]PD + [v]QD) + [b]([u]θ0(PD) + [v]θ0(QD)) = [u]η0(PD) + [v]η0(QD)

using matrix multiplication.

6.5 Right Order

Next is the computation of the right order OR(I) of a left O ideal I. Again the
straight forward definition OR(I) = {α ∈ Bp,∞ | Iα ⊂ I} is not helpful, but we
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can think of the ideal as a lattice and use the right transporter or colon lattice,
as done in SQISign.

We know a basis of O and a representation of I as I = Oα + O2. So
we can compute the lattice multiplications Oα,O2, take their lattice union
and the Hermite normal form of the result is the lattice L corresponding to I.
Now we want to find the lattice L′ = {α ∈ Bp,∞ | Lα ⊂ L}. We can write
α = a+ bi + cj + dk and compute the lattice multiplications

A1 = L, Ai = Li, Aj = Lj, Ak = Lk

to get the new constraint aA1 + bAi + cAj + dAk ⊂ L. Applying the dual of L,
i.e. computing the matrix multiplications

B1 = L−1A1, Bi = L−1Ai, Bi = L−1Aj, Bk = L−1Ak,

yields that aB1 + bBi + cBj + dBk has to be integral and therefore (a, b, c, d) ⊂
(1/detL)Z4. Now L′ is the kernel of the map

(a, b, c, d)→ aB1 + bBi + cBj + dBk mod m

where m is the numerator of detL. This can be computed via the Smith normal
form.

6.6 Ideal to Isogeny

Finally we have to translate the basis of O ∼= EndE into explicit endomor-
phisms. This is done by the same isomorphism as for O0, namely mapping i to
[i] and j to the Frobenius map φ. The only difficulty is to map half-integers, but
we can at least evaluate them at a point P using points Q such that [2]Q = P .

7 Summary and Outlook

Our approach to use the computation of endomorphism rings or rather their
corresponding maximal orders allows for a presumably quantum-secure VDF
with basically constant verification time. In addition the implementation does
not require special primes, a trusted setup or involved algorithms. The draw-
back is that sampling challenges efficiently and without computing part of the
evaluation is still an open problem. One solution might be to find a way to
verify the output of the hash function without computing it. A workaround
could be using a trusted authority to create challenges.

A natural next step is to implement the protocol in a faster language and
integrate the state-of-the-art algorithms developed for SQISign. This also per-
mits an estimation of (relative) running times and complexities. An interesting
question for future work is whether there are other ways to instantiate this idea.
For example, can we use orientations like in OSIDH [7] to prove that we took
the correct path since different paths generate different orientations?
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