
Unmodified Half-Gates is Adaptively Secure
So is Unmodified Three-Halves

Xiaojie Guo∗ , † Kang Yang∗ Xiao Wang‡ Yu Yu§, ¶ Zheli Liu†

January 16, 2024

Abstract

Adaptive security is a crucial property for garbling schemes in pushing the communication of
garbled circuits to an offline phase when the input is unknown. In this paper, we show that the
popular half-gates scheme by Zahur et al. (Eurocrypt’15), without any modification, is adaptively
secure in the non-programmable random permutation model (npRPM). Since real implementations
of selective-secure half-gates are already based on npRPM, our result shows that these implemen-
tations are already adaptively secure under the same condition where selective security is proven.
Additionally, we expand our analysis to cover the recent three-halves construction by Rosulek and
Roy (Crypto’21). As a byproduct, we discuss some optimizations and separation when considering
the programmable random permutation model instead.

1 Introduction
Garbled circuits (GCs) [Yao86, BHR12b] play an important role in constructing many cryptographic
protocols, including secure two-party computation (2PC) [Yao86], zero-knowledge proofs [JKO13],
identity-based encryption [DG17], etc. In a garbling scheme, a garbler creates a garbled circuit f̂ and
a garbled input x̂ for circuit f and input x, respectively. An evaluator, given f̂ and x̂, can compute a
garbled version of f(x), which can be further decoded.

Two categories of security have been widely studied in the literature: simulation-based selective
security and simulation-based adaptive security.1 In selective security, the adversary chooses (f, x) in
one shot and is asked to distinguish between a real-world execution consisting of honestly computed
(f̂ , x̂) and an ideal-world execution where the values are simulated using only f(x). In adaptive se-
curity, the adversary is given more power to adaptively choose input x based on the garbling f̂ for f :
it first chooses f and receives f̂ in the offline phase, and then chooses x and receives x̂ in the online
phase. Clearly, adaptive security is stronger than selective security. The size of garbled input x̂ is lin-
ear in the size of input x and independent of circuit size |f |. Therefore, adaptive security allows us
to achieve significantly lower online communication cost, by pushing the communication of garbled
circuits (linear in |f |) to the offline phase. As a result, a direct application of adaptive garbling is to
design 2PC protocols with low online communication, e.g., [IK00, AIKW13, LR14, LR15, RR16, MR17].
In addition, adaptively secure garbling schemes underlie one-time programs [GKR08], functional en-
cryption [SS10, GVW12], verifiable computation [GGP10, AIK10], etc.

Both security notions have been heavily studied but with very different philosophies and outcomes.
For selective security, most prior works focus on how to reduce the computational cost and the size of
garbled circuit f̂ . An impressive line of GC research [Yao86, BMR90, NPS99, KS08, PSSW09, KMR14,

∗State Key Laboratory of Cryptology. Email: yangk@sklc.org
†Nankai University. Email: xiaojie.guo@mail.nankai.edu.cn, liuzheli@nankai.edu.cn
‡Northwestern University. Email: wangxiao@northwestern.edu
§Shanghai Jiao Tong University. Email: yuyu@yuyu.hk
¶Shanghai Qi Zhi Institute.
1As we focus on simulation-based security in this paper, we will omit the prefix and use “adaptive/selective security”

unless it is not clear from the context.

1

mailto:yangk@sklc.org
mailto:xiaojie.guo@mail.nankai.edu.cn
mailto:liuzheli@nankai.edu.cn
mailto:wangxiao@northwestern.edu
mailto:yuyu@yuyu.hk

Schemes Security Offline Cost Online Cost Security Loss Assumption

[JSW17]
IND C · 8λ+m · 4λ n · 2λ+O(d · λ2 · logC) 2O(d) OWF

IND C · 8λ+m · 4λ n · 2λ+O(w · λ2 · logC) poly(C, λ) OWF

[KKPW21] IND C · 4λ m+ nλ 2O(
√
d) OWF

[KKP21] IND C · 4λ+m nλ CO(w) OWF

[HJO+16]
SIM C · 4λ m+ nλ+O(d · λ2 · logC) 2O(d) OWF

SIM C · 4λ m+ nλ+O(w · λ2 · logC) poly(C, λ) OWF

[JW16, JKK+17] SIM C · 4λ m+ nλ 2O(d) OWF

[JO20] SIM C · 2λ+ A · λ m+ nλ 2O(d) OWF

[GS18] SIM C · poly(λ) m+ n+ poly(λ, logC) poly(C, λ) CDH/LWE/etc

[BHR12a] SIM A · {1.5λ, 2λ}+m nλ poly(C, λ) pROM

[LR15] SIM A · 3λ+m nλ poly(C, λ) pROM

This work
SIM A · {1.5λ, 2λ} m+ nλ poly(C, λ) npRPM

SIM A · {1.5λ, 2λ}+m nλ poly(C, λ) pRPM

Table 1: Comparison of adaptively secure garbling schemes. “SIM” (resp., “IND”) denotes the
simulation-based (resp., indistinguishability-based) security. The offline and online costs only focus
on communication, where minor terms are omitted for simplicity. The notation C (resp., A) is the
total number of all AND and XOR gates (resp., only AND gates). Let λ, n,m,w, d be the security
parameter, input size, output size, circuit width and circuit depth, respectively. OWF denotes the one-
way function. pROM denotes the programmable random oracle (RO) model. pRPM (resp., npRPM)
denotes the programmable (resp., non-programmable) random permutation model.

GLNP15, ZRE15, RR21] have reduced the size of f̂ from 8λ to 2λ [ZRE15] or 1.5λ [RR21] bits per AND
gate, while XOR gates are free using the free-XOR technique [KS08], where λ is the security parameter.
To reduce the computational cost, almost all implementations instantiate the correlation robust hash
functions needed for free-XOR [KS08] in the random permutation model (RPM), which is commonly
instantiated by fixed-key AES and accelerated using AES-NI [BHKR13, GKWY20, GKW+20]. This leads
to garbling schemes producing more than 20 million garbled AND gates per second [WMK16]. On the
other hand, research in adaptive security has mostly studied from a more theoretical aspect. In contrast
to schemes with selective security, results in adaptive security [BHR12a, HJO+16, JW16, JKK+17, GS18,
JO20] are mostly in the standard model but all require some compromise either in exponential security
loss or in undesirable online communication, unless Cryptomania assumptions are used. Some efforts
consider indistinguishability-based adaptive security [JSW17, KKPW21, KKP21], a weaker notion that
does not allow composability immediately, but even with this relaxation, the best-known result is still
not desirable. We summarize all garbling schemes with adaptive security in Table 1.

In practice, most implemented garbling schemes only have selective securityworking in the random
permutation model, while most analyzed adaptive schemes only need a pseudorandom function (PRF)
but never got implemented. There are some works that sit in the middleland. For example, Gueron et
al. [GLNP15] proposed a concretely efficient selective-secure garbling scheme based solely on PRFs;
however, the scheme is not compatible with free-XOR. On the other hand, all existing implementations
of adaptive garbling schemes are proven in the programmable random oracle model (ROM), either fol-
lowing the work by Bellare et al. [BHR12a] where a generic selective-to-adaptive transformation was
proposed [LR14, RR16], or directly proving that the garbling scheme is secure in the programmable
ROM [LR15]. Clearly, there is a huge gap between what is being implemented and the security prop-
erties that we hope to prove.

2

1.1 Our Contribution
In this work, we prove that half-gates [ZRE15] and three-halves [RR21], the two state-of-the-art se-
lectively secure garbling schemes, already comply with the adaptive security requirement in the non-
programmable RPM (npRPM) [RS08, BHKR13]. As real implementations of these two schemes already
used a random permutation to instantiate circular correlation robust (CCR) hash functions [ZRE15,
GKWY20, RR21], our results are essentially proven in the same model as the selective-secure setting.
We view our result as something valuable in both theory and practice. On the theoretic side, although
the resulting construction still needs an ideal model, it is the first time that the adaptive security of
concretely efficient garbling schemes is proven in a non-programmable model; furthermore, a λ-to-λ
random permutation appears more plausible compared to a random oracle with unlimited entropy. On
the practical side, by not changing the garbling schemes at all, the resulting schemes incur zero ad-
ditional computation/communication overhead and no change of implementation. Below, we discuss
our result in more detail.

Adaptive security in the npRPM. Our main result is the simulation-based adaptive security of the
two schemes in the npRPM, which is a realistic and conservative model of block ciphers by giving all
parties the oracle access to the same random permutation and its inverse. Our proof idea significantly
differs from the pebbling games in prior works [HJO+16, JW16, JKK+17, GS18, JO20] to support free-
XOR [KS08]: all garbled gates are correlated with the same global key, making it impossible to use
a gate-by-gate hybrid argument in a black-box way. Instead, we regard a garbled circuit as a whole
by considering it as part of a transcript produced in the interaction between an adaptive adversary
and a challenger in the real or ideal world. We bound the advantage of the adaptive adversary via the
statistical distance of transcripts in the two worlds, since w.l.o.g. the adversary is deterministic so that
its decision bit is a deterministic function of a transcript. As it suffices to prove the adaptive security
against a slightly more powerful adversary that has additional information, we introduce an approach
called transcript padding that pads a transcript with more values to be revealed to the adversary. This
approach helps us to bound the statistical distance. We have the following theorem.

Theorem 1 (informal). In the non-programmable RPM, half-gates and three-halves are adaptively secure
against any computationally unbounded non-uniform adversary, which makes q queries to a random per-
mutation and its inverse, and chooses a circuit f : {0, 1}n → {0, 1}m with s AND gates, with advantage
at most O(qs/2λ) and online communication of m+ nλ bits.

Adaptive security in the pRPM. We also prove that half-gates and three-halves are already adap-
tively secure in the programmable RPM (pRPM) to cover the implementations that send the decoding
information in the offline phase instead of the online phase. We prove their adaptive security also via
transcript padding and the statistical distance of transcripts. One difference is to construct a simulator,
which programs the random permutation such that its responses w.r.t. the garbled labels of output
wires maintain decoding correctness (i.e., these labels can be decoded to the correct circuit output).
We fix the responses in the transcripts with padding, and additionally identify the transcripts, which
fail programming, to bound their effect on the statistical distance. As such responses are sampled at
random by the simulator, this effect would be negligible. The following result in the pRPM gives a
trade-off between online communication and assumption.

Theorem 2 (informal). In the programmable RPM, half-gates and three-halves are adaptively secure
against any computationally unbounded non-uniform adversary, which makes q queries to a random per-
mutation and its inverse, and chooses a circuit f : {0, 1}n → {0, 1}m with s AND gates, with advantage
at most O(qs/2λ) and online communication of nλ bits.

Separation between the npRPM and pRPM. Finally, we prove that the above gap of online com-
munication is inherent in the programmability of the ideal permutation, which gives a separation of
adaptively secure garbling schemes in the two RPMs. Particularly, we have that

3

Theorem 3 (informal). For any n,m ∈ N+, there is a circuit f : {0, 1}n → {0, 1}m such that any
garbling scheme with simulation-based adaptive security in the non-programmable RPM has online com-
munication of at leastm bits.

Our proof builds upon the poof idea [AIKW13, HW15] in the standard model, which constructs a
pair of polynomial-sized circuits from the simulator and the evaluation algorithm in a garbling scheme
to contradict the Yao entropy [Yao82, BSW03, HLR07] of evaluation result. We modify these circuits
to hardcode an approximate random permutation and its inverse, and to ensure that they are still of
polynomial sizes. The resulting circuits also break the Yao entropy, implying a quantitatively identical
lower bound of online communication complexity in the npRPM. In our previous results, we already
show that half-gates and three-halves can be implemented to match this lower bound. In contrast, the
pRPM endows the simulator the programmability to embed a circuit output into its internal state to
maintain the decoding correctness, even if the decoding information has been fixed before the circuit
output is known. As a result, the online communication in the pRPM can bypass this lower bound.

2 Technical Overview
2.1 Previous Techniques
We claim that the existing techniques fail to prove adaptive security of half-gates [ZRE15] and three-
halves [RR21], the two state-of-the-art garbling schemes with selective security. These schemes adopt
free-XOR optimization [KS08], where an active label XORed with its coupled inactive label matches a
global offset ∆ for each wire. In these schemes, a gate ciphertext is an one-time pad (OTP) encryption
with a mask H(X ⊕∆, k)⊕ b∆ for active label X, tweak k, and bit b dependent on a truth bit.

The selective security of the two schemes can be reduced to circular correlation robust (CCR) hash
functions by properly dealing with tweaks. More specifically, the reduction algorithm adaptively calls
the CCR oracle to obtain pseudorandom masks of form H(X ⊕ ∆) ⊕ b∆ when it is given an input x
chosen by the selective adversary. Here, input x is used to compute all truth bits on circuit f to get all
b’s in the masks. The obtained masks bridge a real garbled circuit and a simulated one. However, for
adaptive security, the same reduction algorithm fails since it has not received an online input from the
adaptive adversary when an offline garbled circuit should be simulated.

For adaptive security, almost all previous proofs [HJO+16, JW16, JKK+17, GS18, JO20] follow the
proof method [LP09] of Yao’s garbling scheme in the selective setting (i.e., the approach based on peb-
bling games)2. Such a pebbling game changes all real-world garbled gates (i.e., white pebbles) to simu-
lated ones (i.e., black pebbles) using a carefully designed hybrid argument, where each hybrid bridges
an input-dependent garbled gate (i.e., gray pebble) and a real-world or simulated one. To ensure that
such gray pebbles are consistent with the input (being undefined until the online phase), these works
adopt somewhere equivocal encryption or piecewise guessing in the construction of the gray pebbles,
which incurs high overhead or non-negligible security loss.

In the pebbling-game-based works, there are two notable facts: (i) a pebbling hybrid changes only
one pebble, and (ii) the indistinguishability between a gray pebble and a white/black one comes from
a black-box reduction to the security of some cryptographic primitive. So, any two pebbling hybrids
should be respectively reduced to two independent instances of the primitive in a black-box way. In
these works, this primitive acts as an encryption scheme for truth bits and all encryptions should be
independent. However, all garbled gates in half-gates and three-halves are correlated under the same
free-XOR offset ∆. This correlation implies that a pebble-by-pebble hybrid argument cannot prove the
adaptive security of these schemes.

To sum up, we need to address the following two challenges simultaneously to prove the adaptive
security of half-gates and three-halves:

(c1) How to consider all garbled gates as a whole garbled circuit to capture that they are correlated
under a global offset ∆? This challenge is not solved by the prior works of adaptive garbling

2The exceptions are the work by Bellare et al. [BHR12a] using circuit-wise padding in the pROM and the work by Lindell
et al. [LR15] with a gate-by-gate use of the pROM.

4

without relying on programmable ROM.

(c2) How to prove the indistinguishability between a simulated garbled circuit and a real one based
on a proper computational assumption, without modifying the two schemes?
Clearly, this indistinguishability is necessary for adaptive garbling since the adaptive adversary
is given the garbled circuit. The known proofs of the two unmodified schemes turn to CCR hash
functions. As recalled, these CCR-based proofs can only address this challenge in the selective
setting. For adaptive security, they fail because the online input is unspecified when the input-
dependent CCR queries should be made to the CCR oracle to simulate the garbled circuit.

2.2 Our Approach
Below, we outline how to address the above two challenges and prove adaptive security of the two
schemes, followed by a toy example and our separation result between npRPM and pRPM.

Core idea: Using statistical distance instead of complexity-theoretic reduction. In our proofs,
we do not pursue security reduction to computationally secure primitives but study adaptive garbling
in a general statistical framework: a computationally unbounded non-uniform adversaryA adaptively
interacts with either a real-world oracle O0 or an ideal-world oracle O1 and outputs its decision bit after
the interaction. Both oracles provide the same query interfaces to A. The interaction between A and
Ob defines a random variable Zb of transcripts, which records query-response pairs in order. Without
loss of generality, we assume that non-uniform adversaryA is deterministic3 so that its decision bit is a
deterministic function of its auxiliary input and a transcript sampled according to Zb. It is well-known
that the advantage of adaptive adversary A is upper bounded by statistical distance SD(Z0, Z1). This
statistical perspective considers a stronger adaptive adversary than the complexity-theoretic one and
paves a way to prove adaptive security other than reduction to adaptively secure building blocks.

More specifically, adaptivity in this framework is captured by the ordered query-response pairs in
a transcript. Note that SD(Z0, Z1) is defined from probability Pr [Zb = τ] for each possible transcript
τ and b ∈ {0, 1}. To compute this probability, it is crucial to deal with the adaptivity that is implicit in
the defined random variable of transcripts. Let us consider fixed b ∈ {0, 1} and transcript τ of ordered
pairs ((q1, r1), . . . , (qn, rn)). Intuitively, probability Pr [Zb = τ] = 0 if the next-message function of
a fixed non-uniform deterministic A can never produce queries q1, . . . , qn in order when responses
r1, . . . , rn arrives in order. Otherwise, A certainly produces these queries upon receiving r1, . . . , rn
in order (as A is deterministic and it is a yes-or-no event) and Pr [Zb = τ] quantitatively matches the
probability that A is given responses r1, . . . , rn in order, i.e., the probability that oracle Ob produces
responses r1, . . . , rn in order if queries q1, . . . , qn arrives in order. Plugging this observation (which
is implicit in the analysis [Pat09, CS14, DLMS14, HT16] of symmetric-key primitives and recalled in
Lemma 1) into the framework, we have a general proof blueprint of adaptive security against A:

Proof blueprint of adaptive security
For each transcript τ with Pr [Z0 = τ] ̸= 0 or Pr [Z1 = τ] ̸= 0 (i.e., τ raises SD(Z0, Z1)), if O0
and O1 have statistically close probability of being “compatible with τ ”, i.e., producing the ordered
responses in τ when given the ordered queries in τ , then the advantage of A is negligible.

Note that the two probabilities are only taken over the randomness of the two oracles, respectively.
In essence, this statistical blueprint quantifies over all possible interaction transcripts in both two

worlds and replaces the adaptive adversary with all sequences of ordered queries in these transcripts.
Using this quantification, we no longer run an adaptive adversary to extract its adaptive queries and
use the oracle of some low-level primitive to answer each query as in complexity-theoretic reduction.
Instead, we consider all possible outcomes of adaptive queries to bound their effect on the advantage
of an adaptive adversary. So, the proof blueprint will not confront a challenge in the reduction-based
proofs of adaptive security: given the real execution where a response will be consistent with future

3A non-uniform adversary is at least as powerful as a probabilistic adversary [Can00].

5

Real-world oracle O0

π±1 Garble Encode

Adaptive adv. A
f̂ x̂xf

(a) Real-world garbling in the npRPM/pRPM.

Ideal-world oracle O1

π±1 SimF SimIn

Adaptive adv. A
f̂ x̂xf

(b) Ideal-world garbling in the npRPM.

Ideal-world oracle O1

SimP±1 SimF SimIn

Adaptive adv. A
f̂ x̂xf

(c) Ideal-world garbling in the pRPM.

Figure 1: Experiments of adaptive garbling in the npRPM and pRPM. (a) versus (b): The experiment in
the npRPM, with simulator (SimF, SimIn). (a) versus (c): The experiment in the pRPM, with simulator
(SimF, SimIn, SimP±1). In these experiments, A can make permutation queries at any time.

adaptive queries as per the real oracle of some low-level primitive, and the ideal execution where the
response is sampled at random as in the ideal oracle, how to bridge the two executions via a security
reduction to the primitive? This challenge has been noticed by the known proofs of adaptive garbling
(see challenge (c2) in Section 2.1) and causes additional costs.

Remark 1 (Computationally secure primitives are useless in the proof blueprint). Note that the proof
blueprint requires that the two probabilities of being compatible with each possible transcript have negli-
gible difference. Clearly, this statistical closeness cannot be bounded by a computational advantage in the
complexity-theoretic reduction to some computationally secure primitive. Instead, one can turn to explicit
randomness (e.g., ideal models and uniform coins) to compute this difference directly.

RPM-based adaptive garbling from the proof blueprint. We prove the adaptive security of half-
gates and three-halves by instantiating the blueprint. In our proof, real-world oracle O0 runs the gar-
bling scheme while ideal-world oracle O1 is defined from the simulation. As the two schemes are in
RPM, both oracles provide adaptive adversary A with not only an offline interface for garbled circuit
and an online interface for garbled input, but also two interfaces for the random permutation and its
inverse. In Figure 1, we illustrate two experiments of adaptive garbling in this blueprint according to
whether the RPM is programmable or not. In either RPM, A can make queries to the random permu-
tation and its inverse at any time; the online interface can only be queried by A after the offline one.
In each world, the probability of being compatible with any fixed transcript is taken over the random
permutation and other uniform random coins. Here, challenge (c1) is addressed as a garbled circuit is
a part of a transcript, and we have discussed that the blueprint can bypass challenge (c2) in general.

To simplify probability analysis in the blueprint, our proof considers two relaxations of the statis-
tical distance. First, we study the statistical distance for a more powerful adaptive adversary, which is
explicitly given more messages by padding them into transcripts. Since the adversary can omit these
padding messages at will, a quick proof using the optimal-distinguisher-based definition of statistical
distance can show that this new statistical distance is at least the original one. Roughly, the padding
messages fix (i) the RPM-based hash values of all active labels (along with the query-response pairs

6

of the random permutation and its inverse therein), (ii) all truth bits and active labels on internal and
output wires, (iii) free-XOR offset ∆ (which is revealed at the end of interaction so that no more per-
mutation queries can depend on it), and (iv) all randomization bits (only in three-halves). The padding
messages along with the original transcript explicitly fix all randomness in garbling but capture that
no arbitrary permutation query depends on ∆. The fixed randomness makes it easier to compute the
probability that the random permutation and its inverse are consistent with the query-response pairs
in transcripts. We call this relaxation transcript padding.

Second, we use the H-coefficient technique [Pat09, CS14, DLMS14] to bound the above statistical
distance instead of computing it directly. For any fixed (more powerful) A, let TA be a set collecting
every transcript τ with Pr [Z0 = τ] ̸= 0 or Pr [Z1 = τ] ̸= 0. This technique divides TA into a set Tbad
of bad transcripts and a set Tgood := TA \ Tbad of good transcripts. It proves that SD(Z0, Z1) ≤ ε1 + ε2
if
∑

τ∈Tbad Pr [Z1 = τ] ≤ ε1 and, for every τ ∈ Tgood, 1− Pr [Z0 = τ]/Pr [Z1 = τ] ≤ ε2.

How to define bad and good transcripts? The definition of these transcripts depends on whether
the RPM is programmable or not. In our proofs of half-gates and three-halves, npRPM considers the
known implementations that send the decoding information in the online phase (e.g., Obliv-C [ZE15],
ObliVM [LWN+15], and TinyGarble [SHS+15]) while pRPM can facilitate those with offline decoding
information (e.g., ABY [DSZ15] and MP-SPDZ [Kel20]).

As the main component of transcripts, a (simulated) garbled circuit is sampled by the ideal-world
oracle at random. In the real world, we require a statistically close distribution of real garbled circuit.
Very roughly, in a real garbled circuit, each gate ciphertext equals the XOR of (a) the two RPM-based
hash values of one active label and its coupled inactive label, (b) a linear function of two active labels,
and (c) a linear function of offset ∆. In free-XOR optimization, an inactive label is its coupled active
one XORed with ∆. In the two schemes, the hash function is tweakable and can be instantiated with
H(X, k) = π(X ⊕ k)⊕ σ(X ⊕ k), where π is a random permutation and σ is a linear orthomorphism
(see [GKWY20] or Section 3.1 for details). Using this hash function in (a), we see each gate ciphertext
is effectively masked by some permutation image of form π(X ⊕∆⊕ k) for active label X and tweak
k. To achieve the above statistical closeness, such masks should be OTPs so that they are not trivially
revealed in transcripts or do not have pairwise collision.

In the npRPM, a transcript is bad if and only if it violates this OTP requirement. First, such a mask
is revealed if and only if there exists a query-response pair of form (X⊕∆⊕ k, π(X⊕∆⊕ k)) in the
transcript. Second, two masks of form π(X ⊕∆ ⊕ k) lead to pairwise collision if and only if at least
one the following events occurs:

1. There exists collision between two permutation pre-images of form X ⊕∆⊕ k. Equivalently, there
exists collision between two permutation pre-images of form X ⊕ k, or between two permutation
images of form π(X ⊕ k). All implications follow from that the random permutation is invertible
by querying its inverse. For the equivalent event, all relevant values of pre-images and images are
fixed by the query-response pairs in the transcript given (i) in transcript padding.

2. There exists collision between the values of two masks, each of which is computed by subtracting
other values from a masked gate ciphertext. These subtracted values are fixed by the transcript as
per (a), (b), and (c). In particular, all linear functions in (b) and (c) are defined from (ii) (as well as
(iv) in three-halves) in transcript padding.

The badness of such transcripts results from that the attacks against OTPs work when the adversary is
given these transcripts, blowing up the statistical distance.

Remark 2 (On unique tweaks to resist a trivial pairwise collision between masks). Some attacks (e.g.,
[NS23]) have shown that the pairwise collision between masks can be exploited to distinguish between the
real and ideal executions. Since the adversary can choose a circuit at will, this circuit can have some wire
i (or rather, its active labelXi) being used more than once (e.g., in circuit xj = AND(xi, xi)). In this case,
bad transcripts also capture the pre-image collision between Xi ⊕ k and Xi ⊕ k′, i.e., between tweaks k
and k′. Since all tweaks are public, they are required to be pairwise distinct to avoid this trivial collision.

7

In half-gates, a tweak is computed from a unique gate ID and an indicator bit of either input wire of
this gate using the tweak. In the three-halves with its computational optimization4, we have a counter ctri
for each wire i and, upon every use of active label Xi, use (i ∥ ctri) as a fresh tweak and increase ctri by
1. The above definitions ensure globally unique tweaks. Even if free-XOR in the two schemes produces two
syntactically identical active labels Xi = Xj on two wires i ̸= j, such tweaks are still pairwise distinct.
Indeed, Nieminen and Schneider [NS23] have pointed out that both half-gates and three-halves schemes
are not vulnerable to their attack.

In the pRPM, bad transcripts correspond to the attacks against OTPs or failed programming. Note
that this model allows for offline decoding information, which should be consistent with the LSBs of
active output labels and the truth bits on output wires. Since these truth bits are not fixed until the
online phase, we program the random permutation and its inverse to let them output the active labels
consistent with the decoding information fixed in the offline phase. The programming manipulates all
permutation entries accessed to evaluate a garbled circuit. These entries are fixed by all active labels
and RPM-based hash values in a transcript with padding. A programming is successful if and only if,
in this transcript, these entries have not been occupied by the query-response pairs before the online
phase. This complements our definition of bad transcripts in addition to that in the npRPM.

A toy proof. Based on our methodology, we present a toy proof to demonstrate how to compute ε1
and ε2. Here, we consider half-gates and an adaptive adversary choosing a circuit f of an AND gate
g with two input wires (a, b) and an output wire c. This proof can be generalized to three-halves and
arbitrary circuits5 chosen by the adversary.

For any fixed adaptive adversary A in transcript padding, a transcript τ ∈ TA consists of offline
part (f, f̂), online part (x = (xa, xb), x̂), query-response pairs w.r.t. the random permutation and its
inverse, and free-XOR offset ∆ with lsb(∆) = 1. The query-response pairs are recorded before ∆ at
any time and include the adaptive queries chosen by A and their responses.

In the npRPM, f̂ contains two gate ciphertexts (G0, G1) while x̂ fixes output bit xc = xa · xb, all
active labels {Xi = Wi ⊕ xi∆}i∈{a,b,c} for zero-bit labels {Wi}i∈{a,b,c}, decoding information dc =
xc ⊕ lsb(Xc), and two RPM-based hash values

H(Xa, k0) = π(Xa ⊕ k0)⊕ σ(Xa ⊕ k0), H(Xb, k1) = π(Xb ⊕ k1)⊕ σ(Xb ⊕ k1) (1)

for two distinct tweaks (k0, k1). Since ∆ has a non-zero LSB, for each wire i ∈ {a, b, c}, permuted bit
pi = lsb(Wi) and masked bit si = lsb(Xi) satisfy si = pi ⊕ xi. In the real world, oracle O0 samples
(Wa,Wb) at random and computes

G0 = H(Wa, k0)⊕ H(Wa ⊕∆, k0)⊕ pb∆
G1 = H(Wb, k1)⊕ H(Wb ⊕∆, k1)⊕Wa

Wc = H(Wa ⊕ pa∆, k0)⊕ H(Wb ⊕ pb∆, k1)⊕ papb∆
(2)

and x̂ as above. In contrast, ideal-world oracle O1 samples (G0, G1) at random and computes x̂ as in
the real world, except that (Xa, Xb) are uniformly sampled and

Xc = H(Xa, k0)⊕ H(Xb, k1)⊕ saG0 ⊕ sb(G1 ⊕Xa) (3)

is equivalently written as the real-world one. In both worlds, the hash values in (1) are computed by
calling the random permutation and consistent with two fixed query-response pairs for permutation
pre-images Xa ⊕ k0 and Xb ⊕ k1.

Suppose that A makes q distinct queries to the random permutation and its inverse in addition to
the above two query-response pairs. First, we bound ε2 for some fixed τ ∈ Tgood ⊆ TA . Without loss

4When being implemented, the three-halves scheme with the computational optimization would be preferred.
5For general circuits, we require that all conditions of bad transcripts also hold for the relevant values of all AND gates.

8

of generality, we can assume Pr [Z1 = τ] ̸= 0 in the ideal world; otherwise ε2 = 0 trivially. In the real
world, (2) fixes the values of two OTP masks as per the right-hand fixed values in transcript τ :{

π(Xa ⊕∆⊕ k0) = G0 ⊕ σ(∆)⊕ (sb ⊕ xb)∆⊕ π(Xa ⊕ k0)
π(Xb ⊕∆⊕ k1) = G1 ⊕ σ(∆)⊕Xa ⊕ xa∆⊕ π(Xb ⊕ k1)

(4)

while Wc in (2) must be consistent with the right-hand fixed values in τ as per (3). Using the pairwise
distinctness in good transcripts, we have that τ fixes q + 4 linkages between permutation pre-images
and images. Taking over uniform (Wa,Wb), random permutation π, and uniform ∆ with lsb(∆) = 1,
it holds that Pr [Z0 = τ] = 1

(2λ)2
· (2

λ−q−4)!
(2λ)!

· 1
2λ−1 . In the ideal world, (G0, G1) are uniformly random

and need not satisfy (4) to fix two linkages of the random permutation. Meanwhile, these two linkages
are not fixed in good transcripts. So, Pr [Z1 = τ] = 1

(2λ)2
· (2

λ−q−2)!
(2λ)!

· 1
(2λ)2

· 1
2λ−1 and ε2 = 0 for

Pr [Z0 = τ]

Pr [Z1 = τ]
=

(2λ)q+2 · (2λ)2

(2λ)q+4
=

(2λ)2

(2λ − q − 2)2
≥ 1.

Second, we claim that a negligible ε1 bounds the probability of bad transcripts in the ideal world.
This claim resorts to a negligible probability of pairwise collision and a negligible one of the existence
of any ∆-dependent query-response pair. Intuitively, the former probability is taken over the (nearly)
uniformly random pre-images (i.e., Xa ⊕ k0 or Xb ⊕ k1) or images (i.e., π(Xa ⊕ k0) or π(Xb ⊕ k1)).
The latter probability results from the entropy of ∆ since no query-response pair can depend on it.

This analysis of ε1 and ε2 concludes the adaptive security of half-gates in the npRPM. As for the
adaptive security in the pRPM, transcripts are defined as in the npRPM, except that decoding informa-
tion dc is moved from online garbled input x̂ to offline garbled circuit f̂ . Then, ε1 increases due to the
additional bad transcripts failing programming. Note that permutation entries (Xa ⊕ k0, π(Xa ⊕ k0))
and (Xb ⊕ k1, π(Xb ⊕ k1)) should never be occupied by the query-response pairs before the online
phase to ensure a successful programming. It also follows from the randomness of these pre-images
and images that the increased ε1 is still negligible.

For formal proofs, we refer readers to Section 4 for the half-gates in the npRPM, Appendix C for
the half-gates in the pRPM, and Appendix D for the three-halves in both RPMs.
2.3 Separating npRPM from pRPM for Adaptive Garbling
In the npRPM, the simulator of adaptive garbling consists of two probabilistic polynomial-time (PPT)
algorithms: SimFπ

±1(·) and SimInπ
±1(·), which have oracle access to a random permutation π and its

inverse π−1. The former simulates garbled circuit f̂ (without online input x) and outputs an inter-
nal state, while the latter simulates garbled input x̂ given the internal state and circuit output f(x).
Intuitively, since the simulated x̂ is the only message that can depend on f(x), x̂ should consist of
“adequate” information of f(x). Otherwise, we cannot reconstruct f(x) from the simulated (f̂ , x̂) in
the ideal world, making the real world and ideal world trivially distinguishable.

Following prior works [AIKW13, HW15], we will also evaluate this “adequacy” based on the Yao
entropy [Yao82, BSW03, HLR07] of f(x). This entropy is formalized as the minimal bit-length of an
efficiently computable compressed form of f(x), which can be decompressed to f(x) with probability
significantly more than 1/2. Similar to the standard-model lower bound in the prior works, we can
prove that the bit-length of x̂ should be at least the Yao entropy of f(x) in the npRPM. The high-level
idea is that the simulator can compress f(x) into x̂, which can be decompressed using the evaluation
algorithm of garbling scheme with overwhelming probability. Otherwise, the ideal world is trivially
distinguishable from the real one. Recall that the simulator and the evaluation algorithm are PPT and
the adversary also makes a polynomial number of queries to π±1. The total number of permutation
queries in such compression and decompression is polynomial, and their responses can be approxi-
mated by uniform strings up to negligible statistical distance. As a result, the above compression and
decompression have polynomial-size circuits as required by Yao entropy, where the circuits hardcode
the uniform responses used to approximate the real ones from π±1.

9

More specifically, we first define an intermediate hybrid by replacing a random permutation and
its inverse with “coarse” approximation ◦π±1, which outputs a fresh random string upon a fresh query
but ensures the query-response consistency. Clearly, the advantage of any adaptive adversary to dis-
tinguish this hybrid and the ideal world is at most twice the birthday bound, which is negligible up to
a polynomial number of queries to the permutation and its inverse. Given that the garbling scheme is
adaptively secure in the npRPM, the ideal world is indistinguishable from the real one. As a corollary,
SimF

◦
π±1(·) and SimIn

◦
π±1(·) give an approximate simulation indistinguishable from the real world.

This indistinguishability implies that the approximate simulation results in (f̂ , x̂) that can be de-
coded to f(x) with overwhelming probability. If the bit-length of this x̂ is less than the Yao entropy
of f(x), we show that the approximate simulation contradicts this entropy. We can construct a com-
pression circuit that sequentially runs SimF

◦
π±1(·) and SimIn

◦
π±1(·) over some hardcoded random tape

to output such an x̂. The decompression circuit uses the same random tape to recompute f̂ output by
SimF

◦
π±1(·), and runs the deterministic evaluation algorithm to compute f(x) from (f̂ , x̂). According

to the coarse approximate permutation (which is hardcoded in the circuits), both circuits are of poly-
nomial sizes. Thus, these circuits contradict the Yao entropy of f(x), leading to a lower bound of the
online complexity in the npRPM. The detailed proof is presented in Appendix E.

However, this lower bound does not hold in the pRPM, where the simulator has another PPT al-
gorithm SimP±1 to emulate a random permutation and its inverse for queries (a) before f̂ , (b) after f̂
but before x̂, and (c) after x̂. It is notable that SimF, SimIn, and SimP±1 maintain an internal state. In
particular, given f(x) and the internal state, SimIn outputs simulated x̂ and an updated internal state
to be used in SimP±1 for case (c). Although we can prove that the output bit-length of SimIn should
exceed the Yao entropy of f(x), a part of the information of f(x) can be transferred into the updated
internal state so that the bit-length of the simulated x̂ can be lower than the Yao entropy. As a result,
the lower bound does not hold for a real-world x̂ since the real and ideal worlds are indistinguishable
for the adaptive security in the pRPM. This result is confirmed by our proofs for the adaptive security
of half-gates and three-halves in the pRPM, where programming is performed to embed the decoding
consistency, e.g., lsb(Xc) = xc ⊕ dc, into the internal state of the simulator.

3 Preliminaries
3.1 Notation
Throughout this paper, we use λ ∈ N to denote the security parameter. We use poly(·) (resp., negl(·))
for an unspecified polynomial (resp., negligible) function. For a, b ∈ N with a ≤ b, we denote by [a, b]
the set {a, . . . , b} and by (b)a the falling factorial b · (b − 1) · · · (b − a + 1). We use x ← S to denote
the uniform sampling of x from a finite set S. We use := to denote assigning a value or an output of
a deterministic algorithm to a left-hand variable. Let Sℓ denote the set of permutations on {0, 1}ℓ. Let
lsb(x) denote the least significant bit (LSB) of x ∈ {0, 1}n. Let ∥ denote the concatenation of bit-strings.
Let ⊖ denote the symmetric difference of sets, i.e., for two sets A,B, A⊖B := (A\B) ∪ (B\A).

Linear orthomorphism. A permutation σ : G → G over an additive Abelian group G is called a
linear orthomorphism if (i) σ(x + y) = σ(x) + σ(y) for any x, y ∈ G, (ii) σ′(x) := σ(x) − x is
also a permutation, and (iii) σ, σ′ and their inverses are efficiently computable. There are two simple
instantiations in [GKWY20]: (i) ifG is a field, σ(x) := c·x for some c ̸= 0, 1 ∈ G, and (ii) ifG = {0, 1}n,
σ(x) := (xL ⊕ xR) ∥xL where xL and xR are the left and right halves of x.

Circuits. Given a circuit f with fan-in two and fan-out one, we define:

• |f |: The number of AND gates.

• W(f),Win(f),Wout(f),Wand(f): The sets of wires, circuit input wires, circuit output wires, and
output wires of AND gates, respectively.

• G(f), Gand(f): The sets of gates and AND gates, respectively.

10

• For a gate g ∈ G(f), let (a, b) := (in0(g), in1(g)) denote the two input wires and c := out(g) denote
the output wire.

In Appendix A, we present the additional notation used in the appendices.
3.2 Random Permutation Model
In the random permutation model (RPM) [RS08, BHKR13], all parties have oracle access to random
permutation π and its inverse π−1 := inv(π). We refer to queries to π as forward queries and queries to
π−1 as backward queries. In this work, we consider non-programmable RPM (npRPM) and programmable
RPM (pRPM). Inspired by the separation [Nie02] w.r.t. the random oracle model [BR93], we formalize
the pRPM like a hybrid model, where an ideal functionality provides two π±1 interfaces. This model
gives the simulator the power to “appropriately” choose the responses to the adversary’s queries to
π±1. In contrast, all parties (as well as the real-world adversary and the simulator) in the npRPM are
given oracle access to a global π±1, whose responses cannot be chosen by the simulator.
3.3 Adaptive Security of Garbling Schemes
In Definition 1, we adapt the definition of adaptively secure garbling schemes in [HJO+16, JW16] for a
q-query computationally unbounded adversary in the npRPM and the pRPM. This definition combines
the evaluation and decoding algorithms in the literature [BHR12a, BHR12b] and does not explicitly
send the decoding table as part of a garbled circuit f̂ . To simplify the notation, we assume that all
algorithms and the adversary implicitly take the unary security parameter 1λ as input.

Definition 1 (Adaptively secure garbling scheme). For some polynomial ℓ, an ℓ(λ)-garbling scheme in
the npRPM or pRPM has three PPT algorithms, each of which is given oracle access to a random permutation
π ∈ Sℓ(λ) and its inverse π−1 := inv(π):

• (f̂ , k)← Garbleπ
±1(·)(f). The bit-length of f̂ is called offline complexity.

• x̂ := Encodeπ
±1(·)(k, x). The bit-length of x̂ is called online complexity.

• y := DecEvalπ
±1(·)(f̂ , x̂).

For some polynomials q, s, negligible function ε, and side-information function Φ, this scheme is said
(q(λ), s(λ), ε(λ),Φ)-adaptively secure in the npRPM (resp., pRPM) if it complies with correctness and
adaptive security in the npRPM (resp., pRPM). By default, Φ(f) = f is omitted in the definition.

• Correctness. For every polynomial-size circuit f : {0, 1}ℓin → {0, 1}ℓout , and every input x ∈ {0, 1}ℓin ,
it holds that

Pr

π ← Sℓ(λ), π
−1 := inv(π),

(f̂ , k)← Garbleπ
±1(·)(f),

x̂ := Encodeπ
±1(·)(k, x)

: DecEvalπ
±1(·)(f̂ , x̂) = f(x)

 = 1.

• Adaptive security in the npRPM. There exists a PPT simulator

Sim = (SimF, SimIn)

with an internal state stsim such that, for every auxiliary input z ∈ {0, 1}∗ and every computationally
unbounded adversary A = (A1,A2,A3) totally making q(λ) oracle queries and choosing a circuit

11

with s(λ) AND gates,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

(f̂ , k)← Garbleπ
±1(·)(f),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂ := Encodeπ
±1(·)(k, x)

: A3
π±1(·)(st2, f̂ , x̂) = 1



− Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

f̂ ← SimFπ
±1(·)(Φ(f)),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂← SimInπ
±1(·)(f(x))

: A3
π±1(·)(st2, f̂ , x̂) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ε(λ).

• Adaptive security in the pRPM. There exists a PPT simulator

Sim = (SimF, SimIn, SimP±1)

with an internal state stsim such that, for every auxiliary input z ∈ {0, 1}∗ and every computationally
unbounded adversary A = (A1,A2,A3) totally making q(λ) oracle queries and choosing a circuit
with s(λ) AND gates,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

(f̂ , k)← Garbleπ
±1(·)(f),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂ := Encodeπ
±1(·)(k, x)

: A3
π±1(·)(st2, f̂ , x̂) = 1



− Pr


(f, st1)← ASimP±1(·)

1 (z),

f̂ ← SimF(Φ(f)),

(x, st2)← ASimP±1(·)
2 (st1, f̂),

x̂← SimIn(f(x))

: ASimP±1(·)
3 (st2, f̂ , x̂) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ε(λ).

3.4 Framework of Adaptive Security and H-coefficient Technique
We prove the adaptive security of garbling schemes in the following framework of adaptive experi-
ments. In this framework, we consider a computationally unbounded non-uniform adversaryA, which
takes an auxiliary input and outputs a decision bit after making a bounded number of adaptive queries
to either a real-world or ideal-world oracle. Each oracle is stateful: for a query, a response is a determin-
istic function of the random tape, the query, and previous query-response pairs. The two oracles can
give multiple interfaces, each of which has the same syntax in the two worlds. For simplicity, whenever
we refer to a non-uniform adversary (e.g., A or A′), we assume that it has some auxiliary input fixed
in its context unless this auxiliary input is given explicitly.

Without loss of generality, we consider a deterministic computationally unbounded non-uniform
adversary A. The interaction between A and the oracle produces a transcript, which gives an ordered
list of query-response pairs from the view of A. For some fixed A, the distribution of transcripts in
either world results from the oracle’s random tape, or equivalently, the random sampling of a deter-
ministic oracle. So, the decision bit of A is a deterministic function of its (fixed) auxiliary input and a
transcript produced in the interaction, and its advantage is at most the statistical distance of transcripts
in the two worlds.

12

Let Ωreal (resp., Ωideal) denote the sample space where a deterministic real-world (resp., ideal-world)
oracle is sampled at random. For any fixed A, let TA denote the set of attainable transcripts s.t. a
transcript τ ∈ TA if and only if there exists a deterministic6 oracle ω′ such that the interaction between
A and ω′ produces τ . Let X : Ωreal → TA (resp., Y : Ωideal → TA) denote the random variable w.r.t.
the transcripts produced in the interaction between A and a real-world (resp., ideal-world) oracle ω
sampled from Ωreal (resp., Ωideal). For any fixed τ , let compreal(τ) ⊆ Ωreal (resp., compideal(τ) ⊆ Ωideal)
denote the set of compatible real-world (resp., ideal-world) oracles s.t. an oracle ω ∈ compreal(τ) (resp.,
ω ∈ compideal(τ)) if and only if there exists a deterministic non-uniform adversary A′ such that the
interaction between A′ and ω produces τ .

A key observation is that the adaptive interaction in random variablesX,Y can be “unfolded” to be
equivalently but easily studied from the compatibility between oracle and transcript. This compatibility,
as defined above, essentially means that an oracle will returns the responses in a fixed transcript τ in
order if the queries match their counterparts in τ and are sent (by adversary A′) to the oracle in the
given order. This observation is formalized in Lemma 1, and its proof for stateful oracles was sketched
in [DLMS14, Appendix D]. We also present a formal proof in Appendix B for completeness.

Lemma 1 ([DLMS14]). Let the notations be defined in Section 3.4. Then, for every auxiliary input z ∈
{0, 1}∗, every computationally unbounded adversary A, and every attainable transcript τ ∈ TA(z), it
holds that

Pr
ω←Ωreal

[X(ω) = τ] = Pr
ω←Ωreal

[ω ∈ compreal(τ)] ,

Pr
ω←Ωideal

[Y (ω) = τ] = Pr
ω←Ωideal

[ω ∈ compideal(τ)] .

For every fixed non-uniform A, the H-coefficient technique [Pat09, CS14, DLMS14] bounds the
statistical distance of transcripts in the experiment. It divides TA into two disjoint subsets Tbad ⊆ TA
and Tgood := TA \ Tbad. Then, it can prove an upper bound ε1 + ε2 of this statistical distance if it holds
that

Pr
ω←Ωideal

[Y (ω) ∈ Tbad] ≤ ε1, ∀τ ∈ Tgood :
Prω←Ωreal [X(ω) = τ]

Prω←Ωideal [Y (ω) = τ]
≥ 1− ε2,

where, for some τ ∈ Tgood, ε2 is defined to 0 if Prω←Ωideal [Y (ω) = τ] = 0.

4 Adaptive Security of Half-Gates in npRPM
Weprove that half-gates is adaptively secure in the npRPM.This scheme can be implemented in Figure 2,
which slightly differs from the original one of [ZRE15] in including decoding table d in garbled input
x̂ rather than garbled circuit f̂ . We will see in Appendix E that this difference is required to follow the
online-complexity lower bound in the npRPM.

Theorem 4. Let H(X, k) = π(X ⊕ k)⊕ σ(X ⊕ k) be a tweakable hash function whereX, k ∈ {0, 1}λ,
π ∈ Sλ is random permutation, and σ : {0, 1}λ → {0, 1}λ is a linear orthomorphism. Then, half-gates
(Figure 2) is a λ-garbling scheme with (q, s, ε)-adaptive security in the npRPM, where ε = (16qs+ 38s2)/
2λ.

Proof. The correctness is given by the proof [ZRE15] as postponing decoding table d does not affect
correctness. We only need to consider the simulation.

Our simulator Sim = (SimF, SimIn) is presented in Figure 3 and is obviously PPT. Then, we prove
this theorem using the following three hybrids:

• Hybrid0. This is the adaptive experiment using simulator Sim.
6Without loss of generality, we can assume that such an ω′ ∈ Ωreal ∪ Ωideal so that it is deterministic. Otherwise (i.e., no

such an ω′), the statistical distance is zero.

13

HG.Garbleπ
±1(·)(f):

1: ∆← {0, 1}λ−1 ∥ 1
2: for i ∈Win(f) do
3: Wi ← {0, 1}λ

4: for g ∈ G(f) in topology order do
5: (a, b, c) := (in0(g), in1(g), out(g))
6: if type(g) = XOR then Wc := Wa ⊕Wb

7: else if type(g) = AND then
8: kg0 := 2 · g − 1, kg1 := 2 · g
9: pa := lsb(Wa), pb := lsb(Wb)

10: Gg
0 := H(Wa, k

g
0)⊕ H(Wa ⊕∆, kg0)⊕ pb∆

11: Gg
1 := H(Wb, k

g
1)⊕ H(Wb ⊕∆, kg1)⊕Wa

12: Wc := H(Wa ⊕ pa∆, kg0)⊕ H(Wb ⊕ pb∆, kg1)⊕ papb∆

13: for i ∈Wout(f) do di := lsb(Wi)

14: return f̂ := (f ′ := f, F := {(Gg
0, G

g
1)}g∈Gand(f)), k := (f, d,∆,W)

HG.DecEvalπ
±1(·)(f̂ , x̂):

1: Parse f̂ = (f, {(Gg
0, G

g
1)}g∈Gand(f)), x̂ = ({Xi}i∈Win(f), d)

2: for g ∈ G(f) in topology order do
3: (a, b, c) := (in0(g), in1(g), out(g))
4: if type(g) = XOR then Xc := Xa ⊕Xb

5: else if type(g) = AND then
6: kg0 := 2 · g − 1, kg1 := 2 · g
7: sa := lsb(Xa), sb := lsb(Xb)
8: Xc := H(Xa, k

g
0)⊕ H(Xb, k

g
1)⊕ saG

g
0 ⊕ sb(G

g
1 ⊕Xa)

9: for i ∈Wout(f) do yi := di ⊕ lsb(Xi)

10: return y

HG.Encodeπ
±1(·)(k, x):

1: Parse k = (f, d,∆,W)
2: for i ∈Win(f) do
3: Xi := Wi ⊕ xi∆

4: return x̂ := ({Xi}i∈Win(f), d)

Figure 2: Half-gates garbling scheme [ZRE15].

SimFπ
±1(·)(f):

1: F := {(Gg
0, G

g
1)}g∈Gand(f) ← ({0, 1}2λ)|f |

2: {Xi}i∈Win(f) ← ({0, 1}λ)|Win(f)|

3: for g ∈ G(f) in topology order do
4: (a, b, c) := (in0(g), in1(g), out(g))
5: if type(g) = XOR then Xc := Xa ⊕Xb

6: else if type(g) = AND then
7: kg0 := 2 · g − 1, kg1 := 2 · g
8: sa := lsb(Xa), sb := lsb(Xb)
9: Ug

0 := π(Xa ⊕ kg0)⊕ σ(Xa ⊕ kg0), U
g
1 := π(Xb ⊕ kg1)⊕ σ(Xb ⊕ kg1)

10: Xc := Ug
0 ⊕ Ug

1 ⊕ saG
g
0 ⊕ sb(G

g
1 ⊕Xa)

11: return f̂ := (f, F), stsim := (f, X̃ := {Xi}i∈W(f), Ũ := {Ug
0 , U

g
1 }g∈Gand(f))

SimInπ
±1(·)(f(x)):

1: Parse stsim = (f, X̃ = {Xi}i∈W(f), Ũ)
2: for i ∈Wout(f) do di := f(x)i ⊕ lsb(Xi)

3: return x̂ := ({Xi}i∈Win(f), d), X̃, Ũ .

Figure 3: Our simulator for half-gates in the npRPM.

• Hybrid1. This is identical to the previous hybrid, except that we replace π±1 (which can be equiva-
lently emulated on-the-fly as in Figure 4) by an approximation π̃±1 (given in Figure 5). This approxi-
mation is the same as random permutation except that, for a new query of the simulator, it returns a

14

fresh random string as response and records this query-response pair. This hybrid is used to simplify
probability analysis.

• Hybrid2. This is the adaptive experiment using half-gates scheme.

Using the following Corollary 1 for the indistinguishability betweenHybrid0 andHybrid1 and Lemma 3
for that between Hybrid1 and Hybrid2, this theorem holds.

Before giving the proofs of Corollary 1 and Lemma 3, we prove the following lemma.

Lemma 2. Let P̃ℓ(λ) denote the distribution of π̃±1 in Figure 5 for n(λ) ∈ N+ queries. For every PPT
simulator Sim = (SimF, SimIn) making nsim(λ) ≤ n(λ) queries, every auxiliary input z ∈ {0, 1}∗, and
every computationally unbounded adversaryA = (A1,A2,A3)making n(λ)−nsim(λ) queries, it holds
that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

f̂ ← SimFπ
±1(·)(Φ(f)),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂← SimInπ
±1(·)(f(x))

: A3
π±1(·)(st2, f̂ , x̂) = 1



− Pr


π̃±1 ← P̃ℓ(λ),

(f, st1)← A1
π̃±1(·)(z),

f̂ ← SimFπ̃
±1(·)(Φ(f)),

(x, st2)← A2
π̃±1(·)(st1, f̂),

x̂← SimInπ̃
±1(·)(f(x))

: A3
π̃±1(·)(st2, f̂ , x̂) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ n(λ) · nsim(λ)

2ℓ(λ)−1
.

Proof. Let N ⊆ [1, n(λ)] denote the index set of the queries made by Sim such that |N | = nsim(λ).
Let true(π) denote the event that A3

π±1(·)(st2, f̂ , x̂) = 1 in the first experiment, true(π̃) denote the
counterpart in the second one, and bad denote the event that∨i∈N ((. . . , ci) ∈ Qi−1∨(ci, . . .) ∈ Qi−1).
We can study the two experiments under the same probability space, i.e., they use the same literal values
of (rπ, r∗π) and the random tapes of Sim and A.

We can see that true(π)∧¬bad occurs if and only if true(π̃)∧¬bad occurs, i.e., the two experiments
proceed identically unless bad occurs. Thus, it follows from the Difference Lemma that∣∣∣Pr [true(π)]− Pr [true(π̃)]

∣∣∣ ≤ Pr [bad] ≤
∑
i∈N

2 |Qi−1|
2ℓ(λ)

≤ n(λ) · nsim(λ)

2ℓ(λ)−1
,

which completes this proof.

Corollary 1. Let Sim be defined as in Figure 3. Then, for every auxiliary input z ∈ {0, 1}∗ and every
computationally unbounded adversaryA = (A1,A2,A3) totally making q oracle queries and choosing a
circuit with sAND gates,A(z) can distinguishHybrid0 andHybrid1 with advantage atmost (2qs+ 4s2)/
2λ−1.

Proof. This corollary follows from Lemma 2 by using ℓ(λ) = λ, nsim(λ) = 2 |f |, andn(λ) = q+nsim(λ),
given q queries of A and 2 |f | = 2s queries of Sim.

Then, we will use the H-coefficient technique (Section 3.4) with “transcript padding” to bound the
advantage of distinguishing Hybrid1 and Hybrid2.

Lemma 3. Let Sim be defined as in Figure 3. Then, for every auxiliary input z ∈ {0, 1}∗ and every compu-
tationally unbounded adversaryA = (A1,A2,A3) totally making q oracle queries and choosing a circuit
with s AND gates,A(z) can distinguishHybrid1 andHybrid2 with advantage at most (12qs+ 30s2)/2λ.

15

1: Initialize a list Q0 = ∅.
2: Sample uniforma c1, . . . , cn(λ) ← {0, 1}ℓ(λ).
3: for i ∈ [1, n(λ)] do
4: if π is queried with input αi ∈ {0, 1}ℓ(λ) then
5: if ∃(αi, γi) ∈ Qi−1 then Return γi as response.
6: if (. . . , ci) /∈ Qi−1 then γi := ci.
7: else Sample uniformb γi ← {si ∈ {0, 1}ℓ(λ)

∣∣ (. . . , si) /∈ Qi−1}.
8: Return γi as response and define Qi := Qi−1 ∪ {(αi, γi)}.
9: else if π−1 is queried with input βi ∈ {0, 1}ℓ(λ) then

10: if ∃(γi, βi) ∈ Qi−1 then Return γi as response.
11: if (ci, . . .) /∈ Qi−1 then γi := ci.
12: else Sample uniformb γi ← {si ∈ {0, 1}ℓ(λ)

∣∣ (si, . . .) /∈ Qi−1}.
13: Return γi as response and define Qi := Qi−1 ∪ {(γi, βi)}.

aA uniform random tape rπ is used.
bTypically, a uniform random tape r∗π is used to run rejection sampling.

Figure 4: The workflow of oracle π±1(·) up to n(λ) queries.

1: Initialize a list Q0 = ∅.
2: Sample uniform c1, . . . , cn(λ) ← {0, 1}ℓ(λ).
3: for i ∈ [1, n(λ)] do
4: if π̃ is queried with input αi ∈ {0, 1}ℓ(λ) from Sim then
5: if ∃(αi, γi) ∈ Qi−1 then Return γi as response.
6: Return γi := ci as response and define Qi := Qi−1 ∪ {(αi, γi)}.
7: else if π̃−1 is queried with input βi ∈ {0, 1}ℓ(λ) from Sim then
8: if ∃(γi, βi) ∈ Qi−1 then Return γi as response.
9: Return γi := ci as response and define Qi := Qi−1 ∪ {(γi, βi)}.

10: else if π̃ is queried with input αi ∈ {0, 1}ℓ(λ) from A then
11: Same as step 5 to 8 in the workflow of oracle π±1(·) (Figure 4).
12: else if π̃−1 is queried with input βi ∈ {0, 1}ℓ(λ) from A then
13: Same as step 10 to 13 in the workflow of oracle π±1(·) (Figure 4).

Figure 5: The workflow of approximate oracle π̃±1(·) up to n(λ) queries, where the differences are
highlighted in box.

Proof. Fix z and A. We regard Hybrid1 (resp., Hybrid2) as the ideal (resp., real) world in the H-
coefficient technique, where the computationally unbounded non-uniform adversary A = A(z) and
ε1, ε2 are computed as follows.

Transcript padding. In either world, A will interact with an integrated oracle that acts as the two-
round challenger in the adaptive experiment and provides interfaces π∗±1 ∈ {π±1, π̃±1} for for-
ward/backward permutation queries. Here, A can learn π∗(α) = β if and only if it sent forward
query α to π∗ and received response β, or sent backward query β to π∗−1 and received response α.

To compute ε1, ε2 more easily, we ask the oracle to send more messages toA andA to make extra
queries (in addition to the supposed q queries) in both two worlds. More specifically,

• Upon receiving x fromA, the oracle sends (X̃ := {Xi}i∈W(f), d) rather than x̂ := ({Xi}i∈Win(f), d)
to A. In addition to the active input labels given by x̂, the former also gives the active internal and

16

output labels. In the real world, the oracle can run HG.DecEvalπ
±1(·), which determines other active

labels in X̃. In the ideal world, this X̃ can be directly output by SimIn.

• Along with (X̃, d), the oracle sends x̃ := {xi}i∈W(f) to A, which are the wire truth values in the
evaluation of f(x). Both two oracles “echo” these values, which are self-evident to A, to explic-
itly include them in transcripts. In the experiment, the real-world oracle uses x = {xi}i∈Win(f) in
HG.Encodeπ

±1(·), but the ideal-world oracle can only use f(x) = {xi}i∈Wout(f) in SimIn.

• Along with (X̃, d), the oracle sends Ũ := {Ug
0 , U

g
1 }g∈Gand(f) toA. In the real world, the oracle com-

putes Ug
0 := H(Xa, k

g
0) and Ug

1 := H(Xb, k
g
1) for each g ∈ Gand(f) with (a, b) := (in0(g), in1(g)).

In the ideal world, this Ũ is output by SimIn and is essentially the same hash outputs.

• (Extra queries) Upon receiving (X̃, d, x̃, Ũ) from the oracle, A also makes a forward permutation
query Xa ⊕ kg0 (resp., Xb ⊕ kg1) for each g ∈ Gand(f) with (a, b) := (in0(g), in1(g)), if it has never
learned π∗(Xa ⊕ kg0) = Y (resp., π∗(Xb ⊕ kg1) = Y) for some Y in its interaction with π∗±1 ∈
{π±1, π̃±1}.

• At the end of the experiment (i.e., once all other transcripts are settled), the oracle sends ∆ to A. In
the real world, the oracle gets this ∆ from the output of HG.Garbleπ±1(·). In the ideal world, ∆ is
dummy and sampled by the oracle at this time (note that Sim does not use ∆).

According to the two oracle constructions, real-world sample space

Ωreal = {0, 1}λ−1 × {0, 1}|Win(f)|λ × Sλ,

and ideal-world sample space

Ωideal = ({0, 1}2λ)|f | × ({0, 1}λ)|Win(f)| × {0, 1}∗︸ ︷︷ ︸
random tape for

the sampling in π̃±1(·)

× {0, 1}λ−1︸ ︷︷ ︸
dummy ∆

.

Given the oracle constructions, a transcript in the original adaptive experiment will be padded with
more literal values. Note that transcript padding will not lower the advantage ofA sinceA can discard
the padding values at will. With the padding, a transcript is of the form:

τ = (K1, (f, f̂),K2, (x, (X̃, d, x̃, Ũ)),K3,∆),

where K1, K2, and K3 are the ordered lists of query-response pairs seen in the interleaved interaction
with permutation oracles. We do not explicitly consider query direction in these pairs. Given π∗±1 ∈
{π±1, π̃±1}, A learns π∗(α) = β if and only if there exists (α, β) ∈ ∪3ℓ=1Kℓ.

Let qℓ := |Kℓ| for every ℓ ∈ {1, 2, 3} and qΣ :=
∑3

ℓ=1 qℓ. It follows from the extra queries that
qΣ ≤ q + 2 |f |. Without loss of generality, we assume thatA only makes non-repeating queries, i.e., it
never makes forward query α to π∗ or backward query β to π∗−1 for any learned permutation entry
(α, β).

Bad transcripts. A transcript τ ∈ Tbad if and only if it incurs at least one of the following events7:

• bad1. There exist distinct (g, u), (g′, u′) ∈ Gand(f)× {0, 1} such that

Xw ⊕ kgu = Xw′ ⊕ kg
′

u′ ∨ (5)
Ug
u ⊕ σ(Xw ⊕ kgu) = Ug′

u′ ⊕ σ(Xw′ ⊕ kg
′

u′) (6)

where w := inu(g) and w′ := inu′(g′), or
7Strictly speaking, such badi’s are the disjunctive predicates of τ ∈ TA to define, in set-builder notation, a set Tbad ⊆ TA of

bad transcripts. We treat them as “events” to avoid cumbersome notation. The formal events (i.e., the specific sets of oracles)
w.r.t. badi’s are well-defined from Tbad and the two random variables in Section 3.4.

17

There exists g ∈ Gand(f) such that

(sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0) = xa∆⊕Xa ⊕Gg
1 ⊕ Ug

1 ⊕ σ(Xb ⊕ kg1) (7)

where (a, b) := (in0(g), in1(g)), or
There exist distinct g, g′ ∈ Gand(f) such that

(sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0) = (sb′ ⊕ xb′)∆⊕Gg′

0 ⊕ Ug′

0 ⊕ σ(Xa′ ⊕ kg
′

0) ∨ (8)
xa∆⊕Xa ⊕Gg

1 ⊕ Ug
1 ⊕ σ(Xb ⊕ kg1) = xa′∆⊕Xa′ ⊕Gg′

1 ⊕ Ug′

1 ⊕ σ(Xb′ ⊕ kg
′

1) ∨ (9)
(sb ⊕ xb)∆⊕Gg

0 ⊕ Ug
0 ⊕ σ(Xa ⊕ kg0) = xa′∆⊕Xa′ ⊕Gg′

1 ⊕ Ug′

1 ⊕ σ(Xb′ ⊕ kg
′

1) ∨ (10)
xa∆⊕Xa ⊕Gg

1 ⊕ Ug
1 ⊕ σ(Xb ⊕ kg1) = (sb′ ⊕ xb′)∆⊕Gg′

0 ⊕ Ug′

0 ⊕ σ(Xa′ ⊕ kg
′

0) (11)

where (a, b) := (in0(g), in1(g)) and (a′, b′) := (in0(g′), in1(g′)).
In this case, A can check the consistency between the value of Gg

u ⊕ Gg′

u′ and that of ∆ at the end
of experiment without further sending required queries, which are computed from ∆, to a random
permutation or its inverse. In the real world, the consistency certainly holds. However, the ideal-
world garbled rows and∆ are independently sampled, leading to the consistency only with negligible
probability. So, A has non-negligible advantage to distinguish the two worlds and the statistical
distance, as an upper bound, also blows up.
More specifically, the real world is as follows in this case. The pre-image collision (5) leads to the
syntactically same XOR of two hash masks inGg

u, G
g′

u′ , which can be XORed to cancel all hash masks
to check the consistency with ∆ without further queries. Moreover, the image collision (6) also
implies the pre-image collision (5) since π is permutation. The other equalities imply the image
collisionπ(Xw⊕∆⊕kgu) = π(Xw′⊕∆⊕kg

′

u′) for some distinct tuple (g, u), (g′, u′) ∈ Gand(f)×{0, 1},
w := inu(g), and w′ := inu′(g′). Given permutation π, this collision implies the pre-image collision
(5), which can be used to see the consistency. However, the above cancelling of hash masks will not
give this consistency except with negligible probability in the ideal world.

• bad2. There exists ((α, β), g) ∈ ∪3ℓ=1Kℓ × Gand(f) such that

α = Xa ⊕∆⊕ kg0 ∨ (12)
α = Xb ⊕∆⊕ kg1 ∨ (13)

β = σ(∆)⊕ (sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0) ∨ (14)
β = σ(∆)⊕ xa∆⊕Xa ⊕Gg

1 ⊕ Ug
1 ⊕ σ(Xb ⊕ kg1) (15)

where (a, b) := (in0(g), in1(g)).
In this case,A essentially makes it to guess ∆ before receiving this value. It allowsA to distinguish
the real world, where every Gg

i is consistent with ∆, and the ideal world with a dummy ∆. So, the
statistical distance blows up.

• bad3. There exists ((α, β), g) ∈ ∪2ℓ=1Kℓ × Gand(f) such that

α = Xa ⊕ kg0 ∨ (16)
α = Xb ⊕ kg1 ∨ (17)

β = Ug
0 ⊕ σ(Xa ⊕ kg0) ∨ (18)

β = Ug
1 ⊕ σ(Xb ⊕ kg1) (19)

where (a, b) := (in0(g), in1(g)).
In this case, A can make forward/backward queries w.r.t. some active labels before receiving active
input labels and computing other active ones. We use this case to explicitly ensure that these query-
response pairs are fixed by the queries to π±1(·) in the step 10 to 12 of HG.Garbleπ±1(·) (when τ is

18

produced in the real world) or the queries to π̃±1(·) in the step 9 of SimFπ̃
±1(·) (when τ is produced

in the ideal world), instead of the extra queries of A.
This case is used to simplify probability analysis.

Bounding 1− ε2. Without loss of generality, we can consider some fixed good transcript τ such that
Prω←Ωideal [Y (ω) = τ] ̸= 0 (if this probability is zero, it is trivial by definition that ε2 = 0 for this
τ). Using Lemma 1, we turn to analyze the sampled oracle’s compatibility (Section 3.4) with such a
transcript, instead of the interaction between A and the sampled oracle.

Note that there is a computationally unbounded non-uniform adversary A′ such that, for every
oracle ω, it sends the queries in τ in order in its interaction with ω (e.g., A′ has auxiliary input τ and
sends its ordered queries). Fix A′ in the following compatibility analysis so that any real-world or
ideal-world oracle will receive the queries in τ in order. For a response c recorded in a fixed τ , let ω ⊢ c
denote the event that, fixing the ordered queries as per τ , oracle ω produces c given the corresponding
query. Let K R denote the order-preserving list of the responses in an ordered list K of permutation
query-response pairs.

First, we compute Prω←Ωreal [ω ∈ compreal(τ)]. Following from half-gates, a real-world oracle ω =
(∆, {Wi}i∈Win(f), π) ∈ Ωreal. It holds that

Pr
ω←Ωreal

[ω ∈ compreal(τ)] = Pr
ω←Ωreal

[ω ⊢ (K R
1 , f̂ ,K R

2 , X̃, d, x̃, Ũ ,K R
3 ,∆)] .

To begin with, every real-world ω certainly produces f ′ (i.e., the first value in f̂) and x̃ fixed in τ ,
which leads to Prω←Ωideal [Y (ω) = τ] ̸= 0. This non-zero probability implies that (f ′, x̃) in τ is honestly
and deterministically computed from the fixed queries (f, x). Otherwise, no ideal-world oracle, which
computes (f ′, x̃) from the same deterministic procedure, can produce this transcript, contradicting the
non-zero probability. As every real-world ω will follow the same deterministic procedure, it certainly
produces the two values.

Meanwhile, a real-world oracle ω should have the same literal value of ∆ as its counterpart in τ .
Conditioned on the compatibility so far, the probability

Pr
ω←Ωreal

[ω ∈ compreal(τ)]

= Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F,K R
2 , X̃, d, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
· Pr
ω←Ωreal

[
ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
= Pr

ω←Ωreal

[
ω ⊢ (K R

1 , F,K R
2 , X̃, d, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
· Pr
ω←Ωreal

[
ω ⊢ (f ′, x̃)

]
· Pr
ω←Ωreal

[ω ⊢ ∆]

= Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F,K R
2 , X̃, d, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
· 1

2λ−1
.

Conditioned on the compatibility with (f ′, x̃,∆), a real-world ω should also be compatible with
(∪3ℓ=1K R

ℓ , F, Ũ) and some active labels in X̃ such that

(i) π±1 maps the fixed permutation queries to the responses in ∪3ℓ=1K R
ℓ .

(ii) For each i ∈Win(f), it holds that Xi = Wi ⊕ xi∆.

(iii) For each g ∈ Gand(f) with (a, b) := (in0(g), in1(g)), it holds that

H(Xa, k
g
0) := π(Xa ⊕ kg0)⊕ σ(Xa ⊕ kg0) = Ug

0 ,

H(Xb, k
g
1) := π(Xb ⊕ kg1)⊕ σ(Xb ⊕ kg1) = Ug

1 .
(20)

19

(iv) For each g ∈ Gand(f) with (a, b, c) := (in0(g), in1(g), out(g)), it holds that

Xc = H(Xa, k
g
0)⊕ H(Xb, k

g
1)⊕ saG

g
0 ⊕ sb(G

g
1 ⊕Xa), (21)

Gg
0 = H(Xa, k

g
0)⊕ H(Xa ⊕∆, kg0)⊕ (sb ⊕ xb)∆

Gg
1 = H(Xb, k

g
1)⊕ H(Xb ⊕∆, kg1)⊕ xa∆⊕Xa,

(22)

where the bits xa, xb, sa = lsb(Xa), sb = lsb(Xb) are given in τ .

Conditioned on the compatibility so far, every real-world oracle ω is always compatible with the
leftover values in τ , i.e., decoding table d and other active labels in X̃, which are deterministically
computed from XOR combination. The reason is that, for τ ensuring Prω←Ωideal [Y (ω) = τ] ̸= 0, these
values should be honestly determined by the conditioned values as in the real world. Otherwise, this
probability will be zero for an ideal-world oracle, which obtains them from a consistent deterministic
computation as per the conditioned values. As every real-world oracle ω honestly follows the real-
world computation, this “leftover” compatibility must hold conditioned on the previous compatibility.

It remains to compute the conditional probabilities for (i) to (iv). Consider (iii) and (iv). We note that
every good τ with Prω←Ωideal [Y (ω) = τ] ̸= 0 already implies (20) and (21). Otherwise, no ideal-world
oracle, which computes these values according to the step 9 and 10 in SimF (using the given tweakable
hash function), can produce τ , contradicting the non-zero probability.

Then, consider (22), the leftover part of (iii) and (iv). We rewrite (22) as:

V :=



g ∈ Gand(f), (a, b) := (in0(g), in1(g)) :

π(Xa ⊕ kg0)︸ ︷︷ ︸
Pg,0

⊕π(Xa ⊕∆⊕ kg0)︸ ︷︷ ︸
Pg,2

= σ(∆)⊕ (sb ⊕ xb)∆⊕Gg
0,

π(Xb ⊕ kg1)︸ ︷︷ ︸
Pg,1

⊕π(Xb ⊕∆⊕ kg1)︸ ︷︷ ︸
Pg,3

= σ(∆)⊕ xa∆⊕Xa ⊕Gg
1


As τ is a good transcript, there are exactly 4 |f | pairwise distinct permutation pre-images on the left
hand (otherwise, there will be a pair of permutation pre-images leading to (5) in bad1 or a permutation
pre-image leading to (12)∨(13) in bad2 given the extra queries). V has exact 4 |f | syntactically different
variables P := {Pg,0, Pg,1, Pg,2, Pg,3}g∈Gand(f). They fix the same number of the entries of permutation
π in a real-world ω if and only if their literal values fixed by τ are also pairwise distinct. Note that every
good transcript τ indeed fixes exact one such assignment of these values for the following reasons:

• (20) already holds for τ , i.e., for g ∈ Gand(f) with (a, b) := (in0(g), in1(g)),

Pg,0 := π(Xa ⊕ kg0) = Ug
0 ⊕ σ(Xa ⊕ kg0),

Pg,1 := π(Xb ⊕ kg1) = Ug
1 ⊕ σ(Xb ⊕ kg1).

(23)

The literal values of {Pg,0, Pg,1}g∈Gand(f) can be fixed by the responses inK R
3 given the extra queries

and will be pairwise distinct according to the impossible (6) from ¬bad1.

• For g ∈ Gand(f) with (a, b) := (in0(g), in1(g)), {Pg,2, Pg,3}g∈Gand(f) are literally assigned the fol-
lowing values fixed by τ according toV and (23):

Pg,2 := π(Xa ⊕∆⊕ kg0) = σ(∆)⊕ (sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0),

Pg,3 := π(Xb ⊕∆⊕ kg1) = σ(∆)⊕ xa∆⊕Xa ⊕Gg
1 ⊕ Ug

1 ⊕ σ(Xb ⊕ kg1).
(24)

Clearly, one can see that the literal values of {Pg,2, Pg,3}g∈Gand(f) are pairwise distinct according to
the impossible (7) ∨ (8) ∨ (9) ∨ (10) ∨ (11) from ¬bad1.

• The goodness of τ also ensures that there do not exist

P ′ ∈ {Pg,0, Pg,1}g∈Gand(f), P
′
∆ ∈ {Pg,2, Pg,3}g∈Gand(f)

20

such thatP ′ = P ′∆. Otherwise, this equality and (24) ensure that there exist (g, u) ∈ Gand(f)×{0, 1}
and g′ ∈ Gand(f) such that

π(Xw ⊕ kgu) = π(Xa′ ⊕∆⊕ kg
′

0)

= σ(∆)⊕ (sb′ ⊕ xb′)∆⊕Gg′

0 ⊕ Ug′

0 ⊕ σ(Xa′ ⊕ kg
′

0) ∨
π(Xw ⊕ kgu) = π(Xb′ ⊕∆⊕ kg

′

1)

= σ(∆)⊕ xa′∆⊕Xa′ ⊕Gg′

1 ⊕ Ug′

1 ⊕ σ(Xb′ ⊕ kg
′

1)

(25)

where w := inu(g) and (a′, b′) := (in0(g′), in1(g′)). Recall that ¬bad3 and the extra queries implies
(Xw ⊕ kgu, π(Xw ⊕ kgu)) ∈ K3. As a result, (25) leads to contradiction with the impossible (14)∨ (15)
from ¬bad2.

Putting these cases together, we can see that τ yields a value assignment of P, and this assignment
fixes exact 4 |f | entries of real-world permutation π.

Conditioned on ¬bad1 ∧ ¬bad3 of good transcript τ , 2 |f | extra queries are non-repeating and the
number of non-repeating queries is q+2 |f | = qΣ. So, 2 |f | responses in ∪3ℓ=1K R

ℓ for the non-repeating
extra queries are fixed by the values inP while the other qΣ−2 |f | = q responses are fixed by real-world
π (conditioned on the values in P). Using (i), (ii), (iii), and (iv) together with the “leftover” compatibility,
we have in the real world that

Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F,K R
2 , X̃, d, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
=

1

(2λ)|Win(f)|
· (2

λ − 4 |f | − (qΣ − 2 |f |))!
(2λ)!

=
1

(2λ)|Win(f)|
· 1

(2λ)q+4|f |
,

⇒ Pr
ω←Ωreal

[ω ∈ compreal(τ)] =
1

(2λ)|Win(f)|
· 1

(2λ)q+4|f |
· 1

2λ−1
.

Second, in the ideal world, condition ¬bad3 ensures that the responses for the 2 |f | extra queries
are fixed by the queries in the step 9 of SimFπ̃

±1(·). So, each Ug
u is independently uniform according

to the randomness of π̃±1 and the pairwise distinct pre-images by ¬bad1. From the garbled rows, the
active input labels, and these Ug

u , the active internal and output labels (as well as decoding table d) are
fixed in topology order. So, we have

Pr
ω←Ωideal

[ω ∈ compideal(τ)] = Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , X̃, d, x̃, Ũ ,∆)

]
· Pr
ω←Ωideal

[ω ⊢ (f̂ , X̃, d, x̃, Ũ ,∆)]

= Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , X̃, d, x̃, Ũ ,∆)

]
· 1

2|Win(f)|λ+2λ|f |+(λ−1)+2λ|f | .

According to the condition ¬bad1 ∧ ¬bad3 and the 2 |f | extra queries, there are exact q + 2 |f | = qΣ
non-repeating queries. Moreover, 2 |f | responses in ∪3ℓ=1K R

ℓ for the non-repeating extra queries are
fixed by the conditioned values but the other responses are fixed by π̃±1 for other qΣ − 2 |f | = q
non-repeating queries (which are responded with the rejection sampling, see Figure 5).

Let N ⊆ [1, qΣ] denote the index set of these q queries in qΣ non-repeating queries to π̃±1(·) such

21

that |N | = q. The rejection sampling in π̃±1(·) gives

Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , X̃, d, x̃, Ũ ,∆)

]
=

∏
i∈N

1

2λ − |Qi−1|
=

∏
i∈N

1

2λ − (i− 1)

≤ 1

2λ − 2 |f |
× 1

2λ − (2 |f |+ 1)
× · · · × 1

2λ − (qΣ − 1)
=

1

(2λ − 2 |f |)q
,

⇒ Pr
ω←Ωideal

[ω ∈ compideal(τ)] ≤
1

(2λ)|Win(f)|
· 1

(2λ − 2 |f |)q · (2λ)4|f |
· 1

2λ−1
.

So, we can have ε2 = 0 since, for every |f | ≥ 0 and every q ≥ 0,

Prω←Ωreal [ω ∈ compreal(τ)]
Prω←Ωideal [ω ∈ compideal(τ)]

≥ (2λ − 2 |f |)q · (2λ)4|f |

(2λ)q+4|f |

≥
(2λ − 2 |f |)q · (2λ)2|f | · (2λ)2|f |

(2λ)q+4|f |

=
(2λ)q+2|f | · (2λ)2|f |

(2λ)q+4|f |
=

(2λ)2|f |

(2λ − (q + 2 |f |))2|f |
≥ 1.

Bounding ε1. First, consider bad1 ∨ bad3. For each i ∈ [2, 2 |f |], let colli denote the event that there
exist distinct (g, u), (g′, u′) ∈ “the first i pairs ofGand(f)×{0, 1}” such thatXw⊕kgu = Xw′⊕kg

′

u′ , where
w := inu(g) and w′ := inu′(g′), queryi denote the event that there exists ((α, β), (g, u)) ∈ ∪2ℓ=1Kℓ ×
“the first i pairs of Gand(f) × {0, 1}” such that α = Xw ⊕ kgu, where w := inu(g), and bFwdi denote
colli ∨ queryi. Then, Prω←Ωideal [bFwd2|f |] = Prω←Ωideal [(5) ∨ (16) ∨ (17)]. We will prove the following
bound using an induction:

Pr
ω←Ωideal

[bFwdi] ≤
i(i− 1) + 2i · (q1 + q2)

2λ+1
.

In the base case (i = 2), Xw and Xw′ are two active circuit input labels so that coll2 occurs with
probability at most 1/2λ due to the sampling in the step 2 of SimF (note that the probability is zero
if w = w′). For query2, each of the two labels matches a fixed α ⊕ kgu also with probability 1/2λ.
Following from a union bound, the target bound holds for i = 2.

Assume that the probability bound holds for i ∈ [2, 2 |f | − 1] and consider the i + 1 case. Using
the law of total probability, we have

Pr
ω←Ωideal

[bFwdi+1] = Pr
ω←Ωideal

[
bFwdi+1

∣∣ bFwdi] · Pr
ω←Ωideal

[bFwdi]

+ Pr
ω←Ωideal

[
bFwdi+1

∣∣ ¬bFwdi] · Pr
ω←Ωideal

[¬bFwdi]

≤ Pr
ω←Ωideal

[bFwdi] + Pr
ω←Ωideal

[
bFwdi+1

∣∣ ¬bFwdi]
≤ i(i− 1) + 2i · (q1 + q2)

2λ+1
+ Pr

ω←Ωideal

[
bFwdi+1

∣∣ ¬bFwdi] .
Let (g∗, u∗) denote the (i + 1)-th pair of Gand(f) × {0, 1} and w∗ := inu∗(g∗). To incur colli+1

conditioned on ¬bFwdi = ¬colli ∧ ¬queryi, we have Xw∗ ⊕ kg
∗

u∗ = Xw ⊕ kgu, where (g, u) ∈ “the first
i pairs of Gand(f)× {0, 1}” and w := inu(g). Recall that each active label Xi is the XOR from (i) some
active circuit input labels, and/or (ii) some active output labels of the precedent AND gates, i.e.,

Xi =
(⊕

w∈Ii⊆Win(f)
Xw

)
⊕
(⊕

w∈Ji⊆Wand(f)
Xw

)
=

⊕
w∈Ii⊖Ji Xw ∈ {0, 1}λ. (26)

22

for Ii ⊖ Ji ̸= ∅. We use (26) to rewrite the equality to incur colli+1 as follows:⊕
i∈(Iw⊖Iw∗)⊖(Jw⊖Jw∗)Xi = kgu ⊕ kg

∗

u∗ ∈ {0, 1}λ.

Here, the active circuit input labels in Iw ⊖ Iw∗ are sampled at random in Sim. For the active labels in
Jw ⊖ Jw∗ , they are masked by the responses sent from π̃±1(·) to Sim. Conditioned on ¬bFwdi, these
responses are taken from uniform c1, . . . , cn(λ) in π̃±1(·) and pairwise independent since the queries
(i.e., Xw ⊕ kgu for (g, u) ∈ “the first i pairs of Gand(f)× {0, 1}” and w := inu(g)) are pairwise distinct
under this condition. The active labels inJw⊖Jw∗ are uniform, and the XOR on the left hand is uniform
unless Iw = Iw∗ and Jw = Jw∗ . That is, the equality to incur colli+1 holds with probability at most
1/2λ for some fixed (g, u). The same argument and probability hold for the equality α = Xw∗ ⊕ kg

∗

u∗

to incur queryi+1 for some fixed (α, β) under ¬bFwdi. Using a union bound,

Pr
ω←Ωideal

[
bFwdi+1

∣∣ ¬bFwdi] ≤ i+ (q1 + q2)

2λ
,

which concludes the induction for the i+ 1 case. We have

Pr
ω←Ωideal

[
bFwd2|f |

]
≤ 2 |f | (2 |f | − 1) + 4 |f | · (q1 + q2)

2λ+1
. (27)

Consider (6), (7), (8), (9), (10), (11), (18), and (19) conditioned on bFwd2|f |. In each of them, Ug
u ⊕

σ(Xw ⊕ kgu) is the response for query Xw ⊕ kgu to π̃±1(·). Conditioned on ¬bFwdi, these responses
are taken from uniform c1, . . . , cn(λ) in π̃±1(·) and pairwise independent as the queries are pairwise
distinct under this condition. Therefore, each of them occurs with probability 1/2λ for some fixed
quantifier. Let bBwd := (6) ∨ (7) ∨ (8) ∨ (9) ∨ (10) ∨ (11) ∨ (18) ∨ (19). Taking a union bound over all
quantifiers, we have

Pr
ω←Ωideal

[
bBwd

∣∣ ¬bFwd2|f |] ≤ 2 |f | (2 |f | − 1) + 2 |f | · (q1 + q2)

2λ
. (28)

Using (27) and (28), we have

Pr
ω←Ωideal

[bad1 ∨ bad3] = Pr
ω←Ωideal

[
bFwd2|f | ∨ bBwd

]
= Pr

ω←Ωideal

[
bFwd2|f |

]
+ Pr

ω←Ωideal

[
bBwd

∣∣ ¬bFwd2|f |]
≤ 3 |f | (2 |f | − 1) + 4 |f | · (q1 + q2)

2λ
.

(29)

Then, consider bad2. From (12) (resp., (13)), we see ∆ = α ⊕ Xa ⊕ kg0 (resp., ∆ = α ⊕ Xb ⊕
kg1), occurring with probability 2−(λ−1) due to the randomness of ∆. In (14), if sb ⊕ xb = 0, linear
orthomorphism σ ensures that

∆ = σ−1(β ⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0)),

which occurs with probability 2−(λ−1); if sb ⊕ xb = 1, according to permutation σ′(x) := σ(x) ⊕ x
well-defined from σ, it holds with the same probability that

∆ = σ′−1(β ⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0)).

Similar result holds for (15). Taking a union bound over all pairs, we have

Pr
ω←Ωideal

[bad2] ≤
4 |f | · (q1 + q2 + q3)

2λ−1
. (30)

23

We have a bound ε1 from (29) and (30):

Pr
ω←Ωideal

[Y (ω) ∈ Tbad] = Pr
ω←Ωideal

[bad1 ∨ bad2 ∨ bad3]

≤ Pr
ω←Ωideal

[bad1 ∨ bad3] + Pr
ω←Ωideal

[bad2]

≤ 3 |f | (2 |f | − 1) + 12 |f | · (q + 2 |f |)
2λ

=
12qs+ 30s2 − 3s

2λ
= ε1.

This lemma follows from the H-coefficient technique with the above ε1, ε2.

Acknowledgements
Xiao Wang would like to thank Ran Canetti and Vinod Vaikuntanathan for initial discussion dur-
ing his post-doc. The authors would like to thank Ben Riva and Yehuda Lindell for explanations of
some related work. Work of Kang Yang is supported by the National Natural Science Foundation
of China (Grant Nos. 62102037 and 61932019). Work of Xiao Wang is supported by DARPA under
Contract No. HR001120C0087, NSF award #2016240, #2318974 and research awards from Meta and
Google. The views, opinions, and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of Defense or the U.S. Gov-
ernment. Work of Yu Yu is supported by the National Natural Science Foundation of China (Grant
Nos. 62125204 and 92270201), the National Key Research and Development Program of China (Grant
No. 2018YFA0704701), and the Major Program of Guangdong Basic and Applied Research (Grant No.
2019B030302008). Yu Yu also acknowledges the support from the XPLORER PRIZE. Work of Zheli Liu
is supported by the National Natural Science Foundation of China (Grant No. 62032012).

References
[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient

verification via secure computation. In Samson Abramsky, Cyril Gavoille, Claude Kirchner,
Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP 2010, Part I, volume
6198 of LNCS, pages 152–163. Springer, Heidelberg, July 2010.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions
with constant online rate or how to compress garbled circuits keys. In Ran Canetti and
JuanA. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 166–184. Springer,
Heidelberg, August 2013.

[BHKR13] Mihir Bellare, Viet TungHoang, SriramKeelveedhi, and Phillip Rogaway. Efficient garbling
from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages 478–
492. IEEE Computer Society Press, May 2013.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue
Sako, editors,ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Heidelberg,
December 2012.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796.
ACM Press, October 2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

24

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of entropy. In
Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, editors, APPROX-RANDOM
2003, volume 2764 of LNCS, pages 200–215. Springer, 2003.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, January 2000.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating ciphers. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 327–350. Springer, Heidelberg, May 2014.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman as-
sumption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 537–569. Springer, Heidelberg, August 2017.

[DLMS14] Yuanxi Dai, Jooyoung Lee, Bart Mennink, and John P. Steinberger. The security of multiple
encryption in the ideal cipher model. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 20–38. Springer, Heidelberg, August
2014.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for effi-
cient mixed-protocol secure two-party computation. In NDSS 2015. The Internet Society,
February 2015.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 465–482. Springer, Heidelberg, August 2010.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, Heidelberg,
August 2008.

[GKW+20] Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, and Yu Yu. Better concrete security
for half-gates garbling (in the multi-instance setting). In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 793–822. Springer,
Heidelberg, August 2020.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty com-
putation from fixed-key block ciphers. In 2020 IEEE Symposium on Security and Privacy,
pages 825–841. IEEE Computer Society Press, May 2020.

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under
standard assumptions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM
CCS 2015, pages 567–578. ACM Press, October 2015.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near optimal
online complexity. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 535–565. Springer, Heidelberg, April / May 2018.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Heidelberg,
August 2012.

25

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel
Wichs. Adaptively secure garbled circuits from one-way functions. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 149–178.
Springer, Heidelberg, August 2016.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy,
or toward separating pseudoentropy from compressibility. In Moni Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 169–186. Springer, Heidelberg, May 2007.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-length extension:
Exact bounds and multi-user security. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 3–32. Springer, Heidelberg, August 2016.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM,
January 2015.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In 41st FOCS, pages 294–304. IEEE
Computer Society Press, November 2000.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak, and
Daniel Wichs. Be adaptive, avoid overcommitting. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 133–163. Springer, Heidelberg,
August 2017.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, andMoti Yung, editors,ACMCCS 2013, pages 955–966. ACMPress, November
2013.

[JO20] Zahra Jafargholi and Sabine Oechsner. Adaptive security of practical garbling schemes.
In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, IN-
DOCRYPT 2020, volume 12578 of LNCS, pages 741–762. Springer, Heidelberg, December
2020.

[JSW17] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively indistinguishable gar-
bled circuits. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of
LNCS, pages 40–71. Springer, Heidelberg, November 2017.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages 433–458.
Springer, Heidelberg, October / November 2016.

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework formulti-party computation. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,ACMCCS 2020, pages 1575–1590.
ACM Press, November 2020.

[KKP21] Chethan Kamath, Karen Klein, and Krzysztof Pietrzak. On treewidth, separators and yao’s
garbling. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of
LNCS, pages 486–517. Springer, Heidelberg, November 2021.

[KKPW21] Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Daniel Wichs. Limits on the adap-
tive security of yao’s garbling. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 486–515, Virtual Event, August 2021. Springer, Hei-
delberg.

26

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling
for XOR gates that beats free-XOR. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 440–457. Springer, Heidelberg, August
2014.

[KS08] Vladimir Kolesnikov andThomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of
LNCS, pages 486–498. Springer, Heidelberg, July 2008.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 476–494. Springer, Heidelberg, August
2014.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
ACM CCS 2015, pages 579–590. ACM Press, October 2015.

[LWN+15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A pro-
gramming framework for secure computation. In 2015 IEEE Symposium on Security and
Privacy, pages 359–376. IEEE Computer Society Press, May 2015.

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2PC in the offline/online and
batch settings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part III, volume 10212 of LNCS, pages 425–455. Springer, Heidelberg, April / May 2017.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Moti Yung, editor, CRYPTO 2002, volume 2442 of
LNCS, pages 111–126. Springer, Heidelberg, August 2002.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mecha-
nism design. In Stuart I. Feldman and Michael P. Wellman, editors, Proceedings of the First
ACM Conference on Electronic Commerce (EC’99), pages 129–139. ACM, 1999.

[NS23] Raine Nieminen and Thomas Schneider. Breaking and fixing garbled circuits when a gate
has duplicate input wires. J. Cryptol., 36(4):34, 2023.

[Pat09] Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages 328–345.
Springer, Heidelberg, August 2009.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-
party computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 250–267. Springer, Heidelberg, December 2009.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with on-
line/offline dual execution. In Thorsten Holz and Stefan Savage, editors, USENIX Security
2016, pages 297–314. USENIX Association, August 2016.

[RR21] Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the half-gates lower
bound for garbled circuits. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 94–124, Virtual Event, August 2021. Springer, Heidelberg.

27

[RS08] Phillip Rogaway and John P. Steinberger. Constructing cryptographic hash functions from
fixed-key blockciphers. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 433–450. Springer, Heidelberg, August 2008.

[SHS+15] EbrahimM. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi,Thomas Schneider, and Fari-
naz Koushanfar. TinyGarble: Highly compressed and scalable sequential garbled circuits.
In 2015 IEEE Symposium on Security and Privacy, pages 411–428. IEEE Computer Society
Press, May 2015.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM
CCS 2010, pages 463–472. ACM Press, October 2010.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit, 2016.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In 23rd FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[ZE15] Samee Zahur andDavid Evans. Obliv-C: A language for extensible data-oblivious computa-
tion. Cryptology ePrint Archive, Report 2015/1153, 2015. https://eprint.iacr.org/2015/1153.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald andMarc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, Heidelberg, April
2015.

28

https://github.com/emp-toolkit
https://eprint.iacr.org/2015/1153

A More Preliminaries
Define the following notation in the appendices. Let bold lowercase letters (e.g., a) denote column
vectors and bold uppercase letters (e.g., A) denote matrices. Let In denote the n-by-n identity matrix.
Let Half0(a) ∈ F2n (resp., Half1(a) ∈ F2n) denote the lower (resp., upper) half of vector a ∈ F2

2n . We
can also define lsb(a) := lsb(Half0(a)) for vector a ∈ F2

2n . Let ⊗ denote the Kronecker product of
matrices. Let A+ denote the left inverse of matrix A. We will use F2n , Fn

2 , and {0, 1}n interchangeably.
A generalized definition of linear orthomorphism is described as follows:

Definition 2 (Linear orthomorphism). A permutation σ : G → G over an additive Abelian group
G is called a linear orthomorphism for a function family L of some linear functions from G to G, if (i)
σ(x+y) = σ(x)+σ(y) for any x, y ∈ G, (ii) σ′(x) := σ(x)−L(x) is also a permutation for everyL ∈ L,
and (iii) σ, σ′ and their inverses are efficiently computable. We will simply call σ a linear orthomorphism
if L contains only the identity function.

For half-gates [ZRE15], we can use the two instantiations ofσ in Section 3.1. For three-halves [RR21],
we require a linear orthomorphism σ : F2

2λ/2+1 → F2
2λ/2+1 for the function family

L =
{
Lξ1,ξ2,ξ3,ξ4 : F2

2λ/2+1 → F2
2λ/2+1

}
ξ1,ξ2,ξ3,ξ4∈F2

, Lξ1,ξ2,ξ3,ξ4

([
xL
xR

])
=

[
ξ1xL ⊕ ξ2xR
ξ3xL ⊕ ξ4xR

]
.

The following linear orthomorphism σ is suggested by three-halves:

σ

([
xL
xR

])
=

[
c · xL
c · xR

]
where c ∈ F2λ/2+1 \ F22 is a fixed element and the multiplication is in F2λ/2+1 .

Auxiliary circuit notation for the proofs in appendices. Given a circuit f with fan-in two and
fan-out one, we define:

• Y1(f), . . . ,Ym(f) ⊆ Wout(f): m ≥ 1 maximal non-empty partitions of circuit output wires such
that, for every i ∈ [1,m] and every distinct w,w′ ∈ Yi(f), wire w and w′ are from the same XOR
combination of (i) some circuit input wires, and/or (ii) some output wires of last-level AND gates. We
point out that

∑m
i=1 |Yi(f)| = |Wout(f)| ≥ m.

• Z(f) ⊆Wand(f): The set of the output wires of last-level AND gates.

• X(f) :=Win(f) ∪Z(f).

• For each i ∈ [1,m], let Xi(f) ⊆ X(f) denote the set collecting the wires used to XOR-combine the
circuit output wires in Yi(f), and yi(f) denote the first (i.e., representative) wire in Yi(f).

For three-halves, we also define:

• For an AND gate g ∈ Gand(f), let in2(g) denote the global alias of all wires that syntactically use a
pair of labels (Wa ⊕Wb,Wa ⊕Wb ⊕∆) with a := in0(g) and b := in1(g) in free-XOR. If no such a
wire exists, we define it artificially. See [RR21, Section 6.2] for details.

• W∪(f) := ∪g∈Gand(f){in0(g), in1(g), in2(g)}.

• Let ni(f) ≥ 0 denote the number of times the wire i is used for the input to the AND gates in f .

• N :=
∑

i∈W∪(f)
⌈ni(f)/2⌉.

• M := |{i ∈W∪(f) | ni(f) is odd}|.

29

B Proof of Lemma 1
Lemma 1 ([DLMS14]). Let the notations be defined in Section 3.4. Then, for every auxiliary input z ∈
{0, 1}∗, every computationally unbounded adversary A, and every attainable transcript τ ∈ TA(z), it
holds that

Pr
ω←Ωreal

[X(ω) = τ] = Pr
ω←Ωreal

[ω ∈ compreal(τ)] ,

Pr
ω←Ωideal

[Y (ω) = τ] = Pr
ω←Ωideal

[ω ∈ compideal(τ)] .

Proof. LetMO → x be the predicate that is true if and only if the interaction betweenM and oracle
O produces a transcript with literal value x.

We have that, for every computationally unbounded non-uniform adversaryA = A(z) and every
attainable transcript τ ∈ TA ,

Pr
ω←Ωreal

[X(ω) = τ] = Pr
ω←Ωreal

[
ω ∈

{
ω ∈ Ωreal

∣∣ Aω → τ
}]

,

Pr
ω←Ωreal

[ω ∈ compreal(τ)] = Pr
ω←Ωreal

[
ω ∈

{
ω ∈ Ωreal

∣∣ ∃A′ : A′ω → τ
}]

= Pr
ω←Ωreal

[
ω ∈

{
ω ∈ Ωreal

∣∣ (∃A′ : A′ω → τ) ∧ τ ∈ TA
}]

= Pr
ω←Ωreal

[
ω ∈

{
ω ∈ Ωreal

∣∣∣ (∃A′ : A′ω → τ) ∧ (∃ω′ : Aω′ → τ)
}]

,

where A, A′, ω, and ω′ are deterministic (c.f. Section 3.4).
We claim that, for every computationally unbounded non-uniformA, every attainable τ ∈ TA , and

every ω ∈ Ωreal, the predicate equivalence Aω → τ ⇔ (∃A′ : A′ω → τ) ∧ (∃ω′ : Aω′ → τ) holds.
The forward implication is obvious by using A′ := A and ω′ := ω. For the backward implication, we
can use in an induction that τ is an ordered list of query-response pairs {(q1, r1), . . . }.

In the base case, A (resp., A′) will send query q1 to and receive response r1 from ω′ (resp., ω)
according to the same fixed τ . As q1 (resp., r1) is the first query (resp., response) ofA (resp., ω) so that
there is no previous list on which it can depend, A will also send q1 and receive r1 if it is given oracle
ω. We assume that the interaction between A and ω has produced the same list of query-response
pairs τi−1 = {(q1, r1), . . . , (qi−1, ri−1)}, which is a prefix of τ . It is known from the same fixed τ that,
conditioned on the same previous list τi−1, A (resp., A′) will send query qi to and receive response ri
from ω′ (resp., ω). As a result, ifA accesses ω for the i-th query conditioned on τi−1,A will also send
qi as query and receive ri, which only depends on τi−1 in oracle ω. The above induction concludes that
the two predicates are equivalent for every non-uniform A, attainable τ ∈ TA , and ω ∈ Ωreal. So, we
have

Pr
ω←Ωreal

[X(ω) = τ] = Pr
ω←Ωreal

[ω ∈ compreal(τ)] .

We can also prove the ideal-world result using the same induction.

C Adaptive Security of Half-Gates in pRPM
We prove that the original implementation of the half-gates scheme [ZRE15], which is identical to
Figure 2 but sends decoding table d as part of garbled circuit f̂ , is adaptively secure in the pRPM and
does not suffer from the lower bound in the npRPM.We refer to Appendix A for the additional notation.

Theorem 5. Let H(X, k) = π(X ⊕ k)⊕ σ(X ⊕ k) be a tweakable hash function whereX, k ∈ {0, 1}λ,
π ∈ Sλ is random permutation, and σ : {0, 1}λ → {0, 1}λ is a linear orthomorphism. Then, half-gates
([ZRE15]) is a λ-garbling scheme with (q, s, ε)-adaptive security in the pRPM, where ε = (8qs+ 21s2)/
2λ−1.

30

SimF(f):
1: F ← ({0, 1}2λ)|f |, d← F|Wout(f)|

2 such that
(i) For each i ∈ [1,m] and each wire j ∈ Yi(f), dj = dyi(f).
(ii) For each (µ1, . . . , µm) ∈ Fm

2 such that ⊖i∈[1,m],µi=1Xi(f) = ∅, ⊕i∈[1,m]µi · dyi(f) = 0.
2: return f̂ := (f ′ := f, F, d), stsim := (stsim, f, F, d)

SimIn(f(x)):
1: {Xi}i∈X(f) ← ({0, 1}λ)|X(f)| such that, for each j ∈ [1,m], lsb(⊕i∈Xj(f)Xi) = dyj(f) ⊕ f(x)yj(f).
2: for g ∈ G(f) in topology order do
3: (a, b, c) := (in0(g), in1(g), out(g))
4: if type(g) = XOR then Xc := Xa ⊕Xb

5: else if type(g) = AND then
6: kg0 := 2 · g − 1, kg1 := 2 · g
7: sa := lsb(Xa), sb := lsb(Xb)
8: if c ∈ Z(f) then
9: Ug

1 ← {0, 1}λ
10: Ug

0 := Xc ⊕ Ug
1 ⊕ saG

g
0 ⊕ sb(G

g
1 ⊕Xa)

11: else if c /∈ Z(f) then
12: Ug

0 , U
g
1 ← {0, 1}λ

13: Xc := Ug
0 ⊕ Ug

1 ⊕ saG
g
0 ⊕ sb(G

g
1 ⊕Xa)

14: (Programming) Add two pairs (Xa ⊕ kg0 , U
g
0 ⊕ σ(Xa ⊕ kg0)) and (Xb ⊕ kg1 , U

g
1 ⊕ σ(Xb ⊕ kg1))

to the list Q kept in stsim, if they cause no pre-image collision or image collision in Q, to ensure

π(Xa ⊕ kg0)⊕ σ(Xa ⊕ kg0)︸ ︷︷ ︸
H(Xa, k

g
0)

= Ug
0 , π(Xb ⊕ kg1)⊕ σ(Xb ⊕ kg1)︸ ︷︷ ︸

H(Xb, k
g
1)

= Ug
1 .

15: return x̂ := {Xi}i∈Win(f), stsim := (stsim, X̃, Ũ) where stsim on the right hand has an updated list Q,
X̃ := {Xi}i∈W(f), Ũ := {Ug

0 , U
g
1 }g∈Gand(f).

Figure 6: Our simulator for half-gates in the pRPM.

Proof. The correctness has been proved in the original work [ZRE15]. We only need to consider the
simulation.

Our simulator Sim consists of (SimF, SimIn) in Figure 6 and SimP±1, which emulates the random
permutation and its inverse on-the-fly. More specifically, there is a list Q of query-response pairs
in internal state stsim. Upon receiving forward query α (resp., backward query β) from Ai to SimP
(resp., SimP−1), it reads Q from stsim and checks whether ∃(α, γ) ∈ Q (resp., ∃(γ, β) ∈ Q). If true,
it returns γ as response; otherwise it samples γ ← {s ∈ {0, 1}λ

∣∣ (. . . , s) /∈ Q} (resp., γ ← {s ∈
{0, 1}λ

∣∣ (s, . . .) /∈ Q}), adds (α, γ) (resp., (γ, β)) to Q, and returns γ as response. The programming
is the step 14 of SimIn, where (α, β) is added to Q if and only if there is no pre-image collision with
(α, . . .) ∈ Q or image collision with (. . . , β) ∈ Q.

To see that Sim is PPT, we note that the circuit-dependent notation can be efficiently computed by
traversing the polynomial-size circuit f . Then, the crux is to show that the step 1 in both SimF and
SimIn can be polynomial-time.

The runtime of the step 1 of SimF is dominated by the runtime of iterating through all qualified
(µ1, . . . , µm) ∈ Fm

2 . To find the qualified vectors, one can interpret each Xi(f) as a one-hot non-zero
column vector in the space F|W(f)|

2 and derive a |W(f)|-by-m matrix E from these column vectors.
One can check that all qualified vectors fall in the kernel of E. This kernel can be efficiently computed
from the Gaussian elimination on E and is a subspace spanned by m− rank(E) basis vectors. So, the
step 1 of SimF only needs to iterate through these basis vectors, and the other qualified vectors must
satisfy the constraints as they are in the subspace. As a result, the step 1 of SimF runs in polynomial
time due to the Gaussian elimination plus a linear-time pass to assign random or constrained values to

31

dyi(f)’s according to the m− rank(E) basis vectors.
The step 1 of SimIn only requires one linear-time pass to assign constrained or random values to

the active labels so it runs in polynomial time. The linear constraint on the LSBs of these active labels
has rank rank(E) and is satisfiable for the dyi(f)’s assigned in SimF.

Then, we fix z andA. We will use the H-coefficient technique (Section 3.4) with transcript padding
to bound the advantage of distinguishing between the real world (i.e., the adaptive experiment that
uses the half-gates scheme) and the ideal world (i.e., the adaptive experiment that uses simulator Sim).
In this technique, we consider the computationally unbounded non-uniform adversaryA = A(z) and
compute ε1, ε2 as follows.

Transcript padding. In either world, A will interact with an integrated oracle that acts as the two-
round challenger in the adaptive experiment and provides interfaces π∗±1 ∈ {π±1, SimP±1} for for-
ward/backward permutation queries. A can learn π∗(α) = β if and only if it sent forward query α to
π∗ and received response β, or sent backward query β to π∗−1 and received response α.

To compute ε1, ε2 more easily, we ask the oracle to send more messages toA andA to make extra
queries (in addition to the supposed q queries) in both two worlds. More specifically,

• Upon receiving x fromA, the oracle sends X̃ := {Xi}i∈W(f) instead of x̂ := {Xi}i∈Win(f) toA. In
addition to the active input labels in x̂, the former also gives the active internal and output labels. In
the real world, the oracle can run HG.DecEvalπ

±1(·), which determines other active labels in X̃. In
the ideal world, this X̃ can be directly output by SimIn.

• Along with X̃, the oracle sends x̃ := {xi}i∈W(f) to A, which denote the wire truth values in the
evaluation of f(x). Both two oracles “echo” these values, which are self-evident to A, to explic-
itly include them in transcripts. In the experiment, the real-world oracle uses x = {xi}i∈Win(f) in
HG.Encodeπ

±1(·), but the ideal-world oracle can only use f(x) = {xi}i∈Wout(f) in SimIn.

• Along with X̃, the oracle sends Ũ := {Ug
0 , U

g
1 }g∈Gand(f) to A. The real-world oracle computes

Ug
0 := H(Xa, k

g
0) and Ug

1 := H(Xb, k
g
1) for each g ∈ Gand(f) with (a, b) := (in0(g), in1(g)). In

the ideal world, this Ũ is output by SimIn and contains the “hash outputs” fixed by the random tape,
which is specified by the oracle to run the programming therein.

• (Extra queries) Upon receiving (X̃, x̃, Ũ) from the oracle,A will also make a forward permutation
query Xa ⊕ kg0 (resp., Xb ⊕ kg1) for each g ∈ Gand(f) with (a, b) := (in0(g), in1(g)), if it has never
learned π∗(Xa ⊕ kg0) = Y (resp., π∗(Xb ⊕ kg1) = Y) for some Y in its interaction with π∗±1 ∈
{π±1, SimP±1}.

• At the end of the experiment (i.e., once all other transcripts are settled), the oracle sends ∆ to A. In
the real world, the oracle gets this ∆ from the output of HG.Garbleπ±1(·). In the ideal world, ∆ is
dummy and sampled by the oracle at this time (note that Sim does not use ∆).

According to the two oracle constructions, real-world sample space

Ωreal = {0, 1}λ−1 × {0, 1}|Win(f)|λ × Sλ,

and ideal-world sample space

Ωideal = ({0, 1}2λ)|f | × {0, 1}rank(E) × {0, 1}(|Win(f)|+|Z(f)|)λ−rank(E)

× ({0, 1}λ)|Z(f)| × ({0, 1}2λ)|f |−|Z(f)|

× {0, 1}∗︸ ︷︷ ︸
random tape for

the sampling in SimP±1(·)

× {0, 1}λ−1︸ ︷︷ ︸
dummy ∆

.

32

Given the oracle constructions, a transcript in the original adaptive experiment will be padded with
more literal values. Note that transcript padding will not lower the advantage ofA sinceA can discard
the padding values at will. With the padding, a transcript is of the form:

τ = (K1, (f, f̂),K2, (x, (X̃, x̃, Ũ)),K3,∆),

where K1, K2, and K3 are the ordered lists of query-response pairs seen in the interleaved interaction
with permutation oracles. We do not explicitly consider query direction in these pairs. Given π∗±1 ∈
{π±1, SimP±1}, A is able to learn π∗(α) = β if and only if there exists (α, β) ∈ ∪3ℓ=1Kℓ.

Let qℓ := |Kℓ| for every ℓ ∈ {1, 2, 3} and qΣ :=
∑3

ℓ=1 qℓ. It follows from the extra queries that
qΣ ≤ q + 2 |f |. Without loss of generality, we assume thatA only makes non-repeating queries, i.e., it
never makes forward query α to π∗ or backward query β to π∗−1 for any learned permutation entry
(α, β).

Bad transcripts. A transcript τ ∈ Tbad if and only if it incurs at least one of the following events:

• bad1. There exist distinct (g, u), (g′, u′) ∈ Gand(f)× {0, 1} such that

Xw ⊕ kgu = Xw′ ⊕ kg
′

u′ ∨ (5)
Ug
u ⊕ σ(Xw ⊕ kgu) = Ug′

u′ ⊕ σ(Xw′ ⊕ kg
′

u′) (6)

where w := inu(g) and w′ := inu′(g′), or
There exists g ∈ Gand(f) such that

(sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0) = xa∆⊕Xa ⊕Gg
1 ⊕ Ug

1 ⊕ σ(Xb ⊕ kg1) (7)

where (a, b) := (in0(g), in1(g)), or
There exist distinct g, g′ ∈ Gand(f) such that

(sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0) = (sb′ ⊕ xb′)∆⊕Gg′

0 ⊕ Ug′

0 ⊕ σ(Xa′ ⊕ kg
′

0) ∨ (8)
xa∆⊕Xa ⊕Gg

1 ⊕ Ug
1 ⊕ σ(Xb ⊕ kg1) = xa′∆⊕Xa′ ⊕Gg′

1 ⊕ Ug′

1 ⊕ σ(Xb′ ⊕ kg
′

1) ∨ (9)
(sb ⊕ xb)∆⊕Gg

0 ⊕ Ug
0 ⊕ σ(Xa ⊕ kg0) = xa′∆⊕Xa′ ⊕Gg′

1 ⊕ Ug′

1 ⊕ σ(Xb′ ⊕ kg
′

1) ∨ (10)
xa∆⊕Xa ⊕Gg

1 ⊕ Ug
1 ⊕ σ(Xb ⊕ kg1) = (sb′ ⊕ xb′)∆⊕Gg′

0 ⊕ Ug′

0 ⊕ σ(Xa′ ⊕ kg
′

0) (11)

where (a, b) := (in0(g), in1(g)) and (a′, b′) := (in0(g′), in1(g′)).
In this case, A can check the consistency between the value of Gg

u ⊕ Gg′

u′ and that of ∆ at the end
of experiment without further sending required queries, which are computed from ∆, to a random
permutation or its inverse. In the real world, the consistency certainly holds. However, the ideal-
world garbled rows and∆ are independently sampled, leading to the consistency only with negligible
probability. So, A has non-negligible advantage to distinguish the two worlds and the statistical
distance, as an upper bound, also blows up.
More specifically, the real world is as follows in this case. The pre-image collision (5) leads to the
syntactically same XOR of two hash masks inGg

u, G
g′

u′ , which can be XORed to cancel all hash masks
to check the consistency with ∆ without further queries. Moreover, the image collision (6) also
implies the pre-image collision (5) since π is permutation. The other equalities imply the image
collisionπ(Xw⊕∆⊕kgu) = π(Xw′⊕∆⊕kg

′

u′) for some distinct tuple (g, u), (g′, u′) ∈ Gand(f)×{0, 1},
w := inu(g), and w′ := inu′(g′). Given permutation π, this collision implies the pre-image collision
(5), which can be used to see the consistency. However, the above cancelling of hash masks will not
give this consistency except with negligible probability in the ideal world.

33

• bad2. There exists ((α, β), g) ∈ ∪3ℓ=1Kℓ × Gand(f) such that

α = Xa ⊕∆⊕ kg0 ∨ (12)
α = Xb ⊕∆⊕ kg1 ∨ (13)

β = σ(∆)⊕ (sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0) ∨ (14)
β = σ(∆)⊕ xa∆⊕Xa ⊕Gg

1 ⊕ Ug
1 ⊕ σ(Xb ⊕ kg1) (15)

where (a, b) := (in0(g), in1(g)).
In this case,A essentially makes it to guess ∆ before receiving this value. It allowsA to distinguish
the real world, where every Gg

i is consistent with ∆, and the ideal world with a dummy ∆. So, the
statistical distance blows up.

• bad3. There exists ((α, β), g) ∈ ∪2ℓ=1Kℓ × Gand(f) such that

α = Xa ⊕ kg0 ∨ (16)
α = Xb ⊕ kg1 ∨ (17)

β = Ug
0 ⊕ σ(Xa ⊕ kg0) ∨ (18)

β = Ug
1 ⊕ σ(Xb ⊕ kg1) (19)

where (a, b) := (in0(g), in1(g)).
In this case, A can make forward/backward queries w.r.t. some active labels before receiving active
input labels and computing other active ones.
This case is necessary to ensure successful programming in the ideal world as the values on the right
hand should not be queried before the programming (otherwise it fails due to pre-image or image
collision). If the programming fails in the ideal world, the two worlds can be distinguishable as the
decoding consistency in the ideal world does not always hold as in the real world.

Bounding 1− ε2. Without loss of generality, we can consider some fixed good transcript τ such that
Prω←Ωideal [Y (ω) = τ] ̸= 0 (if this probability is zero, it is trivial by definition that ε2 = 0 for this
τ). Using Lemma 1, we turn to analyze the sampled oracle’s compatibility (Section 3.4) with such a
transcript, instead of the interaction between A and the sampled oracle.

Note that there is a computationally unbounded non-uniform adversary A′ such that, for every
oracle ω, it sends the queries in τ in order in its interaction with ω (e.g., A′ has auxiliary input τ and
sends its ordered queries). Fix A′ in the following compatibility analysis so that any real-world or
ideal-world oracle will receive the queries in τ in order. For a response c recorded in a fixed τ , let ω ⊢ c
denote the event that, fixing the ordered queries as per τ , oracle ω produces c given the corresponding
query. Let K R denote the order-preserving list of the responses in an ordered list K of permutation
query-response pairs.

First, we compute Prω←Ωreal [ω ∈ compreal(τ)]. Following from half-gates, a real-world oracle ω =
(∆, {Wi}i∈Win(f), π) ∈ Ωreal. It holds that

Pr
ω←Ωreal

[ω ∈ compreal(τ)] = Pr
ω←Ωreal

[ω ⊢ (K R
1 , f̂ ,K R

2 , X̃, x̃, Ũ ,K R
3 ,∆)] .

To begin with, every real-world ω certainly produces f ′ (i.e., the first value in f̂) and x̃ fixed in τ ,
which leads to Prω←Ωideal [Y (ω) = τ] ̸= 0. This non-zero probability implies that (f ′, x̃) in τ is honestly
and deterministically computed from the fixed queries (f, x). Otherwise, no ideal-world oracle, which
computes (f ′, x̃) from the same deterministic procedure, can produce this transcript, contradicting the
non-zero probability. As every real-world ω will follow the same deterministic procedure, it certainly
produces the two values.

34

Meanwhile, a real-world oracle ω should have the same literal value of ∆ as its counterpart in τ .
Conditioned on the compatibility so far, the probability

Pr
ω←Ωreal

[ω ∈ compreal(τ)]

= Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , X̃, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
· Pr
ω←Ωreal

[
ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
= Pr

ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , X̃, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
· Pr
ω←Ωreal

[
ω ⊢ (f ′, x̃)

]
· Pr
ω←Ωreal

[ω ⊢ ∆]

= Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , X̃, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
· 1

2λ−1
.

Conditioned on the compatibility with (f ′, x̃,∆), a real-world ω should also be compatible with
(∪3ℓ=1K R

ℓ , F, Ũ) and some active labels in X̃ such that

(i) π±1 maps the fixed permutation queries to the responses in ∪3ℓ=1K R
ℓ .

(ii) For each i ∈Win(f), it holds that Xi = Wi ⊕ xi∆.

(iii) For each g ∈ Gand(f) with (a, b) := (in0(g), in1(g)), it holds that

H(Xa, k
g
0) := π(Xa ⊕ kg0)⊕ σ(Xa ⊕ kg0) = Ug

0 ,

H(Xb, k
g
1) := π(Xb ⊕ kg1)⊕ σ(Xb ⊕ kg1) = Ug

1 .
(20)

(iv) For each g ∈ Gand(f) with (a, b, c) := (in0(g), in1(g), out(g)), it holds that

Xc = H(Xa, k
g
0)⊕ H(Xb, k

g
1)⊕ saG

g
0 ⊕ sb(G

g
1 ⊕Xa), (21)

Gg
0 = H(Xa, k

g
0)⊕ H(Xa ⊕∆, kg0)⊕ (sb ⊕ xb)∆

Gg
1 = H(Xb, k

g
1)⊕ H(Xb ⊕∆, kg1)⊕ xa∆⊕Xa,

(22)

where the bits xa, xb, sa = lsb(Xa), sb = lsb(Xb) are given in τ .

Conditioned on the compatibility so far, every real-world oracle ω is always compatible with the
leftover values in τ , i.e., decoding table d and other active labels in X̃, which are deterministically
computed from XOR combination. The reason is that, for τ ensuring Prω←Ωideal [Y (ω) = τ] ̸= 0, these
values should be honestly determined by the conditioned values as in the real world. Otherwise, this
probability will be zero for an ideal-world oracle, which obtains them from a consistent deterministic
computation as per the conditioned values. As every real-world oracle ω honestly follows the real-
world computation, this “leftover” compatibility must hold conditioned on the previous compatibility.

It remains to compute the conditional probabilities for (i) to (iv). Consider (iii) and (iv). We note
that every good τ with Prω←Ωideal [Y (ω) = τ] ̸= 0 already implies (20) and (21). To see this, one can
check that condition ¬bad3 for good transcripts and the extra queries ensure that K3 fixes the pairs of
permutation pre-images and images for hash values

{H(Xa, k
g
0),H(Xb, k

g
1)}g∈Gand(f),(a,b):=(in0(g),in1(g)).

These values are consistent with Ũ fixed in τ as per (20). Otherwise, Prω←Ωideal [Y (ω) = τ] ̸= 0 cannot
be satisfied by τ since ¬bad1 ∧¬bad3 for every good transcript implies successful programming in the
ideal world so that H(Xa, k

g
0) = Ug

0 and H(Xb, k
g
1) = Ug

1 . As a corollary, (21) holds for every good
transcript according to this consistency and the step 10 and 13 of SimIn.

35

Then, consider (22), the leftover part of (iii) and (iv). We rewrite (22) as:

V :=



g ∈ Gand(f), (a, b) := (in0(g), in1(g)) :

π(Xa ⊕ kg0)︸ ︷︷ ︸
Pg,0

⊕π(Xa ⊕∆⊕ kg0)︸ ︷︷ ︸
Pg,2

= σ(∆)⊕ (sb ⊕ xb)∆⊕Gg
0,

π(Xb ⊕ kg1)︸ ︷︷ ︸
Pg,1

⊕π(Xb ⊕∆⊕ kg1)︸ ︷︷ ︸
Pg,3

= σ(∆)⊕ xa∆⊕Xa ⊕Gg
1


As τ is a good transcript, there are exactly 4 |f | pairwise distinct permutation pre-images on the left
hand (otherwise, there will be a pair of permutation pre-images leading to (5) in bad1 or a permutation
pre-image leading to (12)∨(13) in bad2 given the extra queries). V has exact 4 |f | syntactically different
variables P := {Pg,0, Pg,1, Pg,2, Pg,3}g∈Gand(f). They fix the same number of the entries of permutation
π in a real-world ω if and only if their literal values fixed by τ are also pairwise distinct. Note that every
good transcript τ indeed fixes exact one such assignment of these values for the following reasons:

• (20) already holds for τ , i.e., for g ∈ Gand(f) with (a, b) := (in0(g), in1(g)),

Pg,0 := π(Xa ⊕ kg0) = Ug
0 ⊕ σ(Xa ⊕ kg0),

Pg,1 := π(Xb ⊕ kg1) = Ug
1 ⊕ σ(Xb ⊕ kg1).

(23)

The literal values of {Pg,0, Pg,1}g∈Gand(f) can be fixed by the responses inK R
3 given the extra queries

and will be pairwise distinct according to the impossible (6) from ¬bad1.

• For g ∈ Gand(f) with (a, b) := (in0(g), in1(g)), {Pg,2, Pg,3}g∈Gand(f) are literally assigned the fol-
lowing values fixed by τ according toV and (23):

Pg,2 := π(Xa ⊕∆⊕ kg0) = σ(∆)⊕ (sb ⊕ xb)∆⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0),

Pg,3 := π(Xb ⊕∆⊕ kg1) = σ(∆)⊕ xa∆⊕Xa ⊕Gg
1 ⊕ Ug

1 ⊕ σ(Xb ⊕ kg1).
(24)

Clearly, one can see that the literal values of {Pg,2, Pg,3}g∈Gand(f) are pairwise distinct according to
the impossible (7) ∨ (8) ∨ (9) ∨ (10) ∨ (11) from ¬bad1.

• The goodness of τ also ensures that there do not exist

P ′ ∈ {Pg,0, Pg,1}g∈Gand(f), P
′
∆ ∈ {Pg,2, Pg,3}g∈Gand(f)

such thatP ′ = P ′∆. Otherwise, this equality and (24) ensure that there exist (g, u) ∈ Gand(f)×{0, 1}
and g′ ∈ Gand(f) such that

π(Xw ⊕ kgu) = π(Xa′ ⊕∆⊕ kg
′

0)

= σ(∆)⊕ (sb′ ⊕ xb′)∆⊕Gg′

0 ⊕ Ug′

0 ⊕ σ(Xa′ ⊕ kg
′

0) ∨
π(Xw ⊕ kgu) = π(Xb′ ⊕∆⊕ kg

′

1)

= σ(∆)⊕ xa′∆⊕Xa′ ⊕Gg′

1 ⊕ Ug′

1 ⊕ σ(Xb′ ⊕ kg
′

1)

(25)

where w := inu(g) and (a′, b′) := (in0(g′), in1(g′)). Recall that ¬bad3 and the extra queries implies
(Xw ⊕ kgu, π(Xw ⊕ kgu)) ∈ K3. As a result, (25) leads to contradiction with the impossible (14)∨ (15)
from ¬bad2.

Putting these cases together, we can see that τ yields a value assignment of P, and this assignment
fixes exact 4 |f | entries of real-world permutation π.

Conditioned on ¬bad1 ∧ ¬bad3 of good transcript τ , 2 |f | extra queries are non-repeating and the
number of non-repeating queries is q+2 |f | = qΣ. So, 2 |f | responses in ∪3ℓ=1K R

ℓ for the non-repeating
extra queries are fixed by the values inP while the other qΣ−2 |f | = q responses are fixed by real-world

36

π (conditioned on the values in P). Using (i), (ii), (iii), and (iv) together with the “leftover” compatibility,
we have in the real world that

Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , X̃, Ũ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ ∆

]
=

1

(2λ)|Win(f)|
· (2

λ − 4 |f | − (qΣ − 2 |f |))!
(2λ)!

=
1

(2λ)|Win(f)|
· 1

(2λ)q+4|f |
,

⇒ Pr
ω←Ωreal

[ω ∈ compreal(τ)] =
1

(2λ)|Win(f)|
· 1

(2λ)q+4|f |
· 1

2λ−1
.

Second, in the ideal world, we can use a similar argument to show

Pr
ω←Ωideal

[ω ∈ compideal(τ)] = Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , X̃, x̃, Ũ ,∆)

]
· Pr
ω←Ωideal

[ω ⊢ (f̂ , X̃, x̃, Ũ ,∆)]

= Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , X̃, x̃, Ũ ,∆)

]
· 1

2|Win(f)|λ+2λ|f |+(λ−1)+2λ|f | .

According to the condition ¬bad1 ∧ ¬bad3 and the 2 |f | extra queries, there are exact q + 2 |f | = qΣ
non-repeating queries. Moreover, 2 |f | responses in ∪3ℓ=1K R

ℓ for the non-repeating extra queries are
fixed by the conditioned values but the other responses are fixed by SimP±1 for other qΣ − 2 |f | = q
queries.

Let Qi−1 denote the list Q (which is maintained in internal state stsim) when it includes i − 1 ∈
[0, qΣ − 1] pairs (note that Q finally includes qΣ pairs given the qΣ non-repeating queries), and N ⊆
[1, qΣ] denote the index set of these q queries in qΣ non-repeating queries to SimP±1(·) such that
|N | = q. We have

Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , X̃, x̃, Ũ ,∆)

]
=

∏
i∈N

1

2λ − |Qi−1|
=

∏
i∈N

1

2λ − (i− 1)

≤ 1

2λ − 2 |f |
× 1

2λ − (2 |f |+ 1)
× · · · × 1

2λ − (qΣ − 1)
=

1

(2λ − 2 |f |)q
,

⇒ Pr
ω←Ωideal

[ω ∈ compideal(τ)] ≤
1

(2λ)|Win(f)|
· 1

(2λ − 2 |f |)q · (2λ)4|f |
· 1

2λ−1
.

So, we can have ε2 = 0 since, for every |f | ≥ 0 and every q ≥ 0,

Prω←Ωreal [ω ∈ compreal(τ)]
Prω←Ωideal [ω ∈ compideal(τ)]

≥ (2λ − 2 |f |)q · (2λ)4|f |

(2λ)q+4|f |

≥
(2λ − 2 |f |)q · (2λ)2|f | · (2λ)2|f |

(2λ)q+4|f |

=
(2λ)q+2|f | · (2λ)2|f |

(2λ)q+4|f |
=

(2λ)2|f |

(2λ − (q + 2 |f |))2|f |
≥ 1.

Bounding ε1. We bound the probabilities of the bad events in the ideal world. First, consider bad1.
Note that each active label Xi can be written as the XOR of (i) some active circuit input labels, and/or
(ii) some active output labels of the precedent AND gates, i.e., for Ii ⊖ Ji ̸= ∅,

Xi =
(⊕

w∈Ii⊆Win(f)
Xw

)
⊕
(⊕

w∈Ji⊆Wand(f)
Xw

)
=

⊕
w∈Ii⊖Ji Xw ∈ {0, 1}λ. (26)

37

For (5), we can use (26) to rewrite it as⊕
i∈(Iw⊖Iw′)⊖(Jw⊖Jw′)Xi = kgu ⊕ kg

′

u′ ∈ {0, 1}λ.

According to SimIn, each Xi, which is sampled in the step 1 or computed in the step 13, has at least
λ− 1 random non-LSBs. Therefore, the equality holds with probability at most 2−(λ−1) for some fixed
distinct kgu and kg

′

u′ (or equivalently, (g, u) and (g′, u′)). If Iw = Iw′ and Jw = Jw′ , this probability will
be zero for the distinct kgu and kg

′

u′ . For (6), the worst case is that Ug
u and Ug′

u′ are used for the same AND
gate with an output wire inZ(f). In this case, the XOR Ug

u ⊕Ug′

u′ has at least λ− 1 random non-LSBs
due to some Xc sampled in the step 1 of SimIn. Such non-LSBs are independent of other (previously
fixed) active labels, including Xw and Xw′ . So, the equality holds with probability at most 2−(λ−1) for
some fixed (g, u) and (g′, u′).

In the same gate g, the upper λ−1 bits of Ug
0 ⊕Ug

1 are uniform so that (7) holds with probability at
most 2−(λ−1). Otherwise, the distinct g ̸= g′ implies that, for every u, u′ ∈ {0, 1}, Ug

u ⊕Ug′

u′ ∈ {0, 1}λ
is uniform. As a result, each of (8), (9), (10), and (11) holds with probability 2−λ.

Taking a union bound over the above cases, we have

Pr
ω←Ωideal

[bad1] ≤
2 |f | (2 |f | − 1) + |f |2

2λ−1
=

5 |f |2 − 2 |f |
2λ−1

. (31)

Then, consider bad2. From (12) (resp., (13)), we have ∆ = α ⊕ Xa ⊕ kg0 (resp., ∆ = α ⊕ Xb ⊕
kg1), occurring with probability 2−(λ−1) due to the randomness of ∆. In (14), if sb ⊕ xb = 0, linear
orthomorphism σ ensures that

∆ = σ−1(β ⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0)),

which occurs with probability 2−(λ−1); if sb ⊕ xb = 1, according to permutation σ′(x) := σ(x) ⊕ x
well-defined from σ, it holds with the same probability that

∆ = σ′−1(β ⊕Gg
0 ⊕ Ug

0 ⊕ σ(Xa ⊕ kg0)).

Similar result holds for (15). Taking a union bound over all pairs, we have

Pr
ω←Ωideal

[bad2] ≤
4 |f | · (q1 + q2 + q3)

2λ−1
. (32)

Finally, consider bad3. Recall that each Xi has at least λ − 1 random non-LSBs. Since these bits
are independent of ∪2ℓ=1Kℓ, each of (16) and (17) holds with probability at most 2−(λ−1) for some fixed
(α, . . .) and g. For each of (18) and (19), the mask sampled in the step 9 of SimIn (resp., the direct
sampling in the step 9 or 12 of SimIn) ensures that Ug

0 ∈ {0, 1}λ (resp., Ug
1 ∈ {0, 1}λ) is uniform and

independent of Xa (resp., Xb) or ∪2ℓ=1Kℓ. So, each equality holds with probability 2−λ < 2−(λ−1) for
some fixed (. . . , β) and g. It follows from a union bound that

Pr
ω←Ωideal

[bad3] ≤
4 |f | · (q1 + q2)

2λ−1
. (33)

We have a bound ε1 from (31), (32), and (33):

Pr
ω←Ωideal

[Y (ω) ∈ Tbad] = Pr
ω←Ωideal

[bad1 ∨ bad2 ∨ bad3]

≤ Pr
ω←Ωideal

[bad1] + Pr
ω←Ωideal

[bad2] + Pr
ω←Ωideal

[bad3]

≤ 5 |f |2 − 2 |f |+ 8 |f | · (q + 2 |f |)
2λ−1

=
8qs+ 21s2 − 2s

2λ−1
= ε1.

The above ε1, ε2 and the H-coefficient technique lead to this theorem.

38

Public parameters: (Concrete instantiations are recalled in Appendix F)

• M ∈ F8×6
2 with K ∈ F3×8

2 from the co-kernel basis of M , i.e., KM = 03×6.

• V =
[
V00 V01 V10 V11

]
T ∈ (F2×5

2)4 ≡ F8×5
2 with left inverse V + ∈ F5×8

2 .

• Basis matrices SL,SR ∈ F2×4
2 .

• Control matrices R′
1,R

′
2 ∈ F4×2

2 , Rp =
[
Rp,00 Rp,01 Rp,10 Rp,11

]
T ∈ (F2×4

2)4 ≡ F8×4
2 .

• A distribution R0 over (F1×2
2)4 ≡ F4×2

2 such that, for every R′
$ =

[
R′

$,00 R′
$,01 R′

$,10 R′
$,11

]
T ← R0,

(i) K
[
R̂$,00 R̂$,01 R̂$,10 R̂$,11

]
T = 03×6, where R̂$,ij :=

(
R′

$,ij ⊗ I2

)[
SL

SR

]([
1 0 i
0 1 j

]
⊗ I2

)
for

every i, j ∈ F2 , and (ii) for every i, j ∈ F2 , the marginal distribution of R′
$,ij is uniform.

TH.SampleR(t):
1: ζ1 := g(pa, pb)⊕ g(pa, pb), ζ2 := g(pa, pb)⊕ g(pa, pb)

2: R′
$ ← R0,


r00

T

r01
T

r10
T

r11
T

 =


r00L r00R
r01L r01R
r10L r10R
r11L r11R

 := R′
$ ⊕ ζ1R′

1 ⊕ ζ2R′
2

3: for i, j ∈ F2 do Rij :=
(
rij

T ⊗ I2

) [SL

SR

]
⊕Rp,ij , R̂ij := Rij

([
1 0 i
0 1 j

]
⊗ I2

)
4: R̂ :=

[
R̂00 R̂01 R̂10 R̂11

]
T, r :=

[
r00L r00R r01L r01R r10L r10R r11L r11R

]
T

5: return (R̂, r)

TH.DecodeR(rij , i, j):

1: return Rij :=
(
rij

T ⊗ I2

) [SL

SR

]
⊕Rp,ij

Figure 7: Three-halves garbling scheme [RR21] (Part I).

D Adaptive Security of Three-Halves
We consider the three-halves scheme [RR21] with the computational optimization using both halves
of hash outputs (see Section 6.2 therein). It uses a counter per wire rather than an identifier per gate
to compute tweaks in hash computation. We begin with the implementation in the pRPM that sends
decoding table d in the offline phase, followed by another implementation in the npRPM that postpones
d to the online phase. Note that three-halves uses an equivalent invariant for each wire i: its active
label xi = wi ⊕ (pi ⊕ xi)∆ for its wire label wi of bit 0 with lsb(wi) = 0, truth bit xi, permuted bit
pi, and global key ∆ with lsb(∆) = 1.

For some π ∈ Sℓ and x =
[
xL xR

]
T ∈ F2

2ℓ/2
, we slightly abuse the notation y := π(x) for the

following computation: (yL ∥ yR) := π(xL ∥xR) ∈ {0, 1}ℓ and y :=
[
yL yR

]
T ∈ F2

2ℓ/2
. We refer to

Appendix A for the additional notation.
D.1 Adaptive Security in pRPM
Theorem 6. Let H(x, k) = π((0 ∥x) ⊕ k) ⊕ σ((0 ∥x) ⊕ k) be a tweakable hash function where
x ∈ F2

2λ/2
, k ∈ F2

2λ/2+1 , π ∈ Sλ+2 is random permutation, and σ : F2
2λ/2+1 → F2

2λ/2+1 is a linear
orthomorphism for the function family

L =
{
Lξ1,ξ2,ξ3,ξ4 : F2

2λ/2+1 → F2
2λ/2+1

}
ξ1,ξ2,ξ3,ξ4∈F2

, Lξ1,ξ2,ξ3,ξ4

([
xL
xR

])
=

[
ξ1xL ⊕ ξ2xR
ξ3xL ⊕ ξ4xR

]
.

Then, three-halves (Figure 7) is a (λ + 2)-garbling scheme with (q, s, ε)-adaptive security in the pRPM,
where ε = (48qs+ 189s2)/2λ+1.

Proof. The correctness has been proved in the original work [RR21]. We only need to consider the
simulation.

39

TH.Garbleπ
±1(·)(f):

1: ∆←
[

F2λ/2

F2λ/2−1 ∥ 1

]
2: for i ∈Win(f) do

3: pi ← F2 , wi ←
[

F2λ/2

F2λ/2−1 ∥ 0

]
4: for i ∈W∪(f) do ctri := 0

5: for g ∈ G(f) in topology order do
6: (a, b, c) := (in0(g), in1(g), out(g))
7: if type(g) = XOR then pc := pa ⊕ pb, wc := wa ⊕wb

8: else if type(g) = AND then
9: Γ := in2(g)

10: (χa, ρa) := (⌊ctra/2⌋, lsb(ctra)), ctra := ctra + 1
11: (χb, ρb) := (⌊ctrb/2⌋, lsb(ctrb)), ctrb := ctrb + 1
12: (χΓ, ρΓ) := (⌊ctrΓ/2⌋, lsb(ctrΓ)), ctrΓ := ctrΓ + 1
13: tg :=

[
g(pa, pb) g(pa, pb) g(pa, pb) g(pa, pb)

]
T ∈ F4

2

14: (R̂g, rg)← TH.SampleR(tg)
15: Compute (cg, gg, zg) ∈ F2

2λ/2 × F3
2λ/2 × F5

2 as follows: for

hg :=


Halfρa(H(wa, a ∥χa))
Halfρa(H(wa ⊕∆, a ∥χa))
Halfρb

(H(wb, b ∥χb))
Halfρb

(H(wb ⊕∆, b ∥χb))
HalfρΓ

(H(wa ⊕wb,Γ ∥χΓ))
HalfρΓ

(H(wa ⊕wb ⊕∆,Γ ∥χΓ))

 ∈ F6
2λ/2+1 ,

(
zg

∥∥∥ [cg

gg

])
:= V +

Mhg ⊕

rg
∥∥∥ (R̂g ⊕

([
04×2 tg

]
⊗ I2

))wa

wb

∆


16: pc := lsb(cg), wc := cg ⊕ pc∆

17: for i ∈Wout(f) do di := pi

18: return f̂ := (f ′ := f, F := {(gg, zg)}g∈Gand(f), d), k := (f,∆, p,w)

TH.DecEvalπ
±1(·)(f̂ , x̂):

1: for i ∈W∪(f) do ctri := 0

2: for g ∈ G(f) in topology order do
3: (a, b, c) := (in0(g), in1(g), out(g))
4: if type(g) = XOR then xc := xa ⊕ xb

5: else if type(g) = AND then
6: Γ := in2(g)
7: (χa, ρa) := (⌊ctra/2⌋, lsb(ctra)), ctra := ctra + 1
8: (χb, ρb) := (⌊ctrb/2⌋, lsb(ctrb)), ctrb := ctrb + 1
9: (χΓ, ρΓ) := (⌊ctrΓ/2⌋, lsb(ctrΓ)), ctrΓ := ctrΓ + 1

10: sa := lsb(xa), sb := lsb(xb)

11: (rg
sasb
∥mg

sasb
) :=

[
1 0 1
0 1 1

]Halfρa
(H(xa, a ∥χa))

Halfρb
(H(xb, b ∥χb))

HalfρΓ(H(xa ⊕ xb,Γ ∥χΓ))

⊕ Vsasb

(
zg

∥∥∥ [0
gg

])
12: Rg

sasb
:= TH.DecodeR(rg

sasb
, sa, sb)

13: xc := mg
sasb
⊕Rg

sasb

[
xa

xb

]
14: for i ∈Wout(f) do yi := di ⊕ lsb(xi)

15: return y

TH.Encodeπ
±1(·)(k, x):

1: for i ∈Win(f) do
2: xi := wi ⊕ (pi ⊕ xi)∆

3: return x̂ := {xi}i∈Win(f)

Figure 7: Three-halves garbling scheme [RR21] (Part II).

40

SimF(f):
1: F ← (F3

2λ/2 × F5
2)

|f |, d← F|Wout(f)|
2 such that

(i) For each i ∈ [1,m] and each wire j ∈ Yi(f), dj = dyi(f).
(ii) For each (µ1, . . . , µm) ∈ Fm

2 such that ⊖i∈[1,m],µi=1Xi(f) = ∅, ⊕i∈[1,m]µi · dyi(f) = 0.
2: return f̂ := (f ′ := f, F, d), stsim := (stsim, f, F, d)

SimIn(f(x)):
1: {xi}i∈X(f) ← (F2

2λ/2)
|X(f)| such that, for each j ∈ [1,m], lsb(⊕i∈Xj(f)xi) = dyj(f) ⊕ f(x)yj(f).

2: for i ∈W∪(f) do ctri := 0

3: for g ∈ G(f) in topology order do
4: (a, b, c) := (in0(g), in1(g), out(g))
5: if type(g) = XOR then xc := xa ⊕ xb

6: else if type(g) = AND then
7: Γ := in2(g)
8: (χa, ρa) := (⌊ctra/2⌋, lsb(ctra)), ctra := ctra + 1
9: (χb, ρb) := (⌊ctrb/2⌋, lsb(ctrb)), ctrb := ctrb + 1

10: (χΓ, ρΓ) := (⌊ctrΓ/2⌋, lsb(ctrΓ)), ctrΓ := ctrΓ + 1
11: sa := lsb(xa), sb := lsb(xb)
12: if c ∈ Z(f) then
13: rg

sasb
← F2

2 , Rg
sasb

:= TH.DecodeR(rg
sasb

, sa, sb)
14: HalfρΓ

(uχΓ

Γ)← F2λ/2+1

15:
[
Halfρa(u

χa
a)

Halfρb
(uχb

b)

]
:=

[
HalfρΓ(u

χΓ

Γ)
HalfρΓ

(uχΓ

Γ)

]
⊕
(

rg
sasb

∥∥∥ xc ⊕Rg
sasb

[
xa

xb

])
⊕ Vsasb

(
zg

∥∥∥ [0
gg

])
16: else if c /∈ Z(f) then
17: Halfρa

(uχa
a),Halfρb

(uχb

b),HalfρΓ
(uχΓ

Γ)← F2λ/2+1

18: (rg
sasb
∥mg

sasb
) :=

[
1 0 1
0 1 1

]Halfρa
(uχa

a)
Halfρb

(uχb

b)
HalfρΓ(u

χΓ

Γ)

⊕ Vsasb

(
zg

∥∥∥ [0
gg

])
19: Rg

sasb
:= TH.DecodeR(rg

sasb
, sa, sb)

20: xc := mg
sasb
⊕Rg

sasb

[
xa

xb

]
21: for i ∈W∪(f) do
22: for j ∈ [0, ⌊ni(f)/2⌋ − 1] do
23: (Programming) Add a pair

(
(0 ∥xi)⊕ (i ∥ j),uj

i ⊕ σ ((0 ∥xi)⊕ (i ∥ j))
)

to the list Q kept in
stsim, if it causes no pre-image collision or image collision in Q, to ensure

π ((0 ∥xi)⊕ (i ∥ j))⊕ σ ((0 ∥xi)⊕ (i ∥ j))︸ ︷︷ ︸
H(xi, i ∥ j)

= uj
i =

[
Half1(u

j
i)

Half0(u
j
i)

]
.

24: if ni(f) is odd then
25: j := ⌊ni(f)/2⌋, Half1(uj

i)← F2λ/2+1 and repeat the step 23 for this j
26: return x̂ := {xi}i∈Win(f), stsim := (stsim, x̃, ũ, r̃) where stsim on the right hand has an updated list Q,

x̃ := {xi}i∈W(f), ũ := {uj
i}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1], r̃ := {rg

sasb
}g∈Gand(f),(a,b):=(in0(g),in1(g)).

Figure 8: Our simulator for three-halves in the pRPM.

Our simulator Sim consists of (SimF, SimIn) in Figure 8 and SimP±1, which emulates the random
permutation and its inverse on-the-fly. More specifically, there is a list Q of query-response pairs
in internal state stsim. Upon receiving forward query α (resp., backward query β) from Ai to SimP
(resp., SimP−1), it reads Q from stsim and checks whether ∃(α, γ) ∈ Q (resp., ∃(γ, β) ∈ Q). If true,
it returns γ as response; otherwise it samples γ ← {s ∈ F2

2λ/2+1

∣∣ (. . . , s) /∈ Q} (resp., γ ← {s ∈
F2
2λ/2+1

∣∣ (s, . . .) /∈ Q}), adds (α, γ) (resp., (γ, β)) to Q, and returns γ as response. The programming
is the step 23 of SimIn, where (α, β) is added to Q if and only if there is no pre-image collision with

41

(α, . . .) ∈ Q or image collision with (. . . , β) ∈ Q.
To see that Sim is PPT, we note that the circuit-dependent notation can be efficiently computed by

traversing the polynomial-size circuit f . Then, the crux is to show that the step 1 in both SimF and
SimIn can be polynomial-time.

The runtime of the step 1 of SimF is dominated by the runtime of iterating through all qualified
(µ1, . . . , µm) ∈ Fm

2 . To find the qualified vectors, one can interpret each Xi(f) as a one-hot non-zero
column vector in the space F|W(f)|

2 and derive a |W(f)|-by-m matrix E from these column vectors.
One can check that all qualified vectors fall in the kernel of E. This kernel can be efficiently computed
from the Gaussian elimination on E and is a subspace spanned by m− rank(E) basis vectors. So, the
step 1 of SimF only needs to iterate through these basis vectors, and the other qualified vectors must
satisfy the constraints as they are in the subspace. As a result, the step 1 of SimF runs in polynomial
time due to the Gaussian elimination plus a linear-time pass to assign random or constrained values to
dyi(f)’s according to the m− rank(E) basis vectors.

The step 1 of SimIn only requires one linear-time pass to assign constrained or random values to
the active labels so it runs in polynomial time. The linear constraint on the LSBs of these active labels
has rank rank(E) and is satisfiable for the dyi(f)’s assigned in SimF.

Then, we fix z andA. We will use the H-coefficient technique (Section 3.4) with transcript padding
to bound the advantage of distinguishing between the real world (i.e., the adaptive experiment that uses
the three-halves scheme) and the ideal world (i.e., the adaptive experiment that uses simulator Sim). In
this technique, we consider the computationally unbounded non-uniform adversary A = A(z) and
compute ε1, ε2 as follows.

Transcript padding. In either world, A will interact with an integrated oracle that acts as the two-
round challenger in the adaptive experiment and provides interfaces π∗±1 ∈ {π±1, SimP±1} for for-
ward/backward permutation queries. A can learn π∗(α) = β if and only if it sent forward query α to
π∗ and received response β, or sent backward query β to π∗−1 and received response α.

To compute ε1, ε2 more easily, we ask the oracle to send more messages toA andA to make extra
queries (in addition to the supposed q queries) in both two worlds. More specifically,

• Upon receiving x from A, the oracle sends x̃ := {xi}i∈W(f) instead of x̂ := {xi}i∈Win(f) to A. In
addition to the active input labels in x̂, the former also gives the active internal and output labels. In
the real world, the oracle can run TH.DecEvalπ

±1(·), which determines other active labels in x̃. In
the ideal world, this x̃ can be directly output by SimIn.

• Along with x̃, the oracle sends x̃ := {xi}i∈W(f) to A, which denote the wire truth values in the
evaluation of f(x). Both two oracles “echo” these values, which are self-evident to A, to explic-
itly include them in transcripts. In the experiment, the real-world oracle uses x = {xi}i∈Win(f) in
TH.Encodeπ

±1(·), but the ideal-world oracle can only use f(x) = {xi}i∈Wout(f) in SimIn.

• Along with x̃, the oracle sends ũ := {uj
i}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1] toA. In the real world, the oracle

computes uj
i := H(xi, i ∥ j) for each i ∈W∪(f) and j ∈ [0, ⌈ni(f)/2⌉ − 1]. In the ideal world, this

ũ is output by SimIn and gives the “hash outputs” fixed by the random tape, which is specified by
the oracle to run the programming therein.

• Along with x̃, the oracle sends r̃ := {rg
sasb}g∈Gand(f),(a,b):=(in0(g),in1(g)) to A. In the real world, the

oracle computes rg
sasb ∈ F2

2 from two uniform bits (which span R′g$ ← R0 and match R′g$,ij for every
i, j ∈ F2 as per distribution R0), the truth table tg (expressed in terms of the truth values xa, xb in
x̃ and the masked bits sa = lsb(xa), sb = lsb(xb) in x̃), and the two masked bits sa and sb. More
specifically, it follows from TH.SampleR that

rg
sasb

T = R′g$,sasb ⊕
(
g(pa, pb)⊕ g(pa, pb)

)
R′1,sasb ⊕

(
g(pa, pb)⊕ g(pa, pb)

)
R′2,sasb

= R′g$,sasb ⊕ sa ⊕ xa ·R′1,sasb ⊕ sb ⊕ xb ·R′2,sasb .
(34)

In the ideal world, this r̃ is also output by SimIn as per the random tape of the oracle.

42

• Along with x̃, the oracle sends T̃ := {Ti}i∈W∪(f),ni(f) is odd to A. In the real world, the oracle
computes Ti := Half1(H(xi⊕∆, i ∥ ⌊ni(f)/2⌋)) ∈ F2λ/2+1 , i.e., the unused upper half of the ⌊ni(f)/
2⌋-th ∆-related hash output of the wire i. In the ideal world, this T̃ is sampled by the oracle at
random.

• (Extra queries) Upon receiving (x̃, x̃, ũ, r̃, T̃) from the oracle, A will also make a forward permu-
tation query (0 ∥xi)⊕ (i ∥ j) for every i ∈W∪(f) and j ∈ [0, ⌈ni(f)/2⌉−1], if it has never learned
π∗((0 ∥xi)⊕ (i ∥ j)) = y for some y in its interaction with π∗±1 ∈ {π±1, SimP±1}.

• At the end of the experiment (i.e., once all other transcripts are settled), the oracle sends ∆ toA. In
the real world, the oracle gets this ∆ from the output of TH.Garbleπ±1(·). In the ideal world, ∆ is
dummy and sampled by the oracle at this time (note that Sim does not use ∆).

According to the two oracle constructions, real-world sample space

Ωreal = Fλ−1
2 × F|Win(f)|λ

2 × F2|f |
2︸︷︷︸

random tape to run
TH.SampleR |f | times

× Sλ+2,

and ideal-world sample space

Ωideal = (F3λ/2+5
2)|f | × Frank(E)

2 × F(|Win(f)|+|Z(f)|)λ−rank(E)
2 × (Fλ/2+3

2)|Z(f)| × (F3λ/2+3
2)|f |−|Z(f)|

× (Fλ+2
2)M︸ ︷︷ ︸

for the step 25 of SimIn and T̃

× {0, 1}∗︸ ︷︷ ︸
random tape for

the sampling in SimP±1(·)

× Fλ−1
2︸ ︷︷ ︸

dummy ∆

.

Given the oracle constructions, a transcript in the original adaptive experiment will be padded with
more literal values. Note that transcript padding will not lower the advantage ofA sinceA can discard
the padding values at will. With the padding, a transcript is of the form:

τ = (K1, (f, f̂),K2, (x, (x̃, x̃, ũ, r̃, T̃)),K3,∆),

where K1, K2, and K3 are the ordered lists of query-response pairs seen in the interleaved interaction
with permutation oracles. We do not explicitly consider query direction in these pairs. Given π∗±1 ∈
{π±1, SimP±1}, A is able to learn π∗(α) = β if and only if there exists (α, β) ∈ ∪3ℓ=1Kℓ.

Let qℓ := |Kℓ| for every ℓ ∈ {1, 2, 3} and qΣ :=
∑3

ℓ=1 qℓ. It follows from the extra queries that
qΣ ≤ q +N . Without loss of generality, we can assume that A only makes non-repeating queries, i.e.,
it never makes forward query α to π∗ or backward query β to π∗−1 for any learned permutation entry
(α, β).

Bad transcripts. A transcript τ ∈ Tbad if and only if it incurs at least one of the following events:

• bad1. There exist distinct (i, j) ∈W∪(f)× [0, ⌈ni(f)/2⌉−1], (i′, j′) ∈W∪(f)× [0, ⌈ni′(f)/2⌉−1]
such that

(0 ∥xi)⊕ (i ∥ j) = (0 ∥xi′)⊕ (i′ ∥ j′) ∨ (35)

uj
i ⊕ σ((0 ∥xi)⊕ (i ∥ j)) = uj′

i′ ⊕ σ((0 ∥xi′)⊕ (i′ ∥ j′)) ∨ (36)

yj
i ⊕ uj

i ⊕ σ((0 ∥xi)⊕ (i ∥ j)) = yj′

i′ ⊕ uj′

i′ ⊕ σ((0 ∥xi′)⊕ (i′ ∥ j′)) (37)

where yj
i ∈ F2

2λ/2+1 will be defined from τ according to (45) and (47).

In this case, A is able to check the consistency between the value of yj
i ⊕ yj′

i′ and that of ∆ at the
end of experiment without sending any needed queries, which are computed from ∆, to a random

43

permutation or its inverse. In the real world, the consistency certainly holds. However, the ideal-
world garbled rows and ∆ are independently sampled, leading to the consistency onlywith negligible
probability. So, A has non-negligible advantage to distinguish the two worlds and the statistical
distance, as an upper bound, also blows up.
More specifically, the real world is as follows in this case. The pre-image collision (35) leads to the
syntactically same XOR of two hash masks in yj

i ,y
j′

i′ , which can be XORed to cancel all hash masks
to check the consistency with ∆ without further queries. Furthermore, the image collision (36)
also implies the pre-image collision (35) as π is permutation. The collision (37) results in the image
collision π((0 ∥xi ⊕∆)⊕ (i ∥ j)) = π((0 ∥xi′ ⊕∆)⊕ (i′ ∥ j′)) for some distinct (i, j) and (i′, j′).
Since π is permutation, this collision implies the pre-image collision (35), which can be used to see
the consistency. In contrast, the above cancelling of hash masks cannot give this consistency except
with negligible probability in the ideal world.

• bad2. There exists ((α, β), i, j) ∈ ∪3ℓ=1Kℓ ×W∪(f)× [0, ⌈ni(f)/2⌉ − 1] such that

α = (0 ∥xi ⊕∆)⊕ (i ∥ j) ∨ (38)
β = σ(0 ∥∆)⊕ yj

i ⊕ uj
i ⊕ σ((0 ∥xi)⊕ (i ∥ j)) (39)

where yj
i ∈ F2

2λ/2+1 will be defined from τ according to (45) and (47).
In this case,A essentially makes it to guess ∆ before receiving this value. It allowsA to distinguish
the real world, where every yj

i is consistent with ∆, and the ideal world with a dummy ∆. So, the
statistical distance blows up.

• bad3. There exists ((α, β), i, j) ∈ ∪2ℓ=1Kℓ ×W∪(f)× [0, ⌈ni(f)/2⌉ − 1] such that

α = (0 ∥xi)⊕ (i ∥ j) ∨ (40)
β = uj

i ⊕ σ((0 ∥xi)⊕ (i ∥ j)) (41)

In this case, A can make forward/backward queries w.r.t. some active labels before receiving active
input labels and computing other active ones.
This case is necessary to ensure successful programming in the ideal world as the values on the right
hand should not be queried before the programming (otherwise it fails due to pre-image or image
collision). If the programming fails in the ideal world, the two worlds can be distinguishable as the
decoding consistency in the ideal world does not always hold as in the real world.

Bounding 1− ε2. Without loss of generality, we can consider some fixed good transcript τ such that
Prω←Ωideal [Y (ω) = τ] ̸= 0 (if this probability is zero, it is trivial by definition that ε2 = 0 for this
τ). Using Lemma 1, we turn to analyze the sampled oracle’s compatibility (Section 3.4) with such a
transcript, instead of the interaction between A and the sampled oracle.

Note that there is a computationally unbounded non-uniform adversary A′ such that, for every
oracle ω, it sends the queries in τ in order in its interaction with ω (e.g., A′ has auxiliary input τ and
sends its ordered queries). Fix A′ in the following compatibility analysis so that any real-world or
ideal-world oracle will receive the queries in τ in order. For a response c recorded in a fixed τ , let ω ⊢ c
denote the event that, fixing the ordered queries as per τ , oracle ω produces c given the corresponding
query. Let K R denote the order-preserving list of the responses in an ordered list K of permutation
query-response pairs.

First, we compute Prω←Ωreal [ω ∈ compreal(τ)]. Following from three-halves, a real-world oracle
ω = (∆, {(pi,wi)}i∈Win(f), {(r

g
L, r

g
R)}g∈Gand(f), π) ∈ Ωreal. So,

Pr
ω←Ωreal

[ω ∈ compreal(τ)] = Pr
ω←Ωreal

[ω ⊢ (K R
1 , f̂ ,K R

2 , x̃, x̃, ũ, r̃, T̃ ,K R
3 ,∆)] .

44

To begin with, every real-world ω certainly produces f ′ (i.e., the first value in f̂) and x̃ fixed in τ ,
which leads to Prω←Ωideal [Y (ω) = τ] ̸= 0. This non-zero probability implies that (f ′, x̃) in τ is honestly
and deterministically computed from the fixed queries (f, x). Otherwise, no ideal-world oracle, which
computes (f ′, x̃) from the same deterministic procedure, can produce this transcript, contradicting the
non-zero probability. As every real-world ω will follow the same deterministic procedure, it certainly
produces the two values.

Meanwhile, a real-world oracle ω should have the same literal value of ∆ as its counterpart in τ .
Then, the real-world sampling R′g$ ← R0 (in Appendix F) and rg =

[
rg
00 rg

01 rg
10 rg

11

]
T ∈ (F2

2)
4 ensure

that, for every i, j ∈ F2 and every g ∈ Gand(f) with (a, b) := (in0(g), in1(g)),

rg
ij

T =
[
rgijL rgijR

]
= R′g$,ij ⊕ sa ⊕ xa ·R′1,ij ⊕ sb ⊕ xb ·R′2,ij
=

[
rgL rgR

]
⊕ sa ⊕ xa ·R′1,ij ⊕ sb ⊕ xb ·R′2,ij .

(42)

In particular, (42) holds for i = sa and j = sb (i.e., the real-world compatibility between ω and r̃ in
(34) for this g) with probability 2−2, which comes from two uniform coins (rgL, r

g
R) ∈ F2

2 in ω and
independent of the literal values of xa, xb, sa, and sb. Conditioned on the compatibility so far, the
probability

Pr
ω←Ωreal

[ω ∈ compreal(τ)]

= Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , x̃, ũ, T̃ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ (r̃,∆)

]
· Pr
ω←Ωreal

[
ω ⊢ (f ′, x̃) ∧ ω ⊢ (r̃,∆)

]
= Pr

ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , x̃, ũ, T̃ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ (r̃,∆)

]
· Pr
ω←Ωreal

[
ω ⊢ (f ′, x̃)

]
· Pr
ω←Ωreal

[ω ⊢ r̃] · Pr
ω←Ωreal

[ω ⊢∆]

= Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , x̃, ũ, T̃ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ (r̃,∆)

]
· 1

22|f |+(λ−1) .

Conditioned on the compatibility with (f ′, x̃, r̃,∆), a real-world ω should be compatible with
(∪3ℓ=1K R

ℓ , F, ũ, T̃) and some active labels in x̃ such that

(i) π±1 maps the fixed permutation queries to the responses in ∪3ℓ=1K R
ℓ .

(ii) For each i ∈Win(f), it holds that xi = wi ⊕ (pi ⊕ xi)∆.

(iii) For each i ∈W∪(f) and j ∈ [0, ⌈ni(f)/2⌉ − 1], it holds that

H(xi, i ∥ j) := π((0 ∥xi)⊕ (i ∥ j))⊕ σ((0 ∥xi)⊕ (i ∥ j)) = uj
i =

[
Half1(u

j
i)

Half0(u
j
i)

]
. (43)

(iv) For each g ∈ Gand(f) with (a, b,Γ, c) := (in0(g), in1(g), in2(g), out(g)) and the non-repeating

45

counters (χa ∥ ρa), (χb ∥ ρb), and (χΓ ∥ ρΓ) as per some fixed topology order of f , it holds that(
rg
sasb

∥∥∥ xc ⊕Rg
sasb

[
xa

xb

])

=

[
1 0 1
0 1 1

]Halfρa(H(xa, a ∥χa))
Halfρb(H(xb, b ∥χb))
HalfρΓ(H(xΓ ,Γ ∥χΓ))

⊕ Vsasb

(
zg

∥∥∥ [0
gg

])
,

(44)

(
zg
bot

∥∥∥ gg
)
= V +

bot

Mhg ⊕

rg
∥∥∥ (R̂g ⊕

([
04×2 tg

]
⊗ I2

))wa

wb

∆



= V +
botM



sa sa
sa sa

sb sb
sb sb

sa ⊕ sb sa ⊕ sb
sa ⊕ sb sa ⊕ sb





Halfρa(H(xa, a ∥χa))
Halfρa(H(xa ⊕∆, a ∥χa))
Halfρb(H(xb, b ∥χb))
Halfρb(H(xb ⊕∆, b ∥χb))
HalfρΓ(H(xΓ ,Γ ∥χΓ))
HalfρΓ(H(xΓ ⊕∆,Γ ∥χΓ))


⊕

 sa ⊕ xa
sb ⊕ xb

sa ⊕ xa ⊕ sb ⊕ xb

∥∥∥ V +
bot

(
R̂g ⊕

([
04×2 tg

]
⊗ I2

))xa ⊕ sa∆
xb ⊕ sb∆

∆


︸ ︷︷ ︸[

Halfρa(e
χa
a) Halfρb(e

χb
b) HalfρΓ(e

χΓ
Γ)

]
T ∈ F3

2λ/2+1

⇔
(

zg
bot

∥∥∥ gg
)
⊕
[
Halfρa(e

χa
a) Halfρb(e

χb
b) HalfρΓ(e

χΓ
Γ)

] T︸ ︷︷ ︸[
Halfρa(y

χa
a) Halfρb(y

χb
b) HalfρΓ(y

χΓ
Γ)

]
T ∈ F3

2λ/2+1

=

Halfρa(H(xa, a ∥χa))
Halfρb(H(xb, b ∥χb))
HalfρΓ(H(xΓ ,Γ ∥χΓ))

⊕
Halfρa(H(xa ⊕∆, a ∥χa))

Halfρb(H(xb ⊕∆, b ∥χb))
HalfρΓ(H(xΓ ⊕∆,Γ ∥χΓ))

 ,

(45)

where the bits xa, xb, sa = lsb(xa), sb = lsb(xb) are given in τ , and in (45),

V + =
[
V +
top V +

bot

] T ∈ (F1×8
2)2 × (F1×8

2)3,

∀g ∈ Gand(f) : zg =
[
zg
top zg

bot

] T ∈ F2
2 × F3

2 ,

∀g ∈ Gand(f) : tg =


g(sa ⊕ xa, sb ⊕ xb)
g(sa ⊕ xa, sb ⊕ xb)
g(sa ⊕ xa, sb ⊕ xb)
g(sa ⊕ xa, sb ⊕ xb)

 ,

and for each g ∈ Gand(f), R̂g ∈ F8×6
2 is fixed by running TH.SampleR with random coins

(rgL, r
g
R) in ω, which have been compatible (according to the condition) with r̃ as per the (42) for

this g and (i, j) = (sa, sb).

(v) For each i ∈ {i ∈W∪(f) | ni(f) is odd}, it holds that

Half1(H(xi ⊕∆, i ∥ ⌊ni(f)/2⌋)) = Ti. (46)

Conditioned on the compatibility so far, every real-world oracle ω is always compatible with the
leftover values in τ , i.e., decoding table d and other active labels in x̃, which are deterministically
computed from XOR combination. The reason is that, for τ ensuring Prω←Ωideal [Y (ω) = τ] ̸= 0, these
values should be honestly determined by the conditioned values as in the real world. Otherwise, this
probability will be zero for an ideal-world oracle, which obtains them from a consistent deterministic

46

computation as per the conditioned values. As every real-world oracle ω honestly follows the real-
world computation, this “leftover” compatibility must hold conditioned on the previous compatibility.

It remains to compute the conditional probabilities for (i) to (v). Consider (iii), (iv), and (v). We
claim that every good τ with Prω←Ωideal [Y (ω) = τ] ̸= 0 already implies (43) and (44). To see this, we
use that condition ¬bad3 for good transcripts and the extra queries ensure that K3 fixes the pairs of
permutation pre-images and images for hash values

{H(xi, i ∥ j)}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1].

These values are consistent with ũ fixed in τ as per (43). Otherwise, Prω←Ωideal [Y (ω) = τ] ̸= 0 cannot
be satisfied by τ since ¬bad1 ∧¬bad3 for every good transcript implies successful programming in the
ideal world so that H(xi, i ∥ j) = uj

i . As a corollary, (44) holds for every good transcript due to this
consistency and the step 15 and 18 of SimIn.

Consider (45) and (46), the leftover parts of (iii), (iv), and (v). If we define from the fixed τ that

Half1(y
⌊ni(f)/2⌋
i) := Half1(u

⌊ni(f)/2⌋
i)⊕ Ti ∈ F2λ/2+1 (47)

for each i ∈ {i ∈W∪(f) | ni(f) is odd}, then we can unify (45) and (46) as:

V :=


i ∈W∪(f), j ∈ [0, ⌈ni(f)/2⌉ − 1] :

yj
i = H(xi, i ∥ j)⊕ H(xi ⊕∆, i ∥ j)
= π((0 ∥xi)⊕ (i ∥ j))︸ ︷︷ ︸

Pi ∥ j,0

⊕π((0 ∥xi ⊕∆)⊕ (i ∥ j))︸ ︷︷ ︸
Pi ∥ j,1

⊕ σ(0 ∥∆)


since (45) and (46) iterate through both halves of all well-defined yj

i ∈ F2
2λ/2+1 for i ∈ W∪(f) and

j ∈ [0, ⌈ni(f)/2⌉− 1]. Since τ is a good transcript, there are exactly 2N pairwise distinct permutation
pre-images on the right hand (otherwise, there will be a pair of permutation pre-images leading to (35)
in bad1 or a permutation pre-image leading to (38) in bad2 given the extra queries). Due to this pairwise
distinctness,V has 2N syntactically different variables P := {Pi ∥ j,0, Pi ∥ j,1}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1].
They can fix the same number of the entries of permutation π in a real-world ω if and only if their literal
values fixed by τ are also pairwise distinct. We note that every good transcript τ does fix exact one such
assignment of these variables for the following reasons:

• (43) already holds for τ , i.e., for i ∈W∪(f) and j ∈ [0, ⌈ni(f)/2⌉ − 1],

Pi ∥ j,0 := π((0 ∥xi)⊕ (i ∥ j)) = uj
i ⊕ σ((0 ∥xi)⊕ (i ∥ j)). (48)

The literal values of {Pi ∥ j,0}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1] are immediate from the responses in K R
3 given

the extra queries and will be pairwise distinct due to the impossible (36) from ¬bad1.

• For i ∈W∪(f) and j ∈ [0, ⌈ni(f)/2⌉ − 1], the literal value of Pi ∥ j,1 is fixed by τ according to V
and (48):

Pi ∥ j,1 := π((0 ∥xi ⊕∆)⊕ (i ∥ j)) = σ(0 ∥∆)⊕ yj
i ⊕ uj

i ⊕ σ((0 ∥xi)⊕ (i ∥ j)). (49)

The literal values of {Pi ∥ j,1}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1] will be pairwise distinct according to the im-
possible (37) from ¬bad1.

• The goodness of τ also ensures that there do not exist

P ′ ∈ {Pi ∥ j,0}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1],

P ′∆ ∈ {Pi ∥ j,1}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1]

47

such that P ′ = P ′∆. Otherwise, this equality and (49) ensure that there exist (i, j) ∈ W∪(f) ×
[0, ⌈ni(f)/2⌉ − 1] and (i′, j′) ∈W∪(f)× [0, ⌈ni′(f)/2⌉ − 1] such that

π((0 ∥xi)⊕ (i ∥ j)) = π((0 ∥xi′ ⊕∆)⊕ (i′ ∥ j′))

= σ(0 ∥∆)⊕ yj′

i′ ⊕ uj′

i′ ⊕ σ((0 ∥xi′)⊕ (i′ ∥ j′)).
(50)

We have ((0 ∥xi)⊕ (i ∥ j), π((0 ∥xi)⊕ (i ∥ j))) ∈ K3 according to ¬bad3 and the extra queries. So,
(50) contradicts the impossible (39) from ¬bad2.

Putting these cases together, we can see that τ yields a value assignment of P, and this assignment
fixes exact 2N entries of real-world permutation π.

Based on the condition ¬bad1 ∧ ¬bad3 of good transcript τ , N extra queries are non-repeating
and the number of non-repeating queries is q +N = qΣ. As a result, N responses in ∪3ℓ=1K R

ℓ for the
non-repeating extra queries are fixed by the values in P while the other qΣ − N = q responses are
fixed by real-world π (conditioned on the values in P). Based on (i), (ii), (iii), (iv), and (v) together with
the “leftover” compatibility, we have in the real world that

Pr
ω←Ωreal

[
ω ⊢ (K R

1 , F, d,K R
2 , x̃, ũ, T̃ ,K R

3)
∣∣ ω ⊢ (f ′, x̃) ∧ ω ⊢ (r̃,∆)

]
=

1

(2λ)|Win(f)|
· (2

λ+2 − 2N − (qΣ −N))!

(2λ+2)!

=
1

(2λ)|Win(f)|
· 1

(2λ+2)q+2N

⇒ Pr
ω←Ωreal

[ω ∈ compreal(τ)] =
1

(2λ)|Win(f)|
· 1

(2λ+2)q+2N
· 1

22|f |+(λ−1) .

Second, in the ideal world, we can use a similar argument to show

Pr
ω←Ωideal

[ω ∈ compideal(τ)] = Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , x̃, x̃, ũ, r̃, T̃ ,∆)

]
· Pr
ω←Ωideal

[ω ⊢ (f̂ , x̃, x̃, ũ, r̃, T̃ ,∆)]

= Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , x̃, x̃, ũ, r̃, T̃ ,∆)

]
· 1

2|Win(f)|λ+(3λ+8)|f |+(λ+2)M+(λ−1) .

According to the condition ¬bad1 ∧ ¬bad3 and the N extra queries, there are exact q +N = qΣ non-
repeating queries. Here, N responses in ∪3ℓ=1K R

ℓ for the non-repeating extra queries are fixed by the
conditioned values while the other responses are fixed by SimP±1 for other qΣ −N = q queries.

Let Qi−1 denote the list Q (which is maintained in internal state stsim) when it includes i − 1 ∈
[0, qΣ − 1] pairs (note that Q finally includes qΣ pairs given the qΣ non-repeating queries), and N ⊆
[1, qΣ] denote the index set of these q queries in qΣ non-repeating queries to SimP±1(·) such that
|N | = q. We have

Pr
ω←Ωideal

[
ω ⊢ (K R

1 ,K R
2 ,K R

3)
∣∣ ω ⊢ (f̂ , x̃, x̃, ũ, r̃, T̃ ,∆)

]
=

∏
i∈N

1

2λ+2 − |Qi−1|
=

∏
i∈N

1

2λ+2 − (i− 1)

≤ 1

2λ+2 −N
× 1

2λ+2 − (N + 1)
× · · · × 1

2λ+2 − (qΣ − 1)

=
1

(2λ+2 −N)q
,

⇒ Pr
ω←Ωideal

[ω ∈ compideal(τ)]

≤ 1

(2λ)|Win(f)|
· 1

(2λ+2 −N)q · (2λ+2)3|f |+M
· 1

22|f |+(λ−1) .

48

As iterating an AND gate increases three counters in either world, we have

3 |f | =
∑

i∈W∪(f)

ni(f)

=
∑

i∈W∪(f),
ni(f) is even

2 ·
⌈
ni(f)

2

⌉
+

∑
i∈W∪(f),
ni(f) is odd

2 ·
(⌈

ni(f)

2

⌉
− 1

2

)

= 2N −M.

(51)

So, we can have ε2 = 0 since, for every N ≥ 0 and every q ≥ 0,

Prω←Ωreal [ω ∈ compreal(τ)]
Prω←Ωideal [ω ∈ compideal(τ)]

≥ (2λ+2 −N)q · (2λ+2)2N

(2λ+2)q+2N

≥ (2λ+2 −N)q · (2λ+2)N · (2λ+2)N

(2λ+2)q+2N

=
(2λ+2)q+N · (2λ+2)N

(2λ+2)q+2N
=

(2λ+2)N

(2λ+2 − (q +N))N
≥ 1.

Bounding ε1. We bound the probabilities of the bad events in the ideal world. First, consider bad1.
Note that each active label xi can be written as the XOR of (i) some active circuit input labels, and/or
(ii) some active output labels of the precedent AND gates, i.e., for Ii ⊖ Ji ̸= ∅,

xi =
(⊕

w∈Ii⊆Win(f)
xw

)
⊕
(⊕

w∈Ji⊆Wand(f)
xw

)
=

⊕
w∈Ii⊖Ji xw ∈ F2

2λ/2
.

(52)

For (35), we can use (52) to rewrite it as(
02×1

∥∥∥(⊕w∈(Ii⊖Ii′)⊖(Ji⊖Ji′) xw

))
= (i ∥ j)⊕ (i′ ∥ j′) ∈ F2

2λ/2+1 .

According to SimIn, each xw, which is sampled in the step 1 or computed in the step 19, has at least
λ− 1 random non-LSBs. Therefore, the equality holds with probability at most 2−(λ−1) for some fixed
distinct (i, j) and (i′, j′), and, if (i) Ii = Ii′ and Ji = Ji′ or (ii) the right-hand XOR does not give two
leading zero bits, this probability is zero for the distinct (i, j) and (i′, j′). For (36), the worst case is that
both halves of uj

i ⊕ uj′

i′ ∈ F2
2λ/2+1 respectively serve (in the step 14 of SimIn) as the lower-half masks

of two AND gates both with output wires inZ(f). In this case, each half of this XOR will have at least
1 + (λ/2− 1) = λ/2 random non-LSBs using the lower-half randomness of (rg

sasb ∥xc) ∈ F2
2λ/2+1 in

each of the two AND gates. Note that such 2 · λ/2 = λ bits are independent of other (previously fixed)
active labels, including xi and xi′ . Thus, the equality holds with probability at most 2−λ < 2−(λ−1) for
some fixed (i, j) and (i′, j′).

Similarly, the worst case for (37) is that both halves of uj
i ⊕ uj′

i′ ∈ F2
2λ/2+1 are respectively the

lower-half masks of two AND gates both with output wires in Z(f). Otherwise, at least one half of
(yj

i ⊕ uj
i)⊕ (yj′

i′ ⊕ uj′

i′) is uniform for:

(i) The uj
i⊕uj′

i′ masked with the uniform upper half of some (rg
sasb ∥xc), which cannot be cancelled

by yj
i or yj′

i′ defined as per (45) and (47), or

(ii) The uniform uj
i or uj′

i′ sampled in the step 16 of SimIn and independent of yj
i or yj′

i′ , or

(iii) The uniform Ti = Half1(y
j
i ⊕uj

i) (resp., Ti′ = Half1(y
j′

i′ ⊕uj′

i′)) when the upper half of the XOR
is considered, ni(f) (resp., ni′(f)) is odd, and j = ⌈ni(f)/2⌉ − 1 (resp., j′ = ⌈ni′(f)/2⌉ − 1).

49

In this worst case, each half of uj
i ⊕ uj′

i′ includes at least 1 + (λ/2 − 1) = λ/2 uniform bits for the
lower-half non-LSBs of some (rg

sasb ∥xc). These non-LSBs are independent of yj
i and yj′

i′ defined as
per (45) and (47), or other (previously fixed) active labels, including xi and xi′ . Thus, (37) holds with
probability 2−λ for some fixed distinct (i, j) and (i′, j′).

Taking a union bound over the above cases, we have

Pr
ω←Ωideal

[bad1] ≤
5N(N − 1)

2λ+1
. (53)

Then, consider bad2. For (38), it is clear that (0 ∥∆) = α ⊕ (0 ∥xi) ⊕ (i ∥ j), which occurs with
probability 2−(λ−1) according to the randomness of ∆. Let ∆ =

[
∆L ∆R

]
T ∈ F2

2λ/2
. We note that

each yj
i ∈ F2

2λ/2+1 defined from (45) and (47) includes an additive term of the form

Lξ1,ξ2,ξ3,ξ4(0 ∥∆) =

[
0 ∥ ξ1∆L ⊕ ξ2∆R

0 ∥ ξ3∆L ⊕ ξ4∆R

]
∈ F2

2λ/2+1

for some ξ1, ξ2, ξ3, ξ4 ∈ F2 , while other additive terms in yj
i are independent of ∆. Linear orthomor-

phism σ for every Lξ1,ξ2,ξ3,ξ4 turns (39) into

σ(0 ∥∆)⊕ Lξ1,ξ2,ξ3,ξ4(0 ∥∆) = β ⊕ uj
i ⊕ σ((0 ∥xi)⊕ (i ∥ j))

⊕ “other additive terms in yj
i ”,

which is invertible to compute (0 ∥∆). This implies that the equality holds with probability 2−(λ−1)

due to the randomness of ∆. Taking a union bound, we have

Pr
ω←Ωideal

[bad2] ≤
2N · (q1 + q2 + q3)

2λ−1
. (54)

Finally, consider bad3. Recall that each xw has at least λ − 1 random non-LSBs. Since these bits
are independent of ∪2ℓ=1Kℓ, (40) holds with probability at most 2−(λ−1) for some fixed (α, . . .) and
(i, j). For (41), the mask sampled in the step 13 or the direct sampling in the step 13 or 16 of SimIn
ensures that both halves of uj

i ∈ F2
2λ/2+1 are uniform and independent of xi or ∪2ℓ=1Kℓ. It holds with

probability 2−(λ+2) < 2−(λ−1) for some fixed (. . . , β) and (i, j). So, we can take a union bound to
have that

Pr
ω←Ωideal

[bad3] ≤
2N · (q1 + q2)

2λ−1
. (55)

We have a bound ε1 from (53), (54), and (55):

Pr
ω←Ωideal

[Y (ω) ∈ Tbad] = Pr
ω←Ωideal

[bad1 ∨ bad2 ∨ bad3]

≤ Pr
ω←Ωideal

[bad1] + Pr
ω←Ωideal

[bad2] + Pr
ω←Ωideal

[bad3]

≤ 5N(N − 1) + 16N(q +N)

2λ+1

≤ 48qs+ 189s2 − 15s

2λ+1
= ε1,

where the last inequality comes from (51), M ≤ |W∪(f)| ≤ 3 |f |, and |f | = s.
The above ε1, ε2 and the H-coefficient technique lead to this theorem.

D.2 Adaptive Security in npRPM
We consider a slightly different three-halves implementation from the original one of [RR21] in that
decoding table d is transferred from f̂ to k in TH.Garbleπ

±1(·) and then included in garbled input x̂
in the online phase. This implementation also follows the lower bound in Theorem 8 and satisfies the
adaptive security in the npRPM as per the following theorem.

50

SimFπ
±1(·)(f):

1: F := {(gg, zg)}g∈Gand(f) ← (F3
2λ/2 × F5

2)
|f |

2: {xi}i∈Win(f) ← (F2
2λ/2)

|Win(f)|

3: for i ∈W∪(f) do ctri := 0

4: for g ∈ G(f) in topology order do
5: (a, b, c) := (in0(g), in1(g), out(g))
6: if type(g) = XOR then xc := xa ⊕ xb

7: else if type(g) = AND then
8: Γ := in2(g)
9: (χa, ρa) := (⌊ctra/2⌋, lsb(ctra)), ctra := ctra + 1

10: (χb, ρb) := (⌊ctrb/2⌋, lsb(ctrb)), ctrb := ctrb + 1
11: (χΓ, ρΓ) := (⌊ctrΓ/2⌋, lsb(ctrΓ)), ctrΓ := ctrΓ + 1
12: sa := lsb(xa), sb := lsb(xb)

13:

Halfρa
(uχa

a)
Halfρb

(uχb

b)
HalfρΓ

(uχΓ

Γ)

 :=

Halfρa
(π((0 ∥xa)⊕ (a ∥χa))⊕ σ((0 ∥xa)⊕ (a ∥χa)))

Halfρb
(π((0 ∥xb)⊕ (b ∥χb))⊕ σ((0 ∥xb)⊕ (b ∥χb)))

HalfρΓ
(π((0 ∥xa ⊕ xb)⊕ (Γ ∥χΓ))⊕ σ((0 ∥xa ⊕ xb)⊕ (Γ ∥χΓ)))


14: (rg

sasb
∥mg

sasb
) :=

[
1 0 1
0 1 1

]Halfρa
(uχa

a)
Halfρb

(uχb

b)
HalfρΓ

(uχΓ

Γ)

⊕ Vsasb

(
zg

∥∥∥ [0
gg

])
15: Rg

sasb
:= TH.DecodeR(rg

sasb
, sa, sb)

16: xc := mg
sasb
⊕Rg

sasb

[
xa

xb

]
17: return f̂ := (f, F), stsim := (f, x̃ := {xi}i∈W(f), ũ := {uj

i}i∈W∪(f),j∈[0,⌈ni(f)/2⌉−1], r̃ :=
{rg

sasb
}g∈Gand(f),(a,b):=(in0(g),in1(g)))

SimInπ
±1(·)(f(x)):

1: Parse stsim = (f, x̃ = {xi}i∈W(f), ũ, r̃)
2: for i ∈Wout(f) do di := f(x)i ⊕ lsb(xi)

3: return x̂ := ({xi}i∈Win(f), d), x̃, ũ, r̃.

Figure 9: Our simulator for three-halves in the npRPM.

Theorem 7. Let H(x, k) = π((0 ∥x) ⊕ k) ⊕ σ((0 ∥x) ⊕ k) be a tweakable hash function where
x ∈ F2

2λ/2
, k ∈ F2

2λ/2+1 , π ∈ Sλ+2 is random permutation, and σ : F2
2λ/2+1 → F2

2λ/2+1 is a linear
orthomorphism for the function family

L =
{
Lξ1,ξ2,ξ3,ξ4 : F2

2λ/2+1 → F2
2λ/2+1

}
ξ1,ξ2,ξ3,ξ4∈F2

, Lξ1,ξ2,ξ3,ξ4

([
xL
xR

])
=

[
ξ1xL ⊕ ξ2xR
ξ3xL ⊕ ξ4xR

]
.

Then, three-halves (sketched above) is a (λ + 2)-garbling scheme with (q, s, ε)-adaptive security in the
npRPM, where ε = (69qs+ 234s2)/2λ+2.

Proof (sketch). The correctness can be proved as [RR21] as postponing decoding table d does not affect
correctness. We only need to consider the simulation.

Our simulator Sim = (SimF, SimIn) is presented in Figure 9 and is obviously PPT. Then, we prove
this theorem using the following three hybrids:

• Hybrid0. This is the adaptive experiment using simulator Sim.

• Hybrid1. This is identical to the previous hybrid, except that we replace π±1 (which can be equiva-
lently emulated on-the-fly as in Figure 4) by an approximation π̃±1 (given in Figure 5). This approxi-
mation is the same as random permutation except that, for a new query of the simulator, it returns a
fresh random string as response and records this query-response pair. This hybrid is used to simplify
probability analysis.

• Hybrid2. This is the adaptive experiment using three-halves scheme.

51

According to Lemma 2, every adaptive adversaryA can distinguish Hybrid0 and Hybrid1 with advan-
tage at most (q +N) ·N/2λ+1 up to the supposed q queries of A and the N queries of Sim.

Then, we prove the negligible statistical distance between the transcripts in Hybrid1 and Hybrid2,
which upper bounds the advantage of adaptive adversary A. To simplify probability analysis, we also
use the H-coefficient technique and the same transcript padding as in the proof ofTheorem 6. We regard
Hybrid1 (resp., Hybrid2) and the associated oracle as the ideal (resp., real) world in the H-coefficient
technique. The real-world sample space is the same as that in the proof of Theorem 6, but the ideal-
world sample space is defined as

Ωideal = (F3λ/2+5
2)|f | × (Fλ

2)
|Win(f)| × (Fλ/2+1

2)M︸ ︷︷ ︸
for the sampling of T̃

× {0, 1}∗︸ ︷︷ ︸
random tape for

the sampling in π̃±1(·)

× Fλ−1
2︸ ︷︷ ︸

dummy ∆

.

We will consider the same bad transcripts as in the proof of Theorem 6 (where bad3 is for probability
analysis instead of programming, as its counterpart in the proof ofTheorem 4) and assume that, without
loss of generality, A only makes non-repeating queries. Let qℓ := |Kℓ| for every ℓ ∈ {1, 2, 3} and
qΣ :=

∑3
ℓ=1 qℓ.

Bounding 1 − ε2. We can follow a similar argument (with the difference that the consistency (43)
and (44) trivially hold for good transcripts due to the step 12 to 15 in SimF) in the proof of Theorem 6
to show that, for some fixed good transcript τ such that Prω←Ωideal [Y (ω) = τ] ̸= 0 and qΣ = q + N
(which comes from the condition ¬bad1 ∧ ¬bad3 for good transcripts),

Pr
ω←Ωreal

[ω ∈ compreal(τ)]

=
1

(2λ)|Win(f)|
· (2

λ+2 − 2N − (qΣ −N))!

(2λ+2)!
· 1

22|f |+(λ−1)

=
1

(2λ)|Win(f)|
· 1

(2λ+2)q+2N
· 1

22|f |+(λ−1) ,

Pr
ω←Ωideal

[ω ∈ compideal(τ)]

≤ 1

(2λ+2 −N)q
· 1

2|Win(f)|λ+(3λ/2+5)|f |+(λ/2+1)M+(λ−1) · (2λ+2)N

=
1

(2λ)|Win(f)|
· 1

(2λ+2 −N)q · (2λ/2+1)3|f |+M+2N
· 1

22|f |+(λ−1)

=
1

(2λ)|Win(f)|
· 1

(2λ+2 −N)q · (2λ+2)2N
· 1

22|f |+(λ−1) , (By (51))

⇒ Prω←Ωreal [ω ∈ compreal(τ)]
Prω←Ωideal [ω ∈ compideal(τ)]

≥ 1.

That is, we have ε2 = 0.

Bounding ε1. First, we consider bad1 ∨ bad3 = (35) ∨ (36) ∨ (37) ∨ (40) ∨ (41). We have a similar
induction in the proof of Theorem 4 to prove the probability of bad values of some forward queries:

Pr
ω←Ωideal

[(35) ∨ (40)] ≤ N(N − 1) + 2N · (q1 + q2)

2λ+1
. (56)

We consider (36), (37), and (41) conditioned on ¬((35)∨ (40)). In each of them, uj
i ⊕σ((0 ∥xi)⊕ (i ∥ j))

is the response for query (0 ∥xi) ⊕ (i ∥ j) to π̃±1(·). It follows from this condition that these queries
are pairwise distinct so that their responses are taken from uniform c1, . . . , cn(λ) in π̃±1(·), where

52

ℓ(λ) = λ + 2, and pairwise independent given the pairwise distinct queries. So, each of them occurs
with probability 1/2λ+2 for some fixed quantifier. Taking a union bound over all quantifiers, we have

Pr
ω←Ωideal

[
(36) ∨ (37) ∨ (41)

∣∣ ¬((35) ∨ (40))
]
≤ N(N − 1) +N · (q1 + q2)

2λ+2
. (57)

Using (56) and (57), we have

Pr
ω←Ωideal

[bad1 ∨ bad3] = Pr
ω←Ωideal

[(35) ∨ (36) ∨ (37) ∨ (40) ∨ (41)]

= Pr
ω←Ωideal

[(35) ∨ (40)]

+ Pr
ω←Ωideal

[
(36) ∨ (37) ∨ (41)

∣∣ ¬((35) ∨ (40))
]

≤ 3N(N − 1) + 5N · (q1 + q2)

2λ+2
.

(58)

Then, consider bad2. It is easy to see from the randomness of ∆ that

Pr
ω←Ωideal

[bad2] ≤
2N · (q1 + q2 + q3)

2λ−1
. (59)

We have a bound ε1 from (58) and (59):

Pr
ω←Ωideal

[Y (ω) ∈ Tbad] = Pr
ω←Ωideal

[bad1 ∨ bad2 ∨ bad3]

≤ Pr
ω←Ωideal

[bad1 ∨ bad3] + Pr
ω←Ωideal

[bad2]

≤ 3N(N − 1) + 21N(q +N)

2λ+2

≤ 63qs+ 216s2 − 9s

2λ+2
= ε1,

where the last inequality comes from (51), M ≤ |W∪(f)| ≤ 3 |f |, and |f | = s.
By using the H-coefficient technique with the above ε1 and ε2, we have that any adaptive adversary

can distinguish Hybrid1 and Hybrid2 with advantage at most (63qs+ 216s2 − 9s)/2λ+2.
Putting the three hybrids together, we arrive at this theorem.

E Separation between npRPM and pRPM
We separate the adaptively secure garbling schemes in the two RPMs since the programmability can
make a difference in online complexity. In Theorem 8, we prove that the online-complexity lower
bound [AIKW13, HW15] of the adaptively secure garbling schemes in the standard model can be ex-
tended to the npRPM. However, it is implied by the definition of the adaptively secure garbling schemes
in the pRPM that this lower bound can be bypassed if the random permutation is allowed to be pro-
grammed by the simulator to embed messages. The proof of Theorem 8 is extended from [HW15],
which is based on Yao entropy.

Definition 3 (Yao entropy [Yao82, BSW03, HLR07]). A distribution X has Yao entropy at least ρ ∈ N+,
denoted byHYao(X) ≥ ρ, if there exists a negligible function ε such that, for every pair of polynomial-size
circuits (C,D) where C has output bit-length at most ρ− 1, it holds that

Pr
x←X

[D(C(x)) = x] ≤ 1

2
+ ε(λ).

Theorem 8 (Lower bound of the online complexity in the npRPM). For every polynomial-size circuit
f : {0, 1}ℓin → {0, 1}ℓout with a distribution Xf on {0, 1}ℓin such that distribution f(Xf) on {0, 1}ℓout has
Yao entropy at least ρ, and every ℓ(λ)-garbling scheme (poly(λ), poly′(λ), negl(λ))-adaptively secure in
the npRPM, Encodeπ

±1(·)(k, ·) outputs at least ρ bits for (·, k)← Garbleπ
±1(·)(f).

53

Proof. For the sake of contradiction, assume that there exist a polynomial-size circuit f with an input
distribution Xf inducing Yao entropy HYao(f(Xf)) ≥ ρ, and an adaptively secure garbling scheme in
the npRPM, such that the output of Encodeπ±1(·)(k, ·) has at most ρ−1 bits for (·, k)← Garbleπ

±1(·)(f).
We prove that there exists a pair of polynomial-size compressor and decompressor circuits that contra-
dicts the Yao entropy HYao(f(Xf)) ≥ ρ.

We specify auxiliary input z = (f,Xf , ρ) and the following computationally unbounded adversary
A:

• A1
π±1(·)(z) outputs f in z and defines st1 := z.

• A2
π±1(·)(st1, f̂) samples x← Xf and defines st2 := (st1, x).

• A3
π±1(·)(st2, f̂ , x̂) outputs 1 if DecEvalπ±1(·)(f̂ , x̂) = f(x) and x̂ has at most ρ− 1 bits, or outputs 0

otherwise. Recall that running DecEvalπ
±1(·) requires a polynomial number of oracle queries to π±1

as this algorithm is PPT.

The correctness and the contradiction assumption ensure that, for this (z,A),

Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

(f̂ , k)← Garbleπ
±1(·)(f),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂ := Encodeπ
±1(·)(k, x)

: A3
π±1(·)(st2, f̂ , x̂) = 1

 = 1. (60)

Meanwhile, the adaptive security in the npRPM guarantees that there exists a PPT simulator Sim =
(SimF, SimIn) such that, for this (z,A),∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

(f̂ , k)← Garbleπ
±1(·)(f),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂ := Encodeπ
±1(·)(k, x)

: A3
π±1(·)(st2, f̂ , x̂) = 1



− Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

f̂ ← SimFπ
±1(·)(Φ(f)),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂← SimInπ
±1(·)(f(x))

: A3
π±1(·)(st2, f̂ , x̂) = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ). (61)

Using (60) and (61), we have for the specified (z,A) that

Pr


π ← Sℓ(λ), π−1 := inv(π),

(f, st1)← A1
π±1(·)(z),

f̂ ← SimFπ
±1(·)(Φ(f)),

(x, st2)← A2
π±1(·)(st1, f̂),

x̂← SimInπ
±1(·)(f(x))

: A3
π±1(·)(st2, f̂ , x̂) = 1

 ≥ 1− negl(λ), (62)

where the probability is taken over the random choice of π ∈ Sℓ(λ), the random tape of Sim, and the
random tape used by A2 to sample x← Xf .

Recall that both the adversary A and the PPT simulator Sim can only make a polynomial number
of oracle queries. Let n(λ) ∈ N+ denote the number of oracle queries jointly made by A and Sim in
the simulation (62). For the n(λ) oracle queries, permutation π and its inverse π−1 can be emulated

54

1: Initialize a list Q0 = ∅.
2: Sample uniforma c1, . . . , cn(λ) ← {0, 1}ℓ(λ).
3: for i ∈ [1, n(λ)] do
4: if ◦π is queried with input αi ∈ {0, 1}ℓ(λ) then
5: if ∃(αi, γi) ∈ Qi−1 then Return γi as response
6: Return γi := ci as response and define Qi := Qi−1 ∪ {(αi, γi)}.
7: else if ◦π−1 is queried with input βi ∈ {0, 1}ℓ(λ) then
8: if ∃(γi, βi) ∈ Qi−1 then Return γi as response
9: Return γi := ci as response and define Qi := Qi−1 ∪ {(γi, βi)}.
aA uniform random tape rπ is used.

Figure 10: The workflow of coarse approximate oracle ◦π±1(·) up to n(λ) queries.

on-the-fly as in Figure 4 on the uniform distribution of random tape (rπ, r∗π). This on-the-fly emulation
requires exact n(λ) · ℓ(λ) bits of rπ but possibly exponentially large r∗π . To remove r∗π , we can consider
a coarse approximation ◦π±1 (see Figure 10), which differs from π±1 in that it always returns a fresh ci
as the response for a new query. Similar to Lemma 2, it can be proved that replacing π±1 with ◦π±1 only
incurs additional statistical distance at most n(λ)2/2ℓ(λ). So, we have for negl′(λ) := negl(λ)+n(λ)2/
2ℓ(λ) and the distribution

◦
Pℓ(λ) of

◦
π±1(·) that

Pr



◦
π±1 ←

◦
Pℓ(λ),

(f, st1)← A1

◦
π±1(·)(z),

f̂ ← SimF
◦
π±1(·)(Φ(f)),

(x, st2)← A2

◦
π±1(·)(st1, f̂),

x̂← SimIn
◦
π±1(·)(f(x))

: A3

◦
π±1(·)(st2, f̂ , x̂) = 1

 ≥ 1− negl′(λ), (63)

where the probability is taken over the random tape rπ to emulate ◦π±1(·), the random tape (rSimF, rSimIn)
of Sim, and the random tape used by A2 to sample x ← Xf . We stress that rπ and (rSimF, rSimIn) are
polynomial-size as rπ carries n(λ) · ℓ(λ) uniform bits and the simulator is PPT.

Here, (63) implies the existence of a circuit pair violating HYao(f(Xf)) ≥ ρ. To see this, let Cℓ,ρ,f,r
(resp., Dℓ,ρ,f,r) denote the compressor (resp., decompressor) circuit, which hardcodes (ℓ, ρ, f) and a
random tape r = (rπ, rSimF, rSimIn) with the following functionality:

• Given f(x)← f(Xf), the compressor Cℓ,ρ,f,r invokes SimF
◦
π±1(·)(f ; rSimF) (to maintain internal state

stsim) and computes x̂ := SimIn
◦
π±1(·)(f(x); rSimIn). In the end, it outputs x̂ if x̂ has at most ρ − 1

bits, or a symbol ⊥ of ρ− 1 bits otherwise. Clearly, the output of Cℓ,ρ,f,r has at most ρ− 1 bits.

• Given x̂′, the decompressor Dℓ,ρ,f,r recomputes f̂ := SimF
◦
π±1(·)(f ; rSimF). In the end, it outputs

y := DecEval
◦
π±1(·)(f̂ , x̂′) if x̂′ ̸= ⊥, or ⊥ otherwise.

• If an oracle query α to ◦π (resp., β to ◦π−1) is needed, the hardcoded random tape rπ is used to emulate
the oracle response according to Figure 10.

Let correct denote the eventDℓ,ρ,f,r(Cℓ,ρ,f,r(f(x))) = f(x), and fail denote the event that x̂ has at least
ρ bits. These events are taken over the distribution of (r, f(x)). We consider the events in the same
probability space where (r, f(x)) takes the same literal values, to observe that correct∧¬fail occurs if
and only if A3

◦
π±1(·)(st2, f̂ , x̂) = 1 occurs in the adaptive experiment (63), i.e.,

Pr
r,f(x)←f(Xf)

[correct ∧ ¬fail] = (63) ≥ 1− negl′(λ),

55

implying Prr,f(x)←f(Xf) [correct] ≥ Prr,f(x)←f(Xf) [correct ∧ ¬fail] ≥ 1 − negl′(λ). So, there exists a
random tape r0, which gives a circuit pair (Cℓ,ρ,f,r0 ,Dℓ,ρ,f,r0), such that Dℓ,ρ,f,r0(Cℓ,ρ,f,r0(f(x))) =
f(x) occurs with probability at least 1− negl′(λ) for f(x)← f(Xf). Otherwise,

Pr
r,f(x)←f(Xf)

[correct] =
∑
r

Pr
f(x)←f(Xf)

[
correct

∣∣ r] · Pr
r
[r]

< (1− negl′(λ)) ·
∑
r

Pr
r
[r] = 1− negl′(λ),

leading to a contradiction. Note the both Cℓ,ρ,f,r0 and Dℓ,ρ,f,r0 are polynomial-size circuits since the
hardcoded random tape r0 is polynomial-size and the two circuits run in polynomial time given this
r0. Thus, (Cℓ,ρ,f,r0 ,Dℓ,ρ,f,r0) contradicts the Yao entropy HYao(f(Xf)) ≥ ρ.

F Public Parameters of Three-Halves
The following public constants are suggested by three-halves [RR21].

56

M =



1 0 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 0 0 1 0 1

0 1 0 0 0 1
0 0 1 0 0 1

0 1 0 0 1 0
0 0 0 1 1 0


∈ F8×6

2 , K =

 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

0 0 0 1 1 0 1 1

 ∈ F3×8
2 ,

V =


V00

V01

V10

V11

 =



1 0 0 0 0
0 1 0 0 0

1 0 0 0 1
0 1 0 1 1

1 0 1 0 1
0 1 0 0 1

1 0 1 0 0
0 1 0 1 0


∈ (F2×5

2)4 ≡ F8×5
2 ,

V + =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 0

 ∈ F5×8
2 ,

SL =

[
1 1 1 0
1 0 0 1

]
∈ F2×4

2 , SR =

[
1 0 0 1
0 1 1 1

]
∈ F2×4

2 ,

R′1 =


0 0
1 1
0 1
1 0

 ∈ F4×2
2 , R′2 =


0 0
1 0
1 1
0 1

 ∈ F4×2
2 ,

Rp =


Rp,00

Rp,01

Rp,10

Rp,11

 =



0 0 1 0
0 1 0 0

0 0 1 0
0 0 0 0

0 0 0 0
0 1 0 0

0 0 0 0
0 0 0 0


∈ (F2×4

2)4 ≡ F8×4
2 .

The distribution R0 is defined as sampling two uniform bits
[
rL rR

]
← F2

2 and returning

R′$ =


R′$,00
R′$,01
R′$,10
R′$,11

 := rL ·


1 0
1 0
1 0
1 0

⊕ rR ·


0 1
0 1
0 1
0 1

 ∈ (F1×2
2)4 ≡ F4×2

2 .

57

	Introduction
	Our Contribution

	Technical Overview
	Previous Techniques
	Our Approach
	Separating npRPM from pRPM for Adaptive Garbling

	Preliminaries
	Notation
	Random Permutation Model
	Adaptive Security of Garbling Schemes
	Framework of Adaptive Security and H-coefficient Technique

	Adaptive Security of Half-Gates in npRPM
	More Preliminaries
	Proof of Lemma 1
	Adaptive Security of Half-Gates in pRPM
	Adaptive Security of Three-Halves
	Adaptive Security in pRPM
	Adaptive Security in npRPM

	Separation between npRPM and pRPM
	Public Parameters of Three-Halves

