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Abstract. Garbled circuit techniques that are secure in the adaptive
setting – where inputs are chosen after the garbled program is sent –
are motivated by practice, but they are notoriously difficult to achieve.
Prior adaptive garbling is either impractically expensive or encrypts the
entire garbled program with the output of a programmable random oracle
(PRO), a strong assumption.

We present a simple framework for proving adaptive security of gar-
bling schemes in the non-programmable random oracle (NPRO) model.
NPRO is a milder assumption than PRO, and it is close to the assump-
tion required by the widely used Free XOR extension. Our framework
is applicable to a number of existing GC techniques, which are proved
adaptively secure without modification.

As our main application, we construct and prove adaptively secure a
garbling scheme for tri-state circuits, a model that captures both Boolean
circuits and RAM programs (Heath et al., Crypto 2023). For TSC C, our
garbling of C is at most |C| · λ bits long, for security parameter λ. This
implies both an adaptively secure garbled Boolean circuit scheme, and
an adaptively secure garbled RAM scheme where the garbling of a T -step
RAM program has size O(T · log3 T · log log T · λ) bits.
Our scheme is concretely efficient: its Boolean circuit handling matches
the performance of half-gates, and it is adaptively secure from NPRO.

Keywords: Adaptive Garbling · Garbled RAM · Multi-Party Compu-
tation · Non-Programmable Random Oracles

1 Introduction

Yao’s Garbled Circuit (GC) [Yao86] is a powerful cryptographic technique that
allows two parties – a garbler G and an evaluator E – to securely evaluate
an arbitrary program P on their joint private inputs. GC is foundational to

⋆ A previous version of this work required a modification to garbling schemes to prove
they are adaptively secure: all RO calls were prefixed by a random seed. This version
removes this requirement: we show adaptive security of several popular schemes
without modification.



secure two-party computation (2PC) and multiparty computation (MPC). The
technique is noteworthy because it allows 2PC and MPC protocols that use
only a small constant number of rounds, and because it relies almost entirely
only on fast symmetric-key cryptographic primitives. GC is the most efficient
secure computation approach in many settings, particularly those that involve
two parties; studying its power, performance, and underlying assumptions is
well-motivated by both theory and practice.

Garbled RAM. Typically, the evaluated program P is a Boolean circuit. While
Boolean circuits are powerful enough to represent any bounded function, the
representation is often inefficient, in the sense that many natural programs blow
up to large circuits. This is problematic because the cost of garbling typically
scales linearly in the size of the circuit. The common sources of this blow-up are
uses of complex looping/branching control flow and of complex data structures.

Garbled RAM (or GRAM, [LO13]) is a GC extension that enables garbling
of random access machine (RAM) programs. The GRAM primitive solves the
above sources of blow-up, allowing for constant round 2PC/MPC protocols that
handle complex programs.

[HKO23] showed that there exists a relatively simple circuit model – tri-state
circuits (TSCs) – that can efficiently emulate both Boolean circuits and RAM
programs. We construct a scheme that garbles TSCs, implying results for both
garbled Boolean circuits and for garbled RAM. Our scheme’s handling of Boolean
circuits matches the cost of state-of-the-art half-gates garbling [ZRE15].5

Garbling schemes and selective security. For simplicity and modularity, GC tech-
niques are often formalized as garbling schemes [BHR12b]. A garbling scheme
factors evaluation of program P on joint secret input x into four steps:

1. The parties encode their joint input x into a garbled form x̃. x̃ is given to
the GC evaluator E.

2. The GC garbler G encodes the program P as a garbled program P̃, and P̃
is also sent to E.

3. E evaluates P̃ on the garbled input, yielding garbled output ỹ ← Eval(P̃, x̃).
4. The parties decode the garbled output into its cleartext form y.

Of course, y should be equal to the result of simply running P(x) in cleartext.
Security of garbling schemes is typically considered in the so-called selective

setting. Security against (semi-honest) corrupted G is easy, as it essentially re-
duces to the security of Oblivious Transfer (OT). Security against corrupted E
is more detailed. Consider the following interaction between G and E:

1. G garbles P to obtain P̃.
2. E sends a cleartext input x to G.
3. G sends to E the garbled input x̃, the garbled program P̃, and information

d needed to decode the output.

5 [RR21] uses less communication than [ZRE15], but it uses significantly more com-
putation. We consider both techniques state-of-the-art.
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Security against a corrupted E is proved by considering this interaction and
constructing a simulator that – from the program output y alone – can forge a
garbled program, garbled input, and decoding information such that E cannot
tell whether they are interacting with G or with the simulator. Existence of such
a simulator proves that E learns nothing beyond y from GC evaluation.

The crucial detail of the above interaction is that E must select its input x
before it sees the garbled program P̃.

Adaptive security. Transmission of the garbled program P̃ is the main bottle-
neck of GC. One common practical mitigation is to move GC generation and
transmission to the offline (or preprocessing) phase. In this way, we can do most
of the work “overnight”, before inputs are ready. Once the parties obtain their
inputs, they enter the online phase and quickly compute the desired output.

At first glance, garbling schemes seem ideal for the offline/online setting.
Indeed, G can simply garble the program and send P̃ in advance; then, once
inputs become available, G quickly conveys garbled inputs to E, who evaluates
P̃ on x̃ and learns the program output.

The security of such usage is not implied by our selective security game, so
we need an updated game, where E chooses the input x after P̃ is sent over.
This is the adaptive security game:

1. G garbles P and sends P̃ to E.

2. E sends a cleartext input x to G.

3. G sends the garbled input x̃ to E, as well as information d needed to decode
the output.

Pushing transmission of P̃ to the offline phase requires that the GC scheme is
secure in the context of this game.

Perhaps surprisingly, constructing garbling schemes that provably achieve
this second notion is notoriously difficult. At a high level, this difficulty comes
from the fact that E can base its input x on the garbled program itself. Proving
this secure is a challenge, due to the nuanced nature of GC simulation.

Cost accounting of adaptive GC schemes. When constructing adaptively secure
garbling schemes, we consider the cost of the offline and the online phases sep-
arately. The most important metrics are the offline and online communication
costs. Ideally, offline phase communication should be as close as possible to the
cost in the selective security setting. Thus, we ideally want a scheme whose of-
fline communication is equal to the size of the underlying circuit representation,
multiplied by the security parameter λ. In the online phase, we wish to pay
online in terms of the number of input/output bits of the program.

Computation overhead is, of course, also important, and the computation
used by both G and E should ideally be almost identical to their computation
in the selective security setting.

3



Summary of state-of-the-art adaptive GC. The insecurity of standard GC (or,
more precisely, the invalidity of existing GC selective-security proofs) when x
may depend on P̃ has been observed relatively recently [BHR12a]. A number of
solutions were proposed, which we review in detail in Section 1.3. Here, leading
up to Section 1.1 we highlight two main approaches:

One, based only on one-way functions, requires high computational overhead
(multiplicative factor O(w), where w is the width of the evaluated circuit) both
in online and offline phases [HJO+16]. This effectively negates the benefit of
offline transmission in many settings.

The second is far more efficient, simply requiring to XOR the transmitted
circuit with an output of a Random Oracle (RO), as described by [BHR12a].
This both requires modification to the selectively secure scheme, and it roughly
doubles the computational cost. It would be far preferable to obtain adaptive
security without increasing computation and, indeed, without modifying imple-
mentation. In addition the [BHR12a] proof requires that the simulator program
the RO. This is a strong assumption, which cannot be met by any fixed function,
and which is widely seen as much stronger than non-programmable RO.

No prior tri-state circuit constructions with adaptive security were previously
proposed, although the above two approaches can undoubtedly be extended to
TSCs – with their corresponding shortcomings.

1.1 Our Contribution

Garbled circuit adaptive security is a well motivated and intensely studied prob-
lem. As we discuss in Section 1.2, the current state of the art offers to practi-
tioners an unsatisfying menu of options when confronted with the need to use
GC in the adaptive setting.

Many practical GC techniques are selectively secure in the non-programmable
random oracle (NPRO) model. As our main contribution, we provide a frame-
work that allows to prove that such schemes are also adaptively secure, if they
meet two conditions. These are satisfied by existing standard schemes, includ-
ing Free XOR, half-gates, three-halves gates [RR21], and even arithmetic tech-
niques [BMR16,Hea24]; see Appendix C. In short, our conditions require that
(1) any RO queries issued while garbling the circuit are hidden by the resulting
garbled circuit and (2) one can resample keys associated with a particular GC,
such that the GC still evaluates correctly with these fresh keys – the scheme
should be rekeyable. We highlight that these conditions are reasonably easy to
prove, which would facilitate the adoption of our framework and indeed of the
final protocols.

We apply our framework to the tri-state circuit model by (1) constructing a
natural NPRO-based garbling scheme and (2) using our framework to prove this
scheme achieves adaptive security. Thus, we obtain adaptively-secure garbling
of both Boolean circuits and RAM programs in the NPRO model (NPROM).

Our adaptively-secure TSC scheme matches the cost of state-of-the-art se-
lectively secure schemes in terms of both communication and computation. Let
C denote a TSC with input x and output y. Let λ be the security parameter,
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Fig. 1. (Left) A real-world protocol using RO. The real-world adversary interacts di-
rectly with the RO. (Center) A simulation in the non-programmable RO model. Here,
the simulator S interacts with the RO independently of A, so S cannot respond to
nor even learn A’s RO queries. (Right) A simulation in the programmable RO model.
Here, S directly responds to A’s oracle queries. See [FLR+10].

which can be understood as the length of encryption keys (e.g. 128 bits). Our
offline communication cost is ≤ |C| · λ, where the actual cost depends on the
types of gates used. Our online communication cost is O((|x| + |y|) · λ), and is
independent of the size of the program. In terms of computation, both G and E
expend at most one call to the random oracle per tri-state gate.

When we compile Boolean gates to tri-state gates, our scheme’s costs match
the cost of the popular selectively-secure half-gates garbling scheme [ZRE15] in
terms of both computation and communication. [ZRE15] is a state-of-the-art
Boolean scheme6, so our TSC-based Boolean handling matches what one would
expect from standard Boolean circuit garbling. Additionally, T steps of a RAM
program can be compiled to a TSC with O(T · log3 T · log log T ) gates [HKO23].

1.2 Non-Programmable RO and Programmable RO

We discuss the relative strength of the PRO and NPRO and our motivation
for seeking to weaken the assumption. We feel that prior to our work, the op-
tions for practical GC deployment were unsatisfying, and the system was brittle.
Practitioners had three options:

Option 1: Obey selective security, and perform all work in the online phase.
Even in settings where this is acceptable from the perspective of engineer-
ing/performance, delaying all work to the online phase is an undesirable con-
straint that is prone to be inadvertently violated. Indeed, envisioning larger
systems incorporating MPC/GC, even implemented and maintained by a MPC-
knowledgeable team, it is easy to foresee the temptation to modularize, optimize
and multi-thread execution, separating GC generation/transmission from OT ex-
ecution, eventually leading to order violation. We stress that such security errors
are insidious and hard to find.

Relatedly, garbled circuit is a simple, powerful, and convenient object for
standardization. There is already a preliminary effort by NIST to standardize
threshold schemes, including more complex objects such as GC [MPT20,MPT23].
Following discussion at the MPTS workshops, it seems impractical to standardize

6 The more recent [RR21] scheme uses less communication than [ZRE15], but it uses
more computation.
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many possible combinations of GC and OT. Rather, GC, OT, and other related
primitives are likely to be standardized separately. Clearly, a more robust, ver-
satile, and resilient GC primitive would be much preferable for standardization
than the more brittle one, subject to execution order constraints.

Option 2: Assume a programmable random oracle (PRO); mask GCs with PRO.
Namely, use the PRO-based technique of [BHR12a]. This option roughly doubles
the total computation cost, both for G and E, compared to selectively-secure
GC, and to our solution.

Additionally, this assumes PRO. PRO is an unusually strong assumption,
in that it clearly cannot be satisfied by any fixed function. PRO violates sev-
eral impossibility results, e.g., enabling non-interactive non-committing encryp-
tion [Nie02] and adaptive GC with online phase independent of the program out-
put size [BHR12a]. Both are impossible in the standard model [AIKW13,Nie02].

In contrast, NPRO is a milder assumption, which is widely used in practi-
cal cryptography. For instance, the standardized RSA-OAEP encryption scheme
uses NPRO [BR95,FLR+10,FOPS01,MKJR16]. Notably, in the GC setting, the
widely used Free-XOR key homomorphism relies on circular correlation robust-
ness [CKKZ12], a slight weakening of the NPRO assumption.

NPRO and PRO are fundamentally different, and substantially stronger
objections are raised against the use of PRO. For example, as pointed out
in [CGH98], the NPRO assumption leaves open the possibility of seeking “rea-
sonable notions of implementation” of RO, relative to which one can show the
soundness of this methodology (at least, in some interesting cases). In particular,
one could consider a more general notion of implementation, as a compiler that
takes a scheme that works in the random oracle model and produces a scheme
that works in the standard model (i.e., without a random oracle). Such line of
work is ruled out in the PRO model (PROM).

Option 3: Implement adaptive GC in the standard model. While standard model
adaptive GC remains of theoretical interest, the best known technique incurs
multiplicative factor w overhead in terms of computation, where w is the width
of the evaluated circuit. In many practical settings (e.g., laptops on the 1Gbps
LAN), the speed of GC generation/evaluation is only about 3× faster than
transmission. In this scenario, the online phase of the adaptively secure GC
will be factor ≈ w/3 times slower than the entire selective GC evaluation.

We remark that improving the current state of the art in adaptive GC from
just a PRF remains a challenge, and any results that improve the factor w
overhead would be highly surprising.

1.3 Related Work

Selective GC Security. Even proofs of selective GC security are subtle. The clas-
sic proof of selective security from a PRF [LP09] proceeds by a hybrid argument
where in each step we replace one real gate by a simulated gate. This simulated
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gate is programmed such that it outputs a value consistent with real-world eval-
uation. Once each gate is replaced, the final distribution is statistically close to
simulation, which does not depend on the real-world input x.

One subtle, but central, aspect of this simulation is that we must replace
gates in a specific order. This is so that we can base the indistinguishability of
each hybrid on the PRF assumption. Indeed, PRF keys are used throughout the
circuit, but PRF security only holds if the key had not been used elsewhere.

Jumping ahead, we remark that in the adaptive setting [LP09]’s interme-
diate simulated gates should output values that depend on the input x, but
syntactically, x simply is not well defined at the time the simulated gate should
be programmed. Prior works resolve this problem, but at significant cost.

Adaptive Garbled Circuits. [BHR12a] were the first to thoroughly investigate
the problem of adaptive GC. They pointed out that existing GC schemes do not
seem to admit a proof of adaptive security.

[BHR12a] also gave two constructions that can be proven adaptively secure.
Their first construction should mostly be viewed as a proof of concept. It requires
that G one-time pad the GC C̃ before sending it to E. Then, in the online
phase, G sends the one-time-pad mask to E, allowing E to decrypt the circuit
and evaluate normally. In terms of online cost, this construction is poor, as it
requires that G send a message proportional to the size of the garbled circuit.

This said, [BHR12a]’s one-time-pad-based construction does give important
insight into how adaptivity can be achieved. In short, the one-time-pad mask
allows G to equivocate the GC. Namely, G can unmask to E a (different) GC
that depends on E’s choice of input x. This capability is, of course, not used in
the real-world execution, but it is used by the simulator. Namely, in intermediate
steps of the proof, G uses its ability to equivocate to open to E intermediate
hybrid garbled circuits from the selective security proof [LP09]. In this way, the
one-time-pad-based scheme admits a natural proof of adaptive security.

[BHR12a] also constructed a scheme that they proved secure by using pro-
grammable RO. In short, the simulator programs the RO to equivocate the GC,
similar to the above. As already noted, this scheme circumvents a known lower
bound on online communication cost of adaptively secure GC [AIKW13]. In par-
ticular, [AIKW13] showed that any standard model adaptive garbling scheme
must have an online phase that scales at least with the size of the program’s
output, but [BHR12a]’s RO construction only sends information proportional to
the program’s input. In contrast, our simulator does not program the RO; in the
NPROM, we cannot circumvent the [AIKW13] lower bound.7

In concurrent work, [GYW+23] consider adaptive garbling of specific imple-
mentations of popular half-gates and three-halves schemes. They show that these
schemes, instantiated with (previously designed) specific encryptions built on the

7 If the decoding table is given in the online phase in the adaptive scheme from
[BHR12a], then it is possible to show that their scheme is adaptively secure in
the NPROM. We emphasize that [BHR12a] still prescribes an RO mask on every
ciphertext, which our analysis avoids.
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random permutation model [GKW+20], achieve adaptive security. Their proof
is focused on specific details of encryption based on fixed-key AES, and accord-
ingly their proof details are intricate. In contrast, we aim to develop a generic
approach or a framework that may be useful in large class of GC constructions.
Our simulation methods are less customized and more general. In addition, our
general framework applies to garbling of TSCs, and thus our results immediately
imply an adaptively secure garbled RAM scheme in the NPROM.

Adaptive garbling from one-way functions is a much harder task, so known so-
lutions are substantially less efficient. [HJO+16] constructed an adaptive GC
scheme with online cost sublinear in the circuit size and that assumes only
the existence of one-way functions (OWFs). In particular, their online cost is
O(w · poly(λ)), where w denotes the width of the target circuit.

Much like [BHR12a]’s above one-time-pad-based scheme, [HJO+16]’s key idea
is to allow G to equivocate the GC. To improve the equivocation, [HJO+16] de-
fined and implemented a primitive called somewhere equivocal encryption. Some-
where equivocal encryption allows a sender to encrypt a long message, then later
send a short key that decrypts the message, except that the sender can change
the value of one secret position of the message. By encrypting a garbled circuit
2w times with different somewhere equivocal keys, G can equivocate on up to
2w gates. 2w gates is sufficient, because [HJO+16] can equivocate two full lay-
ers of the circuit. Once the second layer is equivocated, the proof can remove
equivocation from the first layer by changing the simulated gates to output 0.
They then equivocate the next layer, and so on.

[HJO+16] also show a different order of equivocation that scales with the
circuit depth d, but this strategy has exponential security loss in d.

While [HJO+16] is the state-of-the-art adaptive GC from OWFs, its online
communication cost remains high and – far worse – the computational overhead
imposed by the scheme is multiplicative. To evaluate each GC gate, E must in
the online phase decrypt that gate O(w) times!

Other Works in the Adaptive Setting. [JW16] showed that Yao’s basic garbling
scheme is adaptively secure for log-depth circuits. [JO20] pushed this further,
showing that GC techniques for reducing offline gate cost also work in the adap-
tive setting, achieving total online cost closer to that of a state-of-the-art gar-
bling scheme. These techniques only work for circuits in NC1, which is limiting.
[KKPW21] showed that in the adaptive setting, Yao’s scheme must suffer expo-
nential security loss w.r.t. circuit depth. Thus, it seems log-depth circuits is the
best possible for adaptive Yao’s, unless the design is significantly changed.

[GOS18,HJO+16] demonstrate asymptotic improvement to adaptive GC in
the standard model, but they are concretely expensive as they use both public
key assumptions and non-black-box cryptography.

The recent work of [BBK+23] achieves adaptive security from OWFs for a
weaker notion of simulation security called distributional simulation security.
The protocol in [BBK+23] is secure while only sending something which scales
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with the size of input in the online phase, circumventing the [AIKW13] lower-
bound. Our work uses the more standard notion of adaptivity.

Garbled RAM (GRAM). GRAM [LO13] upgrades GC to handle RAM programs
rather than circuits. In short, GRAM allows the GC to perform oblivious random
access to a main memory where each access incurs amortized sublinear cost.
Ideally, the per-access overhead should be at most polylogarithmic.

Early GRAM schemes, e.g. [GLO15,GLOS15,GHL+14,LO13], demonstrated
important feasibility results, but they were not concerned with polylog perfor-
mance factors, so their constructions are expensive. More recent constructions
[HKO22,HKO23,PLS23] target performance improvement, where the most re-
cent result [HKO23] garbles only O(log3 n · log log n) fan-in-two gates per access.

More interesting than [HKO23]’s cost is its formalism. [HKO23] shows that
RAM computation can be emulated by a relatively simple circuit model called
tri-state circuits (TSCs). To garble RAM, it suffices to garble tri-state gates.

Our result leverages the TSC model to achieve adaptively secure GRAM. We
review the TSC model in Section 2.

2 Preliminaries

2.1 Notation

– λ is a security parameter and can be understood as the length of GC labels.
– x ≈ y denotes that distributions x and y are computationally indistinguish-

able.
– x

s≈ y denotes that distributions x and y are statistically close, i.e. indistin-
guishable to an unbounded adversary.

– x ≡ y denotes that distributions x and y are identical.
– O denotes a (non-programmable) random oracle.
– We refer to wire id w. When clear from context, we will overload w to also

mean the plaintext value on that wire.
– Whenever A appears more than once in a game, assume A saves state.

2.2 Definition of Non-Programmable Random Oracle Model

We consider security in the non-programmable RO model (NPROM), as defined
by [FLR+10]. The NPROM specifies a constraint on formal reductions from one
interactive Turing machine to another. In our case, it constrains the relationship
between our ideal-world simulator S and the real-world adversary A.

Formally, the adversaryA interacts with the RO by writing queries to/reading
responses from its oracle tape. In the programmable RO model’s ideal world, the
simulator controls this tape, such that it may read A’s queries and arbitrarily
choose RO responses – namely, it may program the RO. In the non-programmable
RO model, even in the ideal world, the adversary’s tape is instead connected to
an externally defined oracle O, and O responds directly; see Figure 1.
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The informal rationale underlying the NPROM is that it more closely resem-
bles the real-life setting where we heuristically instantiate RO with an externally-
defined hash function. From a philosophical point of view, the simulator S can
be viewed as an explanation of the interaction observed by the real-world ad-
versary. In the NPROM, we, as the designers of S, must explain this interaction
in the context of a hash function that we cannot control. This seems to more
closely resemble real life than does the PROM because we, of course, cannot
control, e.g., the definition of SHA-3.

More formally, the NPROM is motivated by a separation between it and
the PROM, as there exist constructions that are (1) possible in the PROM and
(2) impossible in both the standard model and NPROM, suggesting that the
NPROM is closer to reality; see also discussion in Section 1.2. Our results also
hold for an even weaker model called Auxiliary Input ROM from [Unr07]. This
model and proof that our scheme is compatible can be found in Appendix D.

2.3 Garbling Schemes

[BHR12b] defined the notion of a garbling scheme, and we formalize our con-
struction and proof in the [BHR12b] framework.

Definition 1 (Garbling Scheme [BHR12b]). A garbling scheme for a
class of circuits C is a tuple of four procedures (Garble,Encode,Eval,Decode)
with the following interface:

– Garble(1λ, C) → (C̃, e, d): Garble a circuit C ∈ C, producing garbled circuit
C̃, input encoding string e, and output decoding string d.

– Encode(e, x)→ x̃: Use the input encoding string e to encode input x.
– Eval(C̃, x̃)→ ỹ: Evaluate C̃ on encoded input x̃, yielding encoded output ỹ.
– Decode(d, ỹ) → y: Use the output decoding string d to decode output ỹ. If ỹ

is not a valid encoding, then Decode outputs ⊥.

A garbling scheme is (perfectly) correct if for all circuits C ∈ C, all inputs x,
and for security parameter λ:

Decode(d,Eval(C̃,Encode(e, x))) = C(x) where (C̃, e, d)← Garble(1λ, C)

Typically, garbling schemes are shown to satisfy selective notions called obliv-
iousness and privacy. We consider adaptive variants of these; see next.

2.4 Definition of Adaptive Security

Our notion of adaptivity is based on definitions from [BHR12a] and [BHR12b]:

Definition 2 (Adaptive Privacy). A garbling scheme is adaptively private
if for all circuits C computing a function f , there exists a simulator S such that
for all stateful PPT adversaries A the following quantity is negligible in λ:∣∣∣Pr[RealA,C

prv (1λ) = 1
]
− Pr

[
IdealA,S,C

prv (1λ) = 1
]∣∣∣

where Real, Ideal are as follows:
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RealA,C
prv (1λ)

1 : (C̃, e, d)← GarbleO(1λ, C)

2 : x← AO(1λ, C̃)

3 : x̃← Encode(e, x)

4 : return AO(x̃, d)

IdealA,C
prv (1λ)

1 : C̃ ← SO(1λ, C)

2 : x← AO(1λ, C̃)

3 : (x̃, d)← SO(f(x))

4 : return AO(x̃, d)

Adaptive privacy roughly states that A cannot distinguish the real garbled
circuit from a simulated one, even when it is allowed to adaptively choose its
input, and even when it is given the string d that decodes the output.

The literature also considers an alternative notion to privacy which is called
obliviousness. Obliviousness differs from privacy in that the adversary is not al-
lowed access to the output. That is, obliviousness roughly states that the garbled
circuit alone should leak no information.

Formally, obliviousness and privacy are incomparable; one does not imply
the other. However, in typical garbling schemes (including all considered in this
work), privacy is proved as a consequence of obliviousness. Since privacy is the
more relevant property for applications in MPC, we leave definitions and proofs
of obliviousness – which are almost identical to those of privacy – to Appendix A.

2.5 Garbled RAM and Tri-State Circuits

We provide a framework for achieving adaptive security from NPRO. As part
of this contribution, we construct a scheme that captures much of the recent
advances in practical GC, and we prove this scheme’s security in our framework.

[HKO23] formalized a model of computation called tri-state circuits (TSCs).
TSCs are interesting for garbling because there exists an efficient (polylog over-
head) reduction from RAM programs to the TSC model. The TSC model is
straightforward to garble, and hence TSCs lead to natural constructions of Gar-
bled RAM [LO13]. Our presented garbling scheme handles TSCs. Thus, we re-
view relevant definitions. All definitions in this section are adapted from [HKO23].

Definition 3 (Tri-state Circuit). A tri-state circuit (TSC) is a circuit
allowing cycles (i.e., its graph need not be acyclic) with three gate types: XORs
(⊕), buffers (/), and joins (▷◁). Each wire carries a value in the set {0, 1,Z,✗}.
The semantics of each gate type are as follows:

⊕ Z 0 1 ✗

Z Z Z Z ✗
0 Z 0 1 ✗
1 Z 1 0 ✗
✗ ✗ ✗ ✗ ✗

/ Z 0 1 ✗

Z Z Z Z ✗
0 Z Z 0 ✗
1 Z Z 1 ✗
✗ ✗ ✗ ✗ ✗

▷◁ Z 0 1 ✗

Z Z 0 1 ✗
0 0 0 ✗ ✗
1 1 ✗ 1 ✗
✗ ✗ ✗ ✗ ✗

We assume each gate has some distinct gate ID gid. A TSC has n input wires
and m output wires. TSCs may use a distinguished wire, named 1, which carries
constant 1. Circuit execution on input x ∈ {0, 1}n proceeds as follows: (1) Store
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Z on each non-input wire, (2) store x on the input wires, (3) repeatedly and ar-
bitrarily choose some gate g and update g’s output wire according to g’s function
and input wires. Once there remains no gate whose execution would change a
wire, halt and output the state of the circuit output wires.

Buffer gates act as “switches”. Each buffer x/y has two inputs: a control wire
y and a data wire x. If the control wire y holds one, then the buffer “closes”,
connecting its data wire x to its output; if the control wire holds zero, the buffer
remains open, and the output wire is unassigned. Join gates allow us to connect
wires together. For instance, we can connect the output of two buffers such that
the joined output wire takes the value of whichever buffer is closed.

The tri-state value Z roughly denotes the idea “this wire does not have a
value” and the value ✗ denotes “an error has occurred”. In this work we consider
a natural restriction of TSCs which requires that (1) no errors occur and (2) every
wire ultimately acquires a Boolean value:

Definition 4 (Total Tri-State Circuit). A tri-state circuit C is total if on
every input x, the following holds. Change the semantics of joins such that they
are multidirectional. To execute gate z ← x ▷◁ y, update the value of each wire
x, y, z with joined value (x ▷◁ y ▷◁ z). C is total if after completing circuit
execution with these semantics, every circuit wire is assigned a Boolean value.

The interesting capability of TSCs is that gates execute in data-dependent
orders. This capability is precisely what enables efficient RAM emulation. To
take advantage of this in the GC setting, we must inform the GC evaluator E
of the order they should execute gates. [HKO23] show that to make this work,
it suffices to reveal to E every buffer control wire.

Revealing control wires to E complicates simulation of E’s view. We must
somehow argue that even though E learns all control wires, we can still simulate.
[HKO23] solve this by extending TSC input to additionally include randomness.
The random part of the input can be used as masks on control bits. With the
addition of masks and careful circuit design, particular tri-state circuits can then
be shown to be oblivious, i.e. that the control wire values can be simulated. We
garble oblivious TSCs, so we give the relevant definitions:

Definition 5 (Oblivious tri-state circuit). A randomized tri-state cir-
cuit is a pair consisting of a tri-state circuit C and a distribution of bitstrings D.
The execution of a randomized tri-state circuit on input x is defined by randomly
sampling a string r from D, then running C on x and r:

(C,D)(x) = C(x; r) where r ←$ D

Let C be a tri-state circuit with input x ∈ {0, 1}n. The controls of C on x,
denoted controls(C, x) ∈ {0, 1}∗, is the set of all buffer control wire values (each
labeled by its gate ID) after executing C(x). Let {(Ci, Di) : i ∈ N} denote a
family of randomized tri-state circuits. The family is considered oblivious if for
any two inputs x, y ∈ {0, 1}n the following holds:

{ controls(Cσ, (x; r)) | r ←$ Dσ }
s≈ { controls(Cσ, (y; r)) | r ←$ Dσ }

12



3 Technical Overview

This section explains our approach at a high level, providing sufficient detail for
informal understanding. Sections 4 and 5 formalize the ideas explained here.

3.1 Tri-State Circuit Construction

Our main contribution is a framework for proving adaptive security of garbling
schemes in the NPRO model. To make this contribution concrete, we formalize
a particularly useful garbling scheme, and prove it fits into our framework. Our
scheme garbles the tri-state circuit (TSC) model; see Section 2.5.

In short, a TSC includes three types of gates, and the gates execute in a data-
dependent order. This data-dependent execution is powerful enough to support
efficient emulation of RAM programs.

Wire keys. Our TSC handling starts with Free-XOR-based wire keys [KS08].
Namely, to garble a TSC C, the garbler G samples for each circuit wire w a
length-λ key k0w. This key encodes a logical zero on wire w. G then samples a
single length-λ global correlation ∆, and for each wire w, G defines the encoding
of logical one as k1w = k0w⊕∆ Note that this means that if we overload the name
of a wire with its runtime value, at runtime E holds the following key:

kw = k0w ⊕ w ·∆

Recall that TSCs also allow wires to hold a distinguished value Z. We encode
Z by E holding no key at all.

Gate handling. The function of each TSC gate-type was explained in Section 2.5.
Roughly, our garbling of gates is as follows:

– XOR gates are handled simply by XORing the input labels. This is the
Free XOR optimization [KS08].

– Buffers of the form z ← x/y have two inputs: a control wire y and a data
wire x. G defines the key for the buffer’s output wire as follows:

k0z = k0x ⊕O(k
1
y, gid)

Here gid is a nonce. This use of RO ensures that E can compute a key for
the output wire iff the control wire y holds logical one.

– Joins of the form z ← x ▷◁ y connect together the inputs x and y such that
if either wire is non-Z, the output wire acquires the non-Z input value. G
handles joins by simply setting the output key as k0z = k0x. This trivially
enables E to translate an x key to a z key. To allow E to translate a y key
to a z key, G includes in the GC the particular string kx ⊕ ky. E XORs this
difference with its y key to obtain an appropriate z key.

We refer the reader to Section 5 for further details on our TSC handling.
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3.2 Proof of Security

Our main contribution shows that typical GC schemes built from NPRO are
also adaptively secure. For example, our above basic TSC scheme is adaptively
secure with no change in implementation. Our framework for proving RO-based
schemes adaptively secure requires two properties of the GC scheme: (1) the
scheme should be rekeyable and (2) the scheme should be query hiding. In the
following, we explain these properties in the context of our TSC scheme.

On our (non-) use of programming. Recall from Section 2.2 that the NPRO
model constrains the relationship between interactive Turing machines S and A.
Namely, the simulator S may not program responses to A’s RO queries.

In our security proof, we perform a standard real/ideal comparison, where
we define hybrid distributions bridging the two worlds. In these hybrids, we
reason about the content of the random oracle’s truth table by “programming”
it. For instance, we reason that a certain interaction with a true random oracle
is statistically close to one with the same oracle, but where some rows of the
truth table have been replaced by fresh randomness.

One natural philosophical question is to consider whether or not this use of
“programming” should be allowed in the NPROM.

We first emphasize that this use of “programming” is formally in the NPROM.
The model simply constrains that the simulator cannot program the oracle. As a
proof technique, we are free to reason in our thought experiments about the syn-
tactic content of the random oracle’s truth table. In other words, our definition
of security is formalized with respect to an RO that cannot be programmed. This
alone defines the security properties of our scheme, and the method by which
we prove real-ideal indistinguishability is irrelevant.

Still, at a philosophical level, one might wonder if it is appropriate that the
NPROM does not rule out the use of such proof techniques. We argue that
it should not rule them out, and that our use of “programming” in thought
experiments is consistent with the informal rationale underlying NPRO.

When we heuristically instantiate a hash function we, of course, cannot con-
trol that hash function’s truth table. However, we of course can reason about
that truth table, which is heuristically assumed to be random. When reasoning
about the truth table, we can, e.g., compare to another table that is different
from – but statistically close to – the original table. This is no different than
standard cryptographic reasoning, for example thinking about a pseudorandom
function (PRF) as if it were a truly random function, and using this reasoning
in a thought experiment to “program” the PRF.

Extending this example closer to our protocol, let’s reframe our NPRO-based
protocol (and our proof) into a RO-less protocol involving an additional (incor-
ruptible) party R who responds to players’ RO queries. R initializes by sampling
a secret PRF key k; on each query x, R responds with PRF output F (k, x). A
interacts directly with R, even in the ideal world. We can reason about the truth
table F (k, ·) as if it is a random table, by the definition of PRF security. If we
envision instantiating each call to our hash function with R, our proof of security
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– which uses “programming” in the hybrid steps – will go through, simply by
applying PRF security. Appendix E explains this reasoning in greater detail.

This example supports our thesis that it is appropriate to use programming
in reasoning about real/ideal indistinguishability. In particular, an illuminating
interpretation of the philosophy underlying the NPROM is that an RO O black-
box instantiates this party R, and hence we can use the same techniques to
reason about O as we could to reason about R.

Rekeying a Garbled Circuit. In a typical GC proof in the selective setting, we
would use a hybrid argument to rewrite parts of the GC to “hard-code” its
behavior, forcing GC gates to output keys consistent with evaluation under the
circuit input x; see e.g. [LP09]. In the adaptive setting, such a hybrid argument
is impossible: at the time A receives the GC, the input x is not defined.

Our proof of adaptive security observes that while we cannot use a hybrid
argument to change the GC, we can change the keys associated with the GC.
Consider garbled circuit C̃, and let K be the collection of wire keys chosen by G
while garbling C̃. In our TSC construction – and in many RO-based GC schemes
– it is possible to choose a fresh collection of keys K ′ that are independent of
K and that preserve circuit semantics when executed with garbling C̃. We call
this process of replacing GC keys a rekeying of the GC.

For an example of rekeying, consider the following TSC join gate:

▷◁

k0x

k0y

k0x ⊕ k0y

▷◁

k0a
k0x ⊕ k0y

k0a ⊕ (k0x ⊕ k0y)

k0x k0a

On the left, we depict a join as garbled by G, where input wires are labelled by
G’s keys k0x, k

0
y; the output is labelled by k0x. To enable evaluation in all cases, G

includes in C̃ the string k0x⊕k0y. If E only holds a runtime key ky for the bottom
input, it can use this string to translate that input key to an appropriate output:

(k0y ⊕ y ·∆)⊕ (k0x ⊕ k0y) = k0x ⊕ y ·∆

We start rekeying this gate by replacing its top input key k0x with some freshly
sampled key k0a. Similarly, we replace the output wire key by k0a. To complete
the rekeying, we must ensure the semantics of the gate are preserved. Namely, if
E obtains some key on the bottom wire, it should be able to translate that input
key to an appropriate output key. To ensure this works, we rekey the bottom wire
as well, replacing k0y by a key that is specifically chosen to preserve semantics:

k0a ⊕ (k0x ⊕ k0y). Thus, if E obtains a key on the bottom input wire y, it can use
the GC string to appropriately translate to an output key:

((k0a ⊕ (k0x ⊕ k0y))⊕ y ·∆)⊕ (k0x ⊕ k0y) = k0a ⊕ y ·∆

We can prove that this rekeying of the gate is indistinguishable from the original
keying of the gate, and by extending this strategy we can replace all GC keys.
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The benefit of rekeying is that it allows us to define security properties for
fixed garbled circuits. The standard definitions of selective GC security [BHR12b]
consider distributions of garbled circuits. For instance, standard GC oblivious-
ness roughly states that a randomly garbled circuit should be indistinguishable
from the output of a simulator. Our notion of rekeying allows us to instead quan-
tify over GCs. For instance, we can state that for a particular GC, the rekeying
of that GC should be indistinguishable from some other distribution. This shift
from probabilistically-defined GCs to universally quantified GCs is critical, be-
cause it allows us to make meaningful claims about A’s ability to distinguish in
the adaptive game’s online phase, when the GC is, indeed, fixed.

Query hiding. Recall that we use a RO O to construct a garbled circuit C̃.
Then, in the adaptive security game’s offline phase, A obtains C̃ and is allowed
access to the same RO O. One concern is that A might guess a RO query that
intersects with queries issued when garbling. If this happens, then A might, for
instance, be able to partially decrypt C̃, and use this side information to choose
an input x that in the later online phase helps it distinguish real from ideal.

To show security, we therefore must show that such a guess is unlikely, in the
sense that the garbled circuit C̃ does not “help” A to guess problematic queries.
More precisely, we formalize a property – query hiding – whereby A should not
be able to detect when we remove from the random oracle all queries issued by
Garble; see Section 4. At the very highest level, we show that our TSC garbling
scheme is query-hiding due to the fact that all keys are uniformly chosen, and not
included in the GC itself. By plugging together the ability to rekey the garbled
circuit with query hiding, we are able to obtain a proof of adaptive security.

Intuition underlying the proof. In short, our proof combines query hiding and
rekeying to show security. By applying query hiding, we show that A’s chosen
input x cannot depend on the content of the random oracle. However, it still
might depend on the garbled circuit itself. From here, rekeyability explicitly
decouples the garbled circuit from its wire keys as well as the content of the RO,
allowing us to argue that we can replace A’s chosen input x by, say, the all zeros
string, without A noticing. This ultimately leads to a complete proof of security.

4 Adaptive Security of Rekeyable Garbling Schemes

This section formalizes query-hiding garbling schemes and rekeyable gar-
bling schemes, and we show schemes satisfying these notions are adaptively
secure. In Section 5, we will see that our garbling of TSCs is query-hiding and
rekeyable; Appendix C discusses other garbling schemes that satisfy our notions.

4.1 Additional Notation

Adaptive GC splits evaluation into an offline and an online phase. A accesses the
RO even in the offline phase, when it has seen the circuit garbling, but before
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we send the encoded input. In our security proof, we show that the adversary
cannot detect if we remove oracle queries used to garble the circuit. This is
useful, because it allows us to reason that A cannot use work it performs in the
offline phase to help it distinguish in the online phase. Formalizing this requires
us to change rows of an RO, so we define appropriate notation.

Notation 1. Let O be a random oracle outputting strings in {0, 1}λ, and let δ
be a partial map from oracle queries to oracle responses. We denote by Oδ the
following programming of the oracle’s truth table:

Oδ(x) =

{
r if (x, r) ∈ δ

O(x) otherwise

We will also sometimes rerandomize certain rows in O’s truth table:

Notation 2. Let O be a random oracle outputting strings in {0, 1}λ, and let δ
be a partial map from oracle queries to oracle responses. We denote by O−δ the
following rerandomization of the oracle’s truth table:

O−δ(x) =

{
O′(x) if ∃r s.t. (x, r) ∈ δ

O(x) otherwise

for second sampled random oracle O′. Namely, O−δ replaces outputs from queries
in δ with fresh uniform values.

It will also be convenient to extract from the formal procedure Garble its
oracle queries. From here on, we will write δ, (C̃, e, d) ← GarbleO(1λ, C) to
denote that δ captures RO queries/responses occurring in Garble.

Our security properties of rekeyable garbling schemes rely on the ability to
rekey any fixed garbled circuit C̃ (we universally quantify over all GCs). To
properly formalize such notions, we will need the ability to talk about the set of
all possible garbled circuits from a particular garbling scheme:

Notation 3 (Garble Support). Let C ∈ C be a circuit. Let Supp(Garble(1λ, C))
denote the support of Garble on input C. Formally, Supp(Garble(1λ, C)) is the
support of the distribution defined by the procedure that (1) samples a fresh RO
O, (2) uses O to construct a garbled circuit and associated encoding/decoding
strings (C̃, e, d)← GarbleO(1λ, C), and (3) returns C̃:

4.2 Properties on Garbling Schemes

This section formalizes important definitions and properties we require on a
garbling scheme to show adaptive privacy.

We start with query hiding, which roughly states that a garbled circuit C̃
does not leak the oracle queries that were used to construct it:

Definition 6 (Query Hiding). Let Π be a garbling scheme. We say that Π
is query hiding if for all polynomially-query-bounded adversaries A and all
circuits C, then for the following game:
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QueryHidingA,C(λ)

1 : Sample random oracle O

2 : δ, (C̃, e, d)← GarbleO(1λ, C)

3 : return AO(1λ, C̃)

The probability that A makes a query in δ is negl(λ). That is, an adversary
that only observes C̃ cannot make queries that the garbler made.

Next, we define rekeyability of a garbling scheme. Roughly, a garbling scheme
is rekeyable if there is a way to sample fresh keys that are consistent with C̃:

Definition 7 (Rekeyability). Let Π be a garbling scheme. Π is rekeyable
if the following holds. There must exist a poly-time8 procedure Rekey:

(δ, e, d)← Rekey(λ,C, C̃),

On input a circuit C and a garbled circuit C̃, Rekey outputs a query map δ, an
input encoding string e, and an output decoding string d. The ensembles described
by the following experiments must be identically distributed:

RekeyableR(1λ, C)

1 : Sample random oracle O

2 : δ, (C̃, e, d)← GarbleO(1λ, C)

3 :

4 : return (δ, C̃, e, d)

RekeyableI(1λ, C)

1 : Sample random oracle O

2 : δ, (C̃, e, d)← GarbleO(1λ, C)

3 : (δ′, e′, d′)← Rekey(1λ, C, C̃)

4 : return (δ′, C̃, e′, d′)

Rekeyability alone is not sufficient to prove adaptive security, and even selec-
tive security combined with rekeyability seems insufficient to achieve adaptive
security. Intuitively, it is not clear how to obtain rekey privacy (see next), which
is stated w.r.t. a fixed GC, from GC privacy, which is probabilistic over sam-
pled GCs. We accordingly define the notion of a garbling scheme that privately
rekeys:

Definition 8 (Privately Rekeying). Let Π be a rekeyable garbling scheme
(Definition 7). Π privately rekeys if for all circuits C computing function f ,
there exists a simulator S s.t. for all x, all GCs C̃ ∈ Supp(Garble(1λ, C)), and
all PPT adversaries A, the following ensembles are statistically close in λ:

8 For our work we implement the rekey procedure since our proofs rely on properties
of a candidate construction; however, it is not technically necessary that Rekey is
efficient. In fact, an inefficient Rekey procedure should always exist, since reverse
sampling any distribution is always well-formed.
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RealA,C,C̃,x(λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(1λ, C, C̃)

3 : x̃← Encode(e, x)

4 :

5 : return AOδ

(1λ, x̃, d)

IdealA,S,C,C̃,x(λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(1λ, C, C̃)

3 : x̃← Encode(e,0)

4 : d′ ← S(1λ, f(x), d)

5 : return AOδ

(1λ, x̃, d′)

Roughly speaking, the above privacy simulator S forges an output decoding
table d′ such that the garbled circuit correctly evaluates to the expected result
f(x), even though the input is an encoding of 0.

4.3 Adaptive Security

We now prove our main theorem, which connects our notions of query hiding
and rekeyability with adaptive security:

Theorem 1 (Adaptive Privacy from Private Rekeying and Query Hid-
ing). Let Π be a privately rekeyable (Definition 8) garbling scheme that is query
hiding (Definition 6). Π is adaptively private.

Proof. By construction of a simulator:

SO(1λ, C)

1 : (C̃, e, d)← GarbleO(1λ, C)

2 : return C̃

3 : // Second call; receive f(x) from caller

4 : x̃← Encode(e,0)

5 : d′ ← Sp(1λ, f(x), d)
6 : return (x̃, d′)

Here, Sp is the privacy simulator S provided by Definition 8. In the offline phase,
S simply garbles a circuit normally. In the online phase, S (1) encodes the all-
zeros input and (2) uses Π’s privacy simulator Sp to forge an output decoding
string d that convincingly decodes to the correct output f(x).

Now, we show that the real-world and ideal-world experiments are indis-
tinguishable. In Figure 2, we restate adaptive privacy’s real/ideal experiments,
in-lining the definition of our simulator. Figure 2 also specifies six hybrid distri-
butions used to show indistinguishability.

We find most direct to argue by “meeting in the middle”. Namely, we pro-
ceed starting from the real/ideal ensemble, and at each step, we show the current
real/ideal ensemble is indistinguishable from some respective intermediate en-
semble. We conclude by showing these two final ensembles are indistinguishable.
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RealA,C
prv (λ)

1 : Sample random oracle O

2 : (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e, x)

5 :

6 : return AO(1λ, x̃, d)

IdealA,C
prv (λ)

1 : Sample random oracle O

2 : (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e,0)

5 : d′ ← Sp(1λ, f(x), d)

6 : return AO(1λ, x̃, d′)

FA,C
prv,R(λ)

1 : Sample random oracle O

2 : δ, (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO
−δ

(1λ, C̃)

4 : x̃← Encode(e, x)

5 :

6 : return AO(1λ, x̃, d)

FA,C
prv,S(λ)

1 : Sample random oracle O

2 : δ, (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO
−δ

(1λ, C̃)

4 : x̃← Encode(e,0)

5 : d′ ← Sp(1λ, f(x), d)

6 : return AO(1λ, x̃, d′)

GA,C
prv,R(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e, x)

5 :

6 : return AO
δ

(1λ, x̃, d)

GA,C
prv,S(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e,0)

5 : d′ ← Sp(1λ, f(x), d)

6 : return AO
δ

(1λ, x̃, d′)

HA,C
prv,R(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : (δ′, e′, d′)← Rekey(1λ, C, C̃)

5 : x̃← Encode(e′, x)

6 :

7 : return AO
δ′

(1λ, x̃, d′)

HA,C
prv,S(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : (δ′, e′, d′)← Rekey(1λ, C, C̃)

5 : x̃← Encode(e′,0)

6 : d′′ ← Sp(1λ, f(x), d′)

7 : return AO
δ′

(1λ, x̃, d′′)

Fig. 2. Real, ideal, and hybrid distributions used in our proof of Theorem 1.
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Removing offline oracle queries. In our crucial proof step, we argue the following:

{RealA,C
prv (λ)} ≈ {FA,C

prv,R(λ)} and {IdealA,C
prv (λ)} ≈ {FA,C

prv,S(λ)}

In this step we remove from A’s oracle all queries issued by the call to Garble,
but only in the offline phase. Jumping ahead, our informal objective is to show
that A’s chosen input x must be independent of Garble’s random oracle queries.

Of course, there is a difference between games Real and Fprv,R (resp. Ideal
and Fprv,I). In the former game A is given access to the same oracle twice, and
in the latter A is given access to two oracles that differ by δ. Thus, if A can
guess a query in δ, it can distinguish the two games, since in the first game it
will see the oracle respond consistently in the offline and online phases, and in
the second game it will see the oracle “disagree with itself”.

Query hiding (Definition 6) is precisely what we need to show that A cannot
guess a query in δ. Indeed, an unbounded adversary with only polynomial oracle
queries has at most negl(λ) chance to sample a point in δ. As such, A only has
a negl(λ) probability of determining if it was given O or O−δ on line 3.

Rearranging the oracles. In our second step, we perform a “refactoring” of the
random oracle queries. In particular, we argue:

{FA,C
prv,R(λ)} ≡ {G

A,C
prv,R(λ)} and {FA,C

prv,S(λ)} ≡ {G
A,C
prv,S(λ)}

Indeed, games F and G are identically distributed, as they are merely a
rearrangement of the random oracle queries. The output distribution of GarbleO

in line 2 of hybrid F is independent of the programmed oracle O−δ on line 2.
As such, we can rewrite lines 2 and 3 to use different oracles altogether to get

hybrid G. On line 6, we note that the only part of O′ that GarbleO
′
depends on

are exactly those queries in δ. As such, the garbler may as well have used Oδ to
garble. After this step, it is clear that A’s chosen input x must be independent
of the random oracle O′ used to garble, since A is not allowed access to O′.

Rekeying the GC. We use rekeyability (Definition 7) to sample fresh keys asso-
ciated with the garbled circuit C̃. The following is immediate by rekeyability:

{GA,C
prv,R(λ)} ≡ {H

A,C
prv,R(λ)} and {GA,C

prv,S(λ)} ≡ {H
A,C
prv,S(λ)}

Privacy. Finally, we bridge from the “real world”, where we encode x, to the
“ideal world”, where we encode 0: {HA,C

prv,R(λ)}
s≈ {HA,C

prv,S(λ)}. Notice that the

outputs of garbling – δ, C̃, e, d – are independent of O. Thus, the choice of x
is also independent of δ, e, d, except insofar as they are constrained by garbled
circuit C̃. We can capture this sentiment by treating C̃ and x as if they are
universally quantified. This is exactly the setting considered in private rekeying
(Definition 8). Applying private rekeying thus discharges the proof. Any query
hiding, privately rekeyable garbling scheme is adaptively private.
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5 Our Adaptively-Secure Garbling of Tri-State Circuits

This section formalizes our handling of tri-state circuits as a garbling scheme
(Definition 1), and it proves the scheme is query hiding and rekeyable.

Construction 1 (Garbled TSCs from NPRO). Our garbling scheme is the col-
lection of algorithms (Garble,Encode,Eval,Decode) described in the following.

For completeness, Appendix B gives a more direct specification of our al-
gorithms, but all relevant details are given in the following text. In short, our
approach is arguably the natural garbling of TSCs [HKO23]. Our main contri-
bution is proving that this natural scheme is adaptively secure.

Wire keys. Our scheme uses Free-XOR-style GC keys [KS08]. Free XOR starts
by sampling a single global offset ∆ ←$ {0, 1}λ−11. ∆ is chosen by the garbler
G and is hidden from the evaluator E. For each wire w, the G maintains a key
k0w ∈ {0, 1}λ encoding logical zero. The encoding of logical one is defined as
k1w = k0w ⊕∆. The advantage of this encoding is that XOR gates can be garbled
without a garbled gate: XORs are “free”. Keys on input wires are sampled
uniformly; all other keys are derived from the input keys (and calls to the RO).

The crucial invariant of GC evaluation is that for each wire w, the evaluator
holds one key. E cannot distinguish a zero-key k0w from the one-key k1w, forming
the basis of GC security. We write kw to mean a key held by E corresponding
to the value on wire w; kw could be either k0w or k1w. If we overload w as both
the name of the wire and the Boolean value on that wire, the following holds:

kw = k0w ⊕ w ·∆

Recall that in a TSC, wires can carry Boolean value, or they can carry value
Z or ✗. Following [HKO23], Z is encoded by E’s lack of a key. ✗ denotes that
some error occurred in the circuit, and our construction only supports circuits
that are free of errors (Definition 4). Hence, we do not need to encode ✗.

Point and Permute. ∆ has least significant bit (lsb) 1. This ensures that for
each wire w, the lsb of zero-key k0w and of one-key k0w ⊕ ∆ are different. This
allows us to view the lsb of zero-key k0w and the lsb of active key kw as an XOR
share of w’s value. This classic trick is called point and permute [BMR90].

Point and permute makes it simple for G to reveal particular wire values to
E. To reveal the value of some wire w, G simply attaches the bit lsb(k0w) to the
GC. At runtime, E computes the lsb of its key lsb(k0w ⊕w ·∆), XORs the result
with lsb(k0w), and by construction obtains w.

Revealing particular wire values is central to the handling of TSCs. Specif-
ically, we reveal to E the value of each buffer’s control wire. Note when the
considered TSC is oblivious (Definition 5), it is safe to reveal these values: the
information E learns can be simulated.
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Distribution sampling. Recall that an oblivious tri-state circuit (Definition 5)
consists of two parts: a circuit C and a distribution on bits D. To evaluate C, we
must sample D. This is straightforward: G locally samples r ←$ D, then encodes
r to ensure that E’s encoding of each random input is the all zero key.

Gate handling. Recall (from Section 2.5) that TSCs support three gate types:
XORs, buffers, and joins. We show how to handle each.

XORs. Consider an XOR gate z := x ⊕ y. Our handling of XOR gates is
straightforward, due to our use of Free-XOR-style keys. To start, G defines the
key for z as the XOR of the input keys: k0z = k0x ⊕ k0y. At runtime and by our
invariant, E holds keys kx⊕x·∆ and ky⊕y ·∆. E simply XORs its keys together,
yielding a correct encoding for wire z:

(k0x ⊕ x ·∆)⊕ (k0y ⊕ y ·∆) = k0z ⊕ (x⊕ y) ·∆ XOR Evaluate

XOR gates are “free” in that the GC does not grow with XOR gates.
Buffers. Consider a buffer z := x/y. Here x is the buffer’s data wire, and

y is the control. If y holds a 1, then E should obtain a key on the output wire
that matches the data wire; if not, then the output should hold Z, so E should
obtain no key. Accordingly, G defines z’s output key as follows:

k0z = O(k0y ⊕∆, gid)⊕ k0x Buffer Garble

Here, gid is the buffer’s gate-specific nonce. In words, G encrypts the data
key k0x with the control wire’s one-key.

At runtime and by our invariant, E holds keys k0x ⊕ x · ∆ and k0y ⊕ y · ∆.

If the control wire y holds one, E holds k0y ⊕∆, so E can compute the correct
encoding for the output wire z:

O(k0y ⊕∆, gid)⊕ (k0x ⊕ x ·∆) = k0z ⊕ x ·∆ Buffer Evaluate

If the control wire y holds zero – and because E does not know ∆ – E cannot
decrypt the output key, and thus holds no key at all.

Note crucially that E’s evaluation is thus conditioned on the control wire
y. To correctly evaluate, E must know y, so G must allow E to decrypt y.
Accordingly, G attaches to the GC a single extra bit:

lsb(k0y) Buffer GC String

Per our discussion of point and permute, E simply XORs this value with its own
key to decrypt the cleartext value of the control wire. Recall, E can learn all
buffer controls due to TSC obliviousness (Definition 5).

Joins. Consider a join z := x ▷◁ y. By TSC semantics, E should learn an
encoding of the output if it holds an encoding for either input wire. To handle
this, G simply defines the key of the output wire as the key for input x:

k0z = k0x Join Garble
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(This choice is arbitrary; G could also set k0z = k0y.) G also includes in the GC a
length-λ ciphertext that allows E to translate y keys to z keys:

k0y ⊕ k0x Join GC String

At runtime, suppose E holds key k0x⊕x ·∆, or E holds k0y ⊕ y ·∆, or both. If
E holds a key for a wire, we say that wire is set. E acts conditionally, depending
on which wire is set:

k0z ⊕ z ·∆ =

{
k0x ⊕ x ·∆ if x set

(k0x ⊕ k0y)⊕ (k0y ⊕ y ·∆) if y set
Join Evaluate

Note that it is impossible for x and y to hold mismatched Boolean values, as
this would imply the TSC is not total (Definition 4).

Order of evaluation. Recall that in TSCs, gates can fire in data-dependent or-
ders. Thus, we must specify how E chooses which gate to activate at each step.
At each step of evaluation, our E will choose any gate that is ready, and evaluate
that gate. Recall that a wire is set if E holds a key on that wire:

Definition 9 (Ready). A TSC gate g is ready if one of the following holds:

– g is an XOR z := x⊕ y where x and y are set and z is not set.
– g is a buffer z := x/y where x and y are set and z is not set.
– g is a join z := x ▷◁ y where x or y are set (or both) and z is not set.

Offline/Online and Costs. In our construction, G sends the GC to E in the
offline phase. In the online phase, G simply sends (1) an encoding of the input
and (2) an output decoding table that allows to decode the output.

We summarize the communication and computation costs of each TSC gate:

Comm. (bits) G queries to O E queries to O
XOR (⊕) 0 0 0
Buffer (/) 1 1 ≤ 1
Join (▷◁) λ 0 0

Thus, our total offline communication cost is ≤ (|C| · λ) bits. Our online cost
scales with the circuit’s number of inputs n and the number of outputs m.
Specifically, the online communication cost is O((n+m) · λ).

Garbling scheme procedures. Our garbling scheme procedures, given in Ap-
pendix B, are merely a formalization of the above handling. Garble describes
G’s actions, and Eval describes E’s actions. Encode formalizes how the circuit
input should be encoded, which by our use of Free-XOR-style labels simply maps
each input x to k0x ⊕ x ·∆ for some uniform k0x.

Decode includes two extra details: (1) we store in the decoding string d not
the output keys themselves, but rather applications of RO to those keys, and (2)
we include in d the lsb of the zero key. These details are respectively needed to
ensure the scheme is authentic [BHR12b] and perfectly correct.
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5.1 Tri-State Circuit Adaptive Security

We show Construction 1 is query hiding and can be rekeyed privately. For sim-
plicity, we refer to Construction 1 as ΠTSC. Combined with the results in this
section, Theorem 1 implies that ΠTSC is an adaptive private garbling scheme.

Lemma 1 (ΠTSC is Query Hiding). ΠTSC is query hiding (Definition 6).

Proof. Consider the garbling of a circuit δ, (C̃, e, d) ← GarbleO(1λ, C). Recall
that query hiding roughly states that A cannot distinguish two worlds. In the
first world, we give A C̃ and oracle access to O; in the second, we give the
advesary C̃ and oracle access to O−δ – an oracle with Garble’s queries removed.

The challenge in proving this property is that the GC C̃ might provide to
A some “help” in making problematic oracle queries. We must show that this is
not the case, and that A gains from C̃ no advantage in guessing queries in δ.

We first note that the offline garbled circuit C̃ consists only of (1) join-gate
ciphertexts of the form k0x ⊕ k0y and (2) point and permute bits associated with
control keys to buffer gates. We also note that all queries to O involve a key. To
show query hiding, we reduce A’s ability to guess a query to A’s ability to guess
either ∆, or some wire key – say, the first input key k00.

Consider the following thought experiment: Rather than giving C̃ to A, sup-
pose that for each wire x we give to A (1) the point and permute bit of k0x and (2)
a ciphertext k00⊕k0x. Note that A could construct C̃ from this information, since
garbled material joining arbitrary wires x and y can be expressed as follows:

k0x ⊕ k0y = (k00 ⊕ k0x)⊕ (k00 ⊕ k0y)

Thus, the information conveyed to A in this experiment is strictly more than
that in the garbled circuit, since we can construct the latter from the former.

In this experiment, we can reason that if A finds any key kbx, then they can
compute a key on the first wire: kb0 = (k00 ⊕ k0x) ⊕ kbx. Thus, an adversary that
guesses some query made by GarbleO can also output kb0 for some b with the
same probability. But k00 and k10 are uniform in the choices of k00 and ∆ = k10⊕k00
(Figure 4). Thus, A gains no more than negl(λ) advantage in guessing k00 or k10,
implying that A cannot guess a query given only C̃ w.p. better than negl(λ).

Thus, this worst-case experiment hides garbling queries. Since the worst-case
world gives strictly more information to A than C̃, ΠTSC is query hiding.

Lemma 2. ΠTSC is rekeyable (Definition 7).

Proof. By construction of a rekeying procedure Rekey; see Figure 3.
Recall that rekeyability states that Rekey should output fresh keys that are

identically distributed to keys generated by Garble. In short, we can arrange this
due to the fact that all constraints imposed by the garbled circuit are linear.
Thus, we can use keys to choose the garbled circuit, or vice versa.

More precisely, Garble and Rekey sample keys from the same distribution.
Indeed, ∆ is identically distributed, and each zero-key is also identically dis-
tributed. The only difference between the two procedures is that Garble chooses
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RekeyTSC(1
λ, (C,D), C̃)

1 : ∆←$ {0, 1}λ−1 || 1 ; r ←$ D

2 : while not all keys are assigned do

3 : arbitrarily select some unassigned wire and uniformly assign one of its keys,

4 : subject to the following constraints:

5 : for each join z ← x ▷◁ y with C̃ string row : (k0z = k0x) ∧ (k0x ⊕ k0y = row)

6 : for each buffer z ← x/y with C̃ bit p : lsb(k0y) = p

7 : for each XOR z ← x⊕ y : kz = kx ⊕ ky

8 : for each i-th randomized input wire w : k0w = r[i] ·∆

9 : for each wire w : k0w ⊕ k1w = ∆

10 : for each i-th input wire w do append to e (k0w, k
0
w ⊕∆)

11 : for each i-th output wire w do append to d (O(k0w, i),O(k
0
w ⊕∆, i))

12 : for each buffer z ← x/y do append to δ ((k1y, gid), k
0
x ⊕ k0z)

13 : return (δ, e, d)

Fig. 3. The Rekey procedure for Construction 1. Rekey uniformly samples keys, subject
to linear constraints imposed by C̃. It outputs (1) a programming string δ, (2) an input
encoding string e, and (3) an output decoding string d. Rekeying can be computed
in linear time; at each step we (1) pick an arbitrary wire with an unassigned key, (2)
uniformly sample the unconstrained bits of that unassigned key, and (3) use the chosen
key to propagate constraints (by setting appropriate key bits) through connected gates.

keys from start to finish by calling O and constructing C̃, whereas Rekey works
backwards from C̃ and chooses keys. Because the RO is not in scope for Rekey,
keys in both worlds are uniformly distributed, other than constraints imposed
by C̃. But all constraints imposed by C̃ are linear, so it does not matter if C̃ is
chosen with respect to the keys, or if keys are chosen with respect to C̃.

Lemma 3 (ΠTSC Privately Rekeys). ΠTSC privately rekeys (Definition 8).

Proof. Privately rekeying (Definition 8) requires that we show indistinguishabil-
ity of the following for all C̃ ∈ Supp(Garble(1λ, C)) and inputs x:

RealA,C,C̃,x
prv (λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(λ,C, C̃)

3 : x̃← Encode(e, x)

4 :

5 : return AOδ

(1λ, x̃, d)

IdealA,S,C,C̃,x
prv (λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(λ,C, C̃)

3 : x̃← Encode(e,0)

4 : d′ ← S(1λ, f(x), d)

5 : return AOδ

(1λ, x̃, d′)
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We introduce similar games which convey the intuition that A cannot dis-
tinguish when it is not allowed to decrypt the output of the GC (it is not given
d). These are similar to the notion of GC obliviousness [BHR12b]:

RealA,C,C̃,x
obv (λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(1λ, C, C̃)

3 : x̃← Encode(e, x)

4 : return AOδ

(1λ, x̃)

IdealA,S,C,C̃
obv (λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(1λ, C, C̃)

3 : x̃← Encode(e,0)

4 : return AOδ

(1λ, x̃)

Privacy from obliviousness. In our scheme ΠTSC, if Realobv and Idealobv are
indistinguishable, then we almost immediately achieve privacy as well. In par-
ticular, our simulator S in Idealprv takes the decoding table d and permutes the
entries to find d′ so that the encoded output properly decodes:

Decode(d′,Eval(C̃,Encode(e,0))) = f(x)

Thus, it suffices to show that Realobv and Idealobv are indistinguishable.

Uniform ∆. Consider the information revealed to A in the online phase, for now
ignoring A’s RO queries. A is given the following:

OnlineC̃,x = {C̃, x, (kbii )∀wi
},

for every wire wi with cleartext wire value bi. The TSC is total (Definition 4),
so A indeed sees a key on each wire. Note that the control bits Controls(C, x)
(resp. Controls(C,0)) are implied by the keys on control wires kbcc together with
revealed buffer point-and-permute bits included as part of C̃.

Recall from Figure 3 that to rekey C̃, RekeyTSC samples new randomized
circuit inputs, new keys, and a new ∆. After A learns corresponding online
information, but before it issues RO queries, we find that while key randomness
is leaked to A, keys associated with open buffer gates (i.e., buffers whose control
is 0) are not. Notice that ∆ is unconstrained, despite the information sent to
A, and because RekeyTSC samples ∆ independently of (C,D), we find that the
distribution of ∆ conditioned on seeing OnlineC̃,x remains uniform.

Game Indistinguishability. Without RO queries, we note that the distributions
Controls(C, x) and Controls(C,0) are statistically close (Definition 5); the one
way A can get a larger advantage is by querying the RO at O(k1c ||gid) for some
wire wc that controls a open buffer, i.e. a buffer where A was given key k0c .

With this query A would be able to determine whether kbii = O(k1c ||gid)⊕k
bj
j

for data input (resp. output) wire wi (resp. wj) associated with the buffer. If any
such query was leaked to A, then A could distinguish the control bits; otherwise,
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A would have no help distinguishing the two games Realobv or Idealobv, since
the keys together with C̃ are independent of the evaluation.

Thus, to gain non-negligible advantage, A must successfully query at least
one open buffer gate. If A were able to make such a query, then A could also
compute ∆ = k0c⊕k1c , and vice versa. Since ∆ is uniform and independent of the
RO, we find that the probability that A finds ∆ given only polynomially many
oracle queries is negl(λ). ΠTSC is adaptively private.

By combining Theorem 1 with Lemmas 1 to 3 we obtain the following result:

Corollary 1. ΠTSC is an adaptively private garbling scheme.
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Appendices

A Adaptive Obliviousness

Definition 10 (Adaptive Obliviousness). A garbling scheme satisfies adap-
tive obliviousness if for all circuits C ∈ C, there exists a simulator S, such
that for all stateful PPT adversaries A the following quantity is negligible in λ:∣∣∣Pr[RealA,C

obv (1λ) = 1
]
− Pr

[
IdealA,C

obv (1λ) = 1
]∣∣∣

where Real, Ideal are as follows:

RealA,C
obv (1λ)

1 : (C̃, e, d)← GarbleO(1λ, C)

2 : x← AO(1λ, C̃)

3 : x̃← Encode(e, x)

4 : return AO(x̃)

IdealA,C
obv (1λ)

1 : (C̃, x̃)← SO(1λ, C)

2 : x← AO(1λ, C̃)

3 :

4 : return AO(x̃)

Definition 11 (Obliviously Rekeying). Let Π be a rekeyable garbling scheme
(Definition 7). We say that Π obliviously rekeys if for all circuits C comput-
ing function f , for all x, for all garbled circuits C̃ ∈ Supp(Garble(1λ, C)), and
for all PPT adversaries A, the following ensembles are statistically close in λ:

RealA,C,C̃,x(λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(1λ, C, C̃)

3 : x̃← Encode(e, x)

4 : return AOδ

(1λ, x̃)

IdealA,C,C̃(λ)

1 : Sample random oracle O

2 : (δ, e, d)← Rekey(1λ, C, C̃)

3 : x̃← Encode(e,0)

4 : return AOδ

(1λ, x̃)

Lemma 4 (ΠTSC Obliviously Rekeys). ΠTSC obliviously rekeys (Defini-
tion 11).

Proof. Recall the hybrid of oblivious rekeying (Definition 11), which we would
like to show indistinguishability for all C̃ ∈ Supp(Garble(1λ, C)) and inputs x.

Uniform ∆. We first take stock of what is revealed to the adversary in the online
phase without adversary-directed queries. The adversary at least has access to
the following distribution, note that C̃ is fixed:

OnlineC̃,x = {C̃, x, (kbii )∀wi
},
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for every wire wi and hidden semantic value over the wire bi, recalling that TSC
is total (Definition 4). Note that the control bits Controls(C, x) or Controls(C,0)
are implied by having access to the keys kbcc associated with control wires wc and
the buffer leaked pnp bit from C̃.

Recall from Figure 3 that to rekey C̃, RekeyTSC samples new bits from (C,D),
new uniform keys for some wires, and a new delta ∆. After revealing the keys as
described above, but before the adversary is allowed any other queries, we find
that the key randomness is leaked to the adversary, but not the bits from (C,D)
associated with buffer gates with wires set to 0, and independently ∆. We point
out that because ∆ is still unconstrained despite the online phase information,
and because ∆ is drawn independently from (C,D), we find that the distribution
of ∆ conditioned on seeing OnlineC̃,x is still uniform.

Game Indistinguishability. Without any query access, we note that the distribu-
tions Controls(C, x) and Controls(C,0) are statistically close; however, the one
way that the adversary can use queries to get a larger advantage by querying
the oracle at O(k1c ||gid) for some wire wc that leads into a buffer and that the
adversary was given key k0c during evaluation.

With this query the adversary would be able to determine whether

kbii = O(k1c ||gid)⊕ k
bj
j ,

for data input (resp. output) wire wi (resp. wj) associated with the buffer. If
all such queries were leaked to the adversary, then the adversary would be able
to distinguish the control bits; otherwise, the adversary would have no help
distinguishing the two games Real or Ideal, since all the other information in C̃
and the keys is independent of the evaluation.

As such, the only hope for the adversary to get more than statistical ad-
vantage in distinguishing Real or Ideal is to make at least one query to such a
buffer gate; however, we point out that if the adversary were able to make such
a query, then the adversary could also compute ∆ = k0c ⊕ k1c , and vice versa.
Since ∆ is drawn from uniform and independent of the random oracle output
randomness, we find that the probability that the adversary finds ∆ given only
polynomially many oracle queries is negl(λ). As such, we find that the two games
are indistinguishable.

Theorem 2 (Adaptive Obliviousness from Oblivious Rekeying and Query
Hiding). Let Π be an obliviously rekeyable (Definition 11) garbling scheme that
is query hiding (Definition 6). Π is adaptively oblivious.

Proof. By construction of a simulator:

SO(1λ, C)

1 : (C̃, e, d)← GarbleO(1λ, C)

2 : x̃← Encode(e,0)

3 : return (C̃, x̃)
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Now, we show that the real-world and ideal-world experiments are indistin-
guishable. We restate the experiments, in-lining the handling of our simulator:

RealA,C
obv (λ)

1 : Sample random oracle O

2 : (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e, x)

5 : return AO(1λ, x̃)

IdealA,C
obv (λ)

1 : Sample random oracle O

2 : (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e,0)

5 : return AO(1λ, x̃)

To demonstrate indistinguishability, we proceed by a hybrid argument. We
give six hybrids:

FA,C
obv,R(λ)

1 : Sample random oracle O

2 : δ, (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO
−δ

(1λ, C̃)

4 : x̃← Encode(e, x)

5 : return AO(1λ, x̃)

FA,C
obv,S(λ)

1 : Sample random oracle O

2 : δ, (C̃, e, d)← GarbleO(1λ, C)

3 : x← AO
−δ

(1λ, C̃)

4 : x̃← Encode(e,0)

5 : return AO(1λ, x̃)

GA,C
obv,R(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e, x)

5 : return AO
δ

(1λ, x̃)

GA,C
obv,S(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : x̃← Encode(e,0)

5 : return AO
δ

(1λ, x̃)

HA,C
obv,R(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : (δ′, e′, d′)← Rekey(1λ, C, C̃)

5 : x̃← Encode(e′, x)

6 : return AO
δ′

(1λ, x̃)

HA,C
obv,S(λ)

1 : Sample random oracles O and O′

2 : δ, (C̃, e, d)← GarbleO
′
(1λ, C)

3 : x← AO(1λ, C̃)

4 : (δ′, e′, d′)← Rekey(1λ, C, C̃)

5 : x̃← Encode(e′,0)

6 : return AO
δ′

(1λ, x̃)
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We find most direct to argue indistinguishability by “meeting in the middle”.
Namely, our proof proceeds starting from the real/ideal ensemble, and at each
step of our proof, we show the current real/ideal ensemble is indistinguishable
from some respective intermediate ensemble. To conclude, we show that these
two final ensembles are indistinguishable from one another.

Removing offline oracle queries. In our crucial proof step, we argue the following:

{RealA,C
obv (λ)} ≈ {FA,C

obv,R(λ)} and {IdealA,C
obv (λ)} ≈ {FA,C

obv,S(λ)}

In this step we remove from the adversary’s oracle all queries issued by the call
to Garble, but only in the offline phase. Jumping ahead, our informal objective
is to show that the adversary’s chosen input x must be independent of Garble’s
random oracle queries.

Of course, there is a difference between games Real and Fobv,R (resp. Ideal
and Fobv,S). Indeed, in the former game the adversary is given access to the
same oracle twice, and in the latter the adversary is given access to two oracles
that differ by δ. Thus, if the adversary can guess a query in δ, it can distinguish
the two games, since in the first game it will see the oracle respond consistently
in the offline and online phases, and in the second game it will see the oracle
“disagree with itself”.

Query hiding (Definition 6) is precisely what we need to show that the ad-
versary cannot guess a query in δ. Indeed, an unbounded adversary with only
polynomial oracle queries has at most negl(λ) chance to sample a point in δ. As
such, the adversary only has a negl(λ) probability of determining if it was given
O or O−δ on line 3 of both the Real games and G.

Rearranging the oracles. In our second step, we perform a “refactoring” of the
random oracle queries. In particular, we argue:

{FA,C
obv,R(λ)} ≡ {G

A,C
obv,R(λ)} and {FA,C

obv,S(λ)} ≡ {G
A,C
obv,S(λ)}

Indeed, games F and G are identically distributed, as they are merely a
rearrangement of the random oracle queries. The output distribution of GarbleO

in line 2 of hybrid F is independent of the programmed oracle O−δ on line 2.
As such, we can rewrite lines 2 and 3 to use different oracles all together to get

hybrid G. On line 5, we note that the only part of O′ that GarbleO
′
depends on

are exactly those queries in δ. As such, the garbler may as well have used Oδ to
garble. After this step, it is clear that the adversary’s chosen input x must be
independent of the random oracle O′ used to garble, since the adversary is not
allowed access to O′.

Rekeying the garbled circuit. Next, we use the rekeyability (Definition 7) of the
scheme to sample fresh keys associated with the particular garbled circuit C̃. In
particular, we argue:

{GA,C
obv,R(λ)} ≡ {H

A,C
obv,R(λ)} and {GA,C

obv,S(λ)} ≡ {H
A,C
obv,S(λ)}

This is immediate by the rekeyability property.
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Privacy. Finally, we bridge from the “real world”, where we encode x, to the
“ideal world”, where we encode 0:

{HA,C
obv,R(λ)} ≡ {H

A,C
obv,S(λ)}

First, notice that the outputs of garbling – C̃, δ, e, and d – are independent
of O. Thus, the choice of x is also independent of δ, e, and d, except insofar as
they are constrained by the garbled circuit C̃. We can capture this sentiment
by treating C̃ and x as if they are universally quantified. But this setting is ex-
actly what is considered in oblivious rekeying (Definition 11). Applying oblivious
rekeying thus discharges the proof.

Any query hiding, obliviously rekeyable garbling scheme is adaptively obliv-
ious.

B TSC Garbling Procedures

Our NPRO-based TSC garbling scheme is described in full detail in Section 2.3.
For completeness, Figure 4 additionally includes precise algorithms for each gar-
bling scheme procedure.

C Existing Schemes are Adaptive

As another application of our framework, we argue that a range of existing GC
schemes are adaptively secure, if their underlying hash function is implemented
with an NPRO.

C.1 Free XOR

We show that the Free XOR construction [KS08], as written, is rekeyable. The
Free XOR scheme is relatively straightforward.

First, the handling of wire keys is the same as described in Section 5. In
particular, for each input wire and each AND gate output wire w, the scheme
samples a uniformly random label k0w ←$ {0, 1}λ. Additionally, the garbler sam-
ples a global offset ∆ ←$ {0, 1}λ−1 || 1, and for each wire w, the garbler sets
k1w = k0w ⊕∆.

For each XOR gate z ← x ⊕ y, the garbler sets the output wire key k0z =
k0x ⊕ k0y. For each AND gate z ← x · y, the garbler generates four garbled rows9,

9 For simplicity, we list the rows in an unpermuted order; the full scheme would
permute the rows according to point-and-permute bits. The permutation of rows
is not relevant to our current discussion.
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GarbleO(1λ, (C,D))

1 : C̃ ← emptymap

2 : e, d← emptyvec

3 : ∆←$ {0, 1}λ−1 || 1
4 : r ←$ D

5 : for each input wire w do

6 : k0w ←$ {0, 1}λ

7 : append (k0w, k
0
w ⊕∆) to e

8 : for each i-th random input w do

9 : k0w ← ri ·∆
10 : for (g, gid) ∈ C do

11 : if g = (z := x/y) do

12 : C̃[gid ]← lsb(k0y)

13 : k0z ← O(k
0
y ⊕∆, gid)⊕ k0x

14 : elseif g = (z := x ▷◁ y) do

15 : C̃[gid ]← k0x ⊕ k0y

16 : k0z ← k0x

17 : elseif g = (z := x⊕ y) do

18 : k0z ← k0x ⊕ k0y

19 : for each i-th output wire w do

20 : append to d

21 : (lsb(k0w),O(k
0
w, i),O(k

1
w, i))

22 : return (C̃, e, d)

Encode(e, x)

1 : x̃← emptyvec

2 : for each i-th input x[i]

3 : (k0, k1)← e[i]

4 : append kx[i] to x̃

5 : return x̃

EvalO((C,D), C̃, x̃)

1 : for each nonrandom input wire w do

2 : kw ← x̃[w]

3 : for each random input wire w do

4 : kw ← 0λ

5 : for (g, gid) ∈ C where g is ready do

6 : if g = (z := x/y) do

7 : ctrl ← lsb(ky)⊕ C̃[gid ]

8 : if ctrl = 1 do

9 : kz ← O(ky, gid)⊕ kx

10 : elseif g = (z := x ▷◁ y) do

11 : if x is set dokz ← kx

12 : else kz ← ky ⊕ C̃[gid ]

13 : elseif g = (z := x⊕ y) do

14 : kz ← kx ⊕ ky

15 : ỹ ← emptyvec

16 : for each output wire w do

17 : append kw to ỹ

18 : return ỹ

Decode(d, ỹ)

1 : y ← emptyvec

2 : for each i-th output label ỹ[i]

3 : (p, k0, k1)← d[i]

4 : if O(ỹ[i], i) = k0 ∧ lsb(ỹ[i]) = p do

5 : append 0 to y

6 : elseif O(ỹ[i], i) = k1 do

7 : append 1 to y

8 : else

9 : return ⊥
10 : return y

Fig. 4. Our NPRO-based garbling scheme for oblivious tri-state circuits (C,D). Our
scheme transmits one ciphertext per join gate and one bit per buffer; XOR gates are
“free” [KS08]. E evaluates gates in a data dependent order, choosing gates that are
ready (Definition 9). Our scheme is adaptively secure.
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which are added to the garbled circuit:

O(k0x, k
0
y, gid)⊕ k0z

O(k0x, k
1
y, gid)⊕ k0z

O(k1x, k
0
y, gid)⊕ k0z

O(k1x, k
1
y, gid)⊕ k1z

Lemma 5. Let Π denote the garbling scheme of [KS08] described above. Π is
query hiding (Definition 6).

Proof Sketch. The proof that keys garbled in [KS08] hide queries is very similar,
if not simpler, than for TSC (Lemma 1). Like with TSC, keys are generated
either from uniform, or as a linear combination of other keys. Note that all the
ciphertexts in C̃ given to the adversary are of the form O(q)⊕kbx for some query
q. When the adversary is allowed no queries, then C̃ perfectly encrypts what the
keys could be, since the outputs of the RO is uniform. Informally, this continues
to be the case until the adversary hits a query q used to encrypt some key.
Since the keys are uniform or linear in nature, we find that the adversary cannot
guess any of the keys and by extension any oracle query with better than w.p.
negl(λ).

Lemma 6. Let Π denote the garbling scheme of [KS08] described above. Π
supports a rekey procedure (Definition 7) that privately and obliviously rekeys
(Definitions 8 and 11).

Proof Sketch. The roadmap to proving that Free-XOR is rekeyable is similar to
that of rekeyability of TSC (Lemma 2), but with even simpler steps. The rekey
procedure simply chooses wire keys in the same manner as garble: sample a
fresh ∆, uniformly sample a zero-key on each input wire and each AND gate
output, and compute the zero-key on each XOR gate output by XORing the
input keys. From here, the rekey procedure programs the RO in the obvious
way, ensuring that each combination of AND gate input keys decrypts to the
appropriate output key.

The procedure described above is a rekeyer (Definition 7): the keys are clearly
drawn from the same distribution in the garbling and the rekeying. The proof
that this rekey procedure satisfies rekey obliviousness and privacy is almost iden-
tical to the proof given in Lemma 2, except that the proof is arguably simpler,
since we need not concern ourselves with tri-state circuit obliviousness.

Thus, the [KS08] scheme is adaptively secure if their hash function is modeled
by a NPRO.

Corollary 2. Π denoting the garbling scheme of [KS08] is an adaptively private
and adaptively oblivious.
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C.2 Half-Gates is Rekeyable

The popular half-gates scheme [ZRE15] first demonstrated how to garble AND
gates for only two ciphertexts. The scheme is rekeyable, given the hash function
is modeled as an NPRO:

Lemma 7. Let Π denote the garbling scheme of [ZRE15]. Π is query hiding
(Definition 6) and supports a rekey procedure (Definition 7) that privately and
obliviously rekeys (Definitions 8 and 11).

Proof Sketch. The proof that the half-gates technique of [ZRE15] is rekeyable is
very similar to the above Free XOR proof, and to our TSC proof. Indeed, TSCs in
some sense formally capture the exact procedures of the half-gates scheme. This
was shown in [HKO23], where they give an oblivious AND gate construction
that uses exactly two join gates, matching the cost of half-gates (indeed, the
underlying handling is the same as half-gates).

Rather than meticulously proving that half-gates is rekeyable and query hid-
ing, we simply point out that these properties are implied by Lemmas 1 and 2.
Thus, the [ZRE15] scheme is adaptively secure if its hash function is modeled
by a NPRO.

C.3 Arithmetic Gadgets is Rekeyable

[BMR16] demonstrated interesting garbling techniques for a limited class of
arithmetic circuits. In particular, they generalize the Free XOR technique to
small prime fields. Their construction allows wires over various moduli Zp for
prime p, and to do this, they sample a Free XOR correlation for each modulus p,
each consisting of repeated Zp elements, such that each such ∆ has ≈ λ bits of
entropy. For simplicity, we henceforth simply say Zℓ

p where ℓ denotes the number
of Zp elements needed to acquire λ bits of entropy.

To select keys for wires containing a Zp element, [BMR16] choose the zero-
key uniformly from Zℓ

p; the one-key, two-key, three-key, ..., p− 1-key are chosen
by adding multiples of the appropriate correlation ∆.

[BMR16] provide three operations on wires: addition (modulo p), scaling by
a constant (modulo p), and projection. The projection operation allows mapping
each of the p possible keys to some specified output key, potentially in a different
modulus. The projection operation is implemented simply by hashing the input
key, and using the hash to encrypt the respective output key, then including
that ciphertext in the garbled circuit (these ciphertexts are shuffled according
to point and permute).

Lemma 8. Let Π denote the garbling scheme of [BMR16]. Π is query hiding
(Definition 6).

Proof Sketch. Because the garbled circuit C̃ is a collection of RO outputs XORed
with the linear keys in Zℓ

p, we find that the oracle queries that take in these
linear and uniform keys should be hidden for exactly the same reason as in
Lemma 5.
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Lemma 9. Let Π denote the garbling scheme of [BMR16]. Π supports a rekey
procedure (Definition 7) that privately and obliviously rekeys (Definitions 8 and 11).

Proof Sketch. Similar to our discussion of Free XOR, it is clear that this scheme
is rekeyable. Indeed, all keys are either uniformly sampled, combined in a linear
manner, or encrypted under RO. Thus, we can construct a Rekey procedure
that resamples arithmetic keys uniformly, while respecting the constraints im-
posed by addition gates and scalar gates. The fact that this Rekey procedure is
perfectly indistinguishable, oblivious, and private is proved in almost the exact
same manner as Free XOR.

Thus, the [BMR16] scheme is adaptively secure if their hash function is mod-
eled by a NPRO.

C.4 Switch Systems are Rekeyable

The switch system garbling scheme of [Hea24] was inspired by TSCs, with the
extra insight that most of the gates can be bi-directional and arithmetic. TSCs
are actually a special case of a switch system. Switch systems are also rekeyable
for exactly the same reasons that TSCs are, since switch systems are still gar-
bled in a TSC-like order with XOR replaced with addition. We chose to work
with TSCs in this paper because they are closer to a traditional circuit-garbling
scheme and still support GRAM.

Lemma 10. Let Π denote the garbling scheme of [Hea24]. Π is query hiding
(Definition 6) and supports a rekey procedure (Definition 7) that privately and
obliviously rekeys (Definitions 8 and 11).

Proof Sketch. The proof that the switch system technique of [Hea24] is rekeyable
is very similar to our TSC proof, with the linearity in Z2 replaced with linearity
in Z2k .

Rather than meticulously proving that switch systems are rekeyable and
query hiding, we simply point out that these properties are implied by Lemmas 1
and 2. Thus, the [Hea24] scheme is adaptively secure if its hash function is
modeled by a NPRO.

C.5 Three-Halves is Rekeyable

The three-have construction of [RR21] can be viewed in two parts: a method
for correlating half-sized labels with a hash function that results in statistically-
hiding the inputs and gate (given a controlled view) and separately the imple-
mentation of this hash function with some appropriate primitive (e.g. correlation-
robust hash functions). To put more formally, the slice and dice method is sta-
tistically secure if we only give the adversary hash queries that correspond to an
honest evaluation. As such, the elements in the slice and dice method are sta-
tistically rekeyable since there should exist with high probability another gate,
input, and randomness pair that explains the information that the adversary
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sees. As such, when we use an NPRO in place of the hash function, we note that
we can program the output corresponding with some other circuit with statisti-
cal success for honest queries and with further negligible loss in security when
the adversary can query on polynomially many points10.

Lemma 11. Let Π denote the garbling scheme of [RR21]. Π is query hiding
(Definition 6).

Proof Sketch. Because the garbled circuit C̃ is a collection of RO outputs and
a solution to a private matrix, all the labels are linearly dependent by some
uniform and unknown value to the adversary. As such, the keys are hidden for
exactly the same reason as in Lemma 5.

Lemma 12. Let Π denote the garbling scheme of [RR21]. Π supports a rekey
procedure (Definition 7) that privately and obliviously rekeys (Definitions 8 and 11).

Proof Sketch. As discussed above, the protocol is rekeyable since for any view,
there statistically exists other secrets that explain the view but are consistent
with every other combination of input key and gate semantics.

Thus, the [RR21] scheme is adaptively secure if their hash function is modeled
by a NPRO.

D Auxiliary Input Random Oracle Model

Our framework can also be easily adapted to work even in the (non-programmable)
auxiliary input ROM of [Unr07], in which the polynomial-time adversary is al-
lowed to depend arbitrarily on the sampled RO.11 This model is more restrictive
than the NPROM in that it captures adversaries that know properties of the
hash function in advance. The model rules out protocols that, for example, are
secure in the NPROM, but rely on concrete queries resulting in uniform out-
puts. For instance, if a protocol relies on O(0) to output some uniform value,
this could be a problem in the real world, where a fixed hash function always
return the same string, which may lead to prepossessing attacks.

D.1 Security in the Auxiliary Input NPROM

Rather than re-proving each of our theorems, we argue the main reasons that our
results clearly work in the auxiliary input model. [Unr07] shows an equivalence
between their model and one in which some polynomial number of entries in

10 In the proof of security in [RR21], the adversary would be able to break the protocol
if they were able to get the labels corresponding to some other input, hence we can
say that they are not findable when we use an RO.

11 For unbounded adversaries with polynomial numbers of queries, the adversary in-
stead receives a polynomially-sized string that depends arbitrarily on the sampled
RO.
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the RO are fixed in advance (and known to the adversary), and where all other
entries are drawn uniformly.

Recall Definition 6, which forces that the queries a garbler makes not be
guessable by an unbounded adversary with polynomially many queries to the
RO. Say for reference that the adversary always queries the pre-set points in
the RO (which could be arbitrary, but poly-bounded in size). This implies that
garbling schemes that satisfy Definition 6 avoid hitting the bad pre-set points
in the RO. Because oracle queries that are not pre-set are uniformly drawn, and
because our framework runs either the honest or resamples some other honest
execution of the protocol conditionally, the protocol is negligibly likely to hit one
of these bad pre-set queries throughout the hybrids, and of course in the real or
ideal worlds.

E Additional Discussion of NPROM

NPRO as a Hash Function. We expand our discussion of the NPROM. The
intuition behind the ROM and indeed the [FLR+10] formalism is that we would
like to model a hash function that the adversary does not look inside. We can
formalize this notion by imagining the ROM as a third party that runs a PRF
with some key that is hidden from every party (even the game itself). In the
programmable ROM’s ideal world, we corrupt this third party, which corresponds
to corrupting the real-world hash function, an unusual assumption. NPROM
circumvents this by forcing the third party to be honest and to answer queries
even in the ideal world (where the simulator does not get the PRF key). In
other words, the NPROM can be understood as viewing a hash function as some
obfuscation of a keyed PRF, where the key was chosen when the function was
created. For example, we can imagine that the secret key that SHA-3 hides was
chosen when SHA-3 was designed, and it is now hidden from everyone.

It is this model that [FLR+10] captures. For example, let G
(·)
L (λ) and G

(·)
L (λ)

be some games that each use an oracle (as the third party), and suppose we wish
to show indistinguishability between them. Then for a properly sampled key k
for the PRF, the following is a standard definition that we can reason about:

G
Fk(·)
L

?
≈ G

Fk(·)
R

Recall that in the definition of a PRF, a keyed PRF (whose key is uniform and
hidden from the adversary) should be indistinguishable from a truly uniform
function. As such, we have that a valid proof of this definition might proceed as
follows:

G
Fk(·)
L ≈ G

f(·)
L ≡ G

O(·)
L

?
≈ G

O(·)
R ≡ G

f(·)
R ≈ G

Fk(·)
R

We then note that definitions of the form

G
O(·)
L

?
≈ G

O(·)
R
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for games GL and GR using a fixed NPROM is exactly what the [FLR+10]
framework is designed to support. Put another way, [FLR+10] is sufficient also
as a model for fixed uniform functions even for standard model proofs and even

for any arbitrary method for showing indistinguishability between G
O(·)
L and

G
O(·)
R .

Implications for Simulation- and Indistinguishability-based Security. One other
unintuitive and seemingly problematic notion that arises from [FLR+10] in gar-
bling is that PROM simulation-based security immediately implies NPROM
indistinguishability-based security for adaptive garbled circuits. To give more
context, in an indistinguishability-based definition as in [JSW17], the adversary
provides two inputs x0 and x1 such that f(x0) = f(x1) for the chosen func-
tionality, and it must distinguish two real-worlds in which the challenger either
provides labels for x0 or for x1. The lower bound from [AIKW13] does not apply
to protocols in the indistinguishability-based definitions; however, the poten-
tially unintuitive behavior comes from the following analysis. Say that we have
a simulation-based garbling scheme such that

RealA(λ) ≈ IdealA,S(λ)

for some efficient simulator S, programming or non-programming. Then we can
show indistinguishability-based security for the same protocol using the following
sketch. Let RealA,b be the real world in which the adversary submits two inputs
as mentioned and the b-th input is always chosen to encode by the challenger,
then

RealA,0(λ) ≈ IdealA,S(λ) ≈ RealA,1(λ).

If we carry out the above transformation with a protocol which uses the
NPROM and is simulation secure, the implied protocol for indistinguishability-
based security will be left with the same online-phase cost; however, if we start
with a PROM simulation-secure protocol, we could circumvent this issue. The
concern is that because we used programming in the hybrids (i.e. pivoting on
PROM simulation security) that this allows us to show something (succinct
indistinguishability-based security) when this would otherwise not normally be
a transformation that can be done from NPROM simulation-based security. As it
happens, the same work [JSW17] also shows that there also exists a transforma-
tion from certain simulation-based garbling schemes in the standard model
to get an indistinguishability-based garbling scheme from the same assumptions
without the decoding table (the formal part that adds the extra cost, see Defi-
nition 1). This transformation can be applied to protocols that rely on so-called
pebbling-based security proofs, which all the protocols featured in this work use.
This is to say that this interaction was predicted in the standard model and is
reinforced rightly in the NPROM model from [FLR+10].
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