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Abstract. In this paper a reduced set of submatrices for a faster evaluation of the MDS
property  of  a  circulant  matrix,  with  entries  that  are  powers  of  two,  is  proposed.  A
proposition is made that under the condition that all entries of a t × t circulant matrix
are powers of 2, it is sufficient to check only its 2x2 submatrices in order to evaluate the
MDS property in a prime field. Although there is no theoretical proof to support this
proposition  at  this  point,  the  experimental  results  conducted  on  a  sample  of  100
thousand randomly generated matrices indicate that this proposition is true. There are
benefits  of  the  proposed  MDS  test  on  the  efficiency  of  search  methods  for  the
generation of circulant MDS matrices, regardless of the correctness of this proposition.
However, if this proposition is correct, its impact on the speed of search methods for
circulant MDS matrices will be huge, which will enable generation of MDS matrices of
large sizes. Also, a modified version of the make_binary_powers function is presented.
Based on this modified function and the proposed MDS test, some examples of efficient
16 x 16 MDS matrices are presented. Also, an examples of efficient 24 x 24 matrices are
generated, whose MDS property should be further validated.

1 Introduction

The  basic  feature  of  cryptographic  systems  is  the  resistance  against  differential  and  linear
cryptanalysis. Such feature can be achieved by using the linear diffusion layer which is based on a
matrix with optimal diffusion property, a Maximum Distance Separable (MDS) matrix [1]. However,
the multiplication with MDS matrix is expensive in general, so matrices with small elements in the
time and frequency domain should be used [2]. An MDS matrix whose all elements are powers of 2
could  be  particularly  useful  because  the  left  shift  operation  could  be  used  instead  of  the
multiplication.  In  this  way  the  implementation  cost  could  be  significantly  reduced  from  the
perspective of lightweight cryptography. 

In the previous period, a significant effort was made to construct or find MDS matrices with a low
software and hardware implementation cost [3-16]. Some approaches for obtaining MDS matrices,
such as Cauchy and Vandermonde matrices, have the advantage of being provably MDS [17]. On the
other hand, matrices obtained by circulant, Hadamard, or Toeplitz approach need to be checked for
the MDS condition, but such approaches reduce the search space significantly by restricting the



number of submatrices [17].  Although such approaches can provide efficient MDS matrices of  a
moderate size, search for larger MDS matrices is not feasible due to large search space [12].

Another limitation in the search for a efficient MDS matrix is the complexity of the MDS test. Bearing
in mind that a matrix is MDS if and only if all its square submatrices are invertible [18], the MDS test
[19] should check (2t-1)2 minors in order to confirm that some t × t matrix is MDS. Such complexity
requires a lot of time and memory for larger dimensions of matrix, which makes search methods
inefficient for larger  t.  For this reason, more efficient ways of evaluating the MDS property of a
matrix are needed in order to facilitate the search for MDS matrices of a larger size.

A circulant matrix is defined by the elements of its first row and each subsequent row is a right
rotation of the previous row [9]. Circulant matrices could be also obtained by using left rotation
instead of right. Due to such construction, circulant matrices have many repeated submatrices [17],
and  a  large  number  of  equivalent  submatrices  [20].  The  MDS  test  for  such  matrices  could  be
performed on the reduced set which is estimated at (2 t-2-1)2 submatrices for a t × t matrix [20]. This
approach significantly  reduce the complexity of  the test,  but  such reduction is  not sufficient to
enable feasibility of the MDS test of circulant matrices of a larger size.

In this paper, a reduced set of matrices, which enables very fast evaluation of the MDS property of a
circulant matrix with entries that are powers of 2, is proposed. Although at this point there is no
theoretical proof that the evaluation of this set is sufficient in order to confirm MDS property of such
matrix, the experimental results show that by using the proposed set, search methods can become
much faster. The experimental results are obtained by using the random method and the modified
method from the function  make_binary_powers [19], which will be also presented in this paper.

2 The proposed MDS test for circulant matrices with entries that are powers of 2

The MDS test for circulant matrices could be performed on the reduced set, due to a large number
of equivalent submatrices [20]. However, if we consider only circulant matrices whose all elements
are powers of 2, the set of submatrices, which needs to be tested in order to evaluate the MDS
property in a prime field, could be further reduced. In such case an assumption is made that only the
set of all 2x2 submatrices should be tested in order to check whether the matrix is MDS or not.
Based on the above, the following proposition is made:

Proposition:  Under the condition that all entries of a  t  × t circulant matrix are powers of 2, it is
sufficient to check only its 2x2 submatrices in order to evaluate the MDS property in a prime field.

This proposition is based on the fact that by reducing the set of possible elements of a matrix to only
powers of 2, the conditions required for all  2x2 submatrices to be invertible will  have a greater
impact on the invertibility of larger submatrices. The total number of 2x2 submatrices of  t × t matrix
is (t(t-1)/2)2 which is significantly smaller than the number of all submatrices (2 t-1)2. This difference
in complexity enables much faster evaluation of MDS property, especially for larger matrices.

At this point there is no theoretical proof to support this proposition, but the experimental results
conducted so far indicate that this proposition is true. The experiment conducted on a sample of 100
thousand randomly generated t × t circulant MDS matrices whose all elements are powers of 2 (for 8



≤ t ≤ 12) shows that results of the full MDS test and the proposed reduced MDS test are the same for
each tested matrix. The reason why the experiment with large sample is not conducted on larger
matrices is the complexity of the full MDS test which makes difficult to conduct mass testing. For this
reason, for t > 12, the experiment was conducted only on the limited number of matrices.

The examples of larger matrices included in the experiment are two 16 x 16 circulant matrices for
the Goldilocks field (p = 264-232+1), circ(8388608, 2, 1, 1, 131072, 1, 2048, 4, 32768, 1, 64, 8, 2, 16,
512, 524288) obtained by the modified function make_binary_powers and circ(1, 1, 2, 1, 8, 32, 2,
256,  4096,  8,  65536,  512,  8388608,  268435456,  128,  8192)  obtained  by  the  original  function
make_binary_powers  from the  reference  [19].  Both  matrices  are  confirmed  to  be  MDS  by  the
proposed  test  and  by  the  full  MDS  test  from  the  reference  [19].  The  modified  function
make_binary_powers will be presented in the next section. 

The generation of an efficient 24 x 24 MDS matrix is still an open problem [2]. By using the proposed
MDS test, a 24 x 24 circulant matrix circ(67108864, 8388608, 131072, 256, 8, 2, 1, 1, 1048576, 1,
17179869184,  2,  2048,  8192,  1,  2,  16,  1024,  4,  64,  68719476736,  2199023255552,
4503599627370496, 4096) for Goldilocks field (p = 264-232+1) is obtained, whose all entries are power
of 2. This matrix passed the proposed MDS test, but confirmation with full MDS test was not possible
due to its complexity for such a large matrix.

When the generation of efficient 16 x 16 MDS matrices over the Mersenne field (p  = 231-1) is in
question, some advanced search method based on heuristics should be applied, because the original
and the modified versions of make_binary_powers function were not able to obtain MDS with all
entries that are powers of 2.   After several attempts, the modified function generated a 16 x 16
matrix  in  which  one  random  element  remained. By  applying  another  modification  of
make_binary_powers function which replaces random numbers with numbers such as 2x±1 (instead
of powers of 2) a matrix circ(2097152, 2, 1, 1, 131072, 1, 2, 512, 16, 1, 32768, 4, 2048, 8, 32, 3) is
obtained. The MDS property of this matrix is confirmed by the full MDS test. 

The generation of a 24 x 24 MDS matrix with entries that are powers of 2 for the Mersenne field is
even more  complicated task  due  to  the  small  size  of  the field.  By  using  the  modified function
make_binary_powers a circulant matrix is obtained, which do not have all entries equal to some
power  of  2.  Seven  elements  remained  random.  By  applying  another  modification  of  the
make_binary_powers function which replaces random numbers with numbers such as 2x±2y, where x
≠ y (instead of powers of 2), a circulant matrix circ(1, 2, 1, 1, 4, 3, 5, 1, 4096, 8, 8192, 65536, 32, 7, 9,
12, 1, 16384, 1024, 128, 15, 16, 4, 17) is obtained. 

Because this matrix do not have all entries that are powers of 2, it is not suitable for the proposed
test.  For  this  reason,  further  confirmation  is  needed  to  confirm  its  MDS  property.   Besides
confirming the MDS property of the examples of matrices, future research should focus on finding a
theoretical proof for this proposition, or on conducting an experiment on a larger sample for various
sizes of matrices.

Because of the difference in the complexity of testing between the proposed and full MDS test, even
in  the  case that  this  proposition  is  not  correct  (or  conditions  for  its  use  are  not  satisfied),  the
application of the proposed test in the search methods for MDS matrices significantly reduces their



complexity. The proposed MDS test should be used in the search phase, while the full MDS test
should be used on the final result of the search in order to confirm that a matrix is MDS. Due to fact
that the complexity of the proposed MDS test is almost negligible compared to the complexity of the
full MDS test, by using the aforementioned approach, the complexity of the search method such as
the one described in [19] is reduced approximately to the complexity of one full MDS test.  In the
case that this proposition is correct, and the experimental results imply that it is, the proposed MDS
test could enable very fast generation of such t × t circulant MDS matrices of large sizes, even for t
bigger than 32. 

3 The modification of the make_binary_powers function 

In reference [19], resources for finding and testing circulant t × t MDS matrices, with entries that are
powers of  2,  are provided.  The function make_binary_powers  represents a very efficient search
method for  such matrices.  In  the  first  phase of  this  method a  random circulant  MDS matrix  is
obtained by the random generation of its first row. Afterwards, three random entries from the first
row are replaced with ones, and the other random entries are replaced with the smallest power of
two that maintains the MDS property. 

Although the proposed MDS test is intended only for matrices whose all elements are powers of 2, it
can be used in the methods such as the make_binary_powers function which uses matrices with
random elements in the search stage in order to find the final matrix with entries that are powers of
2. The proposed MDS test can not confirm that initial and intermediate matrices in this method are
MDS, except for the final matrix, but that is not necessary in order for this method to work. The
ability to evaluate the MDS property of the final matrix, whose all elements are powers of 2, is
sufficient.

However there are some features of the make_binary_powers function which could be improved in
order to facilitate the search for the more efficient MDS matrices of the larger sizes. For this reason
the modified version of this function is made, which is mentioned in previous sections. The fact that
only three ones are inserted into the first row of a circulant matrix, indicates that this function is
intended for the generation of smaller t × t MDS matrices, where t ≤ 12. The maximum number of
ones, in the first row of a circulant MDS matrix, is bigger than three for t > 12. For example, 13 x 13
MDS matrix circ(32, 8, 1, 1, 128, 1, 2, 64, 16384, 512, 8192, 1, 4) has 4 ones. For this reason, in the
modified version of this function, part of the code which insert ones in the first row is omitted.
Instead, all random entries are replaced with the smallest power of two starting from the number 2.
In this way final matrix consists of exclusively even numbers so all the elements of the final matrix
can be divided by 2 in order to get smaller values of a matrix.

Although initial  MDS is  generated in a random manner,  all  resulting MDS matrices of  the same
dimension  for  the  same  field  are  the  same.  This  happens  because  random  entries  are  always
replaced by the powers of 2 in the same order (from the first to the last). In the modified version of
this function, random entries are replaced in the sequence which corresponds to their value. The
random numbers are replaced from the smallest one to the biggest one. In this way, the output MDS
matrix depends on the random input and therefore different MDS matrices of various quality could
be generated.



The  last  modification  of  this  function  is  based  on  the  search  method  used.  In  the
make_binary_powers function, search is only made for the appropriate value of a power of 2, while
the position of that number is not changed in the search. In the modified version, after the new
element is inserted in the first row, circulant matrix is generated and check for the MDS condition is
performed. The new element is checked at each position in the first row and if none of matrices
generated by such first rows are MDS, next power of 2 is checked. Although this change could lead
to a greater complexity of this method (in worse cases), such modification enables more freedom in
the search which could result in better output MDS matrix. 

For example, by using  make_binary_powers function for the generation of 16 x 16 MDS matrix in
the Mersenne prime field (p = 231-1), matrix with 3 random elements is obtained. With the proposed
modification, matrix with only one random element could be obtained after several attempts. For
the above mentioned reasons, modified version of the make_binary_powers function is used in this
research. In the next subsection an example of modified function is provided.

3.1 An example of using the modified make_binary_powers function

In this subsection an example of obtaining 12  × 12 circulant MDS matrix in the field defined over the
31-bit Mersenne prime p = 231-1 is presented. In the first step of this function a random sequence
1033412,  1526990061,  1001410421,  1461020265,  998857270,  1967061242,  765393048,
1466034474, 1786802793, 892566188, 559843044, 1525817832 is obtained which will be used as a
first row of the circulant matrix. In the step 2, the circulant matrix is generated and in the step 3 it is
confirmed that it is MDS. 

In  the step 4,  one element  of  the random sequence should  be discarded.  In  this  example,  the
smallest random number will be discarded in each iteration of the proposed approach, although any
method for choosing element to be discarded should provide satisfactory output for the next step.
Smallest  element  (which  is  discarded)  is  1033412,  so  the  reduced  sequence  1526990061,
1001410421,  1461020265,  998857270,  1967061242,  765393048,  1466034474,  1786802793,
892566188, 559843044, 1525817832 is obtained.

In step 5, number 2 is added to the sequence at the first position so the first row of the circulant
matrix  is  2,  1526990061,  1001410421,  1461020265,  998857270,  1967061242,  765393048,
1466034474, 1786802793, 892566188, 559843044, 1525817832. After generating a circulant matrix,
the test confirmed that this matrix is MDS. For this reason the proposed approach can go to the step
4 in the next iteration.

In the case that matrix failed the MDS test, search would be continued with number 2 on the second
position in the first row, and so on until the last position t  is checked. If none of these matrices is
MDS, search is continued with the next power of 2, which is the number 4.

In the second iteration in the step 4, one of the remaining random numbers should be discarded
from the first row of the current MDS matrix. Smallest remaining random number 559843044 is
discarded  so  the  reduced  sequence  2,  1526990061,  1001410421,  1461020265,  998857270,
1967061242, 765393048, 1466034474, 1786802793, 892566188, 1525817832 is obtained.



In the step 5 of the second iteration, number 2 is added to the sequence at the first position so the
first  row  of  the  circulant  matrix  is  2,  2,  1526990061,  1001410421,  1461020265,  998857270,
1967061242, 765393048, 1466034474, 1786802793, 892566188, 1525817832.  After generating a
circulant matrix, test confirmed that this matrix is MDS so the proposed approach can go to the step
4 in the next iteration.

After 12th iteration of the proposed approach, MDS matrix circ(16384, 64, 4, 2, 2, 2048, 2, 4, 32, 8,
128, 4096) is obtained. After division of all elements by 2, an MDS matrix circ(8192, 32, 2, 1, 1, 1024,
1, 2, 16, 4, 64, 2048) is obtained. 
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