
Leakage-Free Probabilistic Jasmin Programs
José Bacelar Almeida

jba@di.uminho.pt
HASLab — INESC TEC

Portugal
University of Minho

Portugal

Denis Firsov
denis.firsov@taltech.ee

Tallinn University of Technology
Estonia

Input Output
Estonia

Tiago Oliveira
tiago.oliveira@sandboxquantum.com

SandboxAQ
USA

Dominique Unruh
leakage.k31fea@rwth.unruh.de

RWTH Aachen
Germany

University of Tartu
Estonia

Abstract
This paper presents a semantic characterization of leakage-
freeness through timing side-channels for Jasmin programs.
Our characterization covers probabilistic Jasmin programs
that are not constant-time. In addition, we provide a char-
acterization in terms of probabilistic relational Hoare logic
and prove the equivalence between both definitions. We also
prove that our new characterizations are compositional and
relate our new definitions to existing ones from prior work,
which could only be applied to deterministic programs.

To provide practical evidence, we use the Jasmin frame-
work to develop a rejection sampling algorithm and provide
an EasyCrypt proof that ensures the algorithm’s implemen-
tation is leakage-free while not being constant-time.

CCS Concepts: • Security and privacy→ Formal secu-
rity models; Logic and verification.

Keywords: cryptography, formal methods, EasyCrypt,
leakage-freeness, side-channels, timing attack, rejection sam-
pling, Jasmin

ACM Reference Format:
José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique
Unruh. 2025. Leakage-Free Probabilistic Jasmin Programs. In Pro-
ceedings of Proceedings of the 14th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’25). ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3703595.3705871

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP ’25, January 20–21, 2025, Denver, CO, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1347-7/25/01
https://doi.org/10.1145/3703595.3705871

Contents

Abstract 1
Contents 1
1 Introduction 1
2 Preliminaries 3
2.1 EasyCrypt 3
2.2 Jasmin 3
3 Leakage-Freeness and Constant-Time 5
3.1 Leakage-Free Programs 6
3.2 pRHL Characterization 6
3.3 Properties 7
3.4 Proof Effort: LF vs LFdef 8
4 Rejection Sampling 8
4.1 Rejection Sampling in EasyCrypt 8
4.2 Uniform Sampling in Jasmin 9
4.3 Derivation of LFdef(bn_rsample) 10
4.4 pRHL Proof of LF(bn_rsample) 12
4.5 Comparing Both Proof Strategies 13
5 Conclusions 13
References 13

1 Introduction
Cryptographic proofs are hard. Implementations are buggy.
When developing and deploying cryptographic systems,

we are faced with these two challenges. Cryptographic se-
curity proofs tend to be hand-written mathematical proofs,
likely containing oversights and other mistakes. They will
be read by other humans who may also often overlook those
mistakes, especially if they are buried in a high level of detail.
In addition, even if a cryptographic scheme is indeed secure,
its proof correct, and the underlying computational assump-
tions unbroken, the final implementation may still contain
bugs: Translating an abstract specification into actual code
is an error-prone process in itself, leading to new bugs in the

1

https://orcid.org/0000-0003-0011-7455
https://orcid.org/0000-0003-1267-7898
https://orcid.org/0000-0001-7395-3070
https://orcid.org/0000-0001-8965-1931
https://doi.org/10.1145/3703595.3705871
https://doi.org/10.1145/3703595.3705871


CPP ’25, January 20–21, 2025, Denver, CO, USA José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique Unruh

final code, making the security proof in the abstract cryp-
tographic setting inapplicable. And finally, adding insult to
injury, even if we manage to make code that indeed exactly
implements what the specification requires, we could face in-
security due to side-channel attacks. E.g., the code may leak
information about our secrets because its runtime depends
on some bits of the secret.
The EasyCrypt [12] and Jasmin [1] frameworks aim to

resolve this issue. EasyCrypt is a tool in which we can write
cryptographic security proofs and verify them using the com-
puter, ensuring high-reliability proofs.1 However, EasyCrypt
does not address implementation issues. The schemes are
written in a high level language, very different from what we
would find in an actual implementation. Jasmin addresses the
implementation side. It consists of an assembly-like language
and a certified compiler. In Jasmin, we can write a highly op-
timized implementation of some cryptographic function and
have it compiled to assembly with guarantees of semantic
preservation. In addition, the Jasmin compiler can produce
an EasyCrypt model for the semantics of the source program.
This allows one to 1) perform detailed functional correct-
ness proofs of the source program or 2) link cryptographic
security proofs developed in EasyCrypt to the actual binary
implementations (relying on the Jasmin compiler correctness
guarantees).
But Jasmin goes further than that: The exported Easy-

Crypt code might also contain instructions that explicitly
describe side-channel leakage that happens when executing
the source (e.g., timing leakage). Then, again, in EasyCrypt,
we can prove that the leakage does not depend on the secret
inputs. Combining it with a leakage preservation result of
the compiler infrastructure would allow us to assert that the
executable implementation does not leak.

Putting these pieces together, we can get end-to-end ver-
ified implementations of cryptographic algorithms, taking
into account everything from the security property to imple-
mentation bugs and side-channel security.

A recent addition to the Jasmin language was the support
for external system calls for randomness generation (the
#randombytes primitive). Therefore, the execution of Jas-
min programs is no longer deterministic, and both the leak-
age and results might depend on internal random samples
performed during execution. One less obvious consequence
of the extension is that the security types of the outputs be-
come sensitive when assessing if a program leaks sensitive
information. It’s possible that the output of a program might
be considered “secret” (for example, in a key-generation pro-
cedure), and leakage should not provide information about
it. The main research question we want to address in this
paper is to assess the impact of that change on the workflow
1This is not perfect, of course. There remains the issue that EasyCrypt itself
can have soundness bugs. Or that the security properties are formulated
incorrectly. Or that we use a broken cryptographic assumption. These
problems are beyond the scope of this work.

described above as well as propose fixes to the definitions
and practices to recover the leakage-freedom guarantees for
the end programs.
To motivate and test our approach, we consider the re-

jection sampling algorithm. Rejection sampling is a widely
used tool in cryptography, both directly for sampling val-
ues according to distributions not immediately available
(i.e. on random bytes) or embedded in techniques such as
Fiat-Shamir with Aborts, used in various post-quantum sig-
natures schemes such as the newly standardized ML-DSA
(Dilithium) [15].

Contributions. Our technical contributions include the
following results:
• We give two alternative semantic characterizations
of leakage-freeness for probabilistic Jasmin programs
(Sec. 3.1).
• We prove equivalence and compositionality of our
leakage-freeness characterizations and relate them to
the constant-time definition from prior work (Sec. 3.3).
• We implement a generic rejection sampling in Easy-
Crypt with proofs of its correctness and termination
(Sec. 4.1).
• We implement uniform sampling in Jasmin as a special
case of rejection sampling (Sec. 4.2).
• We present two alternative derivations of leakages-
freeness for Jasmin’s uniform sampling (Sec. 4.3 and
Sec. 4.4).

Throughout this work, we have striven to make our re-
sults general and reproducible. We tried to make sure that
the overall structure of our results is clean and simple to
understand, and explained them in this paper in a way that
makes it easy to understand to enable future work on other
algorithms that follows our work.

Our Jasmin and EasyCrypt developments are made avail-
able as supplementary material [6, 7].

Related Work. The Jasmin toolchain was introduced [1]
as a language targeted for the production of high-assurance
and high-speed cryptographic software. The Jasmin frame-
work has been combined with the EasyCrypt theorem
prover in [2] to establish both the functional correctness and
leakage-freeness of high-speed cryptographic implementa-
tions of the ChaCha20 stream cipher and Poly1309 message
authentication code. Several other cryptographic algorithms
have been formalized since then with the Jasmin/EasyCrypt
framework, such as Keccak/SHA3 [5], the MPC-in-the-head
protocol in [4], and Kyber/ML-KEM [3, 8].

In these works, leakage-freeness amounts to enforce what
is commonly referred to as the cryptographic constant-time
policy — it forbids branching and memory accesses that
depend on secret values. In other words, it considers that the
control flow (i.e., the program counter) and the addresses
of memory accesses are leaked. In a deterministic language,

2



Leakage-Free Probabilistic Jasmin Programs CPP ’25, January 20–21, 2025, Denver, CO, USA

it implies that the execution time is indeed constant. Other
leakage models have also been considered in [13, 19] (e.g.,
leaking the cache line or modeling variable time assembler
instructions), but we note that the underlying setting was
still a deterministic language. In our presentation, we shall
stick to the standard constant-time policy (aka “baseline
model”), but other leakage models apply as well.
The formalization of ML-KEM of [3, 8] deserves further

mention as it includes a rejection sampling procedure sim-
ilar to what we consider in this paper. However, rejection
sampling is used there during the public key’s expansion;
hence, the possibility of leaking the output to the adversary
is not a concern. As such, the problem that we are interested
in looking at in this paper is actually avoided, even if, strictly
speaking, the execution time is no longer constant.

Constant-time verification has been recently extended to
cover some variants of architectural speculative execution
attacks [18]. There, a sound type-system has been proposed
to ensure protection against spectre-v1 attacks, but the se-
mantics of the underlying language departs from the model
extracted to EasyCrypt by the Jasmin compiler, which blurs
the interplay with the analysis performed in this work.
Departing from the Jasmin/EasyCrypt ecosystem, a vast

amount of work has considered the general problem of quali-
tative/quantitative information flows in imperative programs
(see [17] for a survey). Most of these works have been ori-
ented towards the design of security type-systems or au-
tomatic verification tools capable of preventing or quanti-
fying information-flows in different scenarios. The specific
case of cryptographic constant-time verification has been
an extremely successful domain of application of these ap-
proaches (including the Jasmin realm, e.g. [13, 18]). The more
foundational methodology offered by the Jasmin/EasyCrypt
workflow adopted in this paper can be used to supplement
those analyses for specific cases that fall beyond the scope
of those tools.
A general information leakage model based on discrete-

time Markov chains has been presented in [14]. It supports
arbitrarily located leakage and observation points in an im-
perative probabilistic program. The formulation of leakage-
freeness adopted in this paper can be cast as a special case
of their approach, with leakage/observation points dictated
by the constant-time policy.

2 Preliminaries
2.1 EasyCrypt
EasyCrypt (EC) is an interactive framework for verifying
the security of cryptographic protocols in the computational
model. In EasyCrypt security goals and cryptographic as-
sumptions are modelled as probabilistic programs (a.k.a.
games) with abstract (unspecified) adversarial code. Easy-
Crypt supports common patterns of reasoning from the

game-based approach, which decomposes proofs into a se-
quence of steps that are usually easier to understand and to
check [10].
To our readers who are not familiar with EasyCrypt, we

also suggest reading a short introduction to EasyCrypt in
[16, Section 2]. More information on EasyCrypt can be found
in the EasyCrypt tutorial [10].

To readers who are familiar with EasyCrypt we only give
a brief overview of our syntactical conventions: we write←
for <-, $← for <$, @← for <@, ∧ for /\, ∨ for \/, ≤ for <=, ≥ for
>=, ∀ for forall, ∃ for exists,m for &m, G𝐴 for glob A, Gm

𝐴

for (glob A){m}, 𝜆𝑥 . 𝑥 for fun x => x, × for *. Furthermore,
in Pr-expressions, in abuse of notation, we allow sequences
of statements instead of a single procedure call. It is to be
understood that this is shorthand for defining an auxiliary
wrapper procedure containing those statements.

2.2 Jasmin
Jasmin is a toolchain for high-assurance and high-speed
cryptography [1, 2]. The ultimate goal for Jasmin implemen-
tations is to be efficient, correct, and secure. The Jasmin
programming language follows the “assembly in the head”
programming paradigm. The programmers have access to
low-level details such as instruction selection and schedul-
ing, but also can use higher-level abstractions like variables,
functions, arrays, loops, and others.
The semantics of Jasmin programs is formally defined

in Coq to allow users to rigorously reason about programs.
The Jasmin compiler produces predictable assembler code
to ensure that the use of high-level abstractions does not
result in run-time penalty. The Jasmin compiler is verified for
correctness. This justifies that many properties proved about
the source program will carry over to the corresponding
assembly (e.g., safety, termination, functional correctness).
The Jasmin workbench uses the EasyCrypt theorem

prover for formal verification. Jasmin programs can be ex-
tracted to EasyCrypt to address functional correctness, cryp-
tographic security, or security against timing attacks.

2.2.1 Jasmin Basics. We explain the basics and workflow
of Jasmin development in a simple example. More specifically,
our goal is to implement a procedure that samples uniformly
a secret bit (encoded as a byte 0 or 1). Below is the “naive”
attempt:

inline fn random_bit_naive () → reg u8{

stack u8[1] byte_p;

reg u8 r;

byte_p = #randombytes(byte_p );

if (byte_p [0] < 128){

r = 0;

}else{

r = 1;

}

3



CPP ’25, January 20–21, 2025, Denver, CO, USA José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique Unruh

return r;

}

The program has no arguments and outputs an unsigned
byte in a register (type reg u8). The body of the pro-
gram starts by declaring the variables and their respective
types. In particular, we declare a variable byte_p of type
stack u8[1] which has an effect of allocating a memory
region on the stack. Next, we generate a random byte with
a system call #randombytes . The system call takes the
byte array as its argument and fills its entries with randomly
generated bytes. In this way, we sample a single random
byte into local variable byte_p [0] . Hence, with probabil-
ity 1/2 the value byte_p [0] is smaller than 128 and the
result of computation is 0; otherwise, we return the value 1.

To address correctness of random_bit_naive we can
instruct the Jasmin compiler to extract an EasyCrypt model
of random_bit_naive program. This produces a module,
renamed for convenience as XtrI , defining the procedure
random_bit_naive . Jasmin extracts programs to Easy-
Crypt by systematically translating all datatypes and Jasmin
programming constructs. See the code below.

module type Syscall_t = {

proc randombytes 1 (b:W8.t Array1.t): W8.t Array1.t

}.

module SCD : Syscall_t = {

proc randombytes 1 (a:W8.t Array1.t)

: W8.t Array1.t = {

a
$← dmap WArray1.darray

(𝜆 a ⇒ Array1.init (𝜆 i ⇒ WArray1.get8 a i));

return a;

}

}.

module XtrI(SC:Syscall_t) = {

proc random_bit_naive () : W8.t = {

var r:W8.t;

var byte_p:W8.t Array1.t;

byte_p ← witness;

byte_p
@← SC.randombytes 1 (byte_p );

if (( byte_p .[0] < (W8. of_int 128))) {

r ← (W8. of_int 0);

} else {

r ← (W8. of_int 1);

}

return (r);

}

}.

For example, Jasmin datatype reg u8 of 8-bit words was
translated to the EasyCrypt type W8.t. The type of a
single-entry 8-bit array stack u8[1] was translated to
W8.t Array1.t. In the code above, witness denotes an
“arbitrary” uninterpreted value of type W8.t Array1.t.

Since random_bit_naive uses the system call
#randombytes , Jasmin parametrized the extracted mod-
ule (XtrI) by a “system call provider” SC , that includes pro-
cedures for all the #randombytes instances needed by the
program (in our example, only the SC.randombytes 1 ).
Such an indirection allows users to choose their own in-
terpretation of system calls, other than the “default” inter-
pretation SCD , also generated by the compiler, which mod-
els #randombytes as a truly random byte generator (e.g.
one could interpret #randombytes as an invocation of a
pseudo-random generator). In our development, we stick to
the default interpretation SCD .

The main purpose of the EasyCrypt’s module XtrI is to
address the correctness of the Jasmin’s implementation.More
specifically, we can use the EasyCrypt’s built-in probabilistic
Hoare logic to prove that random_bit_naive returns
values 0 and 1 with probabilities equal to 1/2 .

2.2.2 Leakage-Freeness. Another important aspect of the
Jasmin framework is that it allows users to analyze whether
the implementation is “leakage-free”. Intuitively, the pro-
gram is “leakage-free” if its execution time does not leak
any additional information about its secrets. To perform
leakage-free analysis, a user would instruct Jasmin compiler
to extract a program to EasyCrypt with leakage annotations.
In this case, the resulting EasyCrypt module which we re-
named as XtrR , has a global variable leakages , which is
used in the extracted EasyCrypt procedures to accumulate
information that gets leaked in case of a timing attack. For
example, if we extract random_bit_naive to EasyCrypt
with leakage annotations, the result is as follows:

module XtrR(SC:Syscall_t) = {

var leakages : leakages_t // global variable

proc random_bit_naive () : W8.t = {

var r, aux 0 : W8.t;

var aux , byte_p:W8.t Array1.t;

byte_p ← witness;

leakages ← LeakAddr ([]) :: leakages;

aux
@← SC.randombytes 1 (byte_p );

byte_p ← aux;

leakages ←
LeakCond (( byte_p .[0] < (W8. of_int 128)))

:: LeakAddr ([0]) :: leakages;

if (( byte_p .[0] < (W8. of_int 128))) {

leakages ← LeakAddr ([]) :: leakages;

aux 0 ← (W8. of_int 0);

r ← aux 0 ;

} else {

leakages ← LeakAddr ([]) :: leakages;

aux 0 ← (W8. of_int 1);

r ← aux 0 ;

}

return (r);

4



Leakage-Free Probabilistic Jasmin Programs CPP ’25, January 20–21, 2025, Denver, CO, USA

}

}.

The type leakages_t is a list of leaked atoms, and the
entries in the leakages accumulator must be understood
as data which an attacker could learn when carrying out
a timing attack. The internal structure of the leakages
is not really important at this stage, but we note that
LeakAddr ([0]) reflects the access to index 0 of the ar-
ray; LeakAddr [] the access to the stack variable; and
LeakCond( . . .) the result of evaluating the if-statement
condition.2 Since the execution path fully determines the
(assumed secret) output, we must conclude that the imple-
mentation of random_bit_naive is not leakage-free.

Let us implement a procedure random_bit which gets
rid of the problematic if-statement:
inline fn random_bit () → reg u8{

stack u8[1] byte_p;

reg u8 r;

byte_p = #randombytes(byte_p );

r = byte_p [0];

r &= 1;

return r;

}

In random_bit definition we convert a random byte
byte_p [0] to the values 0 or 1 by doing a bitwise “and”
operation of byte_p [0] with value 1 and return the result.
Again, we can prove that the new version of random_bit
is a uniform distribution of values 0 and 1. More interest-
ingly, we note that this new version is leakage-free. In fact,
after extraction to EasyCrypt with leakage-annotations we
get the following EasyCrypt code:
module XtrR(SC:Syscall_t) = {

var leakages : leakages_t

proc random_bit () : W8.t = {

var r, aux 0 : W8.t;

var aux , byte_p: W8.t Array1.t;

byte_p ← witness;

leakages ← LeakAddr ([]) :: leakages;

aux
@← SC.randombytes 1 (byte_p );

byte_p ← aux;

leakages ← LeakAddr ([0]) :: leakages;

aux 0 ← byte_p .[0];

r ← aux 0 ;

leakages ← LeakAddr ([]) :: leakages;

aux 0 ← (r `&` (W8. of_int 1));

r ← aux 0 ;

return (r);

2In general, conditionals (if-statements) result in executing different blocks
of code which typically leads to the significant leakage (timing difference).
Therefore, the Boolean value which identifies the activated branch is added
to the leakage accumulator.

}

}.

Now, upon execution of random_bit , the leakages ac-
cumulator does not contain any data specific to the output of
the program. Indeed, the leakage generated in any execution
of random_bit is fixed.
Notice, however, that what concerns us is not the dis-

tinction between deterministic vs. probabilistic leakage, but
rather if the leakage reveals information about the secrets.
To argue formally about it, we must rely on rigorous defini-
tions of leakage-freeness and cryptographic constant-time
(see Sec. 3).

3 Leakage-Freeness and Constant-Time
We consider a collection of Jasmin procedures that are ex-
tracted into EC in two modes: XtrI and XtrR . Each one
of these is a module that includes the EC’s model of Jasmin-
implemented functions:
• XtrI.f - an EC procedure modeling the input/output
behaviour of Jasmin function f (hence, calling it an
abstract or “Ideal” setting). This is a stateless module
(Jasmin does not have global variables).
• XtrR.f - an EC procedure that, in addition to
the input/output behavior, models also what is
leaked during execution (accumulated in variable
XtrR.leakages ). This is what we call the concrete
or “Real” setting.

We are interested in programs f whose output is deemed
secret, with both public and secret inputs (denoted by pin
and sin , respectively). As a meta-property of the extrac-
tion mechanism, the marginal probability distribution of
the result in XtrR.f agree with the probability distribu-
tion induced by XtrI.f. This property can be stated as an
equivalence of programs in the probabilistic Relational Hoare
Logic (pRHL), namely:

XtrI.f ∼ XtrR.f : ={𝑝𝑖𝑛, 𝑠𝑖𝑛} =⇒ ={𝑟𝑒𝑠}. (1)
Here, ={𝑟𝑒𝑠} denotes the equality of outputs of the left

(XtrI.f) and the right (XtrR.f) programs. The proof of
this property is not produced automatically but can be eas-
ily confirmed in EC for concrete instances as it is typically
proved automatically resorting to EC’s sim tactic. Infor-
mally, this equivalence asserts that we obtain equally dis-
tributed results when running both programs in initial mem-
ories that equate the values of the inputs (pin and sin).
Before Jasmin was extended with #randombytes

primitive, all its programs were deterministic. In this case,
proving that a program is leakage-free (or “constant-time”
in the parlance of the prior work) requires only to prove
that the probability of producing a particular leakage does
not depend on the secret input. The formal definition is as
follows:

5



CPP ’25, January 20–21, 2025, Denver, CO, USA José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique Unruh

Definition 3.1 (Constant-time Deterministic Programs). Let
f be a total deterministic Jasmin program and XtrR.f be the
result of its extraction to EasyCrypt with leakage annotations.
Then, f is constant-time (abbreviated CTdef (𝑓 )) when,
∀ sin sin ' pin l mmm,

Pr[ XtrR.f(pin ,sin)@mmm: XtrR.leakages = l ]

= Pr[ XtrR.f(pin ,sin ')@mmm: XtrR.leakages = l ].

In the formula above, mmm denotes the initial memory of the
program. We have cast the definition as a probabilistic non-
interference property — it asks for the distribution of leakage
to be independent of secret inputs (independently of f being
deterministic or not). Of course, when f is deterministic,
the leakage is just a function of f-inputs, which justifies the
constant-time in the name (public inputs fully determine
execution time).
This formulation is also useful to emphasize the fact

that naively lifting the definition to a probabilistic setting
fails to capture leakage-freeness for randomized programs
with secret outputs, as we have observed when discussing
the random_bit_naive program (see Sec. 2.2.2). In fact,
random_bit_naive trivially satisfies the Definition 3.1
from above, since there are no secret inputs.
In the next section, we propose new characterizations of

the leakage-freeness for probabilistic programs.

3.1 Leakage-Free Programs
We want to guarantee safety against timing attacks. In other
words, we want to ensure that programs which satisfy our
notion of leakage-freeness must not leak any information
about their secret inputs and the result of their computa-
tion through timing attacks. Definition 3.1 must then be
strengthened to enforce independence between the output
and leakage.

Definition 3.2 (Leakage-Free Jasmin Programs). Let f be a
total Jasmin program with secret output and XtrR.f be the
result of its extraction to EasyCrypt with leakage annotations.
Also, let pin and sin be public and secret inputs, respectively.
Then, f is leakage-free (abbreviated LFdef(f)) when,
∀ s, ∃ g, ∀ sin pin a l mmm, XtrR.leakages{mmm} = s

⇒ let v = Pr[out ← XtrR.f(pin ,sin)@mmm:

XtrR.leakages = l ++ s ∧ out = a] in

let w = Pr[out ← XtrR.f(pin ,sin)@mmm: out = a] in

0 < w ⇒ v/w = g(pin ,l).

In the definition above v/w denotes a conditional prob-
ability of producing leakages l given that the output is a.
Intuitively, the program is leakage-free if there exists a func-
tion g such that the conditional probability v/w can be com-
puted only from public inputs and the leakages l. That is the
“leakage” distribution does not depend on the secret input
sin and the result out .

To make our definition composable, we allow the leakage
accumulator to start from arbitrary initial state s. At this
point, it is important to realize that computations themselves
(i.e., function XtrR.f) cannot introspect (i.e., analyze) leak-
ages in XtrR.leakages – a consequence of Equation 1
which is ensured by the extraction mechanism.

To apply this definition to random_bit (see Sec. 2.2.2)
we must define a function that computes the conditional
probability in order to instantiate the existential quantifier
in the definition above. For the random_bit , it could be
defined as follows:

op g l = let random_bit_l

= [LeakAddr []; LeakAddr [0];

LeakAddr []] in

if l = random_bit_l then 1 else 0.

Here, g checks if the list of leakages l is well-formed
(i.e., equals to a constant list denoted by random_bit_l )
in which case it returns 1, and 0 otherwise. Using ba-
sic EC reasoning, we can prove that the Jasmin program
random_bit with function g as defined above satisfies the
definition of being leakage-free according to Definition 3.2.
At the same time, the function random_bit_naive

does not satisfy Definition 3.2, as the probability of observing
some leakage traces clearly depend on the output.

3.2 pRHL Characterization
The advantage of Definition 3.2 is that it has a clear and in-
tuitive semantics in terms of conditional probability. At the
same time, it could be cumbersome to prove directly that a
program satisfies Definition 3.2 because proof requires us to
explicitly describe the contents of the leakages (i.e., we must
give the existentially quantified function g). This is an in-
convenience that contrasts with the simplicity and elegance
allowed by the standard constant-time characterization of
leakage-freeness for deterministic programs. More specifi-
cally, the prior work in Jasmin addressed leakage-freeness
of deterministic programs by “automatically” proving the
following pRHL equivalence in EC:

Definition 3.3 (pRHL Constant-time Deterministic Pro-
grams). A deterministic total program f is said to be constant-
time (abbreviated CT(𝑓 )) when the following program equiv-
alence holds:

XtrR.f ∼ XtrR.f : ={𝑝𝑖𝑛, XtrR.leakages} =⇒ ={XtrR.leakages}.

The above is trivially equivalent to Definition 3.1 and is in-
deed the usual formulation of probabilistic non-interference.
The appeal of the above formulation is that it is extremely
useful in practice, as it is often proved automatically through
the EC’s sim tactic. It also better reveals more explicitly
useful properties such as compositionality.

6



Leakage-Free Probabilistic Jasmin Programs CPP ’25, January 20–21, 2025, Denver, CO, USA

To overcome the pitfalls detailed for Definition 3.1, we
refine the above definition by additionally requiring inde-
pendence of the output and leakage. It can be enforced in
pRHL by self-composition [11].

Definition 3.4 (pRHL Leakage-Freeness). A total program
f is said to be leakage-free (abbreviated LF(f)) iff the following
equivalence of programs holds: ∀ pin sin sin’,

{r @← XtrR.f(pin,sin);} ∼
{
_

@← XtrR.f(pin,sin');

r
@← XtrI.f(pin,sin);

}
: ={𝑝𝑖𝑛, 𝑠𝑖𝑛, XtrR.leakages} =⇒ ={𝑟, XtrR.leakages}

Notice that on the right-hand side we are using both the
plain and instrumented semantics of program f (respectively
XtrI.f and XtrR.f). This ensures that the global variable
accumulating the leakage is only updated once. Intuitively,
we can look at this definition as enforcing the equivalence
between a “real world” where the evaluation of f leaks, with
an “ideal world” that computes the result (without leakage),
and simulates the leakage by evaluating the instrumented
semantics on some arbitrary secret input sin '. As we shall
see in the next section the pRHL characterization indeed
captures the same property as the Definition 3.2.
The main advantage of pRHL characterization is that in

EasyCrypt for leakage-free programs with non-probabilistic
runtime the LF formulation has trivial proofs (see details
in Sec. 3.4).

3.3 Properties
We collect now main properties relating the various defini-
tions. They have been fully formalized in EC3.

Proposition 3.1. For any given total program f, the following
implications hold:

1. LF(𝑓 ) =⇒ CT(𝑓 )
2. det(𝑓 ) ⇒ (LF(𝑓 ) ⇐⇒ CT(𝑓 ))
3. LF(𝑓 ) ⇐⇒ LFdef (𝑓 )
4. CTdef (𝑓 ) ⇐⇒ CT(𝑓 )

where det(𝑓 ) is an abbreviation for

∃ 𝑔,∀ 𝑝 𝑠, {r @← XtrI.f(p,s);} : true =⇒ r = g(p,s).

Here, determinism is established by a functional specifi-
cation expressed by a (partial) Hoare triple, whose proof is
often a byproduct of the correctness proof.
The first two points support the view of LF(𝑓 ) as a gen-

eralization of CT(𝑓 ) for probabilistic programs. To imply
LFdef (𝑓 ) from LF(𝑓 ), we analyze a function defined by the
following expression:

Pr[out ← XtrR.f(pin,sin)@mmm: out=r ∧ XtrR.leakages=l]

Pr[out ← XtrR.f(pin,sin)@mmm: out=r]
.

The proof of the converse implication is more challenging,
as it demands a fairly detailed reasoning on the underlying
3Available on file proof/LeakageFreeness_Analysis.ec of the
development.

semantics of both XtrI.f and XtrR.f. To that end, a key
role is played by what is called reflection lemmas (see [16] for
more details), that have been proved for abstract procedures,
and which allow us to bridge assertions established at the
procedural level to the underlying semantic distributions
(shown here the instance for XtrR.f):
lemma R_opsemE mmm ': ∃ d, ∀ P _pin _sin mmm,

Gm
XtrR = Gm’

XtrR ⇒
Pr[ out ← XtrR.f(_pin , _sin)@mmm: P(out , GXtrR) ]

= 𝜇 (d _pin _sin) P.

Above Gm
XtrR denotes an initial memory of module XtrR .

And 𝜇 d P denotes the probability that the predicate P
holds for values distributed according to d. The importance
of this lemma is that it allows us to exactly capture the
probabilistic semantics of XtrR.f.
Additionally, it can be shown that the witness function

given by LFdef (𝑓 ) is a probability mass function of a distri-
bution on leakages dLeak (i.e. the summation of the direct
image of any subsets of leakage traces lie in the unit interval).
Moreover, the associated condition enforces the equality of
distributions

dR = dI ‘ ∗ ‘ dLeak,

where ‘ ∗ ‘ denotes the product distribution, and dR and
dI are the probabilistically reflected distributions related
to XtrR.f and XtrI.f, respectively. Moving back and
forth through reflection lemmas, we show that the equality
of probabilities needed to establish LF(𝑓 ) holds.

We conclude this section by presenting a compositionality
result. Intuitively, compositionality allows users to “automat-
ically” conclude leakage-freeness for a composite program
from leakage-freeness of its components.

Proposition 3.2 (Compositionality). Let f and g be total
programs such that:
• f expects pin and sin1 as public and secret inputs
respectively, and produces an output sout1 ;
• g expects pin and (sout1 ,sin2) as public and se-
cret inputs respectively, and produces an output sout2 ;
• both are leakage-free (i.e. LF(𝑓 ) and LF(𝑔) holds).

Then, the program

h(pin,(sin1,sin2)) �


sout1

@← f(pin,sin1);

sout2
@← g(pin,(sout1,sin2);

return sout2;


is itself leakage-free LF(ℎ).

Its proof relies on the observation that XtrI.f and
XtrI.g, being stateless, can be repositioned freely on the
right-hand side of the equivalence.

We believe that compositionality is an important property
to make our novel definitions practically useful for estab-
lishing leakage-freeness for large composite programs and
protocols.

7



CPP ’25, January 20–21, 2025, Denver, CO, USA José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique Unruh

3.4 Proof Effort: LF vs LFdef
The main advantage of pRHL characterization is that in EC,
for programs whose leakage is syntactically independent of
all secrets, the derivation of LF property can be established us-
ing simple pRHL reasoning. For example, for random_bit ,
and after instantiating our generic development, the EC proof
looks as follows:
lemma random_bit_LF:

equiv[RSim(XtrI ,XtrR).main ~ SimR(XtrI ,XtrR).main

: ={pin , sin , G𝐽 𝑅} => ={res , G𝐽 𝑅 }].
proof. proc. inline*. wp. rnd.

wp. rnd. wp. skip. progress.

qed.

The above statement is an EC formalization of Definition 3.4
and the proof-script performs a symbolic simulation.

In contrast, when applying Definition 3.2 directly, wemust
provide an explicit function for calculating leakages and
carefully analyzing conditional probabilities. This way, the
derivation is tightly coupled with the logic of the program,
and any change to the program will necessarily break the
proof of the leakage-freeness.

For algorithms whose leakage cannot be syntactically de-
coupled from secrets, the derivation of leakage-freeness be-
comes challenging for both formulations. We will return to
this subject in Sec. 4, where we analyze leakage-freeness for
the rejection sampling algorithm following both strategies.

4 Rejection Sampling
In Jasmin we can use #randombytes system call to gen-
erate bytes uniformly at random. However, this does not
immediately give us uniform distributions on sets whose
cardinality is not a power of 2. In this section our goal is
to describe a verified (correct and leakage-free) Jasmin im-
plementation of uniform sampling of arbitrary size. One
solution to this problem is “rejection sampling”. In rejection
sampling we are drawing random elements from a given
distribution 𝑑 and rejecting those samples that don’t sat-
isfy some predefined criteria. If the sampled element was
rejected then we sample again until the element is accepted.
For example, if 𝑑 is a uniform distribution from [0 . . . 7] and
we perform rejection sampling from 𝑑 with criteria that the
resulting element must be smaller than 3 then we can prove
that this precisely gives a uniform distribution of 0,1, and 2.

The challenging aspect of rejection sampling is that it does
not have an apriori termination time which means that we do
not know how long it will take to produce an element which
satisfies the criteria. However, we can prove that if the source
distribution 𝑑 has elements which satisfy the criteria then
the rejection sampling is always terminating (i.e. terminates
with probability 1), but the runtime is probabilistic.

The standard library of EasyCrypt has a formalization
of rejection sampling properties in theory Dexpected.ec.
These cover only functional correctness and do not address

the leakage-freeness of the algorithm. Also the proof strate-
gies are different. In our work we derive properties of rejec-
tion sampling by solving a recurrence equation which gives
us a clean and concise proof of correctness.

In the next section, we continue by implementing a “high-
level” rejection sampling algorithm in EC and proving its
properties. Next we implement a uniform sampling in Jas-
min as a special case of rejection sampling. Next, we extract
the Jasmin implementation to EasyCrypt and show that it
is correct by establishing equivalence with the “high-level”
EasyCrypt implementation (i.e., RS.rsample function). Fi-
nally, we extract the Jasmin sampling algorithm to EasyCrypt
with leakage annotations and present two alternative proofs
that it is leakage-free (the proof of leakage-freeness makes
use of the correctness and termination proofs).

4.1 Rejection Sampling in EasyCrypt
We start by implementing a rejection sampling algorithm
in EasyCrypt. Our algorithm is parameterized by a lossless
distribution d of a parameter type X (we say that a distri-
bution is lossless if sampling from the distribution always
terminates). We implement a module RS with procedure
rsample(P), where P is a predicate on the elements of
the distribution. In this procedure we run a while loop in
which we sample an element x from d on each iteration. The
while-loop terminates when the sampled element x satisfies
the predicate P.

type X.

op d : X distr.

axiom d_ll : is_lossless d.

module RS = {

proc rsample(P : X → bool) : X = {

var b : bool;

var x : X;

x ← witness;

b ← false;

while(!b){

x
$← d;

b ← P x;

}

return x;

}

proc rsample1(P : X → bool) = {

var x : X;

x
$← d;

if(! P x){

x
@← rsample(P);

}

return x;

}

8



Leakage-Free Probabilistic Jasmin Programs CPP ’25, January 20–21, 2025, Denver, CO, USA

}.

To help with the derivation of correctness of rsample we
also implement rsample1 procedurewhich is computation-
ally equivalent to rsample , but with the explicit unrolling
of the first iteration of the while loop.
Let us now address the correctness and termination of

the RS.rsample procedure. In the first step, we show
that RS.rsample and RS.rsample1 are computation-
ally equivalent. This is easily proved by using pRHL and
expanding the while loop in rsample with the unroll
tactic.
lemma samples_eq mmm P Q:

Pr[x ← RS.rsample(P)@mmm: Q x]

= Pr[x ← RS.rsample1(P)@mmm: Q x].

In the next step we express the probability of events of
rsample1 in terms of the probability of the same events of
rsample . To achieve that we use probabilistic Hoare logic
(pHL) and split the total probability into cases which corre-
spond to the branches of the if-statement in rsample1 :
lemma rsample1_rsample mmm P Q:

Pr[x ← RS.rsample1(P)@mmm: Q x]

= 𝜇 d !P * Pr[x ← RS.rsample(P)@mmm: Q x]

+ 𝜇 d (Q `∧` P).

Now, we can combine samples_eq and
rsample1_rsample and arrive at the following
recurrence:
lemma rsample_rec mmm P Q:

⇒ Pr[x ← RS.rsample(P)@mmm: Q x]

= 𝜇 d !P * Pr[x ← RS.rsample(P)@mmm: Q x]

+ 𝜇 d (Q `∧` P).

If the total probability mass of the predicate P is not zero
then the above recurrence has the following solution:
lemma rsample_pmf_gen mmm P Q: 𝜇 d P ≠ 0

⇒ Pr[x ← RS.rsample(P)@mmm: Q x]

= 𝜇 d (Q ∧ P) / (1 - 𝜇 d !P).

For the special case when Q is a subset of P and event P
has non-zero probability then we arrive at the following
equation:
lemma rsample_pmf mmm P Q: (∀ x, Q x ⇒ P x)

⇒ 𝜇 d P > 0

⇒ Pr[out ← RS.rsample(P)@mmm: Q out]

= 𝜇 d Q / 𝜇 d P.

In this case, the right-hand side of the above equation denotes
a conditional probability of Q given P.
As a simple consequence we get that the procedure

RS.rsample(P) returns an element x which satisfies the
predicate P with probability 1. This also means that the pro-
cedure rsample is terminating (or lossless in the parlance
of EasyCrypt):

lemma rsample_ll mmm P: 𝜇 d P > 0

⇒ Pr[x ← RS.rsample(P)@mmm: P x] = 1.

4.2 Uniform Sampling in Jasmin
Jasmin lacks expressivity to handle implementation of a
generic rejection sampling algorithm (which would be pa-
rameterized by predicate P and distribution d; see Sec. 4.1)4.
As a result, to perform our case study we instantiate rejection
sampling for uniform sampling (which is broadly utilized in
cryptographic protocols). We implement a Jasmin function
which specializes the predicate P to 𝜆 x. x < a (for a
parameter a) and uses #randombytes system call as a dis-
tribution d. In this way, we implement a uniform sampling
from an interval [0 . . .a-1] for a given parameter a.

Also in Jasmin language it is impossible to express arrays
of parametric length. Therefore, in the preamble of all our
Jasmin development we define a constant nlimbs and then
represent the inputs and outputs of our programs by an
arrays of size nlimbs of 64-bit unsigned binary words.5
Now we describe an implementation of a Jasmin pro-

gram bn_rsample i (a) (prefix bn stands for big-number)
whose input a is an nlimb-array representing a number
from the interval [0...264·nlimbs − 1] which is allocated on
stack. The program returns a pair (i,p), where i is a
counter of while-loop iterations and p is a binary arraywhich
represents a number sampled uniformly at random from the
interval [0 . . .a-1] . In our implementation, the counter i
is a “logical” variable of type int (i.e., unbounded integer)
which is only needed to facilitate proving in EasyCrypt. We
also define function bn_rsample(a) which discards the
logical counter i.
In the implementation below we run a while-loop and at

every iteration we use the system call #randombytes to
sample a random number p from the interval [0...264·nlimbs−
1]. Then we subtract p from a by using a bn_subc func-
tion.6 The result of subtraction is stored in the memory of
the first argument of bn_subc . Therefore, to preserve the
initial value of p, we first copy it to the variable q by using
the bn_copy call. Importantly, in addition to the result of
subtraction the program bn_subc also returns the “carry”
flag cf which is set to true if the first argument is smaller
than the second. The while loop is iterated until the flag
cf is set to true which would indicate that the sampled
number p is smaller than a as desired:
inline fn bn_rsample i (stack u64[nlimbs] a)

→ (inline int , stack u64[nlimbs ]){

stack u64[nlimbs] q p;

reg ptr u64[nlimbs] _p;

4Jasmin does not have any built-in types of distributions and the only way
to generate randomness in Jasmin is by using the randombytes system call.
5In our work we put nlimbs := 32, but our development can be recompiled
with any value.
6The implementation of bn_subc is included into the libjbn library.

9



CPP ’25, January 20–21, 2025, Denver, CO, USA José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique Unruh

reg bool cf;

inline int i;

i = 0;

p = bn_set0(p);

_, cf , _, _, _, _ = #set0 (); // sets cf to 0

while (!cf) {

_p = p;

p = #randombytes(_p);

q = bn_copy(p);

cf , q = bn_subc(q,a);

i = i + 1;

}

return i,p;

}

inline fn bn_rsample(stack u64[nlimbs] a)

→ (stack u64[nlimbs ]){

stack u64[nlimbs] p;

_, p = bn_rsample i (a);

return p;

}

Next, to address correctness we compile Jasmin code to Easy-
Crypt without leakage-annotations. This produces a mod-
ule XtrI with the EasyCrypt’s version of bn_rsample
algorithm. The module also includes all functions which
were used in the implementation of Jasmin’s bn_rsample ,
namely, bn_set0 , bn_copy , and bn_subc . The result of
this compilation can be found in the accompanying code in
file W64_RejectionSamplingExtract.ec.
Due to the fact that Jasmin’s bn_rsample imple-

ments a special case of rejection sampling, we found
that it was easy to relate the “high-level” EasyCrypt im-
plementation RS.rsample to the Jasmin’s “low-level”
extract XtrI.bn_rsample . More specifically, we use
EasyCrypt’s pRHL to relate XtrI.bn_rsample with
RS.rsample as follows:

lemma bn_rsample_spec mmm (a y : W64xN.t):

let P = 𝜆 x. x < [a] in

Pr[out ← RS.rsample(P)@mmm: out = y]

= Pr[out ← XtrI.bn_rsample(a)@mmm: [out] = y].

Here, W64xN.t stands for the type of an array of size
nlimbs of 64-bit binary words (i.e., Array32.t W64.t).
To simplify the presentation we write [x] to denote a se-
quence of bits converted to unsigned integer (in EC this is
done by using function W64xN.bn).
As a consequence of bn_rsample_spec and

rsample_pmf we can immediately conclude the correct-
ness of Jasmin’s bn_rsample :

lemma bn_rsample_pmf mmm (a y: W64xN.t):

0 ≤ [y] < [a]

⇒ Pr[out ← XtrI.bn_rsample(a)@mmm: out = y]

= 1/[a].

In the next sections we address leakage-freeness of
bn_rsample .

4.3 Derivation of LFdef(bn_rsample)
In the previous section we discussed the correctness of im-
plementation of bn_rsample in Jasmin. In this section we
address its leakage-freeness (more specifically, LFdef prop-
erty). To do that, we compile Jasmin implementation to an
EasyCrypt module with leakage annotations. The result is
as follows:7

module XtrR(SC:Syscall_t) = {

var leakages : leakages_t

proc bn_rsample i (a:W64xN.t): (int × W64xN.t) = {

var q p i aux;

p ← witness;

q ← witness;

i ← 0;

leakages ← LeakAddr [] :: leakages;

p
@← bn_set0(p);

leakages ← LeakAddr [] :: leakages;

cf ← false;

leakages ← LeakCond (!cf)

:: LeakAddr [] :: leakages;

while (!cf) {

leakages ← LeakAddr [] :: leakages;

aux
@← SC.randombytes_32(

init_array nlimbs 64);

p ← (Array32.init (𝜆 i 0 ⇒ get64

(WArray256.init8

(𝜆 i 0 ⇒ aux.[i 0 ])) i 0 ));

leakages ← LeakAddr [] :: leakages;

q
@← bn_copy(p);

leakages ← LeakAddr [] :: leakages;

(cf, q)
@← bn_subc(q, a);

i ← i + 1;

leakages ← LeakCond (!cf)

:: LeakAddr [] :: leakages;

}

return (i, p);

}

// includes leakage -annotated bn_subc/copy , etc.

}.

Recall that in the implementation of bn_rsample i the
counter i is a “logical” variable which we will use to derive
properties.
The module XtrR also includes leakage-annotated ver-

sions of bn_subc , bn_copy , and bn_set0 which we
7For the sake of clarity of presentation we clean the extracted EasyCrypt
code and remove automatically generated boilerplate such as auxiliary
variables and extra assignments.

10



Leakage-Free Probabilistic Jasmin Programs CPP ’25, January 20–21, 2025, Denver, CO, USA

skip here for brevity. Our formalization contains proofs that
these auxiliary functions are correct and constant-time (i.e.,
CTdef).

The analysis of leakage-freeness of bn_rsample i is un-
usual because even if we proved that it terminates with
probability 1 then we do not know in advance for how
many iterations will it run. As a result, the contents of
XtrR.leakages accumulator is probabilistic and depends
on the number of iterations.
In the first step of our analysis we derive the probability

of bn_rsample i running for exactly i iterations and re-
turning a specific element x. The proof is by induction on
the number of iterations i.
op fail_once (a : int) : real = 𝜇 [0..2 nlimbs*64 -1]

(𝜆 x ⇒ a ≤ x).

lemma bn_rsample_pr mmm a i y: let t = 2 nlimbs*64 in

1 ≤ i ⇒ 0 ≤ [x] < [a]

⇒ Pr[(c,x) ← XtrR.bn_rsample i (a)@mmm

: c = i ∧ x = y]

= (fail_once [a])^(i-1) / t.

Here, (fail_once [a]) denotes the probability of fail-
ure of a loop iteration in bn_rsample which equals to the
probability of uniformly sampling an element which is larger
or equal than [a] from interval [0..2 nlimbs*64 -1].

In the second step we prove that the contents of the leak-
age accumulator is in the functional relation with the number
of iterations of the while-loop. More specifically, we define
a function samp_t and establish that after termination of
XtrR.bn_rsample i the contents of XtrR.leakages
equals to samp_t i. Intuitively, this shows that the leak-
ages do not depend on the input arguments. At the same
time, it does not mean that the result of the computation is
independent of leakages.
op samp_t i =

let p = [ LeakAddr []; . . .] ++ set0_L ++ [ . . .] in

let s = [ LeakAddr []; . . .] ++ copy_L ++ [ . . .] in

let loop j = repeat (j-1) [ LeakAddr []; . . .] in

p ++ loop i ++ s.

The constant p equals leakages before the while loop
(here set0_L is a constant corresponding to leakages of
bn_set0 function). The constant s corresponds to the
last iteration of while loop (here, copy_L corresponds
to the leakages produced by a bn_copy procedure). And
(loop i) corresponds to the first i-1 iterations of the
loop. It is important to understand that sampt_t is a non-
probabilistic pure function which computes leakages only
based on its arguments.
We show that function samp_t correctly captures the

contents of XtrR.leakages by proving that the proba-
bility of XtrR.leakages being equal to a given list l is
equal to the probability of geting leakage samp_t i:

lemma samp_t _correct a y l s mmm:

XtrR.leakages{mmm} = s

⇒ Pr[(_,x)← XtrR.bn_rsample i (a)@mmm:

XtrR.leakages = l ++ s ∧ x = y]

= Pr[(i,x)← XtrR.bn_rsample i (a)@mmm:

samp_t i = l ∧ x = y].

Next, we observe that function samp_t is injective and
therefore we can express the number of iterations i as an
inverse of the leakages (if l is not in the image of samp_t
then the inverse returns value -1):

lemma bn_rsample_leakf a y l s mmm:

XtrR.leakages{mmm} = s

⇒ Pr[(_,x)← XtrR.bn_rsample i (a)@mmm:

XtrR.leakages = l ++ s ∧ x = y]

= Pr[(i,x)← XtrR.bn_rsample i (a)@mmm:

i = inv samp_t l ∧ x = y].

If we combine bn_rsample_leakf with
bn_rsample_pr then we get the formula for the
probability of producing list l and outputting the element x:

lemma bn_rsample_v a y l s mmm: XtrR.leakages{mmm} = s

⇒ let t = 2 nlimbs*64 , i = inv samp_t l in

Pr[(_,x)← XtrR.bn_rsample i (a)@mmm:

XtrR.leakages = l ++ s ∧ x = y]

= if i ≤ 0 then 0 else (fail_once [a])^(i-1)/t.

Finally, by combining bn_rsample_v with
bn_rsample_pmf we can derive that bn_rsample
is leakage-free with respect to public input a (see
Definition 3.2). In particular, we define a function
bn_rsample_f(a,l) which calculates the conditional
probability of generating leakages l with the public input
a for any element x returned by bn_rsample (note that
bn_rsample_f does not depend on x):

op bn_rsample_f(a,l) = let i = inv samp_t l in

let t = 2 nlimbs*64 in

if i ≤ 0 then 0

else (fail_once [a])^(i-1)*([a]/t).

lemma bn_rsample_leakfree mmm y a l s:

XtrR.leakages{mmm} = s ⇒
let v = Pr[x ← XtrR.bn_rsample(a)@mmm:

XtrR.leakages = l ++ s ∧ x = y] in

let w = Pr[x ← XtrR.bn_rsample(a)@mmm: x = y] in

0 < w ⇒ v/w = bn_rsample_f(a,l).

The function bn_rsample_f computes the inverse of
samp_t on list l which is denoted by i. If i is larger
than zero then we know that it would take exactly i itera-
tions to produce leakages l (i.e., XtrR.leakages = l)
and therefore we return probability which corresponds to
bn_rsample running for exactly i iterations. In other case
(i.e., i ≤ 0) the list l is not in the image of samp_t and,
therefore, the probability of generating leakages l is 0.

11



CPP ’25, January 20–21, 2025, Denver, CO, USA José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique Unruh

To sum up, we have shown that Jasmin’s bn_rsample
procedure is correct (lemma bn_rsample_pmf ) and
leakage-free (lemma bn_rsample_leakfree ).

4.4 pRHL Proof of LF(bn_rsample)
In the previous section we illustrated a proof of leakage-
freeness of bn_rsample by explicitly defining a leakage-
function samp_t and then proving that leakages and output
are independent. The main motivation for characterizing
leakage-freeness directly in pRHL is to avoid the explicit
handling of leakage (i.e., definition of function samp_t ).

We now show how it can be achieved in the case of rejec-
tion sampling. The formalization relies on the framework
presented in Section 3.2 and instantiating it for the respective
functions.

At a very high level, the essence of the proof of the LF(𝑓 )
equivalence is to decouple the computation of leakage and
result in XtrR.f. This is a non-trivial task in challenging
cases like rejection sampling where running time (and, there-
fore, leakages) are probabilistic. The strategy taken can be
summarized in the following steps:

1. Exploit the LF equivalence and functional correct-
ness of the called functions to simplify the code of
XtrR.bn_rsample function;

2. Decouple the output from the leakages;
3. Restructure the rejection-loop to delay the sampling

of the output.
Let us briefly overview what encompasses each of

these steps. In the first step, the aim is to simplify
XtrR.bn_rsample . To this end, one rewrites the LF
equivalences for each called function, and replaces each Jas-
min instruction by the corresponding semantics (given by
correctness lemma). It leads to a program whose seman-
tics is identical to that of XtrI.bn_rsample , but inter-
twined with code that accumulates leakages and values that
are later discharged. For the bn_rsample case, we obtain
something similar to:

a
$← [0..264·nlimbs -1];

b ← a < [bnd];

[ . . . leakage accu mul ation (including "b")]

while (!b) {

a
$← [0..264·nlimbs − 1];

b ← a < [bnd];

[ . . . leakage accu mul ation (including "b")]

}

return a;

In the next step we focus on the sequence of the sam-
pling of the result a and the evaluation of the acceptance
criterion b. More generally, given a distribution over type t

(d: t distr), and a predicate P: t → bool , we want
to rewrite along the following equivalence:{

a
$← d;

b ← P a;

}
∼

b

$← dbiased (𝜇 d P);

a
$← if b then dcond d P

else dcond d (predC P);


: true =⇒ ={a, b}

Where dbiased p is the Bernoulli distribution with pa-
rameter p, dcond d Ev is the conditional probability of d
given Ev , and predC P is the complement of the predicate
P. Notice that on the right-hand side we sample the value
b from Bernoulli distribution in a manner which does not
depend on the variable a. Later this will allow us to delay the
sampling of the result (i.e., value of a). In our formalization
we define an EC theory that proves the above equivalence
generically and later we instantiate it for the case of rejection
sampling.
The final step reshapes the loop structure to move the

sampling of a outside of the while-loop. Again, we defined
an EC theory to give a generic and reusable implementation.
In particular we define a module type AdvLoop which rep-
resents an arbitrary computation which is not essential for
the restructuring of the loop.
Next, the module RejLoop (which is parameterized by

AdvLoop module) implements functions loopEager and
loopLazy . The difference between these two functions is
that in loopEager we sample value a at each iteration of
the while-loop and in loopLazy we sample a only once
after the while-loop is terminated.
abstract theory RejectionLoop.

type t.

op dt: t distr.

op p : t → t → bool.

module type AdvLoop = {

proc loop _init (b: bool): unit

proc loop_body(b: bool): unit

}.

module RejLoop(L:AdvLoop) = {

proc loopEager (bnd: t) = {

var a, b;

b
$← dbiased (𝜇 dt (p bnd));

a
$← if b then dcond dt (p bnd)

else dcond dt (predC (p bnd));

L.loop _init (b);

while (! b) {

b
$← dbiased (𝜇 dt (p bnd));

a
$← if b then dcond dt (p bnd)

else dcond dt (predC (p bnd));

L.loop_body(b);

}

return a;

12



Leakage-Free Probabilistic Jasmin Programs CPP ’25, January 20–21, 2025, Denver, CO, USA

}

proc loopLazy (bnd: t) = {

var a, b;

b
$← dbiased (𝜇 dt (p bnd));

L.loop _init (b);

while (!b) {

b
$← dbiased (𝜇 dt (p bnd));

L.loop_body(b);

}

a
$← dcond dt (p bnd);

return a;

}

}.

[ . . .properties . . .]

end RejectionLoop.

Using probabilistic relational Hoare logic we prove that
loopLazy and loopEager are equivalent:

equiv rejloop_eq (L <: AdvLoop ):

RejLoop(L). loopEager ~ RejLoop(L). loopLazy

: ={bnd , G𝐿} => ={res , G𝐿 }.

The proof of the above property relies on the formalization
of the equivalence of Eager and Lazy random oracles from
the EC’s standard library (PROM.ec).

After applying rejloop_eq to rejection sampling loop
we arrive at the program where acceptance criteria and
leakage computations are not intertwined with the output
sampling. This allows us to easily conclude LF(bn_rsample)
equivalence because the probabilistic leakage accumulation
and the sampled output become fully decoupled.

4.5 Comparing Both Proof Strategies
When proving leakage freedom using the pRHL characteriza-
tion, one can argue that the reasoning is more code-oriented
— in essence, it applies transformations to the program in
order to slice it in two independent paths (leakage and secret
output generation). Even if these transformations are generic
and can conceivably be applied to similar code patterns, the
choice of which transformations suit each concrete example
critically depends on fully understanding the leakage model.
To that extent, the insight obtained by tackling the problem
directly with Definition 3.2 could provide hints on what ma-
nipulations are needed. In any case, and after the fact, the
pRHL proof will arguably be more elegant as they abstract
the leakage internals.
On the other hand, the full proof based on Definition 3.2

is significantly shorter as it directly addresses the property
under consideration. The proof size of both strategies will be

on par (approx. 450 vs. 400 loc) only if we exclude the proofs
concerning reusable components of the first strategy8.

5 Conclusions
In this work we studied leakage-freeness of probabilistic
Jasmin programs with secret outputs. We motivated our
work by explaining that the “constant-time” property asso-
ciated with deterministic programs fails for the probabilis-
tic case with secret outputs. We proposed novel definition
of leakage-freeness and provided the semantical and pRHL
characterizations. We proved that these are equivalent, com-
posable, and generalize the “constant-time” criteria used for
deterministic programs. Also we illustrated the derivation
of leakage-freeness for rejection sampling algorithm which
has probabilistic runtime. To the best of our knowledge, the
leakage-freeness for probabilistic programs have not yet
been addressed in theorem provers.
A final word on the role of termination in the assess-

ment of leakage-freeness. As pointed out in [9], termination-
insensitive non-interference might fail to prevent the dis-
closure of secrets in the presence of divergence behavior.
In this work, we choose to adhere to the assumption that
termination is independently checked as part of a safety
analysis of the source program (c.f. [2]). However, we rec-
ognize that examples such as rejection sampling addressed
in this paper call for relaxing that assumption. For that rea-
son, in our formalization, we have relaxed that constraint by
allowing possibly divergent programs when assessing the
independence of outputs and leakage (under a slight general-
ization of the Definition 3.4). But lifting it to a sensible notion
of leakage-freeness of possibly divergent programs would
force us to move to a termination-sensitive characterization
of non-interference in EC, which we left as future work.

Acknowledgements
José Bacelar Almeida was supported by National Funds
through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project LA/P/0063/2020
(DOI 10.54499/LA/P/0063/2020). Denis Firsov was supported
by the Estonian Research Council grant PSG749. Dominique
Unruh was supported by ERC consolidator grant CerQuS
(Certified Quantum Security, 819317), Estonian Centre of
Excellence in IT (EXCITE, TK148), Estonian Centre of Excel-
lence "Foundations of the Universe" (TK202), and Estonian
Research Council PRG grant "Secure Quantum Technology"
(PRG946).

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,

8Approx. 270loc for instantiating the generic formalized framework; 300loc
for the proofs in the abstract theories of the two employed transformations;
and 730loc for the proofs of the bignum library

13



CPP ’25, January 20–21, 2025, Denver, CO, USA José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique Unruh

Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-assurance
and high-speed cryptography. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 1807–1823.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Gré-
goire, Adrien Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves
Strub. 2020. The last mile: High-assurance and high-speed crypto-
graphic implementations. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 965–982.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Gré-
goire, Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira,
Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Antoine Séré, and
Pierre-Yves Strub. 2023. Formally verifying Kyber Episode IV: Imple-
mentation correctness. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023,
3 (2023), 164–193. https://doi.org/10.46586/TCHES.V2023.I3.164-193

[4] José Bacelar Almeida, Manuel Barbosa, Manuel L Correia, Karim Elde-
frawy, Stéphane Graham-Lengrand, Hugo Pacheco, and Vitor Pereira.
2021. Machine-checked ZKP for NP relations: Formally Verified Secu-
rity Proofs and Implementations of MPC-in-the-Head. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 2587–2600.

[5] José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles
Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte,
Tiago Oliveira, Alley Stoughton, and Pierre-Yves Strub. 2019. Machine-
checked proofs for cryptographic standards: Indifferentiability of
sponge and secure high-assurance implementations of SHA-3. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security. 1607–1622.

[6] José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique
Unruh. 2024. Accompanying EasyCrypt Development. https://github.
com/dfirsov/jasmin-leakage-freeness. Accessed: 2025-12-03.

[7] José Bacelar Almeida, Denis Firsov, Tiago Oliveira, and Dominique
Unruh. 2024. Archived Accompanying EasyCrypt Development. https:
//doi.org/10.5281/zenodo.14281008 Accessed: 2025-12-05.

[8] José Bacelar Almeida, Santiago Arranz Olmos, Manuel Barbosa, Gilles
Barthe, François Dupressoir, Benjamin Grégoire, Vincent Laporte, Jean-
Christophe Léchenet, Cameron Low, Tiago Oliveira, Hugo Pacheco,
Miguel Quaresma, Peter Schwabe, and Pierre-Yves Strub. 2024. For-
mally Verifying Kyber - Episode V: Machine-Checked IND-CCA Secu-
rity and Correctness of ML-KEM in EasyCrypt. In Advances in Cryptol-
ogy - CRYPTO 2024 - 44th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part II (Lec-
ture Notes in Computer Science, Vol. 14921), Leonid Reyzin and Douglas
Stebila (Eds.). Springer, 384–421. https://doi.org/10.1007/978-3-031-
68379-4_12

[9] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
2008. Termination-Insensitive Noninterference Leaks More Than Just
a Bit. In Computer Security - ESORICS 2008, Sushil Jajodia and Javier

Lopez (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 333–348.
[10] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,

Benedikt Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial.
In Foundations of Security Analysis and Design VII. Springer, 146–166.

[11] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and
Pierre-Yves Strub. 2017. Proving uniformity and independence by self-
composition and coupling. In LPAR-21, 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Maun,
Botswana, May 7-12, 2017 (EPiC Series in Computing, Vol. 46), Thomas
Eiter and David Sands (Eds.). EasyChair, 385–403. https://doi.org/10.
29007/VZ48

[12] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santi-
ago Zanella Béguelin. 2011. Computer-aided security proofs for the
working cryptographer. In Annual Cryptology Conference. Springer,
71–90.

[13] Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya.
2021. Structured Leakage and Applications to Cryptographic Constant-
Time and Cost. In CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, Novem-
ber 15 - 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine
Shi (Eds.). ACM, 462–476. https://doi.org/10.1145/3460120.3484761

[14] Tom Chothia, Yusuke Kawamoto, Chris Novakovic, and David Parker.
2013. Probabilistic Point-to-Point Information Leakage. In 2013 IEEE
26th Computer Security Foundations Symposium. 193–205. https://doi.
org/10.1109/CSF.2013.20

[15] NIST Computer Security Division. 2024. ML-DSA: Module-Lattice-
Based Digital Signature Standard. FIPS Publication 204. National In-
stitute of Standards and Technology, U.S. Department of Commerce.
https://csrc.nist.gov/pubs/fips/204/final

[16] Denis Firsov and Dominique Unruh. 2022. Reflection, rewinding,
and coin-toss in EasyCrypt. In Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs. 166–179.

[17] A. Sabelfeld and A.C. Myers. 2003. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications 21, 1 (2003),
5–19. https://doi.org/10.1109/JSAC.2002.806121

[18] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Gré-
goire, Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe,
and Lucas Tabary-Maujean. 2023. Typing High-Speed Cryptography
against Spectre v1. In 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, May 21-25, 2023. IEEE, 1094–1111.
https://doi.org/10.1109/SP46215.2023.10179418

[19] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Gré-
goire, Vincent Laporte, and Swarn Priya. 2022. Enforcing Fine-grained
Constant-time Policies. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cre-
mers, and Elaine Shi (Eds.). ACM, 83–96. https://doi.org/10.1145/
3548606.3560689

14

https://doi.org/10.46586/TCHES.V2023.I3.164-193
https://github.com/dfirsov/jasmin-leakage-freeness
https://github.com/dfirsov/jasmin-leakage-freeness
https://doi.org/10.5281/zenodo.14281008
https://doi.org/10.5281/zenodo.14281008
https://doi.org/10.1007/978-3-031-68379-4_12
https://doi.org/10.1007/978-3-031-68379-4_12
https://doi.org/10.29007/VZ48
https://doi.org/10.29007/VZ48
https://doi.org/10.1145/3460120.3484761
https://doi.org/10.1109/CSF.2013.20
https://doi.org/10.1109/CSF.2013.20
https://csrc.nist.gov/pubs/fips/204/final
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/SP46215.2023.10179418
https://doi.org/10.1145/3548606.3560689
https://doi.org/10.1145/3548606.3560689

	Abstract
	Contents
	1 Introduction
	2 Preliminaries
	2.1 EasyCrypt
	2.2 Jasmin

	3 Leakage-Freeness and Constant-Time
	3.1 Leakage-Free Programs
	3.2 pRHL Characterization
	3.3 Properties
	3.4 Proof Effort: LF vs LFdef

	4 Rejection Sampling
	4.1 Rejection Sampling in EasyCrypt
	4.2 Uniform Sampling in Jasmin
	4.3 Derivation of LFdef(bn_rsample)
	4.4 pRHL Proof of LF(bn_rsample)
	4.5 Comparing Both Proof Strategies

	5 Conclusions
	References

