
Holographic SNARGs for P and Batch-NP
from (Polynomially Hard) Learning with Errors

Susumu Kiyoshima

NTT Social Informatics Laboratories
susumu.kiyoshima@ntt.com

September 28, 2023

Abstract

A succinct non-interactive argument (SNARG) is called holographic if the verifier runs in time sub-linear
in the input length when given oracle access to an encoding of the input. We present holographic SNARGs
for P and Batch-NP under the learning with errors (LWE) assumption. Our holographic SNARG for P has
a verifier that runs in time poly(λ, log T, log n) for T -time computations and n-bit inputs (λ is the security
parameter), while our holographic SNARG for Batch-NP has a verifier that runs in time poly(λ, T, log k) for
k instances of T -time computations. Before this work, constructions with the same asymptotic efficiency
were known in the designated-verifier setting or under the sub-exponential hardness of the LWE assumption.
We obtain our holographic SNARGs (in the public-verification setting under the polynomial hardness of the
LWE assumption) by constructing holographic SNARGs for certain hash computations and then applying
known/trivial transformations.

As an application, we use our holographic SNARGs to weaken the assumption needed for a recent public-
coin 3-round zero-knowledge (ZK) argument [Kiyoshima, CRYPTO 2022]. Specifically, we use our holo-
graphic SNARGs to show that a public-coin 3-round ZK argument exists under the same assumptions as the
state-of-the-art private-coin 3-round ZK argument [Bitansky et al., STOC 2018].

This article is a full version of the following article: Holographic SNARGs for P and Batch-NP from (Polynomially Hard) Learning
with Errors, TCC 2023, ©IACR 2023. This work was done while the author was a member of NTT Research.

1

Contents
1 Introduction 3

1.1 Our Results . 4
1.2 Related Work . 4

2 Technical Overviews 5
2.1 Holographic SNARG for P . 5
2.2 Holographic SNARG for Batch-NP . 10

3 Preliminaries 10
3.1 Notations and Conventions . 10
3.2 Low-Degree Extensions . 10
3.3 Hash Functions . 11
3.4 Correlation-Intractable Hash Functions . 11
3.5 Somewhere Extractable Hash Functions . 12
3.6 Keyless Multi-Collision Resistant Hash Functions . 13
3.7 SNARGs for P (a.k.a. Non-Interactive Turing-Machine Delegations) 14
3.8 SNARGs for Batch-NP (a.k.a. Non-Interactive BARGs) . 15
3.9 Holographic SNARGs for P and Batch-NP . 16

4 Somewhere-Sound Holographic SNARG for Somewhere-Extractable Hashing 17
4.1 Completeness . 19
4.2 Efficiency . 21
4.3 Partially Adaptive Somewhere Soundness . 21

5 Holographic SNARG for Tree-Hash 28
5.1 Completeness . 29
5.2 Efficiency . 29
5.3 Partial Adaptive Soundness . 29

6 Holographic SNARG for Batch-NP 35
6.1 Completeness . 36
6.2 Efficiency . 36
6.3 Weakly Semi-Adaptive Somewhere Soundness . 36

7 Holographic SNARG for P 38

8 Application: Public-Coin Three-Round Zero-Knowledge 38

A Additional Remarks 41
A.1 Remark About Theorem 1 . 41
A.2 Remark About Lemma 4 . 42

B Details About Holographic SNARG for P 42
B.1 Preliminary: RAM Delegation . 42
B.2 Holographic SNARG for P . 44

C Details About the Definition of Holographic Tree-Hash Delegation in [Kiy22a] 45
C.1 Definition . 45
C.2 Relation with Publicly Verifiable Non-Interactive Tree-Hash Delegation Schemes 47

2

1 Introduction
SNARGs. Informally speaking, a succinct argument [Kil92] (or delegation scheme [GKR15]) is an argument
system with small communication complexity and fast verification time. In a typical setting, the statement to be
proven contains a description of a computation and an input to the computation; the prover’s task is to convince
the verifier that the output of the computation is 1. A typical efficiency requirement is that the communication
complexity and the verification time are polylogarithmic in the complexity of the computation.

When succinct arguments are non-interactive in the common random/reference string (CRS) model, they
are commonly referred to as succinct non-interactive arguments (SNARGs). Initially, the study of SNARGs
was focused on constructing SNARGs for all NP computations (i.e., the goal was to design SNARGs that can
prove the correctness of any NP computations). However, for such a large class of computations, positive results
were only obtained in the idealized model (e.g., the random oracle model) or under non-standard cryptographic
assumptions (e.g., extractability assumptions). Recently, a growing number of works showed that SNARGs for
useful subclasses of NP computations, such as deterministic computations and Batch-NP computations,1 can
be obtained in the standard model under standard cryptographic assumptions. Specifically, Kalai, Raz, and
Rothblum [KRR22] and subsequent works (e.g., [KP16, BHK17, BKK+18, HR18]) constructed designated-
verifier SNARGs for such subclasses under the learning with errors (LWE) assumption. (Designated-verifier
SNARGs are weaker than standard SNARGs in that they are not publicly verifiable, i.e., only the owner of a secret
verification key can verify the correctness of proofs.) More recently, Choudhuri, Jain, and Jin [CJJ22] and other
works (e.g., [JKKZ21, CJJ21a, KVZ21, HJKS22, WW22, DGKV22, PP22]) constructed (publicly verifiable)
SNARGs for such subclasses under various standard cryptographic assumptions (e.g., the LWE assumption).

Holographic SNARGs. SNARGs are called holographic if the verifier runs in time sub-linear in the length
of the input when given oracle access to an encoding of the input.2 The holographic property is often naturally
satisfied when SNARGs are constructed based on code-theoretic techniques. It also often comes with additional
useful properties such as (i) input encoding having a simple algebraic structure (e.g., a low-degree polynomial)
and (ii) verification that only makes non-adaptive queries to the encoding of the input.

The holographic property of existing SNARGs has been used crucially in some applications. For example,
in the application to 2-message arguments of proximity [KR15], the holographic property of the underlying
SNARG [KRR22] was used to reduce the task of proving the correctness of an arbitrary deterministic compu-
tation to a much simpler task of proving that the encoding of the computation input has certain values at certain
positions. Other examples include applications to succinct probabilistically checkable arguments [BR22] and 3-
round zero-knowledge argument [BKP18, Kiy22a], where the holographic property of the underlying SNARGs
was used to have succinct verification in the setting where the verification cannot read the entire input.

Existing holographic SNARGs are, however, less powerful than state-of-the-art non-holographic SNARGs.
Concretely, compared with the non-holographic SNARGs of Choudhuri et al. [CJJ22] and subsequent
works [KVZ21, WW22, DGKV22, PP22] (which are publicly verifiable, can be used for deterministic
polynomial-time computations and Batch-NP computations, and are based on standard polynomial hardness as-
sumptions), existing holographic SNARGs are either (i) not publicly verifiable [KRR22, BHK17] or (ii) based
on sub-exponential hardness assumptions [JKKZ21, Kiy22a].

Because of this gap, some applications of holographic SNARGs only obtained sub-optimal results. For
example, in the application to 3-round zero-knowledge arguments [BKP18, Kiy22a], the existing constructions
are either (i) private-coin (as the underlying holographic SNARG [KRR22] is not publicly verifiable) or (ii)
based on a sub-exponential hardness assumption (as the underlying holographic SNARG [JKKZ21] is based on
a sub-exponential hardness assumption).

1In SNARGs for Batch-NP computations, a statement consists of multiple instances of an NP language, and the prover tries to
convince the verifier that all the instances belong to the language. The communication complexity and the verification time are required
to be smaller than the naive check.

2The holographic property has also been considered for interactive oracle proofs (IOPs) [CHM+20, COS20] and interactive
proofs/arguments [GR17, BR22]. The term “holography” was initially used in the context of probabilistically checkable proofs
(PCPs) [BFLS91].

3

1.1 Our Results
We give holographic SNARGs for deterministic polynomial-time computations and Batch-NP computations
under the polynomial hardness of the LWE assumption. The holographic verifier of our SNARGs makes non-
adaptive queries to the low-degree extension (LDE) of the computation input.3

Theorem (informal, see Theorem 5 and Corollary 2). Under the LWE assumption, there exist holographic
SNARGs for deterministic polynomial-time computations and Batch-NP computations.

• For security parameter λ and any deterministic T -time computation with input length n, the CRS gener-
ation algorithm runs in time poly(λ, log T, log n), the prover runs in time poly(λ, T, n), and the verifier
runs in time poly(λ, log T, log n) given oracle access to the LDE of the computation input.

• For security parameter λ and any Batch-NP computation that consists of k instances of a T -time non-
deterministic computation, the CRS generation algorithm runs in time poly(λ, T, log k), the prover runs
in time poly(λ, T, k), and the verifier runs in time poly(λ, T, log k) given oracle access to the LDE of the
concatenation of the k instances.

Given the LDE of a long input, our SNARG verifiers run in time sub-linear in the input length (which is n in
deterministic computations and is linear in k in Batch-NP computations).

At a high level, our result can be seen as a holographic version of the result of Choudhuri, Jain, and
Jin [CJJ22] (where non-holographic SNARGs for deterministic computations and Batch-NP computations are
given under the LWE assumption). However, in the adaptive-statement setting, our holographic soundness
notions are weaker than the non-holographic counterparts since the input to be encoded is required to be fixed
non-adaptively before the CRS is sampled (see, e.g., Definition 14 for the soundness notion that our holographic
SNARG for Batch-NP satisfies).

As an application of the above result, we give the following result about 3-round zero-knowledge arguments.

Theorem (informal, see Theorem 6). Assume the existence of (polynomially compressing) keyless hash func-
tions that are multi-collision resistant against slightly super-polynomial-time adversaries, and additionally as-
sume slightly super-polynomial hardness of the LWE assumption. Then, there exists a public-coin 3-round
zero-knowledge argument for NP.

We obtain this result by relying on a known transformation [BKP18, Kiy22a]. The assumptions in this re-
sult are the same as those that are needed for the state-of-the-art private-coin 3-round zero-knowledge argu-
ment [BKP18], and they are weaker than those that are needed for the state-of-the-art public-coin 3-round zero-
knowledge argument [Kiy22a] (concretely, sub-exponential hardness is not necessary for the LWE assumption).
In short, this result closes the gap between the assumptions needed for private-coin 3-round zero-knowledge ar-
guments and those needed for public-coin ones.

1.2 Related Work
The following is a brief review of existing SNARGs that have verification time sub-linear in the input length. (We
focus on those that are publicly verifiable and based on well-studied falsifiable assumptions.) For deterministic
computations, the aforementioned work by Choudhuri et al. [CJJ22] constructed a SNARG for RAM computa-
tions [CKLR11, KP16], where the verifier runs in time sub-linear in the length of the initial memory when given
a short digest of the initial memory. (The digest can be computed by the verifier in a one-time expensive pre-
processing phase.) For Batch-NP computations, some of the existing constructions (e.g., [CJJ22, WW22]) have
the verifier that first runs in an expensive offline phase and subsequently checks the proof in time sub-linear in
the number of the instances. As a special case of SNARGs for Batch-NP, the work by Choudhuri et al. [CJJ22]
defined and constructed a batch argument (BARG) for the index language, where the statement to be proven is re-
stricted to the form ∀i ∈ [k]∃wi ∈ {0, 1}∗ s.t. C(i, wi) = 1 for a Boolean circuit C, and the verifier runs in time
sub-linear in k if C is of size sub-linear in k. (A similar notion was also considered by Kalai, Vaikuntanathan,
and Zhang [KVZ21].) As a related notion, Devadas, Goyal, Kalai, and Vaikuntanathan [DGKV22] considered
hashed BARGs, where the verifier runs in sub-linear time when given a (somewhere extractable [HW15, CJJ22])
hash of the instances.

3For the definition of low-degree extensions, see Section 3.2.

4

Our holographic SNARGs are incomparable to the above-mentioned SNARGs. For example, the input is
encoded information theoretically and does not require any setup from the verifier. This property is essential in
the application to 3-round ZK arguments [BKP18, Kiy22a] since the zero-knowledge is proved using a simulator
that commits to the encoded input of the holographic SNARG in the first round (without any setup from the
verifier).

2 Technical Overviews
2.1 Holographic SNARG for P
Overall approach. Our starting point is the work by Choudhuri, Jain, and Jin (CJJ) [CJJ22], which gives a
(non-holographic) SNARG for deterministic polynomial-time computation under the LWE assumption. In the
CJJ SNARG, the computation to be proven is modeled as a RAM computation, and the input to the computation
is viewed as the initial memory. Importantly, the verifier only uses the input to obtain the digest of the initial
memory, and the digest is simply the Merkle tree-hash of the input. Thus, the CJJ SANRG is non-holographic
only because the verifier needs to compute the Merkle tree-hash of the input.4

Recently, it was shown that the CJJ SNARG can be made holographic under the sub-exponential hardness
of the LWE assumption [Kiy22a]. The main idea was to delegate the computation of the Merkle tree-hash
to the prover. That is, the prover was modified to additionally create the Merkle tree-hash of the input along
with a holographic proof about the correctness of the Merkle tree-hash. The key point was that the correctness
of Merkle tree-hash computations can be proved in a holographic way using the SNARG by Jawale, Kalai,
Khurana, and Zhang (JKKZ) [JKKZ21] (which is holographic and can be used for any log-uniform bounded-
depth deterministic computations). This approach requires the sub-exponential hardness of the LWE assumption
since the JKKZ SNARG is based on the sub-exponential hardness of the LWE assumption.

We make the CJJ SNARG holographic under the polynomial hardness of the LWE assumption. Our approach
is to design a holographic SNARG that is tailored to Merkle tree-hash computations, expecting that such a
restricted SNARG is easier to construct under the polynomial hardness assumption. Concretely, our target is a
SNARG such that (i) for a statement of the form (x, h, rt), the prover can prove that rt ∈ {0, 1}λ is the Merkle
tree-hash of x ∈ {0, 1}∗ under the hash function h : {0, 1}2λ → {0, 1}λ, (ii) the soundness holds even against
cheating provers that adaptively choose rt, and (iii) the verifier runs in time sub-linear in |x| when it is given
oracle access to an encoding of x.

We achieve our goal in two steps. First, we obtain a holographic SNARG for tree-hash computations under
the LWE assumption while assuming the existence of a holographic SNARG for another specific computation
with a weak soundness guarantee. Next, we construct the required holographic SNARG under the LWE assump-
tion. We use the following tools in both steps.

1. Somewhere extractable (SE) hash functions [HW15, CJJ22]: Like the Merkle tree-hash scheme, an
SE hash function SEH.Hash with a random public key h can create a hash value rt = SEH.Hash(h, x)
and short certificates {certi}i∈[N] for a long message x = (x1, . . . , xN). Moreover, for any i∗ ∈ [N], we
can sample h with trapdoor information td so that the following hold.

• Somewhere extractability. With overwhelming probability over the sampling of h, any hash value
rt uniquely determines its pre-image in position i∗. Furthermore, a PPT extractor SEH.Extract can
extract the unique i∗-th position value v given (td, rt).

• Index hiding. The public key h computationally hides the binding index i∗.

An SE hash function can be obtained under the LWE assumption [HW15]. It can be generalized to support
multiple binding indices naturally, and its complexity (such as the description size of the hash function)
scales linearly in the number of binding indices.

2. Batch arguments (BARGs) for the index language [CJJ22]: BARGs for the index language are a special
case of SNARGs for Batch-NP computations: for a Boolean circuit C and an integer k ∈ N, the statement

4Most of the existing schemes (e.g., [KVZ21, HJKS22, WW22, PP22]) are also (implicitly) designed for RAM computations and
are non-holographic for the same reason.

5

Building blocks: (i) SEH.Hash—an SE hash function. (ii) BARGidx—a BARG for the index language.

CRS generation: The CRS generation algorithm samples λ public keys hSEH
0 , . . . , hSEH

λ−1 of SEH.Hash and a CRS
of BARGidx.
Prover P: The prover P is given a binary string x ∈ {0, 1}∗, a hash function h : {0, 1}2λ → {0, 1}λ, and a hash
value rt ∈ {0, 1}λ.

1. Compute the nodes {nodei,σ}i∈{0,...,ℓ},σ∈{0,...,2i−1} of the tree-hash of x using h. That is, do the following.

(a) Partition x into 2ℓ blocks blk0, . . . , blk2ℓ−1 such that |blk0| = · · · = |blk2ℓ−1| = λ. (We assume for
simplicity that |x| = 2ℓλ for ℓ ∈ N.)

(b) Let nodeℓ,σ := blkσ for ∀σ ∈ {0, . . . , 2ℓ − 1}, and let nodei,σ := h(nodei+1,2σ ‖ nodei+1,2σ+1) for
∀i ∈ {ℓ− 1, . . . , 0}, σ ∈ {0, . . . , 2i − 1}.

2. Compute rti := SEH.Hash(hSEH
i , xi) for ∀i ∈ {0, . . . , ℓ}, where xi := nodei,0 ‖ · · · ‖ nodei,2i−1 is the

concatenation of the nodes at the i-th level.

3. For ∀i ∈ {0, . . . , ℓ − 1}, use BARGidx to compute a proof πi about the consistency between rti and
rti+1, i.e., prove that for ∀σ ∈ {0, . . . , 2i − 1}, there exists a pair of triples (node(P), node(L), node(R)),
(cert(P), cert(L), cert(R)) s.t. (i) cert(P) certifies that the σ-th position of the pre-image of rti is node(P), (ii)
(cert(L), cert(R)) certifies that the 2σ-th and 2σ+1-st positions of the pre-image of rti+1 are (node(L), node(R)),
and (iii) h(node(L) ‖node(R)) = node(P).

4. Output π := ({rti}i∈{0,...,ℓ}, {πi}i∈{0,...,ℓ−1}) as a proof.

Verifier V: The verifier V is given (h, rt) and π = ({rti}i∈{0,...,ℓ}, {πi}i∈{0,...,ℓ−1}) along with oracle access to an
encoding of x. Then, V outputs 1 iff (i) each πi is an accepting w.r.t. (rti, rti+1) and (ii) SEH.Hash(hSEH

0 , rt) = rt0.

Figure 1: A candidate construction of holographic tree-hash SNARGs

to be proven is that ∀i ∈ [k]∃wi ∈ {0, 1}∗ s.t. C(i, wi) = 1. (Unlike the general case, BARGs for the index
language can have verification time sub-linear in k since the verifier no longer needs to take k instances
explicitly.) A BARG for the index language can be obtained under the LWE assumption [CJJ22]. Its CRS
generation and verifier run in time polylogarithmic in k, and it satisfies a stronger notion of soundness,
semi-adaptive somewhere soundness, guaranteeing that for any i∗ ∈ [k], the CRS can be sampled so that
giving an accepting proof for an adaptively chosen circuit C is infeasible as long as @w s.t. C(i∗, w) = 1.

Step 1. Holographic SNARG for tree-hashing from somewhere-sound holographic SNARG for SE-
hashing. We construct a holographic SNARG for tree-hashing computations by using what we call a
somewhere-sound holographic SNARG for SE-hash computations.

We start by giving an insecure candidate construction as a motivating example. Recall that in SNARGs for
tree-hash computations, for a statement (x, h, rt), the prover proves that rt ∈ {0, 1}λ is the Merkle tree-hash
of x ∈ {0, 1}∗ under the hash function h : {0, 1}2λ → {0, 1}λ, where the verifier is given oracle access to
an encoding of x. At a high level, we consider a construction that follows the commit-and-prove paradigm:
the prover (i) hashes all the nodes of the tree-hash of x in the layer-by-layer basis and (ii) uses a BARG for
the index language to prove that the hashed nodes constitute a Merkle tree; the verifier verifies all the BARG
proofs and checks whether the hash of the top layer is the hash of rt. See Figure 1 for a detailed description.
Clearly, the construction in Figure 1 is not sound since nothing is proved about the consistency between x and
the hash values. More concretely, the problem is that the verifier does not check whether rtℓ is the hash value of
x w.r.t. the hash function hSEHℓ . Since we want the verifier to be holographic, we cannot let the verifier check
SEH.Hash(hSEHℓ , x)

?
= rtℓ directly. We thus augment the candidate construction with a holographic SNARG

that proves the consistency between rtℓ and x.
To see in more detail what type of SNARGs is needed to make the candidate construction secure, assume

that a cheating prover P∗ breaks the soundness of the candidate construction. That is, given (x, h), the cheating
prover P∗ adaptively chooses rt and makes V output 1 despite TreeHashh(x) 6= rt, where TreeHashh(x) denotes
the tree-hash of x under the hash function h. (For simplicity, we assume that P∗ succeeds with probability 1.)

6

Let {nodei,σ}i∈{0,...,ℓ},σ∈{0,...,2i−1} denote the correct nodes of TreeHashh(x). Then, we consider the following
claim.

Claim 1 (Informal). ∀i ∈ {0, . . . , ℓ}, ∃σ ∈ {0, . . . , 2i − 1} s.t. if hSEHi is sampled in the CRS generation in a
way that it is statistically binding in position σ, the hash value rti that P ∗ provides as a part of an accepting
proof π satisfies SEH.Extract(tdSEHi , rti) 6= nodei,σ,5 where tdSEHi is the trapdoor corresponding to hSEHi .

In words, this claim says that from each of the hash values {rti}i∈{0,...,ℓ} that P∗ provides as the layer-by-
layer hashes of the nodes of TreeHashh(x), we can extract a node that disagrees with the correct nodes
{nodei,σ}i∈{0,...,ℓ},σ∈{0,...,2i−1} in a certain position σ. We prove this claim by induction on i.

Base case. When i = 0 and σ = 0, the claim holds trivially because of our assumption that P∗ breaks the
soundness of the candidate construction.

Inductive step. Assume that the claim holds for i − 1 and σi−1. The index hiding property of hSEHi guar-
antees that the claim remains to hold even when hSEHi is statistically binding in positions 2σi−1 and
2σi−1 + 1. Then, the semi-adaptive somewhere soundness of πi guarantees that when we extract the
statistically fixed values ñodei−1,σi−1

:= SEH.Extract(tdSEHi−1 , rti−1) and (ñodei,2σi−1 , ñodei,2σi−1+1) :=

SEH.Extract(tdSEHi , rti), they satisfy h(ñodei,2σi−1 ‖ ñodei,2σi−1+1) = ñodei−1,σi−1 . Since we as-
sumed ñodei−1,σi−1 6= nodei−1,σi−1 , we conclude that ∃σi ∈ {2σi−1, 2σi−1 + 1} ⊆ {0, . . . , 2i − 1}
s.t. ñodei,σi 6= nodei,σi as desired.

For i = ℓ, the above claim implies that a cheating prover can break the soundness of the candidate scheme only
when ∃σ ∈ {0, . . . , 2ℓ − 1} s.t. the hash value rtℓ that the prover provides satisfies Extract(tdSEHℓ , rtℓ) 6= blkσ,
i.e., the extractor extracts a node that disagrees with the σ-th block of x. Thus, we need a holographic SNARG
that prevents this type of inconsistency.

In conclusion, to make the candidate construction secure, we need a holographic SNARG that satisfies the
following.

Holographic completeness. The prover can convince the verifier when given a statement (x, h, rt) s.t.
SEH.Hash(h, x) = rt. The verifier is given (h, rt) as explicit inputs and is given oracle access to an
encoding of x. The verifier runs in time sub-linear in |x| (ideally, polylogarithmic in |x|).

Somewhere soundness. For any x and σ ∈ {0, . . . , |x| − 1}, and for an honest CRS and a random SE hash
function key h that is statistically binding in position σ, no PPT prover can provide a hash value rt and
an accepting proof satisfying SEH.Extract(tdSEH, rt) 6= xσ, where tdSEH is the trapdoor corresponding
to h.

Note that the somewhere soundness does not guarantee SEH.Hash(h, x) = rt. It only guarantees that for any σ,
if we extract the σ-th position value from rt, the extracted value agrees with x. This guarantee is sufficient since
the above claim guarantees that any successful cheating prover breaks this type of consistency in a randomly
chosen σ with non-negligible probability. In the following, we explain how we obtain a holographic SNARG
with the above properties under the LWE assumption.

Step 2. Somewhere sound holographic SNARG for SE-hashing from LWE. Similarly to recent SNARGs
(e.g., [JKKZ21, CJJ22, KVZ21, HJKS22]), our construction is obtained by using a correlation-intractable (CI)
hash function [CGH04]. Roughly speaking, a hash function family {Hλ = {h : Xλ → Yλ}}λ∈N is correlation
intractable for a relation ensemble R = {Rλ ⊆ Xλ × Yλ}λ∈N if no PPT adversary can find x ∈ Xλ s.t.
(x, h(x)) ∈ Rλ for a random h ∈ Hλ. It is known that a CI hash function family exists for efficiently product
verifiable relation ensembles under the LWE assumption [HLR21b], where a relation Rλ ⊆ Xλ × Y t

λ is said to
be efficiently product verifiable if we have (x, (y1, . . . , yt)) ∈ Rλ iff each yi is included in a small efficiently
verifiable set. More concretely, we use the following result [HLR21b].

5In this overview, we view rti as a hash of a vector that consists of 2i blocks, where each block is a λ-bit string. Thus, SEH.Extract
extracts a λ-bit string as the σ-th position of the pre-image.

7

Theorem (Informal. See Theorem 1 and Remark 6). Fix any (arbitrarily small) constant δ, ρ ∈ [0, 1] and
any function t(λ) = Ω(λδ). Then, under the LWE assumption, there exists a hash function family that is
correlation intractable for a relation ensemble R = {Rλ ⊆ Xλ × Y

t(λ)
λ }λ∈N if R satisfies the following: for

every λ and x ∈ Xλ, (i) the set Rx := {(y1, . . . , yt) | (x, (y1, . . . , yt)) ∈ Rλ} ⊆ Y
t(λ)
λ has a decomposition

Rx = S1 × S2 × · · · × St(λ), (ii) each Si satisfies |Si| ≤ ρ|Yλ|, and (iii) each Si is efficiently verifiable, i.e.,
there exists a polynomial-size circuit C such that C(x, y, i) = 1 iff y ∈ Si. Furthermore, each hash function in
the family can be evaluated in time poly(log|Xλ|, |Yλ|, tλ, |C|).

In our SNARG construction, we use the following encoding scheme for holographic verification. For a finite
field F and a subset H ⊆ F, the low-degree extension (LDE) x̂ of x ∈ {0, 1}n is defined by first viewing x as
a function x : Hm → {0, 1} for m := dlog|H| ne and next defining x̂ : Fm → F as the unique m-variate
polynomial that satisfies x̂|Hm ≡ x with individual degree at most |H| − 1. (In this paper, F and H are chosen
so that |H| = O(log n) and |F| = poly(|H|).) What is crucial for us is that LDEs are linear tensor codes. In
particular, the LDE x̂ of x satisfies the following for any m′ ∈ {1, . . . ,m− 1}.

Property. View x̂ : Fm → F as a |F|m′×|F|m−m′ matrix s.t. the i-th row is the truth table of x̂(i, ·) : Fm−m′ →
F, where i ∈ {1, . . . , |F|m′} is mapped to an element of Fm′ by a canonical bijection. Then, each row is a valid
LDE of length Fm−m′ . In particular, the i-th row x̂(i, ·) is the LDE of x̂(i, ·)|Hm−m′ , where x̂(i, ·)|Hm−m′ is
the restriction of x̂(i, ·) to the domain Hm−m′ . Similarly, the j-th column x̂(·, j) is the LDE of x̂(·, j)|Hm′ for
∀j ∈ {1, . . . , |F|m−m′}.

Jumping ahead, we use the above property to obtain our SNARG in a recursive way. The prover creates a proof
for x by recursively creating a proof for x̂(i, ·)|Hm−m′ for certain i. To verify the recursive proof, the verifier
makes queries to x̂(i, ·), which is indeed the LDE of x̂(i, ·)|Hm−m′ because of the above property. (The above
property was used previously in a similar context by [RVW13].)

Now, let us describe our construction. Recall that in holographic SNARGs for SE-hash computations, a
statement consists of an input x, an SE hash function key h, and a hash value rt, which are supposed to satisfy
SEH.Hash(h, x) = rt. For simplicity, we view x as a function x : Hm → F, where F and H are those to be used
to compute the LDE for the verifier. Also, we assume for simplicity that the security parameter λ is a power of
|H|. Let mλ := log|H| λ, δ := 1/(bm/mλc+1), and α := bλδc. Then, our construction is obtained recursively
based on the input length m. When m < mλ, the CRS generation and the prover do nothing, and the verifier
directly checks SEH.Hash(h, x)

?
= rt, where the verifier obtains x by using its oracle access to the LDE of

x. When m ≥ mλ, our construction proceeds as described in Figure 2. At a high level, the prover first views
the LDE x̂ as a |F|mλ × |F|m−mλ matrix and obtains an SE hash value for each row (restricted to Hm−mλ as
suggested above). Then, the prover selects α rows based on the indices that are obtained by applying a CI hash
function to the SE hash values, and recursively creates proofs about these rows. (The prover also creates batch
proofs about the correctness of the SE hash values.)

Completeness can be verified by inspection. In particular, the verifier accepts the batch proof πidx and the
recursive proofs {πci}ci∈Sc because of the above-described property of LDEs. Also, intuitively the efficiency
requirement holds since the number of recursive executions is at most α⌊m/mλ⌋+1 ≤ λ.

To see somewhere soundness, we start with a toy case. For a statement (x, h, rt), consider a prover that
behaves honestly for an incorrect statement (x′, h, rt′) s.t. x′ 6= x and SEH.Hash(h, x′) = rt′. Since x′ 6= x,
their LDEs x̂, x̂′ (viewed as matrices) disagree in a certain column, say, the v∗-th one. Since the v∗-th columns
of x̂, x̂′ are valid LDEs of length |F|mλ (i.e., they are mλ-variate polynomials of individual degree at most
|H| − 1), it follows that they agree in at most a ρ := mλ(|H| − 1)/|F| fraction of the positions. Thus, if we set
|F| large enough, x̂ and x̂′ disagree in a constant fraction of the rows. By temporarily thinking as if the CI hash
function hCIH is a truly random function, we conclude that with high probability, one of the recursive proofs is
created for a row in which x̂ and x̂′ disagree. Thus, after the recursions, the verifier rejects the proof in the base
case.

Let us observe somewhere soundness in more detail. Naturally, we show the somewhere soundness by
relying on the somewhere soundness of the recursive executions. Assume for contradiction that a PPT cheating
prover P∗ breaks the somewhere soundness, i.e., ∃x : Hm → F and σ = (u∗,v∗) ∈ Hmλ × Hm−mλ = Hm

s.t. for a random SE hash function key h that is statistically binding in position (u∗,v∗), the cheating prover
P∗ produces an accepting proof π and a hash value rt s.t. SEH.Extract(td, rt) 6= x(u∗,v∗), where td is the

8

Building blocks: (i) SEH.Hash—an SE hash function. (ii) BARGidx—a BARG for the index language. (iii)
H = {Hλ}λ∈N—a hash function family that is correlation intractable for efficiently product verifiable relation
ensembles.

CRS generation: Sample an SE hash function key h′, a CI hash function hCIH ∈ Hλ, and a CRS of BARGidx.
Also, recursively sample a CRS of itself for input length m−mλ.
Prover P: Given (x, h, rt) and the CRS, compute a proof π as follows.

1. Compute the LDE x̂ : Fm → F of x and view x̂ as a |F|mλ × |F|m−mλ matrix. For each u ∈ Fmλ , let x̂(u,∗)
denote the u-th row of the matrix.

(a) Compute rtu := SEH.Hash(h′, x(u,∗)) for ∀u ∈ Fmλ , where x(u,∗) := x̂(u,∗)|Hm−mλ .

(b) For ∀u ∈ Hmλ , use BARGidx to compute a proof πidx
u for the consistency between rt and rtu (i.e., prove

that ∀v ∈ Hm−mλ∃x′
u,v ∈ F s.t. both rt and rtu have x′

u,v in the appropriate positions of their pre-
images).

(c) Use BARGidx to compute a proof πidx proving that each column that is hashed to {rtu}u∈Fmλ is a valid
LDE (i.e., prove that ∀v ∈ Hm−mλ∃x′

(∗,v) : Hmλ → F s.t. the values in the v-th position of the pre-
images of {rtu}u∈Fmλ constitute the LDE of x′

(∗,v)).

2. Apply hCIH to {rtu}u∈Hmλ to obtain Sc := (c1, . . . , cα) ∈ Fmλ × · · · × Fmλ .

3. For ∀ci ∈ Sc, recursively invoke the prover P for the statement (x(ci,∗), h
′, rtci

) to obtain a proof πci
.

4. Output π := ({rtu}u∈Fmλ , {πidx
u }u∈Hmλ , πidx, {πci}ci∈Sc).

Verifier V: Given (h, rt, π), the CRS, and oracle access to the LDE x̂ do the following.

1. Parse π as ({rtu}u∈Fmλ , {πidx
u }u∈Hmλ , πidx, {πci

}ci∈Sc).

2. Apply hCIH to {rtu}u∈Hmλ to obtain Sc := (c1, . . . , cα) ∈ Fmλ × · · · × Fmλ .

3. Output 1 iff all of the proofs {πidx
u }u∈Hmλ , πidx, {πci}ci∈Sc are accepting, where each recursive proof πci is

verified for the statement (x(ci,∗), h
′, rtci

) by recursively invoking the verifier V with oracle x̂(ci, ·).

Figure 2: Overview of our holographic SNARG for SE-hashing (when m ≥ mλ).

trapdoor corresponding to h. Note that, due to the index hiding property of the underlying SE hash function,
P∗ breaks the somewhere soundness even when the CRS generation algorithm samples the SE hash function
key h′ in a way that h′ is statistically binding in position v∗. Let {x̃(u,v∗)}u∈Fmλ denote the column that we
can extract by using SEH.Extract for the hash values {rtu}u∈Fmλ that P∗ provides as the hashes of the rows.
To use P∗ to break the soundness of a recursive proof, we show that ∃i ∈ [α] s.t. the i-th recursive statement
(x(ci,∗), h

′, rtci) is false, i.e., the ci-th row of the extracted column {x̃(u,v∗)}u∈Fmλ disagrees with the correct
value x̂(ci,v∗). Put differently, we show that the output (c1, . . . , cα) of the CI hash function is not included in
the set S1 × · · · × Sα s.t. Si := {c ∈ Fmλ | x̃(c,v∗) = x̂(c,v∗)}. Toward this goal, we can use the correlation
intractability of hCIH straightforwardly since we have |Si| ≤ ρ|F|mλ for a constant ρ as shown below.6

Let x̃(∗,v∗) : Fmλ → F be the function representing the extracted column, i.e., x̃(∗,v∗) :
u 7→ x̃(u,v∗). The somewhere soundness of BARGidx guarantees that x̃(∗,v∗) is a valid LDE s.t.
x̃(∗,v∗)(u

∗) = SEH.Extract(td, rt). Since we assumed SEH.Extract(td, rt) 6= x(u∗,v∗) for con-
tradiction, it follows that x̃(∗,v∗) and x̂(·,v∗) are valid LDEs that disagree in position u∗. Thus, by
appropriately setting the parameter of the LDE, we can guarantee that x̃(∗,v∗) and x̂(·,v∗) disagree
in a constant fraction of positions.

Thus, the correlation intractability of hCIH guarantees that ∃i ∈ [α] s.t. x̃(ci,v∗) 6= x̂(ci,v
∗), i.e., the recursive

statement (x(ci,∗), h
′, rtci) is false. Thus, we can break the soundness of a recursive execution and reach a

contradiction.
6Si is efficiently verifiable by a circuit that has {tdu}u∈Fmλ and {x̂(u,v∗)}u∈Fmλ as hardwired inputs.

9

2.2 Holographic SNARG for Batch-NP
Our starting point is the non-holographic SNARG for Batch-NP by Choudhuri, Jain, and Jin (CJJ) [CJJ22],
which is non-holographic only in that the verifier computes an SE hash of the instances. Concretely, the CJJ
SNARG works as follows. For k instances x1, . . . , xk of an NP language L, the prover computes a hash rt of
the instances using an SE hash function and then uses a BARG for the index language to prove the following for
each i ∈ [k]: (i) the i-th position of the pre-image of the hash rt can be opened to an instance x̃i and (ii) x̃i ∈ L.
The verifier computes the SE hash of the instances and verifies the BARG proof.

We make the CJJ SNARG holographic by letting the prover send the hash of the instances along with a
holographic proof about the correctness of the hash. For the analysis of the CJJ SNARG to go through, the
proof about the SE hash needs to have the following weak form of soundness: if the i-th instance is extracted
from the hash, the extracted instance is equal to xi. This form of soundness is precisely what our somewhere-
sound holographic SNARG for SE-hashing guarantees. Thus, combining it with the CJJ SNARG suffices.

3 Preliminaries
3.1 Notations and Conventions
We use λ to denote the security parameter. For any binary strings a, b ∈ {0, 1}∗, we use a ‖ b to denote their
concatenation. For any n ∈ N, we use [n] to denote the set {1, . . . , n}. We use poly to denote an unspecified
polynomial, negl to denote an unspecified negligible function, and PPT as an abbreviation of “probabilistic
polynomial-time.” For any NP language L and an instance x ∈ L, we use RL to denote the witness relation (i.e.,
RL is the set of all instance-witness pairs of L) and use RL(x) to denote the set of all witnesses of x. For a vector
v = (v1, . . . , vN) and a set S ⊆ [N], let v|S := {vi}i∈S . Similarly, for a function f : D → R and a set S ⊆ D,
let f |S be the function that is obtained by restricting the domain of f to S. We often view a function as a string
that represents its truth table; e.g., we sometimes view f |S as {f(i)}i∈S . For a set S, we denote by s ← S the
process of obtaining an element s ∈ S by a uniform sampling from S. For any probabilistic algorithm Algo and
an input x, we denote by y ← Algo(x) the process of obtaining an output y by running Algo(x) with uniform
randomness. Unless otherwise stated, each algorithm runs in time polynomial in the length of its first input.
(The length of the first input is usually equal to or polynomially bounded by the security parameter.)

3.2 Low-Degree Extensions
For any finite field F, a subset H ⊆ F, and an integer m ∈ N, the low-degree extension (LDE) of a function
f : Hm → {0, 1} (or f : Hm → F) is the unique function f̂ : Fm → F such that (i) f̂(z) = f(z) for every
z ∈ Hm and (ii) f̂ is an m-variate polynomial of degree at most |H|− 1 in each variable.7 Concretely speaking,
f̂ can be written as follows.

f̂(z1, . . . , zm) =
∑

(u1,...,um)∈Hm

∏
i∈[m]

∏
v∈H\{ui}

zi − v

ui − v
· f(u1, . . . , um) . (1)

For any n ∈ N, the LDE of a binary string x = (x1, . . . , xn) ∈ {0, 1}n (or a vector x ∈ Fn) can be obtained
by viewing x as a function as follows: choose H and m such that n ≤ |H|m in a canonical way; identify
{1, . . . , |H|m} with Hm by the lexicographical order; and view x as a function x : Hm → {0, 1} such that
x(i) = xi for ∀i ∈ [n] and x(i) = 0 for ∀i ∈ {n+ 1, . . . , |H|m}.

We use LDEF,H,m(x) to denote the LDE of x w.r.t. (F,H,m). For any appropriate (F,H,m) and z ∈ Fm,
the LDE of x can be evaluated on z in time |H|m ·poly(m, |H|), where it is assumed that we have |F| = poly(|H|)
and each field operation over F can be done in time poly(log|F|) (see, e.g., [GKR15, Claim 2.3]).

Below is a technical lemma that we use in Section 4.

Lemma 1. For a finite field F, a subset H ⊆ F, an integer m ∈ N, and a function f : Hm → {0, 1}, let
f̂ : Fm → F denote the LDE of f .

7In this paper, the LDE of f is also considered for the case of m = 0. When m = 0, the function f is a single element b (which is
viewed as a function with domain {0}), and the LDE of f is b itself.

10

1. For any m′ ∈ [m − 1] and c = (c1, . . . , cm′) ∈ Fm′ , let f̂(c,∗) : Fm−m′ → F be defined as f̂(c,∗) :

(zm′+1, . . . , zm) 7→ f̂(c1, . . . , cm′ , zm′+1, . . . , zm), and let f(c,∗) ≡ f̂(c,∗)|Hm−m′ . Then, f̂(c,∗) is the
LDE of f(c,∗) w.r.t. (F,H,m−m′).

2. For any m′ ∈ [m − 1] and c = (cm−m′+1, . . . , cm) ∈ Fm′ , let f̂(∗,c) : Fm−m′ → F be defined as
f̂(∗,c) : (z1, . . . , zm−m′) 7→ f̂(z1, . . . , zm−m′ , cm−m′+1, . . . , cm), and let f(∗,c) ≡ f̂(∗,c)|Hm−m′ . Then,
f̂(∗,c) is the LDE of f(∗,c) w.r.t. (F,H,m−m′).

Proof . This lemma follows from the uniqueness of LDEs since f̂(c,∗) (resp., f̂(∗,c)) agrees with f(c,∗) (resp.,
f(∗,c)) in Hm−m′ and has individual degree at most H− 1.

3.3 Hash Functions
Recall that a hash function family can be modeled by two algorithms (Gen,Hash) as follows for a domain-
codomain ensemble {(Xλ, Yλ)}λ∈N.

• h← Gen(1λ): Gen is aPPT algorithm that takes as input a security parameter λ (in unary), and it outputs
a key h.

• y := Hash(h, x): Hash is a deterministic polynomial-time algorithm that takes as input a key h ∈ Gen(1λ)
and an input value x ∈ Xλ, and it outputs a hash value y ∈ Yλ.

A hash function family is called public-coin [HR04] if Gen(1λ) outputs a uniformly random string.
In this paper, we use the following simplified notations. For a hash function family H = (Gen,Hash),

we use Hλ to denote the range of Gen(1λ), use h ← Hλ as a shorthand of h ← Gen(1λ), and use h(x) as a
shorthand of Hash(h, x).

Tree hash. Recall that for any function h : {0, 1}2λ → {0, 1}λ and any ℓ ∈ N, the (binary) tree-hash of a
string x ∈ {0, 1}2ℓλ is obtained as follows.

1. Partition x into 2ℓ blocks blk0, . . . , blk2ℓ−1 such that |blk0| = · · · = |blk2ℓ−1| = λ.

2. Define nodei,σ ∈ {0, 1}λ for ∀i ∈ {0, . . . , ℓ}, σ ∈ {0, . . . , 2i − 1} as follows.

(a) nodeℓ,σ := blkσ for ∀σ ∈ {0, . . . , 2ℓ − 1}.
(b) nodei,σ := h(nodei+1,2σ ‖nodei+1,2σ+1) for ∀i ∈ {ℓ− 1, . . . , 0}, σ ∈ {0, . . . , 2i − 1}

3. Let the tree-hash of x be node0,0.

We use TreeHashh(x) to denote the tree-hash of x.

3.4 Correlation-Intractable Hash Functions
We recall the definition of correlation-intractable hash functions [CGH04].

Definition 1 (Correlation intractability). Let H = (Gen,Hash) be a hash function family and {(Xλ, Yλ)}λ∈N
be its domain-codomain ensemble. Then, H is correlation intractable for a relation ensemble R = {Rλ ⊆
Xλ × Yλ}λ∈N if for every PPT algorithm A, there exists a negligible function negl such that for every λ ∈ N
and z ∈ {0, 1}∗,

Pr

(x, y) ∈ Rλ

∣∣∣∣∣∣
h← Gen(1λ)
x← A(h, z)
y := Hash(h, x)

 ≤ negl(λ) .

11

Correlation intractability for efficiently verifiable product relations. We recall a result by Holmgren, Lom-
bardi, and Rothblum [HLR21b] about correlation intractability for efficiently verifiable product relations.

Definition 2 (Product relation [HLR21a, Definition 3.1]). A relation R ⊆ X × Y t is said to be a product
relation if for every x ∈ X , the set Rx := {(y1, . . . , yt) | (x, (y1, . . . , yt)) ∈ R} ⊆ Y t has a decomposition
Rx = S1 × S2 × · · · × St, where S1, . . . , St ⊆ Y may depend on x.

Definition 3 (Efficient product verifiability [HLR21a, Definition 3.3], slightly modified). For any T ∈ N, a
product relation R ⊆ X × Y t is called T -time product verifiable if there exists a size-T circuit C such that
for every input x ∈ X with the corresponding sets S1, . . . , St as in Definition 2, it holds that C(x, y, i) = 1 iff
y ∈ Si.8

Definition 4 (Product sparsity [HLR21a, Definition 3.4]). For any ρ ∈ [0, 1], a product relation R ⊆ X × Y t

is said to have product sparsity ρ if for every input x ∈ X , the sets S1, . . . , St as in Definition 2 have size at
most ρ|Y |.

Theorem 1 ([HLR21a, Theorem 5.1]). Let T : N → N and ρ : N → [0, 1] be functions and R =
{Rλ ⊆ Xλ × Y tλ

λ }λ∈N be an ensemble of product relations such that (i) each Rλ is T (λ)-time product ver-
ifiable with product sparsity ρ(λ), (ii) |Yλ|, log|Xλ|, T (λ), and tλ are all upper bounded by λO(1), and (iii)
tλ ≥ λ/ log(1/ρ(λ)). Let X := {Xλ}λ∈N, Y := {Yλ}λ∈N and t := {tλ}λ∈N. Then, for the domain-codomain
ensemble {(Xλ, Y

tλ
λ)}λ∈N, there exists a hash function familyH that is correlation intractable for R under the

LWE assumption. Moreover,H depends only on (X,Y, ρ, t, T) (and is otherwise independent of R) and can be
evaluated in time poly(log|Xλ|, |Yλ|, tλ, T (λ)).

Several remarks about Theorem 1 are given below. First, the correlation-intractable hash function family H of
Theorem 1 can be made public-coin. (This is because one of its main components, the LWE-based correlation-
intractable hash family of Peikert and Shiehian [PS19], can be made public-coin.) Also, H can be efficiently
determined given (X,Y, ρ, t, T), and its correlation intractability holds for a negligible function that depends
only on (X,Y, ρ, t, T) (and is otherwise independent of R). Additionally, as mentioned in [HLR21a, Sec-
tion 5.1], the condition tλ ≥ λ/ log(1/ρ(λ)) in Theorem 1 can be weakened to tλ ≥ λδ/ log(1/ρ(λ)) for an
arbitrarily small constant δ > 0. Similarly, if the LWE assumption holds against slightly super-polynomial-
time adversaries, the condition can be weakened to tλ ≥ λ1/τ(λ)/ log(1/ρ(λ)) for a super-constant function
τ(λ) = ω(1). (See Section A.1 in the appendix for details.)

3.5 Somewhere Extractable Hash Functions
We recall the definition of somewhere extractable hash functions [HW15, CJJ21a, CJJ22]. The following def-
inition is adapted from [CJJ21b, Section 3.5]; the differences from the original definition are summarized in
Remark 1 below.

Definition 5 (Somewhere extractable hash with local opening). A somewhere extractable hash function family
consists of a tuple of algorithms (Gen,TGen,Hash,Open,Verify,Extract) satisfying the following.

• Syntax. Gen and TGen are probabilistic and the others are deterministic.

• Opening correctness. For every λ ∈ N, N ∈ [2λ], MI ∈ [N], i ∈ [N], and m = (m1, . . . ,mN) ∈
{0, 1}N ,

Pr

Verify(h, rt,mi, i, certi) = 1

∣∣∣∣∣∣
h← Gen(1λ, N, 1MI)
rt := Hash(h,m)
certi := Open(h,m, i)

 = 1 .

• Key indistinguishability. For every PPT algorithms (A1,A2) and polynomial polyN , there exists a
negligible function negl such that for every λ ∈ N, N ≤ polyN (λ), and z ∈ {0, 1}∗,∣∣∣∣∣∣∣∣

Pr

[
A2(st, h) = 1

∣∣∣∣ (st, I)← A1(1
λ, N, z)

h← Gen(1λ, N, 1|I|)

]
−Pr

[
A2(st, h) = 1

∣∣∣∣ (st, I)← A1(1
λ, N, z)

(h, td)← TGen(1λ, N, I)

]
∣∣∣∣∣∣∣∣ ≤ negl(λ) .

8The definition is slightly modified in that the size of C is required to be bounded by T rather than an arbitrary polynomial.

12

• Somewhere (statistical) extractability. For any polynomial polyI , there exists a negligible function negl
such that for every λ ∈ N, N ∈ [2λ], and I ⊆ [N] such that |I| ≤ polyI(λ),

Pr


∃ rt,mi∗ , i

∗, certi∗ s.t.
i∗ ∈ I
∧ Verify(h, rt,mi∗ , i

∗, certi∗) = 1
∧ m̃i∗ 6= mi∗ , where {m̃i}i∈I := Extract(td, rt)

∣∣∣∣∣∣∣∣ (h, td)← TGen(1λ, N, I)

 ≤ negl(λ) .

• Efficiency. In the above opening correctness experiment, the following hold.

– The key generation Gen runs in time poly(λ, logN,MI).
– The hashing algorithm Hash runs in time poly(λ,N) and outputs a hash value rt of length

poly(λ, logN,MI).
– The opening algorithm Open runs in time poly(λ,N) and outputs a certificate certi of length

poly(λ, logN,MI).
– The verifier Verify runs in time poly(λ, logN,MI).

Also, in the above extractability experiment, the following hold.

– The trapdoor key generation TGen runs in time poly(λ, logN,MI).
– The extractor Extract runs in time poly(λ, logN,MI).

Remark 1 (Differences from the definition in [CJJ21b, Section 3.5].). First, following recent works (e.g., [JJ22]),
we use the name “somewhere extractable hash functions” rather than “somewhere extractable commitments” to
emphasize that no hiding property is guaranteed. Second, the syntax of Gen and TGen is slightly modified. In
particular, the message length N is given in binary rather than in unary so that N can be super-polynomial in λ.
(Recall that Gen runs in time polylogarithmic in N .) Third, the somewhere extractability is slightly weaker. In
particular, we only require somewhere “statistical” extractability rather than somewhere “perfect” extractability.
Finally, the efficiency condition for the running time of Extract is given explicitly. ♢

As observed in [CJJ22], the LWE-based (public-coin) hash functions family by Hubacek and Wichs [HW15]
is somewhere extractable.

Theorem 2. Under the LWE assumption, there exists a (public-coin) somewhere extractable hash function
family.

Somewhere extractable hash for non-binary alphabets. In this paper, somewhere extractable hash functions
are also used for strings over a finite field F, where Definition 5 is straightforwardly generalized for non-binary
alphabets. Concretely, v = (v1, . . . , vN) ∈ FN is hashed by hashing (v1,j , . . . , vN,j) for every j ∈ [log|F|],
where vi,j is the j-th bit of vi. The running time of Gen remains the same since the same key can be used for
all the hashes, while the complexities related to the other algorithms increase by a multiplicative factor log|F|.

3.6 Keyless Multi-Collision Resistant Hash Functions
We recall the definition of multi-collision resistant hash functions from [BKP18], focusing on the keyless version.

Definition 6. For any functions K : N×N→ N and γ : N→ N, a keyless hash function Hash is called weakly
(K, γ)-collision-resistant if for every probabilistic γO(1)-time adversary A and every sequence of polynomial-
size advice {zλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N, the following holds for
K = K(λ, |zλ|).

Pr

[
y1 = · · · = yK
∧ ∀i 6= j : xi 6= xj

∣∣∣∣ (x1, . . . , xK)← A(1λ, zλ)
∀i : yi := Hash(1λ, xi)

]
≤ negl(γ(λ)).

As in [BKP18, Kiy22a], we focus on the case that Hash is polynomially compressing. Concretely, we assume
that Hash(1λ, ·) takes a string of length λ2 as input and outputs a string of length λ.

13

3.7 SNARGs for P (a.k.a. Non-Interactive Turing-Machine Delegations)
We recall the definition of SNARGs for P, a.k.a. publicly verifiable non-interactive Turing-machine delegation
schemes. The following definitions are adapted from those given in [KPY19a, Section 3.1]; the differences from
the original definitions are summarized in Remark 2 below.

Definition 7 (Language LM). For a (deterministic) Turing machine M , the language LM is defined as follows.

LM := {(χ, T) |M accepts χ within T steps} .

Definition 8 (Partially adaptive Turing-machine delegation). For a (deterministic) two-input Turing machine
M and pair of functions TGen : N × N → N, Lπ : N × N → N, a triple of algorithms (Gen,P,V) is called a
partially adaptive publicly verifiable non-interactive delegation scheme for M with setup time TGen and proof
length Lπ if it satisfies the following.

• Syntax. Gen is probabilistic and the others are deterministic.

• Completeness. For every λ, T, n1, n2 ∈ N and χ = (χ1, χ2) ∈ {0, 1}n1 × {0, 1}n2 such that n :=
n1 + n2 ≤ T ≤ 2λ and (χ, T) ∈ LM ,

Pr

[
V(crs, χ, π) = 1

∣∣∣∣ crs← Gen(1λ, T, n1, n2)
π := P(crs, χ)

]
= 1 .

• Partially adaptive soundness. For every PPT algorithm P∗ and triple of polynomials polyT , polyn1
,

polyn2
, there exists a negligible function negl such that for every λ ∈ N, T ≤ polyT (λ), n1 ≤ polyn1

(λ),
n2 ≤ polyn2

(λ), χ1 ∈ {0, 1}n1 , and z ∈ {0, 1}∗,

Pr

 V(crs, χ, π) = 1 ∧ (χ, T) 6∈ LM

∣∣∣∣∣∣
crs← Gen(1λ, T, n1, n2)
(χ2, π)← P∗(crs, χ1, z)
χ := (χ1, χ2)

 ≤ negl(λ) .

• Efficiency. In the above completeness experiment, the following hold.

– The setup algorithm Gen runs in time TGen(λ, T, n1, n2).
– The prover P runs in time poly(λ, T) and outputs a proof π of length Lπ(λ, T, n1, n2).
– The verifier V runs in time O(Lπ) + poly(λ, n).9

A publicly verifiable non-interactive delegation scheme is called public-coin if the setup algorithmGen is public-
coin, i.e., it just outputs a string that is sampled uniformly randomly (possibly along with various parameters
that are determined deterministically based on the input of Gen).

Remark 2 (Differences from the original definition [KPY19b, Section 3.1].). Most importantly, we consider
schemes for two-input Turing machines and define soundness in the partially adaptive setting [BR22], i.e., the
setting where the first input is non-adaptively determined while the second one is adaptively chosen by the
prover. Other differences are the following. First, since M is a two-input Turing machine, Gen takes the length
of both inputs (n1 and n2) rather than the total input length n. Second, for editorial simplicity, the output of
Gen is denoted as a single CRS and not parsed as a pair of public keys (a prover key pk and a verifier key vk).
Third, to describe the setup time TGen and the proof length Lπ of our schemes more precisely, we allow them
to additionally depend on the input lengths n1, n2. Finally, we define the public-coin property naturally. ♢

Definition 9 (Super-polynomial security). For a super-polynomial function γ, a partially adaptive publicly
verifiable non-interactive delegation scheme is called γ-secure if the partial adaptive soundness holds even when
(i) the adversary P∗ runs in time poly(γ(λ)) and (ii) the polynomials polyT , polyn1

, polyn2
are all replaced with

γ.
9For convenience, we use a slightly weaker bound than prior works [KPY19b], where the bound isO(Lπ)+n·poly(λ). As remarked

in [KPY19a, Remark 3.3], any bound less than the running time of M is non-trivial.

14

3.8 SNARGs for Batch-NP (a.k.a. Non-Interactive BARGs)
We recall the definition of SNARGs for Batch-NP, a.k.a. publicly verifiable non-interactive batch arguments
(BARGs). The following definitions are adapted from those given in [CJJ21b, Section 4.1]; the differences from
the original definitions are summarized in Remark 3.

Definition 10 (Circuit satisfiability). Let RCSAT be the following relation.

RCSAT := {((C, x), w) | C is a Boolean circuit s.t. C(x,w) = 1} .

Then, CSAT is the language defined as follows.

CSAT := {(C, x) | ∃w ∈ {0, 1}∗ s.t. ((C, x), w) ∈ RCSAT} .

Definition 11 (Batch circuit satisfiability). For any k ∈ N, let R⊗k
CSAT be the following relation.

R⊗k
CSAT := {((C,x),w) | x = (x1, . . . , xk) and w = (w1, . . . , wk) satisfy ((C, xi), wi) ∈ RCSAT for ∀i ∈ [k]} .

Then, for any k ∈ N, CSAT⊗k is the language defined as follows.

CSAT⊗k := {(C,x) | ∃w s.t. ((C,x),w) ∈ R⊗k
CSAT} .

Definition 12 ((Non-adaptive) BARG for CSAT). A triple of algorithms (Gen,P,V) is called a (non-adaptive)
publicly verifiable non-interactive batch argument for CSAT if it satisfies the following.

• Syntax. Gen is probabilistic and the others are deterministic.

• Completeness. For every λ, k, n ∈ N and ((C,x),w) ∈ R⊗k
CSAT such that x ∈ ({0, 1}n)k,

Pr

[
V(crs, C,x, π) = 1

∣∣∣∣ crs← Gen(1λ, 1n, 1|C|, k)
π := P(crs, C,x,w)

]
= 1 .

• (Non-adaptive) Soundness. For every PPT algorithm P∗ and pair of polynomials polyk, polyC , there
exists a negligible function negl such that for every λ ∈ N, k ≤ polyk(λ), MC ≤ polyC(λ), n ≤ MC ,
(C,x) 6∈ CSAT⊗k, and z ∈ {0, 1}∗ such that |C| ≤MC and x ∈ ({0, 1}n)k,

Pr

[
V(crs, C,x, π) = 1

∣∣∣∣ crs← Gen(1λ, 1n, 1MC , k)
π ← P∗(crs, C,x, z)

]
≤ negl(λ) .

• Efficiency. In the above completeness experiment, the following hold.

– The setup algorithm Gen runs in time poly(λ, |C|, log k).
– The prover P runs in time poly(λ, |C|, k) and outputs a proof π of length poly(λ, |C|, log k).
– The verifier V runs in time poly(λ, n, k) + poly(λ,MC , log k).

A publicly verifiable non-interactive batch argument is called public-coin if the setup algorithm Gen is public-
coin, i.e., it just outputs a string that is sampled uniformly randomly (possibly along with various parameters
that are determined deterministically based on the input of Gen).

Definition 13 (Semi-adaptive somewhere soundness). A publicly verifiable non-interactive batch argument
(Gen,P,V) for CSAT is called semi-adaptive somewhere sound if there exists a PPT algorithm TGen that
satisfies the following.

• CRS indistinguishability. For every PPT algorithms (A1,A2) and pair of polynomials polyk, polyC ,
there exists a negligible function negl such that for every λ ∈ N, k ≤ polyk(λ), MC ≤ polyC(λ),
n ≤MC , and z ∈ {0, 1}∗,∣∣∣∣∣∣∣∣

Pr

[
A2(st, crs) = 1

∣∣∣∣ (st, i∗)← A1(1
λ, 1n, 1MC , k, z)

crs← Gen(1λ, 1n, 1MC , k)

]
−Pr

[
A2(st, crs) = 1

∣∣∣∣ (st, i∗)← A1(1
λ, 1n, 1MC , k, z)

(crs, td)← TGen(1λ, 1n, 1MC , k, i∗)

]
∣∣∣∣∣∣∣∣ ≤ negl(λ) .

15

• Semi-adaptive somewhere soundness. For every PPT algorithm P∗ and pair of polynomials polyk,
polyC , there exists a negligible function negl such that for every λ ∈ N, k ≤ polyk(λ), MC ≤ polyC(λ),
n ≤MC , and z ∈ {0, 1}∗,

Pr

 V(crs, C,x, π) = 1
∧ i∗ ∈ [k]
∧ (C, xi∗) 6∈ CSAT

∣∣∣∣∣∣∣∣
(st, i∗)← P∗

1(1
λ, 1n, 1MC , k, z)

crs← TGen(1λ, 1n, 1MC , k, i∗)
(C,x, π)← P∗

2(st, crs),
where x = (x1, . . . , xk) ∈ ({0, 1}n)k

 ≤ negl(λ) .

Remark 3 (Differences from the original definitions [CJJ21b, Section 4.1]). First, by default the soundness is
defined in the non-adaptive setting as in [CJJ21a], and the semi-adaptive soundness is given as an additional
security notion. Second, the setup algorithm takes k in binary rather than in unary so that k can be super-
polynomial in λ. (Recall that Gen runs in time polylogarithmic in k.) Third, Gen additionally takes n (the
length of each instance) as input. (If the instance length is unknown at the setup time, the circuit size |C| can
be used as a loose upper bound. By adding dummy gates, any size-MC circuit can be converted to a 2MC-size
circuit that takes a length-MC input.) Finally, we define the public-coin property naturally. ♢

Weakly semi-adaptive somewhere soundness. We define a new soundness notion that lies between non-
adaptive soundness and semi-adaptive somewhere soundness. The difference from semi-adaptive somewhere
soundness is that the instances x are fixed non-adaptively (the circuit C is still chosen adaptively).

Definition 14 (Weakly semi-adaptive somewhere soundness). A publicly verifiable non-interactive batch argu-
ment (Gen,P,V) for CSAT is called weakly semi-adaptive somewhere sound if there exists a PPT algorithm
TGen that satisfies the following.

• CRS indistinguishability. Identical with the one in Definition 13.

• Weakly semi-adaptive somewhere soundness. For every PPT algorithm P∗ and pair of polynomials
polyk, polyC , there exists a negligible function negl such that for every λ ∈ N, k ≤ polyk(λ), MC ≤
polyC(λ), n ≤MC , and z ∈ {0, 1}∗,

Pr

 V(crs, C,x, π) = 1
∧ i∗ ∈ [k]
∧ (C, xi∗) 6∈ CSAT

∣∣∣∣∣∣∣∣
(st, i∗,x)← P∗

1(1
λ, 1n, 1MC , k, z),

where x = (x1, . . . , xk) ∈ ({0, 1}n)k
crs← TGen(1λ, 1n, 1MC , k, i∗)
(C, π)← P∗

2(st, crs)

 ≤ negl(λ) .

Non-interactive BARGs for the index language. We recall the definition and a known result of publicly
verifiable non-interactive BARGs for the index language [CJJ22].

Definition 15 (BARG for index language). Publicly verifiable non-interactive batch arguments for the indexed
language are a special case of publicly verifiable non-interactive batch arguments for CSAT (Definition 12),
with the following differences.

• Syntax. The instances x = (x1, . . . , xk) are fixed to be the indices x = (1, . . . , k), and they are not given
to the prover P and the verifier V. Also, the instance length n is not given to the setup algorithm Gen. (It
is assumed that P and V can learn k from the common reference string crs.)

• Efficiency. The requirement about the running time of the verifierV is strengthened to poly(λ,MC , log k).

Theorem 3 ([CJJ22]). Under the LWE assumption, there exists a public-coin non-interactive batch argument
for the index language. Furthermore, it satisfies semi-adaptive somewhere soundness.

3.9 Holographic SNARGs for P and Batch-NP
We define holographic SNARGs for P and Batch-NP by naturally combining the definitions of non-
interactive Turing-machine delegations and BARGs with the definitions of holographic interactive
proofs/arguments [GR17, BR22].

16

Definition 16 (Holographic Turing-machine delegation). Let M be a two-input Turing machine. A publicly
verifiable non-interactive delegation scheme (Gen,P,V) for M is called holographic if there exists a determin-
istic polynomial-time algorithm Encode such that the execution of the verifier on input (crs, (χ1, χ2), π) can be
written as Vχ̂1(crs, (|χ1|, χ2), π) for χ̂1 := Encode(λ, χ1), where the verifier works in two steps as follows.

1. Without making queries to χ̂1, the verifier either immediately outputs 0 (i.e., rejects the proof) or computes
a set I ⊆ [n̂] of queries along with a set Z ⊆ Σn̂ of expected responses. (Σ is the alphabet of χ̂1 and n̂
is the block length.) This step takes time at most O(Lπ) + poly(λ, log|χ1|, |χ2|), where Lπ is the length
of the proof π.

2. The verifier makes the queries to χ̂1, and it outputs 1 iff χ̂1|I = Z.

Definition 17 (Holographic batch argument). A publicly verifiable non-interactive batch argument (Gen,P,V)
is called holographic if there exists a deterministic polynomial-time algorithm Encode such that the execution
of the verifier on input (crs, C,x, π) can be written as Vx̂(crs, C, k, π) for x̂ := Encode(λ,x), where the verifier
proceeds in two steps as follows.

1. Without making queries to x̂, the verifier either immediately outputs 0 (i.e., rejects the proof) or computes
a set I ⊆ [n̂] of queries along with a set Z ⊆ Σn̂ of expected responses. (Σ is the alphabet of x̂ and n̂ is
the block length.) This step takes time at most poly(λ, |C|, log k).

2. The verifier makes the queries to x̂, and it outputs 1 iff x̂|I = Z.

The following is a special case of the above definitions.

Definition 18 (LDE-holographic delegation). A publicly verifiable non-interactive delegation scheme (resp.,
a publicly verifiable non-interactive batch argument) is called LDE-holographic if it is holographic w.r.t. the
encoding algorithm Encode that outputs the low-degree extension LDEF,H,m(χ) of the input χ for the parameter
(F,H,m) that is determined based on (λ, |χ|) (resp., the low-degree extension LDEF,H,m(x) of the instances
x = (x1, . . . , xk) for the parameter (F,H,m) that is determined based on (λ, |x1| + · · · + |xk|), where x is
viewed as a binary string x1 ‖· · ·‖xk).

4 Somewhere-Sound Holographic SNARG for Somewhere-Extractable Hash-
ing

In this section, we construct a specific type of holographic SNARGs that we use as a tool in the subsequent
sections. The target of this section is defined as follows based on the definition of holographic publicly verifiable
non-interactive Turing-machine delegations schemes (Definition 8, Definition 16).

Definition 19 (Partially adaptive somewhere-sound holographic delegation for SE hash). Let SEH =
(SEH.Gen, SEH.TGen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract) be a somewhere extractable hash
function family. A partially adaptive somewhere-sound holographic non-interactive delegation scheme for
SEH consists of four algorithms (Gen,P,V,Encode) satisfying the following.

• Holographic completeness. For every λ ∈ N, N ∈ [2λ], x ∈ {0, 1}N , and MI ∈ [N],

Pr

Vx̂(crs, (h, rt), π) = 1

∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, N, 1MI)
h← SEH.Gen(1λ, N, 1MI)
rt := SEH.Hash(h, x)
π := P(crs, (x, (h, rt)))
x̂ := Encode(λ, x)

 = 1 .

Furthermore, the execution of Vx̂(crs, (h, rt), π) proceeds in two steps as specified in the definition of
holographic delegations (Definition 16).

17

• Partially adaptive somewhere soundness. For every PPT algorithm P∗ and pair of polynomials polyN ,
polyI , there exists a negligible function negl such that for every λ ∈ N, N ∈ [2λ], x = (x1, . . . , xN) ∈
{0, 1}N , I ⊆ [N], and z ∈ {0, 1}∗ such that N ≤ polyN (λ) and |I| ≤ polyI(λ),

Pr

 Vx̂(crs, (h, rt), π) = 1
∧ ∃i ∈ I s.t. xi 6= x̃i

∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, N, 1|I|)
(h, td)← SEH.TGen(1λ, N, I)
(rt, π)← P∗(crs, (x, h), z)
x̂ := Encode(λ, x)
{x̃i}i∈I := SEH.Extract(td, rt)

 ≤ negl(λ) .

• Efficiency. In the above completeness experiment, the following hold.

– The setup algorithm Gen runs in time poly(λ, logN,MI).
– The prover P runs in time poly(λ,N) and outputs a proof π of length poly(λ, logN,MI).
– The verifier V runs in time poly(λ, logN,MI).

A holographic delegation scheme for SEH is called public-coin if the setup algorithm Gen is public-coin, i.e.,
it just outputs a string that is sampled uniformly randomly (possibly along with various parameters that are
determined deterministically based on the input of Gen). A holographic delegation scheme for SEH is called
LDE-holographic if the encoding algorithm Encode outputs the low-degree extension LDEF,H,m(x) of the input
x for the parameter (F,H,m) that is determined based on (λ, |x|).

The goal of this section is to prove the following lemma.

Lemma 2. Under the LWE assumption, there exists a partially adaptive somewhere-sound holographic non-
interactive delegation scheme for any somewhere extractable hash function family. The scheme is public-coin
and LDE-holographic, where for the security parameter λ and an input x of length N , the encoding algorithm
Encode outputs the LDE of x w.r.t. an arbitrary LDE parameter (F,H,m) such that |F| ≤ poly(|H|) ≤
poly(logN), |H|m ≤ poly(N), and m|H|/|F| ≤ O(1).

Proof . Fix any somewhere extractable hash function family SEH = (SEH.Gen, SEH.TGen, SEH.Hash,
SEH.Open, SEH.Verify, SEH.Extract). Our goal is to give a partially adaptive somewhere-sound holographic
non-interactive delegation scheme for SEH. For simplicity, we assume SEH is public-coin.10

First, we introduce notations. Let paramLDE be any efficiently computable mapping that maps each (λ,N) ∈
N × N to an LDE parameter (F,H,m) such that |F| ≤ poly(|H|) ≤ poly(logN), |H|m ≤ poly(N), and
m|H|/|F| ≤ O(1).11 For a security parameter λ ∈ N and an LDE parameter (F,H,m) := paramLDE(λ,N),
define mλ as mλ := dlog|H| λe so that λ ≤ |H|mλ < λ|H|. (Since |H| ≤ poly(logN) ≤ poly(λ), we have
|H|mλ ≤ poly(λ).) We identify Hm with {1, . . . , |H|m} by the lexicographical order. We often implicitly view
each element of Hm as the corresponding element of {1, . . . , |H|m}.

Next, we introduce the building blocks that we use in our scheme.

• Let BARGidx = (BARG.Genidx,BARG.Pidx,BARG.Vidx) be a semi-adaptive somewhere-sound public-
coin non-interactive BARG for the index language.

• For each (arbitrarily small) constant δ > 0 andα := bλδc, letCIHα be a public-coin correlation-intractable
hash function family that satisfies the following. For sufficiently large polynomials polyX , polyY , polyT
and a constant ρ ∈ [0, 1],12 (i) the domain-codomain ensemble of CIHα is {(Xλ, Y

α
λ)}λ∈N for Xλ :=

{0, 1}polyX(λ) and Yλ := {1, . . . , polyY (λ)}, (ii) the correlation intractability of CIHα holds for any
product relation ensemble that is polyT -time product verifiable with product sparsity ρ, and (iii) CIHα

can be evaluated in time poly(log|Xλ|, |Yλ|, α, polyT (λ)) = poly(λ, α).
10If not, it suffices to additionally use any LWE-based somewhere extractable hash function family (cf. Theorem 2) as a building

block in our scheme.
11E.g, |H| := ⌈logN⌉, |F| := poly(|H|), and m := ⌈log|H| N⌉.
12The concrete requirements about polyX , polyY , polyT , and ρ are determined based on SEH and paramLDE (cf. the proof of

Claim 3).

18

crs← Gen(1λ, N, 1MI):

1. Let (F,H,mN) := paramLDE(λ,N).

2. Sample h′ ← SEH.Gen(1λ, |H|mN , 1M
′
I), where M ′

I := 1.

3. Sample crsidx ← BARG.Genidx(1
λ, 1MC , N), where MC = poly(λ, logN,MI) is the size of the circuit C

that is defined in the prover P below.

4. Sample crs′ ← Gensub(1
λ, (F,H,mN), α), where α := bλ1/(⌊mN/mλ⌋+1)c.

5. Output crs← (1λ, N, h′, crsidx, crs′).

π := P(crs, (x, (h, rt))):

1. Parse crs as (1λ, N, h′, crsidx, crs′). Let (F,H,mN) := paramLDE(λ,N).

2. Let x′ : HmN → F be the function that is obtained from x = (x1, . . . , xN) ∈ {0, 1}N by letting x′(i) := xi

for 1 ≤ i ≤ N and x′(i) := 0 for N < i ≤ |H|mN , where HmN is identified with {1, . . . , |H|mN } by the
lexicographical order and each xi ∈ {0, 1} is viewed as an element of F in the natural way.

3. Compute rt′ := SEH.Hash(h′, x′). Also, compute certi := SEH.Open(h, x, i) and cert′i :=
SEH.Open(h′, x′, i) for ∀i ∈ [N].

4. Compute πidx := BARG.Pidx(crs
idx, C,w), where w := {wi}i∈[N], wi := (xi, certi, cert

′
i), and C is the

following circuit.

• C has (h, rt, h′, rt′) as hardwired inputs, takes an index i ∈ [N] and a witness wi = (xi, certi, cert
′
i) as

inputs, and outputs 1 iff SEH.Verify(h, rt, xi, i, certi) = 1 and SEH.Verify(h′, rt′, xi, i, cert
′
i) = 1.

5. Compute π′ ← Psub(crs
′, (x′, (h′, rt′))).

6. Output π := (rt′, πidx, π′).

b := Vx̂(crs, (h, rt), π):

1. Parse crs as (1λ, N, h′, crsidx, crs′) and π as (rt′, πidx, π′).

2. Output 1 iff BARG.Vidx(crs
idx, C, πidx) = 1 and Vx̂

sub(crs
′, (h′, rt′), π′) = 1.

x̂ := Encode(λ, x):

1. Output x̂ := LDEF,H,mN
(x), where (F,H,mN) := paramLDE(λ,N) for N := |x|.

Figure 3: SEH-Del = (Gen,P,V,Encode).

Both of the above exist under the LWE assumption (cf. Theorem 3, Theorem 1, Remark 6).
Now, we describe our scheme SEH-Del = (Gen,P,V,Encode) using a subroutine scheme SEH-Delsub =

(Gensub,Psub,Vsub). Intuitively, SEH-Delsub is a holographic SNARG for SEH w.r.t. strings over finite fields
(rather than binary strings), and SEH-Del is a wrapper scheme that enables us to use SEH-Delsub w.r.t. strings
over binary strings. That is, given a binary string x and its SE hash value rt, SEH-Del converts x into an
equivalent string x′ over a finite field, computes the SE hash value rt′ of x′, and invokes SEH-Delsub for x′ and
rt′ while using BARGidx to prove the consistency between rt and rt′. The formal description of SEH-Del is
given in Figure 3. The subroutine scheme SEH-Delsub is defined recursively in Figure 4 (a high-level idea is
explained in Section 2.1).13 14

In the following, we prove that SEH-Del satisfies the completeness, efficiency, and soundness requirements
as described in Definition 19.

4.1 Completeness
To prove the holographic completeness of SEH-Del, we prove the following claim about the completeness of
SEH-Delsub.

13In SEH-Del and SEH-Delsub, the somewhere extractable hash function SEH is used for strings over a finite field (cf. Section 3.5).
14The recursive structure of SEH-Delsub is the reason why we define it w.r.t. strings over finite fields.

19

crs← Gensub(1
λ, (F,H,m), α):

1. If m < mλ, output crs := (1λ, (F,H,m),⊥,⊥,⊥,⊥) and terminate. If m ≥ mλ, continue to the next step.

2. Sample h+ ← SEH.Gen(1λ, |H|m−mλ , 1MI), where MI := 1.

3. Sample crsidx ← BARG.Genidx(1
λ, 1MC , |H|m−mλ), where MC := max(|Cu|, |C|) for the circuits Cu, C that

are defined in the prover Psub below.

4. Sample hCIH ← CIH.Genα(1
λ).

5. Sample crs+ ← Gensub(1
λ, (F,H,m−mλ), α).

6. Output crs := (1λ, (F,H,m), α, h+, crsidx, hCIH, crs+).

π ← Psub(crs, (x, (h, rt))):

1. Parse crs as (1λ, (F,H,m), α, h+, crsidx, hCIH, crs+), where (F,H,m) is expected to be an LDE parameter such
that x : Hm → F. If m < mλ, output π := x and terminate. If m ≥ mλ, compute x̂ := LDEF,H,m(x) and
continue to the next step.

2. Compute rt+u := SEH.Hash(h+, x(u,∗)) for ∀u ∈ Fmλ , where x(u,∗) : Hm−mλ → F is defined as x(u,∗) : v 7→
x̂(u,v). Also, compute cert(u,v) := SEH.Open(h, x, (u,v)) for ∀(u,v) ∈ Hmλ × Hm−mλ and cert+(u,v) :=

SEH.Open(h+, x(u,∗),v) for ∀(u,v) ∈ Fmλ ×Hm−mλ .

3. Compute πidx
u := BARG.Pidx(crs

idx, Cu,w) for ∀u ∈ Hmλ , where w := {wv}v∈Hm−mλ , wv := (x(u,v),
cert(u,v), cert

+
(u,v)), and Cu is the following circuit.

• Cu has (u, h, rt, h+, rt+u) as hardwired inputs, takes an index v and a witness w = (y, cert, cert+) as inputs,
and outputs 1 iff SEH.Verify(h, rt, y, (u,v), cert) = 1 and SEH.Verify(h+, rt+u , y,v, cert

′) = 1.

4. Compute πidx := BARG.Pidx(crs
idx, C,w), where w := {wv}v∈Hm−mλ , wv = {x̂(u,v), cert+(u,v)}u∈Fmλ ,

and C is the following circuit.

• C has (h+, {rt+u }u∈Fmλ) as hardwired inputs, takes an index v ∈ Hm−mλ and a witness w =
{y(u,v), cert(u,v)}u∈Fmλ as inputs, and outputs 1 iff (i) SEH.Verify(h+, rt+u , y(u,v),v, cert(u,v)) = 1 for
∀u ∈ Fmλ and (ii) the function ŷ(∗,v) : Fmλ → F defined as ŷ(∗,v) : u 7→ y(u,v) is the LDE of
y(∗,v) := ŷ(∗,v)|Hmλ w.r.t. (F,H,mλ).

5. Compute (c1, . . . , cα) := CIH.Hashα(h
CIH, {rt+u }u∈Hmλ), where each ci is viewed as an element of Fmλ .

Let Sc := {c1, . . . , cα}. (It is assumed that the domain Xλ = {0, 1}polyX(λ) of CIH is large enough so that
{rt+u }u∈Hmλ can be encoded as an element of Xλ in a canonical way.)

6. Compute π+
ci
← Psub(crs

+, (x(ci,∗), (h
+, rt+ci

))) for ∀ci ∈ Sc.

7. Output π := ({rt+u }u∈Fmλ , {πidx
u }u∈Hmλ , πidx, {π+

ci
}ci∈Sc).

b := Vx̂
sub(crs, (h, rt), π):

1. Parse crs as (1λ, (F,H,m), α, h+, crsidx, hCIH, crs+). If m < mλ, output 1 iff SEH.Hash(h, π) = rt and
π = x̂|Hm . If m ≥ mλ, continue to the next step.

2. Parse π as ({rt+u }u∈Fmλ , {πidx
u }u∈Hmλ , πidx, {π+

ci
}ci∈Sc).

3. Compute (c1, . . . , cα) := CIH.Hashα(h
CIH, {rt+u }u∈Hmλ), where each ci is viewed as an element of Fmλ . Let

Sc := {c1, . . . , cα}.

4. Output 1 iff all of the following hold.

• BARG.Vidx(crs
idx, Cu, π

idx
u) = 1 for ∀u ∈ Hmλ , where Cu is defined as in Psub.

• BARG.Vidx(crs
idx, C, πidx) = 1, where C is defined as in Psub.

• V
x̂(ci,·)
sub (crs+, (h+, rt+ci

), π+
ci
) = 1 for ∀ci ∈ Sc.

Figure 4: SEH-Delsub = (Gensub,Psub,Vsub).

20

Claim 1 (LDE-holographic completeness of SEH-Delsub). For every λ ∈ N, N ∈ [2λ], (F,H,mN) :=
paramLDE(λ,N), m ∈ {mN ,mN − mλ, . . . ,mN − bmN/mλc · mλ}, x : Hm → F, and α :=
bλ1/(⌊mN/mλ⌋+1)c,

Pr

Vx̂
sub(crs, (h, rt), π) = 1

∣∣∣∣∣∣∣∣∣∣
crs← Gensub(1

λ, (F,H,m), α)
h← SEH.Gen(1λ, |H|m, 1)
rt := SEH.Hash(h, x)
π ← Psub(crs, (x, (h, rt)))
x̂ := LDEF,H,m(x)

 = 1 .

Clearly, the completeness of SEH-Del (Definition 19) follows from Claim 1 by setting m := mN .15 (The
furthermore part of the completeness condition, i.e., that V proceeds in two steps where it makes non-adaptive
queries to x̂ at the last moment, can be verified by inspection by unfolding the recursive executions of Vsub.)
Thus, it remains to prove Claim 1.

Proof of Claim 1. We prove the claim by induction on m, where the base case is m = mN − bmN/mλc ·mλ.
For the base case, the claim trivially holds since we have m < mλ in this case. For the inductive step, assume
that the claim holds for m = m′ −mλ for some m′ ∈ {mN ,mN −mλ, . . . ,mN − (bmN/mλc − 1) ·mλ}.
Then, the claim for the case of m = m′ can be verified by inspection by relying on Lemma 1. Specifically, the
verifier Vx̂

sub accepts the proof π since

1. the BARG verifier BARG.Vidx accepts the proof πidx since for every v ∈ Hm−mλ , the function x̂(∗,v) :
Fmλ → F defined as x̂(∗,v) : u 7→ x̂(u,v) is the LDE of x(∗,v) := x̂(∗,v)|Hmλ w.r.t. (F,H,mλ), and

2. for each ci ∈ Sc, the recursive execution V
x̂(ci,·)
sub accepts the proof π+

ci since the function x̂(ci, ·) is the
LDE of x(ci,∗) w.r.t. (F,H,m−mλ).

4.2 Efficiency
Note that Gen, P, and V recursively execute Gensub, Psub, and Vsub at most α⌊mN/mλ⌋+1 times in total, and
we have α⌊mN/mλ⌋+1 = (bλ1/(⌊mN/mλ⌋+1)c)⌊mN/mλ⌋+1 ≤ λ. Thus, to prove the efficiency of SEH-Del, it
suffices to observe that (i) Gensub, Psub, and Vsub run in time at most poly(λ, log|H|mN), poly(λ, |H|mN), and
poly(λ, log|H|mN) respectively other than the recursive executions, and (ii) Psub outputs a proof of length at
most poly(λ, log|H|mN) other than the recursive proofs (each poly is independent of m). These two can be
verified by inspection by observing that the circuits Cu and C have size at most poly(λ, log|H|mN).

4.3 Partially Adaptive Somewhere Soundness
We prove the partially adaptive somewhere soundness of SEH-Del by proving a related soundness notion for
SEH-Delsub. Concretely, we consider the following two claims about SEH-Delsub.

Claim 2 (Base case). For every PPT algorithm P∗ and polynomial polyN , there exists a negligible function
negl such that for every λ ∈ N, N ≤ polyN (λ), (F,H,mN) := paramLDE(λ,N), m := mN −bmN/mλc ·mλ,
x : Hm → F, i∗ ∈ [|H|m], α := bλ1/(⌊mN/mλ⌋+1)c, and z ∈ {0, 1}∗,

Pr

 Vx̂
sub(crs, (h, rt), π) = 1
∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
crs← Gensub(1

λ, (F,H,m), α)
(h, td)← SEH.TGen(1λ, |H|m, {i∗})
(rt, π)← P∗(crs, (x, h), z)
x̂ := LDEF,H,m(x)
x̃i∗ := SEH.Extract(td, rt)

 ≤ negl(λ) . (2)

15In the verifier V, Claim 1 guarantees that the subroutine verifier Vsub outputs 1 since x̂ = LDEF,H,m(x) is equal to LDEF,H,m(x′).

21

Claim 3 (Inductive step). For every PPT algorithm P∗ and polynomial polyN , there exists a PPT algorithm
P+ and a negligible function negl such that the following holds. Assume there exists a polynomial polyP∗ such
that for infinitely many λ ∈ N, there exist N ≤ polyN (λ), (F,H,mN) := paramLDE(λ,N), m ∈ {mN ,mN −
mλ, . . . ,mN − (bmN/mλc − 1) ·mλ}, x : Hm → F, i∗ ∈ [|H|m], α := bλ1/(⌊mN/mλ⌋+1)c, and z ∈ {0, 1}∗
such that

Pr

 Vx̂
sub(crs, (h, rt), π) = 1
∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
crs← Gensub(1

λ, (F,H,m), α)
(h, td)← SEH.TGen(1λ, |H|m, {i∗})
(rt, π)← P∗(crs, (x, h), z)
x̂ := LDEF,H,m(x)
x̃i∗ := SEH.Extract(td, rt)

 ≥ 1

polyP∗(λ)
. (3)

Then, for such a polynomial polyP∗ and for infinitely many such λ, N , (F,H,mN), m, and α, there exist
x+ : Hm−mλ → F, i+ ∈ [|H|m−mλ], and z+ ∈ {0, 1}∗ such that

Pr

 Vx̂+

sub(crs, (h, rt), π) = 1
∧ x+(i∗) 6= x̃i+

∣∣∣∣∣∣∣∣∣∣
crs← Gensub(1

λ, (F,H,m−mλ), α)
(h, td)← SEH.TGen(1λ, |H|m−mλ , {i+})
(rt, π)← P+(crs, (x+, h), z+)
x̂+ := LDEF,H,m(x+)
x̃i+ := SEH.Extract(td, rt)


≥ 1

|F|mλ

(
1

polyP∗(λ)
− negl(λ)

)
. (4)

Furthermore, the running time of P+ is upper bounded by TP∗(λ) + poly(λ), where TP∗ is the running time of
P∗ and poly is a polynomial that is independent of TP∗ .

Before proving Claim 2 and Claim 3, we use them to complete the proof of the partially adaptive somewhere
soundness of SEH-Del.

Assume for contradiction that SEH-Del is not partially adaptive somewhere sound, i.e., there exist a PPT
algorithm P∗, pair of polynomials polyN , polyI , and polynomial polyP∗ such that the following holds: for
infinitely many λ ∈ N, there exist N ∈ [2λ], x ∈ {0, 1}N , I ⊆ [N], and z ∈ {0, 1}∗ such that N ≤ polyN (λ),
|I| ≤ polyI(λ), and

Pr

 Vx̂(crs, (h, rt), π) = 1
∧ ∃i ∈ I s.t. x(i) 6= x̃i

∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, N, 1|I|)
(h, td)← SEH.TGen(1λ, N, I)
(rt, π)← P∗(crs, (x, h), z)
x̂ := Encode(λ, x)
{x̃i}i∈I := SEH.Extract(td, rt)

 ≥ 1

polyP∗(λ)
. (5)

Fix any such P∗, polyN , polyI , and polyP∗ . It follows from the average argument that for infinitely many λ, N ,
x, I , and z as above, there exists i∗ ∈ I such that

Pr

 Vx̂(crs, (h, rt), π) = 1
∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
crs← Gen(1λ, N, 1|I|)
(h, td)← SEH.TGen(1λ, N, I)
(rt, π)← P∗(crs, (x, h), z)
x̂ := Encode(λ, x)
{x̃i}i∈I := SEH.Extract(td, rt)

 ≥ 1

|I| · polyP∗(λ)
. (6)

Let Genhyb and Vhyb be the hybrid setup and verifier that are defined in Figure 5. (The differences from Gen
and V are highlighted by colored backgrounds.)

First, we replace Gen with Genhyb in the probability experiment of (6). Note that Genhyb differs from Gen in
that it uses the trapdoor setup algorithms of SEH and BARGidx. Also, note that the experiment of (6) (including
the decision of whether the eventVx̂(crs, (h, rt), π) = 1∧ x(i∗) 6= x̃i∗ occurs or not) can be efficiently emulated
using arbitrary h′ and crsidx in Gen. Thus, from a standard hybrid argument, there exists a negligible function

22

negl such that for infinitely many λ, N , x, I , z, and i∗ as above,

Pr

 Vx̂(crs, (h, rt), π) = 1
∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
(crs, td′)← Genhyb(1

λ, N, 1|I|)
(h, td)← SEH.TGen(1λ, N, I)
(rt, π)← P∗(crs, (x, h), z)
x̂ := Encode(λ, x)
{x̃i}i∈I := SEH.Extract(td, rt)

 ≥ 1

|I| · polyP∗(λ)
− negl(λ) . (7)

Next, let us replace V with Vhyb in (7). To show that the probability in (7) only decreases by a
negligible amount, it suffices to show that the event BARG.Vidx(crs

idx, C, πidx) = 1 ∧ x̃i∗ 6= x̃′i∗
occurs in the last step of Vhyb with negligible probability. (Indeed, the outputs of V and Vhyb are
identical unless this event occurs.) First, the semi-adaptive somewhere soundness of BARGidx guar-
antees that when BARG.Vidx(crs

idx, C, πidx) = 1, there exists wi∗ = (xi∗ , certi∗ , cert
′
i∗) such that

SEH.Verify(h, rt, xi∗ , i
∗, certi∗) = 1 and SEH.Verify(h′, rt′, xi∗ , i

∗, cert′i∗) = 1 except with negligible prob-
ability. Next, the somewhere extractability of SEH guarantees that such wi∗ = (xi∗ , certi∗ , cert

′
i∗) satis-

fies x̃i∗ = xi∗ ∧ x̃′i∗ = xi∗ except with negligible probability. From these two, it follows that when
BARG.Vidx(crs

idx, C, πidx) = 1, we have x̃i∗ = x̃′i∗ except with negligible probability. Thus, there exists a
negligible function negl′ such that for infinitely many λ, N , x, I , z, and i∗ as above,

Pr

 Vx̂
hyb(crs, (h, rt), π, td, td

′) = 1

∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
(crs, td′)← Genhyb(1

λ, N, 1|I|)
(h, td)← SEH.TGen(1λ, N, I)
(rt, π)← P∗(crs, (x, h), z)
x̂ := Encode(λ, x)
{x̃i}i∈I := SEH.Extract(td, rt)

 ≥ 1

|I| · polyP∗(λ)
− negl′(λ) .

(8)

Now, let us derive a contradiction using Claim 2 and Claim 3. Since Vhyb outputs 0 unless x̃i∗ = x̃′i∗ ,
when we have Vx̂

hyb(crs, (h, rt), π) = 1 ∧ x(i∗) 6= x̃i∗ as in (8), we have x(i∗) 6= x̃′i∗ , i.e., the statement for the
subroutine scheme is false. Then, since Vhyb outputs 1 only when the cheating prover P∗ provides an accepting
proof of the subroutine scheme as a part of its proof, we can naturally use P∗ to obtain a successful cheating
prover against the subroutine scheme. In particular, it follows from (8) that there exists a PPT algorithm P∗

sub

and a polynomial poly′P∗ such that for infinitely many λ ∈ N, there exist N ≤ polyN (λ), (F,H,mN) :=

crs← Genhyb(1
λ, N, 1MI):

1. Let (F,H,mN) := paramLDE(λ,N).

2. Sample (h′, td′)← SEH.TGen(1λ, |H|mN , {i∗}).

3. Sample crsidx ← BARG.TGenidx(1
λ, 1MC , N, i∗).

4. Sample crs′ ← Gensub(1
λ, (F,H,mN), α), where α := bλ1/(⌊mN/mλ⌋+1)c.

5. Output crs← (1λ, N, h′, crsidx, crs′) and td′.

b := Vx̂
hyb(crs, (h, rt), π, td, td

′):

1. Parse crs as (1λ, N, h′, crsidx, crs′) and π as (rt′, πidx, π′).

2. Output 1 iff BARG.Vidx(crs
idx, C, πidx) = 1, Vx̂

sub(crs
′, (h′, rt′), π′) = 1, and x̃i∗ = x̃′

i∗ , where
{x̃i}i∈I := SEH.Extract(td, rt) and x̃′

i∗ := SEH.Extract(td′, rt′) .

Figure 5: Hybrid setup algorithm Genhyb and verifier Vhyb.

23

paramLDE(λ,N), x : Hm → F, i∗ ∈ [|H|m], α := bλ1/(⌊mN/mλ⌋+1)c, and z ∈ {0, 1}∗,

Pr

 Vx̂
sub(crs, (h, rt), π) = 1
∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
crs← Gensub(1

λ, (F,H,mN), α)
(h, td)← SEH.TGen(1λ, |H|mN , {i∗})
(rt, π)← P∗

sub(crs, (x, h), z)
x̂ := LDEF,H,mN

(x)
x̃i∗ := SEH.Extract(td, rt)

 ≥ 1

poly′P∗(λ)
.

By repeated applications of Claim 3, there exists a PPT algorithm P+ such that for infinitely many such λ, N ,
(F,H,mN), α and for m := mN − bmN/mλc ·mλ, there exist x+ : Hm → F, i+ ∈ [|H|m], and z+ ∈ {0, 1}∗
such that

Pr

 Vx̂+

sub(crs, (h, rt), π) = 1
∧ x+(i∗) 6= x̃i+

∣∣∣∣∣∣∣∣∣∣
crs← Gensub(1

λ, (F,H,m), α)
(h, td)← SEH.TGen(1λ, |H|m, {i+})
(rt, π)← P+(crs, (x+, h), z+)
x̂+ := LDEF,H,m(x+)
x̃i+ := SEH.Extract(td, rt)


≥

(
1

2|F|mλ

)⌊mN/mλ⌋
· 1

poly′P∗(λ)
. (9)

Note that when N = poly(λ), we have bmN/mλc = O(1) since we have mN ≤ O(log|H|N) and mλ =

dlog|H| λe. Thus (2|F|mλ)k = poly(λ) for every k ∈ {1, . . . , bmN/mλc}. Then, since (2|F|mλ)⌊mN/mλ⌋ =
poly(λ), Eq. (9) contradicts to Claim 2.

Proofs of Claim 2 and Claim 3. It remains to prove Claim 2 and Claim 3. At a high level, we proceeds
as follows. Claim 2 holds trivially since m = mN − bmN/mλc ·mλ < mλ. Regarding Claim 3, we prove it
following the idea given in the technical overview (Section 2.1). That is, using the security of SEH and BARGidx

as above and also relying on the correlation intractability of CIHα, we show that any successful cheating prover
P∗ against SEH-Delsub can be used to obtain a successful cheating prover P+ against one of the recursive
proofs. A subtlety is that the correlation intractability of CIHα is non-adaptive in the sense that the relation
ensemble in the security experiment needs to be fixed in advance (cf. Definition 1). Since P∗ chooses the
indices {ci}i∈[α] ∈ Fmλ of the recursive proofs adaptively, we can rely on the correlation intractability of CIHα

only when we correctly guess the index on which the prover cheats. Consequently, we can only show that P+

succeeds with probability that decreases by a multiplicative factor 1/|F|mλ as shown in (4). The formal proofs
are given below.

Proof of Claim 2. Since m = mN − bmN/mλc · mλ < mλ, the condition Vx̂
sub(crs, (h, rt), π) = 1 implies

SEH.Hash(h, x) = rt, which in turn implies ∃certi∗ s.t. SEH.Verify(h, rt, x(i∗), i∗, certi∗) = 1. Thus, the
somewhere extractability of SEH implies (2).

Proof of Claim 3. Fix any PPT algorithm P∗ and a polynomial polyN . For any λ, N , (F,H,mN), m, x, i∗, α,
and z as in the statement of the claim, let δ(λ,N, (F,H,mN),m, x, i∗, α, z) be the LHS of (3), i.e.,

δ := Pr

 Vx̂
sub(crs, (h, rt), π) = 1
∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
crs← Gensub(1

λ, (F,H,m), α)
(h, td)← SEH.TGen(1λ, |H|m, {i∗})
(rt, π)← P∗(crs, (x, h), z)
x̂ := LDEF,H,m(x)
x̃i∗ := SEH.Extract(td, rt)

 ,

where δ(λ,N, (F,H,mN),m, x, i∗, α, z) is written as δ for editorial simplicity.
First, for any λ, N , (F,H,mN), m, x, i∗, α, and z as in the statement of the claim, let Gensub,1 and Vsub,1

be the hybrid setup and verifier that are defined in Figure 5. (The differences from Gensub,Vsub are highlighted
by colored backgrounds.) Let δ1 be defined similarly to δ based on (Gensub,1,Vsub,1), i.e.,

24

(crs, tdsub)← Gensub,1(1
λ, (F,H,m), 1MI , α):

1. If m < mλ, output crs := (1λ, (F,H,m),⊥,⊥,⊥,⊥) and tdsub := ⊥ and terminate. If m ≥ mλ, continue to
the next step.

2. Sample (h+, td+)← SEH.TGen(1λ, |H|m−mλ , {i+}), where i+ ∈ [|H|m−mλ] is defined by first viewing
i∗ ∈ [|H|m] as (u+,v+) ∈ Hmλ ×Hm−mλ by the lexicographical order and then setting i+ := v+.

3. Sample (crsidx, tdidx)← BARG.TGenidx(1
λ, 1MC , |H|m−mλ , i+), where MC := max(|Cu|, |Cci |).

4. Sample hCIH ← CIH.Genα(1
λ).

5. Sample crs+ ← Gensub(1
λ, (F,H,m−mλ), α).

6. Output crs := (1λ, (F,H,m), α, h+, crsidx, hCIH, crs+) and tdsub := (td+, tdidx).

b := Vx̂
sub,1(crs, (h, rt), π, tdsub, td):

1. Parse crs as (1λ, (F,H,m), α, h+, crsidx, hCIH, crs+). If m < mλ, output 1 iff SEH.Hash(h, π) = rt and
π = x̂|Hm . If m ≥ mλ, continue to the next step.

2. Parse π as ({rt+u }u∈Fmλ , {πidx
u }u∈Hmλ , πidx, {π+

ci
}ci∈Sc) and parse tdsub as (td+, tdidx).

3. Compute (c1, . . . , cα) := CIH.Hashα(h
CIH, {rt+u }u∈Hmλ), where each ci is viewed as an element of Fmλ . Let

Sc := {c1, . . . , cα}.

4. Output 1 iff all of the following hold.

• BARG.Vidx(crs
idx, Cu, π

idx
u) = 1 for ∀u ∈ Hmλ , where Cu is defined as in Psub.

• BARG.Vidx(crs
idx, C, πidx) = 1, where C is defined as in Psub.

• V
x̂(ci,·)
sub (crs+, (h+, rt+ci

), π+
ci
) = 1 for ∀ci ∈ Sc.

• x̃i∗ = x̃+
(u+,v+), where x̃i∗ := SEH.Extract(td, rt), and x̃+

(u+,v+)
:= SEH.Extract(td+, rt+u+).

• {x̃+
(u,v+)}u∈Fmλ is the LDE of {x̃+

(u,v+)}u∈Hmλ w.r.t. (F,H,mλ), where x̃+
(u,v+)

:= SEH.Extract(td+, rt+u).

Figure 6: A hybrid setup algorithm Gensub,1 and verifier Vsub,1.

δ1 := Pr

 Vx̂
sub,1(crs, (h, rt), π) = 1

∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
(crs, tdsub)← Gensub,1(1

λ, (F,H,m), α)
(h, td)← SEH.TGen(1λ, |H|m, {i∗})
(rt, π)← P∗(crs, (x, h), z)
x̂ := LDEF,H,m(x)
x̃i∗ := SEH.Extract(td, rt)

 .

At a high level, (Gensub,1,Vsub,1) differs from (Gensub,Vsub) in that (i) Gensub,1 uses the trapdoor setup al-
gorithms of SEH and BARGidx, and (ii) Vsub,1 outputs 0 if the BARGidx proofs that P∗ provides are accepting
but the values that are extracted P∗ do not satisfy the statements of the BARGidx proofs. Thus, by using the
security of SEH and BARGidx as in the proof of the soundness of SEH-Del above, we can show that there exists
a negligible function negl1 such that for every λ, N , (F,H,mN), m, x, i∗, α, and z as in the statement of the
claim, it holds |δ − δ1| ≤ negl1(λ).

Next, for any λ, N , (F,H,mN), m, x, i∗, α, and z as in the statement of the claim, let Gensub,2 be identical
with Gensub,1 and Vsub,2 be the hybrid verifier that is defined in Figure 7. Let δ2 be defined similarly to δ based
on (Gensub,2,Vsub,2), i.e.,

δ2 := Pr

 Vx̂
sub,2(crs, (h, rt), π, tdsub, td) = 1

∧ x(i∗) 6= x̃i∗

∣∣∣∣∣∣∣∣∣∣
(crs, tdsub)← Gensub,2(1

λ, (F,H,m), α)
(h, td)← SEH.TGen(1λ, |H|m, {i∗})
(rt, π)← P∗(crs, (x, h), z)
x̂ := LDEF,H,m(x)
x̃i∗ := SEH.Extract(td, rt)

 . (10)

We show that there exists a negligible function negl2 such that for every λ, N , (F,H,mN), m, x, i∗, α, and z
as in the statement of the claim, it holds |δ1 − δ2| ≤ negl2(λ). Toward this end, it suffices to show that when

25

b := Vx̂
sub,2(crs, (h, rt), π, tdsub, td):

1. Parse crs as (1λ, (F,H,m), α, h+, crsidx, hCIH, crs+). If m < mλ, output 1 iff SEH.Hash(h, π) = rt and
π = x̂|Hm . If m ≥ mλ, continue to the next step.

2. Parse π as ({rt+u }u∈Fmλ , {πidx
u }u∈Hmλ , πidx, {π+

ci
}ci∈Sc) and parse tdsub as (td+, tdidx).

3. Compute (c1, . . . , cα) := CIH.Hashα(h
CIH, {rt+u }u∈Hmλ), where each ci is viewed as an element of Fmλ . Let

Sc := {c1, . . . , cα}.

4. Output 1 iff all of the following hold.

• BARG.Vidx(crs
idx, Cu, π

idx
u) = 1 for ∀u ∈ Hmλ , where Cu is defined as in Psub.

• BARG.Vidx(crs
idx, C, πidx) = 1, where C is defined as in Psub.

• V
x̂(ci,·)
sub (crs+, (h+, rt+ci

), π+
ci
) = 1 for ∀ci ∈ Sc.

• x̃i∗ = x̃+
(u+,v+), where x̃i∗ := SEH.Extract(td, rt) and x̃+

(u+,v+)
:= SEH.Extract(td+, rt+u+).

• {x̃+
(u,v+)}u∈Fmλ is the LDE of {x̃+

(u,v+)}u∈Hmλ w.r.t. (F,H,mλ), where x̃+
(u,v+)

:= SEH.Extract(td+, rt+u).

• ∃ci ∈ Sc s.t. x̃+
(ci,v+) 6= x̂(ci,v

+).

Figure 7: A hybrid verifier Vsub,2.

x(i∗) 6= x̃i∗ , the probability that Vsub,1 outputs 1 while Vsub,2 outputs 0 is negligible. Thus, it suffices to show
that the probability that all of the following occur simultaneously in Step 4 of Vsub,2 is negligible.

• x(i∗) 6= x̃i∗ .

• x̃i∗ = x̃+(u+,v+).

• {x̃+(u,v+)}u∈Fmλ is the LDE of {x̃+(u,v+)}u∈Hmλ w.r.t. (F,H,mλ),

• x̃+(ci,v+) = x̂(ci,v
+) for ∀ci ∈ Sc.

(Indeed, unless the last three conditions hold, the outputs of Vsub,1 and Vsub,2 are identical.) Observe that when
all of the above conditions hold, {x(u,v+)}u∈Hmλ and {x̃+(u,v+)}u∈Hmλ disagree on u+ but their LDEs (w.r.t.
(F,H,mλ)) agree on every ci ∈ Sc.16 Based on this observation, we use the correlation intractability of CIH to
evaluate the probability that the above conditions hold. Let us first define a product-relation Rλ ⊆ Xλ × Y α

λ .

• Let CCIH be the following circuit. It has (F,H,m), td+, u+, and {x(u,v+)}u∈Hmλ as hardwired in-
puts, and takes {rt+u }u∈Hmλ and ci ∈ Fmλ as inputs. Then, it outputs 1 iff {x(u,v+)}u∈Hmλ and
{x̃+(u,v+)}u∈Hmλ disagree on u+ but their LDEs (w.r.t. (F,H,mλ)) agree on ci, where x̃+(u,v+)

:=

SEH.Extract(td+, rt+u) as before.

• Now, Rλ is defined as follows. For each x ∈ Xλ, we have (x, (y1, . . . , yα)) ∈ Rλ iff CCIH(x, yi) = 1 for
∀i ∈ [α].

Note that Rλ has product sparsity at most mλ|H|/|F| ≤ O(1), and it is TCIH-time product verifiable for
TCIH(λ) = poly(λ,mλ, |H|mλ , log|H|m−mλ) ≤ poly(λ). Thus, when the requirements about CIHα are ap-
propriately specified (i.e., the polynomials polyX , polyY , polyT and the constant ρ in the definition of CIHα are
sufficiently large), CIHα is correlation intractable for the relation ensemble {Rλ}λ∈N. Thus, it follows from the
correlation intractability of CIHα that when {x(u,v+)}u∈Hmλ and {x̃+(u,v+)}u∈Hmλ disagree on u+, their LDEs
disagree on some ci ∈ Sc except with negligible probability. Thus, we obtain |δ1 − δ2| ≤ negl2(λ) as desired.

16The disagreement follows from the first two conditions since we have x(i∗) = x(u+,v+) by the definition of (u+,v+). The
agreement follows from the last two conditions.

26

(rt+, π+)← P+(crs+, (h+, x+), z+):

1. Parse z+ as (λ,N, (F,H,mN),m, x, i∗, α, z, c∗).

2. Define crs by emulating Gensub,2 as follows using crs+ and h+.

(a) Sample (crsidx, tdidx)← BARG.TGenidx(1
λ, 1MC , |H|m−mλ , {i+}), where MC := max(|Cu|, |C|) and

i+ are defined as in Gensub,2.
(b) Sample hCIH ← CIH.Genα(1

λ).
(c) Let crs := (1λ, (F,H,m), α, h+, crsidx, hCIH, crs+).

3. Sample (h, td)← SEH.TGen(1λ, |H|m, {i∗}).

4. Run (rt, π)← P∗(crs, (x, h), z).

5. Parse π as ({rt+u }u∈Fmλ , {πidx
u }u∈Hmλ , πidx, {π+

ci
}ci∈Sc).

6. Compute (c1, . . . , cα) := CIH.Hashα(h
CIH, {rt+u }u∈Hmλ), where each ci is viewed as an element of Fmλ . Let

Sc := {c1, . . . , cα}.

7. If ∃ci ∈ Sc s.t. ci = c∗, output rt+ := rt+ci
and π+ := π+

ci
. Otherwise, abort.

Figure 8: Cheating prover P+.

Let us combine the analyses about (Gensub,i,Vsub,i) for i ∈ [2]. Since we have δ2 ≥ δ −
∑

1≤i≤2 negli(λ),
it follows that in the probabilistic experiment of (10), we have the following in Step 4 of Vsub,2.

Pr

[
∃ci ∈ Sc s.t.
V
x̂(ci,·)
sub (crs+, (h+, rt+ci), π

+
ci) = 1 ∧ x̃+(ci,v+) 6= x̂(ci,v

+)

]
≥ δ −

∑
1≤i≤2

negli(λ) . (11)

Eq. (11) suggests that the cheating prover P∗ can be used to break the soundness of one of the recursive proofs,
and we indeed do so below.

We are ready to present the cheating prover P+ for (4). For any λ, N , (F,H,mN), m, x, i∗, α, and z as
in the statement of the claim and any c∗ ∈ Fmλ , let z+ := (λ,N, (F,H,mN),m, x, i∗, α, z, c∗). Then, P+ is
defined in Figure 8 using P∗ as a subroutine. (Essentially, P+ emulates the experiment of (11) while hoping
that the event considered in (11) occurs for ci = c∗.) Let us analyze the success probability of P+. First, we
consider running P+ for random c∗ in the experiment of (4), and for any λ, N , (F,H,mN), m, x, i∗, α, and z
such that we have (3), we obtain

Pr


Vx̂+

sub(crs
+, (h+, rt+), π+) = 1

∧ x̃+
i+
6= x+(i+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c∗ ← Fmλ

Let x+ : Hm−mλ → F be defined as x+ : v 7→ x̂(c∗,v)
Let i+ be defined based on i∗ as in Gensub,2
z+ := (λ,N, (F,H,mN),m, x, i∗, α, z, c∗)
crs+ ← Gensub(1

λ, (F,H,m−mλ), α)
(h+, td+)← SEH.TGen(1λ, |H|m−mλ , {i+})
(rt+, π+)← P+(crs+, (h+, x+), z+)
x̂+ := LDEF,H,m(x+)
x̃+
i+

:= SEH.Extract(td+, rt+)


≥ 1

|F|mλ

 1

polyP∗(λ)
−

∑
1≤i≤2

negli(λ)

 . (12)

(Eq. (12) follows from (3) and (11) since in the experiment of (12), P+ perfectly emulates the experiment of
(11) for P∗.17) Thus, from the average argument, there exists c∗ ∈ Fmλ such that by setting x+, i+, and z+ as

17Concretely, suppose that when P+ internally invokes P∗ in the experiment of (12), the output of P∗ satisfies ∃ci ∈
Sc s.t. Vx̂(ci,·)

sub (crs+, (h+, rt+ci), π
+
ci) = 1 ∧ x̃+

(ci,v+) ̸= x̂(ci,v
+). (Eq. (11) guarantees that this event occurs with probability at least

27

in (12), we have

Pr

 Vx̂+

sub(crs
+, (h+, rt+), π+) = 1

∧ x̃+
i+
6= x+(i+)

∣∣∣∣∣∣∣∣∣∣
crs+ ← Gensub(1

λ, (F,H,m−mλ), α)
(h+, td+)← SEH.TGen(1λ, |H|m−mλ , {i+})
(rt+, π+)← P+(crs+, (h+, x+), z+)
x̂+ := LDEF,H,m(x+)
x̃+
i+

:= SEH.Extract(td+, rt+)


≥ 1

|F|mλ

 1

polyP∗(λ)
−

∑
1≤i≤2

negli(λ)

 .

Thus, we have (4) as desired. This completes the proof of Claim 3.

This completes the proof of the soundness of SEH-Del. Therefore, this completes the proof of Lemma 2.

5 Holographic SNARG for Tree-Hash
In this section, we construct a holographic SNARG for the correctness of Merkle tree-hash computations. The
target of this section is defined as follows.

Definition 20 (Tree-hash delegation). Publicly verifiable non-interactive delegation schemes for tree-hash
computations (or publicly verifiable non-interactive tree-hash delegation schemes in short) are a special case
of publicly verifiable non-interactive delegation schemes for Turing machines (Definition 8), where the following
restrictions are imposed.

• The instance χ is restricted to the form χ = (x, (h, rt)), where x ∈ {0, 1}2ℓλ (ℓ ∈ N) is a binary string,
h : {0, 1}2λ → {0, 1}λ is a hash function (represented as a circuit), and rt ∈ {0, 1}λ is a binary string.

• The Turing machine M is fixed to be the two-input Turing machine Mtree-hash that takes an input of the
form χ = (x, (h, rt)) and outputs 1 iff TreeHashh(x) = rt. Also, the time bound T (given to Gen along
with the input length bounds n1, n2) is fixed to be Ttree-hash(n1, n2), where Ttree-hash is a polynomial
upper bound of the running time of Mtree-hash.

The goal of this section is to prove the following lemma.

Lemma 3. Assume the existence of the following primitives.

• A somewhere extractable hash function family SEH.

• A semi-adaptive somewhere-sound publicly verifiable non-interactive BARG for the index language.

• A partially adaptive somewhere-sound holographic delegation scheme SEH-Del for SEH.

Then, there exists a partially adaptive publicly verifiable non-interactive tree-hash delegation scheme that sat-
isfies the following properties.

• The scheme is holographic w.r.t. the same encoding algorithm as SEH-Del.

• The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both at most
poly(λ, log n1, n2).

• The scheme is public-coin if the above-listed primitives are public-coin.
1/polyP∗(λ)−

∑
1≤i≤2 negli(λ).) Then, with probability 1/|F|mλ , we have ci = c∗, and thus, P+ outputs rt+ := rt+ci and π+ := π+

ci .
When P+ outputs such rt+ and π+, we have Vx̂+

sub(crs
+, (h+, rt+), π+) = 1 and x̃+

i+
̸= x+(i+). Indeed, the former follows from

V
x̂(ci,·)
sub (crs+, (h+, rt+ci), π

+
ci) = 1 since x̂(ci, ·) is the LDE of x+ = x̂(ci, ·)|Hm−mλ . The latter follows from x̃+

(ci,v+) ̸= x̂(ci,v
+)

since (i) x̃+
i+

= SEH.Extract(td+, rt+) = SEH.Extract(td+, rt+ci) = x̃+
(ci,v+) and (ii) x+(i+) = x+(v+) = x̂(ci,v

+) because of the
definition of i+.

28

Since the primitives listed in Lemma 3 exist under the LWE assumption (Theorem 2, Theorem 3, Lemma 2),
Lemma 3 implies the following corollary.

Corollary 1. Under the LWE assumption, there exists a partially adaptive public-coin non-interactive tree-hash
delegation scheme that satisfies the following properties.

• The scheme is LDE-holographic, where for the security parameter λ and an input x of length N , the
encoding algorithm Encode outputs the LDE of x w.r.t. an arbitrary LDE parameter (F,H,m) such that
|F| ≤ poly(|H|) ≤ poly(logN), |H|m ≤ poly(N), and m|H|/|F| ≤ O(1).

• The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both at most
poly(λ, log n1, n2).

In the rest of this section, we prove Lemma 3.

Proof of Lemma 3. Let SEH = (SEH.Gen, SEH.TGen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract) be
a somewhere extractable hash function family, BARGidx = (BARG.Genidx,BARG.Pidx,BARG.Vidx) be
a semi-adaptive somewhere-sound publicly verifiable non-interactive BARG for the index language, and
SEH-Del = (SEH-Del.Gen, SEH-Del.P, SEH-Del.V, SEH-Del.Encode) be a partially adaptive somewhere-
sound holographic delegation scheme for SEH. For simplicity, we adjust the definition of somewhere extractable
hash functions (Definition 5) so that the set of the indices is {0, . . . , N − 1} rather than {1, . . . , N}. The same
adjustment is also made to the definition of BARGs (Definition 12).

Our scheme TH-Del = (Gen,P,V) is given in Figure 9. (We remind that, as stated in Definition 20, the
length of the input x is fixed to be 2ℓλ for ℓ ∈ N.) We prove the security of TH-Del following the idea given in
the technical overview (Section 2.1). That is, we prove the soundness by considering the tree nodes that we can
extract from the prover. The formal proofs are given below.

5.1 Completeness
The completeness can be verified by inspection. Also, it is easy to see that (Gen,P,V) is holographic w.r.t.
the same encoding algorithm as SEH-Del. (In particular, the verifier V only uses x to execute SEH-Del.Vx̂ for
x̂ := SEH-Del.Encode(λ, x) in the last step.)

5.2 Efficiency
The efficiency condition can be verified by inspection as follows.

• The setup time TGen is at most poly(λ, log n1, n2) since (i) each SEH.Gen runs in time poly(λ, log n1),
(ii) each BARG.Genidx runs in time poly(λ, log n1, n2) since we have |Ci| ≤ poly(λ, log n1, n2) given
that the evaluation time of h, represented as a circuit, can be bounded by poly(n2), and (iii) SEH-Del.Gen
runs in time poly(λ, log n1).

• The prover running time is at most poly(λ, n1, n2) ≤ poly(λ, T) since each SEH.Hash and SEH-Del.P
run in time poly(λ, n1) and each BARG.Pidx runs in time poly(λ, n1, n2). Also, the proof length Lπ is at
most poly(λ, log n1, n2) since |rti| ≤ poly(λ, log n1) and |πi| ≤ poly(λ, log n1, n2).

• The verifier running time (excluding the computation of x̂ := SEH-Del.Encode(λ, x)) is at most
O(Lπ) + poly(λ, log n1, n2) since SEH.Hash runs in time poly(λ), each BARG.Vidx runs in time
poly(λ, log n1, n2), and SEH-Del.V runs in time poly(λ, log n1).

5.3 Partial Adaptive Soundness
Fix any PPT algorithm P∗ and a pair of polynomials polyn1

, polyn2
. Our goal is to prove the following claim.

Claim 4 (Partial adaptive soundness of TH-Del). There exists a negligible function negl such that for every
λ ∈ N, n1 ≤ polyn1

(λ), n2 ≤ polyn2
(λ), T := Ttree-hash(n1, n2), x ∈ {0, 1}n1 , and z ∈ {0, 1}∗,

Pr

[
V(crs, (x, (h, rt)), π) = 1
∧ TreeHashh(x) 6= rt

∣∣∣∣ crs← Gen(1λ, T, n1, n2)
((h, rt), π)← P∗(crs, x, z)

]
≤ negl(λ) . (13)

29

crs← Gen(1λ, T, n1, n2):

1. Let ℓ := log(n1/λ).

2. Sample hSEH
0 ← SEH.Gen(1λ, λ, 1λ) and hSEH

i ← SEH.Gen(1λ, 2iλ, 12λ) for ∀i ∈ {1, . . . , ℓ}.

3. Sample crsidxi ← BARG.Genidx(1
λ, 1|Ci|, 2i) for ∀i ∈ {0, . . . , ℓ − 1}, where the circuit Ci is defined in the

prover P below.

4. Sample crsSEH-Del ← SEH-Del.Gen(1λ, 2ℓλ, 12λ).

5. Output crs := (1λ, {hSEH
i }i∈{0,...,ℓ}, {crsidxi }i∈{0,...,ℓ−1}, crs

SEH-Del).

π := P(crs, (x, (h, rt))):

1. Parse crs as (1λ, {hSEH
i }i∈{0,...,ℓ}, {crsidxi }i∈{0,...,ℓ−1}, crs

SEH-Del).

2. Compute TreeHashh(x) along with its nodes {nodei,σ}i∈{0,...,ℓ},σ∈{0,...,2i−1}. That is, do the following.

(a) Partition x into 2ℓ blocks blk0, . . . , blk2ℓ−1 such that |blk0| = · · · = |blk2ℓ−1| = λ.
(b) For each i ∈ {0, . . . , ℓ}, define nodei,σ ∈ {0, 1}λ for ∀σ ∈ {0, . . . , 2i−1} as follows. First, let nodeℓ,σ :=

blkσ for ∀σ ∈ {0, . . . , 2ℓ − 1}. Then, for each i ∈ {ℓ − 1, . . . , 0}, let nodei,σ := h(nodei+1,2σ ‖
nodei+1,2σ+1) for ∀σ ∈ {0, . . . , 2i − 1}.

(The hash value rt that P takes as input is supposed to satisfy rt = node0,0.)

3. Compute rti := SEH.Hash(hSEH
i , xi) for each i ∈ {0, . . . , ℓ}, where xi := nodei,0 ‖ · · · ‖ nodei,2i−1 ∈

{0, 1}2iλ is the concatenation of the tree nodes at depth i. For each i ∈ {0, . . . , ℓ−1} and σ ∈ {0, . . . , 2i−1},
let certi,σ be the certificates that open the appropriate positions of the pre-image of rti to nodei,σ; that is,
certi,σ := (certi,σ,0, . . . , certi,σ,λ−1) and certi,σ,j := SEH.Open(hSEH

i , bi,σ,j , λσ+j) for ∀j ∈ {0, . . . , λ−1},
where bi,σ,j is the j-th bit of nodei,σ ∈ {0, 1}λ.

4. For each i ∈ {0, . . . , ℓ − 1}, compute πi := BARG.Pidx(crs
idx, Ci,wi), where wi := {wi,σ}σ∈{0,...,2i−1},

wi,σ := (nodei,σ, certi,σ, nodei+1,2σ, certi+1,2σ, nodei+1,2σ+1, certi+1,2σ+1), and Ci is the following circuit.

• Ci has (h, hSEH
i , rti, h

SEH
i+1 , rti+1) as hardwired inputs, and takes an index σ ∈ {0, . . . , 2i − 1} and a wit-

ness w = (node(0,0), cert(0,0), node(1,0), cert(1,0), node(1,1), cert(1,1)) as inputs. First, Ci parses node(u,v)

as (b
(u,v)
0 , . . . , b

(u,v)
λ−1) and cert(u,v) as (cert

(u,v)
0 , . . . , cert

(u,v)
λ−1) for each (u, v) ∈ {(0, 0), (1, 0), (1, 1)}.

Then, Ci outputs 1 iff (i) SEH.Verify(hSEH
i+u, rti+u, b

(u,v)
j , λ(2uσ + v) + j, cert

(u,v)
j) = 1 for ∀(u, v) ∈

{(0, 0), (1, 0), (1, 1)}, j ∈ {0, . . . λ− 1} and (ii) h(node(1,0) ‖node(1,1)) = node(0,0).

5. Compute πℓ := SEH-Del.P(crsSEH-Del, (xℓ, (h
SEH
ℓ , rtℓ))).

6. Output π := {rti, πi}i∈{0,...,ℓ}.

b := V(crs, (x, (h, rt)), π):

1. Parse crs as (1λ, {hSEH
i }i∈{0,...,ℓ}, {crsidxi }i∈{0,...,ℓ−1}, crs

SEH-Del) and π as {rti, πi}i∈{0,...,ℓ}. Abort unless
|rt| = λ and h : {0, 1}2λ → {0, 1}λ.

2. Output 1 iff all of the following hold.

• SEH.Hash(hSEH
0 , rt) = rt0.

• BARG.Vidx(crs
idx
i , Ci, πi) = 1 for ∀i ∈ {0, . . . , ℓ− 1}, where Ci is the circuit defined in the prover P.

• SEH-Del.Vx̂(crsSEH-Del, (hSEH
ℓ , rtℓ), πℓ) = 1, where x̂ := SEH-Del.Encode(λ, x).

Figure 9: A publicly verifiable non-interactive tree-hash delegation scheme TH-Del = (Gen,P,V).

30

Extractor E(params, i∗, σ∗), where params := (1λ, n1, n2, x, z):

1. Compute crs by emulating Gen with several modifications as follows.

(a) Let ℓ := log(n1/λ), σ(P) := σ∗, σ(L) := 2σ∗, and σ(R) := 2σ∗ + 1.
(b) Sample (hSEH

i∗ , tdSEHi∗) ← SEH.TGen(1λ, 2i
∗
λ, {λσ(P) + j}j∈{0,...,λ−1}) and hSEH

i∗+1 ←
SEH.TGen(1λ, 2i

∗+1λ, {λσ(L) + j, λσ(R) + j}j∈{0,...,λ−1}). Also, sample hSEH
i for ∀i ∈

{0, . . . , ℓ} \ {i∗, i∗ + 1} as in Gen, i.e., hSEH
i ← SEH.Gen(1λ, λ, 1λ) when i = 0 and

hSEH
i ← SEH.Gen(1λ, 2iλ, 12λ) when i 6= 0.

(c) Sample crsidxi∗ ← BARG.TGenidx(1
λ, 1|Ci|, 2i

∗
, σ(P)). Also, sample crsidxi for ∀i ∈ {0, . . . , ℓ− 1} \ {i∗}

as in Gen, i.e., crsidxi ← BARG.Genidx(1
λ, 1|Ci|, 2i).

(d) Sample crsSEH-Del ← SEH-Del.Gen(1λ, 2ℓλ, 12λ) as in Gen.
(e) Let crs := (1λ, {hSEH

i }i∈{0,...,ℓ}, {crsidxi }i∈{0,...,ℓ−1}, crs
SEH-Del).

2. Run ((h, rt), π)← P∗(crs, x, z) and parse π as {rti, πi}i∈{0,...,ℓ}.

3. Run bV := V(crs, (x, (h, rt)), π).

4. Define ñode
(P)

, ñode
(L)

, and ñode
(R)

as follows.

(a) Compute {b̃(P)
j }j∈{0,...,λ−1} := SEH.Extract(tdSEHi∗ , rti∗) and {b̃(L)j , b̃

(R)
j }j∈{0,...,λ−1} :=

SEH.Extract(tdSEHi∗+1, rti∗+1).

(b) Let ñode
(P)

:= (̃b
(P)
0 , . . . , b̃

(P)
λ−1), ñode

(L)
:= (̃b

(L)
0 , . . . , b̃

(L)
λ−1), and ñode

(R)
:= (̃b

(R)
0 , . . . , b̃

(R)
λ−1).

5. Output (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

).

Figure 10: The extractor algorithm E.

At a high level, we prove Claim 4 in three steps. First, we give an extractor algorithm that takes any (i, σ) ∈
{0, . . . , ℓ − 1} × {0, . . . , 2i∗ − 1} as input and extracts three tree nodes from P∗. (One is extracted as the
σ-th node at depth i of TreeHashh(x). The other two are extracted as the left and right children.) Next, we
prove a sequence of claims about consistency between the extracted tree nodes and the correct tree nodes of
TreeHashh(x). Finally, we prove (13) using the extractor based on the idea explained in the technical overview
(Section 2.1).

First, we give an extractor algorithm. Let BARG.TGenidx be the trapdoor setup algorithm of BARGidx.
Then, the extractor is given in Figure 10. We note that the extractor is given params := (1λ, n1, n2, x, z) and
(i∗, σ∗) as inputs, where λ, n1, n2, x, and z are as in Claim 4 while i∗ and σ∗ are such that i∗ ∈ {0, . . . , ℓ− 1}
and σ∗ ∈ {0, . . . , 2i∗ − 1} for ℓ := log(n1/λ).
Remark 4. Step 1b of the extractor is a little over-simplified. In particular, when running (hSEHi∗ , tdSEHi∗) ←
SEH.TGen(1λ, 2i

∗
λ, {λσ(P) + j}j∈{0,...,λ−1}) for i∗ 6= 0, the extractor should add λ arbitrary indices to

the binding index set {λσ(P) + j}j∈{0,...,λ−1} so that this execution of SEH.TGen is indistinguishable from
SEH.Gen(1λ, 2i

∗
λ, 12λ). For concreteness, we assume that the extractor adds the λ indices that correspond to

the sibling of the tree node (i∗, σ(P)), i.e., the extractor uses the set {λ(2bσ(P)/2c) + j, λ(2bσ(P)/2c + 1) +
j}j∈{0,...,λ−1} instead of the set {λσ(P) + j}j∈{0,...,λ−1}. ♢

Next, we prove a sequence of claims about the extractor. The first claim is that the values (h, rt, bV) that the
extractor outputs are indistinguishable from those that we obtain from P∗ in (13).

Claim 5 (Indistinguishability from P∗). For any polynomial TD, there exists a negligible function negl such
that for any probabilistic TD-time algorithm D and every λ ∈ N, n1 ≤ polyn1

(λ), n2 ≤ polyn2
(λ), T :=

Ttree-hash(n1, n2), x ∈ {0, 1}n1 , z ∈ {0, 1}∗, i∗ ∈ {0, . . . , ℓ − 1}, and σ∗ ∈ {0, . . . , 2i∗ − 1}, it holds
|Pr [D(out1) = 1]− Pr [D(out2) = 1]| ≤ negl(λ), where out1 and out2 are sampled as follows.

• Sampling of out1:

1. Run crs← Gen(1λ, T, n1, n2).

31

2. Run ((h, rt), π)← P∗(crs, x, z).
3. Run bV := V(crs, (x, (h, rt)), π).
4. Let out1 := (params, h, rt, bV), where params := (1λ, n1, n2, x, z).

• Sampling of out2:

1. Run (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

)← E(params, i∗, σ∗), where params is as above.
2. Let out2 := (params, h, rt, bV).

Proof . The sampling of out2 differs from that of out1 in that when E emulates Gen, some executions of
SEH.Gen and BARG.Genidx are replaced with SEH.TGen and BARG.TGenidx, respectively. Thus, the indistin-
guishability follows from the key indistinguishability of SEH and the CRS indistinguishability of BARGidx.

The second claim is that when the extractor is used with two different inputs to extract the same tree node (e.g.,
the extractor is used with (i∗, σ∗) and (i∗ + 1, 2σ∗) to extract the tree node (i∗ + 1, 2σ∗)), the extracted tree
nodes are indistinguishable.

Claim 6 (No-signaling). For any polynomial TD, there exists a negligible function negl such that for any prob-
abilistic TD-time algorithm D and every λ ∈ N, n1 ≤ polyn1

(λ), n2 ≤ polyn2
(λ), T := Ttree-hash(n1, n2),

x ∈ {0, 1}n1 , z ∈ {0, 1}∗, i∗ ∈ {0, . . . , ℓ−1}, σ∗ ∈ {0, . . . , 2i∗−1}, and (X, σ(X)) ∈ {(L, 2σ∗), (R, 2σ∗+1)},
it holds |Pr [D(out1) = 1]− Pr [D(out2) = 1]| ≤ negl(λ), where out1 and out2 are sampled as follows.

• Sampling of out1:

1. (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

)← E(params, i∗, σ∗), where params := (1λ, n1, n2, x, z).

2. Let out1 := (params, i∗, σ∗, h, rt, bV, ñode
(X)

)

• Sampling of out2:

1. (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

)← E(params, i∗ + 1, σ(X)). where params is as above.

2. Let out2 := (params, i∗, σ∗, h, rt, bV, ñode
(P)

)

Proof . Note that the value ñode
(X)

in E(params, i∗, σ∗) and the value ñode
(P)

in E(params, i∗ + 1, σ(X))
are both extracted from rti∗+1 as the substring of the pre-image in position (λσ(X), . . . λσ(X) + λ − 1). Thus,
the indistinguishability follows from the key indistinguishability of SEH and the CRS indistinguishability of
BARGidx.

The third claim is that when the extractor is used to extract leaf nodes, the extracted nodes are consistent with
the input x.

Claim 7 (Consistency with the input). There exists a negligible function negl such that for every λ ∈ N, n1 ≤
polyn1

(λ), n2 ≤ polyn2
(λ), T := Ttree-hash(n1, n2), x ∈ {0, 1}n1 , z ∈ {0, 1}∗, σ∗ ∈ {0, . . . , 2ℓ−1 − 1}, and

(X, σ(X)) ∈ {(L, 2σ∗), (R, 2σ∗ + 1)},

Pr

[
bV = 1

∧ ñode
(X)
6= blkσ(X)

∣∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, ℓ− 1, σ∗)

]
≤ negl(λ) ,

where (i) params := (1λ, n1, n2, x, z) and (ii) {blkσ}σ∈{0,...,2ℓ−1} are the partition of x as in the computation
of TreeHashh(x).

Proof . Note that bV = 1 implies that E obtains π such that V(crs, (x, (h, rt)), π) = 1, which in turn implies
that π contains πℓ such that SEH-Del.Vx̂(crsSEH-Del, (hSEHℓ , rtℓ), πℓ) = 1, where x̂ := SEH-Del.Encode(λ, x).

Also, note that ñode
(X)

is extracted from rtℓ as the substring of x in position (λσ(X), . . . λσ(X) + λ − 1), and
blkσ(X) is the actual substring in that position. Thus, this claim follows from the partially adaptive somewhere
soundness of SEH-Del.

32

The fourth claim is that when the extractor is used to extract the root node, the extracted node is equal to the
root rt that the extractor outputs.

Claim 8 (Consistency with the output). There exists a negligible function negl such that for every λ ∈ N,
n1 ≤ polyn1

(λ), n2 ≤ polyn2
(λ), T := Ttree-hash(n1, n2), x ∈ {0, 1}n1 , and z ∈ {0, 1}∗,

Pr

[
bV = 1

∧ ñode
(P)
6= rt

∣∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, 0, 0)

]
≤ negl(λ) ,

where params := (1λ, n1, n2, x, z).

Proof . Note that bV = 1 implies that E obtains π such that V(crs, (x, (h, rt)), π) = 1, which in turn implies
that π contains rt0 such that SEH.Hash(hSEH0 , rt) = rt0. Also, note that ñode

(P)
is extracted from rt0 as the

pre-image of rt0. Thus, this claim follows from the somewhere extractability of SEH.

The final claim is that the tree nodes that the extractor extracts satisfy the parent-children relation.

Claim 9 (Local consistency). There exists a negligible function negl such that for every λ ∈ N, n1 ≤ polyn1
(λ),

n2 ≤ polyn2
(λ), T := Ttree-hash(n1, n2), x ∈ {0, 1}n1 , z ∈ {0, 1}∗, i∗ ∈ {0, . . . , ℓ−1}, andσ∗ ∈ {0, . . . , 2i∗−

1},

Pr

[
bV = 1

∧ h(ñode
(L)
‖ ñode

(R)
) 6= ñode

(P)

∣∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, i∗, σ∗)

]
≤ negl(λ) ,

(14)

where params := (1λ, n1, n2, x, z).

Proof . Note that bV = 1 implies that E obtains π such that V(crs, (x, (h, rt)), π) = 1, which in turn
implies that π contains πi∗ such that BARG.Vidx(crs

idx, Ci∗ , πi∗) = 1. Thus, the semi-adaptive some-
where soundness of BARGidx implies that when bV = 1, with overwhelming probability there exists
w = (node(0,0), cert(0,0), node(1,0), cert(1,0), node(1,1), cert(1,1)) such that (i) cert(u,v) is a valid certifi-
cate of node(u,v) w.r.t. hash value rti∗+u and position (λ(2uσ∗ + v), . . . , λ(2uσ∗ + v) + λ − 1) for
∀(u, v) ∈ {(0, 0), (1, 0), (1, 1)}, and (ii) h(node(1,0) ‖ node(1,1)) = node(0,0). Also, note that for such
w = (node(0,0), cert(0,0), node(1,0), cert(1,0), node(1,1), cert(1,1)), the somewhere extractability of SEH guaran-
tees that with overwhelming probability, ñode

(P)
= node(0,0), ñode

(L)
= node(1,0), and ñode

(R)
= node(1,1).

Combining these two, we obtain (14) as desired.

Finally, we prove Claim 4 using the extractor and the above claims.

Proof of Claim 4. Let negl0 and negl1 be the negligible functions that are guaranteed to exist by Claim 5 and
Claim 6 respectively for a sufficiently large polynomial TD,18 and negl2, negl3, and negl4 be the negligible
functions that are guaranteed to exist by Claim 7, Claim 8, and Claim 9 respectively. Fix any λ ∈ N, n1 ≤
polyn1

(λ), n2 ≤ polyn2
(λ), T := Ttree-hash(n1, n2), x ∈ {0, 1}n1 , and z ∈ {0, 1}∗ as stated in the claim, and

let params := (1λ, n1, n2, x, z).
First, we show that the extractor extracts the correct tree nodes of TreeHashh(x). Concretely, we show that

for every i∗ ∈ {0, . . . , ℓ− 1} and σ∗ ∈ {0, . . . , 2i∗ − 1},

Pr

[
bV = 1

∧ ñode
(P)
6= nodei∗,σ∗

∣∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, i∗, σ∗)

]
≤ ϵ(λ, i∗) ,

(15)

where (i) {nodei,σ}i∈{0,...,ℓ},σ∈{0,...,2ℓ−1} is the correct tree nodes of TreeHashh(x) and (ii) ϵ is defined as

ϵ(λ, i) := 2ℓ−i(negl1(λ) + negl2(λ) + negl4(λ))− 2negl1(λ)− negl4(λ) .

We prove (15) by induction on i∗, where the base case is i∗ = ℓ− 1.
18Specifically, TD is required to be larger than the running time of the reduction algorithms that we implicitly design below using P∗.

33

Base case: Fix any σ∗ ∈ {0, . . . , 2ℓ−1 − 1}. From Claim 7 and the union bound, we have

Pr

[
bV = 1

∧ ∃(X, σ(X)) ∈ {(L, 2σ∗), (R, 2σ∗ + 1)} s.t. ñode
(X)
6= blkσ(X)

]
≤ 2negl2(λ) ,

where (i) the probability is taken over (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

)← E(params, ℓ− 1, σ∗) and
(ii) {blkσ}σ∈{0,...,2ℓ−1} are defined as in Claim 7. Thus, from Claim 9 and the union bound, we have

Pr

[
bV = 1

∧ h(blk2σ∗ ‖blk2σ∗+1) 6= ñode
(P)

]
≤ 2negl2(λ) + negl4(λ) = ϵ(λ, ℓ− 1) ,

where the probability is again taken over (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

)← E(params, ℓ− 1, σ∗).
Since we have h(blk2σ∗ ‖blk2σ∗+1) = nodeℓ−1,σ∗ by the definition of nodeℓ−1,σ∗ , we have obtained (15)
for i∗ = ℓ− 1 as desired.

Inductive step: Assume we have (15) for i∗ = i + 1 and every σ∗
i+1 ∈ {0, . . . , 2i+1 − 1}. To prove (15) for

i∗ = i, fix any σ∗
i ∈ {0, . . . , 2i − 1}. For each (X, σ(X)) ∈ {(L, 2σ∗

i), (R, 2σ
∗
i + 1)}, we use (15) for

i∗ = i+ 1 and σ∗ = σ(X) ∈ {0, . . . , 2i+1 − 1} to obtain

Pr

[
bV = 1

∧ ñode
(P)
6= nodei+1,σ(X)

∣∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, i+ 1, σ(X))

]
≤ ϵ(λ, i+ 1) .

Then, we use Claim 6 and the union bound to obtain

Pr

[
bV = 1

∧ ñode
(X)
6= nodei+1,σ(X)

∣∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, i, σ∗

i)

]
≤ ϵ(λ, i+ 1) + negl1(λ) .

Next, we use the union bound to obtain

Pr

[
bV = 1

∧ ∃(X, σ(X)) ∈ {(L, 2σ∗
i), (R, 2σ

∗
i + 1)} s.t. ñode

(X)
6= nodei+1,σ(X)

]
≤ 2(ϵ(λ, i+ 1) + negl1(λ)) ,

where the probability is taken over (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

) ← E(params, i, σ∗
i). Next, by

using Claim 9 and the union bound, we obtain

Pr

[
bV = 1

∧ h(nodei+1,2σ∗
i
‖nodei+1,2σ∗

i +1) 6= ñode
(P)

]
≤ 2(ϵ(λ, i+ 1) + negl1(λ)) + negl4(λ) ,

where the probability is again taken over (h, rt, bV, ñode
(P)

, ñode
(L)

, ñode
(R)

) ← E(params, i, σ∗
i).

Now, observe that we have obtained (15) for i∗ = i and σ∗ = σ∗
i since (i) we have h(nodei+1,2σ∗

i
‖

nodei+1,2σ∗
i +1) = nodei,σ∗

i
by the definition of nodei,σ∗

i
and (ii) we have

2(ϵ(λ, i+ 1) + negl1(λ)) + negl4(λ)

= 2
(
2ℓ−i−1(negl1(λ) + negl2(λ) + negl4(λ))− 2negl1(λ)− negl4(λ) + negl1(λ)

)
+ negl4(λ)

= 2ℓ−i(negl1(λ) + negl2(λ) + negl4(λ))− 2negl1(λ)− negl4(λ)

= ϵ(λ, i) .

Thus, by induction, we indeed have (15) for every i∗ ∈ {0, . . . , ℓ− 1} and σ∗ ∈ {0, . . . , 2i∗ − 1}.

34

Now, we complete the proof of Claim 4 using what we have shown above. By setting i∗ = 0 and σ∗ = 0 in
(15), we obtain

Pr

[
bV = 1

∧ ñode
(P)
6= node0,0

∣∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, 0, 0)

]
≤ ϵ(λ, 0) .

From Claim 8 and the union bound, we have

Pr

[
bV = 1
∧ rt 6= node0,0

∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, 0, 0)

]
≤ ϵ(λ, 0) + negl3(λ) .

Since we have TreeHashh(x) = node0,0 by the definition of node0,0, we have

Pr

[
bV = 1
∧ TreeHashh(x) 6= rt

∣∣∣∣ (h, rt, bV, ñode(P), ñode(L), ñode(R)
)← E(params, 0, 0)

]
≤ ϵ(λ, 0) + negl3(λ) .

Finally, from Claim 5 and the union bound, we have

Pr

[
V(crs, (x, (h, rt)), π) = 1
∧ TreeHashh(x) 6= rt

∣∣∣∣ crs← Gen(1λ, T, n1, n2)
((h, rt), π)← P∗(crs, x, z)

]
≤ ϵ(λ, 0) + negl3(λ) + negl0(λ) .

Since ϵ(λ, 0) = 2ℓ(negl1(λ)+ negl2(λ)+ negl4(λ))− 2negl1(λ)− negl4(λ) ≤ (n1/λ)(negl1(λ)+ negl2(λ)+
negl4(λ))− 2negl1(λ)− negl4(λ) is negligible due to n1 ≤ polyn1

(λ), we have obtained (13) as desired.
This completes the proof of Claim 4.

This completes the proof of Lemma 3.

6 Holographic SNARG for Batch-NP
In this section, we construct a holographic SNARG for batch NP.

Theorem 4. Assume the existence of the following primitives.

• A somewhere extractable hash function family SEH.

• A semi-adaptive somewhere-sound publicly verifiable non-interactive BARG for the index language.

• A partially adaptive somewhere-sound holographic delegation scheme SEH-Del for SEH.

Then, there exists a publicly verifiable non-interactive BARG for CSAT that is (i) weakly semi-adaptive some-
where sound and (ii) holographic w.r.t. the same encoding algorithm as SEH-Del. The scheme is public-coin if
the above-listed primitives are public-coin.

Since all the primitives listed in Theorem 4 exist under the LWE assumption (Theorem 2, Theorem 3, Lemma 2),
Theorem 4 implies the following corollary.

Corollary 2. Under the LWE assumption, there exists a public-coin non-interactive BARG for CSAT that is
(i) weakly semi-adaptive somewhere sound and (ii) LDE-holographic, where for the security parameter λ and
an input x of length N , the encoding algorithm Encode outputs the LDE of x w.r.t. an arbitrary LDE parameter
(F,H,m) such that |F| ≤ poly(|H|) ≤ poly(logN), |H|m ≤ poly(N), and m|H|/|F| ≤ O(1).

In the rest of this section, we prove Theorem 4.

Proof of Theorem 4. Let SEH = (SEH.Gen, SEH.TGen, SEH.Hash, SEH.Open, SEH.Verify, SEH.Extract)
be a somewhere extractable hash function family, BARGidx = (BARG.Genidx,BARG.Pidx,BARG.Vidx)
be a semi-adaptive somewhere-sound publicly verifiable non-interactive BARG for the index language, and
SEH-Del = (SEH-Del.Gen, SEH-Del.P, SEH-Del.V, SEH-Del.Encode) be a partially adaptive somewhere-
sound holographic delegation scheme for SEH. Our scheme BARG = (Gen,P,V) is given in Figure 11.

35

crs← Gen(1λ, 1n, 1MC , k):

1. Sample h← SEH.Gen(1λ, nk, 1n).

2. Sample crsidx ← BARG.Genidx(1
λ, 1M

′
C , k), where M ′

C = poly(λ, |C|, log k) is the size of the circuit C ′ that
is defined in the prover P below.

3. Sample crsSEH-Del ← SEH-Del.Gen(1λ, nk, 1n).

4. Output crs = (1λ, 1n, 1MC , k, h, crsidx, crsSEH-Del).

π := P(crs, C,x,w):

1. Parse crs as (1λ, 1n, 1MC , k, h, crsidx, crsSEH-Del), x as (x1, . . . , xk), and w as (w1, . . . , wk).

2. Compute rt := SEH.Hash(h,x) and certi,j := SEH.Open(h,x, n(i− 1) + j) for ∀i ∈ [k], j ∈ [n], where x is
viewed as a binary string of length nk.

3. Run πidx := BARG.Pidx(crs
idx, C ′,w′), where w′ := {w′

i}i∈[k], w′
i := (xi, wi, {certi,j}j∈[n]), and C ′ is the

following circuit.

• C ′ has (h, rt) as hardwired inputs, and takes an index i ∈ [k] and a witness w′
i = (xi, wi, {certi,j}j∈[n]) as

inputs. First,C ′ parses xi as (xi,1, . . . , xi,n) ∈ {0, 1}n. Then,C ′ outputs 1 iff (i) SEH.Verify(h, rt, xi,j , n(i−
1) + j, certi,j) = 1 for ∀j ∈ [n] and (ii) C(xi, wi) = 1.

4. Run πSEH-Del := SEH-Del.P(crsSEH-Del, (x, (h, rt))).

5. Output π := (rt, πidx, πSEH-Del).

b := V(crs, C,x, π):

1. Parse crs as (1λ, 1n, 1MC , k, h, crsidx, crsSEH-Del) and π as (rt, πidx, πSEH-Del). Abort unless |C| ≤MC .

2. Output 1 iff all of the following hold.

(a) BARG.Vidx(crs
idx, C ′, πidx) = 1, where C ′ is defined as in the prover P.

(b) SEH-Del.Vx̂(crsSEH-Del, (h, rt), πSEH-Del) = 1, where x̂ := SEH-Del.Encode(λ,x).

Figure 11: Holographic publicly verifiable non-interactive BARG BARG.

6.1 Completeness
The completeness can be verified by inspection. Also, it is easy to see that (Gen,P,V) is holographic w.r.t.
the same encoding algorithm as SEH-Del. (In particular, the verifier V only uses x to execute SEH-Del.Vx̂ for
x̂ := SEH-Del.Encode(λ,x) in the last step.)

6.2 Efficiency
The efficiency can be verified by inspection.

6.3 Weakly Semi-Adaptive Somewhere Soundness
To prove the weakly semi-adaptive somewhere soundness, we first give a trapdoor setup algorithm TGen. Let
BARG.TGenidx be the trapdoor setup algorithm of BARGidx. Then, TGen is given in Figure 12.

Since the CRS indistinguishability follows directly from the key indistinguishability of SEH and the CRS
indistinguishability of BARGidx, we focus on proving the weakly semi-adaptive somewhere soundness. Assume
for contradiction that BARG is not weakly semi-adaptive somewhere sound, i.e., there exist a pair of PPT
algorithms P∗ = (P∗

1,P
∗
2) and a triple of polynomials polyk, polyC , polyP∗ such that for infinitely many λ ∈ N,

there exist k ≤ polyk(λ), MC ≤ polyC(λ), n ≤MC , and z ∈ {0, 1}∗ such that

Pr

 V(crs, C,x, π) = 1
∧ i∗ ∈ [k]
∧ (C, xi∗) 6∈ CSAT

∣∣∣∣∣∣
(st, i∗,x)← P∗

1(1
λ, 1n, 1MC , k, z)

crs← TGen(1λ, 1n, 1MC , k, i∗)
(C, π)← P∗

2(st, crs)

 ≥ 1

polyP∗(λ)
. (16)

36

crs← TGen(1λ, 1n, 1MC , k, i):

1. Sample (h, td)← SEH.TGen(1λ, nk, {n(i− 1) + j}j∈[n]).

2. Sample crsidx ← BARG.TGenidx(1
λ, 1M

′
C , k, i), where M ′

C is defined as in Gen.

3. Sample crsSEH-Del ← SEH-Del.Gen(1λ, nk, 1n).

4. Output crs = (1λ, 1n, 1MC , k, h, crsidx, crsSEH-Del).

Figure 12: Trapdoor setup algorithm TGen

(crs, td)← TGen′(1λ, 1n, 1MC , k, i):
Identical with TGen except that it additionally outputs td, which is the trapdoor obtained by SEH.TGen.

b := V′(crs, C,x, π, td, i∗):

1. Parse crs as (1λ, 1n, 1MC , k, h, crsidx, crsSEH-Del) and π as (rt, πidx, πSEH-Del). Abort unless |C| ≤MC .

2. Output 1 iff all of the following hold.

(a) BARG.Vidx(crs
idx, C ′, πidx) = 1, where C ′ is defined as in the prover P.

(b) SEH-Del.Vx̂(crsSEH-Del, (h, rt), πSEH-Del) = 1, where x̂ := SEH-Del.Encode(λ,x).
(c) xi∗ = x̃i∗ , where x̃i∗ := (x̃i∗,1, . . . , x̃i∗,n) ∈ {0, 1}n for {x̃i∗,j}j∈[n] := SEH.Extract(td, rt).

Figure 13: Hybrid verifier V′ and trapdoor setup algorithm TGen′.

b := V′′(crs, C,x, π, td, i∗):

1. Parse crs as (1λ, 1n, 1MC , k, h, crsidx, crsSEH-Del) and π as (rt, πidx, πSEH-Del). Abort unless |C| ≤MC .

2. Output 1 iff all of the following hold.

(a) BARG.Vidx(crs
idx, C ′, πidx) = 1, where C ′ is defined as in the prover P.

(b) SEH-Del.Vx̂(crsSEH-Del, (h, rt), πSEH-Del) = 1, where x̂ := SEH-Del.Encode(λ,x).
(c) xi∗ = x̃i∗ , where x̃i∗ := (x̃i∗,1, . . . , x̃i∗,n) ∈ {0, 1}n for {x̃i∗,j}j∈[n] := SEH.Extract(td, rt).
(d) (C ′, i∗) 6∈ CSAT.

Figure 14: Hybrid verifier V′′.

Fix any such P∗, polyk, polyC , and polyP∗ . First, we define the hybrid trapdoor setup algorithm TGen′ and
verifier V′ as in Figure 13 and replace TGen and V with TGen′ and V′ in (16). To show that the probability
only decreases by a negligible amount, it suffices to show that the probability that V outputs 1 while V′ outputs
0 is negligible. Since V′ only differs from V in that V′ outputs 0 when xi∗ 6= x̃i∗ , it suffices to show that we
have SEH-Del.Vx̂(crsSEH-Del, (h, rt), πSEH-Del) = 1 ∧ xi∗ 6= x̃i∗ in V′ with negligible probability. Since this
event indeed only occurs with negligible probability because of the partially adaptive somewhere soundness of
SEH-Del, there exists a negligible function negl1 such that for infinitely many λ, k, n, MC , and z as above, we
have

Pr

 V′(crs, C,x, π, td, i∗) = 1
∧ i∗ ∈ [k]
∧ (C, xi∗) 6∈ CSAT

∣∣∣∣∣∣
(st, i∗,x)← P∗

1(1
λ, 1n, 1MC , k, z)

(crs, td)← TGen′(1λ, 1n, 1MC , k, i∗)
(C, π)← P∗

2(st, crs)

 ≥ 1

polyP∗(λ)
− negl1(λ) .

(17)

Next, we define the (inefficient) hybrid verifier V′′ as in Figure 14 and replace V′ with V′′ in (17). To show that
the probability only decreases by a negligible amount, it suffices to show that the event (C, xi∗) 6∈ CSAT ∧

37

xi∗ = x̃i∗ ∧ (C ′, i∗) ∈ CSAT only occurs with negligible probability. (Indeed, unless the event xi∗ =
x̃i∗ ∧ (C ′, i∗) ∈ CSAT occurs, the outputs of V′ and V′′ are identical.) Note that the somewhere extractability
of SEH guarantees that with overwhelming probability over the choice of h (sampled in TGen′), there does not
exist any certificate that successfully opens the pre-image of rt to a value other than the extracted value x̃i∗ in
position (n(i∗ − 1) + 1, . . . , n(i∗ − 1) + n). Thus, with overwhelming probability, C ′(i∗, ·) outputs 1 only
when it is given x̃i∗ as a part of the witness, and therefore, the event (C, xi∗) 6∈ CSAT ∧ xi∗ = x̃i∗ implies
(C ′, i∗) 6∈ CSAT. Thus, there exists a negligible function negl2 such that for infinitely many λ, k, n, MC , and
z as above, we have

Pr

 V′′(crs, C,x, π, td, i∗) = 1
∧ i∗ ∈ [k]
∧ (C, xi∗) 6∈ CSAT

∣∣∣∣∣∣
(st, i∗,x)← P∗

1(1
λ, 1n, 1MC , k, z)

(crs, td)← TGen′(1λ, 1n, 1MC , k, i∗)
(C, π)← P∗

2(st, crs)

 ≥ 1

polyP∗(λ)
−

∑
1≤i≤2

negli(λ) .

(18)

Observe that V′′(crs, C,x, π, td, i∗) = 1 implies that the proof π contains πidx such that
BARG.Vidx(crs

idx, C ′, πidx) = 1 ∧ (C ′, i∗) 6∈ CSAT. Thus, given (18), we can break the semi-adaptive
somewhere soundness of BARGidx. Thus, we obtain a contradiction.

Remark 5. If the underlying BARG is somewhere argument of knowledge [CJJ22], BARG is also somewhere
argument of knowledge. ♢

7 Holographic SNARG for P
In this section, we observe that we can obtain a holographic SNARG for P by combining a holographic tree-hash
SNARG with a known transformation.

Theorem 5. Assume the hardness of the LWE assumption. Then, for every Turing machine, there exists a
partially adaptive public-coin non-interactive delegation scheme that satisfies the following properties.

• The scheme is LDE-holographic, where for the security parameter λ and an input x of length N , the
encoding algorithm Encode outputs the LDE of x w.r.t. an arbitrary LDE parameter (F,H,m) such that
|F| ≤ poly(|H|) ≤ poly(logN), |H|m ≤ poly(N), and m|H|/|F| ≤ O(1).

• The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both at most
poly(λ, log T, log n1, n2).

As mentioned in Section 2.1, the above theorem is obtained by combining our LWE-based holographic tree-
hash SNARG (Corollary 1) with a known transformation [Kiy22a], which uses the LWE-based RAM delegation
scheme of Choudhuri, Jain, and Jin [CJJ22]. At a high level, the RAM delegation scheme of Choudhuri et al. is
a public-coin non-interactive delegation scheme where (i) the prover can prove the correctness of an arbitrary
polynomial-time computation and (ii) the verifier only needs to have the Merkle tree-hash of the computation
input rather than the input itself. Naturally, their RAM delegation scheme can be converted to a holographic
SNARG for P by augmenting it with a holographic tree-hash SNARG, i.e., by requiring the prover to send the
tree-hash of the computation input along with a holographic proof about the correctness of the tree-hash. Thus,
by using our LWE-based holographic tree-hash SNARG (Corollary 1), we can obtain a holographic SNARG for
P as desired. For completeness, we describe our holographic SNARG for P in the appendix (Appendix B).

8 Application: Public-Coin Three-Round Zero-Knowledge
As an application of our holographic SNARGs, we give a public-coin 3-round zero-knowledge argument based
on slightly super-polynomial hardness of the LWE assumption and keyless multi-collision-resistant hash func-
tions.

Theorem 6. For arbitrary super-polynomial functions γLWE, γmCRH and an arbitrary polynomial K, assume
the γLWE-hardness of the LWE assumption and the existence of a keyless weakly (K, γmCRH)-collision-resistant
hash function. Then, there exists a public-coin 3-round zero-knowledge argument for NP.

38

Proof . We use a known transformation to obtain a public-coin 3-round ZK argument from a tree-hash delegation
scheme. Specifically, we use the transformation shown in [Kiy22a], summarized as follows.

Lemma 4. Assume the γLWE-hardness of the LWE assumption and the existence of a keyless weakly (K, γmCRH)-
collision-resistant hash function as in Theorem 6. Also, assume the existence of a public-coin non-interactive
tree-hash delegation scheme that satisfies the following properties.

• The scheme satisfies partial adaptive soundness and is γDel-secure for a super-polynomial function γDel.

• The scheme is LDE-holographic w.r.t. the encoding algorithm Encode such that, for the security param-
eter λ and an input x of length N = 2ℓλ (ℓ ≤ blog2 λc), it outputs the LDE of x w.r.t. an LDE parameter
(F,H,m) such that 2m|H| < |F| = poly(log λ) and N ≤ |H|m ≤ |F|m ≤ poly(N).

• The setup time TGen(λ, T, n1, n2) and the proof length Lπ(λ, T, n1, n2) are both at most
poly(λ, log n1, n2).

Then, there exists a public-coin 3-round zero-knowledge argument for NP.

(For details about how we obtain Lemma 4 from [Kiy22a], see Section A.2 in the appendix.) Given Lemma 4,
we can prove Theorem 6 by observing that the desired tree-hash delegation scheme can be obtained by straight-
forwardly adjusting the proofs of Lemma 2 and Lemma 3 (namely, by using the super-polynomial hardness of
the LWE assumption rather than the standard polynomial hardness).

References
[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in

polylogarithmic time. In 23rd ACM STOC, pages 21–31. ACM Press, May 1991.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and batch
NP verification from standard computational assumptions. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, 49th ACM STOC, pages 474–482. ACM Press, June 2017.

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and Daniel Wichs.
Succinct delegation for low-space non-deterministic computation. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, 50th ACM STOC, pages 709–721. ACM Press, June 2018.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a paradigm for
keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, 50th
ACM STOC, pages 671–684. ACM Press, June 2018.

[BR22] Liron Bronfman and Ron D. Rothblum. PCPs and Instance Compression from a Cryptographic
Lens. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1–
30:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. Journal
of the ACM, 51(4):557––594, July 2004.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yu-
val Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer,
Heidelberg, May 2020.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for
NP from standard assumptions. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV,
volume 12828 of LNCS, pages 394–423, Virtual Event, August 2021. Springer, Heidelberg.

39

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. Cryptology
ePrint Archive, Report 2021/808, Version 20211108:181325, 2021. https://eprint.iacr.
org/2021/808. An extended version of [CJJ22].

[CJJ22] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd
FOCS, pages 68–79. IEEE Computer Society Press, February 2022.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delegation. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 151–168. Springer, Heidelberg,
August 2011.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent re-
cursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive ar-
guments for batch-NP and applications. In 63rd FOCS, pages 1057–1068. IEEE Computer Society
Press, October / November 2022.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive
proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, 2015.

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of proximity. In
Christos H. Papadimitriou, editor, ITCS 2017, volume 4266, pages 39:1–39:43, 67, January 2017.
LIPIcs.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs for P from
sub-exponential DDH and QR. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS, pages 520–549. Springer, Heidelberg, May / June
2022.

[HLR21a] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir via list-recoverable codes (or:
Parallel repetition of GMW is not zero-knowledge). Cryptology ePrint Archive, Report 2021/286,
Version 20210307:022349, 2021. https://eprint.iacr.org/2021/286. An extended version
of [HLR21b].

[HLR21b] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat–Shamir via list-recoverable codes
(or: parallel repetition of GMW is not zero-knowledge). In Samir Khuller and Virginia Vassilevska
Williams, editors, 53rd ACM STOC, page 750–760. ACM Press, June 2021.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure hash func-
tions need secret coins? In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
92–105. Springer, Heidelberg, August 2004.

[HR18] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal time and
space overhead. In Mikkel Thorup, editor, 59th FOCS, pages 124–135. IEEE Computer Society
Press, October 2018.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation
with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM, January 2015.

[JJ22] Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via mathematical proofs of
equivalence. In 63rd FOCS, pages 1023–1034. IEEE Computer Society Press, 2022.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for bounded
depth computations and PPAD hardness from sub-exponential LWE. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, 53rd ACM STOC, pages 708–721. ACM Press, June 2021.

40

https://eprint.iacr.org/2021/808
https://eprint.iacr.org/2021/808
https://eprint.iacr.org/2021/286

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th
ACM STOC, pages 723–732. ACM Press, May 1992.

[Kiy22a] Susumu Kiyoshima. Public-coin 3-round zero-knowledge from learning with errors and keyless
multi-collision-resistant hash. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part I, volume 13507 of LNCS, pages 444–473. Springer, Heidelberg, August 2022.

[Kiy22b] Susumu Kiyoshima. Public-coin 3-round zero-knowledge from learning with errors and key-
less multi-collision-resistant hash. Cryptology ePrint Archive, Report 2022/820, Version
20220624:060657, 2022. https://eprint.iacr.org/2022/820. An extended version of
[Kiy22a].

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 91–118. Springer, Heidelberg,
October / November 2016.

[KPY19a] Yael Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. Cryptology
ePrint Archive, Report 2019/603, Version 20190602:113205, 2019. https://eprint.iacr.
org/2019/603. An extended version of [KPY19b].

[KPY19b] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In
Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1115–1124. ACM Press, June
2019.

[KR15] Yael Tauman Kalai and Ron D. Rothblum. Arguments of proximity - [extended abstract]. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
422–442. Springer, Heidelberg, August 2015.

[KRR22] Yael Tauman Kalai, Ran Raz, and Ron D Rothblum. How to Delegate Computations: The Power
of No-Signaling Proofs. Journal of the ACM, 69(1):1–82, February 2022.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical sound-
ness, post-quantum security, and SNARGs. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part I, volume 13042 of LNCS, pages 330–368. Springer, Heidelberg, November 2021.

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments. In
63rd FOCS, pages 1045–1056. IEEE Computer Society Press, October / November 2022.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with
errors. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume
11692 of LNCS, pages 89–114. Springer, Heidelberg, August 2019.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity: delegating
computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 793–802. ACM Press, June 2013.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group
assumptions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 433–463. Springer, Heidelberg, August 2022.

A Additional Remarks
A.1 Remark About Theorem 1
Remark 6 (On the condition on tλ in Theorem 1). As mentioned in [HLR21a, Section 5.1], the condition tλ ≥
λ/ log(1/ρ(λ)) in Theorem 1 can be weakened to tλ ≥ λδ/ log(1/ρ(λ)) for an arbitrarily small constant δ > 0.
Roughly speaking, this can be observed as follows. At a high level, the correlation-intractable hash function

41

https://eprint.iacr.org/2022/820
https://eprint.iacr.org/2019/603
https://eprint.iacr.org/2019/603

familyH of Theorem 1 is obtained by combining an information-theoretical object19 with a hash function family
H′ that is correlation intractable for T ′-time searchable relation ensembles for a sufficiently large polynomial
upper bound T ′. (A relation ensemble R′ = {R′

λ}λ∈N is T ′-time searchable if for every λ ∈ N, there exists a
circuit Cλ of size T ′(λ) such that if (x, y) ∈ R′

λ then y = Cλ(x).) Now, a more accurate description of the
condition for tλ is tλ ≥ k2 logQ/ log(1/ρ(λ)), where k is the output length of H′ and Q ≤ (k|Yλ|ρ(λ))4 =
poly(k, λ) (cf. [HLR21a, Proof of Lemma 5.1]). Thus, if the output length ofH′ is sufficiently short, it suffices
to have tλ ≥ λδ/ log(1/ρ(λ)). Fortunately, in [HLR21b], the hash function family H′ is instantiated by the
LWE-based correlation-intractable hash family of Peikert and Shiehian [PS19], and its output length can be
shortened to λδ′ for an arbitrarily small constant δ′ > 0 by appropriately setting its parameters (e.g., by using it
with a scaled-down security parameter).

If the LWE assumption holds against super-polynomial-time adversaries, the condition can be further weak-
ened to tλ ≥ λ1/τ(λ)/ log(1/ρ(λ)) for a super-constant function τ(λ) = ω(1). To see this, let us assume the
TLWE-hardness of the LWE problem for an arbitrarily small super-polynomial TLWE(λ) = λτ ′(λ). Then, when the
hash function H′ in the above is used with an appropriate parameter setting (in particular with a scaled-down
security parameter λ1/τ ′(λ)), its output length is shortened to poly(λ1/τ ′(λ)), and its correlation extractability
holds against poly(λ)-time adversaries for T ′(λ)-time searchable relations, where T ′ is an arbitrary predeter-
mined polynomial upper bound.20 Thus, there exists a super-constant function τ such that for tλ to satisfy the
condition tλ ≥ k2 logQ/ log(1/ρ(λ)) in the above, it suffices to have tλ ≥ λ1/τ(λ)/ log(1/ρ(λ)). ♢

A.2 Remark About Lemma 4
Remark 7. Concretely speaking, Lemma 4 is obtained by combining the proofs of [Kiy22b, Lemma 1, Lemma
6, Lemma7, Theorem 3], where a tree-hash delegation scheme as described in Lemma 4 is gradually upgraded to
stronger delegation schemes and then used to obtain a public-coin 3-round ZK argument. (Although each of the
proofs of [Kiy22b, Lemma 1, Lemma 6, Lemma7, Theorem 3] is given assuming the sub-exponential hardness of
the LWE assumption, the sub-exponential hardness is only used to obtain a desired tree-hash delegation scheme
and thus slightly super-polynomial hardness is sufficient in the other parts of the proofs.21) As a minor detail, we
note that holographic tree-hash delegation schemes in [Kiy22a] are formulated based on a different definition
than ours. However, schemes under our definition (Definition 20) trivially satisfy the definition of [Kiy22a] (see
Appendix C for details). ♢

B Details About Holographic SNARG for P
We describe the holographic SNARG for P that is sketched in Section 7. (This section is largely taken
from [Kiy22b, Section 5].)

B.1 Preliminary: RAM Delegation
We recall the definition of publicly verifiable non-interactive RAM delegation schemes from [KPY19b, CJJ22].

A RAM machine R with word size ℓ is modeled as a deterministic machine with random access to a memory
of at most 2ℓ bits and a local state of O(ℓ) bits. At every step, the machine reads or writes a single memory bit
and updates its state. For simplicity, we use the security parameter λ as the word size. Also, for convenience,
we consider a slightly more general model than [KPY19b, CJJ22] and think of a RAM machine that has access
to a memory of at most 2ℓ bits and additionally takes a short input. (In [KPY19b, CJJ22], a RAM machine has
access to a memory of 2ℓ bits and takes no input other than the memory and the initial local state.) In this paper,

19Namely, a family of list-recoverable codes.
20The output length of H′ (when instantiated by the LWE-based correlation-intractable hash family of Peikert and Shiehian [PS19]) is

independent of T ′ (cf. [PS19, Proof of Theorem 7]). Thus, the output length ofH′ can be λ1/ω(1) even when the correlation intractability
is required to hold for poly(λ)-time searchable relations.

21More precisely, the sub-exponential hardness is also used to obtain a logarithmic-depth collision-resistant hash function family
since the tree-hash delegation scheme in [Kiy22a] is only shown to work for such hash function families. Since by default we assume
that tree-hash delegation schemes work for arbitrary hash functions (and our tree-hash delegation scheme in Corollary 1 indeed works
for arbitrary hash functions), the sub-exponential hardness is no longer needed for this purpose.

42

the memory and state of a RAM machine at a given time-step are referred to as its memory-state pair.22 For any
RAM machine R, let UR denote the language such that (ℓ, x,ms,ms′, T) ∈ UR iff R with word size ℓ and on
input x transitions from memory-state pair ms to memory-state pair ms′ in T steps.

Definition 21. For any RAM machine R, a publicly verifiable non-interactive RAM delegation scheme for R
consists of four algorithms (Gen,Mem,Prove,Ver) that have the following syntax.

Syntax.
• (pk, vk, dk)← Gen(1λ, T): Gen is a probabilistic algorithm that takes as input a security parameter 1λ

and a time bound T , and it outputs a triple of public keys: a prover key pk, a verifier key vk, and a digest
key dk.

• digest := Mem(dk,ms): Mem is a deterministic algorithm that takes as input a digest key dk and a
memory-state pair ms, and it outputs a digest digest of the memory-state pair.

• π := Prove(pk, x,ms,ms′): Prove is a deterministic algorithm that takes as input a prover key pk, an
input x to R, source and destination memory-state pairs ms,ms′, and it outputs a proof π.

• b := Ver(vk, x, digest, digest′, π): Ver is a deterministic algorithm that takes as input a verifier key vk,
an input x to R, source and destination digests digest, digest′, and a proof π, and it outputs a bit b.

Efficiency. For any functions TGen : N × N → N and Lπ : N × N × N → N, a publicly verifiable non-
interactive RAM delegation scheme is said to have setup time TGen and proof length Lπ if for every λ, T ∈ N
such that T ≤ 2λ and for every x,ms,ms′ ∈ {0, 1}∗ such that (λ, x,ms,ms′, T) ∈ UR:

• Gen(1λ, T) runs in time TGen(λ, T).

• Mem(dk,ms) runs in time |ms| · poly(λ) and outputs a digest of length λ.

• Prove(pk, x,ms,ms′) runs in time poly(λ, T, |x|, |ms|) and outputs a proof of length Lπ(λ, T, |x|).

• Ver(vk, x, digest, digest′, π) runs in time O(Lπ(λ, T, |x|)) + poly(λ, |x|).

Security. A publicly verifiable non-interactive RAM delegation scheme is called sound if it satisfies the fol-
lowing.

• Correctness. For every λ, T ∈ N such that T ≤ 2λ and for every x,ms,ms′ ∈ {0, 1}∗ such that
(λ, x,ms,ms′, T) ∈ UR,

Pr

Ver(vk, x, digest, digest′, π) = 1

∣∣∣∣∣∣∣∣
(pk, vk, dk)← Gen(1λ, T)
digest := Mem(dk,ms)
digest′ := Mem(dk,ms′)
π := Prove(pk, x,ms,ms′)

 = 1 .

• Collision resistance. For everyPPT algorithmA and polynomial polyT , there exists a negligible function
negl such that for every λ ∈ N, T ≤ polyT (λ), and z ∈ {0, 1}∗,

Pr

[
ms 6= ms′

∧Mem(dk,ms) = Mem(dk,ms′)

∣∣∣∣ (pk, vk, dk)← Gen(1λ, T)
(ms,ms′)← A(pk, vk, dk, z)

]
≤ negl(λ) .

• Soundness. For every PPT algorithm A and polynomial polyT , there exists a negligible function negl
such that for every λ ∈ N, T ≤ polyT (λ), and z ∈ {0, 1}∗,

Pr


Ver(vk, x, digest, digest′, π) = 1
∧ (λ, x,ms,ms′, T) ∈ UR

∧ digest = Mem(dk,ms)
∧ digest′ 6= Mem(dk,ms′)

∣∣∣∣∣∣∣∣
(pk, vk, dk)← Gen(1λ, T)
(x,ms,ms′, digest, digest′, π)← A(pk, vk, dk, z)


≤ negl(λ) .

22Unlike [KPY19b, CJJ22], we refrain from using the term “configuration” to refer to the memory and state since we allow RAM
machines to additionally have inputs.

43

A publicly verifiable non-interactive RAM delegation scheme is called public-coin if the setup algorithm Gen is
public-coin, i.e., it just outputs a triple of strings that are sampled uniformly randomly.

As in [Kiy22a], the following prior result [CJJ22] (with straightforward adaptation) is used in this work.

Theorem 7. Let R be any RAM machine. Under the hardness of the LWE assumption, there exists a publicly
verifiable non-interactive RAM delegation scheme for R with setup time TGen(λ, T) = poly(λ, log T) and proof
length Lπ(λ, T, |x|) = poly(λ, log T, |x|). Furthermore, this scheme is public-coin, and (i) the setup algorithm
Gen outputs a hash function as a digest key, and (ii) the digest algorithm Mem, on input a digest key dk and a
memory-state pair ms = (DB, st), outputs a triple digest = (st, rt, |DB|) that consists of the local state st, the
tree-hash rt := TreeHashdk(DB) of the memory DB, and the memory length |DB|.

Two remarks about Theorem 7 are given below.

1. The first part of Theorem 7 differs from what is shown in [CJJ22] in that RAM machines are defined in a
model where a RAM machine has access to a memory of at most 2ℓ bits (rather than exactly 2ℓ bits) and
takes a short input. Still, the first part of Theorem 7 can be easily obtained from [CJJ22]. In particular, the
analysis given in [CJJ22] can be easily extended for memories of at most 2ℓ bits by appending the length
|DB| of the memory to the digest digest so that the verification algorithm Verify can learn |DB| and (ii)
for RAM machines that take additional short inputs by allowing the proof length to be polynomial in the
input length (but still polylogarithmic in the computation-time bound T).23

2. Regarding the furthermore part of Theorem 7, the public-coin property is implicitly mentioned
in [CJJ22].24 The properties of Gen and Mem can be easily verified by inspecting the scheme description
in [CJJ21b, Figure 5].25

B.2 Holographic SNARG for P
Fix any two-input Turing machine M . Let R be the following RAM machine.

• R is given as input a string χ2 and given as memory a string χ1. Then, R internally executes M(χ1, χ2)
while using the memory χ1 to emulate the working tape of M . (We assume that χ1 contains a padding
string that can be used to emulate the working tape, and M is designed to ignore the padding part.) When
M terminates, R writes (b, t) at the beginning of the memory and terminates, where b is the output of M
and t is the running time of M .

Without loss of generality, we assume that there exists a (non-decreasing) polynomial polyR such that when
the running time of M(χ1, χ2) is t, the running time of Rχ1(χ2) is polyR(t), and Rχ1(χ2) only reads
and writes the first polyR(t) bits of χ1. (Hence, we assume that the length of χ1, including the padding
part, is at most polyR(t).) Let RDel = (RDel.Gen,RDel.Mem,RDel.P,RDel.V) be the public-coin non-
interactive RAM delegation scheme given by Theorem 7 for the RAM machine R. Recall that RDel.Gen out-
puts as a digest key a hash function that is sampled from a collision-resistant hash family. Let TH-Del =
(TH-Del.Gen,TH-Del.P,TH-Del.V,TH-Del.Encode) be the public-coin non-interactive tree-hash delegation
scheme given by Corollary 1.

Our publicly verifiable holographic non-interactive delegation scheme for M is described in Figure 15.
The correctness and efficiency can be verified by inspection. The partially adaptive soundness can be proved by
following the soundness proof given in [Kiy22b, Section 5]. Namely, it is first argued that because of the partially
adaptive soundness ofTM-Del, if a cheating prover successfully provides an accepting proof for a false statement
((χ1, χ2), T), the proof must contain the correct tree-hash rt of χ1, implying that digest = (stSTART, rt, |χ1|) is
the digest of the initial memory-state pair of Rχ1(χ2). On the other hand, since the statement ((χ1, χ2), T) is
false (implying that either the RAM machineRχ1(χ2) does not terminate at step TR = polyR(T) or it terminates

23For those familiar with the RAM delegation of [CJJ22], we note that we allow the statements of the Batch-NP argument to contain
the input of the RAM machine.

24Technically, the public-coin property can be verified by observing that under the LWE assumption, all the components of the scheme
of [CJJ22] can be made public-coin by using, e.g., an FHE scheme with pseudorandom public keys and ciphertexts.

25Actually, Mem in [CJJ21b, Figure 5] outputs a pair digest = (st, rt), but as noted above, we consider an extended version that
additionally includes |DB| in digest.

44

crs← Gen(1λ, T, n1, n2):

1. Sample (pk, vk, dk)← RDel.Gen(1λ, TR), where TR := polyR(T).

2. Sample crsTH-Del ← TH-Del.Gen(1λ, TTH-Del, n1, |dk|+ λ), where TTH-Del := Ttree-hash(n1, |dk|+ λ) for the
function Ttree-hash in Definition 20.

3. Output crs = (1λ, T, crsTH-Del, pk, vk, dk).

π := P(crs, (χ1, χ2)):

1. Parse crs as (1λ, T, crsTH-Del, pk, vk, dk). Let TR := polyR(T).

2. Run Rχ1(χ2). If Rχ1(χ2) does not terminate in TR steps, abort. Otherwise, let χ′
1 denote the content of the

memory at the termination of Rχ1(χ2).

3. Compute πRDel := RDel.P(pk, χ2,ms,ms′) for ms := (χ1, stSTART) and ms′ := (χ′
1, stEND), where stSTART and

stEND are the initial and the terminating states of R.

4. Compute πTH-Del := TH-Del.P(crs, (χ1, (dk, rt)) for rt := TreeHashdk(χ1).

5. Let (b′, t′) be the prefix of χ′
1 that R wrote at the time of its termination, rt′ be the tree-hash that is obtained by

rt′ := TreeHashdk(χ
′
1), and certTreeHash be the local opening for (b′, t′) w.r.t. rt′.

6. Output π := (rt, rt′, (b′, t′), πRDel, πTH-Del, certTreeHash).

b := V(crs, (χ1, χ2), π):

1. Parse crs as (1λ, T, crsTH-Del, pk, vk, dk) and π as (rt, rt′, (b′, t′), πRDel, πTH-Del, certTreeHash). Let TR :=
polyR(T), digest := (stSTART, rt, |χ1|) and digest′ := (stEND, rt

′, |χ1|).

2. Output 1 if all of the following hold.

(a) b′ = 1 and t′ ≤ T .
(b) RDel.V(vk, χ2, digest, digest

′, πRDel) = 1.
(c) certTreeHash is a valid local opening for (b′, t′) w.r.t. rt′.
(d) TH-Del.V(crs, (χ1, (dk, rt)), π

TH-Del) = 1.

Figure 15: Our publicly verifiable non-interactive delegation scheme for M .

with a memory content ((b, t), . . .) such that b = 0 or t > T), the destination memory hash rt′ in the proof cannot
be correct, i.e., digest′ := (stEND, rt

′, |χ1|) cannot be the digest of the memory-state pair that Rχ1(χ2) has at
step TR. These two imply that the proof that the cheating prover provides must contain a proof that breaks the
soundness of RDel, and thus, we obtain a contradiction. Since the formal proof is quite similar to that given
in [Kiy22b, Section 5], the formal proof is omitted.

C Details About the Definition of Holographic Tree-Hash Delegation
in [Kiy22a]

We provide necessary details about publicly verifiable weak tree-hash oracle memory delegation schemes, a
different formulation of holographic tree-hash delegation sachems that is given in [Kiy22a] and mentioned in
Section 8.

C.1 Definition
First, we recall the definition of publicly verifiable weak tree-hash oracle memory delegation schemes. The
following definition is obtained by combining [Kiy22b, Definition 8, Definition 9, Lemma 2].

Definition 22. Let H be a hash function family such that each h ∈ Hλ is a length-halving hash function
h : {0, 1}2λ → {0, 1}λ. Then, a publicly verifiable (2-round) weak tree-hash oracle memory delegation

45

scheme forH consists of five algorithms (Mem,Query1,Prove,Query2,Ver) that have the following syntax and
efficiency.

Syntax.

• D̂B := Mem(1λ,DB): Mem is a deterministic polynomial-time algorithm that takes as input a security
parameter λ (in unary) and a memory DB, and it outputs an encoding D̂B of the memory.

• (q, σ)← Query1(1
λ): Query1 is a probabilistic polynomial-time algorithm that takes as input a security

parameter λ (in unary), and it outputs a query q and a random string σ.

• π := Prove(DB, (M, t, y), q): Prove is a deterministic algorithm that takes as input a memory DB, a
deterministic Turing machine M (possibly with some hardwired inputs), a time bound t, an output y, and
a query q, and it outputs a proof π.

• I := Query2(LDB, σ, π): Query2 is a deterministic algorithm that takes as input a length parameter LDB,
a random string σ, and a proof π, and it outputs a set I ⊆ N of oracle queries.

• b := Ver(·)(LDB, (M, t, y), q, σ, π): Ver is a deterministic oracle algorithm that takes as input a length
parameter LDB, a deterministic Turing machine M (possibly with some hardwired inputs), a time bound
t, an output y, a query q, a random string σ, and a proof π, and it outputs a bit b.

Efficiency. For any polynomial p, there exists polynomials polyP , polyV such that for every λ ∈ N, (M, t, y) ∈
{0, 1}p(λ), and DB ∈ {0, 1}∗ such that M(DB) outputs y within t steps and |DB| ≤ t ≤ λlog λ,

• Prove(DB, (M, t, y), q) runs in time polyP (λ, t), and

• Ver(·)(|DB|, (M, t, y), q, σ, π) runs in time polyV (λ).

Security. A publicly verifiable 2-round tree-hash oracle memory delegation scheme is required to satisfy the
following.

• Correctness. For any hash function h : {0, 1}2λ → {0, 1}λ, let Mh be a Turing machine that takes as
input a string DB ∈ {0, 1}2ℓλ (ℓ ∈ N) and outputs TreeHashh(DB). Then, for every λ ∈ N, h ∈ Hλ,
(Mh, t, y) ∈ {0, 1}poly(λ), and DB ∈ {0, 1}2ℓλ (ℓ ∈ N) such that Mh(DB) outputs y within t steps and
|DB| ≤ t ≤ 2λ,

Pr

VerD̂B|I (|DB|, (Mh, t, y), q, σ, π) = 1

∣∣∣∣∣∣∣∣
D̂B := Mem(1λ,DB)
(q, σ)← Query1(1

λ)
π := Prove(DB, (Mh, t, y), q)
I := Query2(|DB|, σ, π)

 = 1 .

• Weak soundness. There exist a deterministic polynomial-time algorithm Decode and a predicate Valid
such that for every pair of PPT adversaries (A1,A2) and every polynomial-size advice {zλ}λ∈N, there
exists a negligible function negl such that for every λ ∈ N and h ∈ Hλ,

Pr


rt 6= TreeHashh(D̃B)

∧ VerD̂B|I (LDB, (Mh, tLDB
, rt), q, σ, π) = 1

∧ Valid(D̂B, LDB) = 1

∣∣∣∣∣∣∣∣∣∣∣

(D̂B, LDB, st)← A1(1
λ, zλ)

(q, σ)← Query1(1
λ)

(rt, π)← A2(h, q, σ, st)
I := Query2(LDB, σ, π)

D̃B← Decode(D̂B, LDB)


≤ negl(λ) ,

where tLDB
is the running time of Mh for inputs of length LDB, and Decode(·, LDB) always outputs an

LDB-bit string (or ⊥).

A publicly verifiable 2-round oracle memory delegation scheme is called public-coin if the query algorithm
Query1 is public-coin, i.e., it just outputs a string that is sampled uniformly randomly.

46

D̂B := Mem(1λ,DB):

1. Output D̂B := Encode(λ,DB)

(q, σ)← Query1(1
λ):

1. For each i ∈ [λ], run crsi ← Gen(1λ, Ti, ni,1, ni,2) for Ti := polyT (2
iλ), ni,1 := 2iλ, andni,2 := polyh(λ)+λ.

2. Output (q, σ) := ({crsi}i∈[λ],⊥).

π := Prove(DB, (Mh, t, y), q):

1. Parse q as {crsi}i∈[λ] and find i∗ such that |DB| = 2i
∗
λ.

2. Compute π′ := P(crsi∗ , (DB, (h, y))).

3. Run the first part of the holographic verifierV(crsi∗ , (|DB|, (h, y)), π′) to obtain a query set I (cf. Definition 16).

4. Output π := (π′, I).

I := Query2(LDB, σ, π):

1. Parse π as (π′, I) and output I .

b := VerD̂B|I (LDB, (Mh, t, y), q, σ, π):

1. Parse q as {crsi}i∈[λ] and π as (π′, I). Also, find i∗ such that LDB = 2i
∗
λ.

2. Run the first part of the holographic verifier V(crsi∗ , (LDB, (h, y)), π
′). If the verifier immediately outputs 0 or

the query set that the verifier outputs is not equal to I , output 0 and terminate.

3. Output 1 iff D̂B|I = Z, where Z is the set of expected responses that the first part of the holographic verifier
outputs along with I (cf. Definition 16).

Figure 16: Publicly verifiable weak tree-hash oracle memory delegation scheme.

C.2 Relation with Publicly Verifiable Non-Interactive Tree-Hash Delegation Schemes
Next, we observe that partially adaptive publicly verifiable LDE-holographic non-interactive tree-hash dele-
gation schemes (Definition 20) can straightforwardly be viewed as publicly verifiable weak tree-hash oracle
memory delegation schemes (Definition 22). Let TH-Del = (Gen,P,V) be any partially adaptive publicly
verifiable LDE-holographic non-interactive tree-hash delegation scheme with setup time TGen(λ, T, n1, n2) =
poly(λ, log n1, n2) and proof length Lπ(λ, T, n1, n2) = poly(λ, log n1, n2), and let Encode be the encoding
algorithm that is guaranteed to exist by the holographic property. Let H be a hash function family such that
each h ∈ Hλ is a length-halving hash function h : {0, 1}2λ → {0, 1}λ. Let polyh, polyT be any polynomials
such that for every λ ∈ N and h ∈ Hλ, the description size of h (as a bit string) is at most polyh(λ) and the
running time of the Turing machine Mh (as defined in Definition 22) is at most polyT (L) for an input of length
L.

Then, TH-Del can be viewed as a publicly verifiable weak tree-hash oracle memory delegation scheme for
H as described in Figure 16. It is easy to check that the scheme satisfies the desired efficiency and security
requirements. (For the weak soundness requirement, we consider as Valid an algorithm that checks whether the
input is the LDE of an LDB-bit string w.r.t. the LDE parameter (F,H,m) that the encoding algorithm Encode
of TH-Del would use, and we consider as Decode an algorithm that applies LDE decoding to the input.) The
security holds against poly(γ)-time adversaries for a super-polynomial γ if TH-Del is γ-secure.

47

	Introduction
	Our Results
	Related Work

	Technical Overviews
	Holographic SNARG for P
	Holographic SNARG for Batch-NP

	Preliminaries
	Notations and Conventions
	Low-Degree Extensions
	Hash Functions
	Correlation-Intractable Hash Functions
	Somewhere Extractable Hash Functions
	Keyless Multi-Collision Resistant Hash Functions
	SNARGs for P (a.k.a. Non-Interactive Turing-Machine Delegations)
	SNARGs for Batch-NP (a.k.a. Non-Interactive BARGs)
	Holographic SNARGs for P and Batch-NP

	Somewhere-Sound Holographic SNARG for Somewhere-Extractable Hashing
	Completeness
	Efficiency
	Partially Adaptive Somewhere Soundness

	Holographic SNARG for Tree-Hash
	Completeness
	Efficiency
	Partial Adaptive Soundness

	Holographic SNARG for Batch-NP
	Completeness
	Efficiency
	Weakly Semi-Adaptive Somewhere Soundness

	Holographic SNARG for P
	Application: Public-Coin Three-Round Zero-Knowledge
	Additional Remarks
	Remark About Theorem 1
	Remark About Lemma 4

	Details About Holographic SNARG for P
	Preliminary: RAM Delegation
	Holographic SNARG for P

	Details About the Definition of Holographic Tree-Hash Delegation in C:Kiyoshima22
	Definition
	Relation with Publicly Verifiable Non-Interactive Tree-Hash Delegation Schemes

