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Abstract. Recently, there has been a surge of interest in the security of authenticated
encryption with associated data (AEAD) within the context of key commitment
frameworks. Security within this framework ensures that a ciphertext chosen by
an adversary does not decrypt to two different sets of key, nonce, and associated
data. Despite this increasing interest, the security of several widely deployed AEAD
schemes has not been thoroughly examined within this framework. In this work,
we assess the key committing security of AEGIS, which emerged as a winner in the
Competition for Authenticated Encryption: Security, Applicability, and Robustness
(CAESAR). A recent assertion has been made suggesting that there are no known
attacks on AEGIS in the key committing settings and AEGIS qualifies as a fully
committing AEAD scheme in IETF document. However, contrary to this claim, we
propose a novel O(1) attack applicable to all variants of AEGIS. This demonstrates
the ability to execute a key committing attack within the FROB game setting, which
is known to be one of the most stringent key committing frameworks. This implies
that our attacks also hold validity in other, more relaxed frameworks, such as CMT-1,
CMT-4, and so forth.
Keywords: AEGIS · Key Commitment

1 Introduction
Authenticated Encryption (AE) is a cryptographic technique that combines encryption
and message authentication codes (MACs) to provide both confidentiality and integrity
for data. It ensures that not only is the information kept secret from unauthorized parties,
but also that it has not been tampered with during transit. AEGIS, proposed by Wu and
Preneel [WP13a], is one such scheme and its variant AEGIS-128 emerged as one of the
winning candidate of Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) [cae19] for high performance computing applications.

The traditional focus of designers in authenticated encryption with associated data
(AEAD) has been on ensuring the security aspects of confidentiality and ciphertext
integrity. However, in recent years it is witnessed that the previously established notions
of confidentiality and integrity may not suffice in various contexts. Among the additional
properties explored is the concept of authenticated encryption (AE) key commitment, an
area that has received relatively less attention.

Key commitment assures that a ciphertext C can only be decrypted using the same key
that was originally used to derive C from some plaintext. Schemes that allow finding a ci-
phertext that decrypts to valid plaintexts under two different keys do not adhere to the prin-
ciple of key commitment. The issue of non-key-committing AEAD was initially highlighted
in scenarios such as moderation within encrypted messaging [DGRW18, GLR17]. Subse-
quently, it surfaced in various applications including password-based encryption [LGR21],
password-based key exchange [LGR21], key rotation schemes [ADG+22], and envelope
encryption [ADG+22].
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In even more recent times, there have been new propositions [CR22, BH22] introducing
definitions that focus on committing to not only the key, but also the associated data and
nonce. Although there have been suggestions for novel schemes [CR22, ADG+22] that
align with these diverse definitions, uncertainties persist regarding which existing AEAD
schemes actually implement this commitment, and in what manner. Furthermore, several
crucial and widely-used AEAD schemes lack demonstrated commitment results. Recently,
commitment attacks are mounted on several widely deployed AEAD schemes, like CCM,
GCM, OCB3, etc [MLGR23].

In this work, we assess the key committing security of AEGIS. A recent assertion has
been made suggesting that there are no known attacks on AEGIS in the key committing
settings [DL23a] and AEGIS qualifies as a fully committing AEAD scheme [MST23]. The
challenge of attacking the key committing security of AEGIS is also acknowledged as an
open problem in [Kö22]. In [DL23a], it is claimed that finding a collision on a 128-bit tag
for variants of AEGIS requires O(264) computations, while for a 256-bit tag, it requires
O(2128) computations. These claims are made under the assumption that AEGIS is fully
committing. However, contrary to all these claims, we demonstrate the ability to execute a
key committing attack within the FROB game setting [FOR17], which is known to be one
of the most stringent key committing frameworks. Thus, we are able to find collisions on
tags with a complexity of O(1). This implies that our attacks also hold validity in other,
more relaxed frameworks, such as CMT-1, CMT-4, and so forth.

We have informed our results to the authors of IETF document, Denis and Lucas.
They have confirmed our results and will update the IETF document accordingly [DL23b].

2 Preliminaries
2.1 Committing Authenticated Encryption (AE) Framework
Consider a symmetric encryption scheme Σ consisting of encryption and decryption
algorithms denoted by ΣEnc and ΣEnc, respectively where

ΣEnc : K ×N ×A×M→ C,

and
ΣDec : K ×N ×A× C →M∪ {⊥}.

Here, K, N , A, M and C refer to the key, nonce, associated data, message and
ciphertext spaces, respectively. Formally, the above scheme is called as a nonce based
authenticated encryption scheme supporting associated data, or an nAE scheme.

A committing authenticated encryption (cAE) scheme guarantees the definitive deter-
mination of the values of its constituent elements, including the key, nonce, associated data,
or message, which are utilized to produce the ciphertext. In the committing AE framework,
the adversary tries to construct a ciphertext which can be obtained from two different
sets of keys, nonces, associated data and messages. Let, Ci ← ΣEnc(Ki, Ni, Ai, Mi) where
Ki ∈ K, Ni ∈ N , Ai ∈ A, Mi ∈M and Ci ∈ C for i ∈ {1, 2}. The adversary aims to find
C1, C2 such that C1 = C2 and (K1, N1, A1, M1) ̸= (K2, N2, A2, M2).

Various notions of committing security framework have been introduced [FOR17, CR22,
BH22]. In the context of this work, we discuss here some of them. In CMT-1, the ciphertext
commits exclusively to the key. In the attack scenario, the adversary must produce
((K1, N1, A1, M1), (K2, N2, A2, M2)) such that K1 ̸= K2 and ΣEnc(K1, N1, A1, M1) =
ΣEnc(K2, N2, A2, M2). CMT-4 relaxes the constraints and allows that the commitment
can encompass to any of the inputs of ΣEnc, not just the key. The adversary can breach
CMT-4 security by constructing a set ((K1, N1, A1, M1), (K2, N2, A2, M2)) such that,
(K1, N1, A1, M1) = (K2, N2, A2, M2) and ΣEnc(K1, N1, A1, M1) = ΣEnc(K2, N2, A2, M2).
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FROB (A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. M1 ← ΣDec(K1, N1, A1, C)

3. M2 ← ΣDec(K2, N2, A2, C)

4. If M1 = ⊥ or M2 = ⊥ then
Return false

5. If K1 = K2 or N1 ̸= N2 then
Return false

6. Return true

(a) FROB Game

CMT-1(A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. M1 ← ΣDec(K1, N1, A1, C)

3. M2 ← ΣDec(K2, N2, A2, C)

4. If M1 = ⊥ or M2 = ⊥ then
Return false

5. If K1 = K2 then
Return false

6. Return true

(b) CMT-1 Game

CMT-3(A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. M1 ← ΣDec(K1, N1, A1, C)

3. M2 ← ΣDec(K2, N2, A2, C)

4. If M1 = ⊥ or M2 = ⊥ then
Return false

5. If (K1, N1, A1) = (K2, N2, A2)
then Return false

6. Return true

(c) CMT-3 Game

CMT-4(A)

1. (C, (K1, N1, A1), (K2, N2, A2)) $← A

2. M1 ← ΣDec(K1, N1, A1, C)

3. M2 ← ΣDec(K2, N2, A2, C)

4. If M1 = ⊥ or M2 = ⊥ then
Return false

5. If (K1, N1, A1, M1) = (K2, N2, A2, M2)
then Return false

6. Return true

(d) CMT-4 Game

Figure 1: Different Frameworks for Key Commiting Security.

Bellare and Hoang introduced CMT-3, which is slightly more restrictive than CMT-4.
They replaced the constraint (K1, N1, A1, M1) = (K2, N2, A2, M2) with (K1, N1, A1) =
(K2, N2, A2). The FROB game, initially proposed by Farshim, Orlandi, and Rosie [FOR17]
and later adapted to the AEAD setting by Grubbs, Lu, and Ristenpart [GLR17], is
even more restrictive. It requires the condition N1 ̸= N2 in addition to K1 = K2. It
has been demonstrated that CMT-3 security implies CMT-1, which in turn implies the
FROB game [BH22, MLGR23]. In essence, the FROB game presents the most formidable
challenge for an adversary to overcome. All the related games are outlined in Fig. 1.

2.2 Description of AEGIS
The authenticated encryption scheme AEGIS was introduced in SAC 2013 [WP13a]. It
encompasses three variants: AEGIS-128 (AEGIS-128 emerged as a finalist in the CAESAR
competition [cae19]), AEGIS-256, and AEGIS-128L. Across all these variants, the state
update function involves a single round of AES denoted as AR(X, Y ), where X and Y
represent 16-byte states. Specifically, AR(X, Y ) = MC ◦ SR ◦ SB(X) ⊕ Y , where MC,
SR, and SB denote the mixcolumns, shiftrows, and subbytes operations, respectively. For
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more details on these operations refer to [DR00, DR02].
The state update function of AEGIS-128 and AEGIS-256 involves updating the 16-byte

state Si with a 16-byte message block mi to yield the state Si+1. This operation is
expressed as:

Si+1,0 = AR(Si,b−1, Si,0 ⊕mi)
Si+1,1 = AR(Si,0, Si,1)

...
Si+1,b−1 = AR(Si,b−2, Si,b−1).

For AEGIS-128 and AEGIS-256, the value of b is 5 and 6, respectively, resulting in
state sizes of 80 bytes and 96 bytes, respectively.

The state update function of AEGIS-256 differs slightly from the other two, using two
16-byte message blocks mi,0 and mi,1 instead of one. The computation is as follows:

Si+1,0 = AR(Si,7, Si,0 ⊕mi,0)
Si+1,1 = AR(Si,0, Si,1)
Si+1,2 = AR(Si,1, Si,2)
Si+1,3 = AR(Si,2, Si,3)
Si+1,4 = AR(Si,3, Si,4 ⊕mi,1)
Si+1,5 = AR(Si,4, Si,5)
Si+1,6 = AR(Si,5, Si,6)
Si+1,7 = AR(Si,6, Si,7).

In the initialization phase, the state of AEGIS is loaded with a 128-bit key K, a 128-bit
initialization vector IV , and some constants. For AEGIS-128 and AEGIS-128L, the sizes of
K and IV are 128 bits, while for AEGIS-256, they are 256 bits. The state update function
is iterated 10 times for AEGIS-128 and AEGIS-128L, and 16 times for AEGIS-256.

Following this, based on the lengths of the associated data and plaintext, the states
undergo further updates. The associated data and plaintext are encrypted concurrently
with the state update function. After each step of the state update function, a 128-bit block
of associated data/plaintext is encrypted for AEGIS-128 and AEGIS-256 (for AEGIS-128L,
two 128-bit blocks are encrypted at each step).

Finally, during tag generation, the state update function is iterated for 7 rounds. The
message bit depends on the lengths of the plaintext and associated data, encoded as 64-bit
strings, along with a portion of the previous state. All the 128-bit substates of the final
state are XOR-ed to obtain the tag. For more comprehensive details on AEGIS, please
refer to [WP13a, WP13b, WP16].

3 Attacks
3.1 Attack Overview
Initially, let’s introduce an alternative perspective on the state updating process of AEGIS.
Since the state update relies on the key, IV, associated data (AD), and plaintext at various
stages, we can view the entire process as illustrated in Fig.2. As explained in Section2.2, the
initialization phase is contingent on the key K and the initialization vector IV . Therefore,
the complete state update process during this phase can be denoted as UK,IV , which
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transforms the initial state IS0 into IS1. Subsequently, UA and UP alter the internal
states IS1 and IS2 into IS2 and IS3 respectively, based on the associated data A and
plaintext P . Finally, contingent on the lengths of A and P , U|P |,|A| transforms IS3 into
IS4. The tag is generated based on IS4.

Figure 2: State updatation as a function of key, initialization vector, associated data and
plaintext.

We are specifically interested in analyzing the FROB security of AEGIS. As outlined
in Section 2.1, the adversary is required to generate a ciphertext (ciphertext and tag
pair) which decrypts to valid plaintexts using two different sets of keys and same IV.
Let’s consider two sets of key, IV, AD, and plaintext, denoted as (K1, IV1, A1, P1) and
(K2, IV2, A2, P2). These sets are used to create ciphertext-tag pairs C1||T1 and C2||T2
respectively. Note that, K1 ̸= K2 and IV1 = IV2.

Figure 3: Overview of the attack in FROB framework

As depicted in Fig. 3, we need to find a A∗ such that UA∗ transforms IS2
1 to IS1

2 . If
|A∗| = |A1| (the plaintext is P1), the final state IS1

4 can be obtained which results in
generating the ciphertext-tag pair C1||T1. Consequently, the tuples (K1, IV1, A1, P1) and
(K2, IV2, A∗, P1) yield the same ciphertext-tag pair, thereby compromising the FROB
security of AEGIS. Hence, the adversary is required to find an A∗ such that |A∗| = |A1|.
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3.2 Attacks on AEGIS
In this subsection, we primarily focus on the recovery of the associated data A∗ in the
case of AEGIS-128. The recovery of A∗ for AEGIS-256 and AEGIS-128L follows a similar
strategy.

Please refer to Fig. 4 for an overview of the attack. Corresponding to the discussion in
Section 3.1 and Fig. 3, the states Si,0||Si,1||Si,2||Si,3||Si,4 and Si+5,0||Si+5,1||Si+5,2||Si+5,3||Si+5,4
can be considered as IS2

1 and IS1
2 , respectively.

Let A∗ = A∗
0||A∗

1||A∗
2||A∗

3||A∗
4, where each A∗

j (for 0 ≤ j ≤ 4) is a 16-byte block. Based
on the values of the substates Si, 0, · · · , Si, 4, some of the internal substates’ values can
be fixed (indicated by the red rectangles in Fig. 4).

Now, when the value of Si+5,4 is fixed, it deterministically establishes the internal
substates Si+k+1,k for 0 ≤ k ≤ 3 (indicated by the blue rectangles in Fig. 4). The values of
Si,0, Si,4, and Si+1,0 deterministically determine the value of A0. In general, by fixing the
value of Si+5,k, A∗

4−k can be determined. Hence, the complete A∗ can be deterministically
recovered.

Figure 4: Attack on AEGIS-128

By following the similar strategy, A∗ can be recovered for both AEGIS-256 and AEGIS-
128L. The attack strategy corresponding to AEGIS-256 and AEGIS-128L are outlined
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in Fig. 5 and Fig. 6, respectively. The attack vectors corresponding to the attack on
AEGIS-128, AEGIS-256 and AEGIS-128L are provided in Appendix A.1, A.2 and A.3,
respectively.

Figure 5: Attack on AEGIS-256

4 Conclusion

The issue of key commitment security in AEGIS has been a significant and persisting
question. This work addresses this gap by conducting a thorough analysis of AEGIS.
Our analysis, considering various existing frameworks, culminated in the development
of a O(1) attack applicable to all variants of AEGIS. However, in frameworks where an
additional constraint of identical associated data is imposed (i. e., A1 = A2), the proposed
attacks will not be effective. These findings underscore the need for continued research and
evaluation in the domain of AEAD security, particularly in the context of key commitment
frameworks.
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Figure 6: Attack on AEGIS-128L
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A Attack Vectors
Note that, in the attack vectors, we have provided a ciphertext/tag pair. However, the tuple
((K1, IV1, A1), (K2, IV2, A∗)) (here IV1 = IV2) works with any plaintext, i. e., if we encrypt
a plaintext with both (K1, IV1, A1) and (K2, IV2, A∗), it generates same ciphertext/tag
pair. In this way, numerous ciphertext/tag pair can be generated which can be decrypted
to valid plaintexts.

In the vectors provided, the leftmost bit is the least significant bit (LSB). Consider a
16-bit string b0 · · · b15 wher b0 is the LSB and b15 is the most significant bit (MSB). Using
the vectors, the above string is denoted as [b0 · · · b7 b8 · · · b15].

A.1 Attack Vector for AEGIS-128

C||T= [0xA5 0xA7 0x7C 0x8D 0x8D 0xB5 0xEB 0x88 0x35 0x72
0x71 0x78 0xDA 0x00 0x15 0xFF 0xBC 0x1D 0xB4 0xF6
0x28 0x7B 0x96 0xEE 0x1E 0xA0 0xF8 0xEC 0x0C 0xFF
0x32 0x4B]

K1= [0x62 0x1F 0x61 0xFA 0x65 0x84 0x70 0xCC 0x18 0x4B
0x39 0x45 0x3D 0xAB 0x75 0x80]

IV1= [0xCE 0xD7 0xE2 0xF0 0xB2 0xAE 0x0D 0x0D 0x3E 0x82
0x5F 0xFC 0xE4 0x6F 0xC7 0xCF]

A1= [0xBE 0x17 0x84 0xAA 0x3B 0x98 0x29 0xBC 0xCC 0xF3
0x81 0x04 0x11 0x57 0x4F 0x43 0xFB 0x86 0xA4 0xE3
0xD6 0x34 0x1C 0x15 0xB7 0x07 0x8E 0x2C 0x91 0x75
0x86 0xE2 0x89 0x94 0x5D 0x69 0x85 0x55 0xB0 0xEE
0x68 0x70 0x27 0x71 0xF1 0x0A 0xF8 0x89 0x30 0xF9
0x35 0x7B 0x8D 0xFE 0x1F 0x07 0xD1 0x6F 0x39 0xD2
0x44 0x1D 0xC3 0x83 0x31 0x65 0xAF 0x74 0x55 0x03
0xA6 0xB3 0xD3 0x2C 0x15 0x8C 0x86 0xA3 0xFA 0xCF]

K2= [0xFC 0xF9 0x24 0xED 0x84 0x21 0x9B 0xD8 0x24 0xEB
0x58 0xB9 0x01 0xA8 0x08 0x82]

IV2= [0xCE 0xD7 0xE2 0xF0 0xB2 0xAE 0x0D 0x0D 0x3E 0x82
0x5F 0xFC 0xE4 0x6F 0xC7 0xCF]

A∗= [0x15 0x7E 0xC0 0x40 0x64 0xDB 0x40 0x47 0xDC 0xE2
0x56 0x7D 0x41 0x6C 0x5D 0x08 0x71 0xB4 0xDB 0xD8
0x76 0xC5 0xCC 0xD1 0x44 0xF0 0x58 0x91 0xF5 0xED
0x22 0x91 0x3F 0xA8 0xEC 0x97 0x71 0xD5 0xD2 0x7C
0x28 0xF7 0x53 0xBB 0xE0 0x5A 0xD1 0xBF 0x34 0xF2
0x44 0x14 0xE7 0x37 0x88 0x61 0xB3 0x0E 0x5C 0x75
0x61 0x84 0xBE 0x03 0x0F 0xBB 0x57 0xF1 0x3B 0x2D
0x93 0x74 0xCB 0x70 0x57 0xFC 0x9D 0xF9 0xE4 0x2B]
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A.2 Attack Vector for AEGIS-256

C||T= [0x5F 0x74 0x00 0x73 0x1E 0x88 0x1D 0x84 0xAE 0x0A
0x18 0xE2 0x16 0x9B 0x6E 0x98 0xB0 0x8D 0x5C 0xB1
0x74 0x9F 0x53 0x80 0xF6 0xE0 0x9B 0x0F 0x33 0x1D
0x42 0xF0]

K1= [0x15 0x86 0x32 0x3E 0x9C 0x71 0xB4 0x9F 0x13 0x36
0xAC 0x8D 0x7D 0x37 0x1B 0x9B 0x7A 0x80 0x0D 0x63
0x7D 0x27 0x46 0xFF 0x5C 0x55 0x0E 0x5A 0xEC 0xE7
0x8C 0x81]

IV1= [0xD9 0x9D 0x22 0x35 0x4E 0xF7 0x15 0xF8 0x70 0x88
0xEF 0x8E 0x88 0xBE 0xC0 0x1C 0x6A 0xD7 0xFE 0xDF
0x43 0xF7 0x8D 0x61 0x5D 0x88 0xB9 0x00 0xCA 0x62
0x29 0xF0]

A1= [0x8E 0x15 0x9D 0xB0 0x18 0x2E 0x11 0xFC 0x46 0xE0
0x28 0xA6 0x49 0x58 0xC5 0x5E 0xFE 0x77 0x01 0xBA
0x07 0xB6 0x19 0x8C 0x3C 0x1D 0x1E 0xB7 0x63 0x5E
0x97 0xB0 0xCD 0x58 0x06 0x81 0x03 0xD5 0x64 0xDC
0x36 0xA2 0x26 0xCB 0x2B 0xC5 0xE6 0x5E 0x16 0xCB
0xB3 0x19 0xB2 0xFB 0x3C 0x39 0x3B 0x8E 0xCF 0xF1
0x79 0x06 0x61 0x4D 0x67 0xFF 0xF0 0xFB 0x86 0xC5
0x8E 0x61 0x8D 0x74 0x8F 0x52 0x7B 0x0C 0x75 0xC6
0x85 0x84 0x0D 0x09 0xC2 0xCA 0xF1 0xDB 0x18 0xC2
0x43 0x6F 0xE9 0x11 0x37 0x00]

K2= [0x5C 0xD5 0x0D 0xFB 0x4F 0x8A 0x55 0x31 0x1C 0xF3
0xCC 0xBD 0xF0 0xA4 0xD5 0x80 0x5D 0xAA 0x0B 0x2E
0x98 0xDE 0x8E 0x09 0x1F 0x82 0x04 0xBA 0x39 0x29
0x7C 0x78]

IV2= [0xD9 0x9D 0x22 0x35 0x4E 0xF7 0x15 0xF8 0x70 0x88
0xEF 0x8E 0x88 0xBE 0xC0 0x1C 0x6A 0xD7 0xFE 0xDF
0x43 0xF7 0x8D 0x61 0x5D 0x88 0xB9 0x00 0xCA 0x62
0x29 0xF0]

A∗= [0xB9 0x55 0xF7 0x5C 0xB9 0x91 0xC3 0x17 0xD1 0xC4
0x2A 0x7D 0x7C 0x3A 0xC8 0x1E 0x84 0x62 0xF4 0x03
0x69 0x44 0x7F 0x20 0x6E 0xFB 0xF3 0x0E 0xD1 0x47
0x8A 0xD0 0xA4 0xA0 0x0C 0x00 0xA4 0x6B 0x84 0x71
0x14 0x14 0x70 0xF3 0xD3 0x4E 0x88 0xD7 0xF8 0xC3
0xFD 0xAE 0xAA 0x2A 0xA1 0x98 0xFC 0x07 0x87 0x74
0x7C 0x7D 0xBB 0x06 0x5E 0x56 0x1C 0x41 0x67 0x54
0x54 0xDF 0x1F 0x49 0x0A 0x1D 0x9B 0xE0 0x7E 0x05
0xF1 0x41 0xE9 0x2A 0x11 0x0E 0x91 0x87 0xB7 0xBA
0xA8 0x2F 0xBC 0x67 0x2B 0xEF]
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A.3 Attack Vector for AEGIS-128L

C||T= [0xE2 0xF5 0x27 0xF6 0x7D 0xD5 0xC9 0x77 0x5C 0x0C
0x0A 0x09 0x0C 0x06 0x71 0x5A 0x4F 0x78 0x84 0xF1
0x2F 0x08 0xB8 0xF6 0x05 0xD4 0xED 0x86 0x89 0x52
0x37 0xA0]

K1= [0x09 0xAA 0x5D 0x16 0x70 0x62 0x2E 0xED 0xFB 0x18
0x8E 0x9D 0x17 0xA9 0x71 0x18]

IV1= [0x24 0xF2 0xEA 0xAF 0xAE 0xCA 0x95 0xFF 0xC8 0x4A
0x3B 0x94 0x36 0x8C 0xD2 0xC1]

A1= [0x92 0x9D 0xBF 0xD2 0x4E 0xAE 0x0A 0x2E 0xAC 0xB1
0x1E 0x0F 0x82 0x28 0x1A 0x2D 0x4B 0x7F 0x15 0xF2
0x32 0x53 0x7B 0xFC 0x00 0xDC 0x98 0x08 0xA8 0xF7
0x57 0xA9 0xB5 0x38 0xF6 0x4E 0x0F 0xD1 0x6F 0x88
0xD1 0x10 0x7D 0xE9 0x11 0x35 0x8C 0x27 0x24 0xDE
0x8E 0x14 0xF5 0x51 0x21 0x0E 0xEB 0x90 0x95 0xB6
0x4A 0xAC 0x7D 0x1D 0xF9 0xAE 0xC5 0xEA 0x99 0x06
0xF5 0x0E 0x57 0x8A 0x8B 0xB5 0x64 0x3C 0x15 0x4C
0xD0 0xC2 0xE3 0xE6 0x76 0x82 0xE6 0xDF 0x63 0xB4
0x30 0x27 0xAE 0x13 0x94 0xD8 0x5D 0x16 0x6A 0x2E
0x3B 0x7C 0x0B 0xB6 0xAA 0xB9 0x98 0x2C 0x03 0x44
0xF0 0x98 0x54 0xB5 0x1A 0xBA 0x37 0xB6 0x51 0x70
0xCC 0xDB 0x91 0xCA 0x36 0x65 0x45 0x08]

K2= [0x1A 0x69 0x72 0xD1 0x60 0x38 0x0B 0xA9 0xD6 0x0D
0x6A 0xF6 0x1E 0xCB 0xEA 0x75]

IV2= [0x24 0xF2 0xEA 0xAF 0xAE 0xCA 0x95 0xFF 0xC8 0x4A
0x3B 0x94 0x36 0x8C 0xD2 0xC1]

A∗= [0xB6 0x58 0x24 0xE0 0x6F 0x0E 0xA4 0x06 0x42 0x5A
0xF9 0x9F 0x84 0x1D 0xBA 0x19 0x3A 0xAA 0x11 0xA5
0xA1 0x09 0x72 0x02 0x85 0x9A 0x58 0xA2 0xDA 0x54
0xED 0x2A 0x57 0xF3 0x7F 0x00 0xBD 0xB0 0x31 0x0B
0x75 0xD5 0xCA 0xD0 0x3A 0x09 0x34 0x30 0x51 0xB9
0xF1 0x74 0x80 0xF8 0x79 0x8A 0x10 0xA1 0x16 0x89
0x40 0xCF 0xFC 0xDD 0x11 0x68 0xC2 0x22 0xF6 0xB5
0xFB 0xA3 0xED 0x44 0x81 0x1B 0xDA 0xBC 0xB4 0x2E
0xE3 0x52 0xA4 0x49 0x21 0xFD 0x9C 0x9F 0x41 0xF0
0xB7 0xD8 0x77 0xB4 0x62 0x3D 0x79 0x61 0x69 0xE9
0xD7 0x0A 0xA7 0x06 0x4C 0xD8 0x14 0xD8 0x9C 0xF1
0x56 0x1A 0xA9 0x42 0x06 0xD2 0x6C 0x70 0x28 0x04
0xE3 0xF4 0x11 0x14 0xC4 0x30 0x31 0x72]


	Introduction
	Preliminaries
	Committing Authenticated Encryption (AE) Framework
	Description of AEGIS

	Attacks
	Attack Overview
	Attacks on AEGIS

	Conclusion
	Attack Vectors
	Attack Vector for AEGIS-128
	Attack Vector for AEGIS-256
	Attack Vector for AEGIS-128L


