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Abstract—Ethereum is undergoing significant changes to its
architecture as it evolves. These changes include its switch to
PoS consensus and the introduction of significant infrastructural
changes that do not require a change to the core protocol,
but that fundamentally affect the way users interact with the
network. These changes represent an evolution toward a more
modular architecture, in which there exists new exogenous
vectors for centralization. This paper builds on previous studies
of decentralization of Ethereum to reflect these recent significant
changes, and Ethereum’s new modular paradigm.
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tocurrency, cryptoeconomics

I. INTRODUCTION

The contribution of this paper is to propose a model
for measuring decentralization that accommodates structural
changes in wider network topology over time. As web3 and
cryptocurrencies are a relatively nascent socio-technological
innovation, they are in a phase of initial rapid innovation,
in which the architecture and topology of the networks are
evolving significantly. This is a well understood phenomenon
in technological innovation, which was documented as early
as the 1960s [1], in which the innovation and adoption of
new technologies develop in an “S-Curve” shape, involving
compressed stages of very rapid innovation followed by a
period where innovation plateaus for a time. Ethereum is an
example of a technology that is in the rapid innovation phase,
in which there are significant changes to the topology of the
overall network, both intrinsic and extrinsic to the core proto-
col. Whereas previous research [2, 3, 4] focused on measuring
decentralization at the various layers of a vertical stack within
a monolithic system, our model views Ethereum as a socio-
technological ecosystem in which significant components of
the network develop outside the core protocol.

The paper is organized as follows: in section II we deliver
an overview of how Ethereum is evolving and the challenges
faced when attempting to measure its level of decentralization.
In section III we outline the various dimensions that we
propose to measure with our model, and our data sources. In
section IV we describe our methodology, including the various
indices that are applied to our data. In section V we deliver
a breakdown of results, and we close with our conclusions in
section VI.

II. BACKGROUND

It can be argued that protocols that are built on top of the
base layer of Ethereum do not pose a direct threat to the

base layer itself, even when they are highly centralized, and
should therefore not be a factor in quantifying the network’s
level of decentralization. Once the base layer is sufficiently
decentralized, any number of protocol designs can be imple-
mented on top of it, and ideally the base layer should not be
aware of them, or be adversely affected by them. However, as
Ethereum evolves, users increasingly interact with the network
through abstracted layers of infrastructure that overlay the
core protocol, and as such it can be conversely argued that
such protocols could potentially affect the security and/or
performance of the overall network under certain conditions,
and should therefore be considered within a holistic model of
measurement of the networks’ level of decentralization. Our
criteria for inclusion within our model is that the component
being measured does not just serve a single use case or
application, but is a protocol through which users interact with
a substantial number of other dapps and protocols.

Any infrastructure that assumes a significant role in
Ethereum can pose a centralization risk to the overall network
based on two critical factors:

a. the size of the infrastructure compared to the base layer,
as measured in either the amount of base layer transac-
tions that flow through the infrastructure and/or the Total
Value Locked (TVL) compared to the base layer.

b. the potential effect on the base layer should the infrastruc-
ture be compromised or develop misaligned incentives,
whether this effect is a level of effective degraded perfor-
mance of the network, or an increased level of censorship.

Ethereum is not a static ecosystem, and other innovations
will likely assume a prominent role within the ecosystem in
the future, e.g. EigenLayer [5], DVT [6]. As such, any model
that we develop should account for the changing topology of
the ecosystem and allow us to incorporate new infrastructure
into the model at a future date, while still being able to track
the changes of effective decentralization over time.

III. SELECTION OF DATA POINTS

A. Overview of Data Model

We use as a base for our model the measurement of decen-
tralization in blockchain first described by Balaji Srinivasan as
the Minimum Nakamoto coefficient [7]. This model considers
a blockchain network as being composed of a number of
subsystems, which are important in terms of maintaining
decentralization within an ecosystem, allowing it to remain



resistant to capture by any one party or group. Srinivasan
describes any blockchain as being only as decentralized as the
least decentralized subsystem, and his original model loosely
defines a number of discrete subsystems to measure.

We have adapted Srinivasan’s model to the contemporary
PoS Ethereum topology and introduced several other dimen-
sions that represent exogenous vectors for potential central-
ization. Our model thus extends Srinivasan’s original model
from 6 dimensions to 12. These dimensions of measurement
are listed below, and are followed by a detailed explanation
of the rationale for each.

• Based on original Nakamoto Coefficient subsystems:
– Consensus nodes by client
– Consensus nodes by country
– Execution nodes by client
– Execution nodes by country
– Distribution of native asset by amount
– Amount staked by pool / staking service provider

• Metrics pertaining to PBS:
– Blocks proposed by builder
– Blocks proposed by relay

• Metrics pertaining to Account Abstraction:
– Number of user operations per bundler
– Number of wallets per deployer

• Miscellaneous Metrics:
– Effective inflation rate adjusted for burn
– Percentage of total supply staked
– Layer 2 rollups by relative TVL
– Stablecoins by relative TVL

B. Metrics based on the Nakamoto Coefficient Subsystems

We have adapted the Nakamoto Coefficient model through a
number of modifications to the original model. These changes
include removing Mining Decentralization and Developer De-
centralization.

The “Mining Decentralization” metric is no longer relevant
in PoS Ethereum and as such has been replaced by the
“Amount staked by pool” metric, which measures the relevant
share of the staked ETH by staking service provider.

The “Developer Decentralization” metric is no longer an
applicable metric for PoS Ethereum. The rationale for this
change is the fact that nodes on the network run a number
of different client implementations, each with its own distinct
development team. In this context, and considering a priori that
developers are unique to each team, it is sufficient to measure
the level of client diversity among nodes on the network rather
than the relative contributions of individual developers.

The “Exchanges by Supply” metric is not employed in our
model as there is not a strong enough argument as to relevance
of this metric to decentralization in Ethereum.

In terms of client diversity, it is also necessary to update the
model to reflect the fact that Ethereum is now technically two
merged blockchains that operate in unison, the Beacon Chain

which handles consensus, and the execution layer, which is the
P2P layer that gossips transactions and handles execution. For
this reason, the original “Client Decentralization”, and “Node
Decentralization” metrics have been replaced by “Consensus
/ Execution nodes by client / country” metrics.

The only metric that has been retained in its original form
is “Distribution of native asset by amount”, which measures
wealth inequality in terms of ownership of ETH.

C. Metrics pertaining to Proposer Builder Separation

Our model introduces two new metrics that pertain to Pro-
poser Builder Separation (PBS), which are “Blocks proposed
by builder” and “Blocks proposed by relay” respectively.

PBS is a network topology that has not been implemented
at the protocol level, but has been implemented via the mev-
boost middleware developed by Flashbots [8], and which came
online at the time of Ethereum’s switch to PoS.

Fundamentally, PBS allows for the separation of concerns
between block building and block proposing [9], whereas
currently the protocol assigns the responsibility of both to
the validator. Ethereum’s PoS protocol requires validators to
broadcast a valid block of transactions to the network when
they are selected as a proposer. As per the specification,
validators will build a block locally by requesting their local
execution client to collate pending transactions from the public
P2P network. However, validators can install mev-boost and
can request blocks from third party specialist block builders
via public relays, instead of building one themselves [10].

This has several benefits, from lowering the resource re-
quirements for running a validator node, to reducing central-
izing economics of MEV in staking pools [11]. However,
it also introduces a number of other actors into Ethereum’s
infrastructure topology, i.e. block builders and relays, creating
new vectors for potential centralization.
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Fig. 1. High level mev-boost architecture

Our model applies a weighting to the PBS metrics when
considering the measurement in the context of Ethereum’s
overall level of decentralization. This is because any byzantine
behavior of the mev-boost middleware will result in validator
nodes falling back to local block production, thus preventing
any safety or liveness fault within the core protocol [12].



However, it has been well documented [13] that a number of
prominent mev-boost builders and relays actively censor trans-
actions according to specific criteria. This effectively results in
those transactions experiencing a potentially significant delay
in being included in a block, (about 68% longer than regular
transactions according to Yang et al. [14]).

This can effectively create a two-tier network with transac-
tions associated with certain addresses becoming “less privi-
leged” than other transactions. Ironically the more transactions
that are censored in this way, the harder it is to censor
them, as block builders will need to bid higher than the
combined value of those transactions in order to have their
blocks proposed, resulting in an effective per-block fee for
censoring transactions [15]. However, the higher the level of
centralization within the block builder / relay infrastructure,
the greater the risk for censorship, creating increased barriers
to participation in the network for affected users.

D. Metrics pertaining to Account Abstraction

Our model introduces two metrics that pertain specifically
to account abstraction, including “Number of user operations
per bundler” and “Number of wallets per deployer”. Account
Abstraction has been a goal of Ethereum since its inception,
and there have been a number of previous proposals that were
not implemented [16, 17, 18], which all involved some change
to the core protocol. The breakthrough came with “ERC-4337:
Account Abstraction Using Alt Mempool” [19], which does
not require a protocol change, but which introduces new roles
within the ecosystem topology: bundlers and paymasters.

ERC-4337 specifies a specific transaction type called a
user operation, or “userop”. User operations are submitted
to bundlers, who batch them into a single transaction to a
global entrypoint contract, which iterates over the userops
in the batch, passing them to their respective smart contract
wallets along with the userop’s calldata for the contract wallet
to execute (e.g. send ETH or call a function on some specific
smart contract).
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Fig. 2. ERC-4337 Account Abstraction Architecture

Our model weights these metrics lower than other metrics
within the model, as the risk posed from centralization within
this class of actors is lower than other parts of the infrastruc-
ture we have included. Although bundlers can choose to censor
specific transactions, the censored sender can simply decide to

send their transaction directly to the entry-point contract, or to
their smart contract wallet directly, if its design allows. This
represents a relatively weak form of censorship, but it does
require some user sophistication in order to bypass. Over-
centralization in this part of Ethereum’s infrastructure can
potentially lead to censorship risks, resulting in an effective
two-tier network, with some addresses being less privileged
than others in terms of their access to the network. We posit
that this is a reasonable basis for including this metric in our
model, albeit with an adjusted weighting.

E. Layer 2 Rollups by Relative TVL

Our model introduces a metric to measure L2 Rollups by
TVL relative to the TVL of the base layer. As Ethereum
progresses through its “rollup-centric roadmap” [20], the TVL
of L2 rollups as proportionate to the overall network becomes
more significant within the composition of the ecosystem.

Our model applies a weighting to this metric, taking into
account the extent of the risk that centralization within these
protocols pose, i.e. they may not cause a safety or liveness fault
in the underlying protocol, but may nevertheless potentially
cause loss of funds or significant delays should they be
compromised.

Consider as an example an L2 rollup with a centralized
sequencer that experiences a significant liveness fault, in which
users with funds on that network are no longer able to transact
as they would under normal conditions. In this scenario, it may
be possible that the users can force a withdrawal through the
L2’s base layer smart contract bridge. However, if this rollup
contains a substantial number of user accounts, it may result
in significant congestion on the base layer [21]. This would
likely cause an increase in base fee and a prolonged delay
in transaction inclusion. Furthermore, in the case of tokens
that are minted natively on an L2, it may not be possible to
withdraw them to the base layer at all.

There is also a theoretical risk to Ethereum’s underlying
social consensus from having a single dominant rollup, which
is described by Buterin [22], as forming a broad assumption
within the ecosystem that ”if there is a bug that causes funds
to be stolen, the losses will be so large that the community
will have no choice but to fork to recover the users’ funds”.

F. Miscellaneous Metrics

As part of our model we measure the “effective inflation
rate adjusted for burn”. This is an important metric for any
PoS base layer protocol, including Ethereum. A high rate of
issuance of the network’s native asset via validator rewards,
has the effect of diluting the circulating supply, effectively
decreasing the asset’s value. This incentivizes the network’s
users to stake the native asset in order to counteract the
dilutionary effects of issuance, which forms a self-reinforcing
cycle, leading to eventual hyperinflation even if that process
takes a number of years. Polynya describes a number of
examples of this phenomenon that have been observed in
practice [23].



Our model thus incorporates a simple metric for measuring
the inflation rate and adjusting it for the amount of ETH
that is burned through the EIP-1559 mechanism, in which the
base fee, which is adjusted for every block by the protocol
itself, and that each transaction must pay at a minimum
in order to be included in a block, is subsequently burned
when a block is proposed. This has the effect of creating
a negative issuance rate once transaction volume surpasses
critical threshold, which will likely decrease the total supply
over time [24].

We have also incorporated a closely related metric which
is the “percentage of total supply staked”. This is directly
related to the effective inflation rate metric with respect to
maintaining an economic equilibrium between the issuance
rate and circulating supply, allowing the asset to hold its
value over time [25]. It is worth pointing out that Ethereum’s
economics are designed to maintain this equilibrium by re-
ducing issuance as more validators come online [26], which
theoretically reduces the incentive to stake once the percentage
of staked assets reaches a certain threshold. However, there is
always the possibility that innovations such as EigenLayer may
disrupt this equilibrium over time.

Another meaningful metric that we have introduced into
our model is the measurement of “Stablecoins by relative
TVL on Ethereum”. There exists both algorithmic stablecoins,
(which are backed by a number of other assets and which
rely on networks of decentralized oracles, and which are at
least notionally decentralized by nature), and there also exists
stablecoins which are backed largely by fiat deposits, and
which are issued by a centralized authority. The latter type
of stablecoin is relevant to our model, insofar as while these
stablecoins are not part of the infrastructure of the network,
they are a significant part of the ecosystem with which users
interact with other dapps. They also pose a centralization risk
in terms of censorship as there have been a number of cases
where stablecoins have been frozen from specific addresses
[27].

IV. METHODOLOGY

The measurement of inequality in distributions is a well
understood area of statistics that has found many applications
in the fields of economics and social sciences. As our model
aims to measure the level of decentralization across a number
of different dimensions with different qualities, it is necessary
to incorporate a number of different statistical measurements.

We use as a base measurement, the Gini index and the
Herfindahl-Hirschman index. The Gini index is arguably the
most widely used index with regards to measuring wealth
inequality, and is well suited for measuring the distribution
of a network’s native asset, (i.e. ETH), while the Herfindahl-
Hirschman index (HHI) is more often used for measuring the
level of competition in specific industrial sectors, making it
more suitable for measuring the degree of decentralization
within the block builder market. The base measurement is
applied to each measurement dimension, but our results will

reference one or the other based on the respective qualities of
each.

The Shannon index is used to complement and cross ref-
erence any indicative result from our base measurement. This
is useful because the Shannon Index is based on a different
approach to the Gini Index and the HHI. The Atkinson Index
is used to fine-tune the results from our base measurement by
updating the index parameters to make it more sensitive to
changes at different extremes of the distribution. This can be
useful if we want to qualify our results with more detail on
any part of a distribution at certain times.

Tail ratios are used to inform any decisions about the
parameterization of the Atkinson Index. These include the
P90:P10, and P50:P10 ratios, as well as the Palma ratio. These
ratios describe inequality within a distribution by comparing
percentiles, for example, the P90 represents the level of
resources allocated to > 90% of the population, while the
P10 represents the level of resources allocated to > 10% of
the population. Our model adjusts the parameterization of the
Atkinson index with respect the to the values of these tail
ratios.

The Jensen-Shannon Divergence is used to track changes
to the distribution over time, by comparing distributions of
respective measurement dimensions between specific intervals,
such as 30, 60 and 90 day intervals.

Our model also incorporates a master index in order to track
the changes in each measurement dimension over discrete
intervals. This master index is an aggregate of other rele-
vant indices, that is derived from calculating the normalized
weighted geometric mean of the respective index’s value
across all other relevant metrics.

The indices that we have employed in our model are as
listed below and are described in detail in the following sec-
tions. Each index has characteristics and trade-offs associated
with the underlying approach or model that they are based on.

Underlying Approach Index
Deviations model Gini index
Combinatorics model Herfindahl-Hirschman index
Entropy model Shannon index
Social welfare model Atkinson index
Tail ratios Palma ratio, Pareto ratio
Divergence measures Jensen-Shannon Divergence
Weighted geometric mean Master Index

A. Gini Index

The Gini Index was developed by Corado Gini [28] as
a mechanism for measuring inequality of income / wealth
in a population, and is arguably the most commonly used
measurement of inequality across a number of fields. It is
employed as the basis of the original Nakamoto Coefficient
model, and has been used in several previous studies of
decentralization in Bitcoin and/or Ethereum [29, 31, 32, 33,
34, 35, 2, 4, 36, 30], which allows for some comparison with
the results of previous studies.



The Gini Index is derived from the Lorenz curve [37], which
allows us to plot the individual shares of the distribution in
relation to the overall total distribution. This becomes partic-
ularly useful for visualizing inequality within a distribution
at a high level, and can also be very useful for comparing
inequality between two distributions easily.
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Fig. 3. Visualization of Lorenz Curve

There are a number of different methods of calculating the
Gini Index (Tutberidze et al. describe four [38]), though most
methods are based on the calculation of the Lorenz Curve of
a population, whereby the Gini index is calculated as the area
between the line of equality and the Lorenz curve, divided by
the total area under the line of equality, i.e.: G = A

A+B

While the area under a curve is commonly calculated using
the Newton-Leibnitz formula [39] , where L(x) is the Lorenz
curve. It can also be approximated as the sum of the areas of
a series of trapeziums, correlating in width to the unit interval
being measured.

G = 1− 2

∫ 1

0

L (x) dx

While the calculation of the Gini Index using the Lorenz
Curve is useful for visualizing the distribution and level of
inequality on a chart, it is also possible to calculate directly
using an approach that is based on the empirical mean differ-
ence of the values in the dataset [40], which is the approach
that we have implemented:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2µ

The Gini index gives us a value of between 0 and 1, where
0 indicates perfect equality of distribution of resources within
the population, and 1 is total inequality, i.e. one single entity
controls 100% of the resources.

B. Herfindahl-Hirschman Index

The Herfindahl-Hirschman Index is commonly used as a
measurement of competition within a certain industry sector. It
has found applications in regulation, particularly with antitrust
authorities [41]. It is calculated as the sum of the square of
the percentage market share of each entity in a sector.

As the HHI is based on percentage shares of the market, it
becomes close to zero for a market that has been commodi-
tized, having a large number of participants with a relatively
equal share. Conversely, the HHI approaches 10,000 for a
highly concentrated market, with 10,000, (or 1× 1002), being
a single entity monopoly.

Our model adapts the standard HHI by re-scaling it to
make it comparable with other indices employed in the model,
by dividing the HHI by 104 so that it falls in the interval
0 <= HHI <= 1. As such, the re-scaled HHI, denoted by θ,
is expressed via the following formula, where n is the total
number of participants in the market, P is the total number of
units produced in the entire market, and pi is the number of
units consumed from ith participant.

θ =

n∑
i=1

(pi/P · 100)2

104

As an example, in measuring concentration in the block
building market, P would be the total number of blocks
produced in an interval, pi would be the blocks proposed to
the network that are built by the ith block builder.

The US DoJ generally classifies markets within three dis-
crete categories [41]:

Unconcentrated HHI < 1, 500
Moderately Concentrated 1, 500 <= HHI <= 2, 500
Highly Concentrated HHI > 2, 500

Because the Herfindahl-Hirschman Index is commonly used
for identifying and measuring the presence of monopolies in
industry, it is more suited to the data points in our model
that measure the infrastructure that is provided as a service
or public good by a relatively small number of actors, as
opposed to measuring the distribution of ownership or control
of some asset. This makes it particularly useful for measuring
middleware such as block builders or relays, or ERC-4337
bundlers.

C. Shannon Index

The Shannon Index [42] is part of a family of measurements
that are derived from information theory and which are based
on the concept of entropy. Other measurements in this category
include the Generalized Entropy measurement, and the Theil
indices. As the Shannon Index is based on a very different
approach from either the Gini index or HHI, it is a useful
measurement to cross-reference results against.

The Shannon index is a measure of the amount of entropy
in a dataset. It was intended to be used to measure the amount
of information content in a signal, where information content



can be considered as a measurement of the unexpectedness of
a particular value occurring at a specific point in the signal,
and entropy is the average level of unexpectedness within a
signal.

Shannon gives examples of strings of characters, where
the more characters and randomness there is, the lower the
probability of predicting the next character in the string, and
the more unexpected it is when that value occurs as predicted.
The less often the next character can be predicted correctly,
the higher the entropy.

A basic example of this concept is a coin toss, where one
party chooses heads, and where there is a 50% chance of the
expected value (i.e. heads) occurring as predicted. As this has a
relatively high probability, p(heads) = 0.5, coin tosses have
low entropy. If we roll a die, the entropy increases as the
probability of an expected value decreases, e.g. p(6) = 0.16.

Entropy as applied within the field of economics was
systematized by Theil [43], and has found applications in mea-
suring inequality within a distribution of resources, and later
within several studies of decentralization in cryptocurrencies
[36, 2, 33].

The Shannon index is commonly expressed using the fol-
lowing formula, where Ni is the frequency of a each value in
the dataset divided by N , the total number of distinct values
in the dataset, i.e. Ni is the number of entities within the
population that have a i amount of resources, in proportion to
N total number entities in the population.

H ′ = −
N∑
i=1

(
Ni

N

)
loge

(
Ni

N

)
The Shannon index was designed for use with categorical

data, as opposed to continuous data, for which the GE index
is better suited [44]. However, for the purposes of measuring
distribution of native asset (i.e. ETH), we have applied the
Shannon index to ranges of amounts of ETH. In this context,
pi is the proportion of the asset owned by the ith percentile
of the population.

The Shannon index has a range between 0 and the logarithm
of the number of categories in the dataset, i.e. 0 <= H ′ <=
log(n). The more centralized a system becomes, the closer the
Shannon index will be to zero [33].

D. Atkinson Index

The Gini Index is useful as a base for calculating inequality,
but it has limitations in describing the qualities of inequality.
As the Gini Index is based on the ratio of total areas under
the curve, it does not account for variance or skewness, and
it also means that two different distributions can potentially
have the same Gini index, which could potentially affect the
tracking of changes over time.

For this reason, our model employs the Atkinson index
[45] as a further measure of decentralization, to allow us to
cross-reference our Gini index against a measurement that
can be fine-tuned to our requirements, and which can be

used to capture any nuance in the distribution of different
measurements.

The Atkinson index is based on the social-welfare approach,
which infers the amount of resources that would need to
be redistributed to achieve a certain level of equality. The
Atkinson index is calculated using the following formula:

A(ε) = 1−

(
1

N

N∑
i=1

(
yi
µ

)1−ε
) 1

1−ε

, ε ̸= 1

A (ε) = 1−

∏N
i=1

(
y

1
N
i

)
µ

, ε = 1

where the parameters include:

ϵ inequality aversion parameter where ϵ > 0
ni number of people in the ith income group
N total number of people
yi average income of the ith income group
µ average income of the total population

The Atkinson index is very closely linked to the generalized
entropy index, and other related entropy based indices, such
as the Theil index (i.e. GE(1)). The Atkinson index results in
a value between 0 and 1, and takes as a parameter ϵ, which
allows us to fine-tune the formula by increasing the value of ϵ
in order to make the index more sensitive to changes at lower
end of the distribution. The value of ϵ is referred to as the
inequality aversion, and the index yields a higher value when
ϵ is given a value closer to 1.

E. Tail Ratios

According to Atkinson [45], the Gini index is affected by
changes closer to the median of the distribution more than it
is affected by changes at tail ends of the distribution. In order
to account for this characteristic of the Gini index, we employ
a series of tail ratios to highlight any changes in the shape of
the distribution that affect the lower and upper percentiles, and
as a means to inform decisions about the inequality aversion
parameter in our Atkinson Index.

Our model incorporates the Palma Ratio[46], which is the
ratio of the share of resources allocated to the top 10% of
the distribution to the lower 40% of the distribution. Palma
concludes that changes in the level of inequality tend to happen
more at either end of the distribution, with the middle being
affected less.

We complement the Palma ratio with other interdecile ratios
that can be used to qualify the character of the inequality
in the distribution, including the P90:P10, P50:P10 ratios.
Without loss of generality, Px represents the level of resources
allocated to greater than x% of the population, and is used
to compare the gap between allocation of resources to two
discrete percentiles within the distribution.



These inter-decile ratios are calculated using the linear
interpolation method [47] described below, where Px denotes
the desired percentile, and N is the population size, and v
represents the value at position i in an ascending ordered
dataset, where i is calculated using the following formula:

i =
Px (N + 1)

100

This gives us the rank position of the desired percentile,
assuming the dataset is sorted in ascending order. We then
interpolate between the value at this rank position in the
ordered dataset, and the value at the subsequent position, in
order to attain each percentile in our desired inter-decile ratio:

P =
(
v⌊i+1⌋ − v⌊i⌋

)
(i mod 1) + v⌊i⌋ , i mod 1 ̸= 0

P = vi , i mod 1 = 0

By themselves these ratios are not useful measurements as
the range within the results are not bounded, as with the Gini
index or HHI. They can be useful to reference when deciding
which end of a distribution warrants further scrutiny.

F. Jensen-Shannon Divergence

As we are interested in measuring the changes to levels of
decentralization over time, we employ a method described by
Lin [48] as the Jensen-Shannon Divergence, which is a method
to measure of the level of similarity or divergence between
two probability distributions. The JSD is useful because it
has a defined upper bound, which means it can be scaled for
comparison with other index values. In order to scale the JSD,
we normalize it by dividing the result by the upper bound of
the possible range of results, which in our model, is log2.

We calculate the JSD between two intervals by comparing
the distribution of each one across each measurement dimen-
sion respectively. As such, we define p and q as two probability
distributions, taken from two discrete intervals of a single
metric, represented as vectors of sizes n and m respectively.
The normalized JSD is then calculated as follows:

DJS(p||q) =
1

log2

(
1

2
DKL(p||m) +

1

2
DKL(q||m)

)

where m = 1
2 (p + q) is the average of p and q, and

DKL(p||m) and DKL(q||m) are the Kullback-Leibler diver-
gences of p and q from m respectively, defined as:

DKL(p||q) =
n∑

i=1

p(i) log
p(i)

q(i)

It is important to note that both vectors are the same size,
therefore if n < m, we pad p with zeros until it matches the
size of q, or if m < n, we pad q with zeros until it matches
the size of p. As our data is categorical in nature, we also
align values each distribution such that p and q are ordered
by category.

The normalized JSD is calculated across each measurement
dimension for both the 1 day, 30, 60 and 90 day intervals in
order to track and quantify any changes in decentralization in
specific subsystems over time.

G. Deriving a Master Index

As we are measuring Ethereum’s level of decentralization
over time, we need to account for its modular topology, in
which significant components of its infrastructure will change.
For example, we might measure the concentration in the mev-
boost relay market, but later decide to remove this metric as
innovations like enshrined PBS make them redundant [49].

Our model calculates an aggregate set of indices across a
number of dimensions of measurement, that can be used as
further indicator of the relative level of decentralization in
Ethereum as it changes over time. Each relevant index, (i.e.
Gini, HHI, Atkinson), contributes to an aggregate index that is
derived from calculating the normalized weighted geometric
mean of the respective index’s value across all relevant metrics,
i.e.:

γ =
(
∏n

i=1(βi × ωi) · 100)
1
n − min (β)

(max (β)− min (β)) · 10−2

where β = {metric1,metric2, ...,metricn} i.e. the set of
relevant metrics, ω is the respective weighting for each metric,
and n = |β|, the number of metrics being measured.

This master index can be used to see changes on a daily
basis over a period of time and be used in conjunction with the
normalized JSD, which measures changes at specific points of
30, 60, and 90 days.

The relevant metrics that are included in each aggregate
index, along with their respective weightings, are listed below.
The weightings are assigned based on the qualitative properties
of the infrastructural component being measured. The actual
weightings used in the formula are the percentage of each
weighting relative to the sum of all weightings.

Metric Weight
Consensus nodes by client 1
Consensus nodes by country 1
Execution nodes by client 1
Execution nodes by country 1
Distribution of ETH by amount 1
Amount staked by Pool 1
Blocks proposed by builder 0.7
Blocks proposed by relay 0.7
Number of userops per bundler 0.2
Number of wallets per deployer 0.2
Layer 2 rollups by relative TVL 0.5
Stablecoins by relative TVL 0.3

This results in a series of aggregate indices for each interval
within the time-range our sample data is taken from. The
aggregate indices relate to the Gini, Atkinson, Normalized
HHI and Normalized Shannon indices. This should allow us to



track the changes in decentralization over time, while allowing
us to examine an individual index at specific intervals in order
to further understand any changes that occur.

V. RESULTS

In this section we discuss the results of the application
of our model to a sample that was recorded at 24 hour
intervals across a period of 90 days, between the 23rd May
2023 to the 23rd of August 2023. We discuss how the results
demonstrate our hypothesis that decentralization is a dynamic
quality that changes over time, rather than a static quality that
is maintained in continuous equilibrium.

A. Discussion of Results

As can be seen from the table below, different indices
give divergent results when applied to the same data. This
highlights the need to leverage more than one approach to
measuring decentralization, and also highlights the fact that
different indices are more suitable for applying to certain
dimensions of measurements over others.

Metric G
in

i

H
H

I

A
tk

in
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n

Sh
an
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n

Execution Nodes by Country 0.85 0.22 0.64 0.49
Execution Nodes by Client 0.74 0.46 0.57 0.29
Consensus Nodes by Country 0.79 0.16 0.61 0.45
Consensus Nodes by Client 0.57 0.29 0.36 0.28
Amount Staked by Pool 0.91 0.2 0.77 0.55
Native Assets by Address 0.76 0.4 0.63 0.33
Blocks by Builder 0.78 0.19 0.58 0.43
Blocks by Relays 0.54 0.2 0.32 0.33
User Operations by Bundler 0.13 0.62 0.05 0.05
Wallets by Deployer 0.03 0.4 0.02 0.01
Stablecoins by Tvl 0.95 0.37 0.86 0.6
Rollups by Tvl 0.87 0.45 0.73 0.44

Fig. 4. 90 day averages across all metrics

The values in the table in figure 4 are color coded for
legibility, with colors closer to red indicating higher levels
of concentration, and colors closer to green indicating higher
levels of decentralization. We observe that the index values for
several metrics diverge significantly, particularly between the
Gini index and HHI. In most cases this is expected, since the
HHI is more focused on measuring concentration at the upper
end of a distribution. Consider, without loss of generality, a
distribution with a large number entities that have a low share
of resources. In this distribution the Gini index will increase
significantly, while the HHI will remain largely unaffected. If
the same distribution contains a small number of entities that
control nearly all the resources but that each have an equal
share, the HHI will be relatively low, but will increase as the
share between these controlling entities becomes less equal.

We observe this phenomenon clearly in several metrics in
the results table, for example in the Amount Staked by Pool

metric, where 2 entities control 60% of the market[50] (Lido
controls 31% while solo stakers control 29%), where the
distribution of these two entities is almost equal, and the
distribution between entities controlling the other 40% of the
market is also relatively equal, which results in a re-scaled HHI
of 0.2, indicating only moderate concentration, while the Gini
index gives a value of 0.91, which more accurately reflects the
level of concentration in this area.

While the Gini index and the HHI are each better suited
to specific dimensions of measurement, there can often be
nuances that they fail to capture by themselves. An illustrative
given by Buterin [51] is where there are two hypothetical
societies with profound levels of inequality, one in which half
the population equally shares all the resources while the other
half has none, and the other in which one person has half of
all the resources, everyone else equally shares the remaining
half. In Buterin’s example, both distributions would result in
the same Gini index value, despite having radically different
characteristics.

These limitations form the rationale behind in the inclusion
of the Shannon index within our model. The Shannon index
is sensitive to both size of the distribution and the diversity
of different values in the distribution, and is therefore able to
highlight differences between distributions that the Gini index
does not capture.

This is meaningful in considering the level of concentration
in areas where the distribution is smaller, for example with
”Stablecoins by Tvl”. In the result for this metrics, the Gini
index is very high, indicating high concentration, but the
Shannon Index shows a relatively low concentration, and this
is a reflection of the fact there are fewer stablecoins, and hence
less chance for a decentralized market to emerge.

As we can see there is broad agreement between the
Atkinson and Shannon indices, and this is not surprising con-
sidering they are both based on the entropy model. However,
the Atkinson index is not used by our model except for
certain specific dimensions of measurements, because of its
non-standard inequality aversion parameter, which makes it
unsuitable for comparison with other studies. It can be useful
however, in fine tuning certain measurements when needed.

The observations of the recorded results have been orga-
nized into the following sections which broadly correspond to
the categories of metrics as described in section I.

B. Results based on original Nakamoto Coefficient subsystem
selection

1) Network Nodes: When examining the data recorded
across the dimensions of measurement that are based on
original Nakamoto Coefficient subsystem selection, we first
applied the Gini index to the metrics pertaining to network
nodes. The results of this analysis is displayed in figure 5,
which plots the Gini index of these metrics across our sample
time period.

We observe a relatively high Gini index value for both Ex-
ecution Nodes by Country and Consensus Nodes by Country,
which both maintain an average Gini index of 0.85 to 0.79.



When examining the data more closely, this was found to be
caused by an out-sized number of nodes that are situated in the
USA, having 34% of Consensus nodes and 44% of Execution
nodes. Both numbers are significant in terms of having crossed
a key consensus threshold of 33%, which is enough to cause
disruption to liveness under adverse conditions.

We observe that measuring Consensus Nodes by Client
yields an average Gini index of 0.57, which is a reasonably
safe level of client diversity, while Execution Nodes by Client
shows a surprisingly dynamic Gini index, which changes be-
tween 0.66 to 0.81. Reaching 0.8 is unhealthy for the network,
as a bug in a single client version can have consequences
for the network, as occurred in May 2023 when a bug in a
consensus client caused a lack of finality for a period of time
[52].
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Fig. 5. Gini Indices for Network Nodes

We also refer to the HHI as measurement of client diversity,
which may be a more more accurate measurement than the
Gini index, due to the fact that the population size of the
distribution. In both cases the HHI suggest a highly concen-
trated distribution, and therefore a lack of healthy diversity,
with a slight over-concentration in consensus nodes (mainly
driven by prism and Lighthouse [53]), and a pronounce over-
concentration in execution nodes (driven by Geth).

2) Amount Staked by Staking Pool: In examining the
Amount Staked by Staking Pool, we observe that the level
of concentration stays relatively static with a Gini index of
90% to 91% during the sample period. This suggests a very
high level of centralization amount staking pools, however
upon scrutinizing the the underlying data, we observe that
30% of the total ETH staked on the network is controlled by
a single entity, which is Lido. While this seems concerning

at first, it is to be noted that Lido itself is a DAO, and as
such is a decentralized entity. Lido commissions 29 separate
independent node operators to manage their validators, with
a relatively even distribution of stake between each node
operator, as documented on the VaNoM portal[54].

Rather than accounting for Lido’s decentralized quality by
breaking down the composition of its node operators within the
original dataset, we leverage the Atkinson index, by modifying
the inequality aversion parameter to account for its level of
decentralization. To do this we multiply the standard inequality
parameter of 0.5 by a weighting derived from Lido’s market
share, denoted by ω, i.e.:

α′ = α · (1− ω) = 0.5 · (1− 0.3) = 0.35

By using an inequality aversion parameter of α′ = 0.35
we obtain an Atkinson index of 0.6 to 0.61 which remains
relatively static through the sample period, and which rep-
resents a much lower level of centralization than suggested
by applying the Gini index. The value of the Atkinson index
indicates a moderate level of centralization, which is likely
caused by a number of entities with larger of market shares,
such as Coinbase, which has a share of 10%.

3) Distribution of Native asset by Amount: We observe that
there is an indicative level of centralization with regards to
the distribution of the native asset, ETH. The most widely
used index for measuring the distribution of wealth within an
economic system is the Gini index, which gives an average
value of 0.76 for the distribution of ETH.

While this represents a relatively high level of centraliza-
tion with regards to control of ETH, we must make some
consideration to the qualities of the entities at the top end of
the distribution, that control large amounts of the asset, which
could include the smart contracts of DeFi dapps, bridges etc..
One previous study by Glassnode [55] reported that 22.8%
of all ETH is stored in smart contracts. This suggests that
actual level of centralization in terms of ETH ownership is
considerably less than is suggested through the application of
the Gini index. While a portion of the smart contracts that hold
ETH are wallets of private individuals, rather than dapps, the
relative proportions of each is a question for further study.

C. Metrics pertaining to PBS
In analyzing the data with regards to the metrics pertaining

to Proposer-Builder-Separation, we examined both the metrics
for Blocks proposed by Builder and the Blocks proposed by
Relay. For these metrics we applied the Herfindahl-Hirschman
index as a more suitable index, due to the fact that the builder
and relay space is naturally more concentrated, and comprised
of a number of known entities, making it similar in some
ways to more traditional economic sectors (as opposed to
500,000 pseudonymous validators for instance). The results
of our analysis is visualized in figure 6.

As can be observed from the visualization, the market
concentration ranges from a re-scaled HHI of 0.16 (or 1,600),
to 0.24 (or 2,400) for relays, whereas the builders display a
HHI that ranges from 0.15 (1,500) to 0.26 (2,600).



To refer to the description of the HHI in section II, we recall
that the US DoJ regards any sector with a HHI of less than
1,500 as being unconcentrated, whereas anything above 2,500
as being highly concentrated.

Using these broad categories as a reference, we observe
that the block builder and relay markets range from almost
unconcentrated to highly concentrated within the sample pe-
riod. We also observe that the level of concentration changes
with significant relevance for the above categorization, even
within a 90 day period.

M
ay

23
Ju

n 8

Ju
n 23

Ju
l 8

Aug
7

Aug
19

0.2

Blocks By Relays
Blocks By Builder

Fig. 6. HHI of Block Builders and Relays

When examining the Jensen-Shannon Divergence between
the first and last 24 hour intervals in the dataset for both
relevant metrics, we see a relatively high value compared to all
other metrics, which indicates that there are significant changes
in the number of blocks proposed by individual builders and
relays, as well as overall changes to level of concentration
within the market. This is a useful index to cross-reference as
it is capable of capturing nuance that other indices sometimes
fail to capture, for example in cases where two or more entities
can frequently reverse their respective market shares, with
each claiming an outsized portion of the market for a period
of time. In this scenario, the overall level of inequality and
centralization remains static but the relative share of individual
participants can change radically. This is a quality that the JSD
index can help to capture.

Metric JSD
Amount Staked by Pool 0.0150451
Execution Nodes by Country 0.0073133
Execution Nodes by ClientBase 0.0118433
Consensus Nodes by Country 0.0058399
Consensus Nodes by Client 0.0077753
Blocks by Relays 0.1324419
Blocks by Builder 0.2201886
Stablecoins by Tvl 0.0103413
Rollups by Tvl 0.1058467
Native Assets by Address 0.0005811

It is worth noting that over a longer time-frame, our model
should be able to account for changes to the ecosystem from
newer innovations and architectural changes. These include en-
shrined PBS or the introduction of distributed block building,
and there are a number of such proposals under development
currently.

D. Miscellaneous Metrics

1) Rollups by TVL: We observe a pronounce level of
centralization when we examine Rollups by TVL, with a 90
day average Gini index value of 0.87, and a re-scaled HHI of
0.45. Both of these values make sense when we observe the
underlying data, in which a single rollup has 54.3% of TVL
across all rollups, which is Arbitrum One (down from 64.5%
at the start of the sample period). This is closely followed by
Optimism that has a TVL of 25.9%. There are 12 rollups with
a TVL share of less than 1%, and 7 with a TVL of more
than 1%, the latter group exhibiting significant variance, from
which we would expect a high HHI value.

Interestingly, the one other metric that also show a high JSD
value for the sample period is Rollups By TVL. This could
be explained by the launch of the Base network on August
9th which significantly altered the relevant market share of
prominent rollups.

We observe that the level of centralization in the rollup
market at the time the data was collected, is at an unhealthy
level for the Ethereum ecosystem. The TVL across all rollups
is 8.1B USD, which is approximately 0.3% of the 26.562B
USD TVL of Ethereum [56], and of which one single rollup
accounts for 0.2% of Ethereum’s TVL.

It is worth noting again that these figures will more than
likely change over time as a number of zk-EVM rollups will
enter the market, which will dilute the marketplace and will
likely affect market concentration significantly, underpinning
the need for ongoing measurement of decentralization over
time.

2) Stablecoins by TVL: We observe the highest average
value for the Gini index in the “Stablecoins by TVL” metric,
which also has a markedly high HHI value. This suggests a
very high level of concentration within the stablecoin market,
which is obvious when we examine the underlying data,
that shows that just two stablecoins comprise over 80% of
the market, i.e. USDC and USDT. As both stablecoins are
issued by corporations, this represents a significant area of



centralization within Ethereum. Stablecoins are used by many
people to interact with a wide array of dapps, and both USDC
and USDT are vulnerable to censorship, and have previously
frozen token holders funds on request from authorities [57]
[58].

According to DefiLlama [56], the combined market cap for
stablecoins on Ethereum is 9.2B USD, which represents a
third of the TVL on Ethereum. This could arguably be the
weakest point of Ethereum’s overall decentralization.

3) Effective inflation rate adjusted for burn: As discussed
in section III, the Effective inflation rate adjusted for burn
is an important metric to measure, as a high inflation rate
can undermine the security of the network by diluting supply,
and the devaluing the asset, potentially leading to misaligned
incentives for the validators.

Since the introduction of EIP-1559, which introduces the
concept of the ”base fee”, which is set deterministically
via protocol consensus and which is burned in every block,
Ethereum’s effective issuance rate becomes negative when the
network usage / gas price crosses a certain threshold [59].

According to data from the Ultra Sound Money resource
[60], the effective level of inflation of ETH since the merge
has been -0.94%, and ETH is projected to continue to be a
deflationary asset in the long term, which is positive for the
network’s overall security and level of decentralization.

4) Percentage of total supply staked: The percentage of
total supply staked is related to the effective inflation rate
for the same reason as previously outlined, in that a high
issuance has a dilutionary effect on the circulating supply,
which incentives asset holders to stake in order to counteract
the dilution, resulting in a feedback cycle that can undermine
the network’s security. Ethereum’s economics are designed to
reduce issuance as more validators come online [26], which
theoretically reduces the incentive to stake once the percentage
of staked assets reaches a certain threshold. Currently the
amount of ETH staked is 24,932,109 ETH according to bea-
concha.in [61], out of 120,218,472 ETH total supply according
to Etherscan [62], resulting in a ratio of 20%, which is well
within the bounds of what is a safe level of total supply staked.

E. Metrics pertaining to Account Abstraction

The metrics that pertain to Account Abstraction, which are
User Operations by Bundler and Wallets by Deployer are both
striking insofar as they have especially low averages for the
Gini index but very high values for the HHI values. This
indicates that there is an issue with the dataset that warrants
further scrutiny. Upon investigation we observe that the 90 day
Gini indices for User Operations by Bundler has a range of 0
to 1, with a median of 0.6 and a standard deviation of 0.36.
This highly unusual range and variance can be attributed to the
nascent nature of the account abstraction space, and indicates
that the infrastructure has yet to see significant maturity or
adoption.

Upon inspecting the underlying data, we observe that the
maximum number of user operations processed in a single day
during the sample period is only 301. At this nascent stage,

there is significant market concentration, with one specific
bundler having 76% market share out of 13 total active
bundlers.

It is worth noting however that this data looks at Ethereum
mainnet itself, and does not consider any of the L2 rollups,
on which there may be a higher level of adoption of account
abstraction infrastructure, and which is an area for future study.

The Wallets by Deployer metric shows very similar charac-
teristics to the User Operations by Bundler and follows much
the same pattern of distribution throughout the sample period,
with one specific deployer having an 87% market share.

The various metrics outlined in this paper will be useful
in tracking the changes in decentralization over time as the
account abstraction space matures and continues to see more
adoption. The influence of erc-4337 bundlers on the effective
level of decentralization of the network as a whole is somewhat
limited, so even a moderately high level of centralization is
acceptable.

F. Master Indices

For every index that we track, we derive a master index that
is a aggregate value derived from the value of each dimension
of measurement for that index. This means that we can derive
a single value for every day in the sample period, rather than
a 12 separate values for each day, (i.e. one for each dimension
of measurement).
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Fig. 7. Master Indices of Gini Index and Herfindahl-Hirschman Index

We are specifically interested in the master index for both
the Gini Index and Herfindahl-Hirschman Index for each day
in the sample period. We have sub-sampled 18 data points
from the 90 day period and have charted them in figure 7.

The master index establishes a measurement that can be
referenced to itself as it changes over time, in order to derive
a crude high-level indicator of the overall effective level of
measurement of the network, and in theory we should be



maintain a single relative measurement even as the dimensions
of measure change over time.

As can be seen from the sample above, we can see that
the overall effective level of decentralization changes over
time, and this is a reflection of the changes within the various
dimensions of measurement, specifically the Gini index and
HHI index in this case. Overall we can see a trend in a
reduction in the value of the Gini across all dimensions of
measurement from 21% to 14%, conversely the trend in the
HHI for across dimensions of measurement increases slightly
from 7.5% to 10%. Note that the anomalous reduction in the
level of centralization around the July 8th to July 13th period
are due to gaps in the source data. Also, we have excluded
the values for metrics related to account abstraction in order
to get a clearer representation of the overall trends in the data.

It is important to note that the values of the master are
not like other indices, insofar as it is not the case that values
closer to 0 indicate more decentralization and values closer
to 1 indicate more centralization. These values are relevant in
comparison the same value at other points in time.

VI. CONCLUSION AND DISCUSSION

Our results clearly demonstrate that the overall Ethereum
ecosystem displays elements of concentration of control that
are arguably less decentralized than the community would
aspire to. The results suggest the need for diligence in efforts
to develop and maintain a healthy level of decentralization.
This can seen in areas such as client diversity (in terms of
network nodes), market share of staking pools, market share
of rollups, and stablecoins. While stablecoins have a much
lower TVL compared to Ethereum as a whole, this belies the
important function stablecoins serve in the ecosystem, and thus
presents a red flag for centralization concerns.

As the ecosystem evolves, there will be changes in the
important components of the ecosystem’s overall infrastructure
beyond the core Ethereum protocol, and there will also be
changes to the extent of their impact on the overall effect
level of decentralization. As Barnabé Monnot states: ”There
are things that the protocol does not see, but cares about” [63].
As such, we should expect our model to adapt to these changes
over time.

Not only will the components that we measure change over
time, but also our model will evolve as we learn more about the
ecosystem and how to measure it. While we have demonstrated
that attempting to measure decentralization using a single
index yields inconclusive and incomplete results, using a
number of different indices together can paint a more complete
picture, giving us a more holistic view of the system.

While we have attempted to use a series of metrics that
can be used to cross reference each other to paint a larger
picture, there are still some areas that can be explored further.
One potential area of exploration is to study the methodologies
used in other areas that face a similar challenge. One example
of research that can be explored is the OECD’s methodologies
to measure market competition [64], in which they explore

the use of numerous models and indices under two broad
categories of structural measures and performance measures.

Another potential direction for research is to develop a
way to measure potential collusion between entities within a
population, rather than assuming that each entity in a popu-
lation is totally independent, as our current model assumes.
Vitalik Buterin discussed this approach [65] and described it
as being done by assigning pairwise coordination coefficients
to all distinct pairs of entities within a population. This would
mean that any two pairwise entities within a population would
have coefficient between 0 and 1, where 1 implies they are so
tightly coordinated and aligned, they should be measured as a
single actor, and a 0 implies they are completely independent.
The properties that attribute the level of coordination and
alignment, and resultant coordination coefficient, could be
as simple as being the same country, or being on the same
network etc.

Obviously an approach such as this would require much
more data about the individual entities in the population, and
would present a challenge to gathering the data and ensuring
data quality, which is an important consideration when decid-
ing to develop a model based on that data. Nevertheless, this
represents an interesting direction for future research.

One important factor in the measurement of decentraliza-
tion, is that while our models become more complex, the
ability for them to be widely understood remains an objective
that should not be lost. If the model itself becomes complex
enough to preclude analysis from a diverse audience, then it
loses its ability to act as a reference point for communication
and discussion, which remains its primary objective.
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VIII. APPENDIX: LIST OF DATA SOURCES

The following table lists the various sources of data for each data point that is referenced in our model. The data from these
sources were recorded programmatically and compiled into a database using software that was specifically designed for that
purpose.

Based on original Nakamoto Coefficient subsystem selection:

Consensus nodes by client https://migalabs.es/api/v1/client-distribution

Consensus nodes by country https://migalabs.es/api/v1/geo-distribution

Execution nodes by client https://www.ethernodes.org/

Execution nodes by country https://www.ethernodes.org/countries

Distribution of native asset by amount https://data.messari.io/api/v1/assets/ethereum/metrics

Amount staked by Pool / Staking Service Provider https://api.dune.com/api/v1/query/2394100/results

Metrics pertaining to Proposer Builder Separation:

Blocks proposed by builder https://mevboost.pics/data.html

Blocks proposed by relayer https://mevboost.pics/data.html

Metrics pertaining to Account Abstraction:

Number of user operations per bundler https://dune.com/queries/2193933/3599135

Number of wallets per deployer https://dune.com/queries/2434102/3999582

Miscellaneous Metrics:

Rollups by relative TVL / size / volume https://l2beat.com/scaling/tvl

Stablecoins https://stablecoins.llama.fi/stablecoins


