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Abstract. In the aftermath of the Snowden revelations in 2013, con-
cerns about the integrity and security of cryptographic systems have
grown significantly. As adversaries with substantial resources might at-
tempt to subvert cryptographic algorithms and undermine their intended
security guarantees, the need for subversion-resilient cryptography has
become paramount. Security properties are preserved in subversion-resilient
schemes, even if the adversary implements the scheme used in the secu-
rity experiment. This paper addresses this pressing concern by introduc-
ing novel constructions of subversion-resilient signatures and hash func-
tions while proving the subversion-resilience of existing cryptographic
primitives. Our main contribution is the first construction of subversion-
resilient signatures under complete subversion in the offline watchdog
model (with trusted amalgamation) without relying on random oracles.
We demonstrate that one-way permutations naturally yield subversion-
resilient one-way functions, thereby enabling us to establish the subversion-
resilience of Lamport signatures, assuming a trusted comparison is avail-
able. Additionally, we develop subversion-resilient target-collision-resistant
hash functions using a trusted XOR. By leveraging this approach, we
expand the arsenal of cryptographic tools that can withstand poten-
tial subversion attacks. Our research builds upon previous work in the
offline watchdog model with trusted amalgamation (Russell et al. ASI-
ACRYPT’16) and subversion-resilient pseudo-random functions (Bem-
mann et al. ACNS’23), culminating in the formal proof of subversion-
resilience for the classical Naor-Yung signature construction.
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1 Introduction

Subversion attacks have garnered increasing attention from the cryptography
research community in recent years. In a subversion setting, attackers can tam-
per with or even take control of the implementation of cryptographic algo-
rithms to leak secrets covertly, thereby weakening or breaking the security of



the cryptosystems. For a long time, subversion attacks, dating back to the no-
tion of kleptography by Young and Yung in the 1990s [31,32], were thought
to be unrealistic and far-fetched by some cryptographers. However, the Snow-
den revelations in 2013 debunked this belief and exposed that subversion at-
tacks were among the primary approaches certain law enforcement agencies
employed to achieve mass surveillance. Particularly, it is reported that these
agencies could intentionally “insert vulnerabilities into commercial encryption
systems, IT systems, networks, and endpoint communications devices used by
targets” [25]. As a result, numerous researchers have demonstrated the theo-
retical feasibility and potential dangers of subversion attacks against various
cryptographic primitives [1,4,5,8,9,11,14], and as a specific case against digital
signatures [2,3,17,20,30].

Consequently, the research community has devoted extensive efforts exploring
effective countermeasures and designing subversion-resilient cryptographic prim-
itives. In recent discussions on the standardization of post-quantum cryptogra-
phy, specific treatments have been considered to prevent subversion attacks [26],
highlighting the practical significance of this area of research. There is no hope
for security when attackers can arbitrarily tamper with cryptographic imple-
mentations. For instance, a subverted encryption algorithm could always reveal
the secret key, regardless of the input plaintext intended to be encrypted. Also,
a subverted signature verification algorithm might always return valid when it
takes as input a specific signature or message (e.g., a certain hard-coded string).
Thus, as it turned out in the literature, achieving meaningful security in the sub-
version setting requires reliance on additional assumptions such as architectural
requirements [6,7,13,27,28,29] or trusted components [2,10,12,15,16,22]. We re-
mark that all these approaches for subversion resilience have their plausibility
and thus are generally incomparable and may be useful in different application
contexts. The details of these models, with associated commentary about their
relevance to practice, will be provided in Section 1.4.

The Watchdog Model. In this work, we mainly consider the model intro-
duced by Russell et al. [27] at ASIACRYPT 2016. Precisely, they formalized
the so-called watchdog model, which has become one of the most prominent
approaches for subversion-resilient cryptography in recent years. The rationale
behind their consideration is that in the subversion setting, it is highly desirable
for the attackers, often referred to as “big brother”, to conceal their attacks.
The watchdog model allows the adversary to supply potentially subverted im-
plementations of cryptographic algorithms, while an efficient “watchdog” verifies
these implementations against their corresponding specifications. Depending on
how the watchdog performs testing of cryptographic algorithms, there are offline
watchdogs which only perform a one-time check of the supplied implementations
before deployment, and online watchdogs that could fully access the real-time
transcripts of cryptographic algorithms. Note that achieving subversion resilience
only using offline watchdogs is often preferable from a practical perspective, as
only a “one-time” check is required instead of continuous monitoring.
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Cryptographic designs in the watchdog model are often based on an archi-
tectural assumption called the split-program methodology and the trusted amal-
gamation assumption that is required to be as simple as possible. In such a
setting, each algorithm is divided into several functional components, which the
watchdog could separately test and then amalgamated into the complete algo-
rithm via the trusted (not subverted) amalgamation function (e.g., trusting the
computing base). A cryptographic scheme is said to be subversion-resilient in
the watchdog model if either a watchdog exists that can effectively detect the
subverted components or the security of the composed cryptographic scheme
still holds even if the underlying components are subverted. By leveraging such
a model, various subversion-resilient primitives have been proposed, including
one-way-permutations [27], pseudorandom generators [27], randomness genera-
tors [7,27], public-key encryption schemes [7,28], authenticated encryption [6],
random oracles [29], and signature schemes [13,27].

1.1 Subversion-Resilient Signatures with Watchdogs

Our work primarily focuses on digital signature schemes and aims to advance
the construction of subversion-resilient signature schemes within the watchdog
model. We provide an overview of the current state-of-the-art and present the
question that motivates our work.

Online Watchdogs. Russell et al. proposed the first subversion-resilient signa-
ture scheme in the online watchdog model with random oracles [27]. In particu-
lar, they consider the complete-subversion setting where all cryptographic algo-
rithms — including key generation and verification algorithms — are subject to
subversion attacks. At the core of their design is a slight variant of a full domain
hash scheme where the message is hashed together with the public key. Precisely,
such a modification enables provable security by rendering any random oracle
queries made before the implementations provided (by the adversary) useless, as
the public key is generated freshly after the adversary commits to the implemen-
tations. More generally, they pointed out that in their definitional framework,
it is impossible to construct a subversion-resistant signature scheme with just
an offline watchdog, even if only the signing algorithm is subverted. Note that
in the same work [27], Russell et al. also proposed subversion-resilient one-way
permutations. They considered a stronger security setting, where the adversary
can choose the function index (pp in our definition). This, in turn, makes the use
of random oracles necessary. We will see that this stronger notion is not needed
to construct subversion-resilient signatures, and we can thus remove the random
oracle dependency.

Offline Watchdogs. In [13], Chow et al. improved Russell et al.’s construc-
tion by presenting two schemes with offline watchdogs. They bypassed Rus-
sell et al.’s impossibility [27] by using a more fine-grained split-program model
adopted in [28] for a semantically secure encryption scheme. The first construc-
tion is without random oracles and only considers the partial-subversion model
where key generation and signing are subverted while the verification algorithm
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is not. By adopting the domain-separation technique and the one-time random
tag structure, they extended the idea by Russell et al. (originally for an encryp-
tion algorithm) to the context of a signature scheme. They also proposed another
subversion-resilient signature scheme in the complete-subversion model but with
random oracles. Their main idea is inspired by the correction of subverted ran-
dom oracles due to Russell et al. [29].

Motivation. Despite significant progress made in constructing subversion-
resilient signature schemes in the watchdog model, the state-of-the-art construc-
tions (using offline watchdogs) require random oracles for achieving security in
the complete-subversion model, and if without random oracles, only security in
the partial-subversion model (where the verification algorithm is not subverted)
is achieved. This motivates us to ask the following question.

Is it possible to design a subversion-resilient signature without random oracles
in the complete-subversion model with an offline watchdog?

While being attractive for building security, the offline watchdog model has
inherent limitations. For example, an offline watchdog can not defend against
stateful subversions4 such as time bomb attacks, which only become active when
the underlying algorithm is at some specific state. Nevertheless, since it is up
to a practitioner to trade off security and performance constraints, we hope our
improvements in subversion-resilient signature schemes (using watchdogs) could
help practitioners make well-informed decisions regarding their suitability for
specific applications.

1.2 Technical Challenges

The difficulty of designing signature schemes secure against complete subversion
mainly lies in the fact that it is challenging to restore the security of the sub-
verted verification algorithm. The main reason is twofold. The first reason is the
existence of input trigger attacks, where an adversary prepares a special signa-
ture σ̃, which the verification algorithm accepts for all messages. An attacker
can randomly choose σ̃ and hard-code it into the subverted implementation. A
black-box polynomial time watchdog now has only a negligible chance to detect
this, while the attacker can trivially break security. Intuitively, this attack is
possible as the attacker chooses the input distribution to the verification algo-
rithm which is not publicly available to the watchdog (unless we assume some
strategy by the adversary, see subversion under random messages attacks for
comparison [2]). Thus, similar to previous works [6], more fine-grained access to
the verification algorithm seems necessary. However, the situation in a setting
with asymmetric keys is substantially more difficult than in the symmetric set-
ting studied by Bemmann et al. [6], as the attacker sees the public verification

4 Assuming universal watchdogs that do not depend on the adversary, which is the
class of watchdogs we aim for in this work. For a deeper discussion on stateful
subversion consider [27].
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key and can thus use this knowledge. A common technique to develop signature
schemes based on symmetric primitives [21] is the use of a collision-resistant
hash function. But, due to the structure of the security experiment of collision-
resistant hash functions, they are also highly vulnerable to input trigger attacks.
Previous constructions thus needed heavy machinery such as the random oracle
model [13,29], sophisticated online watchdogs [2,29], or a trusted initialization
phase [16]. Approaches using a collision-resistant hash function in the standard
model with an offline watchdog thus seem somewhat futile.

Both problems around input triggers described above rely on the fact that the
adversary can prepare its implementation with input triggers as the challenge
goes through the (possibly) subverted implementation. In our constructions, we
will utilize primitives, where the adversary needs to commit to its implementa-
tion before a challenge is chosen. This way, the adversary can freely choose the
inputs to the primitives, but since the implementation is set up before the chal-
lenge, it is hard for the adversary to adapt. As described above, Russell et al. [29]
also used a similar idea but needed the random oracle model. We can circumvent
the need for the random oracle model by choosing our primitives carefully and
revisiting classical results in a subversion setting. As will be shown later, in this
work we use a classic result that target-collision-resistant (TCR) hash functions
are sufficient to build digital signatures.To break target-collision-resistance, the
adversary first commits to an input, then the hash function is specified, and
afterward, the adversary tries to find a collision. The task thus becomes to con-
struct target-collision-resistant hash functions in a subversion-resilient manner.

1.3 Our Contributions

Our work provides an affirmative answer to the above question. The main con-
tributions of this work can be summarized as follows:

– We show that one-way permutations (OWPs) are subversion-resilient one-
way functions in the offline watchdog model, by taking advantage of the
order of events in the security experiment. Russell et al. also showed how
to construct subversion-resilient OWPs with random oracles [27]. Our con-
struction of OWFs does not rely on random oracles; in our case, we only
need the standard version of OWPs.

– Lamport one-time signatures (OTS) are subversion-resilient if built from
subversion-resilient OWFs and a trusted comparison;

– We prove that a classical construction to obtain TCR hash functions from
a rTCR hash function can be used to obtain subversion-resilient TCR hash
function making use of a random blinding value, given the XOR in the
construction is part of the trusted amalgamation;

– From subversion-resilient OTS, subversion-resilient target-collision resistant
hash functions, and subversion-resilient PRFs, we build subversion-resilient
signatures via the classical Naor-Yung [24] construction of digital signatures.

Thus, similar to the work of Chow et al. [13], we allow the watchdog more
fine-grained access to the verification algorithm by breaking it down into smaller
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building blocks. This, in turn, allows for a similar approach as Bemmann et al.
[6] for the case of authenticated encryption. We build signatures from symmet-
ric primitives by revisiting classical results and show that we can construct the
necessary building blocks in a subversion-resilient manner. This way, during the
verification of the signatures, we recompute symmetric primitives, which allows
the watchdog to do meaningful testing. A key insight of our work is that the
security of some primitives can be guaranteed if we consider an adversary who
has to commit to its implementation before a random challenge is computed.
We then see that all the ingredients can be combined to prove the classical
Naor-Yung construction for digital signatures to be subversion-resilient. How-
ever, while achieving subversion-resilience without random oracles, this comes
with the price of decreased efficiency (both in signature size and computational
costs) if compared to the state-of-the-art. Nevertheless, as mentioned above, we
hope our work could help practitioners make well-informed decisions regarding
the suitability of different signature schemes for specific applications. See Fig-
ure 1b for an illustration of our overall approach.

1.4 Alternative Models

Several works in the field of cryptography have explored different angles of de-
fense against subversion attacks, resulting in the proposal of various subversion-
resilient signature schemes. Although these schemes may be generally incom-
parable due to the different models and assumptions they are built upon, un-
derstanding their differences can provide valuable insights into the landscape
of subversion-resilient cryptography. Below we present an overview of current
subversion-resilient signature schemes in other models.

Subversion-Resilient Signatures via Reverse Firewalls. In [2], Ateniese et
al. showed that signature schemes with unique signatures are subversion-resilient
against all subversion attacks that meet the so-called “verifiability condition”.
This condition essentially requires that signatures produced by the subverted sig-
nature algorithm should almost always verify correctly under the target verifica-
tion key5. They adopted the cryptographic reverse firewall (RF) for construct-
ing subversion-resilient signature schemes to relax such a strong requirement.
Mironov and Stephens-Davidowitz originally introduced the notion of RF [22],
which is assumed to be non-subverted and has access to a reliable source of ran-
domness to re-randomize cryptographic transcripts. In the context of signature
schemes, a RF is a (possibly stateful) algorithm that takes a message/signature
pair as input and produces an updated signature. The main goal of a RF is to pre-
vent potential covert leakage of sensitive information from subverted signatures.
As a general result, Ateniese et al. showed that every re-randomizable signature
scheme (including unique signatures as a special case) admits a RF that pre-
serves unforgeability against arbitrary subversion attacks. Such a RF must have
self-destruct capability, which means that the RF can publicly check the validity

5 In [2], only subverted signing algorithms are considered while both key generation
and verification algorithms are assumed to be trusted.
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of each outgoing message/signature pair before updating the signature. If the
RF encounters an invalid pair during this process, it stops processing further
queries. The self-destruct capability is essential for the RF to maintain func-
tionality and preserve the unforgeability of the signature scheme simultaneously.
One could note that a RF could be viewed as an “active” online watchdog with
the additional self-destruct capability. Thus, like the online watchdog model, a
RF can defend against stateful subversion, which is inherently not captured by
the offline watchdog model.

Subversion-Resilient Signatures via Self-guarding. In [16], Fischlin and
Mazaheri proposed a novel defense mechanism called “self-guarding”, which
could counter stateless subversion of deterministic unforgeable signature schemes.
The self-guarding signature scheme introduces a trusted initialization phase dur-
ing which genuine message-signature pairs are generated for randomly chosen
messages. More precisely, a random message denoted as m$ is signed in the
initialization phase, resulting in a signature sample σ$. Later, when signing a
message m, the (possibly) subverted signing algorithm is executed twice, once
with m$ and once with the bitwise XOR of m and [m$||σ$], where || represents
concatenation. The order of signing these two messages is chosen randomly.
If the signing algorithm deviates for one of the two signatures, the subversion
is detected with a probability of 1/2. This process can be repeated multiple
times with independent key pairs to increase the detection probability to an
overwhelming level. From the above, we know that unlike in the reverse fire-
wall model, where a good source of randomness and the self-destruct capability
are required, self-guarding schemes rely on a temporary trust phase during ini-
tialization. Also, one might think that the initialization phase of self-guarding
schemes could be executed by a watchdog, where a specified program could im-
mediately provide a detection solution. However, there is a notable difference:
self-guarding schemes involve passing states between the initialization and later
phases, whereas watchdogs typically do not forward data to individual users.
Another significant distinction between self-guarding and the watchdog model is
that self-guarding schemes do not require the subverted algorithm to be available
from the start.

The diversity of subversion-resilient signature schemes reflects the complexity
of defending against subversion attacks. The choice of models and assumptions is
crucial in determining the scheme’s effectiveness and practicality. Understanding
the strengths and limitations of these subversion-resilient signature schemes is
essential for designing secure cryptographic systems in the presence of potential
subversion attacks.

2 Model and Preliminaries

In this section, we define the notion of subversion-resilience, and we will use the
notations and definitions presented by Bemmann, Berndt, Diemert, Eisenbarth,
and Jager [6] which in turn are based on the work of Russell, Tang, Yung,
and Zhou [27].
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2.1 Notation and Model

Notation. In order to distinguish between the specification of a primitive Π
and the implementation of Π provided by the adversary, we will write Π̂ to
denote the honest specification of the primitive and Π̃ to denote the implemen-
tation of that primitive provided by the adversary. In this paper, we focus on
game-based security. Hence, we define security for a cryptographic primitive Π
with security objective GOAL by defining a security experiment Exp. In a usual
experiment, a single party, called the adversary A, tries to break the security
objective against Π̂, and the game is managed by a challenger. When dealing
with subverted implementation in the watchdog model, we consider a subversion
experiment ExpSR consisting of three phases:

1. First, the adversary A provides a subverted implementation Π̃.
2. Then, the watchdog WD is run and tries to detect the subversion.
3. Finally, the original security experiment Exp is performed by the adversary,

but the subverted implementation is used therein.

To simplify notation, we always treat A as pair (A0,A1), where A0 provides the

subverted implementation Π̃ and A1 takes part in the security experiment in
the final phase. As usual, we denote the security parameter by λ.

Amalgamation. As discussed earlier, there is no black-box way to prevent
subversion attacks in the watchdog model, as universal undetectable attacks are
known, e.g., by Berndt and Lískiewicz [8]. To still give security guarantees against
subverted implementations, different non-black-box models were presented in
the literature. In this work, we follow Russell, Tang, Yung, and Zhou [27] who
introduced the trusted amalgamation model. Intuitively, this model splits all
its components into subroutines with a more fine-granular resolution than the
usual division into different algorithms. For example, a signature scheme con-
sists of the three algorithms (KGen, Sign, Ver), but each might again consist
of several subroutines (which might even be shared among the algorithms). We
denote the list of subroutines by π = (π1, . . . , πn). The idea behind the trusted
amalgamation model is each of these subroutines πi might be subverted by the
attacker, but the composition of them is performed by a trusted amalgamation
function Am that is not subverted. Hence, Am is given the list π, producing all
the needed algorithms for the primitive. The security experiment is then played
on Π̃ = Am(π̃), where π̃ denotes the list of subverted subroutines provided by
the attacker. To provide meaningful security guarantees, one thus aims to make
the amalgamation functions as simple as possible to allow automatic or manual
verification. Typically, these amalgamation functions only consist of a few XOR
operations and equality checks [7,28,6]. To formalize this scenario, we always

represent the specification Π̂ of a primitive as Π̂ = (Am, π). Sometimes, we
consider the amalgamation function for a single algorithm Πi of a primitive,
denoted by Ami.

Split-program model. In addition to trusted amalgamation, Russell, Tang,
Yung, and Zhou [27] also used the split-program methodology. Like modern pro-
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ExpSRGOAL,Π̂
WD,A (1λ)

(π̃, state)
$← A0(1

λ)

bWD ←WDπ̃(1λ)

return Exp
GOAL,Am(π̃)

A1(state)
(1λ)

(a) The experiment for
GOAL-security under subver-
sion.

OWP

SR-OWF

SR-OTS

Trusted ==

SR-Signatures

rTCR HF

SR-TCR HF

Trusted ⊕

wPRF

SR-PRF

Trusted
data structure

[6]

(b) Overview of our construction. Here, SR de-
notes subversion-resilience, HF denotes hash func-
tion, OWP/OWF denotes one-way permutation/-
function, PRF denotes pseudo-random function,
TCR denotes target collision-resistance, and OTS
denotes one-time signature.

Fig. 1

gramming techniques, randomness generation is assumed to be split from a ran-
domized algorithm. The watchdog can then test the randomness generator and
the deterministic algorithm individually. We also use this methodology.

2.2 Subversion-Resilience

Now, we describe the notion of a subversion-resilience experiment more formally.
As described above, such an experiment consists of three phases, illustrated
in Figure 1a. In this paper, we will use both decision and search experiments
and thus need to associate a naive win probability δ ∈ [0, 1] to each experi-
ment Exp, which will be 0 for search experiments (such as forgery experiments)
and 1/2 for decision experiments (such as real-or-random experiments). First, A0

provides a subverted implementation π̃. Then, the watchdog WD can run the im-
plementation to detect the subversion. Finally, the usual security experiment Exp
is run by the adversary A1 on the subverted implementation Π̃ = Am(π̃). The
watchdog outputs 1 if it detects a subversion. To formalize subversion-resilience,
consider the next definition and the corresponding security experiment shown
in Figure 1a.

Definition 1. A specification of a primitive Π̂ = (Am, π) is GOAL-subversion-
resilient in the offline watchdog model with trusted amalgamation if one can
efficiently construct a ppt watchdog algorithm WD such that for any ppt adver-

sary A = (A0,A1) it holds that AdvSR
GOAL,Π̂
A (1λ, δ) is negligible or DetWD,A(1

λ)

is non-negligible where AdvSRGOAL,Π̂
A (1λ, δ) = |Pr[ExpSRGOAL,Π̂

WD,A (1λ) = 1] − δ|
and DetWD,A(1

λ) = |Pr[WDπ̃(1λ) = 1]−Pr[WDπ(1λ) = 1]| using the experiment
shown in Figure 1a, with δ ∈ {0, 1

2} indicating whether a search or a decision
problem is considered.
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Note that GOAL-subversion-resilience implies GOAL security as the above def-
inition also has to hold for the adversary which outputs the specification as
its implementation. For the sake of readability, we will call primitives simply
subversion-resilient-GOAL with the understanding that they fulfill Definition 1.

2.3 Achieving Subversion-Resilience

A quite simple but instrumental observation was formalized by Russell, Tang,
Yung, and Zhou [27]: If the inputs to a deterministic algorithm made by the
adversary follow a public distribution, the watchdog can make queries also fol-
lowing this distribution. Hence, if the subverted implementation deviates from
the specification with probability δ on such input distributions, a polynomial
time watchdog can detect the presence of the subversion with probability at
least δ. Hence, to have a negligible detection rate by the watchdog, the proba-
bility of deviating from the specification must also be very low.

Lemma 1. Consider an implementation Π̃ := (π̃1, . . . , π̃k) of a specification

Π̂ = (π̂1, . . . , π̂k), where π1, . . . , πk are deterministic algorithms. Additionally,
for each security parameter λ, public input distributions X1

λ, . . . , X
k
λ are defined

respectively. If there exists a j ∈ [k] such that Pr[π̃j(x) ̸= π̂j(x) : x
$← Xj

λ] = δ,
this can be detected by a ppt offline watchdog with probability at least δ.

This lemma will be used to argue for the subversion-resilience of one-way
functions (Section 3) and hash functions (Section 4).

2.4 Assumptions

We make several assumptions throughout this work which we shortly summarize
here to enable a quick overview. First, we only consider stateless subversion to
rule out the aforementioned time bomb attacks. Second, our results are in the
split-program model with trusted amalgamation [27]. Third, since subversion-
resilient randomness generators have been already shown to be achievable with-
out using random oracles [6,7], we will simply assume uniform random coins are
available in our constructions to simplify notation and point to the mentioned
prior work for more details. In particular, in our constructions, all key gener-
ation algorithms are assumed to be subversion-resilient, as we could decouple
them (in the split-program model) into a randomness generation algorithm and
a deterministic algorithm that takes as input the random coins and outputs the
key. Note that an offline watchdog could effectively detect the later component
as its input is drawn from a public distribution. In addition to these architec-
tural assumptions, our amalgamation will use a trusted XOR and a trusted
comparison.

2.5 Pseudorandom Functions

For our signature scheme to be stateless, we also utilize PRFs. Bemmann et al.
[6] showed how to construct subversion-resilient PRFs from weak PRFs based
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on the classical Naor-Reingold construction for PRFs [23]. We thus only state
their definitions and results in a summarized form, point to their work for more
details, and assume subversion-resilient PRFs can be constructed and used.

Intuitively, a PRF is a keyed function F : K × D → R associated with a
key space K, that is indistinguishable from a function sampled uniformly at
random from the set of all functions D → R. More formally, K =

⋃
λ∈NKλ,

D =
⋃

λ∈NDλ, and R =
⋃

λ∈NRλ. Additionally, we use Func(D,R) to denote
the set of all functions mapping elements from D to R. Let us recall the standard
definition of PRFs.

Definition 2 ([6]). Let ExpPR
A,F be defined as shown in Figure 2. We define

AdvPR
A,F (1

λ) := |Pr[ExpPR
A,F (1

λ) = 1]− 1/2|.

We say that F is pseudorandom if AdvPRA,F (1
λ) is negligible for all ppt adver-

saries A.

ExpPRA,F (1
λ)

b
$← {0, 1}; K

$← Kλ

if b = 1 then b′ ← AF (K,·)(1λ)

else g
$← Func(Dλ,Rλ); b′ ← Ag(·)(1λ)

return b′ == b

Fig. 2: The security experiment for PRFs.

Theorem 1 ([6]). Let F be a weak PRF. Then one can construct subversion-
resilient PRFs in the trusted amalgamation model.

Note that their construction does not need any trusted operation like an XOR,
but rather that the trusted amalgamation parses the input as a bit string and
then forwards one of two possible keys to a weak PRF.

3 Subversion-Resilient One-Way Functions

One of the major observations Bemmann et al. [6] make is that certain primi-
tives are inherently subversion-resilient. One such primitive is weak PRFs, which
do not allow the attacker to input any value during the security game. Thus,
one could hope a similar result also holds for one-way functions. Unfortunately,
it seems that solely relying on one-wayness is insufficient, as we will need the
outputs of the considered function also to be (pseudo-) random and sufficiently
large. By guaranteeing these properties, we can argue that an adversary has a
low chance that a prepared trigger matches a random challenge and thus wins
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the security experiment. Therefore, instead of one-way functions, we consider
one-way permutations, which we will later use to construct one-time signatures,
particularly Lamport signatures [19]. This way, the challenge given to the ad-
versary in the security game is a uniformly random element from the domain
of the permutation. The critical point in our security proof will be that an ad-
versary cannot access enough entropy to “hit” a random output of the one-way
function/permutation while avoiding detection. In general, we can not assess the
output distribution of a one-way function, even if the input is random. However,
this is different for a one-way permutation, as the uniform input distribution
implies a uniform output distribution. Thus, since the input distribution of the
one-way permutation is public, Lemma 1 implies that there is only a negligible
probability that the one-way permutation deviates from the specification. Then
we can argue that the adversary cannot access enough entropy to develop an
input that matches its challenge after being evaluated.

3.1 One-Way Permutations

We recall the standard definition of one-way functions and permutations.

Definition 3. A (family of) one-way functions Π consists of two ppt algorithms
Gen and Eval. On input 1λ, the randomized algorithm Gen returns the public
parameters pp. The deterministic algorithm Eval takes the public parameters pp
and an element x ∈ {0, 1}λ and returns an element y ∈ {0, 1}λ. If Eval(pp, ·) is
a permutation on {0, 1}λ, we call Π a family of one-way permutations.

Definition 4. We say that Π = (KGen,Eval) is secure, if there is a negligible
function negl such that for all ppt attackers A, the probability Pr[ExpInvAΠ(1λ) =
1] ≤ negl(λ) with ExpInvAΠ(1λ) displayed in Figure 3.

ExpInvAΠ(1λ)

(pp)← Gen(1λ)

if Π is permutation : y∗ $← {0, 1}λ

else : x
$← {0, 1}λ, y∗ = Eval(pp, x)

x∗ = A(pp, y∗)

if Eval(pp, x∗) == y∗ : return 1

return 0

ExpSigAΣ(1λ)

(sk, vk)← KGen(1λ)

(m,σ) = ASign(sk,·)(1λ, vk)

if Vf(pk , (m,σ)) = 1 and m /∈ Q :

return 1

return 0

Fig. 3: Left: One-way function/ -permutation security experiment. Right: Un-
forgeability experiment for digital signatures.

Note that other definitions exist in which x∗ is chosen uniformly at random
from the domain and y∗ = Eval(pp, x∗) is given to the adversary. In the classical,
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i.e., non-subversion setting, both definitions are equivalent for permutations. In
our case, there is also little difference in our results. Since all inputs to Eval are
known, i.e., public, an adversary can guarantee that Eval follows the specification
but with negligible probability. Thus, in our proof in the next section, we could

introduce an additional game hop and replace Ẽval with Êval, but instead, we
will use this more straightforward way of defining security.

3.2 Subversion-Resilient One-Way Functions

We will see that starting from an “ordinary” one-way permutation, we directly
obtain a subversion-resilient one-way function without the need of any further
amalgamation, assuming that we already have a subversion-resilient key gener-
ation algorithm as stated in Section 2.4. The idea is that by applying Lemma 1
and using a permutation, the challenge handed to the adversary is a random
element. Then we can use that the adversary has to provide its implementation
before the execution of the inverting experiment, i.e., the challenge is indepen-
dent from the subverted implementation. Since the subversion can only utilize
negligible many triggers to avoid detection by the watchdog, the probability that
a trigger can be used to break security is also negligible. Thus, it needs to find an
input that can then be used to break the one-wayness of the specification with-
out making use of an input trigger, which contradicts the usual non-subversion
security.

Note that it is impossible (with polynomial testing time) to ensure that the
implementation provided by an adversary is still a permutation. Even changing
the output under a single input leads to the function not being a permutation
anymore, which can only be detected with negligible probability by a polynomial
time watchdog. Fortunately, we will only utilize the permutation property of the
specification to guarantee a uniform output distribution of honest evaluations.
Thus, we lose the permutation property in exchange for subversion-resilience.

Theorem 2. Let Π = (Gen,Eval) be a one-way permutation. Then the trivial

specification Π̂ = (Gen,Eval) is a subversion-resilient one-way function in the
split-program model with trusted amalgamation.

Proof. Let Π̂ = (Gen,Eval) be the specification of a permutation, and Π̃ be

the implementation of Π̂ provided by A. First, the watchdog simply runs KGen

for pp, samples x and compares Ẽval(pp, x) to Êval(pp, x). Whenever a mis-
match between these values is found, the watchdog returns 1. To prove the
subversion-resilience, let T ⊆ PP × {0, 1}λ denote the trigger set such that

(pp, x) ∈ T ⇔ Ẽval(pp, x) ̸= Êval(pp, x) where PP denotes the public param-
eter space. Thus, T contains all inputs for which the implementation deviates
from the specification. To avoid the detection by a watchdog, we know that the
density of T needs to be negligible, i.e., we have |T |/(|PP| · 2λ) ∈ negl(λ). Due
to the flow of the subversion experiment, the attacker needs to provide the im-
plementation Π̃ before the parameters pp and the challenge y∗ are chosen in
the security game. Hence, the set T is independent of pp and y∗ and so is the
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image of T , i.e., img(T ). Now, whenever the attacker is successful (as in ’wins
the security experiment’) on input y∗, they will output a value x∗ such that

Ẽval(pp, x∗) = y∗. We now distinguish whether the adversary uses a trigger,
i.e., whether (pp, x∗) ∈ T or (pp, x∗) /∈ T holds. If (pp, x∗) ̸∈ T , we know that

y∗ = Ẽval(pp, x∗) = Êval(pp, x∗). Thus, the attacker on the subverted implemen-
tation can be transformed into an attacker on the non-subverted specification,

breaking the one-wayness of Π. If (pp, x∗) ∈ T , we can’t predict Ẽval(pp, x∗),
however it can only redistribute weight within T , as Eval(pp, ·) is a determinis-
tic mapping on {0, 1}λ \ T . Now, T is independent from y∗ and y∗ is uniformly
drawn from {0, 1}λ. Together, this implies that the expected probability (upon
the random choice of y∗) of a subversion attacker to win when submitting any
trigger x∗ (and setting up its implementation accordingly beforehand) is at most
|T |/(|PP| · 2λ), i.e., negligible. Hence, the probability that a trigger x∗ with

Ẽval(pp, x∗) = y∗ exists is negligible. ⊓⊔

4 Subversion-Resilient Hash Functions

Another crucial building block we will use is hash functions. Since we build
one-time signatures from one-way functions, we need a way to hash two public
keys (of the one-time signature) down to the size of one public key to make the
signature construction of [24] work. Unfortunately, subversion-resilient collision-
resistant hash functions seem impossible (without any further assumptions), as
discussed in Section 6. On the positive side, just like in the case of ordinary
signatures, subversion-resilient target collision-resistant hash functions are suf-
ficient for our case, and we will see that they can be constructed by using a
trusted XOR. So, let us begin by providing the necessary (security) definitions.

Definition 5. A family of hash functions H is a pair of ppt algorithms (Gen,H)
where Gen takes as input the security parameter 1λ and outputs a (non-secret)
key s and H takes as input a key s and a string x ∈ {0, 1}∗ and outputs Hs(x).

Note that we only consider keyed hash functions that take a fixed-length input.
We will assume that inputs have length 2λ. Our approach can also handle inputs
with lengths up to 2λ, but this would imply more encoding and notation overhead
as inputs would need to be interpreted as 2λ long items with leading zeros.

In the following, we consider two different but very related security notions
concerning hash functions.

Definition 6. Let H = (Gen,H) be a family of hash functions. Then we say that
H is target collision resistant (TCR) iff Pr[ExpTCRH

A(1λ) = 1] ≤ negl(λ) where
ExpTCRH

A(1λ) is depicted in Figure 4.

Definition 7. Let H = (Gen,H) be a family of hash functions. Then we say
that H is random target collision resistant (rTCR) iff Pr[ExpRTCRH

A(1λ) = 1] ≤
negl(secpar) where ExpRTCRH

A(1λ) is depicted in Figure 4.
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ExpTCRH
A(1λ)

(x, st) = A1(1
λ)

s
$← Gen(1λ)

y = A2(s, x, st)

if Hs(x) == Hs(y) and x ̸= y :

return 1

return 0

ExpRTCRA
H(1λ)

x
$← D

s← Gen(1λ)

y = A(s, x)
if Hs(x) == Hs(y) and x ̸= y :

return 1

return 0

Fig. 4: (random) Target-collision resistance security experiment for hash func-
tions. In the left experiment, we use that A = (A1,A2) and use st to denote the
state passed between the subroutines of the adversary.

Big Domains. Before we present our construction, let us quickly illustrate
a powerful subversion attack against hash function families with big domains,
which is inspired by the attack on one-way permutations by Russel et al. in [27].
Let H = (Gen,H) with H : {0, 1}2λ → {0, 1}λ be a family of hash functions,
which hashes inputs to outputs half the input size. Then an adversary could
prepare its implementation such that H̃s(k ∥ y) := y for some randomly sampled
(or simply chosen by the adversary) string k. With this construction, an input
trigger exists for every element in the range of H, enabling the adversary to win
the security experiment trivially. Additionally, detecting this attack is very hard
for an offline watchdog without knowledge of k. Assuming the watchdog samples
random inputs for the hash function, the probability for a random input to match
y is ( 12 )

λ, which is negligible in λ. Since the watchdog only has a polynomial
running time, it has a negligible probability of detecting this attack. Thus, we
only use hash functions where the domain and range of the hash functions are
of similar size to rule out this otherwise unpreventable attack. More concretely,
we only consider hash functions where the output is one bit shorter than the
input. Larger input sizes are then handled by constructing hash functions for
different input sizes and hashing the input down through these different hash
functions. To guarantee subversion-resilience, we need to run a watchdog for
each input length individually. However, this seems unavoidable to prevent the
above attack.

Construction. Similar to our construction of subversion-resilient one-way func-
tions, we make use of the fact that rTCR hash functions have a random challenge.
More formally, let H = (Gen,H) be a family of rTCR hash functions. Then we
construct a TCR hash function H′ = (Gen′,H′) as follows: To sample a key s,
the algorithm Gen′ first executes Gen and then additionally samples a uniformly
random element r from the domain of the hash function and finally outputs
s′ = (s, r) as the key. Now, H ′ evaluates inputs as H′

s′(x) := Hs(x ⊕ r). Thus,
this construction has an additional blinding value as part of its key, which is
XORed to the input before evaluating the hash function. In order to sanitize
key generation, our watchdog will test Gen for uniformly random coins. Thus,
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just as in [28] we can guarantee that either s is computed in accordance with
the specification or the watchdog detects subversion. To compute the blinding
value, we can use any construction from [28] or [7] to produce random coins in
a subversion-resilient manner that does not use random oracles.

We note that the ⊕ operation will be part of the trusted amalgamation when
we prove subversion-resilience. This is essential to the construction and prevents
the attacker from feeding adversarially chosen inputs directly into subverted
components, similar to Russell et al. [28]. Just like in the section about one-way
functions, the order of events is critical for our analysis. Our security proof again
uses that the hash function (and especially the random value provided along) is
provided to the adversary after the adversary provides its implementation. Note
that in a non-subverted setting, our construction is the folklore6 construction to
obtain a TCR hash function from a rTCR hash function.

In the proof, we will use that target collision resistant hash functions with
small input domain need to distribute their inputs somewhat ’equally’ into the
range of the hash functions. Otherwise, this would contradict its target collision
resistance property.

Lemma 2. Let H = (Gen,H) with H : {0, 1}λ → {0, 1}λ−1 be a rTCR family of
hash functions. Then, the set {x ∈ {0, 1}λ | Hs(x) = z} is negligible in λ with
probability 1− negl(λ) upon random choice of z and s.

Theorem 3. Let H = (Gen,H) with H : {0, 1}λ → {0, 1}λ−1 be a rTCR family of
hash functions. Then H′ = (Gen′,H′) with H′ : {0, 1}λ → {0, 1}λ−1 as described
above is a subversion-resilient TCR family of hash functions in the split-program
model with trusted amalgamation where the ⊕ is part of the amalgamation.

Proof. Let H be a rTCR hash function family, and let T be the trigger set of H,
i.e., (s, x) ∈ T ⇔ H̃s(x) ̸= Ĥs(x). Just as in [28], we can use Lemma 1 to
argue that either the keys s′ output by Gen′ are computed according to the
specification or the watchdog detects subversion. Further, due to Lemma 1, we
know that |T | ∈ negl(λ). Hence, our watchdog for H will query Gen and H′ on
random inputs. Due to the trusted XOR used in H′, Lemma 1 implies that with
high probability the value Hs(x ⊕ r) is a non-subverted output, as s′ = (s, r)
is chosen after the adversary provides its implementation. Now, let A be an
adversary against the subversion-resilience of H′, i.e., A first outputs x, is then
handed s′ = (s, r) and then outputs a value y ̸= x and succeeds if Hs(x ⊕ r) =
Hs(y ⊕ r). We now distinguish two cases. In the first case, we have (s, y) /∈ T .
If A can output y ̸= x such that H′

s′(x) = H′
s′(y) (where both inputs do not

lead to input trigger), we can construct an adversary B which breaks the rTCR
of H as follows. After A outputs some value x, the adversary B obtains (s, x′)
from its challenger. Now, B forwards s′ = (s, r) with r = x ⊕ x′ to A which
answers with some y. Finally, B forwards y ⊕ r to its challenger. We observe
that in the case that A finds a collision such that H′

s′(x) = H′
s′(y), it holds that

H′
s′(x) = Hs(x

′ ⊕ x ⊕ x) = Hs(x
′) and H′

s′(y) = Hs(y ⊕ x ⊕ x′). Since x ̸= y, it

6 Unfortunately, we were not able to find an explicit reference for this construction.
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also holds that x′ ̸= y⊕ x′ ⊕ x. Thus, if A finds a collision, so does B, at least if
H does not deviate from its specification with regard to (s, y)7.

The other case is (s, y) ∈ T . But, as we will now argue, this can only happen
with negligible probability. Remember that H maps λ-bit string to (λ − 1)-bit
strings. Now, let H−1

s (z) ⊆ {0, 1}λ denote the set of preimages of an element z ∈
{0, 1}λ−1. By Lemma 2, the size of H−1

s (z) must be negligible for all but negligible
many pairs (s, z). Hence, the probability that there is some y ∈ H−1

s (Hs(x)) with
(s, y) ∈ T is negligible, since A commits to its implementation before H and its
associated blinding value is chosen and A has only negligible many input trigger.
Thus, any adversary which breaks the subversion-resilience ofH′ can also be used
to break the security of H. ⊓⊔

As stated before, the above construction only reduces the input size by a single
bit. Hence, to hash a string of length 2λ down to length λ, we will need a hash
family Hℓ : {0, 1}ℓ → {0, 1}ℓ−1 for each ℓ = 2λ, 2λ− 1, . . . , λ+ 1.

5 Subversion-resilient Signatures

Finally, we have all the ingredients to prove the signature scheme based on the
Naor-Yung construction [24] subversion-resilient. As a necessary stepping stone,
we will see that the classical Lamport signatures are subversion-resilient if in-
stantiated with a subversion-resilient one-way function. Then, all the previous
sections’ building blocks can be combined to obtain a subversion-resilient signa-
ture, where even the verification algorithm is subject to subversion.

5.1 Digital Signatures

We continue by recalling the standard definition of digital signatures.

Definition 8. A digital signature scheme Σ consists of three ppt algorithms
(KGen,Sign,Vf). On input 1λ the key generation algorithm KGen outputs a pair
of keys (sk, vk). The signing algorithm Sign takes as input the secret signing
key sk and a message m from the message space and outs a signature σ. The
verification algorithm Vf takes as input the public verification key vk, a message
m, and a signature σ. It outputs a bit b where b = 1 indicates a valid signature,
while b = 0 means that the signature cannot be verified. We say a signature
scheme is correct if for every key pair (sk, vk) generated by KGen(1λ) and every
message m ∈ M it holds that Vf(vk, (m,Sign(sk,m)) = 1 but with negligible
probability.

Next, we recall the standard definition of existential unforgeability.

Definition 9. We say that a signature scheme Σ is existentially unforgeable
if for all ppt adversaries A there exists a negligible function negl(1λ) such that
Pr[ExpSigAΣ(1

λ) = 1] ≤ negl(λ) where ExpSigAΣ(1
λ) is displayed in Figure 3 and

A has access to an oracle returning σi = Sign(sk,mi) on input mi and where Q
denotes the set of all queries that A issued to its signing oracle.
7 This resembles the ’classical’ security proof of the construction.
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Definition 10. We say a signature is a one-time signature if the above holds
and the attacker can only issue a single query to its signing oracle.

5.2 Lamport Signatures

Using the results of Section 3, we have access to subversion-resilient one-way
functions and can directly obtain Lamport signatures [19] given a trusted com-
parison. So let us quickly recall the definition of the aforementioned Lamport
signatures for messages of length ℓ, which uses a family of one-way functions
(Gen,Eval).

The key generation algorithm chooses ℓ many values xi,0, xi,1 ∈ {0, 1}λ uni-
formly at random as well as pp = Gen(1λ). Then compute yi,0 = Eval(pp, xi,0)
and yi,1 = Eval(pp, xi,1). The verification key vk consists of all y values and the
signing key of all x values. On input a message m ∈ {0, 1}ℓ with m = m1 . . .mℓ,
the signing algorithm simply outputs the signature σ = (x1,m, . . . , xℓ,mℓ

). On
input a verification key vk, a message m ∈ {0, 1}ℓ with m = (m1 . . .mℓ), and a
signature σ = (x1, . . . , xℓ), the verification algorithm outputs 1 iff Eval(pp, xi) =
yi,mi

for all 1 ≤ i ≤ ℓ.
Then it is not hard to see that the security of the Lamport signatures scheme

follows directly from the security of the used one-way function. Similarly, the
Lamport signature’s subversion-resilience follows from the subversion-resilience
of the used one-way function. However, additionally, we need a trusted compar-
ison for the above construction to be secure. As discussed in [6] for the context
of MACs, a trusted comparison seems unavoidable. Otherwise, the subverted
implementation could ignore the output of Eval and output 1 for a value chosen
by the adversary and embedded into the implementation. Thus, the subversion-
resilience of Lamport signatures directly boils down to the subversion-resilience
of the one-way function.

Theorem 4. Let Π be a subversion-resilient one-way function. Then Lamport
Signatures using Π as the one-way function are subversion-resilient one-time
signatures where the trusted amalgamation makes a trusted comparison.

5.3 The Naor-Yung Construction

Before we dive into the classical Naor-Yung construction, let us provide some
intuition on the approach. The main idea is to follow a tree-based approach and
heavily use one-time signatures, which sign pairs of verification keys to form
an authenticated path in a tree based on the message to be signed. Since the
Lamport signature can not sign messages bigger than its public key, a hash
function is used to allow the signing of two verification keys. Here a target-
collision-resistant hash function is sufficient to guarantee security. While the
original construction is stateful, it is known that it can be extended via PRFs
and deterministically recomputing keys to make the construction stateless. Note
that the PRFs are only needed to sign messages and not for signature verification.
We continue with the construction and are given a one-time signature scheme
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(KGenOTS,SignOTS,VfOTS), a target-collision resistant hash function familyH =
(Gen,H) with H = {Hs : {0, 1}2λ → {0, 1}λ}, and a pseudorandom function
(KGenPRF, F ). Furthermore, for a string w ∈ {0, 1}∗, we define Pre(w) ⊆ {0, 1}∗
as the set of prefixes of w, including the empty string ϵ and w itself. For technical
reasons, we assume that for w ∈ {0, 1}λ, we have Pre(w) ⊆ {0, 1}λ+⌈log(λ)⌉ and
|Pre(w)| = |w| + 1 to guarantee that all prefixes have the same length and
to differentiate them uniquely.8 We also assume that the verification key vk
corresponding to a secret key sk can easily be derived from sk. Now, we define
our signature scheme (KGen,Sign,Vf) as follows:

KGen(1λ)

(sk, vk)← KGenOTS(1
λ)

kkeys ← KGenPRF(1
λ)

ksigs ← KGenPRF(1
λ)

khashs ← KGenPRF(1
λ)

return ((sk, kkeys, ksigs, khashs), vk)

Vf(vk,m, σ)

Parse σ as (σm, vkm, (σw, sw, vkw∥0,

vkw∥1)w∈Pre(m)\{m}))

vkϵ = vk

for w ∈ Pre(m) \ {m} :
bw = Vf(vkw,Hsw (vkw∥0∥vkw∥1), σw)

bm = Vf(vkm,m, σm)

return
∧

w∈Pre(m)

bw

Sign((sk, kkeys, ksigs, khashs),m)

skϵ = sk

vkϵ = vk

for w ∈ Pre(m) \ {ϵ} :
rw = F (kkeys, w)

(skw, vkw) = KGenOTS(1
λ; rw)

for w ∈ Pre(m) \ {m} :
rw,h = F (khashs, w)

sw = Gen(1λ; rw,h)

rw = F (ksigs, w)

σw = SignOTS(skw,Hsw (vkw∥0∥vkw∥1); rw)

rm = F (ksigs,m)

σm = SignOTS(skm,m; rm)

return (σm, (σw, sw, vkw∥0,

vkw∥1)w∈Pre(m)\{m})

Fig. 5: Our proposed signature scheme.

Theorem 5. Given subversion-resilient one-time signatures, subversion-resilient
target-collision-resistant hash functions, and subversion-resilient PRFs, then the
above construction is a stateless, subversion-resilient digital signature scheme in
the split-program model with trusted amalgamation where all algorithms are sub-
ject to subversion.

In the following proof, we follow the proof sketch by Naor and Yung [24],
but need to adapt the proof somewhat. First, Naor and Yung only considered
a stateful signature while our use of the PRF makes the complete construction
stateless. Furthermore, we need to make sure that we reduce the security to the

8 This prevents complications and allows us to identify each prefix uniquely.
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subversion-resilience of the building blocks rather than their original security
properties, as we only work with the (possibly) subverted implementation here
and not with the specification.

Proof. As a first step, the watchdog for the signature scheme simply runs the
watchdog of the one-time signature, the watchdog of the hash function, and the
watchdog of the PRF. If none of these watchdogs detect a subversion, we follow
an adaption of the proof by Naor and Yung [24].

Now, we replace the values generated by the PRF with completely random
strings, i.e., all strings rw, rw,h, and rm are now independent random strings that
are stored by the system for reuse in case that the values are needed again. If this
would be distinguishable from the setting where the PRF is used, we can easily
build an attacker against the subversion-resilience of the PRF by simulating all
other parts of the construction. We will also ignore the cases which some of the
randomly chosen values (random strings or keys) collide, as this will only happen
with negligible probability.

Now, let Asigs be an attacker against the subversion-resilience of the signa-
ture scheme that is successful with non-negligible probability 1/p(λ) for some
non-negligible function p. In the following, we will now show that such an at-
tacker implies the existence of an attacker AOTS against the one-time signa-
ture and an attacker Ahashs against the hash function such that at least one
of these attackers is also successful with non-negligible probability. As ASIG

wins the subversion-resilience game with non-negligible probability, it outputs
a valid message-signature pair (m∗, σ∗) with m∗ ̸∈ QM with non-negligible
probability. Here, QM is the set of messages for which A queried its sign-
ing oracle. Let QS be the set of signatures returned by the signing oracles.
By definition, for each m ∈ QM and each corresponding answer σ ∈ QS ,
we have σ = (σm, (σw, sw, vkw∥0, vkw∥1)w∈Pre(m)\{m}). Similarly, we also have
σ∗ = (σ∗

m∗ , (σ∗
w∗ , sw∗ , vkw∗∥0, vkw∗∥1)w∗∈Pre(m∗)\{m∗}). By construction of the

verification algorithm, a successfully forged signature σ∗ must contain a tuple
(σ∗

w∗ , sw∗ , vkw∗∥0, vkw∗∥1) that is not contained in any signature in QS . Now, we
need to distinguish two cases.

If Hsw∗ (vkw∗∥0∥vkw∗∥1) ̸= Hsw∗ (vkw′∥0∥vkw′∥1) for all vkw′∥0 and vkw′∥1 con-
tained in the signatures in QS , we can construct an attacker AOTS against the
one-time signature. The attackerAOTS is given some verification key vk′ from the
one-time signature and simulates the complete security experiment, but instead
of sampling the key pair (skw∗ , vkw∗), it sets vkw∗ = vk′. To sign a message with
skw∗ , it uses its oracle to the signing algorithm of the one-time signature. Finally,
AOTS outputs the message-signature pair (m′, σ′) = (Hsw∗ (vkw∗∥0∥vkw∗∥1), σ

∗
w∗),

which is a valid pair as (m∗, σ∗) was a valid pair for the signature scheme. Fur-
thermore, as Hsw∗ (vkw∗∥0∥vkw∗∥1) ̸= Hsw∗ (vkw′∥0∥vkw′∥1) holds for all verifica-
tion keys vkw′∥0 and vkw′∥1 contained in QS , the one-time signing oracle was
never queried on the value Hsw∗ (vkw∗∥0∥vkw∗∥1). Hence, (m′, σ′) is a successful
forgery of the one-time signature.
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If some signature in QS contains a tuple (σ∗
w∗ , sw∗ , vkw′∥0||vkw′∥1) with

Hsw∗ (vkw∗∥0||vkw∗∥1) = Hsw∗ (vkw′∥0∥vkw′∥1),

which was created by signing a message m′, we can build the attacker Ahashs

against the hash function as follows: The attacker Ahashs simulates the complete
experiment but does not sample a hash function Hsw∗ . Instead, before Hsw∗

is evaluated during a signing operation of m′, the attacker returns the value
vkw′∥0∥vkw′∥1 to the hash function challenge and then obtains a hash function
h, which will be used as Hsw∗ . Finally, the attacker AH outputs vkw∗∥0||vkw∗∥1.
As Hsw∗ (vkw∗∥0||vkw∗∥1) = Hsw∗ (vkw′∥0∥vkw′∥1), this is a valid collision of the
hash function keyed with sw∗ .

IfA wins the security experiment with probability p(λ) for some non-negligible
function p(λ), the attackerAOTS wins with probability pOTS(λ), and the attacker
Ahashs wins with probability phashs(λ), we have p(λ) ≤ pOTS(λ)+phashs(λ). Hence,
either AOTS or Ahashs is successful if A is successful. ⊓⊔

6 Discussion

Efficiency. To better assess our results, in Table 1 we provide an overview of the
available constructions of subversion-resilient signatures found in the literature.
The table shows that while our construction grants the strongest security in the
watchdog model, i.e. no random oracle and complete subversion, it also has the
biggest signature size. Note that for the reverse firewall (RF) model and the self-
guarding (SG) model, additional/other assumptions are applied (verifiability,
honest sample phase).

Table 1: Comparison of different approaches for subversion-resilient signature
schemes. Here σ denotes the size of an underlying signature scheme, m denotes
the length of the messages to be signed, and s is the size of the key of our hash
function.

Model RO Complete Subv. Signature size Stateful subv.

[2] RF ✗ ✗ σ ✓
[16] SG ✗ ✗ ≈ λ ·m+ 2λσ ✗

[27] online WD ✓ ✓ m ✓
[13] offline WD ✓ ✗ m ✗

[13] offline WD ✗ ✗ 2(m+ σ) ✗

This work offline WD ✗ ✓ m(σ + |s|+ 2|vk|) + σ ✗

It is well known that digital signatures can be constructed from one-way and
collision-resistant hash functions. Thus, we now focus on constructing collision-
resistant hash functions and explain why this seems impossible if the hash func-
tion is not idealized as a random oracle.
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Subversion-resilient Collision Resistance via Black-box Testing. Similar
to the case of weak PRFs [6] and one-way permutations (see Section 3), one
may hope that simply taking any hash function and testing it sufficiently may
already grant positive results. Unfortunately, this seems impossible. Consider an
adversary which provides an implementation H̃ of H, which only differ for two
values m0,m1 from H in the sense that H̃(m0) = 0 = H̃(m1). Any watchdog
that samples messages from the (finite) domain9 of the hash function uniformly
at random only has negligible probability in testing for m0 or m1. Conversely,
the adversary can trivially output a collision by outputting m0,m1. While this
observation is not very involved, to the best of our knowledge, it was not yet
formally written down in previous works.

Implications for Signatures. In some textbooks for modern cryptography,
such as [18], the construction of Naor-Yung is often displayed by utilizing collision-
resistant hash functions instead of target-collision-resistant hash functions. This
is useful from a teaching perspective, as collision resistance is introduced in
courses, and there is little benefit in introducing target-collision resistance if only
the Naor-Yung construction is considered. While the classical setting makes lit-
tle difference in which notion is used, the distinction between these two notions
is crucial in the subversion setting. As the stronger notion seems impossible to
achieve, the weaker and sufficient property allows for the subversion-resilient
construction.

Correctness. Note that both of our signature construction satisfies our cor-
rectness definition, even under subversion. This is because due to the testing of
the watchdog Lemma 1 can be used to argue that only for negligible many in-
puts correctness is violated. Unfortunately, our approach cannot achieve perfect
correctness (as achieved by the symmetric encryption construction in [6]). Note
that no work achieves perfect correctness other than assuming verifiability in
the reverse firewall model [2], thus assuming correctness.
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