
Efficacy and Mitigation of the Cryptanalysis on AIM

Seongkwang Kim1, Jincheol Ha2, Mincheol Son2, and Byeonghak Lee1

1 Samsung SDS, Seoul, Korea,
{sk39.kim, byghak.lee}@samsung.com

2 KAIST, Daejeon, Korea,
{smilecjf, encrypted.def}@kaist.ac.kr

Abstract. Recent advancements in post-quantum cryptography have highlighted signature schemes based
on the MPC-in-the-Head (MPCitH) framework due to their reliance only on the one-way function of the
underlying primitive. This reliance offers a diverse set of assumptions regarding the difficulty of post-
quantum cryptographic problems. In this context, Kim et al. proposed AIM, an MPCitH-compatible one-
way function. This function is distinguished by its large algebraic S-boxes and parallel architecture, con-
tributing to the reduced size of signatures, as presented at CCS 2023.
However, AIM has faced several cryptanalytic challenges, which have potentially weakened its security
by up to 15 bits. This paper provides a comprehensive overview of these cryptanalytic methods and pro-
poses AIM2, an enhanced version that addresses these identified vulnerabilities. We conduct an extensive
analysis of its resilience to algebraic attacks and detail the modifications in its efficiency.

1 Introduction

The MPC-in-the-Head (MPCitH) paradigm, introduced by Ishai et al. [IKOS07], represents a novel method
for constructing zero-knowledge proofs (ZKPs) through the simulation of multiparty computation (MPC) pro-
tocols. This paradigm has recently been employed in the development of post-quantum signature schemes,
with the security of such schemes relying solely on the one-way function utilized in their key generation
process.

In this field, Kim et al. [KHS+23] proposed AIM, a one-way function optimized for MPCitH, and de-
veloped the signature scheme AIMer, which integrates the BN++ proof system [KZ22] with the symmetric
primitive AIM. The AIM function is characterized by its parallel structure and Mersenne S-boxes, which are
specifically designed to maximize the benefits of repeated multipliers while maintaining strong resistance to
algebraic attacks. However, recent studies have identified certain algebraic vulnerabilities in AIM.

Liu et al. [LMOM23] conducted the first analysis, employing a fast exhaustive search approach on AIM.
This method leverages the fact that AIM allows a low-degree system of equations in λ Boolean variables,
where λ represents the security parameter. Using a fast exhaustive search algorithm [Bou22], they demon-
strated a potential security degradation of up to 15 bits compared to the initial claims in [KHS+23]. The
second analysis, communicated privately by Liu, devised a new low-degree equation system involving 2λ
variables. Although this approach does not completely undermine AIM, it challenges the original security
assertions made in [KHS+23].

A third analysis, shared by Saarinen on the PQC Forum,3 focused on an efficient exhaustive search strat-
egy exploiting implementational optimizations. This study proposed an unexpectedly efficient brute-force
method, exploiting the fact that the input to the parallel S-boxes in AIM are all the same. The precise extent
of the resulting security degradation have been unspecified.

Lastly, Zhang et al. [ZWY+23] proposed a linearization attack, which involved guessing a middle-product
of the S-boxes in AIM. They claimed that this attack led to a security degradation of up to 6 bits.

1.1 Our Contribution

In this paper, we revisit the complexity estimation of the exhaustive search on AIM. As the previous estimation
is so rough that the efficacy of the analyses cannot be addressed properly. Based on the new estimation, we
overview the four analyses on AIM and carefully (re-)analyze the complexity if there is any ambiguity. To

3 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

mitigate all the cryptanalysis, we propose a new version of AIM, dubbed AIM2. The main difference of AIM2
from AIM is three-fold:

1. Inverse Mersenne S-box: the S-box in the first round is placed in the opposite direction. In this way, we
can make it harder to build a large number of equations compared to AIM.

2. Constant addition to the input of S-boxes: distinct constants are added to the inputs of first-round S-
boxes. It differentiates the inputs of S-boxes with negligible cost.

3. Increasing exponents for S-boxes: we opt for larger exponents for some Mersenne S-boxes in order to
make it harder to establish a low-degree system of equations in ≈ λ Boolean variables from a single
evaluation of AIM.

We also analyze the security of AIM2 against various attacks. Finally, we implement AIMer whose symmet-
ric primitive is replaced from AIM to AIM2, and measure how our patch affects efficiency of the resulting
signature scheme.

1.2 Notation

Throughout this paper, we denote (bit-)length of AIM and AIM2 as n. Unless stated otherwise, all logarithms
are to the base 2. For two vectors a and b over a finite field, their concatenation is denoted by a∥b. For a
positive integer m, we write [m] = {1, . . . ,m}. For an integer x and a boolean vector y, hwn(x) and hw(y)
denotes the Hamming weight of x mod 2n − 1 in its binary representation and the Hamming weight of y,
respectively. For α = (α1, . . . , αn) ∈ Fn

2 and x = (x1, . . . , xn), monomial representation xα means that∏n
i=1 x

αi
i . For a field F, its multiplicative group is denoted by F×.

In this document, addition is usually operated on a binary field, which can be seen as bitwise exclusive-OR
(XOR). When we want to emphasize this, we will write ⊕ to denote addition.

2 AIM and AIMer

AIM was proposed as an MPCitH-friendly symmetric primitive with high resistance to algebraic attacks [KHS+23].
AIMer is a signature scheme obtained by combining AIM with the BN++ proof system [KZ22].

Given the input/output size n and an (ℓ+ 1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1,

AIM : {0, 1}n × F2n → F2n

is defined by

AIM(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ](pt)⊕ pt

where each function will be described below. The security requirement of AIM for the signature scheme
AIMer is the one-wayness of AIM with respect to pt for a given public iv. See Figure 2 for the pictorial
description of AIM with ℓ = 3.

NON-LINEAR COMPONENTS. In AIM, S-boxes are exponentiation functions by Mersenne numbers over a large
field. More precisely, for x ∈ F2n ,

Mer[e](x) = x2e−1

for some e. Note that this map is a permutation if gcd(e, n) = 1. As an extension, Mer[e1, . . . , eℓ] : F2n → Fℓ
2n

is defined by
Mer[e1, . . . , eℓ](x) = Mer[e1](x)∥ . . . ∥Mer[eℓ](x).

LINEAR COMPONENTS. AIM includes two types of linear components: an affine layer and feed-forward. The
affine layer consists of multiplication by an n × ℓn random binary matrix Aiv and addition by a random
constant biv ∈ Fn

2 . The matrix
Aiv =

[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2)ℓ

2

Mer[e1]

Mer[e2]

Mer[e3]

Linpt Mer[e∗] ct

XOF[iv]

Fig. 1: The AIM-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature scheme,
and (iv, ct) (in blue) is the corresponding public key.

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an
extendable-output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented
by a linearized polynomial Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n)

ℓ,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

Feed-forward operation, which is addition by the input itself, makes the entire function non-invertible.

RECOMMENDED PARAMETERS. Recommended sets of parameters for λ ∈ {128, 192, 256} are given in Table
1. The irreducible polynomials for extension fields F2128 , F2192 , and F2256 are the same as those used in Rain
[DKR+22].

Scheme λ n ℓ e1 e2 e3 e∗

AIM-I 128 128 2 3 27 - 5
AIM-III 192 192 2 5 29 - 7
AIM-V 256 256 3 3 53 7 5

Table 1: Recommended sets of parameters of AIM.

3 Complexity Models for Algebraic Attacks

In this section, we briefly introduce some algebraic attack models and their complexities. Throughout this
section, we will focus on constructing an overdetermined system of m equations in n Boolean variables
where the degree of each equation is denoted as di for i = 1, . . . ,m.

3.1 XL Algorithm with Independent Equations Model

The XL algorithm [CKPS00] is a generalization of the relinearization attack [KS99]. The XL algorithm extends
the system by multiplying all the monomials of degree D − di to the equation of degree di, resulting in

SD =

m∑
i=1

D−di∑
j=0

(
n

j

)
3

equations of degrees at most D. As the extended system is of degrees at most D, at most
∑D

i=1

(
n
i

)
monomials

appear in the extended system. When the number of linearly independent equations becomes greater than
the number of monomials as D grows, one can solve the extended system of equations by linearization.

The complexity of the XL attack depends on the number of linearly independent equations obtained from
the XL algorithm, while we may loosely upper bound the number of linearly independent equations by SD.

Assumption 1 All the equations obtained while running the XL algorithm are linearly independent.

Under Assumption 1, which is in favor of the attacker, we can search for the (smallest) degree D such that

m∑
i=1

D−di∑
j=0

(
n

j

)
≥ TD (1)

where TD denotes the exact number of monomials appearing in the extended system of equations, which
is upper bounded by

∑D
i=1

(
n
i

)
. Once D is fixed, the extended system of equations can be solved by trivial

linearization whose time complexity is given as O (Tω
D), where the constant ω is the matrix multiplication

exponent.
In the literature, Assumption 1 is not widely-used to estimate the security of a cryptosystem since it is

regarded unrealistic. The equations obtained while running the XL algorithm are usually linearly dependent,
and the degree D is required to be much higher than one computed under Assumption 1. Ars et al. [AFI+04]
showed that the XL algorithm is in fact a redundant variant of the F4 algorithm [Fau99]. AIM was claimed
to be secure against direct algebraic attacks even if Assumption 1 is true [KHS+23].

3.2 Gröbner Basis Attack Model

The Gröbner basis attack is to solve a system of equations by computing its Gröbner basis. The attack consists
of the following steps.

1. Compute a Gröbner basis in the grevlex (graded reverse lexicographic) order.
2. Change the order of terms to obtain a Gröbner basis in the lex (lexicographic) order.
3. Find a univariate polynomial in this basis and solve it.
4. Substitute this solution into the Gröbner basis and repeat Step 3.

When a system of equations has only finitely many solutions in its algebraic closure, its Gröbner basis in the
lex order always contains a univariate polynomial. When a single variable of the polynomial is replaced by a
concrete solution, the Gröbner basis still remains a Gröbner basis of the “reduced” system, allowing one to
obtain a univariate polynomial again for the next variable. We refer to [SS21] for more details on Gröbner
basis computation.

The security of a cryptosystem against the Gröbner basis attack is usually estimated by the complex-
ity of the first step, which is the Gröbner basis computation in the grevlex order using F4/F5 algorithm
or its variants [Fau99, Fau02]. The complexity of Gröbner basis computation can be estimated using the
degree of regularity of the system of equations [BFS04]. Consider a system of m homogeneous equations
{fi(x1, . . . , xn) = 0}mi=1 in n Boolean variables. Let di denote the degree of fi for i = 1, 2, . . . ,m. If the
system of equations is overdetermined, i.e., m > n, then the degree of regularity can be estimated by the
smallest degree of the terms with non-positive coefficients appearing in the Hilbert series

(1 + z)n∏m
i=1(1 + zdi)

under Assumption 2.

Assumption 2 ([Frö85]) Almost all polynomial sequences are semi-regular.

For nonhomogeneous equations, the degree of regularity is computed from the following Hilbert series ob-
tained by homogenization [BFSS13]:

(1 + z)n

(1− z)
∏m

i=1(1 + zdi)
. (2)

4

Given the degree of regularity dreg, the complexity of computing a Gröbner basis of the system of equations
is known to be

O

((
n

dreg

)ω)
.

In [KHS+23], the degree of regularity has been wrongly computed using the Hilbert series

1

(1− z)n

m∏
i=1

(1− zdi).

and the complexity formula

O

((
n+ dreg
dreg

)ω)
which gives zeroes over the algebraic closure of F2. As far as we check, this discrepancy leads to no significant
difference of the attack complexity.

3.3 Hybrid Wiedemann XL Algorithm Model

The state-of-the-art model of solving a system of polynomial equations is to use the hybrid Wiedemann XL
algorithm [BFP09, YCBC07]. This model is based on the following three techniques:

1. XL algorithm with termination at the degree of regularity (also known as the operating degree),
2. hybrid approach with the guess-and-determine attack [BFP09],
3. sparse linear system solving algorithm which is called the Wiedemann algorithm [Wie86].

Nowadays, the XL algorithm has been proved to terminate at degree dreg defined by the Hilbert series (2) [YC04,
YCBC07] under Assumption 2. So, the complexity of the hybrid Wiedemann XL algorithm on a system of
Boolean equations is upper bounded by

min
k

3 · 2k ·
(

n− k

dreg(n, k)

)2

·
(

n− k

maxi di

)
(3)

where the degree of regularity dreg(n, k) is the smallest degree of the terms with non-positive coefficients of
the Hilbert series

(1 + z)n−k

(1− z)
∏m

i=1(1 + zdi)
. (4)

3.4 Complexity Model in this Paper

In the previous sections, we introduced three complexity models for algebraic attacks (XL and Gröbner basis
computation). Although the hybrid Wiedemann XL algorithm is the most widely-deployed model, we use
the Gröbner basis attack model with ω = 2 and hybrid approach [BFP09] since the complexity of this model
lower bounds that of the hybrid Wiedemann XL model. Specifically, we use the complexity formula

min
k

2k ·
(

n− k

dreg(n, k)

)2

(5)

where dreg(n, k) is the smallest degree of the terms with non-positive coefficients of (4).

5

Operation #AND #XOR #Gate Note

FF Mult. n2 n2 2n2 [DCK+20]
FF Square 0 n n Underestimated
Mat-Vec Mult. 0 n2 n2 Fixed n× n-matrix
FF Add 0 n n

Table 2: Summary of required number of binary gates. We compute the gate-count complexities of analyses
which will be described in this section. “FF” is the abbreviation of finite field. The finite field implies F2n ,
and the vector is binary vector of length n.

Scheme Circuit Chain: (a) → (b) = x2a−1 → x2b−1
Operations

FF Mult. FF Square

AIM-I
Mer[3, 27] (1) → (2) → (3) → (6) → (12) → (24) → (27) 6 26
Mer[5] (1) → (2) → (4) → (5) 3 4

AIM-III
Mer[5, 29] (1) → (2) → (3) → (5) → (7) → (14) → (28) → (29) 7 28
Mer[7] (1) → (2) → (4) → (6) → (7) 4 6

AIM-V
Mer[3, 7, 53] (1) → (2) → (3) → (5) → (7) → (12) → (24) → (48) → (53) 8 52
Mer[5] (1) → (2) → (4) → (5) 3 4

Table 3: The addition chain used to compute each Mersenne-Sbox in AIM and the number of field operations
it takes.

4 Cryptanalysis on AIM

4.1 Claimed Security of AIM

Before we address analyses on AIM proposed so far, we clarify the complexity of exhaustive search attack
on AIM. The complexities have been differently described in [KHS+23] and [KCC+23]. We revisit how the
complexities have been computed, and provide more accurate figures with explicitly written assumptions.

In the earliest ePrint version of [KHS+23], the S-boxes in AIM are assumed to be computed by naive
square-and-multiply method. Then, each S-box Mer[e] requires 2(e − 1) multiplications over F2n , so that
we counted the numbers of finite field multiplication are 32, 38, and 64 for AIM-I, AIM-III, and AIM-V,
respectively. We assumed that a single F2n -multiplication requires 2n2 binary gates, and computed the gate-
count complexity by multiplying 2λ and the number of finite field multiplications. The resulted complexity
was given as 2149, 2214.4, and 2280 for AIM-I, AIM-III, and AIM-V, respectively.

While we were preparing the submission for the NIST PQC project, we found out that addition chain
exponentiation technique [Knu97] can reduce the number of required finite field multiplication to evaluate
AIM. We reduce it to 11/14/17 for AIM-I/III/V by utilizing the addition chain exponentiation technique.
Similarly to previous paragraph, we computed the gate-count complexity by multiplying 2λ and the number
of finite field multiplications. The resulted complexity was given as 2146.4, 2211.9, and 2277 for AIM-I, AIM-III,
and AIM-V, respectively.

Those complexity estimations in fact have omitted some non-dominant computations: finite field squar-
ing, matrix-vector multiplication, addition and comparison of finite field elements. So, the estimations have
provided a lower bound of complexity of the exhaustive search. To be accurate, we summarize the assumed
gate count for each component operations in Table 2. We assume that a multiplication by a fixed matrix does
not require any AND gate. We also assume that squaring of a finite field element requires n XOR gates which
is obviously underestimated, but this does not affect total complexities much.

On the other hand, we found that the S-boxes in the first round (parallel structure) can be computed in a
single addition chain since they have all the same inputs. It reduces the required number of multiplication as
in Table 3. Overall, we summarize the number of required operations and the total cost of exhaustive search
on AIM in Table 4.

6

Scheme
#Operations Total

CostFF Mult. FF Square Mat-Vec Mult. FF Add

AIM-I 9 30 2 4 146.3
AIM-III 11 34 2 4 211.8
AIM-V 11 56 3 5 276.7

Table 4: The number of operations for each type of operation used in AIM, and the total cost of exhaustive
search on AIM for each level of security. The total cost is the log of required number of binary gates.

4.2 Fast Exhaustive Search for Low-degree Algebraic System

Exhaustive search is the most basic attack for any keyed function fk(·). For some given pairs (xi, yi) such
that fk(xi) = yi, an attacker checks whether fk̄(xi) = yi or not for all i over all possible keys k̄ in the key
space. Fast exhaustive search improves concrete efficiency of exhaustive search when the keyed function can
be represented by a set of low-degree polynomials.

For a degree-d system in n variables, Bouillaguet et al. proposed a fast exhaustive search with time com-
plexity 4d log(n)2n in Boolean operations and memory complexity O(n2d) [BCC+10]. Bouillaguet also pro-
posed a memory-efficient version of the fast exhaustive search with the same time complexity and memory
complexity n2 ·

∑d
i=0

(
n
i

)
in bits [Bou22]. We refer to the original papers for more details.

Liu et al. proposed a low-degree representation of AIM, and applied the fast exhaustive search algorithm
to it [LMOM23]. The low-degree representation is described as follows.

Let z be the output of Lin. Then, pt can be represented in terms of z as follows.

pt = z2
e∗−1 + ct

Denoting the output of Mer[ei] by ti for i = 1, . . . , ℓ, one has

ti =
(
z2

e∗−1 + ct
)2ei−1

.

Let di be the degree of ti with respect to z, and let dmax = maxi ̸=2 di as the exponent e2 is the largest from
{e1, . . . , eℓ} (for the sets of recommended parameters). Then, t2 can be expressed as

t2 = A−1
iv,2 (biv + z +Aiv,1(t1) +Aiv,3(t3))

where the last summand Aiv,3(t3) in the parentheses does not appear for AIM-I or AIM-III. Now we obtain
an equation of degree at most dmax + e∗ from pt · t2 = pt2

e∗ as follows.(
z2

e∗−1 + ct
)
·A−1

iv,2 (biv + z +Aiv,1(t1) +Aiv,3(t3)) =
(
z2

e∗−1 + ct
)2e2

The degree dmax + e∗ is known to be 10/14/15 for AIM-I, III, V, respectively.4 As the time complexity of
the fast exhaustive search is 4d(log n)2n, the gate-count complexity becomes 2136.2/2200.7/2265.0 for AIM-I,
III, V, respectively. According to the new complexity estimation of exhaustive search on AIM in Section 4.1,
it degrades the security of AIM by up to 12 bits.

4.3 Possible Algebraic Vulnerability on AIM

While communicating with the authors of [LMOM23], Liu pointed out that introducing a new variable
results in an easier system of equations than expected. In this section, we briefly introduce how to make
such a system.

4 The detailed computation can be found in [LMOM23].

7

Let a new variable w = pt−1, and let ti be the output of Mer[ei] for i ∈ {1, . . . , ℓ}. Then, we have

ti = pt2
ei
w

for all i = 1, . . . , ℓ. Then we can establish three types of equations

pt · w = 1, (6)

Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)
· (pt+ ct) = Lin

(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗

, (7)

Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)
· (1 + w · ct) = Lin

(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗

· w. (8)

Since the inverse S-box of n-bit input produces 5n linearly independent quadratic equations, we obtain 5n
quadratic equations from (6). For (7) and (8), each produces n cubic equations, and multiplying pt and w
results in n more cubic equations, respectively. Moreover, we have

Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2

· (pt+ ct) + Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2

· (1 + w · ct) · ct

= Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗+1

+ Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗+1

· w · ct

= Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗+1

· w

which produces n more cubic equations. We remark that the exponents of the Lin term in the second line
and in the third line are different (2e∗ + 1 vs. 2e∗+1). Overall, we have a system of 5n quadratic equations
and 5n cubic equations in 2n Boolean variables regardless of ℓ.

Under Assumption 1 and the condition ω = 2, the time complexity of the XL algorithm is 2124.8/2157.5/2188.9

for AIM-I/III/V, which harms the original security claim in [KHS+23]. However, this assumption is usually re-
garded too strong as all the expanded equations are not likely to be linearly independent. This assumption es-
timates the complexity much lower than the required amount of computation for the XL algorithm [AFI+04]
in practice. If we estimate the complexity in the hybrid Gröbner basis attack model with Assumption 2 which
is regarded as a more realistic assumption, the time complexity of the XL algorithm is 2158.3/2226.5/2290.2 for
AIM-I/III/V. Those values imply all the instances are secure against the XL algorithm.

The main reason of this vulnerability is insufficient difference between S-boxes in the first round. Since
the exponents are simple and similar to each other, it is possible to set a new variable from a common factor.

4.4 Efficient Exhaustive Search by Optimized Implementation

Saarinen claimed that an efficient exhaustive search attack using linear-feedback shift register (LFSR) can
results in a security degradation of AIM.5 To be accurate, he claimed that the complexity of exhaustive search
of AIM’s input is less than that of AES. We briefly describe the exhaustive search algorithm by Saarinen in
the following.

At first, an attacker needs an LFSR corresponding to a given field F2n . In the LFSR, moving forward (resp.
backward) shifting corresponds to multiplying X (resp. X−1). Iteratively shifting the element x forward and
its corresponding inverse w = x−1 backward makes the attacker can visit all the element in F2n . For each
shift after initializing x = 1 and w = 1, attacker can check whether pt = x, pt−1 = w satisfies (7).

As Saarinen have not provided the explicit complexity of the exhaustive search attack, we analyze the
exact gate-count complexity of the attack. Checking whether (7) holds or not costs ℓ+ 1 finite field multipli-
cations, (max{e1, . . . , eℓ}+ e∗) finite field squarings, ℓ matrix-vector multiplication, and ℓ+1 field additions.
Assuming Table 2, the gate-count complexity of an efficient exhaustive search using LFSR is given as 2145.0,
2210.2, and 2275.5 for AIM-I, AIM-III, AIM-V, respectively. Contrary to the claim of Saarinen, these values
are still larger than the gate-count complexity of AES (2143/2207/2272), while these values are slightly (< 2
bit) smaller than the security of AIM in Table 4. The number of required operations and the total cost of
exhaustive search attack using LFSR are summarized in Table 5.

5 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

8

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

Scheme
#Operations Total

CostFF Mult. FF Square Mat-Vec Mult. FF Add

AIM-I 3 32 2 3 145.0
AIM-III 3 36 2 3 210.2
AIM-V 4 58 3 4 275.5

Table 5: The number of operations for each type of operation and the total cost of exhaustive search on (7)
for each security level. The total cost is the log of required number of binary gates.

4.5 Linearization Attack by Guessing Intermediate Variables

Zhang et al. [ZWY+23] proposed an algebraic attack on AIM that exploits the linearity of the square function
over binary extension fields and the vulnerability of AIM having the common input to multiple S-boxes. A
Mersenne S-boxes in the first round, which maps as x 7→ x2ei−1 over F2n for i = 1, . . . , ℓ, can be decomposed
as follows.

x2ei−1 = (xd)si · x2ti

for some positive integers d, si, ti for i = 1, . . . , ℓ, where d | 2n − 1. Since the power mapping x 7→ x2ti is
linear over F2, one can linearize all the Mersenne S-boxes x 7→ x2ei−1 for i = 1, . . . , ℓ by guessing the value
of xd. As {xd |x ̸= 0} forms a multiplicative subgroup of F×

2n for d | 2n − 1, the number of possible guesses
for nonzero xd is only (2n − 1)/d.

Once the value of ptd is guessed as α, one can represent the input to the last Mersenne S-box Mer[e∗] as
follows, which is linear to pt.

Lin(αs1pt2
t1
, . . . , αsℓpt2

tℓ
).

Since the output of the last Mersenne S-box is (pt+ ct) where ct is a public value, one can obtain n quadratic
equations over F2 from the following relation.

Lin(αs1pt2
t1
, . . . , αsℓpt2

tℓ
) · (pt+ ct) = Lin(αs1pt2

t1
, . . . , αsℓpt2

tℓ
)2

e∗
. (9)

In case of AIM-III with n = 192, Zhang et al. chose d = 45 for the most efficient attack. Then the following
linear relation on pt and α = ptd is used to solve (9).

pt2
12

= (pt45)91 · pt = α91 · pt.

Considering α as a guessed (and so fixed) value, γ = 180 linearly independent equations on pt over F2 are
obtained from the above equation experimentally. Thus, one can express each bit of pt as a linear combination
of n − γ = 12 free variables v = {vj}j∈[n−γ]. By changing variables of (9) from pt to v, one can rewrite the
quadratic equations with fewer variables. Then, using m = |v|+ |v|(|v|−1)/2 linearly independent equations
among them, it can be solved by (trivial) linearization.

The attack complexity consists of three parts. The first step is to find the set of free variables v from the
linear relation on pt and α by the Gaussian elimination, which takes O(n3) time. Next, rewriting the quadratic
equations on the input pt from (9) to ones on the free variables v takes O(n2|v|2) times. Finally, solving the
quadratic equations on v takes O(m3) time. The above steps are repeated (2n − 1)/d times according to
the guessed value of α. Considering only the dominant term among them, Zhang et al. estimate the bit
complexity of their attack as Tbit = (2n − 1)/d · max{n3, n2|v|2,m3}. When interpreting the bit complexity
in terms of the number of encryption, they divide Tbit by n3 assuming the encryption takes O(n3) time in bit
complexity.

Although Zhang et al. estimated the complexities of their attack by only using asymptotic complexity,
we carefully re-analyze the complexity of the attack with hidden constants as it was claimed to degrade the
security of AIM by a few bits.

1. The number of binary operations for Gaussian elimination is about n(n − 1) + · · · + 2 · 1 ≈ n3/3. Some
alternative algorithms for matrix multiplication have smaller exponents asymptotically (e.g., ω = 2.81

9

or 2.37), while they have larger hidden constants in big-O notation [CH17]. For the matrix of dimension
less than or equal to 256, Gaussian elimination has smaller cost than the alternative algorithms in all the
parameters.

2. Rewriting the equations from (9) for the set of variables v involves approximately 2.5n2|v|2 + n|v| terms
to change, which is experimentally checked in the original paper.6 As the estimation omit the cost for
rewriting itself, we also neglect it in our estimation.

3. As all the steps should have done for every guess, the estimation should be T ∗
bit = (2n − 1)/d · (n3/3 +

2.5n2|v|2 + n|v|+m3/3).
4. Contrary to our initial circuit size estimation of AIM, the circuit size of AIM is turned out to be not O(n3)

but O(ℓn2). Concretely speaking, the estimated circuit size is 218.3/219.8/220.7 for AIM-I/III/V, which are
quite a few bit smaller than n3.

Table 6 summarizes the recommended parameters and the corresponding attack complexities to each level
of AIM. One can see that the attack complexities for AIM-V (resp. AIM-I, III) estimated by the dominant term
is slightly greater (resp. smaller) than the exhaustive search attack complexity. Based on the new complexity
estimation of the exhaustive search on AIM, this attack degrades the security by up to 2 bits. Even considering
that our estimated complexity for exhaustive search has been reduced, the efficacy of the attack is slightly
overestimated if the hidden constants are handled carefully.

Scheme n d t1 t2 t3 |v| m T ∗
bit Exhaustive Search (Sec. 4.1)

AIM-I 128 5 1 1 - 4 10 2146.0 2146.3

AIM-III 192 45 8 8 - 12 78 2210.4 2211.8

AIM-V 256 3 0 0 0 2 3 2277.0 2276.7

Table 6: The recommended attack parameters and the corresponding gate-count complexities of the attack
proposed by Zhang et al.

5 Mitigation on the Cryptanalysis

In the presented analyses, the vulnerabilities of AIM can be described in two primary aspects: identical input
values to the S-boxes and the low-degree system. The easier system by Liu, Saarinen’s efficient exhaustive
search, and the linearization attack employed by Zhang et al. are fundamentally premised on the observation
that the S-boxes in the initial round receive identical inputs. Additionally, the fast exhaustive search attack
proposed by Liu et al. is based on the system of a low-degree polynomial with a moderately sized set of
variables.

This section introduces an enhanced version of AIM, dubbed AIM2. A comprehensive examination has led
to an effective solution for these vulnerabilities, which simultaneously maintains a similar level of efficiency.
In AIM2, different constant values are added to ensure distinct inputs for the S-boxes on the first round,
thereby achieving input differentiation with minimal impact on performance. Furthermore, increasing the
exponents e in Mer[e] substantially enlarges degree of a system with a moderate number of variables.

While these modifications effectively mitigate current known attacks, an additional safeguard is intro-
duced in the form of the inverse Mersenne S-box. This S-box is the inverse function of a Mersenne S-box,
further complicating the generation of a large amount of quadratic equations as observed in Section 4.3. The
integration of the inverse Mersenne S-box, along with the feasibility of repeated multipliers, ensures that the
operational overhead remains comparable to AIMer with the previous version of AIM.

6 In the original paper, the authors upper bound the number of terms by 3n2|v|2+n|v|. But we use the ratio 2.5 as Table
2 in the original paper indicates it.

10

5.1 AIM2: Overall Patch

Given input/output size n and an (ℓ+1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1, AIM2 : {0, 1}n×F2n → F2n

is defined by

AIM2(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ]
−1 ◦ AddConst(pt)⊕ pt

where each function will be described below. See Figure 2 for the pictorial description of AIM2 with ℓ = 3.

Mer[e1]
−1

Mer[e2]
−1

Mer[e3]
−1

Linpt

c1

c2

c3

Mer[e∗] ct

XOF[iv]

Fig. 2: The AIM2-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature
scheme, and (iv, ct) (in blue) is the corresponding public key.

NON-LINEAR COMPONENTS. AIM2 uses two types of S-boxes: Mersenne S-box Mer[e], and its inverse Mer[e]−1.
These two S-boxes are defined by exponentiation over a large field as follows. For x ∈ F2n ,

Mer[e](x) = x2e−1,

Mer[e]−1(x) = xē where ē = (2e − 1)−1 (mod 2n − 1)

for some e. To follow the spirit of AIM, the exponents e in AIM2 are selected for Mer[e]−1 to have 3n quadratic
equations. We remark that the exponents e are chosen such that gcd(e, n) = 1, and hence the inverse expo-
nent ē is well-defined. As an extension, Mer[e1, . . . , eℓ]

−1 : Fℓ
2n → Fℓ

2n is defined by

Mer[e1, . . . , eℓ]
−1(x1, . . . , xℓ) = Mer[e1]

−1(x1)∥ . . . ∥Mer[eℓ]
−1(xℓ).

LINEAR COMPONENTS. AIM2 includes three types of linear components: constant addition, an affine layer,
and feed-forward. For fixed constants c1, . . . , cℓ, AddConst : F2n → Fℓ

2n is defined by

AddConst(x) = (x+ c1)∥ . . . ∥(x+ cℓ)

where the constants are defined in Table 7.
The affine layer in AIM2 is exactly the same as AIM. It consists of multiplication by an n × ℓn random

binary matrix Aiv and addition by a random constant biv ∈ Fn
2 . The matrix

Aiv =
[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2)ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an
extendable-output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented
by a linearized polynomial Liv,i over F2n . For x = (x1, . . . , xℓ) ∈ (F2n)

ℓ,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

11

AIM2-I
c1 0x243f6a88 85a308d3 13198a2e 03707344

c2 0xa4093822 299f31d0 082efa98 ec4e6c89

AIM2-III
c1 0x452821e6 38d01377 be5466cf 34e90c6c c0ac29b7 c97c50dd

c2 0x3f84d5b5 b5470917 9216d5d9 8979fb1b d1310ba6 98dfb5ac

AIM2-V
c1 0x2ffd72db d01adfb7 b8e1afed 6a267e96 ba7c9045 f12c7f99 24a19947 b3916cf7

c2 0x0801f2e2 858efc16 636920d8 71574e69 a458fea3 f4933d7e 0d95748f 728eb658

c3 0x718bcd58 82154aee 7b54a41d c25a59b5 9c30d539 2af26013 c5d1b023 286085f0

Table 7: Constants c1, . . . , cℓ in AddConst are written in hexadecimal. These constants are taken from the
numbers below the decimal point of the π ratio.

Feed-forward operation, which is addition by the input itself, makes the entire function non-invertible.

RECOMMENDED PARAMETERS. Recommended sets of parameters for λ ∈ {128, 192, 256} are given in Table
8. The irreducible polynomials for extension fields F2128 , F2192 , and F2256 are the same as those used in Rain
[DKR+22].

Scheme λ n ℓ e1 e2 e3 e∗

AIM2-I 128 128 2 49 91 - 3
AIM2-III 192 192 2 17 47 - 5
AIM2-V 256 256 3 11 141 7 3

Table 8: Recommended sets of parameters of AIM2.

5.2 Algebraic Attacks on AIM2

VARIOUS SYSTEMS OF AIM2. There are multiple ways of building a system of equations from an evaluation of
AIM2. We can categorize them according to the number of (Boolean) variables and find the optimal choice
of variables to obtain a system of the lowest degree. Since ℓ ∈ {2, 3} is recommended, we consider four types
of systems of Boolean equations as follows.

1. Systems in n variables.
2. Systems in 2n variables.
3. Systems in 3n variables.
4. Systems in 4n variables (only for ℓ = 3).

With (ℓ+1)n variables, we can establish a system Squad of quadratic equations. The variables are denoted as
follows.

- x: the input of AIM2, i.e., pt
- ti: the output of Mer[ei]

−1 for i = 1, . . . , ℓ
- z: the output of Lin

From Mer[ei]
−1(x+ ci) = ti, we obtain 3n Boolean quadratic equations in x and ti induced by the following

relations. 
ti(x+ ci) = t2

ei

i ,

ti(x+ ci)
2 = t2

ei

i (x+ ci),

t2i (x+ ci) = t2
ei+1

i .

12

When x and ti are of higher degrees with respect to other variables, the first two relations result in 2n equa-
tions of degree deg x+deg ti, while the last one results in n equations of degree max(deg x+deg ti, 2 deg ti).
There are also n Boolean quadratic equations in ti and tj induced by the following.

(ci + cj)titj = t2
ei

i tj + tit
2ej
j .

We note that z has the same relation with ti with respect to x as z = Mer[e∗]
−1(x + ct). Using the brute-

force search of quadratic equations on toy parameters, which will be described later in this section, we find
that these are all the possible (linearly independent) quadratic equations on AIM2. Hence, Squad consists of
3(ℓ+ 1)n+

(
ℓ+1
2

)
n quadratic equations.

With fewer variables, the resulting systems would have higher degrees. For example, Mer[ei]
−1 implicitly

determines 3n quadratic equations in x and ti as above, while ti (resp. x) can be explicitly represented by a
polynomial in x (resp. ti). We can also explicitly represent ti using tj for j ̸= i or z as follows.

ti = Mer[ei]
−1 (Mer[ej](tj)⊕ ci ⊕ cj)

= Mer[ei]
−1 (Mer[e∗](z)⊕ ct) .

The degree of ti with respect to tj (resp. z) might be greater than the degree of Mer[ei]
−1 ◦ Mer[ej] (resp.

Mer[ei]
−1 ◦ Mer[e∗]) due to the constant addition, while we estimate it as the degree of the composition

(without constant addition) for simplicity.

Scheme Type #Var Variables (#Eq, Deg)
Complexity

k dreg Time (bits)

AIM2-I
S1 n t1 (n, 60) - - -
S2 2n t1, t2 (3n, 2) 62 15 207.9

Squad 3n x, t1, t2 (12n, 2) 0 16 185.3

AIM2-III
S1 n x (2n, 114) - - -
S2 2n t1, t2 (3n, 2) 100 20 301.9

Squad 3n x, t1, t2 (12n, 2) 0 22 262.4

AIM2-V

S1 n x (2n, 172) - - -
S2 2n t2, z (n, 2) + (2n, 38) 253 30 513.5
S3 3n t1, t2, t3 (6n, 2) 2 47 503.7

Squad 4n x, t1, t2, t3 (18n, 2) 9 32 411.4

Table 9: Optimal systems of equations and their security against algebraic attacks. (#Eq,Deg) = (a, b) means
that the system contains a equations of degree b. All the complexities are measured by (5). k is the number
of guessed bits and dreg is the degree of regularity.

Table 9 summarizes a system of equations of the lowest degree for each type, where such systems are de-
noted by S1, S2, . . . , Squad respectively, according to the number of variables. The complexities are measured
by (5). For systems of equations of type S1 in n variables, we did not compute precise complexities since the
degree near n/2 requires the XL algorithm to use approximately 2n monomials with time complexity close
to O(22n).

BRUTE-FORCE SEARCH OF QUADRATIC EQUATIONS. Given an overdetermined quadratic system, algebraic
attacks tend to solve the system faster when the system has more linearly independent equations. To lower
bound the complexity of the algebraic attacks, we need to find all linearly independent equations. To find all
such equations, we used brute-force search with the following experiment.

1. Set variables as follows.
- x: the input of AIM2, i.e., pt
- ti: the output of Mer[ei]

−1 for i = 1, . . . , ℓ

13

- z: the output of Mer[e∗]
−1(x+ ct)

2. Make a generic quadratic equation with indeterminate coefficients aα,β,γ ∈ F2;∑
α,γ∈Fn

2 ,β∈Fℓn
2

hwn(α)+hwn(β)+hwn(γ)≤2

aα,β,γx
αtβi

i zγ = 0 (10)

where β = (β1, . . . , βℓ).
3. Randomly sample x ∈ F2n , and compute the corresponding ti and z. Substitute those values to (10).
4. Repeat the previous step O

((
(ℓ+2)n

2

))
times.

5. Solve the system of linear equations with respect to aα,β,γ . The quadratic equations for the target system
can be computed by substituting such aα,β,γ to (10).

For system Squad, this experiment found 12n quadratic equations for AIM2-I and III, and 18n quadratic
equations for AIM2-V. For system S2 of AIM2-I and III, it found 3n quadratic equations. For system S3 of
AIM2-V, it found 6n quadratic equations. We remark that this experiment does not consider the affine layer
by introducing a redundant variable z. Although this may lead to more equations than the actual number,
we checked that all the equations obtained from the experiment are linearly independent.

This experiment can be easily generalized for a general degree d. However, the generalized experiment
will include all the equations of degree d expanded from the quadratic equations. For this reason, we opted
for finding equations of a higher degree by hand rather than running the generalized experiment.

RESISTANCE TO FAST EXHAUSTIVE SEARCH. The fast exhaustive search attacks in [BCC+10, Bou22] are infea-
sible if the target polynomial system is of high degree. Although the time complexity of the fast exhaustive
search is claimed to be 4d log(n)2n, there is a hidden preprocessing cost

T =

d−1∑
k=0

k

(
n

k

)(
k

↓ min(d− k, k)

)
≥ 2d

3
22d/3

(
n

⌊2d/3⌋

)

in binary operations where
(
n
↓k
)
=

∑k
i=0

(
n
i

)
. One can see that T ≫ d2n if d ≥ 0.341n. Furthermore, if

d ≥ n/2, then the memory complexity will also be higher than 2n bits.

RESISTANCE TO LINEARIZATION ATTACK BY GUESSING. The constant addition by AddConst prevents the lin-
earization attack by Zhang et al. [ZWY+23] by making inputs to the S-boxes on the first round different.
This is the simplest patch among the possible ones of AIM proposed by the authors.

INTRODUCING NEW VARIABLES OTHER THAN S-BOX OUTPUTS. As seen in Section 4.3, Liu showed that the
number of quadratic equations can be increased by introducing new variables (w = pt−1) in addition to
the inputs and the outputs of the S-boxes without significantly increasing the degree of the entire system
of equations. We will further generalize Liu’s attack, and analyze the security of AIM2 against this type of
attacks. For simplicity, we write tℓ+1 = z and cℓ+1 = ct. To mount a successful attack by introducing new
variables wi = (pt+ ci)

a (instead of ti) for some i ∈ {1, . . . , ℓ+1}, the following two conditions should hold.

1. The number of quadratic equations between x and the chosen wi’s should be greater than the number of
quadratic equations between x and the corresponding ti’s.

2. The degree deg ti of ti with respect to x and wi’s should not be too large for the chosen i’s.

We first categorize the exponent a yielding quadratic equations. We claim that the two conditions de-
scribed above cannot hold simultaneously, and its theoretical and experimental justification will be given in
Appendix A. From the method of counting the quadratic equations from exponential functions [NGG09], we
can derive the conditions for a to yield quadratic equations as follows, where all arithmetic operations are
done modulo 2n − 1.

– Case A: we have theoretical lower bound of deg(ti).

1. hwn(a) ≤ 2.

2. hwn(a+ 2p) ≤ 2 for some p ∈ {0, . . . , n− 1}.

14

3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}.

– Case B: we experimentally checked that the number of quadratic equations is always less than 3n assum-
ing that a is not in Case A.

1. 2ra = a+ 2p for some r ∈ {1, . . . , n− 1} and p ∈ {0, . . . , n− 1}.

2. 2r(a+ 2p) = (2k + 1)a for some r ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n− 1}.

– Case C: we experimentally found that these cases do not contribute to algebraic cryptanalysis unless they
simultaneously belong to other case(s)

1. (2m − 1)a = 0 for some m | n.

2. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}.

3. 2ra = a for some r ∈ {1, . . . , n− 1}.

4. 2ra = (2k + 1)a for some r ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n/2}.

5. 2r(2k + 1)a = (2k
′
+ 1)a for some r ∈ {1, . . . , n− 1} and k, k′ ∈ {1, . . . , n/2}

– Case D: we theoretically and experimentally checked that the system either has a large degree deg(ti) or
generates a small number of quadratic equations.

1. 2r(a+ 2p) = (a+ 2q) for some r ∈ {1, . . . , n− 1} and p, q ∈ {0, . . . , n− 1}.

2. (2m − 1)(a+ 2p) = 0 for some m | n and p ∈ {0, . . . , n− 1}.

5.3 Other Attacks on AIM2

EFFICIENT EXHAUSTIVE SEARCH BY OPTIMIZED IMPLEMENTATION. The point of this attack is that the Mersenne
S-boxes can be represented as Mer[e](x) = x2e · (x−1), and x−1 can be efficiently iterated by an LFSR. In
AIM2, a similar attack can be applied but do not degrade the security less than that of AES. Even if an
attacker iterates an intermediate state to use the same method, the attacker should evaluate at least one of
Mersenne S-boxes and at least one of their inverses. For example, in AIM2-I or AIM2-III, one may find y by
iterating y and y−1 such satisfies

Mer[e1](t1) = x+ c1 where


x := y2

e2 · y−1 + c2,

t∗ := Mer[e∗]
−1(x+ ct),

t1 := A−1
iv,1(biv +Aiv,2(y) + t∗).

We present number of field multiplications for all Mersenne Sboxes and their inverses, and the gate-count
complexity AIM2 in Table 10.

QUANTUM ATTACKS. For larger exponents, it will take slightly more time to compute the (inverse) Mersenne
S-boxes. This leads to a slightly larger complexity of the Grover’s algorithm. The complexities of quantum
algebraic attacks will be changed not critically as new quadratic systems are found for AIM2. The complexity
of QuantumBooleanSolve [FHK+17] becomes O(21.047n) for AIM2-I, III, and O(21.320n) for AIM2-V. The
complexity of GroverXL [BY18] is 2(1.1062+o(1))n for AIM2-I, III and 2(1.3568+o(1))n for AIM2-V. We remark
that these attacks are not better than the Grover’s algorithm.

STATISTICAL ATTACKS. As differential probability and linear probability of an S-box is the same as its inverse,
most of the analysis on statistical attacks will remain unchanged. We note that it does not imply that linear
cryptanalysis is feasible since an adversary is not given a large enough number of plaintext-ciphertext pairs
to mount this analysis.

5.4 Effect on Efficiency

The main feature of AIM is to fully utilize the repeated multipliers in BN++ when proving an AIM instance.
Although the S-boxes on the first round are replaced by inverse Mersenne S-boxes, the structure of AIM2 still
remains unchanged, so the signature size will be unchanged as well.

15

Scheme Circuit
#Operations Total

CostFF Mult. FF Square Mat-Vec Mult.

AIM2-I

Mer[3] / Mer[3]−1 2 / 8 2 / 126 - -
Mer[49] / Mer[49]−1 7 / 11 48 / 127 - -
Mer[91] / Mer[91]−1 9 / 11 90 / 127 - -

AIM2(iv, ·) 14 220 2 147

AIM2-III

Mer[5] / Mer[5]−1 3 / 9 4 / 190 -
Mer[17] / Mer[17]−1 5 / 11 16 / 191 -
Mer[47] / Mer[47]−1 8 / 11 46 / 191 -

AIM2(iv, ·) 15 242 2 212.3

AIM2-V

Mer[3] / Mer[3]−1 2 / 10 2 / 255 - -
Mer[7] / Mer[7]−1 4 / 11 6 / 255 - -

Mer[11] / Mer[11]−1 5 / 10 10 / 255 - -
Mer[141] / Mer[141]−1 10 / 10 140 / 253 - -

AIM2(iv, ·) 23 516 3 277.7

Table 10: The number of operations for each type of operation and the total cost of exhaustive search on
AIM2 components. We have assumed that a single AIM2 evaluation requires a field multiplication, a power-
of-two exponentiation, a Mersenne S-box evaluation, and ℓ− 1 of inverse Mersenne S-box evaluations, with
all the different ei’s. The total cost is the log of required number of binary gates.

In AIMer, for every input share JxK of an S-box, the prover and the verifier should compute JxK2
e

. For a
larger exponent e, this computation takes more time. From our experiment, signing and verification of the
AIMer with AIM2 is expected to cost more time by up to 11%. Table 11 shows the detailed benchmark results
on signing time of AIMer and AIMer with AIM2.

References

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita. Comparison Be-
tween XL and Gröbner Basis Algorithms. In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT
2004, pages 338–353, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir,
and Bo-Yin Yang. Fast Exhaustive Search for Polynomial Systems in F2. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, pages 203–218,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[BFP09] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. Hybrid Approach for Solving Multivariate Systems
over Finite Fields. Journal of Mathematical Cryptology, 3(3):177–197, 2009.

[BFS04] Magali Bardet, Jean-Charles Faugere, and Bruno Salvy. On the complexity of Gröbner basis computa-
tion of semi-regular overdetermined algebraic equations. In Proceedings of the International Conference on
Polynomial System Solving, pages 71–74, 2004.

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the complexity of
solving quadratic Boolean systems. Journal of Complexity, 29(1):53–75, 2013.

[Bou22] Charles Bouillaguet. Boolean Polynomial Evaluation for the Masses. Cryptology ePrint Archive, Paper
2022/1412, 2022. https://eprint.iacr.org/2022/1412.

[BY18] Daniel J. Bernstein and Bo-Yin Yang. Asymptotically Faster Quantum Algorithms to Solve Multivariate
Quadratic Equations. In PQCrypto 2018, pages 487–506. Springer, 2018.

[CH17] Murat Cenk and M. Anwar Hasan. On the arithmetic complexity of Strassen-like matrix multiplications.
Journal of Symbolic Computation, 80:484–501, 2017.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In EUROCRYPT 2000, pages 392–407. Springer,
2000.

16

https://eprint.iacr.org/2022/1412

Level Parameter Sign of AIMer (ms) Sign of AIMer + AIM2 (ms) ratio

L1

PARAM 1 0.59 0.59 1.00
PARAM 2 1.36 1.38 1.01
PARAM 3 4.42 4.64 1.05
PARAM 4 22.29 23.92 1.07

L3

PARAM 1 1.36 1.42 1.03
PARAM 2 3.48 3.64 1.05
PARAM 3 11.01 11.57 1.05
PARAM 4 53.38 57.87 1.08

L5

PARAM 1 2.45 2.69 1.10
PARAM 2 6.29 7.01 1.11
PARAM 3 19.56 21.68 1.11
PARAM 4 95.65 105.36 1.10

Table 11: The performance comparison between AIMer and AIMer with AIM2. Both signing times were mea-
sured in Intel Xeon E5-1650 v3 @ 3.50 GHz with 128 GB RAM, TurboBoost and Hyper-threading disabled,
and gcc 7.5.0 with -O3 option.

[DCK+20] Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques Patarin, Albrecht Petzoldt, Dieter
Schmidt, and Bo-Yin Yang. Rainbow. Technical report, National Institute of Standards and Tech-
nology, 2020, 2020. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
[DKR+22] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg Zaverucha.

Shorter Signatures Based on Tailor-Made Minimalist Symmetric-Key Crypto. In ACM CCS 2022, pages
843–857. Association of Computing Machinery, November 2022.

[DS13] Jintai Ding and Dieter Schmidt. Solving Degree and Degree of Regularity for Polynomial Systems over a Finite
Fields, pages 34–49. Springer, 2013.

[Fau99] Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and
Applied Algebra, 139(1):61–88, 1999.

[Fau02] Jean Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero
(F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC
’02, page 75–83, New York, NY, USA, 2002. Association for Computing Machinery.

[FHK+17] Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan, Elham Kashefi, and Ludovic Perret.
Fast Quantum Algorithm for Solving Multivariate Quadratic Equations. Cryptology ePrint Archive, Paper
2017/1236, 2017. https://eprint.iacr.org/2017/1236.

[Frö85] Ralf Fröberg. An Inequality for Hilbert Series of Graded Algebras. MATHEMATICA SCANDINAVICA, 56,
Dec. 1985.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from Secure Multiparty
Computation. In ACM STOC 2007, pages 21–30, 2007.

[KCC+23] Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon, Byeonghak Lee, Joohee Lee,
Jooyoung Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and Hyojin Yoon. AIMer. Submission to the
NIST’s Standardization of Additional Digital Signature Schemes, 2023. https://csrc.nist.gov/Projects/
pqc-dig-sig/round-1-additional-signatures.

[KHS+23] Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae Moon, Joohee Lee, Sangyub Lee, Ji-
hoon Kwon, Jihoon Cho, Hyojin Yoon, and Jooyoung Lee. AIM: Symmetric Primitive for Shorter Signatures
with Stronger Security. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’23, page 401–415, New York, NY, USA, 2023. Association for Computing Machinery.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley,
Boston, third edition, 1997.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In
CRYPTO ’99, pages 19–30. Springer, 1999.

[KZ22] Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum
Signatures. Cryptology ePrint Archive, Paper 2022/588, 2022. https://eprint.iacr.org/2022/588.

17

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2017/1236
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2022/588

[LMOM23] Fukang Liu, Mohammad Mahzoun, Morten Øygarden, and Willi Meier. Algebraic Attacks on RAIN and
AIM Using Equivalent Representations. IACR Transactions on Symmetric Cryptology, 2023(4):166–186,
Dec. 2023.

[NGG09] Yassir Nawaz, Kishan Chand Gupta, and Guang Gong. Algebraic Immunity of S-Boxes Based on Power
Mappings: Analysis and Construction. IEEE Transactions on Information Theory, 55(9):4263–4273, 2009.

[SS21] Jan Ferdinand Sauer and Alan Szepieneic. SoK: Gröbner Basis Algorithms for Arithmetization Oriented
Ciphers. Cryptology ePrint Archive, Paper 2021/870, 2021. https://eprint.iacr.org/2021/870.

[Wie86] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory,
32(1):54–62, 1986.

[YC04] Bo-Yin Yang and Jiun-Ming Chen. Theoretical Analysis of XL over Small Fields. In Huaxiong Wang, Josef
Pieprzyk, and Vijay Varadharajan, editors, Information Security and Privacy, pages 277–288, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[YCBC07] Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bernstein, and Jiun-Ming Chen. Analysis of QUAD. In
Alex Biryukov, editor, Fast Software Encryption, pages 290–308, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[ZWY+23] Kaiyi Zhang, Qingju Wang, Yu Yu, Chun Guo, and Hongrui Cui. Algebraic Attacks on Round-Reduced Rain
and Full AIM-III. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, pages
285–310, Singapore, 2023. Springer Nature Singapore.

18

https://eprint.iacr.org/2021/870

A More Details on New Variables Other Than S-Box Outputs

A.1 How to Count the Number of Quadratic Equation

Before the main analysis, we briefly introduce how to enumerate the number of quadratic equations which
was introduced in [NGG09]. Suppose we have a power function y = xa in F2n . Arithmetic operations on the
exponent is done in Z2n−1. In this section, arithmetic operations involving exponents are done in modulo
2n − 1. In Z2n−1, multiplying by 2 is equivalent to bit-wise circular left shift. As x2i in characteristic-2 fields
is linear over F2, xa and x2ia are equivalent up to linear mapping. If (2m − 1)a = 0 for some m|n, we call a
to be m-cyclic.

Discarding equivalent exponents (a ∼ 2ia), quadratic equations between x and y are basically generated
from three types of monomial: y, yx2p , and y2

k+1. If those monomials can be represented only in x variables
(e.g., yx2p = xa+2p) and has degree less than or equal to 2 (which is represented by Hamming weight of the
exponent), the system has following quadratic equations.

1. hwn(a) ≤ 2: y = xa

2. hwn(a+ 2p) ≤ 2 for some p ∈ {0, . . . , n− 1}: x2py = xa+2p

3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}: y2k+1 = x(2k+1)a

We note that the domain of k is less than or equal to n/2 in the third case since (2k + 1)a and (2n−k + 1)a
are in the same coset (under the linear equivalence). Sometimes, it generates quadratic equations if at least
two of a, a+ 2p, and (2p + 1)a are in the same coset as follows.

1. 2ra = a for some r ∈ {1, . . . , n− 1}: y2r = y

2. 2ra = a+ 2p for some r ∈ {1, . . . , n− 1} and p ∈ {0, . . . , n− 1}: y2r = yx2p

3. 2ra = (2k + 1)a for some r ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n/2}: y2r = y2k+1

4. 2r(a+ 2p) = a+ 2q for some r ∈ {1, . . . , n− 1} and p, q ∈ {0, . . . , n− 1}: (yx2p)2
r

= yx2q

5. 2r(a+ 2p) = (2k + 1)a for some r ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n− 1}: (yx2p)2
r

= y2k+1

6. 2r(2k + 1)a = (2k
′
+ 1)a for some r ∈ {1, . . . , n− 1} and k, k′ ∈ {1, . . . , n/2}: (y2k+1)2

r

= y2k
′
+1

If one of a, a+2p, and (2p+1)a is m-cyclic, quadratic equations between y itself can be generated as follows.

1. (2m − 1)a = 0 for some m | n: y2m = y

2. (2m − 1)(a+ 2p) = 0 for some m | n and p ∈ {0, . . . , n− 1}: (yx2p)2
m

= yx2p

3. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}: (y2k+1)2
m

= y2k+1

A.2 Detailed Analysis of AIM2

In this section, we provide detailed analysis of setting new variables other than S-box outputs which was
described in Section 4.3. For each S-boxes, we either lower bound of deg(ti) or upper bound the number
of quadratic equation by 3n. We believe that upper bounding the number of quadratic equations by 3n
is sufficient to prevent unknown attack since (inverse) Mersenne S-boxes already generates 3n quadratic
equations. Setting a new variable other than S-box outputs which generates less than or equal to 3n quadratic
equations seems to have no benefit compared to setting S-box outputs to be new variables.

Recall that we categorized the exponent a for the new variable wi = (pt+ ci)
a as follows. The following

categorization is different from above, and it is categorized by how we handled the case.

– Case A: we have theoretical lower bound of deg(ti).

1. hwn(a) ≤ 2.

2. hwn(a+ 2p) ≤ 2 for some p ∈ {0, . . . , n− 1}.

3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}.

– Case B: we experimentally checked that the number of quadratic equations is always less than 3n assum-
ing that a is not in Case A.

19

1. 2ra = a+ 2p for some r ∈ {1, . . . , n− 1} and p ∈ {0, . . . , n− 1}.

2. 2r(a+ 2p) = (2k + 1)a for some r ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n− 1}.

– Case C: the quadratic equations in these cases consist of only y-variables. We found that these cases do
not contribute to algebraic cryptanalysis unless they simultaneously belong to other case(s).

1. (2m − 1)a = 0 for some m | n.

2. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}.

3. 2ra = a for some r ∈ {1, . . . , n− 1}.

4. 2ra = (2k + 1)a for some r ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n/2}.

5. 2r(2k + 1)a = (2k
′
+ 1)a for some r ∈ {1, . . . , n− 1} and k, k′ ∈ {1, . . . , n/2}

– Case D: we theoretically checked that the system either has a large degree deg(ti) or generates a small
number of quadratic equations, under experimentally verified assumptions.

1. 2r(a+ 2p) = (a+ 2q) for some r ∈ {1, . . . , n− 1} and p, q ∈ {0, . . . , n− 1}.

2. (2m − 1)(a+ 2p) = 0 for some m | n and p ∈ {0, . . . , n− 1}.

In the following, we give analysis for each case. As our analyses given below consider a single S-box case,
we use simpler notation without constant addition as follows.

– x: the input of S-box
– y: the new variable y = xa

– t: the output of S-box, t = xē, ē = (2e − 1)−1 mod (2n − 1) for some e ∈ {e1, . . . , eℓ, e∗}

CASE A. (A-1 and A-2) We want to show that t should be of at least certain degree with respect to x and y
when a is one of the following types:

– a = −1;
– a = 2p + 1, where p ∈ {2, ..., n− 1};
– a = 2p − 1, where p ∈ {2, ..., n− 1};
– a = 2p + 2q − 1, where p, q ∈ {2, ..., n− 1}, p ̸= q;

Define
Dmin,a := min

u

{
hwn(u) + hwn(ē− a · u)

}
and

Dmin := min
a

{Dmin,a}.

Dmin is the lower bound of the degree of t with respect to x and y by

t = yu · xē−a·u.

At first, suppose a = 2p + 2q − 1 for some p, q ∈ {2, ..., n− 1} where p ̸= q. By the definition, we have

Dmin,2p+2q−1 = min
u

{
hwn(u) + hwn(ē− (2p + 2q − 1) · u)

}
.

By using the fact hwn(x) + hwn(y) ≥ hwn(x+ y), we have

2 · hwn(u) + hwn(ē− (2p + 2q − 1) · u)
= hwn(2

p · u) + hwn(2
q · u) + hwn(ē− (2p + 2q − 1) · u)

≥ hwn(ē+ u),

and it implies that

Dmin,2p+2q−1 ≥ min
u

{
max

{
hwn(u), hwn(ē+ u)− hwn(u)

}}
. (11)

20

Now we want to lower bound hwn(ē+ u) for arbitrary u. For an integer j, define

NumSegn(j) :=
∣∣{i ∈ {0, ..., n− 1} : 2 | (2i · j mod (2n − 1)), 4 ∤ (2i · j mod (2n − 1))

}∣∣
which counts the number of connected “1” segments in the n-bit binary representation of j allowing bitwise
rotation. Then, for an integer j and h ∈ {0, . . . , n− 1},

NumSegn(j + 2h) ≥ NumSegn(j)− 1,

so we get

hwn(ē+ u) ≥ NumSegn(ē+ u) ≥ NumSegn(ē)− hwn(u).

Together with (11), we have

Dmin,2p+2q−1 ≥ min
u

{
max

{
hwn(u),NumSegn(ē)− 2 · hwn(u)

}}
≥ ⌈NumSegn(ē)/3⌉.

Similarly, we have

Dmin,2p−1 ≥ min
u

{
max

{
hwn(u), hwn(ē+ u)

}}
≥ ⌈NumSegn(ē)/2⌉,

Dmin,2p+1 ≥ min
u

{
max

{
hwn(u), hwn(ē)− hwn(u)

}}
≥ ⌈hwn(ē)/2⌉,

Dmin,−1 ≥ min
u

{
hwn(u) + hwn(ē+ u)

}
≥ ⌈NumSegn(ē)⌉,

and overall, we get following lower bound:

Dmin ≥ ⌈NumSegn(ē)/3⌉. (12)

(A-3) Suppose hwn((2
k + 1)a) = 2p + 2q for some p, q ∈ {0, . . . , n− 1}, p ̸= q. Then

Dmin,a = min{hwn(u) + hwn(v) : ē = au+ v}
= min{hwn(u) + hwn(v) : (2

k + 1)ē = (2p + 2q)u+ (2k + 1)v}

= min

{
1

2
(hwn(2

pu) + hwn(2
qu) + hwn(2

kv) + hwn(v)) : (2
k + 1)ē = (2p + 2q)u+ (2k + 1)v

}
≥ min

{
hwn((2

k + 1)ē)

2

}
Therefore,

Dmin ≥ min
k

{hwn((2
k + 1)ē)}/2 (13)

CASE B. If a is in Case B, there exists either

– r ∈ {1, . . . , n− 1} such that gcd(2r − 1, 2n − 1) = 1 and hwn((2
r − 1)a) = 1 or

– r, s ∈ {1, . . . , n− 1} such that gcd(2r + 2s − 1, 2n − 1) = 1 and hwn((2
r + 2s − 1)a) = 1.

Then, we can count the number of equations for each r or (r, s), while check a is in Case A. As a result,
at least for n ∈ {128, 192, 256}, the corresponding a all belong to Case A or produce 3n or fewer quadratic
equations.

CASE C. The quadratic equation from a in Case C consists of only y-variables. For example, if a satisfies
2r(2k + 1)a = (2k

′
+ 1)a, then we get

y2
k+r+2r = y2

k′
+1.

This kind of equations cannot contribute to solve the whole system since it only reduces the number of
candidates of y, not x. Therefore, we ignored this case.

21

CASE D. Although the exponent a is in Case D but not in Case A and B, we experimentally checked that the
system from y = xa has large deg(t) or 3n or fewer quadratic equations. Recall that the system with y = xa

is equivalent (up to linear mapping) to the system with y = x2ia for some i.
(D-1) Let (2r − 1)a = 2p − 1 for some r ∈ {1, . . . , n− 1} and p ∈ {0, . . . , n− 1}. Since r = 1 or r = n− 1 or
p ∈ {0, 1} implies that this type of a is covered in Case A or B, let 1 < r < n− 1 and p > 1. For a to exist, it
should be gcd(r, n) | p.

– Suppose a also satisfies (2m − 1)a = 0 for some m > 0. Then, (2m − 1)(2r − 1)a = (2p − 1)(2m − 1) = 0,
which is a contradiction. Therefore, y = xa does not imply quadratic equations from the condition
(2m − 1)a = 0.

– Suppose a also satisfies (2m−1)(2k+1)a = 0 for some m | n and k ∈ {1, . . . , n−1} and (2m−1)(2k+1) ̸=
0. Then, (2m− 1)(2k +1)(2r − 1)a = (2k +1)(2p− 1)(2m− 1) = 0, which implies k = p = n/2. Therefore,
we have (2m − 1)(2n/2 + 1)a = 0 and it means that we get at most n more equations from

y2
n/2+1 = y2

n/2+m+2m . (14)

– Suppose a also satisfies (2k − 2s + 1)a = 0 for some k, s such that (2k − 2s + 1) ̸= 0. Then, (2k −
2s + 1)(2r − 1)a = (2k − 2s + 1)(2p − 1) = 0, which implies p = n/2 and (k, s) = (n/2 + 1, n/2) or
(k, s) = (n/2 − 1, n − 1). Since the case satisfying (2n/2 + 1)a = 0 and (2n/2−1 + 2n − 2n−1)a = 0 are
covered in Case A, a cannot satisfy such condition without satisfying Case A.

– Suppose a also satisfies (2q +2k − 2s− 1)a = 0 for some q, k, s such that (2q +2k − 2s− 1) ̸= 0 and q < k.
Then, (2q + 2k − 2s − 1)(2r − 1)a = (2q + 2k − 2s − 1)(2p − 1) = 0, which implies one of the following.
• q = 1, k = n/2 − 1, s = n − 1, p = n/2. Since 2 + 2n/2−1 − 2n−1 − 1 = 2n−1 + 2n/2−1, this case is

covered in Case A.
• q = 2, k = n/2, s = 1, p = n/2. Since 4 + 2n/2 − 2− 1 = 2n/2 + 1, this case is covered in Case A.
• k = q + n/2, s = n/2, p = n/2. In other word, (2q + 2q+n/2 − 2n/2 − 1)a = (2q − 1)(2n/2 + 1)a = 0.

Since gcd(2q − 1, 2n − 1) = 2gcd(q,n) − 1, one can get at most n equations same as in (14).
– Suppose a also satisfies 2m(2s−1)a = 2q−1 for some m, s, q. Then, 2m(2s−1)(2r−1)a = (2r−1)(2q−1) =

2m(2s − 1)(2p − 1), which implies one of the following.
• m = 0, p = r, q = s. It means that (2r − 1)a = 2r − 1 or equivalently, (2m − 1)a = (2m − 1) for
m = gcd(n, r). Then, we get n−m

2m · n equations from

yimx = yxim, for i = 1, . . . ,
⌊ n

2m

⌋
.

• m = 0, p = s, q = r. It means that (2r − 1)a = 2s − 1 and (2s − 1)a = 2r − 1, and it only holds when
r − s which become exactly same condition in above.

• r = n/2± 1, p = ±2. It means that

a = (2n/2±1 − 1)−1(2±2 − 1) = 2n/2±1 + 1,

and such a is covered by Case A.
• r = n/2± 1, p = n/2. It means that

(2n/2 + 1)a = (2n/2 + 1)(2n/2±1)−1(2n/2 − 1) = 0,

and such a is covered by Case A.
• s = n/2± 1, q = ±2. It means that

a = 2−m(2n/2±1 − 1)−1(2±2 − 1) = 2−m(2n/2±1 + 1),

and such a is covered by Case A.
• s = n/2± 1, q = n/2. It means that

2m(2n/2 + 1)a = (2n/2 + 1)(2n/2±1)−1(2n/2 − 1) = 0,

and such a is covered by Case A.

22

• r = n/2 ± 1, p = ∓2, or s = n/2 ± 1, q = ∓2. We counted the number of all quadratic equations
for each a of this form and experimentally checked that y = xa implies 1.5n equations for all n ∈
{128, 192, 256}.

In summary, if (2r − 1)a = 2p − 1 for some 1 < r < n− 1 and p > 1, one of the following events happen:

– if a is also in Case A, we have theoretic lower bound of deg(t);
– if a is also in Case B but not in Case A, we experimentally checked that the number of quadratic equations

is always less than 3n;
– if p = r and gcd(r, n) = m < n/2, y = xa produces n−m

2m · n equations which implies that less than or
equal to 3n quadratic equations are generated when m ≥ n/7;

– if p = r = n/2, this case generates 1.5n equations;
– if p = n/2 and r does not satisfy above conditions, one has at most 2n equations;
– otherwise, one has n equations.

Therefore, to have more than 3n equations, a should satisfy (2m − 1)a = 2m − 1 where m | n and m < n/7.
Let ē = au+ v. Then,

(2m − 1)ē = (2m − 1)(u+ v) ⇒ u+ v = ē+
2n − 1

2m − 1
· b

for some 0 ≤ b ≤ 2m − 1. Therefore

Dmin ≥ hwn(u) + hwn(v) ≥ hwn(u+ v) ≥ min
b

{
hwn

(
ē+

2n − 1

2m − 1
· b
)}

(15)

(D-2) Let (2m − 1)(a + 2p) = 0 for some m | n and p ∈ {0, . . . , n − 1}, and let ē = au + v for some
u, v. Discarding equivalent exponents, let p = 0. In this case, a + 1 is m-cyclic, which implies the binary
representation of a+ 1 is the concatenation of n/m number of a length-m string.

We divide this case into three subcases: 2 ≤ m ≤ n/4, m = n/3, and m = n/2. For the latter two
cases, we utilize the brute-force result of toy examples since the number of candidates of a is too many. Let
a = 2n−1

2m−1 · b − 1 for some 0 ≤ b < 2m − 1. In toy examples (n = 16, 24, 32, 48), we found that the number
of quadratic equations from y = xa is no more than n unless hwn(b) = 1 by brute-force searching b. If
hwn(b) = 1, then

hwn(a+ 1) = hwn

(
2n − 1

2m − 1
· b
)

=
n

m
· hwn(b) =

n

m
.

We will use this fact to bound the degree of t when m = n/2 or n/3.

– Suppose that 2 ≤ m ≤ n/4. We will show that the number of quadratic equations are less than 3n.
• Since a cannot be cyclic, there is no m′|n with (2m

′ − 1)a = 0. Similarly, there is no k ∈ {1, . . . , n/2}
or p ∈ {1, . . . , n− 1} with (2m

′ − 1)(2k + 1)a = 0 or (2m
′ − 1)(a+ 2p) = 0.

• Suppose 2ra = a for some 1 ≤ r < n. It implies that

2r · 2
n − 1

2m − 1
· b− 2r =

2n − 1

2m − 1
· b− 1

⇐⇒ 2n − 1

2m − 1
· b(2r − 1) = 2r − 1

where 2r − 1 cannot be cyclic for 1 < r < n.
• Suppose 2ra = (2k + 1)a for some 1 ≤ r < n and 1 ≤ k ≤ n/2. It means that

2n − 1

2m − 1
· b(2k − 2r − 1) = 2k − 2r − 1.

Since 2k − 2r − 1 is nonzero and cannot be m-cyclic for m ≤ n/4, this condition does not generate
any quadratic equation.

23

• Suppose 2r(2k + 1)a = (2k
′
+ 1)a for some 1 ≤ r < n and 1 ≤ k, k′ ≤ n/2. It means that

2n − 1

2m − 1
· b(2r(2k + 1)− (2k

′
+ 1)) = 2r(2k + 1)− (2k

′
+ 1).

Let 2r(2k + 1) = 2i1 + 2i2 with i1 > i2. We will check the form of (2i1 + 2i2) − (2k
′
+ 1) by dividing

into four cases.
* If i1 > i2 > k, then (2i1 + 2i2)− (2k

′
+ 1) is nonzero and could be n/3-cyclic but not lower.

* If i1 ≥ k ≥ i2, then it could be n/2-cyclic but not lower. It cannot be zero since 0 ≤ k ̸= k′ ≤ n/2.
* If k > i1 > i2 and i2 > 0, then it is nonzero and could be n/3-cyclic but not lower.
* If k > i1 > i2 and i2 = 0, then it is nonzero and acyclic.

Since 2n−1
2m−1 · b(2

r(2k +1)− (2k
′
+1)) is m-cyclic where m ≤ n/4, this condition does not produce any

quadratic equation.
• Suppose 2r(a+ 2p) = a+ 2q for some 1 ≤ r < n and 0 ≤ p ̸= q < n. It means that

2n − 1

2m − 1
· b(1− 2r) = 2r(2p − 1)− (2q − 1).

Without loss of generality, we can assume that p > q. Up to circular shift, we can rewrite 2r(2p−1)−
(2q − 1) by 2r1(2p − 1) − 2r2(2q − 1) where 0 < r2 + q ≤ r1 + p < n − 1 or r1 + p = n − 1. We will
check the form of 2r1(2p − 1)− 2r2(2q − 1) by dividing into four cases.

* If 0 < r2 + q = r1 + p < n− 1, then it is acyclic.
* If 0 < r2 + q < r1 + p < n− 1, then it is nonzero and could be n/2-cyclic if r1 ≤ r2 or n/3-cyclic

if r1 > r2 but not lower.
* If r1 + p = n − 1 and r2 + q ≤ n − 1, then it is nonzero and is acyclic if r2 + q = n − 1 or could

be n/2-cyclic if r1 ≤ r2 or n/3-cyclic if r1 > r2 but not lower.
* Suppose r2+q ≥ n. Let 2r2(2q−1) = 2n−q1(2q1 −1)+(2q2 −1) where q1+q2 = q, 1 ≤ q1 ≤ q < p,

and n− q1 > q2 ≥ 1. Then, it is nonzero and could be n/3-cyclic but not lower.
Since 2n−1

2m−1 · b(1 − 2r) is m-cyclic where m ≤ n/4, this condition does not produce any quadratic
equation.

– Suppose that m = n/3 (and n = 192). We found that only b = 1 and b = 2m−1 induce more than 3n
quadratic equations, provided that hwn(b) = 1.
• For b = 1, a = 22m + 2m. Let e = ua+ v. Then

2 · hwn(u) + hwn(v) = hwn(2
2mu) + hwn(2

mu) + hwn(e− ua) ≥ hwn(e),

so that
hwn(u) + hwn(v) ≥ max {hwn(e)− hwn(u), hwn(u)} ≥ ⌈hwn(e)/2⌉.

• For b = 2m−1, a−1 = 22m + 2m. Let e = ua+ v, then u = a−1e− a−1v. Similarly, we have

hwn(u)+2 ·hwn(v) = hwn(a
−1e−a−1v)+hwn(2

2mv)+hwn(2
mv) ≥ hwn(a

−1e) = hwn((2
2m+2m) e)

so that

hwn(u) + hwn(v) ≥ max
{
hwn((2

2m + 2m) e)− hwn(v), hwn(v)
}
≥ ⌈hwn((2

2m + 2m) e)/2⌉.

– Suppose that m = n/2. Let ē = ua+ v. We will lower bound hwn(u) + hwn(v). Then,

hwn(v) = hwn(ē− ua) = hwn(ē+ u− u(a+ 1))

≥ hwn(ē+ u)− hwn(u(a+ 1))

≥ NumSeg(ē)− hwn(u)− hwn(a+ 1)hwn(u).

Therefore,

hwn(u) + hwn(v) ≥ max {NumSeg(ē)− hwn(a+ 1)hwn(u), hwn(u)}
≥ ⌈NumSeg(ē)/(hwn(a+ 1) + 1)⌉ = ⌈NumSeg(ē)/3⌉.

24

In summary, if (2m−1)(a+1) = 0 for some m | n, (or equivalently, if a = 2n−1
2m−1 ·b−1 for some 0 ≤ b < 2m−1)

we have one of the following:

– if hwn(b) ̸= 1, it is believed that there are fewer than n equations (and it is checked in toy parameters).
– if a is also in Case A, we have theoretic lower bound of deg(t);
– if a is also in Case B but not in Case A, we experimentally checked that the number of quadratic equations

is always less than 3n;
– if 2 ≤ m ≤ n/4, it produces at most n−m equations;
– if n = 192,m = n/3,

Dmin ≥ min
{
⌈hwn(e)/2⌉, ⌈hwn((2

2m + 2m) e)/2⌉
}
; (16)

– if m = n/2,
Dmin ≥ ⌈NumSeg(ē)/3⌉. (17)

LOWER BOUNDS OF THE DEGREES OF THE INDUCED SYSTEM. Since the largest degree reaching while running
a Gröbner basis computation algorithm or the XL algorithm (also known as solving degree [DS13]) should
be larger than or equal to the degree of the system, we can lower bound the security of AIM2 against Liu’s
attack. Table 12 summarizes the lower bound of time complexity (from (5)) of Case A and D and the bound
of Dmin for each exponents (from (12), (13), (15), (16), and (17)). We only considered the case of replacing
some variables in Squad, since otherwise we would get a system with a lot higher degree.

Scheme (e1, Dmin) (e2, Dmin) (e3, Dmin) (e∗, Dmin)
Complexity

k sd Time (bits)

AIM2-I (49, 16) (91, 15) - (3, 15) 0 ≥ 15 176.2
AIM2-III (17, 17) (47, 17) - (5, 26) 0 ≥ 17 214.4
AIM2-V (11, 31) (141, 23) (7, 25) (3, 29) 0 ≥ 23 310.4

Table 12: Lower bounds of the degrees of the system for Case A and D. (ei, Dmin) = (e, d) means that there is
no such f with deg(f) < d where ti = Mer[ei]

−1(pt) = f(pt, wi) and wi = (pt+ ci)
a for some integer a, while

there exists degree 2 polynomial g(pt, w) = 0. All the complexities are measured by (5). k is the number of
guessed bits and sd is the solving degree, which is larger than at least one of Dmin.

25

	Efficacy and Mitigation of the Cryptanalysis on AIM

