Too Close for Comfort?
Measuring Success of Sampled-Data Leakage Attacks Against
Encrypted Search

Dominique Dittert
dominique.dittert@stud.tu-

Thomas Schneider
schneider@encrypto.cs.tu-

Amos Treiber
treiber@encrypto.cs.tu-darmstadt.de

darmstadt.de darmstadt.de Technical University of Darmstadt
Technical University of Darmstadt Technical University of Darmstadt Germany
Germany Germany
ABSTRACT KEYWORDS

The well-defined information leakage of Encrypted Search Algo-
rithms (ESAs) is predominantly analyzed by crafting so-called leak-
age attacks. These attacks utilize adversarially known auxiliary
data and the observed leakage to attack an ESA instance built on a
user’s data. Known-data attacks require the auxiliary data to be a
subset of the user’s data. In contrast, sampled-data attacks merely
rely on auxiliary data that is, in some sense, statistically close to the
user’s data and hence reflect a much more realistic attack scenario
where the auxiliary data stems from a publicly available data source
instead of the private user’s data.

Unfortunately, it is unclear what “statistically close” means in the
context of sampled-data attacks. This leaves open how to measure
whether data is close enough for attacks to become a considerable
threat. Furthermore, sampled-data attacks have so far not been
evaluated in the more realistic attack scenario where the auxiliary
data stems from a source different to the one emulating the user’s
data. Instead, auxiliary and user data have been emulated with
data from one source being split into distinct training and testing
sets. This leaves open whether and how well attacks work in the
mentioned attack scenario with data from different sources.

In this work, we address these open questions by providing a
measurable metric for statistical closeness in encrypted keyword
search. Using real-world data, we show a clear exponential relation
between our metric and attack performance. We uncover new data
that are intuitively similar yet stem from different sources. We
discover that said data are not “close enough” for sampled-data
attacks to perform well. Furthermore, we provide a re-evaluation of
sampled-data keyword attacks with varying evaluation parameters
and uncover that some evaluation choices can significantly affect
evaluation results.

CCS CONCEPTS

« Security and privacy — Cryptanalysis and other attacks;
Management and querying of encrypted data; Privacy-preserving
protocols.

CCSW 23, November 26, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2023 Cloud Computing Security Workshop (CCSW ’23), November 26, 2023, Copenhagen,
Denmark, https://doi.org/10.1145/3605763.3625243.

Encrypted Search; Leakage Attacks; Privacy Metric

ACM Reference Format:

Dominique Dittert, Thomas Schneider, and Amos Treiber. 2023. Too Close
for Comfort? Measuring Success of Sampled-Data Leakage Attacks Against
Encrypted Search. In Proceedings of the 2023 Cloud Computing Security
Workshop (CCSW °23), November 26, 2023, Copenhagen, Denmark. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3605763.3625243

1 INTRODUCTION

Encrypted Search Algorithms (ESAs) allow to privately search en-
crypted data without requiring to decrypt them. This reduces the
severity of data breaches, since not even a server storing the data
can access plaintext information. As a result, ESAs are highly rel-
evant for cloud services, e.g., to outsource private email data or
genetic databases onto cloud storage, and have become real-world
products. For instance, MongoDB’s Queryable Encryption capabil-
ity [32] allows to run expressive queries on encrypted data. ESAs
are based on various cryptographic notions such as Searchable
Symmetric Encryption (SSE) [7, 10, 16, 38] / Structured Encryp-
tion (STE) [8], Fully Homomorphic Encryption (FHE) [15], and
Oblivious RAM (ORAM) [18]. We refer to the survey in [14] for
an overview. In this work, we are concerned with encrypted key-
word search, i.e., ESAs that allow to privately search a collection of
encrypted documents with a keyword query.

Leakage. All efficient ESA constructions, i.e., constructions with
sub-linear search time, disclose some information upon setup and
execution. For example, the server learns at least a bound on the
size of the encrypted data structure when the client uploads it.
Furthermore, upon execution of queries in the case of keyword
search, the server may learn the size of the corresponding responses
and/or additional details like the number of returned documents or
their identifiers. This revealed information is referred to as leakage.
ESAs represent a trade-off between leakage and efficiency.

Leakage Attacks. To establish the security of an ESA, several steps
are necessary. First, the leakage profile, that is comprised of all types
of information exposed by the scheme, needs to be specified. In a
second step, it has to be proven that the scheme does not leak any
further information [10]. Finally, cryptanalysis is used to examine
how this leakage could be exploited by a potential adversary (we
refer to the survey in [26] for a state-of-the-art overview of leakage
cryptanalysis). For this purpose, researchers design so-called leak-
age attacks on ESAs that exploit specific leakage patterns together

https://doi.org/10.1145/3605763.3625243
https://doi.org/10.1145/3605763.3625243

with some adversarially known auxiliary information. Attack per-
formance on encrypted keyword search is usually measured as the
percentage of plaintext queries that could be correctly restored.
The information of attack performance can then be used to strike a
sensible balance between leakage and efficiency in potential ESA
deployments. However, several aspects of the way attacks are (and,
due to scarcity of relevant data, have to be) evaluated make it hard
to properly determine and quantify the practical threat resulting
from leakage [4, 26]. One central aspect is what adversarial infor-
mation can be seen as realistic and whether attacks still work on
such information.

Adversarial Information. When a subset of the user’s data col-
lection is known, the attacks are called known-data attacks [4, 6].
These have recently been re-evaluated by Kamara et al. [26] using
various data and evaluation scenarios. If the auxiliary informa-
tion comprises reference data that is, in a way, close to the user’s
data but distinct from it, the attacks are called sampled-data at-
tacks [11, 22, 33, 35]. Sampled-data attacks may be regarded as
more realistic since the attacker may more easily acquire a publicly
available, yet related, auxiliary dataset for mounting its attack. For
instance, publicly available email lists may be used to attack private
ESA instances on email clients that include semantically similar
correspondence.

Attack Evaluations. So far, sampled-data attacks have not been re-
evaluated on new data and across scenarios. This actually includes
a complete lack of evaluating the underlying motivation of sampled-
data attacks by using two different but statistically close datasets.
Instead, the state-of-the-art evaluation of these attacks [11, 33, 35]
relies on splitting one evaluated dataset into distinct training and
testing sets! which, as a result, are deemed statistically close. The
training set comprises the auxiliary data and the testing set is
used for evaluations. While this technically applies to sampled-data
attacks, the underlying attacker scenarios differ: Since the training
and testing data are from the same source/dataset, the conclusions
one can empirically draw from attack performance most closely
apply to the scenario where a part of the dataset was breached
and then deleted. Thus, it is hard to draw conclusions for the more
realistic scenario where the training data stems from a source other
than the source of the testing data.

Measuring Susceptibility. Moreover, there is neither a consistent
definition of statistical closeness nor a standardized metric to mea-
sure it. Therefore, it is not possible to see how close data needs to
be for instances to be susceptible to attacks.

Recent works on the theoretical quantification of privacy in
ESAs [27, 28] obtain bounds on how much an attacker can learn in
specific instances. This quantifies how private an ESA instance is
irrespective of currently available attacks. While these theoretical
metrics are very valuable, we believe an important complimentary
approach to be measuring how susceptible an instance is based on
the current best empirical knowledge on attack performance.

Ideally, a measurable metric defining statistical closeness of data
collections in relation to ESA cryptanalysis would be able to indicate
whether collections are close enough such that attacks are likely to

IFor instance, data of two different years or distinct subsets of the dataset may make
up separate training/testing sets.

Table 1: Values of our statistical closeness metric necessary
for correctly recovering 10 %, 15 %, and 20 % of queries for
different sampled-data attacks. The values are calculated
using the exponential fit functions that describe the results
of our evaluations. Note that our intuitively similar data
pair from different sources yields a closeness value of 0.65
whereas higher values are only reached with data sampled
from the same source dataset.

Recovery Rate | IKK [22] | SAP [33] | IHOP [35]
10% 0.90 0.91 0.82
15% 0.92 0.96 0.85
20 % 0.93 0.99 0.87

be successful. Using this metric with a re-evaluation of sampled-data
attacks on a pair of datasets from different sources that is intuitively
similar can then establish a more practical picture of the relation of
dataset closeness and attack success.

1.1 Contributions

In this paper, we design a metric for statistical closeness of keyword
data collections and re-evalute sampled-data attacks on encrypted
keyword search. Throughout our measurements of our metric and
attack performance we also utilize new data that is intuitively
similar but from distinct sources. These contributions are crucial
to the following research question we pose (given the potentially
very large attack surface of sampled-data attacks):

Can real-world ESAs be successfully attacked with auxiliary data
from a dataset source different to the one of the target data?

We provide a differentiated answer: There are successful in-
stances of these attacks, but, according to our metric, auxiliary and
target data need to be very close for attacks to be able to uncover more
than 10% of the plaintext queries. In fact, despite being semantically
very similar, our new data from distinct sources does not reach this
level and the corresponding attack instances do not see success
beyond 10% recovery. Moreover, we show that further evaluation
aspects, such as using a real-world log of queries issued on the data
collection by actual users of the instance (called a “query log”), can
heavily influence results and conclusions.

Detailed Contributions. More concretely, our contributions are
as follows:

(1) We extend the open-source leakage attack framework
LEAKER [26], which allows to easily re-evaluate known-data
attacks on arbitrary data, to support sampled-data keyword
attacks. We will open a pull request of our changes upon accep-
tance of our paper.

(2) We uncover additional data for the empirical foundation
of leakage cryptanalysis. Using data from mailing lists of the
Ubuntu and Debian distributions, we create data collections
from separate sources that are semantically similar and can be
used as a more realistic model of auxiliary information than
using one dataset/source.

(3) We design a metric for statistical closeness of data collections.
Using established and our new data, we empirically demon-
strate an exponential relation between closeness and suc-
cess of the attacks of [22, 33, 35]. The metric can hence be used
to indicate attack success on ESA instances with a candidate
auxiliary data collection, e.g., to determine if countermeasures
are necessary because a publicly available data collection is
too close to the private potential deployment. We present a
summary in Tab. 1: In order to correctly uncover even 10% of
the user’s queries correctly, according to our experiments the
attacker’s auxiliary information and the target data need a statis-
tical closeness of at least 0.82. Our Ubuntu-Debian combination
has a measured metric of 0.65 and our experiments validate that
it is not close enough to reach the cut-off value of 10% attack
success. We observe such high values of closeness only in cases
where both data stem from the same source. Furthermore, a
comparison with the co-occurrence similarity [11, 37] shows
that our metric is superior.

(4) We re-evaluate the sampled-data leakage attacks of [33, 35]
on established and our new data and under various conditions
to identify which evaluation aspects influence results. Most
significantly, we for the first time use a query log of real user
queries for evaluating sampled-data attacks, which so far has
only been done for known-data attacks [26]. This is also the
most influential aspect of evaluations: We find that recovery
rates of the attacks on a query log are vastly higher compared
to the original works. However, in these cases the auxiliary
information does stem from the same source. Due to the scarce
availability of relevant data, it remains open how successful
sampled-data attacks are under real-world query logs when the
adversary does not have access to data from the same source.

2 RELATED WORK

We review related work in the general area of encrypted search, its
cryptanalysis via leakage attacks, and the quantification of leakage.

2.1 Encrypted Search

The area of encrypted search began with the work of Song, Wagner
and Perrig [38]. Definitions for ESAs are found in Goh [16] and
Chang and Mitzenmacher [7]. The standard security definition for
Searchable Symmetric Encryption (SSE) was given by Curtmola et
al. [10]. This was then generalized as Structured Encryption (STE)
by Chase and Kamara [8]. Other building blocks for ESAs are
Property-Preserving Encryption (PPE) [1, 3], Fully-Homomorphic
Encryption (FHE) [15], Functional Encryption (FE) [5], Oblivious
RAM (ORAM) [18], and Secure Multi-Party Computation (MPC) [17,
41]. We refer to [14] for a survey on ESAs.

2.2 Leakage Attacks

The first leakage attack was described by Islam et al. [22] and
became known as the IKK attack. It was described as a sampled-
data attack, though subsequent works [6, 26, 37] also used it as
a known-data version. Known-data attacks were given by [4, 6]
and sampled-data attacks by [11, 20, 21, 33, 35]. All these works
(and ours) consider the user’s queries to be drawn independently
of each other. Recently, the case of dependend queries for query

equality leakage has been considered by [25, 35]. We refer to Ka-
mara et al. [26] for more information and a survey on leakage
attacks. In Sect. 4, we present more details on the attacks subject
to our work. Furthermore, [26] provides the LEAKER framework
for evaluating (known-data) leakage attacks and a re-evaluation
of known-data attacks. Our work is concerned with sampled-data
attacks and measuring their success.

2.3 Leakage Quantification

Wright and Pouliot [40] quantify the success of leakage attacks
against deterministic and order-revealing encryption, which are
considered Property-Preserving Encryption (PPE). Frameworks to
analyze deterministic and order-revealing encryption are provided
by Jurado and Smith [24] and Jurado et al. [23], respectively. Fur-
thermore, Grubbs et al. [19] provide a framework to analyze leakage
w.r.t. data reconstruction attacks, applying to range search.

Leakage Inversion. Kornaropoulos et al. [28] propose a frame-
work called leakage inversion that can provide a quantification of
privacy in ESAs based on theoretical considerations of the size of
the reconstruction space (to invert an observed leakage profile).
Regarding the keyword ESAs we are concerned with, the metric
can quantify the privacy loss of certain leakages and adversarial
information—more precisely, knowledge of all possible keywords
contained in the data collection and knowledge of the response
length of all possible keywords contained in the data collection.
The metric is not directly applicable to sampled-data attacks.

Coherence. Recently, Kamara and Moataz [27] porposed a the-
oretical framework based on Bayesian leakage analysis leading
to a quantifiable notion called coherence. The authors show how
modeling a leakage profile as a Bayesian network allows to bound
the coherence given various distributions on data, queries, and
adversarial information. Such bounds are, among others, provided
for query recovery attacks using query equality and/or response
length information.

We only cover sampled-data query reconstruction attacks mak-
ing use of the query equality, response length, and/or co-occurrence
patterns, i.e., applying to ESAs built on SSE/STE or ORAM tech-
niques. More importantly, our approach is entirely empirical and
based on the performance of existing sampled-data attacks. Instead
of bounds, we provide concrete measurements that give empirical
indications of attack success. It is our belief that both empirically-
ground approaches and theoretically-grounded approaches are nec-
essary for understanding privacy in ESAs.

3 PRELIMINARIES

We first provide some basic notations and fundamentals of ESAs.
Then, we overview different leakage patterns and profiles, followed
by the most common adversary models and leakage attack types.

3.1 Notation

We denote the set of integers {1,...,n} as [n]. The corresponding
power set is represented by 2[n] Letabea sequence of n elements,
then a; refers to its ith element. For a set S, |S] is its cardinality.
Let a data collection D be a collection of n documents d;, where i €
[1,...,n] over a keyword space W = {w1, wy, ..., wp} of size m.

Each document d; has an unique identifier i and can be modeled
as a set of keywords attached to it: d; € W. With D we describe
the space of all document collections over a keyword space W.
The query space Q C W is the space of all keywords that are
queried. The result of a keyword query w € Q are all documents
that contain w, which we write as D(w) = {d € D : w € d}.
Each keyword query w has a frequency that refers to the number
of documents in D that contain w: |[D(w)|. The identifier func-
tionids: W — 2071 ids(w) — {i € [n]:d;i € D(w)} maps a
keyword w to the identifiers of the documents that contain w.

3.2 Encrypted Search Algorithms (ESAs)

An ESA enables a client to search on encrypted data stored on a
server without needing to decrypt it. In this work, we only consider
ESAs supporting keyword queries on document collections. We can
model a system consisting of two parties:

A client owning a data collection they wish to store and query
remotely on a server.
A server offering the storage services, e.g. a cloud storage provider.

Generally speaking, an ESA is composed of the following opera-
tions:

Setup: In the setup protocol, the client encrypts the data collec-
tion D and sends the encrypted data collection D to the
server.

Query: The query protocol runs between the client and the server.
The client generates a query for a specific keyword, which
they send in encrypted form (often called a token) to the
server. The server evaluates it on the encrypted data collec-
tion to retrieve the requested documents and returns them
to the client.

Update: With a dynamic (non-static) ESA, the client can mod-
ify the data stored on the server after the setup step by
removing documents from the data collection or adding new
documents.

3.3 Leakage

Each operation of an ESA can reveal some information. In the ini-
tialization, for instance, the server learns at least a bound on the
size of the data collection. During query operations, the server may
learn, for example, the number of returned documents. This dis-
closed information is called leakage. The respective leakage profile
of the encryption scheme is composed of different leakage patterns,
depending on which information is leaked. As is common in the
literature of sampled-data attacks [22, 33, 35], we focus on leakage
patterns in static ESAs associated with the query operation.

Leakage Patterns. Often times, two types of leakage stemming
from the realm of SSE are prominently discussed, namely search
pattern leakage and access pattern leakage. The search pattern de-
scribes whether two queries are identical, meaning they request
the same keyword. The access pattern corresponds to which doc-
uments match a particular query. In the following, we describe a
more detailed classification of ESA leakage patterns based on [4]
which the attacks subject to our work can exploit.

The Response Identitiy (RID) pattern represents the full access
pattern. It reveals the identifiers of the queried documents

and can be described by a function RID : D x W! — [2[n]]?,
RID(D, w1, ...,w) = (ids(w1), ..., ids(w)).

The Co-Occurrence (CO) pattern indicates how often two key-
words jointly appear in the same document. It can be de-
scribed by a function CO : D x W! — [n]®*!, which is
defined as CO(D, wy, ..., ws) = M®° that returns a t X ¢t ma-
trix M“° with entries Micj = lids(w;) N ids(w;)|. The CO
pattern can be derived from the RID pattern.

The Response Length (RLEN) pattern discloses the number of
documents that match a given query, i.e., the length of the
response. It can be described by the function RLEN : D X
W! — N, RLEN(D,w1,...,ws) = (|ID(w1)|,...,|D(wp)]).
The RLEN pattern can be derived from the CO pattern.

The Query Equality (QEQ) pattern represents the search pat-
tern. It exposes whether two queries are equal and can
be expressed by a function QEQ : D x W — {0,1}!*¢,
QEQ(D,ws, ..., wy) = M9¢9 that returns a binary ¢ X t ma-
trix M9¢9 with entries M?gq = Lo ifwi =w; .

2 0, otherwise

The Query Frequency (QFREQ) pattern indicates how often a
certain query occurs in relation to the total number of queries.
It is represented by the function QFREQ : D x W! — R?,
QFREQ(D, wy, ..., w;) = f thatreturns a vector f oflength ¢
with elements f; = }}; ngq /t. The QFREQ pattern can be

L

derived from the QEQ pattern.

3.4 Adversary Models

There are two main types of adversaries when it comes to attacks
on ESA [2]:

Persistent adversaries have access to the encrypted data collec-
tion and associated ciphertexts and see all query and update tokens
as well as the answers returned by the server. To illustrate, this
model represents a scenario in which the client does not trust an
honest-but-curious server. Another option might be a corrupted
server, where the attacker can read its memory and observe all
interactions.

Snapshot adversaries, on the other hand, only see the encrypted
data collection but do not have access to the query or update tokens.
In this case we can differentiate between the server and the attacker.
The scenario could be described by an attacker hacking the server
at one point in time and capturing a snapshot of its memory, hence
gaining access to the encrypted data collection, but not observing
the interactions between server and client.

Furthermore, we can distinguish between active and passive
adversaries:

Passive adversaries can observe the interaction of client and
server. They exploit this observed leakage to attack the ESA in-
stance.

Active adversaries, on the other hand, are also able to interact with
the system. They can tamper with the data collection by injecting
their own files. This allows them to observe the queries and exploit
leakage corresponding to files they already know. Attacks assuming
an active adversary like this are also called file-injection attacks [4,
36, 42].

We are concerned with persistent, passive adversaries.

3.5 Leakage Attacks

A leakage attack utilizes some auxiliary knowledge and the ob-
served leakage to uncover private information. Commonly, attacks
use the leakage of a sequence of queries to uncover the queries.
When evaluating an attack, its performance is measured by the re-
covery rate, referring to the fraction of correctly uncovered queries.
Depending on the kind of auxiliary knowledge required by the
adversary, we can classify attacks on ESA as the following type:

Known-Data attacks, which are also known as ground-truth at-
tacks, require the strong assumption that the adversary has access
to a subset of the indexed documents on the server. This knowledge
might stem from a previous data breach and can be utilized by an
attacker to target the remainder of the data collection.

Sampled-Data attacks are based on the weaker assumption that
the adversary has access to a statistically close, yet not identical
dataset. These attacks are also known as inference attacks or sta-
tistical attacks. To follow up on the data breach example from the
known-data case, we could think of an attack after a data breach,
where the breached documents were removed from the data col-
lection. In recent literature [33, 35], the sampled-data scenario is
often simulated by sampling two disjunct subsets from one dataset,
where one subset is subsequently given to the attacker as auxiliary
information and the other one is used as attack target. However,
this does not significantly weaken the assumption on the auxiliary
knowledge, since the adversary still needs access to data of the
original dataset (like in said data breach scenario). A more inter-
esting scenario would be an attack on a private, encrypted data
collection from one dataset, where the adversary uses data from
another dataset as auxiliary information. This motivates the design
of the attacks but until now was not used in the evaluations.

In our work, we are concerned with sampled-data attacks and
provide evaluations with data from separate dataset sources.

4 CONSIDERED SAMPLED-DATA ATTACKS

We detalil the sampled-data attacks subject to our work here.

4.1 IKK

The so-called IKK attack [22] utilizes the co-occurrence of key-
words (CO; cf. Sect. 3.3) in the data collection as well as a fraction
of known queries. The authors prove that the optimization prob-
lem of minimizing the distance between the observed and real
co-occurrence matrices is NP-complete. Hence, they propose using
a heuristic approximation technique known as simulated annealing
to solve it. Simulated annealing iteratively tries to find a global
optimum for a target function from an arbitrary initial state, where
in each iteration the current state may change to a neighboring
state, ultimately converging towards a satisfactory state or aborting
until a specified amount of iterations is reached.

4.2 SAP

Oya and Kerschbaum [33] propose SAP, a Search and Access Pattern-
based attack that relies on a Maximum Likelihood Estimation (MLE)
approach. The authors consider ESAs that leak both the search and

the access pattern (cf. Sect. 3.3). From the former, they can infer
the query equality (QEQ), allowing them to calculate the query
frequency (QFREQ), which refers to how often the client performs
a specific query. From the latter, the response length (RLEN) is
computed, i.e., the number of documents returned in response to a
query. Using their auxiliary information, the attacker can compute
the same metrics for the keywords. The proposed attack solves
a Linear Assignment Problem (LAP) to arrive at a mapping that
maximizes the probability of observing the described leakage given
the auxiliary information.

4.3 IHOP

While Linear Assignment Problems (LAPs; as utilized in SAP) have
efficient solvers to find an optimal solution, they cannot use qua-
dratic terms that contain the co-occurence (CO) pattern informa-
tion (cf. Sect. 3.3). These require solving a Quadratic Assignment
Problem (QAP). Therefore, Oya and Kerschbaum [35] present IHOP,
a statistical query recovery attack that follows an Iterative Heuris-
tic algorithm to solve a quadratic Optimization Problem. The at-
tack can combine different information and may use the response
length (RLEN), the co-occurence (CO), and/or the frequency com-
puted from the query equality (QEQ/QFREQ). However, QAPs are
difficult to solve, so IHOP iteratively solves multiple LAPs as de-
scribed in the following. First, it generates an initial mapping of
tokens to keywords. Then, it performs a certain number of the fol-
lowing iterations: The existing mappings are randomly divided into
two sets, namely the set of fixed tokens and the set of free tokens.
It now computes a new mapping for the free tokens, with which
the initial mapping is updated. Choosing the number of iterations
is a trade-off between performance and accuracy.

5 USED DATA SOURCES

We describe the datasets we use for our evaluation of our metric (cf.
Sect. 7) and for re-evaluating sampled-data attacks (cf. Sect. 8). All
data has been pre-processed using LEAKER [26].

5.1 Email Data

This type of data has long been a main motivation for the study of
ESAs and is prominent in the leakage attack literature.

The Enron Email Corpus [9] is the predominant evaluation target
in ESA cryptanalysis [4, 6, 11, 20, 22, 33, 35, 37]. As in previous
works, we use all emails sent by all employees as data collection.

The Debian security-announce Mailing List [12] is a public
newsletter about security advisories. We chose it since many Linux
distributions are built on the same architecture, so we expect corre-
sponding mailing lists to be semantically similar. Hence, we can use
these lists from distinct sources to model settings where the attacker
uses one dataset obtained from a source to attack another ESA
instance from another source. We used a simple script to retrieve
the contents of the emails from the Debian website and filtered
out hashes, fingerprints, and commands. We do not distinguish
between different users and use 18 years of data, from October
2004 to September 2022, to form a data collection. This data we
uncovered has not been used in the context of ESAs before.

The Ubuntu security-announce Mailing List [39] is an equiva-
lent to the Debian mailing list. We consider data of the same 18-year
period as for the Debian list as data collection and filter similarly.
This data has not been used in the context of ESAs before.

5.2 Genetic Data

Due to high sensitivity, genetic data is an important ESA use case.

The Arabidopsis Information Resource (TAIR) Data Collec-
tion [29] contains genetic data of the model higher plant Arabidop-
sis Thaliana. The data collection is obtained and indexed exactly as
in [26], where this data was first discovered for the evaluation of
known-data leakage attacks.

The TAIR Query Log [13] includes all queries per user on the
TAIR database from January 1, 2012 through April 30, 2013. We use
this query log as query data on the TAIR data collection.

5.3 Search Engine Data

As ESAs are used for private search, search engine data is frequently
used to motivate ESAs and to evaluate leakage attacks.

Google Trends [31] contains query data on the Google search
engine, which was used in previous evaluations on attacks that
also exploit the QEQ pattern [30, 33, 35]. We use the pre-processed
trends data [33, 34] for 3000 keywords extracted for the 260 weeks
from May 2015 to May 2020. Contrary to a query log that displays
a list of keywords issued by a user, this data provides the number
of occurrences of a query in a certain timeframe (weeks). However,
both types of data can be used to sample queries for evaluations and
as auxiliary information for attacks exploiting QEQ? and QFREQ.
Hence, we refer to both of them as query data.

6 OUR STATISTICAL CLOSENESS METRIC

In the following, we design a metric for measuring the statistical
closeness of two data collections, which we will evaluate with col-
lections introduced in Sect. 5.1 w.r.t. attack performance in Sect. 7.

6.1 General Design

We aim that our metric design reflects the intuitive closeness of
datasets, e.g., with our datasets of Sect. 5, samples of Enron should
be very close, the Ubuntu and Debian collections should be close,
and Ubuntu and Enron should be noticeable less close than the other
combinations. Then, we will be able to evaluate the correlation
between attack success and data closeness quantified by our metric.

To find such a metric for any two data collections D! and D'/,
we investigate several statistics which we call criteria. We will then
combine these criteria into our final metric.

Additional Notation. Before defining our criteria, we need to de-

I
fine some more notation. f1(w) = W defines the normalized

frequency of keyword w in D!, where n! is the amount of docu-
ments in D', W{ denotes the i-th keyword of D! sorted according

to decreasing frequency in D', ie, Vi < j : fI (Wl{) > fI (Wﬁ) .
2While information on frequency such as Google Trends does not provide a direct way
to evaluate QEQ attacks as with a query log, the widespread assumption that queries
are drawn independently enables such evaluations, ultimately relying on QFREQ.
Dependent-query QEQ attacks are given by [25, 35] and do not apply here.

Consequently, we define the ordered set of the i-th most frequent
keywords in D! as KWI.I = {Wﬁ cje[il}. fTw H , and KWH are
defined analogously for D'’

Data Collection Criteria. In the following, we present the criteria
we consider for our metric and their formal definitions, which we
denote by CR(l), CR(Z), and CR®) and depend on a variable k:

[CR 1] The mean of the normalized sizes of the intersections of
the most frequent keywords in DT and DI

k
CRD (k) = % Z

[CR 2] The mean of the normalized amounts of occurrences of the
most frequent keywords of D! in DI

k
CRO) (k) = %Z

[CR 3] The mean of the relative differences of frequencies of the
most frequent keywords of D! within D! and their frequen-
cies within DI

|KWI N KWH |

|KWI WH|

CR(3)(k) — % Z (1_ |fI(W)_fH(W)|

W\ max(FTGo) £ (w)
Our presented criteria comprise the means over different statistics
of the most frequent keywords, calculated up to the k most fre-
quent keywords. Since we noticed high variability for low values
of k, a sufficiently large value of k needs to be set to obtain consis-
tent results (we set k = 10* in our experiments). This additionally
allows to determine the statistical error of each criterion by calcu-
lating the standard deviation of the sets given as input to the mean
computation.

It should also be noted that criteria [CR 2] and [CR 3] are not sym-
metrical, but differ in which data collection serves as the training
data and thus for generating the set of most frequent keywords.

Final Metric. We combine the three criteria into our final statistical
closeness metric, which we denote by SC:

SC(k) = 5 (CRM (k) + CR®) (k) + CR (1))

For the determination of the statistical uncertainty, the use of er-
ror propagation is necessary. The standard deviation between the
three criteria can be considered as systematic uncertainty. We ob-
served noticeably large uncertainties with [CR 3], which is why
we additionally evaluated a version of SC that only takes the mean
of CR and CR®), However, our detailed evaluation conducted
in the following Sect. 6.2 indicates that the combination of all three
criteria provides the best separation between our various datasets.

Runtime. Note that KW!/! can be pre-computed. Thus, cr®
and CR®) both require O(k2) operations due to k set intersection
operations of minimum size i each and CR® requires O(k) op-
erations as the outputs of the functions fT and ! can already
be pre-computed. Overall, computation of our metric SC hence
requires O(k?) and is independent of the size of the data collection.

6.2 Detailed Evaluation of Our Metric

We evaluate the criteria proposed in Sect. 6.1 on the data presented
in Sect. 5.1. We first analyze the Enron mailset in the sampled data
setting by splitting it in half into two disjoint subsets uniformly
at randomly, as is often done in the literature. Since the sampling
is random, we perform it ten times and then determine the mean
for each criterion. Additionally, we study the Debian and Ubuntu
mailing lists as an example of data that comes from different sources,
yet are intuitively similar. Finally, one of the security mailing lists
and the Enron corpus serve as examples of unrelated datasets.

We present the evaluation of our overall metric in Fig. 1. Overall,
our metric reflects the intuition behind the data set combinations:
Knowing the other half of Enron yields the most close dataset
according to the metric (scores around 0.85; see blue points in
Fig. 1). The semantically very similar Ubuntu and Debian datasets
still surpass a score of 0.6 while the intuitively dissimilar score
between Ubuntu and Enron is low (around 0.35).

Criteria Combinations. In Fig. 1, we look at both, all three criteria
combined, as well as only criteria [CR 1] and [CR 2] combined. As
mentioned, the statistical uncertainties are generally smaller for the
second model that does not use [CR 3]. However, there is no clear
trend for the systematic uncertainties when using only [CR 1] and
[CR 2] compared to all three criteria. Furthermore, within errors
statistical or systematic, the two variants coincide. Therefore, we
decided to include [CR 3] in the final computation of our metric, as
it is the only criterion that takes the distribution of keywords over
the documents in the dataset into account. This kind of information
is used by many attacks, making it a valuable distinguisher for
predicting attack success with our metric.

1.0 " ; .
Q(CR 1, CR2, CR3)
0.9 4— — i # u(CR 1 CR2) |
0.8 +—
g 0.7 —— &
H
3 06 ——
(=]
o
= 05
=
B o4 - -
g { §
&
0.3 —1 —
0.2
0.1
0.0
enron ubuntu ubuntu
sampled debian enron

Figure 1: Our statistical closeness metric for the Enron
mailset in the sampled data setting, the Ubuntu and Debian
mailing lists, as well as the Ubuntu and Enron data. The blue
data points show our metric computed from all three criteria,
while the green data points take only criteria [CR 1] and [CR
2] into account. The errorbars denote the resprective statisti-
cal uncertainty stemming from the statistical uncertainties
of each individual criterion. The systematic uncertainties
are represented by the colored boxes and stem from the devi-
ation between the used criteria.

7 EVALUATION OF OUR STATISTICAL
CLOSENESS METRIC

In the following sections we will compute the statistical closeness
of different datasets and evaluate it against the recovery rate of
various sampled-data attacks. Subsequently, we will compare our
metric to the co-occurrence metric suggested by [11, 37].

Implementation in LEAKER [26]. We rely on the LEAKER
framework [26] written in Python and extend it as follows. Re-
garding LEAKER’s pre-processing capabilities, we added classes
for the Ubuntu, Debian, and Google Trends data. We incorporated
re-implementations of the SAP [33] and IHOP [35] attacks, which
we verified to be correct by reproducing the original results. Our
extensions include modifications to the internal evaluator class
of LEAKER and its data collection representation to allow for the
evaluation of sampled-data attacks, which was not possible before.
Finally, we extended the module for statistical analysis with our
metric computation and the visualizer module to be able to plot
the metric results. All of this resulted in 1765 added or altered
lines of code. We have opened a pull request in the main LEAKER
repository> to open-source our code and facilitate inclusion of our
extensions into the main framework.

7.1 Evaluating Statistical Closeness Against
Recovery Rate

We evaluate the sampled-data attacks of [22, 33, 35]. Our goal is
not only to demonstrate that our metric is a very useful indicator
of attack success but also to determine the necessary quality of
adversarial knowledge. Thus, we use both the existing approach of
sampling testing and training sets from one dataset (Enron) and our
new data from different datasets (Ubuntu and Debian; cf. Sect. 5).

7.1.1 Experiment Setup. All of our evaluations are performed on a
Debian GNU/Linux 11 machine with 24 GB of RAM, 12 CPU cores,
and 64 GB of hard disk storage.

Sampled Training and Test Sets. For an accurate analysis, we
sample training and test subsets from Enron of various sizes. E.g.,
a 10 % sampling here means that both training and test data are
disjunct 10% of the data collection sampled uniformly at random.
The intuition is that the smaller the sampled subsets are, the smaller
their similarity, i.e., their statistical closeness. The number of sample
points is denoted by s in the following, e.g., sampling 10 %, 20 %, 30 %,
40 %, and 50 % yields s = 5. After sampling the datastets, we restrict
all of them to the same number of keywords ny.,, for the evaluation.
This number of keywords is also used as the parameter k for com-
puting the statistical closeness (cf. Sect. 6.1). Since the sampling is
random, we repeat it t times. Each time, the training set is given
as attacker knowledge and the testing set is used for an evaluation
(sample the attacked queries and compute their leakage).

Distinct Datasets. In addition to sampled training and training
sets, we use pairs of datasets from distinct sources. We use Ubuntu
and Debian as a pair that intuitively provides closely-related adver-
sarial information and Ubuntu and Enron that intuitively provides
unrelated adversarial information (besides being emails of the Eng-
lish language). Our aim is to include corresponding data points as

Shttps://encrypto.de/code/LEAKER

https://encrypto.de/code/LEAKER

Table 2: Summary of the attack parameters for our evalua-
tions. s is the number of sampled datasets, ng.,, is the number
of keywords we restrict each dataset to, and ng is the num-
ber of queries sampled from the query space of size Q. We
repeat the sampling process ¢ times and evaluate r runs of
each attack on all data collections.

S| Mew | ng | QI
KK [22] | 7] 500 | 15| 50| 2
SAP [33] 911000 | 100 | 150 | 10 | 20
THOP [35] | 9 | 1000 | 100 | 150 | 5| 5

a way of seeing both that the intuition is reflected by the statistical
closeness and how it relates to attack success.

Evaluation Runs. For each attack, we evaluate r runs. For each
run, a new set of ng keywords is sampled from the query space Q
of the test set. If not otherwise specified, the query space consists
of the 150 most frequent keywords* and we sample ng =100 key-
words at random from it. Hence, in total, for each of the s sampled
datasets, we have t X r recovery rates, for which we compute the
mean recovery rate and display it together with the minimum and
maximum recovery rates as uncertainty range. For datasets from
different sources, we get r recovery rates to average. We choose the
values of evaluation parameters depending on the runtime of the
corresponding attack for feasibility. A summary of the parameters
is given in Tab. 2.

7.1.2 Evaluating Statistical Closeness With IKK [22]. We present
the results in Fig. 2. Note that the experimental parameters in
this instance consist of a comparatively low number of queries,
keywords, and evaluations. This stems from the computational
complexity of the attack; we had to restrict the data collections in
order to obtain a sensible trade-off between experiment runtime
and ideal parameters.

0.8 1 ial fil -10. @2281-x :
= = exponential fit: 1.22-1071%. ¢ 1
y . -1
07+ fit uncertainty 1
i H enron sampled from 0.2% to 50% I
064 HH ubuntu - debian g
i H#H ubuntu - enron 1y
8 05
] 4
o«
fend
504 18
3
o I
& 03 !
y 1L
1
0.2 r'
/]
0.1 7
0.0 I =t
0.2 0.4 0.6 0.8 1.0

Statistical Closeness

Figure 2: Evaluation of the recovery rate of the IKK at-
tack [22] against our statistical closeness metric.

4This is a common evaluation in ESA cryptanalysis, experimentally verified by [26] in
the sense that real-world query logs contain high frequency keywords.

The relation between the recovery rate and the statistical close-
ness can be described by an exponential fit (cf. fit curve of Fig. 2).
At a statistical closeness of around 0.9, the recovery rate of the IKK
attack goes down to around 10 %, although the recovery rates are
much higher for closer data collections, with a best case of 80 % and
an average of 57 % for the largest sampled data collections. For the
Ubuntu and Debian mailing lists we only see an average recovery
rate of only 2% and a best case of 7 % (cf. Fig. 2). The IKK attack
was not able to recover even a single query for the Ubuntu and
Enron data in any run.

7.1.3 Evaluating Statistical Closeness With SAP [33]. The results of
this evaluation are shown in Fig. 3. We evaluate the attacks only on
response length information, as we cannot consider query equality
information for our Ubuntu/Debian data.

0.35 T T T T
— — exponential fit: 3.40-107% - 876
0.30 fit uncertainty
H enron sampled from 0.2% to 50%
0.25 " ubuntu- debian
’ & ubuntu - enron
° H-
£ o020 7
-3 i
>
[
% 0.15 il
& o /
0.10 A
| 2
0.05 N = =
= ==t
0.00 - ===

0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 10
Statistical Closeness

Figure 3: Evaluation of the recovery rate of the SAP [33]
attack against our statistical closeness metric using only re-
sponse length information.

As for IKK, we observe a strong exponential relation between
the statistical closeness of the training and testing data and the
achieved recovery rate of the SAP attack. In the best case with a
statistical closeness of 0.97, SAP recovers up to one third of the
queried keywords. However, the recovery rate drops fast for data
collections less close to each other. At a statistical closeness of
around 0.9, it is already below 10 % recovery on average. The Ubuntu
and Debian datasets have a statistical closeness of almost 0.65,
which allows the attack to only recover around 2—3 % of the queried
keywords on average. Attacking Enron with Ubuntu training data
results in less than 1 % recovery.

7.1.4 Evaluating Statistical Closeness With IHOP [35]. The results
of this evaluation are shown in Fig. 4. For reasons similar to the case
of SAP, we evaluate the attacks only on co-occurrence information.

We again observe a strong exponential relation. IHOP achieves
higher recovery rates than IKK and SAP, e.g., over 35 % for a statisti-
cal closeness of 0.93. However, the overall relation between recovery
and closeness is similar to IKK and SAP, since these higher rates
are only achieved once a closeness of around 0.82 is reached. A
lower closeness results in less than 10% recovery. Performance of

0.7 1 T T T]
— — exponential fit: 3.32- 1078 g12.62:x 1
0.6 1 fit uncertainty |
HH enron sampled from 0.2% to 50% ’_"
H# ubuntu - debian
05 T\ ubuntu - enron
&
T 0.4 I
o« —
> I
o
3 03
g]
o«
L
0.2 7
ST
0.1
ks
0.0 = L
0.0 0.2 0.4 0.6 0.8 1.0

Statistical Closeness

Figure 4: Evaluation of the recovery rate of the IHOP [35]
attack against our statistical closeness metric using only co-
occurrence information.

the attack in the Ubuntu-Debian setting is very similar to that of
SAP. For Ubuntu-Enron, it is slightly more successful than SAP but
the mean recovery stays close to 0.

7.1.5 Summary. In short, the experimental relation between our
statistical closeness metric and attack performance is exponential.
We refer to Tab. 1 in Sect. 1.1 as a summary of our experiments
in the form of statistical closeness values necessary to correctly
uncover more than specific fractions of queries. If this fraction of
queries is determined to be a level of significance, our evaluations
demonstrate that instances with a corresponding statistical close-
ness are vulnerable to attacks. E.g., the evaluated attacks require
a statistical closeness of more than 0.8 to recover about 10 % of
the queries. Crucially, we only encountered such statistically close
data when sampling from the same data source (the Enron dataset).
The intuitively similar and statistically close datasets Ubuntu and
Debian (statistical closeness of around 0.65), however, are not close
enough to be subject to significant recovery rates. We thus demon-
strate an empirical exponential relationship between attack success
and statistical closeness and show that related data from separate
sources does not reach significant closeness.

Outlook. Of course, future attacks may change this empirical basis,
but our metric can serve as an indication of attack performance of
the current state-of-the-art in sampled-data attacks. Subsequent at-
tack improvements (e.g., IHOP [35] improving upon IKK [22]) raise
the overall recovery rates in our experiments. However, the gen-
eral exponential relationship between recovery rate and statistical
closeness holds for all evaluated attacks. Assuming this relationship
remains in place for future attack improvements, these may likely
only lower the cut-off values at which points the recovery reaches
significant levels. This is already visible in Tab. 1, where IHOP
lowers the cut-off values by up to 8% compared to IKK. Hence, it
remains open to develop attacks that can lower the cut-off values to
the levels of data collections from differently sourced datasets (like
Ubuntu and Debian), especially for use cases where one of these

sources is public and the other one is private and target of attacks.

7.2 Comparison to Co-Occurrence Similarity

In this section, we compare our newly developed metric with the
co-occurrence simiarity measurement used by [11, 37]. The co-
occurrence similarity computes the absolute distance between the
co-occurrence matrices of two datasets.

Experiment Setup. We use the formulas given by [37] for the
same datasets of our metric evaluation in Sect. 7.1 w.r.t. the ability
to predict the recovery rate of the IKK attack [22] for samples of
different sizes from the Enron mailset. We focus on the IKK attack
since it was the subject of the co-occurrence similarity design and
evaluation of [37]. The parameters for the attack are chosen exactly
like in Sect. 7.1.

1.000 1+ ™

0.975 . @

0.950 ST

0.925 &

0.300

0.875

Statistical Closeness

0.850

/
|
!
0.825 1
1 W8 Statistical Closeness Metric: Enron sampled
|
' Co-Occurrence Similarity: Enron sampled
I 1 1 1 1 I
t t t

0.6 0.7 0.8

0.800

T t t
0.0 0.1 0.2 03 0.4 0.5
Recovery Rate

Figure 5: Comparison of co-occurrence similarity [37] and
our statistical closeness metric. The plot shows the values of
both similarity measures for data collections sampled from
the Enron mailset at sizes between 0.8 % and 50 % of the origi-
nal dataset on the y-axis. The x-axis shows the corresponding
recovery rate of the IKK attack [22].

Results. We present the results of our comparison in Fig. 5. While
the x-axis (attack performance) values remain the same, the differ-
ent metrics attain vastly different values (y-axis). Our first observa-
tion is that the co-occurrence similarity stays constant for sample
sizes from below 2 % up to 50 % of the original dataset size, although
the recovery rate for those samples drastically changes. While we
can recover almost 60 % of the queries on average when splitting
the Enron dataset in half, the recovery rate drops below 10 % for
the smaller sample sizes. This change in recovery rate cannot be
predicted by the co-occurrence similarity which shows an agree-
ment of almost 100 % for all of those data points. Only for sample
sizes smaller than 1 % of the original dataset size the co-occurrence
similarity decreases slightly. However, it is still extremely high with
a value of almost 99 %, despite the fact that on average only 1 % of
the queries can be reconstructed for this data.

Comparison to Our Metric. In contrast, our metric provides a
much more fine-grained measure of the statistical closeness of dif-
ferent datasets. The values of our metric are clearly distinguishable
for different sample sizes, which agrees well with the differences in

recovery rate. As the relation between the recovery rate and the
statistical closeness of the datasets follows an exponential function,
we can fit a logarithmic curve to our data points. The fit nicely de-
scribes all the evaluated data points and allows to make predictions
on the necessary statistical closeness of two datasets in order to
achieve a certain recovery rate. Therefore, for measuring sampled-
data attack success on various ESA attack instances, our statistical
closeness metric can give consistent estimates. Furthermore, it is
computationally much less intense (independent of collection size
vs. quadratic costs of co-occurrence similarity; cf. Sect. 6.1).

Although [37] also discovered an exponential correlation be-
tween the recovery rate of IKK and the co-occurrence similarity,
we were not able to find a suitable fit function.

8 RE-EVALUATION OF THE ATTACKS

The evaluations conducted in Sect. 7 show a clear relation between
our statistical closeness metric and attack efficacy. However, further
evaluation aspects may influence the way one can interpret ESA
attacks, some of which may be specific to certain attacks. Therefore,
in this section, we re-evaluate the prominent sampled-data attacks
of [33, 35]° with varying parameters and data to uncover further
relations between the way attacks are evaluated and their efficacy.
With our Debian and Ubuntu datasets, we are for the first time in the
position to investigate sampled-data attack parameters on testing
and training data from distinct yet semantically similar datasets.
With the TAIR data, we for the first time can evaluate sampled-
data attacks with a real-world query log.® In the following we use
this data to obtain evaluation results regarding parameters that
significantly affect attack performance compared to the original
manners of evaluating them.

8.1 Experiment Setup

We use the same machine as in Sect. 7.1.1. We fix parameters to
obtain feasible runtimes while varying those parameters that in-
fluence attack performance. While some parameters could also be
chosen differently, we had to make a trade-off between breadth
and (runtime) feasiblity of our evaluations to obtain useful results.

Training and Testing Sets. If we use a data collection from a single
dataset source (Enron or TAIR), we sample and split it (50%) into
testing and training data collections as in Sect. 7.1.1 and denote it as
“sampled”. For the combination of the Ubuntu and Debian datasets,
we use Ubuntu as training set and Debian as testing set. We always
use partial query sampling, i.e., the queries have to occur in the
adversary’s knowledge. We use query data from Google Trends and
the TAIR query log to form testing and training query sets. We use
Google Trends on all data collections. Additionally, we use the TAIR
query log on the TAIR data collection. When using Google Trends
data, we split the testing and training data to comprise n,, weeks
of query data for varying values of n,,. There is a 5 week offset
between testing and training data, i.e., the last n,, weeks of data of
Google Trends are used as testing set, and the last 2n,, +5 to n,, +5
weeks of the data are used as training set. For each week in the
testing set, we sample ng/n,, queries as the user’s queries, resulting

SWe omit a re-evaluation of IKK [22] because this was already provided by [37].
®While [26] used query logs, they only considered known-data attacks in their re-
evaluations.

in a total number of ng queries. As the queries are sampled weekly,
the queries can repeat. When using TAIR data, we use the testing
set to populate a query space size of 500 and sample ng = 100
queries (unless specified otherwise) with repetition from it per run
according to the query frequencies in the testing set.

Evaluation Runs. We sample fresh training and testing data ¢ times.
Each time, we further sample a new set of queries from the query
space r times. The concrete values for ¢ and r are the same as in
Sect. 7.1.1 (cf. Tab. 2). The attacker in each instance is given the
training set and the leakage computed on the queries from the
testing set. From all runs of an attack, we compute the mean recov-
ery rate and display it together with the minimum and maximum
recovery rates as uncertainty range.

8.2 Evaluating SAP

The SAP attack [33] uses the RLEN and QEQ/QFREQ patterns. As
static evaluation parameters, we chose ng = 250 and n,, = 50.

Attack Parameters. The primary attack parameter is «, which
refers to the weight assigned to the response length and query
frequency information utilized by the attack. More formally, SAP
solves the following equation depending on «, whereby P is a
permutation matrix assigning query tokens to uncovered plain-
texts, CrLEN is a cost metric relying on differences between RLEN
leakage and auxiliary information, and Corrgg is an analogous
cost metric relying on QFREQ leakage:

argminp (P [(1 — a)CRLEN + aCQFREQ])

Hence, @ = 0 means only RLEN information is used, whereas o =
0.5 means both information is weighted equally. Secondly, the attack
has a number of chosen keywords n.. The adversary chooses a list
of n. keywords for which it has auxiliary information. The attack
is then only evaluated on these keywords. Thus, the attack has the
strong assumption that the user only queries keywords from the
adversarially chosen keyword list. While a similar assumption that
we also make in parts (partial query sampling) is prominent in the
literature, e.g., [4, 26], the difference here is that the attacker can
choose this set. In contrast, for partial query sampling the keyword
list is just the keyword universe of the training data. To evaluate
its influence, we will vary the value of n..

Further Evaluation Aspects. We additionally evaluate the attack
on the TAIR data collection together with its query log. The query
log can either be used solely for the evaluation given & = 0 or it can
be used both for the evaluation and as auxiliary QEQ information by
splitting into training and testing data. When using the query log,
we choose all keywords in the training data as chosen keywords.

8.2.1 Results. Fig. 6 shows our results for various « on all datasets.
First, the combination of both leakage patterns yields the highest
recovery rate for each setting, which confirms the result of the
original paper [33]. Secondly, we observe that a lower number of
chosen keywords allows to recover more of the queries, which was
also mentioned by [33]. With a high n, = 3000, performance is
heavily degraded (compare the right plot of Fig. 6 to the left one
where n, = 100). Thus, the less information an attacker has on
what keywords the user may query for, the less successful it will be.
Another interesting observation is that while there are settings of

—4— tair sampled + query log
—§— tair sampled, 100 keywords
enron sampled, 100 keywords

0.9 l

0.8

—$— ubuntu - debian, 100 keywords

~¥— ubuntu - enron, 100 keywords
1

0.7 .

0.6

0.5

Recovery Rate

0.4 1

0.3 1y

02 ¥ —)
01

0.0

0.50
alpha

0.75

—&— tair sampled, 3000 keywords
enron sampled, 3000 keywords

—&— ubuntu - debian, 3000 keywords
—¥— ubuntu - enron, 3000 keywords

Ly

0.9

0.8

0.7

0.6

0.5

0.4

Recovery Rate

03

0.2

0.1

0.0 T

0.00 0.25 0.50

alpha

0.75

Figure 6: Evaluation of the SAP attack [33] for different values of « against different combinations of datasets. The right plot
shows the recovery rates of SAP for 3 000 chosen keywords and different combinations of datasets. The same is depicted in the
left part of the figure for 100 chosen keywords. In addition, the recovery rate of SAP against the sampled TAIR database using
the corresponding query log is plotted (cyan diamonds), where the chosen keywords consist of all keywords in the training set.

T T
1.0 #® & tair sampled il
enron sampled
& & ubuntu - debian
0.8 ® & tair sampled + query log |
a
G 06 |
o<
fal
@
z
3
3 04
-4
* & 4
1 e
b 4
0.2 I
l q !
0.0] L b L -
o 500 1000 1500 2000 2500 3000

Number of Chosen Keywords

e [] ublintu - debian
® enronsampled 5%
@ enron sampled 50%

0.8

R 71 T s 2 A

T 0.6

B ! l /?‘*

"I"Hr
/’HL’-L e
00 9 3ds-3-84 3

10! 102 10° 10 10°
Number of Queries

Figure 7: Evaluation of the IHOP attack [35] against different combinations of datasets. The left plot shows the recovery rates
of THOP for varying numbers of chosen keywords and different combinations of datasets. The circles show the recovery rates
in the co-occurrence-only mode and the stars denote the recovery rates in the combined mode (using co-occurrence and query
equality information). In addition, the plot shows the recovery rate of TAIR evaluated with its query log. In the right plot, the
recovery rate of IHOP in combined mode is depicted for different numbers of queries.

the attack in which we can recover a significant amount of queries
using actually different data sources (e.g., for 100 chosen keywords
26.8 % recovery on Ubuntu-Debian; cf. left plot of Fig. 6), these are
solely achieved when the auxiliary query information is from the
same source as the testing data (Google Trends). For @ = 0 the
recovery rates are almost 0.

Influence of a Query Log. Interestingly, the recovery rate of the
attack run against the sampled TAIR data collection with the TAIR
query log (cf. left plot of Fig. 6) is the highest of all with a mean
recovery rate of 75.8 % for a = 0.5, despite having over 39 000 key-
words in the keyword space (and, hence, the chosen keyword list).
A stark difference to the evaluation without the query log’ can

Recall that without the query log, the evaluation uses queries and auxiliary informa-
tion from Google Trends as in the original evaluation [33] (cf. Sect. 8.1), which were
not originally performed on the TAIR data collection.

be observed (below 10% recovery for 3000 chosen keywords; cf.
right part of Fig. 6). We believe this stems from the fact that in
contrast to Google Trends, the queries of the query log were actu-
ally performed on the TAIR data collection. Therefore, evaluating
queries that are more closely related to the data collection rather
than queries from a different source results in higher recovery rates
and higher rates than those of the original evaluations. It is, how-
ever, not to be confused with the evaluation aspect of emulating
adversary information. For TAIR, this information is from the same
data source as the private information for both the evaluations with
and without its query log. It, hence, remains open how the attack
would perform in an evaluation on queries issued on the target data
collection while having no adversarial information that stems from
the same source as the target data and/or queries. Unfortunately,

we cannot evaluate this, as we could not find a query log for our
Ubuntu and Debian datasets.

8.3 Evaluating IHOP

Like SAP [33], the THOP attack [35] combines different informa-
tion (co-occurrence and query equality).® Due to its computational
complexity, we restrict each data collection to the 5000 most com-
mon keywords and set n,, to either be 10 or 50, depending on the
resource demands of the evaluation. We evaluate parameters for
a fixed numer of queries ng, which in all cases except TAIR we
set to be 1000. For TAIR, we can only generate ng = 100 queries
due to resource limitations. Additionally, we evaluate the attack for
varying ng on the Enron, Ubuntu, and Debian datasets, because we
observed that varying this parameter can influence results.

Attack Parameters. For simplicity, we also use the same parame-
ter as in SAP to denote the modes, using a = 0 to refer to pure
co-occurrence mode and @ = 0.5 for the combination (which we
call “combined mode”). IHOP also operates on a list of n. keywords
chosen by the adversary. Hence, in our re-evaluation we vary all
these parameters and additionally investigate the usage of a query
log (either as a means for evaluation with a = 0 or also split up
into training and testing data for a = 0.5). For fixed ng, we vary the
number of chosen keywords n.. For varying ng, we fix n. = 100.
When using the TAIR query log, we again set the chosen keyword
list to be equal to the keyword universe of the training set.

8.3.1 Results. Fig. 7 shows the results of our re-evaluation of THOP.
Our first observation (cf. left plot of Fig. 7) is that combining CO
and QEQ information leads to slightly better recovery rates for
most numbers of chosen keywords. Furthermore, we see that the
dependence of the recovery rate on the number of chosen keywords
is negligible. Although the recovery rate decreases slightly when
more keywords are selected, this decrease is not significant. In con-
trast to the SAP attack (cf. Sect. 8.2.1), where a higher number of
selected keywords resulted in almost no recovery, this is a huge
improvement. The recovery rates on the Ubuntu and Debian com-
bination of training and testing sets remain low (almost exclusively
below 15 %). Like for the SAP attack, the recovery rate of the IHOP
attack run against the sampled TAIR data collection with the TAIR
query log is the highest of all. The mean recovery rate is 99.4 % for
both the co-occurrence-only mode and the combined mode, despite
having no restriction on the number of chosen keywords. This
stands in contrast to recovery below 40% for TAIR in our setting
without query log, i.e., the setting of previous evaluations where
unrelated Google Trends data is used for queries. As in the case of
SAP (cf. Sect. 8.2.1), we attribute this to the difference in evaluation
data, whereby the attack performs much better on queries related to
the data. It, however, also still remains open how the attack fares on
data collections from different sources but with evaluated queries
actually issued on the data collection.

Number of Queries. The right part of Fig. 7 shows the recovery
rate of IHOP for different numbers of queries in combined mode.
We see that the recovery rate increases with the number of queries,
following a logarithmic function. This is especially visible for the 5 %

8[35] also presents a QEQ-only attack assuming dependent queries. Like most other
works, we only consider independent queries.

Table 3: Influence of evaluation choices on the recovery rate
of SAP [33] and IHOP [35]. ~ denotes approximately constant
behavior. +/— denotes a positive/negative correlation and the
number of +/— signs the correlation strength.

SAP [33] | IHOP [35]
Evaluation on query log ++ +++
Number of queries ngq ~ +
Number of chosen keywords n. -— ~

sample of Enron, where the recovery climbs from around 20 %
atng =50 to almost 60 % at ng = 50000. Thus, a larger number of
observed queries leads to a higher recovery rate.

8.4 Summary

Tab. 3 summarizes the most important evaluation choices and their
influence on the recovery rate of the attacks. While SAP [33] suffers
from diminishing performance if the number of chosen keywords
is large, this is not the case for IHOP [35]. A noticeable positive
influence on attack performance is usage of a query log, both for
usage as only testing set or for usage as testing and training set.
However, these instances of high attack performance with query logs
are only observed on data from a single source (the TAIR dataset).

Outlook. An interesting open problem emerges from our results,
namely evaluating sampled-data attacks on query logs whereby
the training and testing data stem from different sources and the
query log has been issued on the testing data.” Such an instance
is hard to find with publicy available data. However we expect
corresponding evaluations, for example with the help of providers
with access to relevant data for research purposes, to be a further
important contribution in understanding how realistic successful
sampled-data leakage attacks are.

9 CONCLUSIONS

We proposed a new metric for the statistical closeness of two data
collections and demonstrated that it can be used to predict success
of sampled-data leakage attacks on corresponding instances of ESAs.
We re-evaluated sampled-data attacks against new data (query logs
and collections from distinct sources) and found that query logs
improve attack accuracy while the evaluation on distinct sources
diminishes it. To fully model the common persistent, passive ad-
versary type, evaluations on data from both distinct sources and
with corresponding query logs are necessary. This remains an open
problem, as we did not have access to such data.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their suggestions. This
project received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850990 PSOTI). It was cofunded
by the Deutsche Forschungsgemeinschaft (DFG) within SFB 1119
CROSSING/236615297 and GRK 2050 Privacy & Trust/251805230.

%Ideally, another query log issued on the training data may further be supplied to the
adversary to exploit QEQ information.

REFERENCES

(1]

[2

(3]

[

=

[10]

[11]

[12

[13]

[14

[15

[16
[17]

=
&

[19

[20

[21]

[22

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.
Order preserving encryption for numeric data. In International Conference on
Management of Data (SIGMOD).

Ghous Amjad, Seny Kamara, and Tarik Moataz. 2019. Breach-Resistant Structured
Encryption. In Proceedings on Privacy Enhancing Technologies (PoPETS), Vol. 2019.
Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and
efficiently searchable encryption. In Annual International Cryptology Conference
(CRYPTO).

Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. In Network and Distributed System Security Symposium (NDSS).
Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Defini-
tions and challenges. In Theory of Cryptography Conference (TCC).

David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In ACM SIGSAC Conference on
Computer and Communications Security (CCS).

Yan-Cheng Chang and Michael Mitzenmacher. 2005. Privacy preserving key-
word searches on remote encrypted data. In International Conference on Applied
Cryptography and Network Security (ACNS).

Melissa Chase and Seny Kamara. 2010. Structured encryption and controlled
disclosure. In International Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT).

William W. Cohen. 2015. Enron Corpus. Accessed 2023-05-07, https://www.cs.
cmu.edu/~./enron/.

Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable
symmetric encryption: Improved definitions and efficient constructions. In ACM
SIGSAC Conference on Computer and Communications Security (CCS).

Marc Damie, Florian Hahn, and Andreas Peter. 2021. A Highly Accurate Query-
Recovery Attack against Searchable Encryption using Non-Indexed Documents.
In USENIX Security Symposium (USENIX Security).

Debian Mailing Lists. 2022. debian-security-announce. Accessed 2022-10-04,
https://lists.debian.org/debian-security-announce/.

Maria Esch, Jinbo Chen, Stephan Weise, Keywan Hassani-Pak, Uwe Scholz, and
Matthias Lange. 2014. A Query Suggestion Workflow for Life Science IR-Systems.
Journal of Integrative Bioinformatics (2014).

Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Ham-
lin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K Cunning-
ham. 2017. SoK: Cryptographically protected database search. In IEEE Symposium
on Security and Privacy (S&P).

Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In ACM
Symposium on Theory of Computing (STOC).

Eu-Jin Goh. 2003. Secure Indexes. IACR ePrint 216 (2003).

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental
game. In ACM Symposium on Theory of Computing (STOC).

Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996).

Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018.
Pump up the volume: Practical database reconstruction from volume leakage
on range queries. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

Zichen Gui, Kenneth G Paterson, and Sikhar Patranabis. 2023. Rethinking Search-
able Symmetric Encryption. In IEEE Symposium on Security and Privacy (S&P).
Zichen Gui, Kenneth G Paterson, and Tianxin Tang. 2023. Security Analysis
of {MongoDB} Queryable Encryption. In 32nd USENIX Security Symposium
(USENIX Security 23). 7445-7462.

Islam Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012.
Access pattern disclosure on Searchable Encryption: Ramification, Attack and
Mitigation. In Networkand Distributed System Security Symposium (NDSS).

[23

[24

[25]

[26]

[27

[28

[29

[35

[36

[38]

[39

[40

[41

[42

Mireya Jurado, Catuscia Palamidessi, and Geoffrey Smith. 2021. A formal
information-theoretic leakage analysis of order-revealing encryption. In IEEE
Computer Security Foundations Symposium (CSF).

Mireya Jurado and Geoffrey Smith. 2019. Quantifying information leakage
of deterministic encryption. In ACM SIGSAC Conference on Cloud Computing
Security Workshop (CCSW).

Seny Kamara, Abdelkarim Kati, Tarik Moataz, Jamie DeMaria, Andrew Park, and
Amos Treiber. 2023. MAPLE: MArkov Process Leakage attacks on Encrypted
Search. IACR ePrint 810 (2023).

Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber,
and Michael Yonli. 2022. SoK: Cryptanalysis of Encrypted Search with LEAKER -
A framework for LEakage AttacK Evaluation on Real-world data. In IEEE European
Symposium on Security and Privacy (EuroS&P).

Seny Kamara and Tarik Moataz. 2023. Bayesian Leakage Analysis: A Framework
for Analyzing Leakage in Encrypted Search. IACR ePrint 813 (2023).

Evgenios M Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and
Alexandros Psomas. 2022. Leakage Inversion: Towards Quantifying Privacy in
Searchable Encryption. In ACM SIGSAC Conference on Computer and Communi-

cations Security {lCCS).
Philippe Lamesch, Kate Dreher, David Swarbreck, Rajkumar Sasidharan, Leonore

Reiser, and Eva Huala. 2010. Using The Arabidopsis Information Resource (TAIR)
to Find Information About Arabidopsis Genes. Current Protocols in Bioinformatics
30,1 (6 2010).

Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu an Tan. 2014. Search pattern
leakage in searchable encryption: Attacks and new construction. Information
Sciences 265 (2014).

Google LLC. 2023. Google Trends. Accessed 2023-05-07, https://trends.google.
com/trends.

MongoDB. 2023. MongoDB Manual. Accessed 2023-07-10, https://www.mongodb.
com/docs/manual/core/queryable-encryption/.

Simon Oya and Florian Kerschbaum. 2020. Hiding the Access Pattern is Not
Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In USENIX
Security Symposium (USENIX Security).

Simon Oya and Florian Kerschbaum. 2020. Pre-Processed Google Trends Data.
Accessed 2023-05-07, https://github.com/simon-oya/USENIX21-sap-code/blob/
master/datasets_pro/enron_db.pkl.

Simon Oya and Florian Kerschbaum. 2022. IHOP: Improved Statistical Query
Recovery against Searchable Symmetric Encryption through Quadratic Optimiza-
tion. In USENIX Security Symposium (USENIX Security).

Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa. 2020. Practical
volume-based attacks on encrypted databases. In IEEE European Symposium on
Security and Privacy (EuroS&P).

Ruben Groot Roessink, Andreas Peter, and Florian Hahn. 2021. Experimental
Review of the IKK Query Recovery Attack: Assumptions, Recovery Rate and
Improvements. In International Conference on Applied Cryptography and Network
Security (ACNS).

Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-
niques for searches on encrypted data. In IEEE Symposium on Security and Privacy
(S&P).

Ubuntu Mailing Lists. 2022. The ubuntu-security-announce Archives. Accessed
2022-10-12, https://lists.ubuntu.com/archives/ubuntu-security-announce/.
Charles V Wright and David Pouliot. 2017. Early detection and analysis of leakage
abuse vulnerabilities. IACR ePrint 1052 (2017).

Andrew C Yao. 1982. Protocols for secure computations. In Annual Symposium
on Foundations of Computer Science (FOCS).

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All your
queries are belong to us: The power of file-injection attacks on searchable en-
cryption. In USENIX Security Symposium (USENIX Security).

https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/
https://lists.debian.org/debian-security-announce/
https://trends.google.com/trends
https://trends.google.com/trends
https://www.mongodb.com/docs/manual/core/queryable-encryption/
https://www.mongodb.com/docs/manual/core/queryable-encryption/
https://github.com/simon-oya/USENIX21-sap-code/blob/master/datasets_pro/enron_db.pkl
https://github.com/simon-oya/USENIX21-sap-code/blob/master/datasets_pro/enron_db.pkl
https://lists.ubuntu.com/archives/ubuntu-security-announce/

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Encrypted Search
	2.2 Leakage Attacks
	2.3 Leakage Quantification

	3 Preliminaries
	3.1 Notation
	3.2 Encrypted Search Algorithms (ESAs)
	3.3 Leakage
	3.4 Adversary Models
	3.5 Leakage Attacks

	4 Considered Sampled-Data Attacks
	4.1 IKK
	4.2 SAP
	4.3 IHOP

	5 Used Data Sources
	5.1 Email Data
	5.2 Genetic Data
	5.3 Search Engine Data

	6 Our Statistical Closeness Metric
	6.1 General Design
	6.2 Detailed Evaluation of Our Metric

	7 Evaluation of Our Statistical Closeness Metric
	7.1 Evaluating Statistical Closeness Against Recovery Rate
	7.2 Comparison to Co-Occurrence Similarity

	8 Re-Evaluation of the Attacks
	8.1 Experiment Setup
	8.2 Evaluating SAP
	8.3 Evaluating IHOP
	8.4 Summary

	9 Conclusions
	Acknowledgments
	References

