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Abstract

Vectorial dual-bent functions have recently attracted some researchers’ interest as they play a sig-
nificant role in constructing partial difference sets, association schemes, bent partitions and linear codes.
In this paper, we further study vectorial dual-bent functions F : "P) P where 2 < m < 2, ()
denotes an n-dimensional vector space over the prime field IF,,. We give new characterizations of certain
vectorial dual-bent functions (called vectorial dual-bent functions with Condition A) in terms of amorphic
association schemes, linear codes and generalized Hadamard matrices, respectively. When p = 2, we
characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Furthermore,
we characterize certain bent partitions in terms of amorphic association schemes, linear codes and
generalized Hadamard matrices, respectively. For general vectorial dual-bent functions F' : V,Sp ) — V,gf’ )
with F/(0) = 0, F(z) = F(—x) and 2 < m < &, we give a necessary and sufficient condition on
constructing association schemes. Based on such a result, more association schemes are constructed

from vectorial dual-bent functions.

Index Terms

Vectorial dual-bent functions; Association schemes; Generalized Hadamard matrices; Linear codes;

Bent partitions; Partial difference sets

I. INTRODUCTION

Boolean bent functions were introduced by Rothaus in [17], which have been extensively

studied due to their important applications in cryptography, coding theory, combinatorics and
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sequences. Please refer to book [13] for further understanding Boolean bent functions and their
generalizations, such as p-ary bent functions and vectorial bent functions, where p is an odd
prime.

As a special class of vectorial bent functions, vectorial dual-bent functions introduced by
Cesmelioglu et al. [8] have attracted some researchers’ research interest due to their significant
applications in constructing partial difference sets [6], [7], [21], association schemes [3], bent
partitions [23] and linear codes [24]. Recently, for certain vectorial dual-bent functions F' :
V,® — VP (called vectorial dual-bent functions with Condition A), where V") denotes an n-
dimensional vector space over the prime field IF,,, Wang et al. in [23] provided a characterization
in terms of partial difference sets. Furthermore, when p is an odd prime, they provided a
characterization in terms of bent partitions. When p = 2, they showed that vectorial dual-
bent functions with Condition A can be used to construct bent partitions, but they did not
give a characterization of vectorial dual-bent functions with Condition A in terms of bent
partitions. As far as we know, apart from the literature [23], there is a lack of research on
the characterizations of vectorial dual-bent functions. As to the applications, Anbar et al. in [3]
considered using vectorial dual-bent functions to construct association schemes. Also, they in [1]
used bent partitions to construct association schemes. Anbar et al. showed that vectorial dual-
bent functions F : V¥ — V) with F(0) = 0 and all component functions F,,c € Vi¥\{0}
being regular or weakly regular but not regular (that is, the corresponding €5, c € v )\{0} are
all the same) can induce association schemes. Note that for such vectorial dual-bent functions, n
must be even. It is interesting to investigate whether there are other vectorial dual-bent functions
which can be used to construct association schemes.

In this paper, we further study vectorial dual-bent functions F': VP V% where 2 < m <
5. We summarize our contributions as below.

o For any prime p, we provide new characterizations of vectorial dual-bent functions F' :
Vn(p ) — Vn(f ) with Condition A in terms of amorphic association schemes, linear codes and
generalized Hadamard matrices, respectively.

« We present the relations between bent partitions of V,? of depth 2" and the corresponding
vectorial bent functions, based on which we characterize vectorial dual-bent functions with
Condition A in terms of bent partitions when p = 2.

o Based on the relations between vectorial dual-bent functions with Condition A and bent
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partitions, we give new characterizations of certain bent partitions in terms of amorphic
association schemes, linear codes and generalized Hadamard matrices, respectively.

For general vectorial dual-bent functions F : V;”) — V;) with F(0) = 0, F(z) = F(—xz)
and 2 < m < 2, a necessary and sufficient condition on constructing association schemes
from F' is presented. Based on such a result, more association schemes are constructed by
using two classes of vectorial dual-bent functions F' : V") — V%) for which n can be odd,

or n is even and the corresponding ¢, ¢ € V;¥\{0} are not all the same.

The rest of the paper is organized as follows. Section II provides necessary preliminaries. In

Sections III-VI, we provide some new characterizations of certain vectorial dual-bent functions.

In Section VII, some new characterizations of certain bent partitions are presented. In Section

VIII, for certain vectorial dual-bent functions, a necessary and sufficient condition on constructing

association schemes is given. In Section IX, we make a conclusion.

II. PRELIMINARIES

In this section, we give the needed results on vectorial dual-bent functions, bent partitions,

partial difference sets, association schemes, generalized Hadamard matrices and linear codes,

respectively. First, we fix some notations used throughout this paper.

. . 2ry/—1 | ... .
p is a prime and (, = e » is a complex primitive p-th root of unity.

F,» is the finite field with p™ elements.

[} is the vector space of the n-tuples over [,.

Vi) is an n-dimensional vector space over F,.

(-}, denotes a (non-degenerate) inner product of V") In this paper, when VP = Fpn,
let (a,b),, = Tr}(ab), where a,b € Fyn, Tr]"(-) denotes the trace function from [F,~ to
F,m, m | n; when V) = F7, let (a,b), = a-b= 3", ab; where a = (a1,...,a,),b =
(br, ..., b,) € Fry when VP = ViV - x VP (n = 0 my), et (a,b) = 320 @i, bid s
where a = (ay,...,as),b=(by,...,bs) € /A2

For any set A C V'), let A* = A\{0} and y.(4) = > wen Xul(®),u € V.'?), where .,
denotes the character Y, (z) = ¢"“".

For a function F : V¥ — V%) let Dp; = {& € V' : F(z) = i},i € V,¥ and
FVP") = {F(z),z € VP ).
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« For any set A, let 4 be the indicator function. In particular, if A = {a}, we simply denote

5{a} by (Sa.

A. Vectorial dual-bent functions

A function from V") to V,¥) is called a vectorial p-ary function, or simply p-ary function

when m = 1. For a p-ary function f : Vn(p ) — ), the Walsh transform W is defined as

Wyla) = Y ¢f@@mn qe V@), (1)

xEVTEp)

The p-ary function f can be recovered by the inverse transform

1
GO = 2 Wila)g Tz e VP, 2)

aEVTSp )
A p-ary function f : V;” — F,, is called bent if |W;(a)| = p? for any a € Vi\"). When p = 2,
that is, f is a Boolean bent function, then n must be even. The Walsh transform of a p-ary bent

function f : V;? — [F, satisfies that when p = 2, then
Wya) =28 (-1)"" @, a e V7, (3)
and when p is an odd prime, then

:I:p%(f(“), if p=1 (mod 4) or n is even,
Wy(a) = o )
£v/—1p2¢/"@, if p=3 (mod 4) and n is odd,
where f* is a p-ary function from VP 1o [F,, called the dual of f. A p-ary bent function
Fve [, is said to be weakly regular if W;(a) = 5fpggg*(a), where €/ is a constant
independent of a, otherwise f is called non-weakly regular. In particular, if Wy(a) = p%g}f *(a),

that is, e = 1, then f is called regular. All Boolean bent functions are regular. The dual f* of

a weakly regular bent function f is also a weakly regular bent function and

() (z) = f(—x),ep0 = 5. (5)

A vectorial p-ary function F : V") — V%) is called vectorial bent if all component functions
F. VP 5 F, ce V¥ defined as F.(z) = (c, F(x))n are bent. It is known that if F : V;) —
V") is vectorial bent with all component functions £, ¢ € V¥ ) being regular or weakly regular

but not regular (that is, €5, is a constant independent of ¢), then n is even and m < 7 (see [3],
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5

[7]). A vectorial p-ary bent function F: VTS — V(p ) is called vectorial dual-bent if the set of
the duals (F,)*,c € Vi of the component functions F,, c € VP of F (together with the zero
function) forms a vector space Vy of bent functions of dimension m.

For a vectorial dual-bent function F : V;") — V), let {(F.)*,...,(F,, )"} be any basis
of Vg, where ¢; € V,ﬁf’ )*,1 < ¢ < m. Then for any c € Vn(lp )*, there is unique nonzero vector
@\?,...,a')) € 7 such that (F,)* = >, a\?(F.)*. Define G : V¥ = V¥ as G(z) =

S (Fe)*(x)ay, where {ov, ..., a.,} is any basis of V") For any ¢ € VP let o(c) € cv®”

be given by the following equation system:

Then o is a permutation over v " and (Fo)* = G, € c Vi ", Since F is vectorial dual-bent,
(F.)*c € Ve )" are all bent functions and G is vectorial bent. By the argument, one can see
that a vectorial bent function F : V") — V%) is vectorial dual-bent if and only if there exists
a vectorial bent function G : V;”) — V;{) such that (Fo)* = Goe)s C € Vm , where o is some
permutation over Ve )" The vectorial bent function G is called a vectorial dual of F and denoted
by F*. By the above analysis, one can see that the vectorial dual of a vectorial dual-bent function
is not unique. In the following, we show that if /' is a vectorial dual-bent function for some
fixed permutation o over V)", then its vectorial dual F* with (F.)* = (F*)o(e), ¢ € Vi AT

unique.

Proposition 1. Let I : VAN V#Zp ) be a vectorial dual-bent function for some fixed permutation

o over V.. Then its vectorial dual F* with (Fo) = (F*)o(e), Cc € Vi s unique.

Proof: Let {ay,...,am} be any basis of V¥ and ¢; = o~ !(a;),1 < i < m. Then
{o(c1),...,0(cy)} is a basis of V,¥ and for any z € V), there is unique G(z) € V,

such that the following equation system hold:
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(

(G(z),0(c1))m = (Fe,)" (),
(G(x),0(c2))m = (Foy)"(2),

(G(z),0(cm))m = (Fe,)" (@),

Hence, the vectorial dual ™ with (F.)* = (F*),(),c € Vi s unique and F* = G. u

\

In [23], Wang et al. studied vectorial dual-bent functions for which the corresponding permu-
tation o over V,? " is the identity map. We recall vectorial dual-bent functions with Condition
A defined and studied in [23].

Condition A: Let n > 4 be even and 2 < m < Z. Let F : VP 5 v pe a vectorial
dual-bent function for which

(F.)" = (F*)e,c € VP, (6)

and all component functions F,,c € 1%4% )" are regular or weakly regular but not regular. We

denote by ¢ = e, for all ¢ € V7.

Remark 1. Let n > 4 be even and 2 < m < % When p = 2, since all Boolean bent functions
are regular, F : Vi - v is a vectorial dual-bent function with Condition A if and only if F

is a vectorial dual-bent function with (F.)* = (F*).,c € Vn(f)*.

When p > 3, if F: V") — V%) is a vectorial dual-bent function with Condition A, we show

*
that all component functions F,, c € V)" are regular.

Proposition 2. Let p > 3 be an odd prime. If F : VP - v is a vectorial dual-bent function

*
with Condition A, then all component functions F,,c € Vn(f )" are regular, that is, ¢ = 1.

Proof: By the proof of Theorem 1 of [23], if F' is a vectorial dual-bent function with
Condition A, then F(ax) = F(z),a € F;. Note that F.(z) — F.(0),c € V" are all weakly
regular bent functions with F,(ax) — F.(0) = F.(z) — F.(0),a € F; and €f,(4)-r,0) = €. By
Corollary 3.5 of [10], for a weakly regular bent function f : VQ(f) — F, with f(0) =0, f(az) =
f(z),a € Fy, fis regular if p > 3. Therefore, we have ¢ = 1 if p > 3.

It was shown in [23] that the known bent partitions from (pre)semifields can be obtained from

vectorial dual-bent functions with Condition A, and vectorial dual-bent functions with Condition
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A can be used to construct partial difference sets (see also [21]). In [3], Anbar et al. showed
that vectorial dual-bent functions with Condition A are able to construct amorphic association

schemes. In Sections III-VI, we will further study vectorial dual-bent functions with Condition

A.

B. Bent partitions

Let n be an even positive integer, K be a positive integer divisible by p. Let ' = {A, ..., Ak}
be a partition of V;”). Assume that every p-ary function f : V") — [F, for which every i € F,
has exactly % of sets A; in I' in its preimage set, is a p-ary bent function. Then I" is called
a bent partition of VP of depth K and every such bent function f is called a bent function
constructed from bent partition I'.

For a bent partition I' = {A;, 1 <i < p™} of Vi), the following lemma gives the cardinality
of A;.

Lemma 1 ( [4]). Let n be an even positive integer. Let I' = {A;, 1 < i < p™} be a bent partition

of VP Then except one set, denoted by A;,, all other sets A; have the same cardinality, namely
| Ay = p2 " (p2 F 1) £p2, A =p2 " (p? F1),i # io.

In [23], Wang et al. studied the relations between vectorial dual-bent functions with Condition
A and bent partitions with Condition C. We recall bent partitions with Condition C defined and
studied in [23].

Condition C: Let n > 4 be even, 2 < m < % Let ' = {A;,i € Vrflp)} be a bent partition
of Vii”, which satisfies that a4; = A; for any a € F: and i € V¥’ and all bent functions
constructed from I' are regular or weakly regular but not regular. We denote by ¢ = ¢4 for all

bent functions f constructed from I'.

Remark 2. Let n > 4 be even and 2 < m < % When p = 2, since all Boolean bent functions

are regular, Condition C is trivial for every bent partition of Vn@) of depth 2™.

When p is odd, it was proved in [23] that bent partitions with Condition C one-to-one

correspond to vectorial dual-bent functions with Condition A.
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Lemma 2 ( [23]). Let p be an odd prime. Let T' = {A;,i € Vn(@p)} be a partition of Vn(p), where
n >4 is even and 2 < m < %. Define F : Vi 5 Vi) s F(z) = > ievw 0a,(2)i. Then T is a
bent partition with Condition C if and only if F is a vectorial dual-bent function with Condition

A.

C. PFartial difference sets and association schemes

Let (G,+) be a finite abelian group of order v and D be a subset of G with k elements.
Then D is called a (v, k, \, ju) partial difference set of G, if D (=D) = uG + (A — pu)D +~0
with D =Y gep 9 denoting the element in the group ring Z|G] and —D = {—d,d € D}, where
v=k—pif0¢ D and v =k — X\if 0 € D. By Page 223 of [11], the empty set can be seen as
a (v,0,\,0) partial difference set of any finite abelian group of order v, where \ is any integer.
A partial difference set D is called regular if —D = D and 0 ¢ D. A regular (v, k, A, 1) partial
difference set is called to be of Latin square type if v = N*> k = s(N —1),A\ = N+s>—3s, 1 =
s? — s, and a regular (v, k, \, u) partial difference set is called to be of negative Latin square
type if v =N?k=3s(N+1),A = —N+5?+3s, u = s>+ 5. We allow s = 0, which corresponds
to the empty set.

There is an important tool to characterize partial difference sets in terms of characters.

Lemma 3 ( [11], [18]). Let G be an abelian group of order v. Suppose that D is a subset of G
with k elements which satisfies —D = D and 0 ¢ D. Then D is a (v, k, \, u) partial difference

set if and only if for each non-principal character x of G,

_B+VA
T2

where x(D) =3 cpX(2), B=A=py=k—pA=p+4.

x(D)

Let X be a nonempty finite set. A d-class association scheme on X is a sequence Ry, Ry,..., Ry
of nonempty subsets of X x X, satisfying

1. Ry ={(z,x) : x € X};

2.XxX=Ry\URiU---URqand R, R; =0 for i # j;

3. for any i € {0,...,d}, there is j such that R] = R;, where R] = {(y,z) : (z,y) € R;};

4. for all integers k,i,j € {0,1,...,d}, and for all x,y € X such that (z,y) € Ry, the number
pi; =I{z € X :(z,2) € Ri,(z,y) € R;}| depends only on ki, j and not on (z,y).
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The numbers pﬁ ; are called intersection numbers of an association scheme. If for any i €
{0,...,d}, R] = R;, then the association scheme is called symmetric.

A fusion of an association scheme { R, Ry,..., R;} on X is a partition {Ag, Ay, ..., A} of
X x X such that Ay = Ry and each A; (1 < ¢ < ?) is the union of some of R;,1 < j < d.
An association scheme is called amorphic if its any fusion is again an association scheme.
The following lemma gives a characterization of amorphic association schemes induced from

partitions.

Lemma 4 ( [19], [20]). Let nonempty sets Dy = {0}, D1, ..., Dy form a partition of a finite
abelian group G, where d > 3. Define R;,0 < i < d as

R, ={(z,y) e GxG:x—ye€ D}

The following two statements are equivalent.
(1) Ry, Ry, ..., Ry form an amorphic association scheme.
(2) D1, ..., Dy are regular partial difference sets, all of which are of Latin square type, or

all of which are of negative Latin square type.

D. Generalized Hadamard matrices

Let ¢, = e be a complex primitive m-th root of unity. A complex matrix H of size n xn
consisting of integer powers of (,, is called a generalized Hadamard matrix if HA' = nl,,
where H is the conjugate matrix of H, H' is the transpose matrix of H, and I, is the identity
matrix of size n X n. When m = 2, H is simply called a Hadamard matrix.

There is a characterization of p-ary bent functions in terms of generalized Hadamard matrices.

Lemma 5 ( [9], [14]). Let f: VP — F,. Define H = [ ,{(‘”*y)] Then f is a p-ary bent

x,errgp) '
function if and only if H is a generalized Hadamard matrix.
E. Linear codes
For a vector a = (ay,...,a,) € F}, the Hamming weight of a is defined as wt(a) = [{1 <

i <n:a; # 0}| For two vectors a,b € I}, the Hamming distance between a and b is defined

as d(a,b) = wt(a — b).
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Let C be a p-ary [n, k] linear code, that is, C' is a subspace of F; with dimension k. The
minimum Hamming distance d of C' is defined as d = min{d(a,b) : a,b € C,a # b} =
min{wt(c) : ¢ € C,c¢ # 0}. The dual code of C' is defined by C* = {u € F} : u-c =
0 for all ¢ € C}. If the minimum Hamming weight d* of the dual code C* satisfies d*+ > 3,
then C' is called projective. For any 1 < i < n, let A; denote the number of codewords in C
whose Hamming weight is 7. The sequence (1, Ay,..., A,) is called the weight distribution of
C. The code C is called t-weight if |[{1 <i<n:A; #0} =t

The following lemma gives a characterization of a two-weight projective p-ary linear code in

terms of a partial difference set.

Lemma 6 ([11]). Let D= {dy,...,dn}, where d;;1 < i < m are pairwise linearly independent

vectors in VP, Define
Cs={({z,d 1), (2, dp)n) 2 € VY

Then Cg is a two-weight [m,n] projective linear code if and only if D = F;ﬁ ={yd; : y €
Fp,1 <i< m} is a regular partial difference set in V,"'. Furthermore, if the two nonzero
weights of C'z are wy and w,, then the parameters of the (v, k, A, 1) partial difference set D are

v=7p"k=m(p—1),\ = E2+3k—p(k-+1)(wi+ws)+p*wiws, pt = k*+k—pk(w;+ws)+p*wiw,.

III. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF AMORPHIC ASSOCIATION SCHEMES

In this section, we give a characterization of vectorial dual-bent functions with Condition A
in terms of amorphic association schemes.

In Theorem 6 of [23], Wang et al. characterized vectorial dual-bent functions /' with Condition
A in terms of partial difference sets D7, where [ is an arbitrary nonempty subset of V") and
Dpr = UiE ; Dri. In the following, based on Theorem 6 of [23], we give a characterization of

vectorial dual-bent functions with Condition A in terms of partial difference sets D7, i € VP,

Proposition 3. Let F': VARG V4% ), where n > 4 is even and 2 < m < 3. The following two
statements are equivalent.

(1) F'is a vectorial dual-bent function with Condition A.

(2) For any i € VP, Dy, is a regular (p",s;(p? — €),ep? + s? — 3es;, 7 — es;) partial

difference set, where s; = pz ™ + e0p(0y(i), € € {£1} is a constant with ¢ = 1 if p # 3.
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Proof: If (1) holds, then (2) holds by Theorem 6 of [23] and Proposition 2. In the following,
we prove that if (2) holds, then (1) holds.
By Lemma 3, if (2) holds, then for any v € V") and i € V), we have Xu(Dri) =
pv 0 (u) +epz —epz ™ or xu(Dry) = p" " o(u) — ep2~™. For any u € VP Jet

Ny = |{Z € Vn(@p) : Xu(DF,z) — pn_m50(u) —+ 5p% — 5p%_m}|
Since p"do(u) = 32, ey G = xu(Vi”) and

Xu(VIP) = Z Xu(Dr)

= p"do(u) + 5p%(nu - 1),

we have n, = 1. Therefore, for any nonempty set I C Vi) and u € VP,
Xu(Dpp) = p" " So(u)|I| + ep? — ep2 "|I| or xu(Dp) = p" "o(u)I| —ep2 "|I|, (7)

where Dp; = >...; Dp,. For any i € Vi) define E; = {ue A Xu(Dri) = p"™60(u) +
ep? — ep>~™}. We claim that E;(\E; = () for any i # j and Uierm Ei = VP If there
exists i # j such that E; (| E; # (), then there is u € V") such that Xu(Dri) = Xu(Dpj) =
P80 (u)+epz —ep2 ™ and xu(Dp; | Drj) = 2p" ™00 (u)+2ep? —2ep2 ™, which contradicts
Eq. (7). Thus, E; (| E; = () for any i # j. If there is u € V") such that u ¢ E; for any i € VP,
then x.(Dp;) = p" ™dg(u) — epz~™ for any i € Vi) and v (ViP) = > iy ® Xu(Dri) =
P"0o(u)—ep? , which contradicts x, (V,")) = D e ¢ = pnég(u). Thus, Uicvw Bi = v,

By the above arguments, we can obtain

Xu(Drr) = p" "o(u)|I| + ep2 ™ (p" g, (u) — |1),

where E; = Eie ; Ei. Then by Lemma 1 of [23], F' is a vectorial dual-bent function with
Condition A. m

Remark 3. For a vectorial dual-bent function F' : VP 5 Vi) with Condition A, by Proposition
3, Dyt € Vn(lp ) are all regular partial difference sets of Latin square type if € = 1, and

Dyt € Vn(f ) are all regular partial difference sets of negative Latin square type if ¢ = —1.

The following corollary is directly from Proposition 3 and Remark 1.
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Corollary 1. Let F : VTSQ) — Vn(f), where n > 4 is even and 2 < m < 3. The following two
statements are equivalent.

(1) F is a vectorial dual-bent function with (F.)* = (F*).,c € Vn(f)*.

(2) For any i € V2, Dy, is a regular (27, 5:(22 —1),22 + 52 —3s;, 82 — s;) partial difference

set, where s; = 227" + §p o) (i).

Based on Proposition 3 and Lemma 4, we give the following theorem, which characterizes

vectorial dual-bent functions with Condition A in terms of amorphic association schemes.

Theorem 1. Let F : V") — VP where n > 4 is even and 2 < m < 2. Denote I = F(Vn(p)*).
Define

Rig={(z,x) : x € VP},

Ri={(z,y) z,ycVP z—ye Dy }iel.
The following two statements are equivalent.

(1) F'is a vectorial dual-bent function with Condition A.

(2) {Ri4, Ri,i € I} is an |I|-class amorphic association scheme for which |I| > 3 and for
any i € I, the intersection number pi = p"~™ — ep2 ™ + 0oy (i)(ep? — 1), where ¢ € {£1}
is a constant with ¢ = 1 if p # 3.

Furthermore, if (1) or (2) holds, then the following statement holds:

3 I= Vﬂ(@p) and |I| = p™ except one case that p = 3, n = 2m and ¢ = —1 (in such a case,

I =VSN{F(0)} and |I| = 3™ —1).

Proof: 1f (1) holds, then (2) and (3) follow from Theorem 3 of [3], Proposition 4 of [23]
and Proposition 2. In the following, we prove that if (2) holds, then (1) and (3) hold.
Note that ¢ € I if and only if D7, is nonempty. By Lemma 4, {Ri4, R;,i € I} is an amorphic

association scheme if and only if for any i € I, D}, is a regular (p", s;(p? — €'),&'p? + 57 —
2

3e’s;, s; — €'s;) partial difference set, where s; is a positive integer, ¢’ € {£1} is a constant.
From |Dj;| = pi% = p" ™™ — ep2 ™™ + 0po) (i) (ep? — 1),i € I, we have

n

si(p? — &) =p"" —ep? ™ + bp(o) (i) (ep? — 1),i € I.

Assume that ¢’ # ¢, that is, & = —¢c. Let i € I\{F(0)}, then s;(p +¢) = pz~"(pz — ¢).
Since ged(p® + €,p2~™) = 1, then (pz +¢) | (p? — ), which implies that ¢ = —1 and
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p = 3,n = 2, which contradicts n > 4. Therefore, ¢’ = ¢ and for any i € I, Dfm is a regular
(p", si(p? —¢),ep? + s? — 3es;, s? — es,) partial difference set, where s; = p> ™ + £0p(g)(4).
Note that 0 € Dp,r(o) and |Dj,| = 0 if i € VAL
If Dppoy) = {0}, then F(0) ¢ I and
pr=VP =" [Drl
iV,
= Y Dyl + |Drr)
ieVP\{F(0)} ()

= Z ’Dfm| +1

icl
=p2"m(p2 —e)|I| + 1.
From Eq. (8), we have pz~™ | (p" — 1), which implies that n = 2m. Further, by Eq. (8) and || <
pm—1=pt—1, weobtaine = —1,|I| = p™—1,1 = VP\{F(0)}. Note that p = 3 since ¢ = 1
when p # 3. In this case, for any i € V,\', Dy, is aregular (3", 5;(3% +1), =32 457 +3s;, 52 +s;)
partial difference set, where s; = 1—dp(0)(¢). By Proposition 3, F' is a vectorial dual-bent function
with Condition A.
If D}, (o) is nonempty, then F'(0) € I and
p"=VP =" [Dpl

ievii?

= Z | Dl + [Drro))
i€ VP \{F(0)}

= Y Dyl +|Drr)
ieI\{F(0)}

=p2 (P2 =) = 1) + (2" +e)(p? —e) +1,
which implies that |I| = p™, that is, [ = V") Thus for any i € Vi), D7, is a regular
(p", si(p? — €),ep? + s? — 3es;, 57 — es;) partial difference set, where s; = p2 =" + £dp(g) (i)
By Proposition 3, F' is a vectorial dual-bent function with Condition A.

Furthermore, the analysis mentioned above shows that statement (3) holds. [ ]

Remark 4. Keep the same notation as in Theorem 1. If F' is a vectorial dual-bent function with

Condition A, then by Corollary 1 of [19], the intersection numbers of the amorphic association
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scheme induced from F are given by the following equations:
Y T D i a4 d n
pzd,id = Pidi = Pijia = p;,j = Oupzd,i = P;id = pgd,id = 17102,1‘ = s;(p? —¢),
, n . : )
Pii=€p? — 2+ (si —¢e)(si —2¢),p],; = si(si — €),pl; = si(85 — €), pij = 8i8j,

where i,7, k € F(Vn(p)*) are distinct, s; = p2 ™ + edp()(i), € € {£1} is a constant with € = 1

ifp#3.
The following corollary is directly from Theorem 1 and Remark 1.

Corollary 2. Let F': Vn@) — Vn(f), where n > 4 is even and 2 < m < 5. Define
Rig={(z,x) : 2 € VP},
Ri={(z,y):x,ye VP a+ye D; },ic VP
The following two statements are equivalent.
(1) F is a vectorial dual-bent function with (F.)* = (F*).,c € v
(2) {Rig, R;,i € Vn(f)} is a 2™-class amorphic association scheme for which for any i € Vn(f),

the intersection number pi% = 2"~ — 257 4 §p) (i) (22 — 1).

IV. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF LINEAR CODES

In this section, we give a characterization of vectorial dual-bent functions with Condition A
in terms of linear codes.

First, we introduce a notation. For a set D C Vn(p )*, let D be a subset of D, denoted by
D = {z1,..., 2}, for which z;,1 < j < t are pairwise linearly independent, and for any

x € D, there exist a € IE‘; and z; such that x = ax;. Note that when p = 2, D = D.

Theorem 2. Let F : V") — VTSL‘D), where n > 4 is even and 2 < m < 3. Denote I = F(Vn(p)*).
Define
Cor ={ca={a,2)) 75+ acVP} il

* - *
DF’Z. a:EDF’i

The following two statements are equivalent.

(1) F'is a vectorial dual-bent function with Condition A.
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[p”*mfep%*”wap(o) (i)(ep? —1)

(2) For any 1 € 1, Cﬁ?i is a two-weight -

,n] projective linear code
and the two nonzero weights are
1—e+ 2551:(0) (i)p%_l7

—1—e+ 25(5F(0)(i)p%_1
2 )

n—m-—1
wy =7p

n—m—1
Wy =P

where ¢ € {£1} is a constant with e =1 if p # 3.

Furthermore, if (1) or (2) holds, then the following statement holds:

3 I = V,EZ") except one case that p = 3, n = 2m and ¢ = —1 (in such a case, [ =
Vi \{F(0)}).

Proof: (1) = (2): If (1) holds, then (3) holds by Proposition 4 of [23] and Proposition 2.
Since F'is a vectorial dual-bent function with Condition A, by the proof of Theorem 1 of [23], we
have F'(ax) = F'(x),a € Fy, which implies that Dy, = IF;I?*F/JJ € 1. For any i € I, by Proposi-
tion 3, we have that D}, is a regular (p", s;(p? —¢), ep2 +s? —3es;, s?—es;) partial difference set,

where s; = p2 "™ +¢e0p() (i), € € {£1} is a constant with ¢ = 1 if p # 3. By Lemma 6, C5= is
Fi

. T . n=m_epE T 460y () (ep 2 —1
a two-weight projective linear code with parameters [* P’ ;_f OI0C & ),n] and the two

. o 1—e+42ed i) n_ o —1—e+2e0 1) n_
nonzero weights are w; = p" ™! + +0)()p2 Lwy=pm 1 4 +Wp2 1

(2) = (1): If (2) holds, then by Lemma 6, for any ¢ € I, IF;Z/?\*; is a regular (p", s;(p? —
€),ep? + s7 — 3es;, 57 — es;) partial difference set, where s; = p2 =™ + e0p(g)(i). Note that for
any i € I, Dy, C F3Dj,; and | Dj,| < [FiDj,| = si(p? — ¢). Then

P 1= IDpl <D [FyDiil =Y si(p? —e) = (pF —2) Y pF " +dp) (i),
iel iel iel iel
which yields that
[I|p2~™ +0;(F(0) > p2 +e. 9)

If F(0) ¢ I, then Dgpo) = {0} and by Inequality (9), |I|p2~™ > p? +e. By |I| < p™ — 1,
we obtain ¢ = —1,n = 2m, |I| = p" — 1,1 = ,,gp)\{F(O)}. Note that p = 3 since ¢ = 1
when p # 3. In this case, Zievﬁ)\{F(O)} Dyl = Eievrﬁf’)\{F(o
any i € Vég)\{F(O)}, we have Dy, = F3Dy,;. Therefore, for any i € AR Di.; is a regular

1y [F3D5,|, which implies that for

(3",5;(32 4+ 1), —3% + s? + 3s;,s7 + s;) partial difference set, where s; = 1 — dp(g)(i). By

Proposition 3, F'is a vectorial dual-bent function with Condition A.
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Ipz~™ 4 ¢ > p2 + ¢, that

If £(0) € I, then Dy F(0) is nonempty and by Inequality (9),
is, |[I| > p™. By |I| < p™, we have |I| = p™, [ = V% In this case, Ziev&p) | D5l =
> iy ® [Fp D% |, which implies that for any i € Vi), we have Dy.; = F, Dy, Therefore, for

(»)

any i € V', Dy, is a regular (p",s;(p? — ¢),ep? + s7 — 3es;, 57

¢ — es;) partial difference
set, where s; = p%_m + €dp(0) (7). By Proposition 3, F' is a vectorial dual-bent function with
Condition A.

Furthermore, the analysis mentioned above shows that statement (3) holds. |

The following corollary is directly from Theorem 2 and Remark 1.

Corollary 3. Let F': V@ VD where n > 4 is even and 2 < m < 5. Define
CD},i = {Ca = ((aax>n)x€D}§7i T c VTEQ)},Z S Vn(?)

The following two statements are equivalent.
(1) F is a vectorial dual-bent function with (F.)* = (F*).,c € v
(2) For any i € V;\), Cps . is a two-weight [2" — 257™ + 0p()(1)(22 — 1),n] projective

linear code and the two nonzero weights are wy = 2"ty = 201 — 2571 4 §p ) (4)22.

V. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF GENERALIZED HADAMRAD MATRICES

In this section, we give a characterization of vectorial dual-bent functions with Condition A
in terms of generalized Hadamard matrices.

Since the case of p being odd is more complicated, we first consider the case of p = 2.

Theorem 3. Let F Vn(Q) — V7£L2), where n > 4 is even and 2 < m < % For any c € Vn(f)*,
define
HC e [(—1)FC(I+y)j|

zyeVil?
where F.(z) = (¢, F(2))m. The following two statements are equivalent.
(1) F is a vectorial dual-bent function with (F.)* = (F*).,c € Vn(f)*.

2) H.,c e V#Lz)* are all Hadamard matrices and for any ¢ # d € Vrg)*, H.H; = 2% ctd-

Proof: (1) = (2): Since F'is a vectorial bent function, that is, F, c € VTS?)* are all Boolean

*
bent functions, by Lemma 5 we have that H., c € Vn(f) are all Hadamard matrices. For a matrix
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M = la; |, denote a;; by (M), ;. For any ¢ # d € Vi{?" and i.j € V¥ since F is vectorial

bent, we have

(HcHd)ij _ Z (_1)Fc(u+i)+Fd(u+j)

uEV(Q)
S S Y W X e
ueVi? zev? ye V2
—2n Y Y (- H(Fa) @) (i) n (k)
u6V7£ )m,yGVT§2> (10)
—9-n Z (_1)(Fc)*(x)+(Fd)*(y)+<ivx>n+<jvy>n Z (_1)(u7$+y>n
m,yGVf) UEVQEQ)

= Y (—1)E @HES @i
$€V7§2)
= Wiryetra (1 + 7).
Since F' is vectorial dual-bent with (F,.)* = (F*).,c € Vi?", we have (F)*+ (Fg)* = (F*). +
(F*)g = (F*)era = (Ferq)*. Thus by Eq. (5) and Eq. (10) we obtain

n

(H.Hy)ij = Wip, - (i +5) = 22 (1) a0 = 25 (H,, ), 5,

Fc+d

which implies that H.H; = 22 H, .
(2) = (1): Since H.,c € Vn(f)* are all Hadamard matrices, by Lemma 5 we have that F,, c €
Vn(f)* are all Boolean bent functions, that is, F' is vectorial bent. For any ¢ # d € Vn(f)* and

1,] € Vn(z), from Eq. (10) and H.H; = 23Hc+d, we have
Wiy (o) (i + j) = 23 (= 1) Fera D), (11)

By Eq. (11), for any c # d € V2", we have that (F.)* + (Fy)* is a Boolean bent function and
((F.)* + (Fy)*)* = F.yq, which implies that

(Fo)" + (Fa)" = (Feya)™ (12)

Let {a, ..., .} be an arbitrary fixed basis of V2. For any z € V,?, let G (x) € V,'?) be given

by the following equation system
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L (O, G(2))m = (Fa,,)" (7).
Then G is a function from V,'? to V(¥ satisfying G, = (F,,)*,1 <i < m. For any ¢ € Vn(f)*,
denote ¢ by ¢ = a;, + -+ + «;,. Then
Ge(z) = (¢, G(2))m
= (i, G(@))m + -+ + (i, G(@))m
(13)
= Gail (l’) +ot Gait (l’)

= (Fo, )" () + - + (Fo, )" (2).
Combine Eq. (12) and Eq. (13), we obtain

Ge(x) = (Fay, 4ta, ) (1) = (Fo)" ().

For any c € Vn(f)*, since G. = (F.)* is a Boolean bent function, we have that G is vectorial
bent. Therefore, F' is vectorial dual-bent with (F.)* = (F*).,c € Vi?", where F* = G. [

Below we give an example to illustrate Theorem 3.
Example 1. Let F': Fys X Fos — 92 be defined by
F(x1,79) = Tr§(v125°).

Then by Proposition 3 of [23], F' is a vectorial dual-bent function with Condition A. For any
c € F,, define
H, = [(_1)Tr?(c(:c1+y1><xz+y2>58>

(1,22),(y1,y2) EFy6 xFoe ‘
Then by Theorem 3, H.,c € I}, are all Hadamard matrices and H.Hqy = 64H. 4 for any
c#d e F,.

In the following, we consider the case of p being odd. First, we need a lemma.

For an odd prime p, define US" = {¢:0<i<p—1} and Uil = {-¢:0<i<p-—1}.
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Lemma 7. Let p be an odd prime. Let F' : V(p) — V(p), where n > 4 is even and 2 < m < 2.

For any c € VP and z € V,?), define

H® — [CFc(w—y)—@z—y)n}

c P

(14)

30,1,/»6V75p> !

where F.(z) = (¢, F(2))m. The following two statements are equivalent.
(1) F' is a vectorial bent function with all component functions F, c € Vn(f a being regular or

weakly regular but not regular, that is, cp, = € for all c € V(p )

where ¢ € {£1} is a constant.
2) Hc(z ,C € Vm ,z € Vn(p are all generalized Hadamard matrices for which there exists a

constant € € {£1} such that

pE Y (H)iw e UP forall ce VP zeV®, (15)
iev,?

where for a matrix M = [a; ;], denote a;; by (M); ;.

Proof: (1) = (2): Since F'is a vectorial bent function, F,c € Vn(f )" are all bent functions.
Further, F,(z) — (z,2), is bent for any ¢ € V¥ and » € V,”) since W (2) (200 (@) =
Wr.(2 +a),a € VP . By Lemma 5, we have that HY ,C € V(p " 2 e Vi are all generalized
Hadamard matrices. For any ¢ € 1A% “and z € VA% , we have

pE Y (HD)o=pE Y GROTED = p W (2). (16)

icv,{?) i€V,
Since F'is vectorial bent with e, =¢,c € V,,(Lp )*, by Eq. (16) we have that Eq. (15) holds.

(2) = (1): Since HC(O), cE Vn(f ) are all generalized Hadamard matrices, by Lemma 5 we have
that F,, c € Vn(f " are all bent functions, then F' is vectorial bent. By Eq. (15) and Eq. (16), we
have that for any c € A% )*, the component function F, is weakly regular with ¢p = €. [ ]

Based on Lemma 7, with a similar proof as Theorem 3, we give the following theorem,
which provides a characterization of vectorial dual-bent functions with Condition A in terms of

generalized Hadamard matrices when p is an odd prime.

Theorem 4. Let p be an odd prime. Let F : VP — Vi) where n > 4 is even and 2 < m < 2,
Let matrices H” ,CE 175 , 2 E VP be defined by Eq. (14). For simplicity, denote HY by H,.
The following two statements are equivalent.

(1) F'is a vectorial dual-bent function with Condition A.
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2) Héz), ce V,T(Lp )*, 2 e Vi are all generalized Hadamard matrices for which there exists a
constant ¢ € {1} with ¢ = 1 if p # 3 such that Eq. (15) holds and HCET = ep2 H,_q for
any ¢ £ d € V,¥)

Proof: (1) = (2): Since F'is a vectorial dual-bent function with Condition A, by Proposition
2, we have that for any c € Vn(@p )*, F, is weakly regular bent with ¢, = ¢, where ¢ € {1} is
a constant with ¢ = 1 if p # 3. By Lemma 7, we have that H*, ¢ € VP 2 e VP are all
generalized Hadamard matrices and Eq. (15) holds. For any ¢ # d € v,» )" and 1,] € A% ), since

*
[ 1s vectorial bent with ey, = ¢, ¢ € Vn(bp ) , we have

7T i—u)— —u
(HcHd )z’,j _ Z Czljc( )—Fa(j—u)

uEV(p)
_ 72n Z Z WFC (i—u,z) Z WFd —(J—wy)n
ueVit?) zevi P yeVi”
,n Z Z EC(FC (z)+(i—u,z) Z EC —{j—u,y)n
ueVi? zev, yeVii!) (17)
— p_n Z CZ()FC)*(x)_(Fd)*(y)+<i7x>n_<jvy>’ﬂ Z CZ§U7y_CC>n
x er(p) ueV, P
— Z C(Fc —(Fa)* (@) +(i—j,z)n
:veVép)

= Wiz (5 = 1)
Since F' is vectorial dual-bent with (F,.)* = (F*).,c € V", for any c £ d € V¥ )" we have
(F)* — (Fy)* = (F*)e — (F*)g = (F*)e—q = (F._4q)*. Hence by Eq. (5) and Eq. (17) we have
—T . . n i—i n
(HHy )iy =W, (j — i) = ep2 (=07 = ep2 (H._q)i,

which implies that HCET =epzH,_y.

(2) = (1): Since HC(Z)7 ceE VTELP )*, z € Vrfp ) are all generalized Hadamard matrices and there is
a constant ¢ € {£1} such that Eq. (15) holds, by Lemma 7 we have that F' is a vectorial bent
function for which for any ¢ € V,% R s weakly regular with e = e. For any ¢ # d € V,? )
and i, € VI, by Eq. (17) and HCET = ep2? H._,, we have

Wirys—(r-(j — 1) = ep2 (feal9), (18)
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By Eq. (18), for any ¢ # d € VP", we have that (F.)*— (Fy)* is a weakly regular bent function
with (g )«—(p,)+ = € and ((F,)* — (Fy)*)*(x) = Fe—a(—2), which implies that
(FC)* - (Fd)* = (Fe—a)™ (19)
Since Eq. (19) holds for all ¢ # d € V" for any c,d € VP with ¢ +d # 0, we have
(Fo)" + (Fa)" = (Fera)™ (20)
(p)

Let {ay,...,a;,} be an arbitrary fixed basis of V};,;”. For any x € Vi let G (x) € Vi) be given

by the following equation system

| (am, G(2))m = (Fa,, )" ().

Then G is a function from V,” to ;" satisfying G, = (F,.)*,1 < < m. For any c € Vn(f)*,

1

denote ¢ by ¢ = a;, o, + -+ + a;, 4, Where a;; € F7) 1 < j <t Then by Eq. (20) we have
Ge(x) = (¢, G())m
= a; (i, G(T))m + -+ + a5, (i, G(T))m
= a;,Ga,, () + -+ a;,Ga,, (7)
= aiy(Fo,, )" () + -+ +ai, (Fo, )" (2)
= (Fayya0,)"(2) + -+ 4 (Foypa,,) " (2)

- (Fail ot tag oy )* (l‘)
= (F%)"(2).

For any c € Vn(f )*, since G, = (F.)* is bent, we have that G is vectorial bent. Therefore, F' is
vectorial dual-bent with (F,)* = (F*).,c € V" where F* = G. n

Below we give an example to illustrate Theorem 4.
Example 2. Let F': F36 x F36 — 32 be defined by
F(xy,m9) = Try(z125'7).
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Then by Proposition 3 of [23], I' is a vectorial dual-bent function with Condition A and the
corresponding ¢ = 1. For any c € F5,, 2 = (21, 22) € F36 x F3e, define

H® — [Cgf’?(cul—y1)($2—y2)717)—T7’?(21(xl_yl)+z2(x2_y2)) .
c (z1,22),(y1 7y2)€F36 xF36

Denote HC(O) by H.. Then by Theorem 4, Héz), c € Fi, 2 = (21, 22) € Fys xF36 are all generalized
Hadamard matrices for which
72970 Y (HD)i00 € {1,(s, G} forall ¢ €Fi,z = (21,2) € Fyo x Fys,
iE]FSG ><]F36

and HCFdT = T29H._q for any c # d € F%,.

VI. A CHARACTERIZATION OF VECTORIAL DUAL-BENT FUNCTIONS WITH CONDITION A IN

TERMS OF BENT PARTITIONS WHEN p = 2

When p is an odd prime, a characterization of vectorial dual-bent functions with Condition A
in terms of bent partitions has been given in [23], see Lemma 2. In this section, when p = 2,
we give a characterization of vectorial dual-bent functions with Condition A in terms of bent
partitions. First, we give a lemma, which characterizes bent partitions of Vi of depth 2™ in

terms of vectorial bent functions.

Lemma 8. Let I' = {A;,i € Vn(f)} be a partition of Vn@), where n > 4 is even, 2 < m < .
Define F' : Vn@) — VTE?) as
F(z)= Y 6a,(x)i.
iV, P

The following two statements are equivalent.

(1) I' is a bent partition.

(2) F'is a vectorial bent function for which there exists a function G : Vn(2) — VTELQ) and a set
S C Vn(2) such that

(F)"(2) = Go(z) + 65(2),c € VO 2 e V).

Proof: (1) = (2): By the result in [9], for any Boolean bent function f : Vn(2) — [y and

u € Vn@),j € [F,, we have
2" 0o (u) + 2271, if f(u) =,

Xu(Dyj) = 2D
2" 10 (u) — 2271, if ff(u) =+ 1.
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By Eq. (21) and the definition of bent partitions, we have that for any fixed u € Vn(2),

Mo (u) — 227 if i € VO\{G(u)},

n

Mo (u) — 237 4+ 22, if i = G(u),

or
2o (u) + 257, if i € VN [G(u)},
2" (u) 4+ 227" =22 if i = G(u),

where G is some function from Vn@) to Vn(f). Let
S={uecV?: x.(Dg,),i € VP satisfy Eq. (23)}.

Then for any c € VTSLQ)* and u € V) we obtain

WFC(U> = Z (—]_)<C7F($)>m+<u,$>n

eréQ)

= Z Z (—1)(EF@)m+wz)n

ieVi? zeVi P F(x)=i

— Z (_1)<c,i>m Z (_1><u,x>n

icv,? 2eVi? F(z)=i
= > (=) xu(Dry)
eV
(3 (—1)m (2 mGg(u) + 25 — 23660, (1)), ifu € S,
eV
Z (_1)(C,i>m(2n—m50(u) _95—m + 2%5G(u)(i>)a if u ¢ S,
LicV, D
(2760 (u) + 23 ~™) > (—n)feim — 25 (—1)eCtn if g € S,
iV,
(2" (u) = 257™) Y (=1l 425 (1) Cm if ¢ 3,
\ ZGVTSL2>

which implies that F' is a vectorial bent function with (F,)*(z) = G.(z) + ds(z),c € Vi ze
AR
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(2) = (1): With the same argument as in the proof of Proposition 3 of [21], for any u €
Vn(z),i € V2 we have

Xu(Dpi) = 2""60(u) +27" Y Wi (u)(=1)"m, (24)
Since F is a vectorial bent function with (F.)*(x) = G.(x) + ds(x),c € v by Eq. (24) we

have

Xu(Ai) = Xu(DF,i)

=27 Go(u) +25 D (= +eid)m
cEVﬁ)
_ on—m -m Gc (u)+05(uw)+{c,i)m
= 2"y (u) + 257 Y (= o (25)
C€V7§12)
= 276 (u) + (—1)%s@oz—m Z (=1){eG+im
CGV(Q)*

= 275 (u) + (—1)%5M22 7™ (2™, (1) — 1).
For any union D of 2™~ ! sets of {4;,i € VW(?)}, we have

2" 8o (u) + (—1)°™22 7 if Agey C D,
Xu(D) = " 20
2" p(u) — (—1)%™23 71 if Agqy € D.

Let f: VAN IF, be a function for which for each j € F,, there are exactly 2™~ ! sets A; in '
in its preimage set. By Eq. (26), for any u € V¥ we have

2" 150 (u) + (=1)%M22 71 i j = g(u),
2" 150 (u) — (—=1)™25 71 if § = g(u) + 1,

where g(u) = f(Ag()). Then we obtain
Wi(u) = Z (—1)f @+

xGVTSQ)

=3 Y (—pf @

j€F2 mEV,EQ):f(ac):j

= Z(_l j Z (_1)<u,z>n

JEF? xGV(2) flx)=j
= > (D'xu(Dyy)
j€Fy

September 23, 2023 DRAFT



25

= (27 8(u) + (~1) 5 2E ) (190 4 (2 gy — ()28~
= 23 (—1)9W+is()
which implies that f is a Boolean bent function, and thus I' is a bent partition. [ ]
The following theorem gives a characterization of vectorial dual-bent functions £’ : v,?

) with Condition A in terms of bent partitions.

Theorem 5. Let F' Vn@) — Vn(f), where n > 4 is even and 2 < m < % The following two
statements are equivalent.

(1) F is a vectorial dual-bent function with (F,)* = (F*).,c € v

2) I' = {Dp;,i € Vn(f)} is a bent partition of V") with Xu(Dpi) € {—227™ —25—™ 4
25} ue VP iev?

Proof: By the proof of Lemma 8, F is a vectorial dual-bent function with (F.)* = (F*).,c €
V?" if and only if I' = {Dp;,i € v } is a bent partition with x,(Dr;) € {2" "d(u) —
227m nTmGy(y) — 227 423} u € Vi® i € V). In the following, we only need to show
that when I' = {Dp,,i € V21 is a bent partition and Xu(Dpi) € {—227™ —23"™ 425} u €
VD" i € V2, then xo(Dp,) = |Dpy| € {27m — 25—m gn=m _25-m 1 93} j e VP

For any i € V;{?, let b; = [{u € V@ : Xu(Dpi) = —237™ 4 23 }|. Assume that there is i
such that |Dp;| ¢ {27~™ —25-™ 2n=m —25-™ 4 925} Then by Lemma 1, there exists 4o such
that | Dy, | = 27™ 425" — 2% |Dpy| = 27™ 42577 4§ £ do. Let j € Vi with j # F(0), 4
Then 0 ¢ Dy ; and |Dp | = 2"~™ + 23 ~™. Since

> D)= 3 0= 3 (<) =2, 0) =0
(2)

ueV! uev,52) z€DF ; x€Dp ; uEV,SQ)
and
Y XulDry) = |Diyl + (=257 4+ 28 )b; —257"(2" — 1 — by)
uev,?
=227"(22 — 2" 4 2+ 2™Dy),
we have

2" =23 4+ 2™Mb; + 2. (27)

Note that b; # 0 by n > 4. Since m < 2, we have 2™ | 2", 2™ | 22, 2™ | 2™b,. Thus by Eq. (27),
2™ | 2, which contradicts m > 2. Therefore, | Dp;| € {on—m_g3—m gn=m_935-m 1951 € /A
|
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Below we give an example to illustrate Theorem 5.

Example 3. Let F : Fys X Fos X Fos X Fos — o2 be defined by
F(x1, 29, 23,14) = (Tr;l(xga:f))?’Trg(a:‘;’Qazg — 2125%) + TrS(x25®) + TT%(OKﬂfg.T};l),

where « is a primitive element of Foa. By Theorem 5 of [23], F' is a vectorial dual-bent
function with Condition A. By Theorem 5, {Dp;,i € Fay2} is a bent partition with x,(Dp,;) €
{—256, 768}, u € (]F26 X Fos X Faa X ]F24)*,i € [Foo.

VII. NEW CHARACTERIZATIONS OF CERTAIN BENT PARTITIONS

In this section, we give some new characterizations of bent partitions with Condition C when p

is an odd prime, and bent partitions with condition given in Theorem 5 when p = 2, respectively.

Theorem 6. Let p be an odd prime. Let T' = {A;,i € vn(f)} be a partition of Vn(p), where n > 4
is even and 2 < m < 3. Denote 0 € A, and I ={3_, |, » 04,(2)i : w € Vn(p)*}. The following
statements are pairwise equivalent.
(1) I' is a bent partition with Condition C.
(2) For any i € Vi, A% is a regular (p*, s;(p? —€),ep’ +s2 —3es;, s2—es;) partial difference
set, where s; = p2 ™ 4 £6;,(i), € € {£1} is a constant with ¢ = 1 if p # 3.
(3) Let
Rig = {(z,z) : x € VP},
Ri={(z,y):2,yc VP oz —yec A}, icl
Then {R;q, R;,i € I} is an |I|-class amorphic association scheme for which |I| > 3 and for
any i € I, the intersection number pi% = p"™™ — ep2 ™ 4 0;,(i)(ep? — 1), where € € {1} is
a constant with € = 1 if p # 3.
(4) Let
CA~? ={co = (<O‘7x>n)zeA~; caeVPYicl,
where :4?;* is a subset of A} for which any two elements in IT;" are linearly independent and

for any x € A%, there exist a € F;,x’ € :4? such that x = ax'. Then for any i € I, C4 is a

September 23, 2023 DRAFT



27

n=m_gpB s, (i)(ep? —1 TR :
[2 P2 "o (D)ep ),n] projective linear code and the two nonzero weights are

two-weight

p—1
wy = n—m—1 l—e+ 26510 (Z'>p%71’
2
Wy _pn m—1 4 g—g € O(Z)pifl’
where ¢ € {£1} is a constant with ¢ =1 if p # 3.
(5) Let
c, 0a. (z—y))m—{(z,2—Y)n
I P eV L ey,

z,yeViiP)
and H, = HYO. Then Hc(z),c € Vn(lp)*,z e Vi are all generalized Hadamard matrices for
which there exists a constant ¢ € {+1} with € = 1 if p # 3 such that Eq. (15) holds and
HCET —ep2H,_4 forany c#d € VAP)*.
(p)

Furthermore, if any one of the above statements holds, then I = V" and |I| = p™ except

one case that p = 3, n = 2m and ¢ = —1 (in such a case, I = Vn(f)\{z'o} and |I| = 3™ —1).

Proof- By Lemma 2, statement (1) holds if and only if F : V,¥) — V,%) is a vectorial
dual-bent function with Condition A, where
F(z)= Y 6a,(x)i.

ievi?

Then the result follows from Proposition 3 and Theorems 1, 2, 4. [ ]

Theorem 7. Let I' = {A;,i € Vn(f)} be a partition of Vn@), where n > 4 is even and 2 < m < 3.
Denote 0 € A;,. The following statements are pairwise equivalent.
(1) T is a bent partition with x,(A;) € {257, —22"™ £ 23} u € Vn@)*,i e V.
(2) For any 1 € V2, Ar is a regular (27, 5;(22 —1),25 + 52 — 3s;, 82 — s;) partial difference
set, where s; = 227™ + §; (i).
(3) Let
Rig = {(z,x) : x € VP},
Ri={(z,y) 2,y VP z+yec A},ic V.
Then {R;4, R;,i € V,%Q)} is a 2™-class amorphic association scheme for which for any i € Vn(f),
the intersection number pi = 2"~ — 227" 4 §; (1)(22 — 1).
(4) Let
Car ={ca = ((@,T)n)rcar @ € VAYiev®,
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Then for any i € Vi), Cys is a two-weight [2"~™ — 227" 4§, (i) (22 — 1), n] projective linear

code and the two nonzero weights are

(5) Let

He = [(_1)<C7Ziev}f) 5a;(@+y)i)m

2)*
ce v
xvyev’r<L2> ’ m

Then H.,c € Vrﬁf)* are all Hadamard matrices and H . H,; = Q%Hc+d for any ¢ £ d € Vn(f)*.

Proof: By Theorem 5, statement (1) holds if and only if F : v® = v is a vectorial
dual-bent function with (F.)* = (F*).,c € Vi{?", where
F(z)= Y 6a,(x)i.
)

iev,2

Then the result follows from Corollaries 1, 2, 3 and Theorem 3. [ |

Remark 5. As far as we know, the known bent partitions 1" of Vn(2) of depth 2™ with m > 2
given in (2], [12], [23] all satisfy the statement (1) of Theorem 7.

VIII. ASSOCIATION SCHEMES FROM GENERAL VECTORIAL DUAL-BENT FUNCTIONS WITH
F(0)=0,F(x) = F(—x) AND2 <m < %

In [3], Anbar et al. showed that vectorial dual-bent functions F : V;”) — Vi¥) with F(0) = 0
and all component functions F.,c € A% ) being regular or weakly regular but not regular
(that is, ep.,c € V,Sf’ )" are all the same) can induce association schemes. Note that for such
vectorial dual-bent functions, n must be even and m < 7. In this section, we give a necessary
and sufficient condition on constructing association schemes from general vectorial dual-bent
functions F : V") — V%) with F(0) =0, F(z) = F(—z) and 2 < m < 2. Note that the known
vectorial dual-bent functions F all satisfy F'(x) = F(—xz). Based on our result, more association
schemes can be yielded from some vectorial dual-bent functions [ : V") — Vi) for which n

*
can be odd, or n is even and €5, c € Vn(@p ) are not all the same. First, we need two lemmas.

Lemma 9. Let F : V¥ — V%) be a vectorial dual-bent function with F(0) = 0,F(z) =
F(—z), and F* be a vectorial dual of F. Then F* is also a vectorial dual-bent function with

F*(0) =0, F*(z) = F*(—x).
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Proof: Since I is a vectorial dual of F, (F,.)* = (F™)s (), C € V" for some permutation o
over V)" Since F is vectorial dual-bent, we have that (F,)*, ¢ € V" are all bent functions. By
Theorem 3.1 of [15], for any p-ary bent function f whose dual f* is also bent, (f*)*(z) = f(—=x)
holds. Thus, for any c € Vi) *,

(F7)e)"(2) = (Fom10)") " (%) = Fomr( (=) = Fomr(o(2),

which implies that F™* is a vectorial dual-bent function and a vectorial dual of F™ is F'. When
p = 2, obviously F*(x) = F*(—x), and by the proof of Corollary 2 and Proposition 5 of [7], we
have F*(0) = 0. When p is an odd prime, for any p-ary bent function f with f(z) =0, f(z) =
f(=z), by Proposition II. 1 of [16], f*(0) =0, f*(x) = f*(—x). Thus for any ¢ € V" from
Fo(0) = 0, Fe(z) = Fe(—x), we have (F*)q()(0) = (Fe)*(0) = 0, (F")o(o)(—2) = (Fo)"(—x) =
(Fo)*(x) = (F*)s(e)(x), which implies that F*(0) = 0, F*(z) = F*(—x). u

Lemma 10. Let F : V;”) — V") be a vectorial dual-bent function with F0) =0,F(z) =
F(—x) and 2 <m < %, and I* be a vectorial dual of F. Denote cf,(0) = p_%Cp_(Fc)*(O)WFC(O),
c € V¥ Then

« When m < 2, then |F(V,"))| = |[F*(VP7)| = pm;

o When n is even and m = %, if €.(0) = —1 for all ¢ € V", then |F( ép)*)| =
[F* (Vi) = pm—1, and if 5, (0), ¢ € Vi) are not all —1, then |F(V"")| = [F*(V,P")| =
p.

Proof: By Proposition 3 of [21] and Eq. (24), for any u € V"), i € V,’ we have

Dl =p" " 47" Y Wr(0)¢, 0 = o(0). (28)

ceVT%p)*
Since F™* is a vectorial dual of F, (F,.)* = (F*)s),c € VP" for some permutation o
over VP For any ¢ € V", Wi (0) = er (0)p5 @ = o (0)p3¢" 79 Since F is
vectorial dual-bent with F'(0) = 0, F(x) = F(—z), by Lemma 9 we have F*(z) = 0 and

Wr (0) = ep.(0)p2,c € VP By Eq. (28), for any i € V¥ we have

Dyl =p" " pE T > e (0)G, 0 — Go(d). (29)

CG\/}SLP)*
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By Eq. (29), for any i € V;{", if | D},| = 0, then

| D er(0)g, | = p5.

cernp)*

Since m < 3, we have |} _ - er (0)G, "™ < p™ — 1 < p%. Hence, for any i € V,?",

|Dy;| # 0. When i = 0, by Eq. (29) we have that |D7,o| = 0 if and only if

p>™ Y en(0)=1—p"
cEVéLp)*

When n is odd, by Theorem 1 of [5],
€7, (0) = €£.(0)ni(a) for any a € Fy,c € A0 (30)

where 7, denotes the quadratic character of IF,. From Eq. (30) and > . 71(a) = 0, we can
obtain Zcevéf)*gFe(O) = 0. Thus, when n is odd, |D7.| # 0 and ]F(Vn(p)*)| = p™. When
n is even and m < %

and p 1 (1 —p"™™), thus |Df,| # 0 and |F(Vn(p)*)\ = p™. When n is even, m = 3
er(0) = ~Le € Vi, pET Y g en (0) = 1= p"~, thus | Dol = 0 and |F(V;)] =

p™ — 1. When n is even, m = 2 and ¢ (0),c € VP are not all —1, pz ™™ > eey i €R.(0)

,p | pr ™ >y €r.(0) (Note that 5, (0) € {1} when n is even)

and

2
# 1 —p"™™, thus |Dj,| # 0 and |F (Vn(p )*)| = p™. From the above arguments, we have that

the result of Lemma 10 holds for F'. By Lemma 9, we have that F* is also vectorial dual-
bent with F*(0) = 0, F*(—z) = F*(x). By Proposition 2 of [22], for any p-ary bent function
fovir [F, which satisfies that n is even, f(z) = f(—x) and the dual f* is also bent,
£7+(0) = €4(0) holds. When n is even, since F,c € V" are all bent with F.(z) = F.(—x) and
the duals (F,)*,c € V)" are also bent, we have er).(0) =€, ,)(0) =¢F,_, (0),c€ V"
and {e(r+) (0),c € Vn(qp)*} = {er,(0),c € VTELP)*}. Therefore, the result of Lemma 10 also holds
for F™*. [ ]

The following theorem gives a necessary and sufficient condition on constructing association
schemes from general vectorial dual-bent functions F : Vi¥) — Vi) with F (0) =0,F(z) =

F(-r)and 2 <m < 3.

Theorem 8. Let F : V") — Vi) be a vectorial dual-bent function with F (0) = 0,F(x) =
F(—x) and 2 < m < §, and F* be a vectorial dual of F. Denote I = F(Vn(p)*) and ep,(x) =
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p_%Cp_(FC)*(I)WFC(x), ce Vn(pr)*,x € V"), Define

Rig = {(z,x) : x € VP},

Ri={(z,y):2,yc VP oz —yc Dy }iel.
Then

e 1=V and [I| = p™ except one case that n is even, m = 5 and g, (0) = —1,c € V"
(in such a case, I = V" and |I| = p™ — 1).

o The following two statements are equivalent.
(1) {Ria, Ri,i € 1} is an |I|-class association scheme.

(2) For any 3,3 € Vi ith F*(B) = F*(3), er,(B) = er.(8),c € 7420

Proof: By Lemma 10 and its proof, we have that [ = V%) and |I| = p™ except one case
that n is even, m = % and €5, (0) = —1,c € V" (in such a case, I = V¥ and |I| = p™ — 1).
Since F* is a vectorial dual of F, (F.)" = (F*)s(),c € V" for some permutation o over

V77(1p)*. By
Wr.(2) = er(@pi ¢ = cp(@pie" " ce VP x e VI,
where ep, (7) € {£1,4+/—1} with eg (z) = 1 if p = 2, we have that for any 3,3’ € v,
Wr.(8) = Wr.(8),c € VP
& er(B) = en(8), (F)a@(8) = (F oo (), c € V2" (31)
Sep(B) =cr(B),ce VP P (B) = F*(B).

F(Vn(p)*)| = |F*(Vn(p)*)|. Therefore, by relation (31),

By Lemma 10,

{WE(B)) ey B €V} = 1]
& for any 3,3 € Vn(p)* with F*(8) = F*(8'),er.(B) = er,(0),c € Vﬂ({’)*.

By Theorem 2 of [3] (Note that [ = F( Tfp )) in Theorem 2 of [3] should be corrected as
I= F(Vrfp)*)), {R;4, R;,i € I} is an |[|-class association scheme if and only if

{(W(B)), - < B € VPN = |1,

Hence, {R;q4, R;,i € I} is an |[|-class association scheme if and only if for any g, 5’ € Ve )"

with F*(5) = F*(8'), we have er, (5) = e, (8).c € VA", .
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The following corollary is directly from Theorem 8, which states that for a vectorial dual-bent
function F : V;¥) — Vi) with F(0) =0, F(z) = F(—z) and 2 < m < 2, association schemes

can be induced from F' if F, is weakly regular for any c € 1745 ",

Corollary 4. Let F : Vi) — V) be a vectorial dual-bent function with F(0) = 0, F(z) =
F(—z) and 2 < m < §. Denote I = F(Vn(p)*). Define

Rig={(z,x) : 2 € VP},

Ri={(z,y):2,yc VP oz —yec Dy }iel.
If F, is weakly regular for any c € VTSLP )*, then { Ry, R;,i € 1} is an |I|-class association scheme,

where I =V, and |I| = p™ except one case that n is even, m = % and €5, = —1,c € v

2
(in such a case, I = VP and |I| = p™ — 1).

By using two classes of vectorial dual-bent functions I : VARG 7450 given in [8], [21] for
which n can be odd, or n is even and €, ¢ € Vn(lp ) are not all the same, we can obtain more

association schemes.

Corollary 5. Let p be an odd prime. Let F : Fyn — Fym be defined as F(x) = Tr" (az?),
where m > 2,m | n,m # n. Denote I = F(F},). Define

Rig={(z,x):x € Fpn},

Ri={(v,y) v,y € Fpn,x —y € Dy, }i € L.
Then {Rq4, R;,i € 1} is an |I|-class association scheme, where I = F,m and |I| = p™ except
one case that n is even, m = g and n,(a) = & (in such a case, I = .. and |I| = p™ — 1),
where 1, denotes the quadratic character of Fyn, £ = 1 if p =1 (mod 4) and § = /-1 if
p =3 (mod 4).

Proof: Obviously, F'(0) = 0, F(z) = F(—x). By Example 1 of [8], F' is a vectorial dual-
bent function for which for any ¢ € IF,.., the component function Fi(z) = T (acz?) is weakly
regular with e, = (—1)""1¢"n,(ac). Then the result follows from Corollary 4. [

Below we give an example to illustrate Corollary 5.

Example 4. Let p = 3,n = 6,m = 2. Define F(z) = Tr5(2?),x € Fss. Then F is a vectorial

dual-bent function for which for any ¢ € F3,, the component function F.(x) = Tri(ca?) is
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weakly regular with ep, = (—1)%71(v/=1)%n6(c) = ns(c). Note that {ns(c) : ¢ € Fi,} = {£1}.
Let

Rig = {(z,z) : v € Fys},

Ri={(z,y) :x,y € F3s, 2 —y € Dy, },i € F.

By Corollary 5, {R;q, R;,i € Fs2} is a 9-class association scheme.

Corollary 6. Let p be an odd prime. Let 11,19, m be positive integers with m > 2, m | r1,m | ro.
For i € Fym, define H(i;2) : Fyri — Fym as H(0; ) = Trit (aqx?), H(i;x) = Trit(aga?) if i is
a square in ., H(i;x) = Tr)} (asx?) if i is a non-square in ., where o, 1 < j < 3 are all
squares or all non-squares in F,,. Define G : Fyro XFprz — Fpm as G(y1,y2) = Tr2(By1 L(y2)),
where 3 € Fy., and L(v) =} a;z? (¢ = p™) is a g-polynomial over Frs inducing a permutation

of Fpra. Let F': Fpry X Fpro X Fpro — Fym be defined as

F(z,y1,y2) = H(Try2 (v93):2) + Gy, y2),
where v € F,. Define
Rig={(z,2) : x € Fpri X Fpra X Fpra },

Ri={(z,y) : 2,y € Fprs X Fpro X Fpro,x —y € D33 },0 € Fpm.

Then {R;4, R;,i € Fym} is a p™-class association scheme.

Proof: 1t is easy to see that F'(0,0,0) = 0, F(x,y1,y2) = F(—z, —y1, —y2). By Theorem
1 of [21] and its proof, F' is a vectorial dual-bent function for which for any ¢ € ., the
component function F, is weakly regular with 5, = (—1)"* 71" n,, (ayc), where 7,, denotes the
quadratic character of F,ri, € =1if p=1 (mod 4) and £ = /—1if p =3 (mod 4). Then the
result follows from Corollary 4. [ ]

Below we give an example to illustrate Corollary 6.

Example 5. Let p = 5,71 = r9 = 9,m = 3 and o be a primitive element in Fxo. Then
n=ry+ 2ry = 27 is odd. For i € Fys, let H(i;z) = Tri(z?),z € Fso if i = 0 and H(i;2) =
Tri(o?z?),x € Fgo if @ € Fi,. Define F V) o Fas as Fla,yr,ye) = H(Trd(y2):z) +
Trd(yaye) = (Tri(y2) X Trd((0? — 1)22) + Tri(a? + y1ys), where V5 = Fso x Fso x Fso. Let
Rig = {(w,2) w € Vi),
Ri={(z,y) 2,y € VY ,x —y € Dy, },i € Fys.
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By Corollary 6, {R;q, R;,i € Fss} is a 125-class association scheme.

IX. CONCLUSION

In this paper, we further studied vectorial dual-bent functions F' : VAR 7 ), where 2 <
m < % First, we gave new characterizations of vectorial dual-bent functions with Condition A
in terms of amorphic association schemes (Theorem 1), linear codes (Theorem 2), generalized
Hadamard matrices (Theorems 3 and 4), and bent partitions when p = 2 (Theorem 5). Second,
based on the relations between vectorial dual-bent functions with Condition A and bent partitions,
new characterizations of certain bent partitions in terms of amorphic association schemes, linear
codes and generalized Hadamard matrices were presented (Theorems 6 and 7). Finally, for general
vectorial dual-bent functions F : Vi) — Vi) with F(0) = 0, F(z) = F(-),2 < m < 2, we
gave a necessary and sufficient condition on constructing association schemes (Theorem 8) and

more association schemes were constructed (Corollaries 5 and 6).
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