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Abstract

The Mixed Integer Linear Programming (MILP) technique has been
widely applied in the realm of symmetric-key cryptanalysis. In this paper,
we propose a new bitwise breakdown MILP modeling strategy for describ-
ing the linear propagation rules of modular addition-based operations.
We apply such new techniques to cryptanalysis of the SNOW stream
cipher family and find new linear masks: we use the MILP model to
find many linear mask candidates among which the best ones are iden-
tified with particular algebraic bias evaluation techniques. For SNOW
3G, the correlation of the linear mask we found is the highest on record:
such results are highly likely to be optimal according to our analysis. For
SNOW 2.0, we find new masks matching the correlation record and many
new sub-optimal masks applicable to improving correlation attacks. For
SNOW-V/Vi, by investigating both bitwise and truncated linear masks,
we find all linear masks having the highest correlation, and prove the
optimum of the corresponding truncated patterns under the “fewest
active S-box preferred” strategy. By using the newly found linear masks,
we give correlation attacks on the SNOW family with improved com-
plexities. We emphasize that the newly proposed uniform MILP-aided
framework can be potentially applied to analyze LFSR-FSM structures
composed of modular addition and S-box as non-linear components.

Keywords: SNOW Family Stream ciphers, Bitwise Breakdown, MILP
Modeling, Fast Correlation Attack
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1 Introduction

MILP-Aided Symmetric-Key Cryptanalysis. Ever since the introduc-
tion by Mouha et al. [1], the MILP-aided method has enjoyed great success
in the realm of symmetric-key cryptanalysis. MILP models have been used in
searching for differential and linear [2-4] characteristics, and integral distin-
guishers [5, 6] for block ciphers, constructing distinguishers on hash functions
[7], and launching cube attacks on stream ciphers [8-12], etc. They are also
used in FCA on bit-oriented stream ciphers [13]. The MILP-aided method con-
structs a model M capturing the cryptographic property propagation rules
of the targeted primitive. Then, M is solved with some off-the-shelf solvers
like Gurobi [14]. Finally, the targeted characteristics, such as linear masks, are
extracted from the solution of M.

For describing linear propagation rules, MILP models are quite efficient
when coping with simple operation such as the exclusive-OR (@), branching
and S-boxes of < 4 bits. However, the MILP modeling of complicated nonlinear
operations such as the modular 2™ addition (denoted as H,,) and the 8-bit
S-box transformation (SB) can be quite challenging. The H,, operation has a
linear mask searching space of O(2%™) which is computationally infeasible to
exhaust since m = 32,64 are typical choices in symmetric-key primitives. As
to SB, though several optimizations [15-17] are made so far, an 8-bit S-box
still requires over 2400 linear constraints making the M hard to solve. On the
other hand, 8-bit S-boxes and modular additions are basic building blocks of
many symmetric-key cryptographic primitives. Therefore, applying the MILP
modeling to the cryptanalysis of such primitives can be quite challenging.

The SNOW Family. The symmetric-key cryptographic primitives such as
block ciphers, stream ciphers, hash functions play an important role in the
cyber world protecting the security of information, where stream ciphers stand
out for their high efficiency and low resource consumptions. Many stream
ciphers are designed and selected as international standards for world-wide
applications, among which are three main members of the SNOW stream
cipher family namely SNOW 2.0, SNOW 3G and SNOW-V/Vi. SNOW 2.0
[18], proposed by Ekdahl and Johansson, was selected as an standard stream
cipher in ISO/IEC 18033-4. SNOW 3G [19], designed in 2006 by ETSI/SAGE,
serves as the core of 3GPP Confidentiality and Integrity Algorithms UEA 2
& UIA2 for UMTS and LTE networks. It is currently in use in 3G /4G mobile
communication systems. Both SNOW 2.0 and SNOW 3G enjoy a 128-bit secu-
rity. In response to the new requirements from 3GPP encryption, SNOW-V [20]
and SNOW-Vi [21] are proposed recently. Since the close similarity between
two designs®, we refer to both of them as SNOW-V/Vi hereafter. Targeting
at standards of 5G and beyond, SNOW-V/Vi has extremely high software
performance and been claimed to have a 256-bit security.

All members of SNOW family use the classic structure LFSR-FSM: the
linear feedback shift register (LFSR) serves as the source of pseudo-randomness

! They only differ in the LFSR updating function which makes no difference in our analysis.
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and the nonlinear finite state machine (FSM) disrupts the linearity using 8-bit
S-boxes and modular 232 add as building blocks. The SNOW family members
enjoy high efficiencies in both software and hardware environments.

Fast Correlation Attacks. One of the most effective cryptanalytic method
for stream ciphers of LESR-FSM structure is the fast correlation attack [22—-
24], referred as FCA hereafter. Same as the linear attacks on block ciphers
utilizing the correlation between the plaintext sy and the ciphertext sy, FCA
on stream ciphers is based on the linear correlation between the LFSR bits £
and output bits z. Therefore, for FCA, finding linear masks (I'g,T',) for £ and
z of stream ciphers such that I'y - £® T, - z = 0 hold with high correlations is
of the great importance.

Great efforts have been made in finding high-correlation (I'g, I, ), resulting
in various FCA on SNOW stream ciphers [25-35]. The best FCAs for SNOW
2.0 [28] and SNOW 3G [30] have data/time/memory complexities of well over
2128 while the complexities corresponding to the best FCAs on SNOW-V /Vi
[33, 34] are below 22°¢, violating the claimed 256-bit security.

Motivations. It is noticeable that most of the (I'g,T';)’s used in FCAs on
SNOW are deduced either by hand or through partial exhaustive search accord-
ing to some intuitive strategy: even the SAT-based automatic search in [35]2
uses directly the truncated pattern in [34]. However, whether there are bet-
ter linear masks are largely unknown. Therefore, there is an urgent demand
of uniform frameworks for efficiently finding many (I'¢,T",)’s that are likely to
have high correlations. With so many (T'g,T',) candidates, one needs a method
to compute their correlations accurately and efficiently so as to identify the
masks applicable to FCAs. To sum up, the whole linear mask search process
is divided into two tasks as follows:

e Candidate Search: Find many (I'p,I';)’s as candidates with a uniform
framework.

e Correlation Computation: For each candidate, compute the correlation
accurately for further selections.

Since the discussion of optimality is the strength of MILP models, we are
to propose a MILP model based framework for accomplishing the first task
Candidate Search so as to improve the FCA results on primitives using both
modular additions and large S-boxes.

Our Contributions. In this paper, we make progress in both Candidate
Search and Correlation Computation aspects.

For Candidate Search, we propose a new bitwise breakdown strategy for
modeling the linear propagation rules of modular addition-based operations
with MILP models. Following our strategy, a modular 2" addition is broken
down to m bitwise additions from the least significant bit (LSB) to the most
significant bit (MSB). Each bitwise addition can be regarded as a small S-box
whose linear propagation rules can be captured with MILP constraints deduced

2In fact, this work is accomplished independently and almost in parallel with [35].
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with the H-representation technique in [2]. This strategy is not only quite easy
for understanding but also flexible for describing the linear propagation of con-
secutive modular addition-based operations and deducing optimal truncated
linear masks. Combining such new modular addition descriptions with a sim-
ple S-box modeling method, we propose a uniform MILP-aided framework for
finding linear mask candidates which are of independent interest.

For Correlation Computation of SNOW-V/Vi linear masks, we propose an
accurate correlation computation algorithm for particular composition func-
tion F' using the algebraic bias evaluation technique. Such a technique has
been proved effective in previous cryptanalysis of SNOW 2.0 and SNOW 3G
(28, 30].

Thanks to new techniques, we are able to find many linear mask (I'g,I",)’s
with currently the highest correlations (i.e., having the largest value |Cor|) for
the targets in SNOW family.

e For SNOW 3G, we find 18 masks with |[Cor| > 2721: 15 of them are new; the
best three breaks the previous correlation record in [30] setting a new record
of |Cor| = 2720-386, There are another 175 masks with 2722 < |Cor| < 2721,

e For SNOW 2.0, we find 26 masks with |Cor| > 2715: 23 of them are new;
the best 4 ties the highest correlation record of £27144!1 originated in [28].
We compare the linear mask results in Table E8 of Section E.2.

e For SNOW-V/Vi, we investigate multiple highly qualified truncated lin-
ear mask candidates, the best of which enables us to find 8 bitwise mask
(Te,T'2)’s with |Cor| > 2748 and another 127 with 2749 < [Cor| < 2748:
such results are in accordance with those in [35] while different methods are
used. We also investigate linear masks following sub-optimal truncated pat-
terns whose correlation cannot be larger than |Cor| = 2759816 indicating
the optimum of current results.

Table 1: Comparison of FCAs on SNOW 2.0, SNOW 3G and SNOW-V/Vi

Cipher Ref. Data Time Memory
58 5T59.62 5T62.88 516232
SNOW 2.0 ’[I‘h}is paper 9156.75 163.66 163.36
29 5T76.56 5T76.92 517656
%30% 9172.42 9174.98 9174.17
SNOW 3G This paper 9170.81 9174.95 9174.13
This paper 2169.52 2175485 2175407
[34] 523750 524653 523877
35 9239.30 9247.22 9239.32
. [35}"’ 2237.81 2246.06 2238417
SNOW_V/VI [35}1’ 2236.87 2247479 2239488
35 9234.88 9246.40 9238.51
This paper 9231.76 9247.38 9239.48

t: In [35], the complexity for finding all pairs of vectors colliding on some bits from N vectors is
under-estimated as O(v/2N). We unify this estimation as O(N log, N), which is more accurate.

With the new highly qualified linear masks, we can directly propose new
FCAs with improved data complexities for SNOW 2.0 and SNOW 3G. For
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SNOW-V /Vi, we give a FCA using multiple linear masks and thus obtain new
trade-off points. We compare our FCAs with the current best ones in Table 1
showing that ours have the lowest data complexities.

Organization of the Paper. Section 2 provides the necessary background
and notations used throughout the paper. The idea of bitwise breakdown strat-
egy is described in Section 3, followed by the MILP modeling in Section 4. With
the help of an algebraic bias evaluation of composition functions in Section 5,
we apply the MILP modeling technique to the Candidate Search task of three
targets of SNOW in Section 6, obtaining masks of the highest correlation. The
selected linear masks are then used for new FCAs in Section 7. We summarize
the whole paper in Section 8.

2 Preliminaries

2.1 Notations and Definitions

We first introduce some notations and definitions used throughout this paper.
The binary field is denoted by Fs and its m-dimensional extension field is
denoted by F5* whose elements are m-dimensional binary vector of the form
a = (ag,a1,...,am—1) € F": ag is LSB and a,,—; is MSB. The bitwise linear
mask of a € Fy* is naturally denoted as I'g € F5'. One instance of a with static
value can also be represented as HEX numbers: a = (0,1,0,0,0,1,1,1) & a =
0xe2. Besides, a matrix M € F5'*" represents a 0-1 matrix of size m x n. The
bitwise XOR is denoted by “@®” and the AND of a,b € F5 is represented as
a-b or simply ab. For a,b € F3’, the standard inner product over F5* is defined
asa-b= @Z’;Bl a;b;. The addition modulo 2™ is H,,, and we may use H}, for
n consecutive modular additions: specifically, the case of n = 1 in Eq. (1) is
denoted as H,, and referred as the ordinary addition while the case of n = 2
in Eq. (2) is referred as the consecutive addition hereafter.

B, :z=xH,y, (1)
B2 :z=xM@,, yHB, w. (2)

The summation and multiplication over real numbers are simply denoted as
“+7 and “x”.

Let n, m be two positive integers such that m divides n and d = >. For
x € F}, and its bitwise linear mask I'y € F5, we can write  as € = (zg ||
<o || ®g—1), where &; € F5* for i = 0,...,d — 1 and g is the least significant
part3. Corresponding to the bitwise linear mask I'y, the truncated linear mask
is defined naturally as Ty = (T, - -, T,_,) € FE, where

T 0, if 'y, =0 (e F")
] 1, otherwise

3Note that 'y, - @ = 7;01 Ty, - ®;, where T'y, € F3" is the bitwise linear mask of ¢; € F3".

)
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For z,y € F3, z = x H,, y € F3 is acquired by d parallel operations of the
addition modulo 2™ as: z; = x; B, y; € F5* for i =0,...,d — 1. For SNOW-
V/Vi, Hss is carried out on 128-bit states by the parallel applications of four
additions modulo 232 over each sub-word.

The AES round function, denoted as AESF, is used in the FSM updating
function of SNOW-V/Vi, which is composed of SubBytes (SB), ShiftRows (SR)
and MixColumns (MC) as AEST(-) = MC o SR o SB(-) with no AddRoundKey
operation included here. Note that the branch number of MC in each column
is 5. Let s be the 128-bit input to AEST(-), then s is divided bytewisely and
mapped to the state array of the AES round function as follows:

S0 S84 Sg S12
81 85 S9 813
82 S S10 S14
83 87 811 S15

s = (SOH ||315) =

When analyzing the truncated linear masks, we constantly use the bytewise
truncation: for x € F73, its truncated linear mask 7T, is always of the length
5~ Therefore, for the bitwise linear mask I's of s € F32® in SNOW-V/Vi, the
corresponding bytewise-truncated linear mask Ts has 16 entries.

In FCAs on LFSR-based stream ciphers, the output bits are regarded as
general vectorial Boolean functions of internal state bits, where the correlation,
denoted as Cor, is one of the most important parameters for evaluating the
strength of the linear approximation and also the efficiency of FCAs.

Definition 1 For an arbitrary vectorial Boolean function F : F§ — F5' and its
input-output linear mask pair (I';,T's) € Fy x F5', the correlation Corp(I';,T's) (or
simply Cor(I';,I'o) when F is obvious from the context) is defined as

Corp(Ti,To) = Pt {To F(@) =Ty}~ Pr {To- F(w) £ 1 e},
2 2

When Corp(T';,T',) # 0, we know that I'; can propagate to I', following the
linear propagation rule of F: such (I';,T',) are referred as “available” masks

whose correlations are also denoted as Cor(T; EiN T',). Specifically, for linear
function F, for each T'; € FY, there exists I, € F3* making Corp(T;,T,) = 1.

2.2 Brief Descriptions of SNOW-V /Vi, SNOW 3G and
SNOW 2.0

All members of SNOW family use the classic LFSR-FSM structure, where
the LFSR serves as the source of pseudo-randomness and the FSM dis-
rupts the linearity. For our targeted SNOW-V /Vi, SNOW 3G and SNOW 2.0
stream ciphers, we only provide the description of the non-linear FSM part in
keystream generation phase. For more details on the designs, we refer to the

original specification documents [18-21]. Specifically, we use H to represent
Hso in SNOW 2.0 and SNOW 3G descriptions.
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2.2.1 SNOW-V/Vi

The overall schematic of SNOW-V algorithm is shown in Fig. Al of
Appendix A. The LFSR part of SNOW-V/Vi [20, 21] consists of two LFSRs,
namely LFSR-A* and LFSR-B, both of 16 cells of length 16, giving 512 bits
in total. The FSM part consists of three 128-bit registers namely R1, R2
and R3. At each time instance, two 128-bit states from LFSR-A and LFSR-B
denoted as T'1, T2 are first output, and then the FSM takes the two blocks as
inputs and produces a 128-bit keystream as Eq. (3)

zZy = (T]-t 5332 th) EB R2t (3)
After z; is output, the FSM is updated according to Eq. (4)

R1t+1 = O'(R2t 8332 (R3t & T2t))
R2;,1 = AES®(R1;) (4)
R3i1 = AEST(R2;)

where ¢ = [0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15] is a bytewise permu-
tation. We emphasize that, for the linear approximation of the FSM of
SNOW-V/Vi, we extract the function F(x,y, z) = o(x B3z y) B3z z, denoted
as F-function, which is the unique building block of SNOW-V/Vi. For com-
puting the correlations under any given linear masks, we propose an efficient
algorithm in later Section 5 using the algebraic bias evaluation technique.

2.2.2 SNOW 3G

The overall schematic of SNOW 3G is shown in Fig. A2 of Appendix A. SNOW
3G [19] has a 512-bit LFSR consisting of 16 32-bit words denoted as s, . .., S15.
Specifically, for ¢+ = 0,...,15, the value of s; at time instance t is denoted as
St+i- The FSM of SNOW 3G consists of three 32-bit registers namely R1, R2
and R3. For time instance ¢, the output of SNOW 3G is the 32-bit word z;
computed as Eq. (5).

Zt =8 D (St+15 H th) b th (5)
The FSM are updated afterwards as Eq. (6)

R1t+1 = th H (R3t D St+5)
R2t+1 = Sl(th) (6)
R3t+1 = SQ (R2t)

S1 and S, are two permutations over F%Q (81 is also used in SNOW 2.0) which
can be represented as S;(-) = LL; 0SBX,(+) for ¢ = 1,2, where SBX; is a nonlinear

4SNOW-Vi is exactly the same as SNOW-V, with the only difference in the LFSR update
function and the tap T'2 moved to the higher half of LFSR-A.

7
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operation using four 8-bit S-boxes in parallel and LL; is the linear transforma-
tion similar to the MC in AESE. The branch number of LL; is also 5. Refer to
[19] for more details of SNOW 3G.

2.2.3 SNOW 2.0

SNOW 2.0 [18] is quite similar to SNOW 3G. It also has a 512-bit LFSR
consisting of 16 32-bit words. However, the FSM only contains two 32-bit
registers R1 and R2. At the time instance ¢, the 32-bit output z; is computed
as

2t =8 D (St+15 H th) ® R2; (7)
and the updating function of FSM is Eq. (8)
R1t+1 = S¢+5 H R2t (8)

R2t+1 = Sl(th)

The overall schematic of SNOW 2.0 is shown in Fig. A3 of Appendix A. Refer
to [18] for more details of SNOW 2.0.

2.3 Linear Masks for Correlation Attack on Stream
Ciphers

The correlation attack works especially for stream ciphers with LFSRs. The
main idea for this type of attack is using linear approximations of the nonlinear
operations in the cipher and to derive a linear relationship between the outputs
and the LFSR states, then the correlation of such a linear relation is utilized
to launch attacks. For stream ciphers, suppose some output bits z can be
represented as a function of internal state bits as follows

z=F(L,r), (9)

where £ represents the LFSR bits, and r represents the nonlinear bits. During
the keystream generation process, the LESR bits are updated according to a
linear function g as £ « g(#€).

In FCA, the linear approximation with linear masks (I'g, I, ") satisfying

I,.=0

[Corp (T, I',)| = >0

Cor [(I‘g,O) EiN Fz}

can be utilized to recover the LFSR (or the whole internal state). Generally,
the FCA is modelled as a decoding problem, i.e., the keystream segment z can
be seen as the transmission result of the LFSR sequence u through a Binary
Symmetry Channel (BSC) with the error probability p, as shown in Fig. 1.
The FCA is divided into the preprocessing and online processing phases. In
the preprocessing phase, we first collect a number of samples involving only
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e
LFSR u ; % —z
1 1

1-p
Fig. 1: Model for the fast correlation attack

output bits and LFSR initial state bits, and then try to reduce the involved
LFSR initial state bits size at the expense of a folded noise level, and finally an
[N, k]-linear code C is constructed. After this, we enter the processing phase
to recover the target k bits of the LFSR by using the fast Walsh transfomr
(FWT) as was done in [23], and further the whole LFSR bits I.

Obviously, linear approximations with larger |Corp(I'y, I';)| values enhance
effectiveness of FCAs. Therefore, finding linear masks (I'g,T',) yielding high
correlations is requisite for the success of FCAs. However, £, 7, z often contain
many bits and the F function in Eq. (9) is quite complicated. To compute
correlations, we may have to decompose F as

PN-1
soz(ﬁ,r)p—0>sl—>-~-—>sN,1—>z:sN.

where pg,...,pny_1 are simple operations such as MC, H, S-boxes etc., and s;’s
(i = 0,...,N) are the intermediate states. Then, the masks of intermediate
states compose a linear trail as follows

PN-1

(Tg,0) 25 Ty, =+ =5 Ty, — T, (10)

According to the piling-up lemma [36], Corp(I'¢,T'z) can be computed as the

summation of the correlations of all linear trails as

Corp(Tp,Tz)= > Cor [(Fg,O) LN NN p”—*%rz]
Y(TaysoTop_y)

Therefore, a highly qualified linear mask of F should meet the following
criteria:
1. There exist many linear trails in Eq. (10) having non-zero correlations.
2. The absolute correlation values
‘Cor [(T6,0) 2 Ty, =+ 5T
high.
Therefore, the Candidate Search described in Section 1 can now be rede-
fined in a more specific manner as follows:
Candidate Search: Find many different linear trails as defined in Eq. (10)
((T¢,T;)’s are also different) that are likely to have high correlations.

—— I',||’s of some linear trails are

PN-1
SN—-1




10 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

2.4 MILP Modeling for Searching Linear Masks

The MILP modeling technique has long been used in the realm of cryptanaly-
sis. It has good performance in fields such as finding differential /linear /integral
characteristics of block ciphers, giving cube attacks on stream ciphers, and
constructing all kinds of distinguishers on hash functions etc.

According to Section 2.2, the output and FSM updating functions of our
targeted stream ciphers consists of basic operations of three categories namely
linear, 8-bit S-box and modular addition. The corresponding linear propa-
gation rules are studied thoroughly. There are also quite some efforts made
to describe such rules with MILP models. We treat such three operations
differently:

® Linear: Linear operations include @, branching and all kinds of bitwise
permutations. The corresponding linear propagation rules are quite straight-
forward and the MILP modeling techniques are also mature. For typical
linear operations such as XOR and branching, the bitwise and truncated lin-
ear propagation rules along with the corresponding MILP modeling methods
are detailed in Appendix B.

® 8-bit S-box: The linear propagation rules of 8-bit S-boxes can be per-
fectly captured with a linear approximation table (LAT). However the MILP
model describing such rules can be quite complicated: thousands of linear
constraints are required making the model solving process computationally
infeasible. Therefore, in our model, we simply require the bitwise input and
output masks of S-boxes share the same truncated linear symbol and filter
the feasible input-output pairs after the modeling solving process. There-
fore, our MILP models are quite simple and can be solved efficiently. Such
a S-box modeling technique is described as Algorithm 11 in Appendix B.

® Modular Addition: All of the current works simply consider the ordinary
modular addition in Eq. (1). In our case, there are more complicated modular
addition-based operation such as the consecutive modular addition such as
B2, in Eq. (2). We propose a bitwise breakdown framework in Section 3
followed by the corresponding MILP modeling technique in Section 4.1. We
also propose a bytewise breakdown accordingly in Section 4.2 so as to deduce
truncated linear masks.

In this way, we are able to construct MILP models for Candidate Search. Note
that AES®, S; and S, are all combinations of 8-bit S-box and linear opera-
tions. Their bitwise and truncated linear propagation rules can be described
easily with MILP models. The model construction process are all defined as
algorithms aesModel, aesTruncModel etc. in Appendix B as well.
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2.5 Algebraic Bias Evaluation Technique for Correlation
Computation

With the linear mask (I'g,T';) and the function F s.t. z = F(€,r) in Eq. (9),
we may define the noise e as

¢=(Te-£)®(s-2) = (Te- ) & (Ts - F(Lr)).

Computing the correlation Corp(I'y,I',) is equivalent to evaluating the bias of
e towards 0 according to the truth table of e. Nevertheless, such e is a polyno-
mial of £ and r bits with complicated algebraic normal form (ANF). So Cor(e)
cannot be computed directly. Therefore, one has to group the basic operations
Po,--.,PN—1 into operation groups Gy, ...,Gx_1 whose inputs are indepen-
dent as far as possible. The noises of different groups, denoted as eg, ..., ex_1,
should have simpler ANFs and their correlations Cor(e;) (i = 0,...,5 — 1)
can be accurately and efficiently computed. For groups with inputs in com-
mon, e.g., o, ..., Um—1, We introduce the intermediate masks I'yg,...,.Iw,,
and for each possible value of them, we compute a partial correlation over this
value, which is a product of all the correlations Cor(e;), namely H;:Ol Cor(e;).
Finally, the correlation of e can be computed as a sum of partial correlations
over all intermediate masks as

k—1
Cor(e) = Z H Cor(e;).

Vlug Ty, i=0

Apparently, dividing pg,...,py_1 into appropriate groups is quite technical
depending highly on the definition of F' in Eq. (9). The applications to SNOW
family stream ciphers will be illustrated in the later Sections 6.1.2, 6.2.2 and
6.3.2.

3 Bitwise Breakdowns of Two Modular
Addition-based Operations

In this part, we consider two nonlinear operations namely the ordinary modular
2™ addition in Eq. (1) and the consecutive modular 2™ addition defined in
Eq. (2). We analyze the operations in a bitwise manner inherited from [26, 37],
and deduce their effects on the linear correlations.

3.1 The Ordinary Modular Addition Operation

The ordinary modular addition operation in Eq. (1) can be regarded as a
combination of two functions, namely the half adder h, : F3 — F3 and the full
adder f, : F3 — F3.
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A half adder h, takes two bits z,y € Fy as input and outputs two bits,
namely the result bit z and a carry bit oc, denoted as (z, oc) < hq(x,y) where:

{z =r Dy,
2xoc+z=x+y <&
oc = xy.
A full adder f, takes as input three bits namely z,y,ic € Fy and also
outputs (z,0c), denoted as (z,0c) < fo(x,y,ic), where

z=x®Dydic,

2¥0c+z=x4+y+ics
Y {oc—(xoy)\/(xoic)\/(y%c).
Therefore, the ordinary modular addition in Eq. (1) is represented in a bitwise
breakdown manner as Eq. (11), involving one half adder call and w — 1 full
adder calls:

(20, 0¢c0) <= ha(To, Yo)

(z1,0¢1) < falx1,y1,0c0)

(11)

(meh Ocm71> — fa(xmfh Ym—1, Ocm72)
In order to capture the linear propagation rule of modular addition, we must
handle the accurate linear propagation rules for h, and f, defined in Section 3.1
and Section 3.1 respectively.

For half adder h,, we denote the two input linear mask bits as I';, Iy and
the two output mask bits as I',, I',. respectively. For all 16 possible values of
the linear mask tuple (I', Ty, ', Toc), we traverse all 2% (z,y) values and com-
pute the correlation Cor. We find that there are 10 out of 16 (I';,I'y,I'., )
values having non-zero correlations. Such 10 available (I';,T'y,I',,T,.) values
are listed in Table 2 and their correlation satisfies |Cor| = 27Tec. In other
words, the correlation of h, can be determined simply with T',..

Table 2: h, masks and their corre- Table 3: f, masks and their corre-

lations. lations.

No. | (T, Ty, T2, Toc) | [Cor] No. | (T, Ty, Tic, T2, Toc) | [Cor]
1 (0,0,0,0) 1 1 (0, 0 0 0 0) 1
2 (1,1,1,0) 1 2 (1,1,1,1,0) 1
3 (0,0,0,1) 271 3 (1,0,0,0,1) 271
4 (1,0,0,1) 21 4 (0,170 0,1) 2~
5 (0,1,0,1) 2” 5 (0,0,1,0,1) 2~
6 (1,1,0,1) 2! 6 (1,1,1,0,1) 2!
7 (0,0,1,1) 271 7 (0,0,0,1,1) 271
8 (1,0,1,1) 21 8 (1,1,0,1,1) 21
9 (0,1,1,1) 271 9 (1,0,1,1,1) 2"
10 (1,1,1,1) 2! 10 (0,1,1,1,1) 2!

For full-adder f,, we denote the three input linear mask bits as I';, I'y, I'c
and the two output mask bits as I',,I',. respectively. There are 10 available
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(T3, Ty, T4, T2, Toc)’s as shown in Table 3, and same with h,, there is also
|Cor| = 27 Toe,

Therefore, for the ordinary modular addition in Eq. (1), in addition to
the input-output masks (I'y,I'y,I'2), we should further define I's. in Eq. (12)
representing the masks of carry bits.

Toc= Tocyr---sLoc,_1) (12)

Then, we have the following Proposition 1.

Proposition 1 For B, in Eq. (1) with input-output mask (U'g,T'y,T'2), the propa-

gation (I'g,Ty) % I is available iff there is a linear mask of carry bits T'oe € Fy'

defined in Eq. (12) satisfying:

° FOCmfl =0.
® (TuoTyos Tags Tocy) is in Table 2.
® (T2, Ty, Toc, 1, T2 Toe,) ds in Table 3 fori=1,...,m —1.

Proof An available mask (I'z,I'y,I'z) should have a non-zero correlation which,
according to the piling-up lemma, can be computed as

m—1
|C°rEE|m (Pz, Ty, FZ)| = |C°r(F$0’ Ty, I'z05 Toco )‘ H |C°r(F91i Ty Toci—1, 'z, Dog; )‘

i=1

Since ocy,—1 is not output, I'oe,,, , = 0. Further, since > 0,

Cor {(rw, ry) 2o, I‘z]

there must be
|COI‘(FIO’ Fyo: FZo7 FOCO)' > O
|Cor(T'z;s Ty;s Toci_1, Lz, Toc; )| >0, wherei=1,...,m— 1.

So there is (I'zy, L'y, 'zg, Tocy) lying in Table 2 and (T, Ty, , Toe; 152, Toc; ) in
Table 3 simultaneously, which completes the proof. O

3.2 The Consecutive Modular Addition Operation

The consecutive modular addition B2, can also be decomposed into bitwise
additions from LSB to MSB: the addition at bit positions 0, ...,m — 1 can be
one of the three function calls, namely f, : F3 — F2, f; : F5 — F3 and f5 :
F5 — F3. f, has been defined in Section 3.1. For f : (z,y,w,ic) — (2,0c,0d),
the input and output bits always satisfy

r4+y+wtic=z+2%xo0c+4x*od.

There are 98 out of the 128 input-output mask (F$,1"y71"w7 Lie, T2y Toc, Toa)’s
having non-zero correlations and we list them in Table C1 of Appendix C.
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For fo: (z,y,w,icl,ic2) — (z,0cl,o0c2), the input and output bits always
satisfy
TH+y+wtic+id=z+2%xo0c+4x*od.
We list the 122 available input-output mask (I'y, Ty, Ty, Iic, T'ia, Iz, Toc, Toa) s
along with their correlations in Table C2 of Appendix C.
With f,, f1, f2, the bitwise breakdown of the consecutive modular addition

B2, can be represented as

20,0¢0) < fa(T0, Y0, wo)
21,0¢1,0dp) < f1(x1,y1, w1, 0C0)
23,0C2,0d1) < f1(x2,Y2, w2, 0c1)

23,0¢3,0dz) < fa(x3, Y3, ws, 0c2, 0do)

~—~ o~~~

(Zm—la 0Cm—1, 0dm—2) — fQ(Im—h Ym—1,Wm—1,0Cm—1, 0dm—3)

As can be seen, each B2, consists of one f,, two fi and (m — 3) fy calls. The
oc and od are referred as the 1st- and 2nd-order carry bits.

As to linear masks, in addition to (I'z, 'y, ['w,I'z), we further define carry
bit mask vectors as I'oe, 'og as

FOC = (FOCO7 ce . 7F007n—1)
Fod = (Fodov ey 1—‘aalmf2)

It can be proved that available (I'y, Ty, T4y, T'2)’s of B2, should satisfy the
following Proposition 2.

Proposition 2 For B2, in Eq. (2) with input-output mask (I, Ty, Tw,T'z), the

propagation (g, Ty, Tw) EE|—m> T'» is available iff there are linear masks of carry bits
(Toe,Tog) € F5* X Fg%_l defined in Section 3.2 satisfying:

Focm,l = Fodm,g = ]-—‘odm,g =0.

(Tag, Tyos Twgr T2 Tocy ) 48 in Table 3.

(Cais Ty T, Toei 1, T2y Toesy Do,y ) 88 in Table C1 fori=1,2.

(T Ty T Toei 1y Tods 50Tz Tocs s Doa,y) s in Table C2 for i =
3,....,m—1.

The proof of Proposition 2 is exactly the same as that of Proposition 1.

4 MILP Models for Linear Propagation of
Modular Additions

In order to find the particular linear mask with the highest correlation, a MILP
model M is constructed where the linear mask bits are represented as binary
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variables denoted as M.var. The objective function of the model, denoted as
M.obj, is set to maximize the correlation. The constraints M.con are imposed
so as to guarantee the availability of input-output linear masks. Additional
variables may also be declared: such variables are to be used in constraints
and the objective M.obj so as to track the magnitude of correlations.

4.1 MILP Models for Bitwise Linear Propagation of
Modular Additions

According to Section 3, the correlation of h, and f, can be accurately deter-
mined with T',.. Based on the bitwise breakdown in Eq. (11), we define
the model construction process of the ordinary modular addition operation
in Algorithm 1 as (M,I';,Ty.) ¢ ordModAdd(M,T;,Ty). The subrou-
tine haModel and faModel are defined in Algorithm 15 and Algorithm 16
corresponding to the models describing h, and f, respectively.

Algorithm 1 Model Construction of Ordinary Modular Addition
(ordModAdd)

Input: Initial model M and 2 binary variable vectors of length m: I'x =
(Fwov' . '71_‘3:7‘@—1)7 F'!J = (FZJO7~ .- 7Fym—1)

Output: Updated model M and 2 binary variable vectors of length m: I'x =

(T2, -, Tz, 1) and Toe = (Toco, - - -, Loy 1)

: (M, T2, Tocy)  haModel(M, Ty, T'yp)

fori=1,...,m—1do
(M, Iz, Toc;)  faModel(M,I'z;, I'y;, Toc; ;)

end for

M.con+Toe,, ;=0

s Let Tz = (Tz,-.-502,,_1) and Toe = (Tocgs -+ - s Docyn_y)

: Return (M, 'z, Toc)

AN R ol

For consecutive modular addition, according to Table C1 and Table C2, the
correlations of f1 and f> cannot be represented with I',. and I'y4q. Therefore, we
define additional binary variables p, ¢q. For each available input-output linear
mask (I';,T',), the corresponding (p, q) takes two values namely (p,q) and (p, q)
s.t.

9-(0+20) < cor(T; T T,) <272 j— 1,2,
We list the values of p, ¢, p and G in Table C1 and Table C2 as well. Accord-
ing to the bitwise breakdown in Section 3.2, we define the model construction
process of the consecutive modular addition operation in Algorithm 2 as
(M,T;,p,q) < conModAdd(M, Ty, Iy, Ty, A) where A € {0,1} determines
whether to use (p,q) (A = 0) or (p,q) to evaluate the correlations. The sub-
routine f1Model and f2Model are defined in Algorithm 17 and Algorithm 18
in Appendix C corresponding to the models describing f; and fs respectively.

The combination of Algorithm 1 and Algorithm 2 is well enough to describe

the bitwise linear propagation of SNOW family of stream ciphers. The optimal

15
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Algorithm 2 Model Construction of Consecutive Modular Addition

(conModAdd)

Input: Initial model M; 3 binary variable vectors of length m: T'x =
(Fivm AR} F$m—1 )7 Fy = (Fym RS Fym—l)7 F’w = (Fwo, R me—l); a binary ﬂag
re{0,1

Output: Updated model M and 3 binary variable vectors: I'z = (I'zy,..., 2, ),

P = (po,...,pm—1) and ¢ = (qo, - - ., @m—2)

1: (M, T5,,Tpy) < faModel(M, Tz, Ty, Tuyg)

2: fori=1,2 do

3: (Mv in,I‘oci, Fodi_lap’ia q’i—l) <~ flMOdel(M7 FI«M F’yiarwz‘)roci—la)\)
4: end for

5: fori=3,...,m—1do

6: (Ma invrocmrodi,lvpia qifl) — fQMOdel(/\/LFI” Fyial_‘w/i7roci71ﬂrodi,37)\)
7: end for

8: M.con < T'g¢,, , =0

9: M.con«I'pq, =0for j=m—2,m—3

10: Let z = (Z07 cee 7Zm—1): pP= (p07 .. :pm—l) and q = (CIO7 .. :Qm—2)

11: Return (M, Tz, p,q)

linear masks for SNOW 2.0 can be directly deduced. However, for SNOW-
V/Vi and SNOW 3G, the bitwise model can be too complicated to be solved
directly. Therefore, we should first deduce a good truncated linear mask as a
hint. Such truncated linear mask hints are also deduced through MILP models
as described in Section 4.2.

4.2 Truncated Linear Propagation of Modular Additions
and Its MILP Description

In this part, we deduce the truncated linear propagation rules for ordinary

modular addition and consecutive modular addition, and propose a MILP

model capturing such propagation rules. We also propose a criteria of truncated

linear characteristics based on their contributions to the linear correlations.
For m = 8t, there is a bytewise breakdown for H,, as Eq. (13).

(20, 0c7) < hi(x0,Y0)
(Z170615) — fb(wl;ypOC?) (13)

(2¢—1,0Cs8t47) < fo(®i—1,Y;_1,0C8t-1)

where hy, : F§ x F§ — F§ x Fy consists of a h, call followed by seven f, calls
and fj, : F§ x F§ x Fy — F§ x Fy is eight £, calls.

As to the truncated linear masks, in addition to (Ty,Ty,T), we further
define the ¢ truncated carry mask bits as:

Toc = (TO(;()7 Tocla v aToct,l) = (F0077 F00157 ceey Foc&,l)-
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The truncated linear propagations of hj, and f;, can therefore be represented
as follows:

(Tx:Ty) % (T27Toc)v (TxaTvaic) i (TZ7T06)~

The available (T, T, T., Toc)’s for hy and (T, Ty, Tic, T, T,e)’s for fy, are listed
in Table D3 and Table D4. The corresponding MILP model construction pro-
cess of hy and fj are defined as Algorithm 21 and Algorithm 22. It is noticeable
that hbModel and fbModel output not only the truncated linear masks but
an additional 7 € {0,1}: 7 = 1 for non-zero input-output masks; otherwise
7 = 0. For hy and fy, the available input-output masks have |Cor| > 278.
The truncated linear propagation of the ordinary modular addition in Eq. (13)
can therefore be defined as Algorithm 3. The 7 = (79,...,7:—1) output by
Algorithm 3 can be used for evaluating the lowest correlation contribution

(T, Ty) — T as 2780207,

Algorithm 3 Model Construction of the Ordinary Modular Addition
(ordTruncModAdd)

Input: Initial model M and 2 binary variable vectors of length t: T, =
(Toy -y Tayy), Ty = (Ty,, -, Ty, ;)

Output: Updated model M, 2 binary variable vectors of length ¢: T, =

(T2py- -y T2_y) and 7 = (70, ..., T¢—1)

: (M, Tz, Tocy,70) < hbModel (M, Ty, Ty, )

fori=1,...,t—1do
(M, T;, Toc;, 7) < fbModel (M, Tz, , Ty, , Ti—1)

end for

Add a constraint M.con < Toc,_, =0

s Let Te = (Tzgy -y T201), Toe = (Tocoy - - s Loy, 1) and 7 = (70, ..., T¢—1)

: Return (M, T, 1)

IR AN SR ol

As to the B2, its bytewise breakdown is of the form Eq. (14).

(20, 0c7, 0dg, 0d7) < hp2 (0, Yo, Wo)
(z1,0c15, 0d14, 0d15) < fra(1, Yy, w1, 0c7, 0dg, 0d7)

(2t—1,0C8¢17,0ds 16, , 0dgt7) < fro(®s—1,Y; 1, We—1,0C8¢_1,0dg;_2,0dsg; 1)

(14)

hyo : F§ x F§ x F§ — F§ x F3 in Eq. (14) consists of one f, call, two f; calls and

five fo calls. fio : F§ x F§ x F§ x F3 — F§ x F3 consists of eight f» calls. The

truncated input-output linear masks are (T, Ty, Tw,T>) and the truncated
carry masks are defined as Tpe, Togq in Section 4.2.

Toc = (Tocm cee 7Toct,1) = (FOC77 s 7Foc8t,1)
TOd = (Tod07 T0d17 A 7Tod2t,27Tod2171) = (F0d67 l_‘Qd77 MR | F0d8t7271—‘0d8t71)'

17
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According to Proposition 2, there is constantly Tpe, , = 0 and Tog,, , =
Tody,_, = 0. Therefore, the truncated linear mask propagation of hye and fpa
can be defined as follows:

h
(Txv Ty7 Tw) & (T27 Tom Todm Todl)
(T, Ty Too Tics Tiags Tia) L2 (T2, Toes  Todes Tod, )-

The available (T,,Ty,Tw,Ts,Toc, Tody, Toa,)’s for hye and the available
(Te, Ty, Tics Tiag s Tidy> = Tocs Tody, Tody)’s for fue are listed in Table D5 and
Table D6. The construction of the MILP model for hye and fpo are defined
in Algorithm 19 and Algorithm 20 in Appendix D. The model describing the
truncated linear propagation of the consecutive modular addition in Eq. (14)
can therefore be constructed by calling Algorithm 4. Note that the magnitude
of the correlations are evaluated by max{p + 2¢} where (p,q) are defined in
Table C1 and Table C2. According to their definitions, the larger max{p+ 2¢}
are, the lower the min |Cor| can be. It is noticeable that for hyo, the non-zero
max{p + 2q} values are within the range [15,22] while for fy2, the range is
[17,24]. The average max{p-+2q} values for hy and fy, are therefore computed
as 19 and 21 respectively. Specifically, for the fyo call at the most significant
byte, the non-zero max{p + 2¢}’s equal 20 according to Table D6. With the
final 7 = (70,...,7¢-1) output by Algorithm 4, we may evaluate the correlation

m2 _
of propagation (Ty, Ty, Tow) —= Ty as 27 (1970+207e—1+21 Sizim),

Algorithm 4 Truncated Linear Propagation Model Construction of the
Consecutive Modular Addition (conTruncModAdd)

Input: Initial model M and 3 binary variable vectors of length t: T, =
(Tmo, e aTZt—1)7 Ty = (Ty07 e 7Tyt,1) and T’w = (TTUO? e 7th—1)

Output: Updated model M, 2 binary variable vectors of length ¢ T, =

(Tzpy. -y T2,_,) and 7 = (70,...,T¢t—1)

: (M7 TZO ) TOCO ) Todgv() ) Tod170 y TO) — hb2M0del(M7 Ta’/'() ) Tyo ) T’wo)

:fori=1,...,t—1do
(Mv TZi ) TOC-; ) Todg,i,Todl ) Ti) «— fb2M°del(M7 Twi ) Tyi ) T’LU-; ) Tifl)

end for 7

Add a constraint M.con < Ty, ; =0

Add a constraint M.con < Tg,,_, =0

Add a constraint M.con + Tocy ., =0

: Let To = (T2, .-y T2, _,) and 7 = (10,...,Tt—1)

: Return (M, T%, 1)

© ® N> aR W

5 Algebraic Bias Evaluation of F-Function

In this part, we detail the process for computing the linear approximations
correlations of the F-Function F(x,y, z) = o(x B3z y) B3z z under any given
linear masks using the algebraic bias evaluation technique.
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For any 128-bit variable X, we represent it in bytes as
(o |2} |2 || 5 || 2 || &1 [l 23 || s || 5 || @ || 23 || 25 || 2 || 1 || 23 || 23)
X X3

X = 0 0
Xo X1
We use temporarily the notation “BH” to represent the operation “HHg”, then

the output of F can be represented as a 4 x 4 matrix as follows
3

F(X,Y,Z) =o(X B3Y)Hs, Z
EﬂyOEEO)EElngEO (29By (BB B0 (2 ByIB)B22H0 (xiByIEc))B=3H0
(:z:OEEIyOBﬂO)EElz(l)EEld0 (1 By Be))Bz;Bdy (xBysBey)BzMd2 (méEEly?,EE]CQ)EEIz?EHd3
sBy;Bey) Bz Bdy

(z
(wOEEIyOEE!O)EEIngEIdO (z3 By Bcy)BziBd; (x3BysBce;)B23Hd;s (wSEEygEEicz)EElngEid3

T | (2iByiB0)B20MdY (x?ByBcl)BzlBdl (x2ByliBc?)B22Bd; (x
where ck d;‘ € {0,1} for k=0,1,2,3, j = 0,1,2,3 are local carries introduced

by the ﬁrst and second Hso formulated as

C]il =0, d’il =0,
h=|(@h i+ )28 dh= | (@] Byl B )+ 2+ )2
é w('vciflvd?—l)'

= 50("0?—1)’

For any 128-bit mask tuple (U,V, W, A), we define
A (o(XBnpY)HpZ)aU - XaoV - YaW. Z.

fAUVWIXY,Z) =
Then the correlation Cor((U,V, W) Ei A) can be computed for a uniformly

>

0} P {f(A,U,V,W) — }

distributed (X,Y, Z) as
Cor((U,V, W) L5 A) = Pr{f(AUVW)
Computation of Cor((U,V,W) EiN A). We represent the bytes in
(A, U,V, W) as (a?,ui,’ui,w?) for k,j € {0,...,3}? and further define the
coordinate” functions
f(af ui,vi’w?)(wiﬁyi7 zk c}i 17d§“ 1)
:af'[(a:{cEElyiEEcj )EEIz EEdj 1]@'“% a:k@vk yk@w zf
C?c—lv dﬁfl)‘

Then we obtain
(:I:ku ykv

@@f(a ;uk 'vk w

k=0 j=0
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. (K agd 2y k . E 0)J o) k
For each function f(%%%?%%;) we construct the 4 x 4 matrix U(% U VW)
whose entry at position (cj|d}, c;_,|dj_,)° is defined as:

e wokws) [Cﬂdﬂ [Ci_ﬁdffl}
1 o o , . 4
= ﬁ(|{azf€,yf€,z?dﬁ’gsz f(~,cl7€71,d§71):0, e( 1) =0y 1/)('>017ﬁ17d§71):d§}|
- |{wi7yi7z§€ﬂ728: f('aci_lad;?fl):L @('7036_1)20?@ Qﬁ('aci_pd?q):d;"‘ﬂ)?
where %71,d§_1 € {0,1} are input carries of Flajuiviw)) and ci,d? €

{0,1} are output carries, which can be efficiently computed by adapting the
bit-slicing technique proposed in [37], as shown in Corollary 1.

Algorithm 5 Construction of the matrices u(®%?:®)

Output: All the matrices ul@wvw) for a,u,v,w € Fo
1: Prepare a 4 x 4 matrix N
2: for a,u,v,w € Fy do

(a,u,v,w)

Create a matrix u of size 4 x 4

4 Initialize N with zeros

5 for ic’ € {0,1}, ic' € {0,1}, z,y,z € Fo do

6: Compute r =a-[(z®y®i®)dzdic|Gu-zdv-ydw- 2
7

Compute oc? = {(az +y+ ico)/2J

8: Compute oc! = {((az ®ydic)+z+ icl)/QJ

9: if r =0 then

10: Noc®|oc!][ic?|ict] := N[oc®|oc!][ic®|ic'] + 1

11: else if » =1 then

12: Noc®|oct][ic?|ict] := Njoc®|oc][ic®|ict] — 1

13: end if

14: end for

15: for ic?ic! € {0,1}, oc®, oct € {0,1} do

16: u(@%0 ) [oc0|oc |[icic'] := N[oc®|oc!][ic® |ict]/2°
17: end for

18: end for

Corollary 1. For any given 8-bit mask (a,w,v,w), we write them in bits, and
let u(@-43-5%5) be the corresponding 4 x 4 matriz pre-computed by Algorithm
5. Then the matriz U*™%™) can be computed as:

Ulewvw) _ HO ; u(@iwsvgws) (15)
=

5We use the notation c|d to represent the integer value 2c + d, i.e., c|d = 2¢ + d.
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For convenience, we fill these carries into 8 sets as follows

Sco = {0, co, 5, €0}, Sdo = {dg, df, d3, d3}, Se1 = {c1,c1,¢l,cl}, Sdi = {d, di,d3, d3},
SCQ - {62762762762} Sd2 - {d07dlad27d3}7 SCS = {Cgvc§7cgac§}7 Sd3 = {d(g)’d:f7dgyd§}

k
a; ,uk,vk w; ky

Based on the matrices U’ , we give the definitions of functions py,

p1, p2 and p3 as
3 o _
po(Scg, Sdp) = Hj:o U(a27uﬁ7vﬁ7w?)[c%|d?][o‘d§?71]7
3 U A RS | . .
pr(Seo, Ser, Sdy) = [ 0@ =122 (e] |dj] g dj -],
3 2 00 ol w?)r i -
p2(Scy, Sca, Sdy) = Hj:o U(aj,uzmg,wj)[CJ2|d§][Cﬂl‘d?_l]7
3 3 09 vl wd)r i ;
pa(Sea, Seg, Sdg) = [ U320 (||,

and functions A, B, C' and D as

A(Sco) =Y _ po(Seo, Sdo), B(Se1) = > " A(Sco) - pr(Seo, Sex, Sd),
Sdo Sdy Sco
C(Sc2) = > B(Ser) - pa(Sei, Sea, Sdy), D(Scg) =Y > C(Sc) - p3(Sea, Scz, Sds).
Sda Sci Sd3 Sca

Algorithm 6 Computation of Cor((U,V,W) Z A)

Input: the matrices U (@5 uvws) for | = 0,1,2,3 and 7 = 0,1, 2, 3; the matrices

U@ wviw)) for g = 0,1,2,3 and j = 0,1,2,3; 8 sets storing local carries,
i.e., Sco, Scl,SCQ,SC3,Sdo, Sdy,5d2,Sds; the functions pg, p1, p2 and p3; the
functions A, B, C and D

Output: the accurate value of Cor((U,V, W) Sl A)

1: Step 1: Compute A(Sco) = g4, po(Sco,Sdo)

2: Step 2: Compute B(Scy) = ZSdl 2 5eo A(Sco) - p1(Sco, Ser, Sdy)
3: Step 3: Compute C(Sca) = ZSdQ Escl (Se1) - p2(Ser, Sca, Sda)
4: Step 4: Compute D(Sc3) = ZSd3 Zscz C(Sec2) - p3(Sca, Scs, Sds)
5: Step 5: Compute Cor((U,V, W) A) = > g, D(Scs)

Then, we give Theorem 3 whose proof is in Appendix F.

Theorem 3 For any given masks (U, V , W, A), the correlation of the bitwise linear
mask of F is computed as Cor((U,V, W) N A) =g, D(Sc3).
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According to Theorem 3, for any given mask tuple (U, V, W, A), the cor-
relation value Cor((U, V', W) SN A) can be accurately computed by using the
matrices U(af’“?'»""?'»""“"?)7 k=0,...,3and j =0,...,3. We present Algorithm 6
as a high-level description of the computation, while the detailed process for
carrying out Step 1-5 is in Appendix G. For each mask tuple (U,V,W A),
the time complexity for Algorithm 6 is 2'! basic + or * operations: simpler
than the method in [35] requiring 2! (4 x 4)-matrix multiplications.

To sum wup, for a given mask (U,V,W A), the correlation

Cor((U,V,W) 7z, A) can be acquired by taking the following two phases:

e Preprocessing: pre-compute the matrices U@*%%®) for all 232 possible

values of a,u,v,w € Fys according to Eq. (15), which requires a total time
and memory complexities of O(23?) and O(23%) for all (a,u, v, w).

® Processing: compute Cor((U,V,W) i A) following Step 1 to Step 5 in
Appendix G, whose cost is 2! basic + or * operations for each given mask
tuple.

6 Linear Mask Search for SNOW-V /Vi, SNOW
3G and SNOW 2.0

With the aforementioned preparations, Candidate Search of Section 2.3 can
be accomplished with MILP models. Such models are constructed with the
techniques mentioned in Section 2.4. Besides, Correlation Computation can
be accomplished with the classic algebraic bias evaluation technique as shown
in Section 2.5, where each Cor(I'¢,I';) should be computed accurately and
efficiently. In the following sections, we detail the general Candidate Search and
Correlation Computation processes for SNOW-V/Vi, SNOW 3G and SNOW
2.0 respectively.

6.1 Linear Mask Search for SNOW-V /Vi

According to Section 2.3, we need to first define (€,r,z) along with the
function F' in form of Eq. (9). The FSM part of SNOW-V/Vi has three 128-
bit registers. To cancel out the contributions of the non-linear variables, we
consider the 3-round linear approximations of the FSM, as depicted in Fig.
2. According to the keystream generation function and the FSM updating
function in Eq. (3) and Eq. (4), we define (€,7,2) as: z = (241, Z¢, Zt+1)s
L= (T141,T1;,T1;11,T2;) and r = (u,v,w) = (R1;_1, R2;_1, R1;). Then
from Fig. 2 we have z = F(£,r) with the F function defined as follows

zt 1= (T1l—1 Bz u) D v,
zt = (T'1; Bz w) ® AESR(’U,)7 (16)
zi41 = (T1yy1 Bss o((T2: ® AEST (v)) B3 AEST () & AEST (w).
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Fig. 2: The three-round linear approximations for the FSM of SNOW-V /Vi

For the linear variables (£, z), we define the targeted linear mask (T'g,T';) as
I'e=Tr10, 71, I'r1o. P'r2) = Orea, 5 Teny . Urea oy, T2y (17)
FZ = (on ) le ’ Fzz) = (th,l ) tha FZH»I)

Then the noise e is e = Ty - £) ® (Ty - 2) = (Ty-£) & (T, - F(£,r)), and the
correlation Corp(T'g,T',) is equal to that of e towards 0, i.e., Corp(Ty,T',) =
Pr{e = 0} — Pr{e = 1}. Our target is to find linear masks (I'g,T',) yielding
high correlations.

The whole linear mask search is carried out following the Candidate Search
and Correlation Computation processes as follows.

6.1.1 Candidate Search for SNOW-V /Vi

The definitions of (£,7,z) and F guarantee that linear trails of the form
Eq. (10) exist. To find particular (T's,,Ts,,...,[sy)’s in Eq. (10), a MILP
model M is constructed where all mask bits are represented with binary vari-
ables M.var satisfying particular constraints M.con. The objective M.obj
should also be set properly so that the solution of M corresponds to the trails
with high correlations. Finally, the MILP model M is solved and the solu-
tions corresponding to highly qualified linear trails are output. According to
Section 2.4, for each solution, the input-output masks of S-boxes should be
checked with the LAT: if the masks are infeasible, the solution is aborted.
The bitwise model for SNOW-V /V1i is too complicated to be solved. There-
fore, a truncated MILP model Mt is constructed so as to find the optimal
(Tg, Ty). Then, the bitwise model M for searching bitwise masks (I'p,I',) sat-
isfying the truncated masks (Tp, T) is constructed and solved. Truncated and

23
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bitwise linear masks of intermediate states satisfy Eq. (18): the constraints in
M are listed on the left while those for M are on the right.

Tuy =Ty, Tvg = Toy, Twy = T, Tug =Tuys T'vg =Twys Twg = Twy
Tz, =Ty, Pz, =T
B3z B3z
(TTlt,pTuo) — th—l (FTlt,pFuo) — th—l
R R
Tu1 AES T, Ful AES Ty
Ta m (Ta(J?Tal) Fa m (Fﬂ»ovral)
H H
(Tr1,, Tw,) = Tx, (Tr1,, Tw,) — Tz, (18)
Tay =Tz, Tag =Tz,
AESE AEST
Tvl —_— Tth Fvl —_— Fth
=) 2]
(Tr2,,Ta,) —25 T = Ty (Tr2,,Ta,) =5 Tx 5Ty
Jas] B
(TT1t+17T77) l> th+1 (FTltJrlaFn) i> th+1
AESE AEST
Tw, — Tz, Tw, —— Tz

Define Objective Functions for MILP Models. Empirically, the fewer
active S-boxes the higher correlations can be. Therefore, our definition of objec-
tive functions aims at minimizing the number of active S-boxes. Such a “fewest
active S-box preferred” strategy is applied to the objective function defini-
tions through this paper. Since both bitwise and truncated linear propagation
rules for B and AES® are captured by the MILP models, M7 and M can
be constructed directly. In order to identify the (Tp,T.) and (I, I';)’s with
high correlations, the objective functions of M7y and M should be defined
properly. For My, each B model construction call (Algorithm 3) returns a
T = (70, ..., 73) vector. The number of active S-boxes equals to | Ty, |+ [T, | +
|Tw, |- Each active S-box should have a non-zero |[Cor| > 276. According to
Section 4.2, we can define top; = 8 3 oo i 46(| T, |+ T, | +|Tow, |) and set
Mr.obj < minte; for searching optimal (T, T)’s. As to bitwise model M,
for each H, the output of ordModAdd in Algorithm 1 returns a I'ye. According
to Section 4.1, its contribution to the correlations can be evaluated as 2Tl
Therefore, for bitwise model M, we can define the function boy; = Y vm [Toc
as and the objective of M as M.obj < min bp;.

Note that bop; for SNOW-V/Vi do not consider the effect of S-boxes because
the number of active S-boxes |Ty,| + |Tw,| + |Tw,| value has already been
determined with the solution of M.

Framework for Candidate Search. Following the analysis above, Candi-
date Search for SNOW-V /Vi can be accomplished following the framework
in Algorithm 7: for an arbitrary positive integer N, we are able to find a set
B containing N targeted linear masks (I'p,I';)’s having low b,; values. For
SNOW-V/Vi, the optimal (Tg,T,) we found is of the form Eq. (19) which is
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in accordance with that used in [34, 35]
Tr1, = Tr1, = Tz, = T, = 0x1000, 19)
Tr1, = Tr2 = T,, = 0x£000.

In fact, by solving My for SNOW-V/Vi we may find many (T, T>)’s sharing
the same optimal t,; value, but the bop;’s of the corresponding (I'y,I',) have
significant differences: (I'g, I';) satisfying Eq. (19) has a minb,,; = 37 while
that satisfying Eq. (20) has min by; = 42.

TTlO = TZD = 0X4O
Tr1, =T,, = 0x1000 (20)
Tr1, = T,, = 0x£000, Tre = 0xe000

For other (Tp,T)’s, min by, values are even higher. Thus, the best truncated
mask in Eq. (19) is determined easily. Therefore, Candidate Search for SNOW-
V /Viis accomplished by calling Algorithm 7 with large N settings: after hours’
running, all 34463 (I'g,I';)’s satisfying bey; < 41 are found and there are also
millions with bey; > 42. More details and tricks for accelerating Algorithm 7
of such can be found in Appendix E.

Algorithm 7 Find N optimum linear masks (taskl1Frame)

Input: Integer N as the tageted number of linear mask (I'g,I'z)’s

Output A set B containing < N linear masks

Define an empty set B = ¢

Construct MILP model Mt and set M.obj < mint;

Solve M7 and acquire truncated linear mask (T, Tz) with lowest t,; value
Construct MILP model M and set M.obj - min b,y

Add constraints to M s.t. (I'g,T'z) follows (Tp,T%)

Solve model M with MILP model solver

while an optimum solution of M is found do
Define n =1

9: for all S-boxes do

10: Identify the input-output mask (I';, ')

11: Find the correlation |Cor(I';,I's)| by refering to the S-box LAT

12: If |Coxr(I';,T9)| =0, set n =0

13: end for

14: If n = 1, extract (I'g,I'z) and add it to B

15: If |B| > N, break

16: end while

17: Return B

PPN B

6.1.2 Correlation Computation for SNOW-V /Vi

According to the function z = F(£,7) of SNOW-V/Vi in Eq. (16), the noise
e=(Te-£)D (T, F(£,7)) is a polynomial of £, z and r bits with complicated
ANF. To cancel out the non-linear contributions from r, we decompose the
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whole expression of e wisely and analyze the algebraic property of each noise
in detail.

For convenience, we define some 128-bit intermediate states as follows: U =
SB(u), V = SB(v), W = SB(w), p, = T2; ® AESE(v) and q, = AESE(u).
By introducing a 128-bit intermediate mask ©, we decompose the noise e into
four sub-noises e1, es,€e3,e4 s.t. € = €1 D ey B ez D ey as follows:

e1=T2y (T1;_1 B32 SB™Y(U)) ® 11, T11 © O U,

ea=T,-(T1, B3 B~ (W)) @ 'py, T, & T, - W,

e3s=0, (T1441 B30 0(p, F32 q)) © 1, Ty ©Tr2-py ® (O S T2 ) qy,
ea=T.,-SB"H V)Tl V.

where the linear masks ©', I, and I'7, are defined s.t. ©'-U = © -MC(SR(U))
forall U, T,,-W =T, -MC(SR(W)) for all W, and I}, - V' = I'r2-MC(SR(V))
for all V.

From the above expressions, we define the basic operation groups
G(X,Y)= X 3, SB7(Y), S(X) =8B }(X), and F(X,Y,Z) = o(X Hs3
Y) B3z Z, then the correlations of sub-noises are simply

Cor(e1)=Cor((Tr1,0’) & T4, ), Cor(es)=Cor((Tr2,0 & T4, I'r1,) L T.,),
-1
Cor(ez) =Cor((I'r1,,I7,) 95 7,.,), Cor(es) =Cor(Tpy =—T,,).

The correlations of G and S can be computed accurately with the constant-
time complexity algorithms in [31]. For computing the correlations of the
F-function, we have detailed its algebraic bias evaluation in Section 5.
By applying the results about correlations over composition functions in
[38] and the piling-up lemma, the correlation of the linear approxima-
tion for the FSM of SNOW-V/Vi can be computed as Cor(T'y,T',) =
Cor(eq)Cor(es) > Cor(ey)Cor(es).
e

The Selective Linear Masks. With the algebraic bias evaluation above,
we are able to compute the accurate Cor(I'y,T',) for all linear mask candidates
given in Section 6.1 and identify the ones most suitable for FCAs. For the
optimal truncated mask pattern of the form Eq. (19), from those with boy; <
41, we find 8 candidate (I'y,T';)’s having correlation |Cor| > 27%%  as shown
in Table 45, and another 127 within the range 27%° < |Cor| < 2% which
are in accordance with that in [35]. We tried millions of other candidates with
bop; > 42 and cannot find better correlations.

We also evaluate the candidates with truncated pattern in Eq. (20) and
find that the absolute correlations are higher than 279816 and the best mask

SWe use msw(-) to denote the most significant 32-bit word (MSW) of a 128-bit mask.
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Table 4: The best masks satisfying Eq. (19) and msw(T',,) = msw(I'rs2) =
0x81ec5a80 such that |Cor| > 2718

msw(Tz,) msw(Tz;) msw(lr1,) msw(Tr1,) msw(T'ry,) log[Cor] Ref.
0x0000000c 0x00000040 0x00000008 0x00000040 0x8lec5a00 -47.567 35

0x0000000c 0x00000080 0x00000008 0x00000080 0x8lec5a00 -47.579 35
0x00000020 0x00000040 0x00000030 0x00000040 0x81lec5a00 -47.660 35
0x00000020 0x00000080 0x00000030 0x00000080 0x8lec5a00 -47.672 35
0x0000000d 0x00000040 0x0000000d 0x00000040 0x8lec5a00 -47.760 [34, 35]
0x0000000d 0x00000080 0x0000000d 0x00000080 0x8lec5a00 -47.772 35
0x00000078 0x00000040 0x00000078 0x00000040 0x81lec5a00 -47.839 35
0x00000078 0x00000080 0x00000078 0x00000080 0x8lec5a00 -47.851 35

is as follows:

I'., = I'r1, = (0]/0x00300000( 0] 0), I'., = (0]/0]|0| 0x00000008),
., =(0]||0]0|0x81ec5a80), I'r1, = (0]/0]|0]]0x0000000c),
I'r1, = (0]/0] 0] 0x81ec5a00), I'ro = (0]/0]|0| 0xc17a8fa8).

This indicates that the masks in Table 4 are highly likely to be optimal.

6.2 Linear Mask Search for SNOW 3G
6.2.1 Candidate Search for SNOW 3G

Similarly, the FSM part of SNOW 3G has 32-bit three registers, thus
3-round linear approximations of the FSM are considered, as depicted
in Fig.3. According to the keystream generation function and the FSM

R1 R2 R3 Hj‘wm

C) 2@ 8

D— zes,

VY Zie1 8,4
N

Fig. 3: The three-round linear approximations for the FSM of SNOW 3G

updating function in Eq. (5) and Eq. (6), we define (£,7,z) as: z =
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(Zt—la Zt, Zt+1)7 L = (St—la Sty St+1, St+5,St+14, St+15, 5t+16) and r =
(u,v,w) = (R1;_1, R2;_1, R1;), Then from Fig. 3 we have z = F'(£,7) with
the F' function defined as follows

Zt—1 = (3t+14 H u) DUV D St—1
2zt = (8t415 Bwy) © S1(u) @ s (21)
Zi41 = (Si416 B (8145 ® S2(v)) BS1(u)) © S1(w) ® 8441

We let T'; be the linear mask of s;;;. The targeted linear mask (I'g,I";) can
therefore be defined as Eq. (22)

(22)

Flf = (F7171—‘07F17F57F1471—‘157 FIG)
FZ = (FzO?FZ17F22) = (th—lﬁl_‘zt,?rzt+1)

The bitwise model M for SNOW 3G is also hard to solve directly, so the task
Candidate Search of SNOW 3G is also accomplished with Algorithm 7 enabling
us to acquire large number of highly qualified linear masks. The constraints
used in My and M as well as other details are given in Section E.1.

6.2.2 Correlation Computation for SNOW 3G

According to Eq. (21), we define 32-bit intermediate states & = SBX;(u),
y = SBXj(w), & = Sty5 @ S2(v) and n = S1(uw). With the linear mask in
(T¢,T'2) in Eq. (22), we decompose the noise e = (I'p - £) ® (T', - F(€,r)) into
four sub-noises as

e = on'(3t+14 H SBX171($)) D F14'St+14 () @’-w,
ea =T, (81115 BSBX; ' (y)) @ T15-81415 BT, -y,

es=T2, (st416 BEB ) ®T16-81416 P56 B (OB T,,) ny,
eq =I'7-SBXa(v) @ T 5, v,

where ©’, I', ) and I'y are defined s.t. ©' - x = © - LLi(x), I, - = LL(x),
and I'Y - @ = ['s - LLy(x) for all € F32. Defining the basic operation groups G
and F as G(X,Y) =X 5332 SBXl_l(Y> and F(X,Y, Z) =X 5332 Y EH32 Z,
we are able to define the sub-noise correlations as

Cor(e;) = Cor((I14,0) % T4,), Cor(ez) = Cor((i6,T5,0 ®T,,) 5 Ts,),
Cor(eg) = Cor((I'5,17,) <, T'2,), Cor(eq) = Cor(T'y, B, rY).

We use the constant-time algorithms in [28] and [26] respectively to accu-
rately computing Cor((U, V) S, A) and Cor((U,V,W) EiN A), while

Cor(B BN A) can be obtained through four LAT lookups. Then, same as
SNOW-V /Vi, the targeted Cor for SNOW 3G can also be computed efficiently
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as Cor(I'g,I',) = Cor(ez)Cor(eq) > Cor(er)Cor(es).
©
The Selective Linear Masks. From the millions of linear mask candidates

given in Section 6.2.1, using the algebraic bias evaluation technique above,
we are able to obtain 18 mask tuples having [Cor| > 272! and the best is
|Cor| = 2729386 hreaking the previous record [30] as well. We compare the
results of linear masks in Table E7 of Section E.1. Besides, we obtain another
175 tuples s.t. 2722 < |Cor| < 2721, It is noticeable that there is only one opti-
mal solution for My and all the best masks in Table E7 are found from the
candidates with b,,; < 37. For those with byp; > 38, the best correlation does
not increase, indicating that the masks in Table E7 are likely to be optimal.

6.3 Linear Mask Search for SNOW 2.0

6.3.1 Candidate Search for SNOW 2.0

The FSM part of SNOW 2.0 has two 32-bit registers, thus 2-round linear
approximations are considered to cancel out the non-linear contributions, as
depicted in Fig.4. According to the keystream generation function and the

Sir1s
R1 R2 s
i t
: :
| ; &= j
| Pan z
N> d o
EH Stys
N Sir16
S)‘+]
(NN
i ! 4 ANV L1
v v

Fig. 4: The two-round linear approximations for the FSM of SNOW 2.0

FSM updating function in Eq. (7) and Eq. (8), we define (€,r,2) as: z =
(24, 2641), € = (81, 8141, 8145, St+15, St+16) and © = (u, v) = (R1;, R2;). Then
z = F(€,r) where the F' function is defined as follows

(23)

zt = (Stp1sHu) Bod sy
Zig1 = (St416 B S5 Bv) & Si(u) ® 841

29
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We let T'; be the linear mask of s;;;. The targeted linear mask (I'g,I";) can
therefore be defined as:
I'g= (T, I'1,I5, 5,
e= (T0,I'1,T5,T15,T'16) (24)
I, = (FZU7FZI) = (Pzt7rzt+1)

Unlike SNOW-V /Vi and SNOW 3G, the bitwise model M for SNOW 2.0 can
be solved directly. Therefore, Candidate Search for SNOW 2.0 is accomplished
simply with a bitwise model M. Details are given in Section E.2.

6.3.2 Correlation Computation for SNOW 2.0

With linear mask (I'g,T';) in Eq. (24), there is e = e; @ e3 with eq, eo defined
as follows:

el :on . (St+15 H SBX1_1(£L‘)) B Tl5: 8i415 D F/zl -
ea =0z, - (Si116 B85 BY) D16 8416 D5 - 8145 DT - v

where T, satisfies I, - @ = I',, - LLi(x) for V& € F3>. The targeted
correlation is computed as Cor(T'¢,I',) = Cor(ej)Cor(es), where Cor(e;) =

Cor((T'15,T%,) < T,,) and Cor(ez) = Cor((T'y6, s, T'zy) - T, ).

The Selective Linear Masks. For SNOW 2.0, we obtain 26 mask tuples
with |[Cor| > 27!, while only 3 were found in [28]. Among these masks, 4
tuples yield the same highest correlation 2714411, We compare the results of
linear masks in Table E8 of Section E.2. Besides, we obtain another 372 ones
with 2716 < |Cor| < 2715,

7 Using Linear Masks in Fast Correlation
Attacks

Correlation Attack on Full SNOW-V/Vi. We launch our attacks fol-
lowing strictly the preprocessing phase and processing phase. We use all the
8 4+ 127 = 135 mask tuples which yield correlations |[Cor| > 2749 to build
approximation relations. The average correlation is computed as o = 274858,

We first collect N (to be determined) samples involving only the keystream
outputs and the [-bit LFSR initial state bits, and then try to reduce the number
of the involved LFSR initial state bits to I’(< [) bits by searching for pairs
of columns of the generator matrix which add to 0 on the most significant
1 — U’ bits, at the expense of the increased noise level with the correlation o?.
Regarding the column vectors of the generator matrix as random vectors, there
are about M 2 C%2-(~1) such pairs, corresponding to M approximation
relations with correlation o2 involving only the first I’ bits of the LFSR initial
state, which can be found by the sort-and-merge procedure with the time
complexity O(N log, N) and the memory complexity O(N).
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To recover the value of the target I’ bits, we use the FWT to speed up the
evaluation of the M linear approximation relations, which needs a time com-
plexity O(M + l’21') and a memory complexity 0(21/). To guarantee a high
success probability, M is usually chosen as M = 2I'In2/(a?)?, the parame-
ter N is thus determined to be N ~ v M2!=V+1 and the required number of
keystream outputs is D = N/135.

Complexity Analysis. For SNOW-V/Vi, we follow the above procedure
with the parameters [ = 512, I’ = 238. In the preprocessing phase, we need
to prepare M = 2'In2/(a?)? = 220269 approximation relations with cor-
relation o2 involving the first 238 bits of the LFSR initial state. Thus the
number of samples required is N = VM2-V'+1 = 223884 3nd we need to
know D = N/135 = 223176 keystream outputs. The required time and mem-
ory complexity for preparing M approximation relations is 2246:74 and 2238-84,
respectively. In the processing phase, the FWT is utilized to determine the
first 238 bits of the LFSR initial state, which needs a time complexity 224589
and a memory complexity 2238, In summary, the total time and memory com-
plexities are 2247-3% and 223948 respectively, and the keystream length needed
is 223176 Once the first 238 bits are recovered, the other bits and the FSM
state can be recovered by using a similar method and a small-scale exhaustive
search with a much lower complexity.

Comparison. Table 1 presents a comparison of our attack with the previous
ones in [34, 35], from which we know the data complexity is reduced.

Correlation Attack on SNOW 3G. Different from the correlation attack
on SNOW-V, where pairs of column vectors of the generator matrix vanish-
ing on some bits are searched, we look for k(= 4)-tuples of columns of the
generator matrix for SNOW 3G.

For SNOW 3G, we have [ = 512. Suppose our top n best masks in Table
E7 of Appendix E.1 with an average absolute correlation « are used for build-
ing the approximations. In the preprocessing phase, we first collect N (to be
determined) samples involving only the keystream outputs and ! LFSR initial
state bits, and then try to reduce the involved LFSR initial state bits size to
I’ bits, by searching for a number of k(= 4)-tuples of columns of the generator
matrix which add to 0 on the most significant [ — I’ bits, at the expense of the
increased noise level with the correlation a. After this, we enter the process-
ing phase to recover the target I’ bits by using the FWT for calculating and
evaluating the parity check equations.

Complexity Analysis. We discuss the attack by setting I’ = 166 from the
following two cases:

Case 1: We use our top 6 best masks in Table E7 for approximations, whose
average absolute correlation is o £ 2720468 Tp the preprocessing phase, we
need to prepare M = 2I'In2/(a*)? = 217159 approximation relations with
correlation o* involving the first 166 bits of the LFSR initial state, i.e., the
number of 4-tuples found from N samples should be at least 2'71%%, This can
be solved by the method described in Appendix H. By choosing I; = 173 and
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ly = 173, we have m; = 217280 and N = 217340, Thus it requires the keystream
outputs of length D = N/6 = 21781 and the time/memory complexity for
preparing M approximation relations is O(N + my), i.e., 21713, In the pro-
cessing phase, the FWT is utilized to determine the first 166 bits of the LFSR
initial state, which costs a time complexity 2'737* and a memory complex-
ity 2166, In summary, the total time and memory complexities are 217495 and
217413 regpectively, and the keystream length needed is 2170-81,

Case 2: We use all the 18 masks in Table E7 for approximations, whose
average absolute correlation is o £ 2720738 In the preprocessing phase, we
prepare M = 2'In2/(a*)? = 217375 approximation relations with correlation
a* involving the first 166 bits of the LFSR initial state. By choosing [; = 172
and Iy = 174, we have m; = 21738 and N = 27369, Thus it requires the
keystream outputs of length D = N/18 = 216952 and the time/memory com-
plexity for preparing M approximation relations is O(N +my), i.e., 217597 In
the processing phase, the FWT is utilized to determine the first 166 bits of the
LFSR initial state, which costs a time complexity 2!745® and a memory com-
plexity 2196, In summary, the total time and memory complexities are 217°-8°
and 2'7°97 respectively, and the keystream length needed is 216952,

Comparison. Table 1 presents a comparison of our attack with the previous
ones in [29, 30]. We want to emphasize that the advantage of our method is
it can find many masks with high correlations efficiently. Making good use of
this, we target attacks with data complexity as low as possible. Such a low-
data result reflects the advantage of our method.

Correlation Attack on SNOW 2.0. We launch our attacks following the
two stages of correlation attacks in Section 4.3 of [28]. Different from [28] where
only 3 mask tuples yielding an average correlation 271451 were used for lin-
ear approximations, we here use all the 26 mask tuples in Table E8 to build
approximation relations, whose average absolute correlation is o = 271476
Similar with the attack on SNOW 3G, we also look for 4-tuples of columns
of the generator matrix for SNOW 2.0 such that the values of XOR are 0 on
the most significant [ — I’ bits. Let [ = 512 and I’ = 154. In the preprocessing
phase, we need to prepare M = 2I'In2/(a*)? = 212582 approximation relations
with correlation o involving the first 154 bits of the LFSR initial state, i.e.,
the number of 4-tuples found from N samples should be at least 212582, This
can be solved by the method described in Appendix H. By choosing I} =
159 and I, = 199, we have m; = 26291 and N = 26145 Thus it requires
the keystream outputs of length D = N/26 = 21567 and the time/memory
complexity for preparing M approximation relations is O(N +m;), i.e., 216336,
In the processing phase, the FWT is utilized to determine the first 154 bits of
the LFSR initial state, which costs a time complexity 26127 and a memory
complexity 2'°*. In summary, the total time and memory complexities are
2163.66 gpd 216336 regpectively, and the keystream length needed is 215682,

Comparison. Table 1 presents a comparison of our attack with previously
the best ones in [28]. Similarly, we reduce the data complexity with the time
and memory complexities slightly increased.
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8 Conclusion

This paper proposed a new bitwise breakdown strategy for describing the linear
propagation rules of the modular addition-based operations. When applied to
the SNOW family stream ciphers, a large number of highly qualified linear
trails with the help of MILP tools are found. Besides, we use an algebraic bias
evaluation technique to analyze the strength of linear approximations, and
present an efficient algorithm for accurately computing the correlation values
of linear approximations of a certain type of composition function. Combining
the two techniques, we find many linear masks for SNOW family yielding high
correlations and some of them are likely to be optimal. Based on newly found
linear masks, we give improved correlation attacks on the SNOW family. Our
results further confirm their resistance to correlation attacks.

The uniform MILP-aided framework proposed for finding linear masks is
not only easy to understand but also flexible for describing the linear propaga-
tion of consecutive modular addition-based operations and deducing optimal
truncated linear masks. The main focus of this paper is SNOW family, however,
this uniform framework can be directly used to analyze the linear prop-
erty of LESR-FSM structures composed of modular addition and S-boxes as
non-linear components, for instance SOSEMANUK and ZUC, in a similar way.

Information on Supplementary. We provide the verification codes for
SNOW 2.0, SNOW 3G and SNOW-V/Vi, practically evaluating linear masks
we found. Our code can be compiled on Linux or on Windows with Visual
Studio 2019.
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Appendix A Overall Schematic of
SNOW-V /Vi, SNOW 3G and

SNOW 2.0
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Fig. A2: The keystream generation phase of SNOW 3G
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Appendix B MILP Model Construction of
Common Operations

According to Section 2.4, basic linear operations can be perfectly described
with MILP model constraints. For xg, 1,y € Fa, an XOR operation (zg, z1) —
y = xo®Dx1 can be represented as linear constraints in MILP models as Eq. (B1)

To+x1—y=>0
xo—x1+y>0

M.con oY= (B1)
—zo+21+y>0

zo+a1+y <2
and we may simplify the representation of such linear constraints as Eq. (B2).
M.con <y =z D 1 (B2)

For 0-1 matrix M € Fy'*", the (column) vectors (x,y) € F% x FY satisfying
y = Ma can be regarded as composition of XORs which is described with
MILP model M in the form of Eq. (B3).

M.var < x,y as binaries
{ ! (B3)

M.con <~y = M|gx

B.1 Bitwise Linear Propagation Rules

For the XOR operation y = xo ® x1, the available linear masks satisfy I'y, =

'z, = 'y, which is a straightforward linear constraint in MILP model as well.

For branch operation x Lbranch, (Y9,y1) = (x,x), the corresponding linear

mask (I'z, Iy, , Ty, ) satisfies Eq. (B4). According to Eq. (B1) and Eq. (B2),
Eq. (B4) is also a straightforward linear constraint in MILP model.

Ty =Ty, ® Ty, (B4)

39



T,. We define Algorithm 11

as the MILP description of the input-output masks of S-boxes.

Mz, the available linear masks

MTT,, which, according to Eq. (B3), can be captured

by the MILP model constraint

M7|gTy,

M.var < I'z, T’y as binaries

M.con < TI',

For 8-bit S-boxes, according to Section 2.4, the input-output masks (I';, T',)

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search
- =

S; and Sy used in SNOW 3G (also SNOW 2.0) FSM updating functions can

be regarded as an S-box layer (using four 8-bit S-boxes in parallel) followed
by a linear diffusion using 0-1 matrices My, My € F32*32, With M; and M,

defined in Eq. (B5) and Eq. (B6), we can construct the MILP model for S;

For linear Fy — TFF3* transformation y
simply share the same truncated linear masks: T;
(i = 1,2) by calling siModel as in Algorithm 9.

(I'z,Ty) satisty T’
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MCoSRoS8B(-) used in SNOW-V /Vi FSM updating functions is

AESE()
a permutation on F328. It can also be regarded as an S-box layer SB followed by

the linear layer MCo SR: the nonlinear layer SB uses 16 8-bit S-boxes in parallel;
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the MC can be regarded as the M; diffusion carried out in parallel. Therefore,
the MILP model construction for AES® can be provided as Algorithm 8.

Algorithm 8 Model construction for AESF (aesModel)

Input: Initial model M, a vector of 128 binary variables I'y = (I'zq, ..., [z107)

Output: Updated model M, a vector of 128 binary variables I'y = (I'yg, ..., I'y57)
and 2 vector of 16 binary variables Ty = (Tx,, ..., Tw1s), Ty = Ty, .-, Ty,;)
as the input-output truncated linear masks

: for 5=0,...,15 do

Define vectors I'z; = (ag;y- -+ Pagjir)

(M, Ty, T;) < sbox(M,T'z;)

: end for

: Define permutation over integers

U W N

o:(0,...15) = (0,5,10,15,4,9,14,3,8,13,2,7,12,1,6, 11)

6: Define vector Tw = (Twg; - - s Twizr) = (Twy(oys - - - Lwyas))
7: Declare variables M.var < I'y,,...,I'y;,, as binaries
8: Define vector I'y = (T'yq, ..., Ty1ar)
9: for j =0,...,3 do
10: Define vector I'p, = (I'yzp;s -+, Dyso;451)
11: Define vector I'q; = (Fwsz;s - - - s Twsnjya1)
12: Add constraints M.con < I'q, = M1T|@1"pj

13: end for
14: for j=0,...,15 do

15: Define vectors I'y, = (Cysjs- s Dysjyr)
16: (M, Ty,) < actSym(M,I'y,)
17: end for

18: Define vectors Ty = (Txy, - . -, Tuys) and Ty = (Ty,, ..., Ty,,)
19: Return (M, Ty, T, Ty)

B.2 Truncated Linear Propagation Rules

It is obvious that I'y = I'y = T, = T,. Therefore, for y = xg ® x1, the
corresponding truncated linear mask (T, , Te, , Ty) always satisfy Ty = T, =
Ty.

Let @ be an 8-bit word. The available input-output truncated linear mask
of the branch
operation & 2%, (y,,7,) = (z,z) contains 3 bits namely (T, Ty,, Ty, )-
Defining the set S = {(0,0,0),(1,0,1),(0,1,0),(1,1,0),(1,1,1)} C F3, we
have (T, Ty, , Ty,) € S which can be described as MILP model constraints as
Eq. (B7).

T$+Tyo _Tyl 20
M.con ¢ Tp—Ty +Ty >0 (B7)
T+ Ty, + Ty, 20
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Algorithm 9 Model construction for S; (siModel)

Input: Initial model M, a vector of 32 binary variables I'py = (I'z, ..., 'zs;) and
ie{1,2}

Output: Updated model M, a vector of 32 binary variables I'y = (I'y,, ..., Tys;)
and 2 vector of 4 binary variables Tx = (T, --.,Tes), Ty = (Ty,,--.,Ty,) as
the input-output truncated linear masks

1: fOI‘jIO,.“73 do

2: Define vectors I'z; = (Pag;-- -5 Pagjpr)

3: (M, Ty, Tx;) < sbox(M,Tz;)

4: end for

5: Define vector I'wy = (Twg, -« - Twsy ) = Cawgs - -+ Laws)
6: Declare variables M.var < I'y,,...,I'y;; as binaries
7: Define vector I'y = (T'y,, ..., [ys,

8: Add constraints M.con ¢ [y = M, |y

9: for j =0,...,3 do

10: Define vectors I'y, = (I'yg;, ... T'ys;i7)

11: (M, Ty, ) < actSym(M, 'y )

12: end for

13: Define vectors Ty = (Tao, - - -, Tws) and Ty = (Ty,, ..., Ty,)
14: Return (M, Ty, T, Ty)

Algorithm 10 Model construction of truncated linear symbol actSym

Input: Initial model M and a vector of m binary variables I'e = (I'zg, ..., z,,_1)
Output: Updated model M, a and a binary variable 7 as the truncated linear
symbol
: Declare a variable M.con < 7 as binary
:fori=0,...,m—1do
M.con 7 > Ty,
end for
: M.con+ 7 < 27;61 Tz,
: Return (M, 1)

S grwyrn

Algorithm 11 Model construction for 8-bit S-box (sbox)

Input: Initial model M and a vector of 8 binary variables I'py = (I'zg,...,Ts;)

Output: Updated model M, a vector of 8 binary variables I'y = (I'y,, ..., 'y,) and
a binary variable 7 as the truncated linear

: Declare 8 variables M.var < I'y,,...,I'y, as binaries

: Define vector I'y = Ty, ..., Ty;)

(M, T) + actSym(M, T'y)

(M, 7") + actSym(M,T'z)

: M.con <7 =1

: Return (M, Ty, 1)

Uk W N

We simplify Eq. (B7) as Eq. (B8)
M.con < Ty =Ty O1 Ty, (B8)

branch

Therefore, for € —— (y,,y,) of an arbitrary length, the corresponding
truncated linear MILP model can be constructed as Algorithm 12.
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Algorithm 12 Truncated linear model of the branch operation (branchTrunc)

Input: Initial model M and a vector of m binary variables T = (Txq, .- Tpm_1)
Output: Updated model M, 2 vectors of m binary variables Ty, =

D ULA W N

(TO,O: .. .,T07m_1) and Tyl = (T170,...,T17m_1)

: for j=0,...,m—1do

Declare 2 variables M.var < Ty j, T ; as binaries
M.con + T;Ej = T07j D7 Tl,j
end for

: Define vectors Ty, = (Toy(), ceey To_rmfl) and Ty, = (T1,07 S ,Tl’mfl)
- Return (M, Ty, Ty,)

For S1, So and AEST, the S-box layer does not affect the truncated linear

masks and the effects of linear layer can be modeled simply with its branch
number. Since both M; and M, have branch number 5, the truncated linear
models for S; (i = 0,1) and AES® can be described with Algorithm 13 and
Algorithm 14 respectively.

Algorithm 13 Truncated linear model of 8; (i = 0,1) (siTruncModel)

Input: Initial model M and a vector of 4 binary variables Ty = (T, ..., Thy)
Output: Updated model M, a vector of 4 binary variables Ty = (Ty,, ..., Ty;)

: Declare 4 variables M.var < Ty, ..., Ty, as binaries
: Define vector Ty = (Ty,, ..., Ty;)
: Declare 1 variable M.var < 7 as binary

1
2
3
4:
5
6

M.con + E?:()(Twi +Ty,) <87

: M.con + E?:O(Twi + Ty;) > 57
: Return (M, Ty)

Algorithm 14 Truncated linear model of AES® (aesTruncModel)

Input: Initial model M and a vector of 16 binary variables T = (Tuq, .-, To15)
Output: Updated model M, a vector of 16 binary varlables Ty = (Tyg,---,Ty1s)

1:

® NS Qo

Define  permutation  over  integers: o : (0,...15) —
(0,5,10,15,4,9,14,3,8,13,2,7,12, 1,6, 11)

. Define vector Thw = (Two, e ,Tw15) = (Tapiyr s Tooisy)
: for 5=0,...3 do

Define vector Tp, = (Twajs - Twajps)
(M, Ty,) < siTruncModel(M, Tp )
end for

Define vector Ty = (Tyo,-- -, Ty1s) = Tygr- -+ Ty,)

: Return (M, Ty)
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Appendix C MILP Model Construction of
Bitwise Breakdown Functions

This part describes the model construction process of hy, fo, f1 and fo func-
tions. All MILP model constraints are deduced with the H-representation
method in [2] according to the available input-output linear masks.

The available input-output linear masks for h,, f, have been given in
Table 2 and Table 3. The MILP models are constructed with Algorithm 15
and Algorithm 16.

There are 98 available linear mask (I';,I'y, Ty, Tic, T2, Toc,Toa)’s
(Table C1) for the f; and the MILP model is constructed as Algorithm 17. For
f2, the 122 available (I'z,T'y, 'y, Tic, T'ia, Iz, Toe, Toa)’s and the corresponding
MILP models are given in Table C2 and Algorithm 18 respectively.

Algorithm 15 Model construction for h, (haModel)

Input: Initial model M and 2 binary variables (I, T'y)

Output: Updated model M and 2 binary variables I";, o
1: Declare two binary variables M.var < 'z, ['oc as binaries
2: Update M by adding the constraints in Eq. (C9):

Tz 4+T24Toc>0
M.con+ ¢ T'y =Tz 4+Toc >0 (C9)
FT_Fy+Foc20

3: Return (M, Fz, Foc)

Algorithm 16 Model construction for f, (faModel)

Input: Initial model M and 3 binary variables (I'z, 'y, ;c)
Input: Updated model M and 2 binary variables 'z, ['oc
1: Declare 2 binary variables M.var < I';, s as binaries
2: Update M by adding the constraints in Eq. (C10)

_F:r‘f‘ry_ric‘f'rz'f'roczo
Fw_ry+ric_rz+roczo
_Fx—ry+ric+rz+rocz()
fl“erFerFicherFocZO
Py =Ty —Tic+T24+Toc >0
Fm+ry_ric_rz+roczo
4—Ty —Ty—Tiyc—T2—=Toc>0
Fx+Fy+Fic+Fz_FocZO

M.con (C10)

3: Return (M, T, Toc)
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Algorithm 17 Model construction for f; (f1Model)

Input: Initial model M, 4 binary variables (I'z, 'y, I'w,T';c) and a binary flag A €
{0,1}.
Outpl’lt: Updated model M and 5 binary variables I'z, 'oc, T'oa, P, q
1: Declare 5 binary variables M.var < I';,To¢, g, 0, ¢ as binaries
2: Define a vector of variables as v = (I'z, 'y, T'w, I'ic, 'z, Toc, Tod, P )
3: Update M by adding the constraints in Eq. (C11):

Av+a >0, ifx=0

_ . (C11)
Av+a >0, ifd=1

M.con + {

where (A, a) and (A, @) are defined in Eq. (C13) and Eq. (C14) respectively.
4: Return (M7 FZ7 I‘0(17 Fod7p7 q)

Algorithm 18 Model construction for fo (£2Model)

Input: Initial model M and 5 binary variables (I'z, 'y, w, T'ie, T'ig)
Output: Updated model M and 5 binary variables I'z, Toc, I'oa, s q
1: Declare 5 variables M.var < I';,['o¢, o4, P, ¢ as binaries
2: Define a vector of variables as v = (I'y, I'y, T'w, Tic, T5q, Tz, Toe, Tods D, )
3: Update M by adding the constraints in Eq. (C12)

Bu+B8>0, ifA=0
Mecon+<_ = (C12)
Bu+B>0, if\=

where (B, 3) and (B, 8) are defined in Eq. (C15) and Eq. (C16) respectively.
4: Return (M7 FZa F007 Fod>p7 q)

Table C1: The available linear masks of f;. We define T
(FacaryaFw7Fw7FZaFOC7Fod)

No. r |Cor| P q P q No. r |Cor| D q p q
1 (0,0,0,0,0,0,0) T 0 0 o0 0] 50 (1,1,1,1,0,0,1) 0.125 T T T T
2 (1,1,1,1,1,0,0) 1 o o o o] 51 (0000,1,01) 0.125 1 1 1 1
3 (0,0,0,0,0,1,0)  0.25 o 1 o0 1| 52 (1,0,0,0,1,0,1) 0.125 1 1 1 1
4 (1,0,0,0,0,1,0) 0.25 o 1 o 1| 53 (0,1,00,1,0,1) 0.125 1 1 1 1
5 (0,1,0,0,0,1,0) 0.25 o 1 0o 1| 54 (1,1,0,0,1,0,1) 0.125 1 1 1 1
6 (1,1,0,0,0,1,0) 0.25 o 1 o 1| 55 (00,1,0,1,0,1) 0.125 1 1 1 1
7 (0,0,1,0,0,1,0) 0.25 o 1 o 1| 56 (1,0,1,0,1,0,1) 0.125 1 1 1 1
8 (1,0,1,0,0,1,0)  0.25 o 1 o 1| 57 (01,1,0,1,0,1) 0.125 1 1 1 1
9 (0,1,1,0,0,1,0)  0.25 o 1 o 1| 58 (1,1,1,0,1,0,1) 0.125 1 1 1 1
10 (1,1,1,0,0,1,0) 0.25 o 1 o 1| 59 (0001,1,0,1) 0.125 1 1 1 1
11 (0,0,0,1,0,1,0) 0.25 o 1 o 1| 60 (1,0,0,1,1,0,1) 0.125 1 1 1 1
12 (1,0,0,1,0,1,0) 0.25 o 1 o 1| 61 (0,1,0,1,1,0,1) 0.125 1 1 1 1
13 (0,1,0,1,0,1,0) 0.25 o 1 o 1| 62 (1,1,0,1,1,0,1) 0.125 1 1 1 1
14 (1,1,0,1,0,1,0)  0.25 0 1 0 1 63 (0,0,1,1,1,0,1) 0.125 1 1 1 1
15 (0,0,1,1,0,1,0) 0.25 o 1 o 1| 64 (1,0,1,1,1,0,1) 0.125 1 1 1 1
16  (1,0,1,1,0,1,0) 0.25 o 1 o 1| 65 (0,1,1,1,1,0,1) 0.125 1 1 1 1
17 (0,1,1,1,0,1,0) 0.25 o 1 o 1| 66 (1,1,1,1,1,0,1) 0.875 0 0 0 0
18 (1,1,1,1,0,1,0) 0.25 o 1 o 1| 67 (0,0,0,0,0,1,1) 0.375 1 0 1 0
19  (0,0,0,0,1,1,0) 0.25 o 1 o 1| 68 (1,0,0,0,0,1,1) 0.375 1 0 1 0
20  (1,0,0,0,1,1,0) 0.25 o 1 o 1| 69 (0,1,0,0,0,1,1) 0.375 1 0 1 0
21 (0,1,0,0,1,1,0) 0.25 o 1 o 1| 70 (1,1,0,0,0,1,1) 0.125 1 1 1 1
22 (1,1,0,0,1,1,0) 0.25 o 1 o 1| 71 (00,1,00,1,1) 0.375 1 0 1 0
23 (0,0,1,0,1,1,0) 0.25 o 1 0o 1 72 (1,0,1,0,0,1,1) 0.125 1 1 1 1
24  (1,0,1,0,1,1,0) 0.25 o 1 0o 1 73 (0,1,1,0,0,1,1) 0.125 1 1 1 1
25 (0,1,1,0,1,1,0) 0.25 0 1 0 1 74 (1,1,1,0,0,1,1)  0.125 1 1 1 1
26 (1,1,1,0,1,1,0) 0.25 o 1 o 1| 75 (0,0,0,1,0,1,1) 0.375 1 0 1 0
27 (0,0,0,1,1,1,0) 0.25 o 1 o 1| 76 (1,0,0,1,0,1,1) 0.125 1 1 1 1
28  (1,0,0,1,1,1,0) 0.25 o 1 o 1| 77 (0,1,0,1,0,1,1) 0.125 1 1 1 1
29 (0,1,0,1,1,1,0) 0.25 o 1 o 1| 78 (1,1,0,1,0,1,1) 0.125 1 1 1 1
30  (1,1,0,1,1,1,0) 0.25 o 1 o 1| 79 (00,1,1,0,1,1) 0.125 1 1 1 1
Continued
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0 0 0 0 0 0 —1 1 -1 1 0
-1 5 -1 -1 -1 —1 0 0 -1 5 0
0 0 0 0 0 0 1 1 0 -1 0
1 -5 1 1 1 1 0 0 -1 5 0
-1 -1 3 -1 3 -1 0 -3 3 1 3
1 -3 -3 1 1 1 0 -3 3 1 H
3 3 -1 -1 -1 -1 0 -3 3 1 3
-3 1 1 1 -3 1 0 -3 3 1 5
1 1 1 1 1 0 -1 -1 -1 H
-1 -1 -1 -1 -1 —1 0 -1 -1 -1 7
1 -1 1 1 -1 -1 0 -1 1 1 1
—1 1 -1 1 1 —1 0 —1 1 1 1
1 —1 1 -1 -1 1 0 -1 1 1 1
-1 1 -1 -1 1 1 0 -1 1 1 1
1 1 -1 1 1 -1 0 0 0 2 0
1 1 -1 -1 —1 0 0 0 2 0
-1 -1 1 -1 1 1 0 0 0 2 0
1 1 1 -1 -1 -1 0 0 0 2 0
-1 -1 1 1 -1 1 0 0 0 2 0
1 -1 -1 -1 1 1 0 0 0 2 0

= -1 1 1 1 -1 -1 0 —1 1 1 = 1 X

B = —1 -1 1 1 1 1 0 1 1 1 B=| 1 (C16)
1 -1 -1 1 1 -1 0 -1 1 1 1
1 -1 1 -1 1 -1 0 -1 1 1 1
-1 1 -1 1 —1 1 0 -1 1 1 1
-1 1 1 -1 1 -1 0 -1 1 1 1
—1 1 1 -1 -1 1 0 —1 1 1 1
1 —1 —1 1 —1 1 0 -1 1 1 1
1 1 -1 -1 -1 1 0 -1 1 1 1
—1 -1 -1 1 1 1 0 -1 1 1 1
-1 -1 -1 1 -1 -1 -1 1 -1 1 4
1 -1 -1 -1 -1 -1 -1 1 -1 1 4
-1 -1 -1 -1 1 -1 -1 1 -1 1 4
-1 -1 -1 -1 -1 1 -1 1 -1 1 4
-1 1 —1 -1 -1 -1 -1 1 -1 1 4
-1 —1 1 -1 -1 -1 -1 1 -1 1 4
1 1 1 1 1 -1 0 1 -1 0 8
-1 1 1 1 1 1 0 1 —1 0 3
1 -1 1 1 1 1 0 1 -1 0 e
1 1 1 1 -1 1 0 1 -1 0 o
1 1 -1 1 1 1 0 1 -1 0 0
1 1 1 -1 1 1 -1 1 -1 1

Appendix D Truncated Linear MILP Model
Construction of Bytewise
Breakdown Functions

This part describes the truncated linear propagation model construction
process of hy, f, hp and fpe functions.

The available input-output truncated linear masks for h;, and f, are given
in Table D3 and Table D4. The MILP model are constructed accordingly as
Algorithm 21 and Algorithm 22. Note that the entries in Table 2 for A, are iden-
tical to those in Table D3 for hj. Therefore, we can directly use Algorithm 15
as an subroutine of Algorithm 21.

For hyo, all 114 available (T,Ty,Tw,T:, Tocs Tody, Tod,)’s are listed in
Table D5 and the MILP model can be constructed with Algorithm 19. As
to fpe, the 905 (T, Ty, Tic, Tidy, Tidy > Tss Tocs Tody, Tod,)’s in Table D6 can be
modeled with Algorithm 19.
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Table D3: The available input- Table D4: The available input-
output truncated linear masks for output truncated linear masks for

hb. fb

No. | (T, Ty, T2, Toc) No. | (T, Ty, Toer Tz, Toc)
I (0,0,0,0) I (0,0,0,0,0)
2 (1,1,1,0) 2 (1,1,0,1,0)
3 (0,0,0,1) 3 (1,1,1,1,0)
4 (1,0,0,1) 4 (1,0,0,0,1)
5 (0,1,0,1) 5 (0,1,0,0,1)
6 (1,1,0,1) 6 (1,1,0,0,1)
7 (0,0,1,1) 7 (0,0,1,0,1)
8 (1,0,1,1) 8 (1,1,1,0,1)
9 (0,1,1,1) 9 (0,0,0,1,1)
10 (1,1,1,1) 10 (1,0,0,1,1)
11 (0,1,0,1,1)
12 (1,1,0,1,1)
13 (1,0,1,1,1)
14 (0,1,1,1,1)
15 (1,1,1,1,1)

Algorithm 19 Truncated Linear Model construction for hyz (hb2Model)

Input: Initial model M and 3 binary variables (T, Ty, Tw)

Output: Updated model M and 5 binary variables (1%, Toc, Todys Lody» T)
1: Declare 4 variables M.con <~ T%, Toc, Tya,, Thq, @s binaries
2: Define a vector of variables as v = (T, Ty, Tw, Tz, Toc, Tody s Tod, )
3: Update M by adding the following constraint Eq. (D17)

Tz + Toc + —Toqy + Toa, =0
Tw—T: +Toc+Toq, 20
M.con < ¢ —Ty+Tw+ Toc +Tpq, >0 (D17)
Ty —Tw+Toc+Tod1 >0
~Ti + Tz + Toc + Toq, >0

: Declare 1 binary variable M.var < 7
: Define set S = {Tw7 Ty, Tw, Tz, Toc, Tod,» Todl}
for s € S do
Add a constraint M.con < 7> s
: end for
: Add a constraint M.con <=7 <3 g8

10: Return (M, T, Toc, T)

cwNe aR

Table D5: The available input-output truncated linear masks for hps. We
define T = (T, Ty, T, T>, Toc, Tody, Toa, ) and |log Cor| = max{p + 2¢}

No. T [Tog Gor]] No. T TTog Cor]] No. T TTog Cor]
T (0,0,0,0,0,0,0) 0 39 (0,0,1,0,1,1,0) 21 77 (0,1,0,1,1,0,1) 21
2 (1,1,1,1,0,0,0) 18 40 (1,0,1,0,1,1,0) 21 78  (1,1,0,1,1,0,1) 21
3 (0,0,0,0,1,0,0) 17 41 (0,1,1,0,1,1,0) 21 79  (0,0,1,1,1,0,1) 21
4 (1,0,0,0,1,0,0) 20 42 (1,1,1,0,1,1,0) 21 80  (1,0,1,1,1,0,1) 21
5 (0,1,0,0,1,0,0) 20 43 (0,0,0,1,1,1,0) 21 81  (0,1,1,1,1,0,1) 21
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Algorithm 20 Truncated Linear Model construction for fyo (fb2Model)

Input: Initial model M and 6 binary variables (T, Ty, Tic, Tid,, Tid, )
Output: Updated model M and 3 binary variables T%, Toc, Tody, Tod, s T
1: Declare 4 variables M.var < T%,Toc, Tpa,, Tod, as binaries
2: Update M by adding the following constraint Eq. (D18):

~Tiqy + Tz + Toc + Togqy + Tod,
Ty — Tz, +Toc + Todo + Tod1
Tz + Tw + Toc + Toqy + Tog,
=Ty + Tz + Toc + Toa, + Tod,

>
>
>
>
Ty — Tus + Toe + Toay + Tpa, > 0 (D18)
>
>
>

M.con +

Tw — Tidl + Toc + Todg + Tod1
7Ty + Tw + Toc + TOdU + Todl
Ty — Tic + Toc + Toqy + Toa,

: Declare 1 binary variable M.var < 7
: Define set S = {T$7 Ty7 TiC7 71ido ’ T0d1 ) TZ? T0C7 Todo ’ Todl }
for s € S do
Add a constraint M.con < 7> s
end for
: Add a constraint M.con <=7 <> g5

: Return (M, Tz, Toc, TOdO > Tod1 ’ T)

© WL e w

Algorithm 21 Truncated Linear Model construction for h; (hbModel)

Input: Initial model M and 2 binary variables (T%,Ty)
Output Updated model M and 3 binary variables (1%, Toc, T)
¢ (M, T, Toc) < haModel(M, Ty, Ty)
: Declare 1 binary variable M.var < 7
: Define set S = (1%, Ty, T%, Toc)
: for s € S do
Add a constraint M.con < 7> s
end for
Add a constraint M.con <7 <) ss

: Return (M, T%, Toc, T)

Appendix E Details for Accomplishing
Candidate Search

When constructing bitwise model M’s, we may define parameters (P, P) as
upper and lower bounds of by,;. By adding MILP model constraint

M.con <~ P < bypj < P

we are able to acquire quickly the (I'p,I',) candidates with by € [B, F]. The
values of (P, P) are set based on the global optimal value of min bop;, denoted
as Puin, and the power of the MILP solver: for too large P, there might be
too many solutions so that the solver cannot terminate in feasible time.



Combining MILP Modeling with Algebraic Bias Fvaluation for Linear Mask Search

Algorithm 22 Truncated Linear Model construction for f; (fbModel)

Input: Initial model M and 3 binary variables (T, Ty, Tic)
Output: Updated model M and 3 binary variables (%, Toc, T)
Declare 2 binary variables M.var <+ T3, Toc
Update M by adding the constraints in Eq. (D19)

T:c"‘Ty_Tic_Tz‘f'TocZO
_T$+Ty_TiC+TZ+TOCZO
Tx—Ty—Tic+Tz+TocZO

M.con + Tz+Ty+Tic+Tz — Toc > 0 (Dlg)
Ty — T2 +Toc >0

Ty = T: + Toc > 0

—Te+T:+Toc >0

Declare 1 binary variable M.var < 7
Define set S = {T%, Ty, Tic, Tz, Toc}
for s € S do

Add a constraint M.con < 7 > s
end for
Add a constraint M.con <7 <3 s

Return (M, T, Toc, T)

The parameter A in Algorithm 2 is set to A = 0 by default.

E.1 Details for SNOW 3G

Truncated and bitwise linear masks of intermediate states satisfy Eq. (E20):
the constraints in M are listed on the left while those for M are on the right.

TuD = Tu1 ) Tvo = Tvly TwD = Tw1 Fuo = Ful ) F’UO = Fvl ) Fwo = le
s branch s branch
Tuy — Ta, Ta == (Tag, Tay) Py = Ta,Tg =22 (Tay.Tay)
Tep | = Tog, Tay_y =T-1, T2y, =Dwg,Tay , =Tou,
B B
(T4, Tug) — Tay_y (T4, Tug) — Ty,
H H
T2y = To, Tzy = Tag, (T15, Twy) — Tz, Tz, =To0, Tz, =Tay, (T15,Twy) — Tz
S1 S2 S1 S2
th+1 =Ty, Twl — th+11 Tvl — T5 th+1 = F17Fw1 — th+1arv1 — T
|2 |2
(T16,T5,Tay) — Tz (T6,05,Tay) — 'z,
(E20)

For each B2, the output of conModAdd in Algorithm 2 returns (p,q).
According to Section 4.1, its contribution to the correlations can be evaluated
as 27 (PI+2lal) We use by, in Eq. (E21) to define M.obj.

bobj = Y Tocl + Y _ (1P| + 2lql) + 6(|Tu, | + [T, | + [T, |) (E21)
vH V2

For Mrp, each B and H? model construction call (Algorithm 3 and Algo-
rithm 4) returns a 7 = (79,...,73) vector. According to Section 4.2, we can
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define top; as Eq. (E22) and set Mqp.obj < mint,; for searching optimal
(Tg,Tz)’S.

3
tobj =8> Y i+ ¥ (1970 + 217y + 217 + 2073) + 6(| T, | + [T, | + [T, |)
VA i=0 vE2

(E22)
There is only 1 optimal truncated mask solution for M with t,,; = 53. With
bov; in Eq. (E22), There is Py, = 35 and the Gurobi solver can exhaust all
solutions with P < 37. We can further set P to values > 38 so as to acquire
more candidates. The best masks in Table E7 can be covered with P = 38.

Table E7: The linear masks for SNOW 3G when I',, = I's = 0x1014190f
such that |Cor| > 272¢

Iz, 'z, T'14 I'15 I'16 log(|Cor|) Ref.
0x00000002 0x00000001 0x00000003 0x00000001 0x1014190f -20.386 new
0x00000078 0x00000001 0x00000058 0x00000001 0x1014190f -20.409 new
0x00000058 0x00000001 0x00000078 0x00000001 0x1014190f -20.409 new
0x00000030 0x00000001 0x00000030 0x00000001 0x1014190f -20.479 [30]
0x00000020 0x00000001 0x00000020 0x00000001 0x1014190f -20.479 [30]
0x000000d1 0x00000001 0x000000d9 0x00000001 0x1014190f -20.665 new
0x00000001 0x00000001 0x00000001 0x00000001 0x1014190f -20.801 [30]
0x00000002 0x00000005 0x00000003 0x00000007 0x1014190b -20.804 new
0x00000078 0x00000005 0x00000058 0x00000007 0x1014190b -20.827 new
0x00000058 0x00000005 0x00000078 0x00000007 0x1014190b -20.827 new
0x0000002d 0x00000001 0x0000003d 0x00000001 0x1014190f -20.894 new
0x00000020 0x00000005 0x00000020 0x00000007 0x1014190b -20.898 new
0x00000030 0x00000005 0x00000030 0x00000007 0x1014190b -20.898  new
0x000000a0 0x00000001 0x000000f0 0x00000001 0x1014190f -20.902 new
0x000000c2 0x00000001 0x00000082 0x00000001 0x1014190f -20.943 new
0x00000002 0x00000004 0x00000003 0x00000004 0x1014190a -20.974 new
0x00000078 0x00000004 0x00000058 0x00000004 0x1014190a -20.997 new
0x00000058 0x00000004 0x00000078 0x00000004 0x1014190a -20.997 new

E.2 Details for SNOW 2.0

For SNOW 2.0, we can directly deduce the bitwise MILP model M and acquire
(T, T',) directly. M can be deduced from the intermediate state linear masks
satisfying Eq. (E23).

F'u,o = I—"u.la F’UQ = F’Ul
H
T., =T, Tz, =T0, (T15,Tw,) — Tz, (E23)

S1 ==k
th+1 = F17 Ful — ]-—‘zt+1» (F167 FB? Fvl) — ]-—‘zt+1
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Similar to SNOW 3G, M for SNOW 2.0 has objective M.obj < min by,
with the byy; defined as Eq. (E24)

bobj = Z ‘Foc| +
vH

VH

2

> (Ip| +2q|) + 6|, |

(E24)

Therefore, Candidate Search for SNOW 2.0 is accomplished with a simpli-
fied Algorithm 7 skipping all Mp-related steps (Step 2,3,5). According to the
solutions of M, we have P, = 21 and the solver enables us to acquire all
solutions with by; < 24. We also get another millions of by setting P = 25
and P > 26. In fact, the best (I'g, I',)’s in Table E8 are acquired with P < 26.

Table ES8: The linear masks for

SNOW 2.0 such that |[Cor| > 2715

I'z, I'z, I'15 I'16 I's log(]Cor|) Ref.
0x01800001 0x01800001 0x01800001 0x01800001 0x01800001 -14.411 [28]
0x01000001 0x01800001 0x01000001 0x01000001 0x01800001 -14.411 new
0x01000001 0x01800001 0x01000001 0x01800001 0x01000001 -14.411 new
0x01800001 0x01800001 0x01800001 0x01000001 0x01000001 -14.411 new
0x00018001 0x00018001 0x00018001 0x00018001 0x00018001 -14.496 [28]
0x00010001 0x00018001 0x00010001 0x00018001 0x00010001 -14.496 new
0x00018001 0x00018001 0x00018001 0x00010001 0x00010001 -14.496 new
0x00010001 0x00018001 0x00010001 0x00010001 0x00018001 -14.496 new
0x00010081 0x00010081 0x00010081 0x00010081 0x00010081 -14.635 [28]
0x00010081 0x00010081 0x00010081 0x000100c1 0x000100c1 -14.635 new
0x000180c1 0x000140c1 0x000100c1l 0x000180cl 0x000180cl -14.963 new
0x000100c1 0x000140c1 0x000180cl 0x000180c1l 0x000100cl -14.963 new
0x000180c1 0x000140c1 0x000100c1 0x000100cl 0x000100cl -14.963 new
0x00018081 0x000140c1 0x00010081 0x000180cl 0x00018081 -14.963 new
0x000100c1 0x000140c1 0x000180cl 0x000100c1l 0x000180cl -14.963 new
0x00018081 0x000140c1 0x00010081 0x00018081 0x000180cl -14.963 new
0x000180c1 0x000140c1 0x000100c1 0x00018081 0x00018081 -14.963 new
0x00018081 0x000140c1 0x00010081 0x000100c1 0x00010081 -14.963 new
0x000180c1 0x000140c1 0x000100c1 0x00010081 0x00010081 -14.963 new
0x00018081 0x000140c1 0x00010081 0x00010081 0x000100cl -14.963 new
0x000100c1 0x000140c1 0x000180c1 0x00018081 0x00010081 -14.963 new
0x000100c1 0x000140c1 0x000180c1l 0x00010081 0x00018081 -14.963 new
0x00010081 0x000140c1 0x00018081 0x00018081 0x000100c1 -14.963 new
0x00010081 0x000140c1 0x00018081 0x000180c1l 0x00010081 -14.963 new
0x00010081 0x000140c1 0x00018081 0x000100c1l 0x00018081 -14.963 new
0x00010081 0x000140c1 0x00018081 0x00010081 0x000180cl -14.963 new

Appendix F Proof of Theorem 3

Proof The function A is defined as

where

3 0 d wd w?)r i
po(Sco, Sdgy) = szo U(apumvmwj)[0(7)|d(;][0‘d?71].

A(Sco) =Y _ po(Seo, Sdo),

Sdo
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0 200 23d o0,0
In terms of the definition of the matrices U (@7:%0:%0:%;) for j=0,1,2,3, we deduce
that for any fixed (08,06, 08, 08) € {0, 1}4, we have

0 auf vl wl 0 0 1 1 2 2 3 3
A(00, 00,08, 00) =Pr @f 000:5)(.) = 0,¢) = 0, cb = 00, ¢ = o, ¢y = o

—Pr @f bW () = 1,¢8 = o8, cb = ob, & = o8, & = o
7j=0
The function B is defined as
B(Sc1) = > > A(Sco) - p1(Sco, Sei, Sdy),
Sdi Sco
where

3 o ‘ .
p1(Scq, Ser, Sdi) = Hj:O U(a;’“{’”{’“’;)[cjl|d}][cg)\d;,1].

Similarly we deduce that for any fixed (¢9,0},0%,0%) € {0,1}*,

0 1 a,'u,,'u,'w _ o_ o0 1_ 1 2_ 2 3_ 3
B(o{,01,0%,01) = @@f JubvwD () = 0,8 = o el = of, ¢} = 0%, & = of
k=07=0
13
rla? uy v w’ _ o_ o0 1_ 1 2 _ 2 3_ 3
@@f(J R () =1, = of el = of,cf =0, ¢} = o}
k=05=0

Similarly, from the definitions of the functions C' and D respectively, we can deduce
that

0 a,u,'u,'w _ o_ o0 1_ 1 2_ 2 3_ 3
C(09,03,03,03) = @@f(’ B0k () = 0,8 = 08, ¢} = 03,3 = 03, ¢ = o
k=0 75=0
2 3
r(a’ uy vy w’ _ o_ o 1_ 1 2_ 2 3_ 3
@@f(f PR () = 1,68 = 09, cb = 03,3 = 03,3 = o3
k=05=0

for any fixed (09,04,03,03) € {0, 1}4 and

—— T —— TN —_—— e

0 1 a,,'u,,'v,'w _ o_ o0 1_ 1 2 _ 2 3 3
D(08,03,03,0%) = @@f(f oW () = 0,¢8 = 08, ch = ok, i} = 0F,c} = o
k=0 35=0
3 3 k o0J a0 k
rla? u v, w’ _ o_ o0 1_ 1 2_ 2 3_ 3
@@f(J RO () =1, ¢ = 08, ¢y = 03,63 = 03, ¢} = o}
k=0 =0

for any fixed (03,03,03,03) € {0,1}*.
Finally, we derive

ZD SCd Z Z Z Z DO’3,0’3,0’3,0’§)

Ses 09€{0,1} 01€{0,1} 02€{0,1} 05€{0,1}
3 3 P 3 3
—Pr @@f(aj ,ui.,vi.,wj)(_) —o\_ @@f 5wl vl wh )() -1
k=0 j=0 k=0j=0

=cor((U,V,W) L A).
Thus we complete the proof. (|
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Appendix G Detailed Process for Carrying
out Step 1 to Step 5

In the following part, we will describe our strategy for carrying out Step 1 to

Step 4 in turn.
e Step 1: Let us recall that the expression for A(Scp) is

A(Sco) =Y po(Sco, Sdy),
Sdo

where

po(Sco, Sdg) = [ U020 d%) 0]d]_, ).

=0

To compute A(Scp) for all the 24 combinations of involved local carries in

Scp, we do the following:

1.1 Compute

Ao(c, e, df) 2 Y 4 U5 m0ra ) [cf]dg] 0]0] - U5 orwod) [ed | dS] 0] dF]
for all the 23 choices of (c§, ¢}, d). The time complexity is O(2%) and the

memory complexity is O(23).

1.2 Compute A;(c), cd, 2, dJ) = >0 Ao(cd, g, d9)- U<"3’“3’”3’“’3>[c3|dg][o\d9]
for all the 2* choices of (cJ,cd,c2,d3). The time complexity is O(2°) and

the memory complexity is O(2*).
1.3 Compute

@@%ﬁ@%@%Azwm@%ﬁéﬁwvﬁﬁﬁ”W®QM£wn

1

all the 2° choices of (3, c}, 2, c3,d3). The time complexity is O(2°) and

the memory complexity is O(2%).

1.4 Compute A(Scy) = Zdo Az(cl, cd, 3, c3,dI) for all the 2* choices in
(Sco), ie., (c8,ch, 2, cd). The time complexity is O(2°) and the memory

complexity is O(2%).

Complexity of Step 1. The total time complexity of Step 1 is around

0(27.17).
e Step 2: The expression for B(Sc;) is

B(Scr) = > A(Seo) - pr(Sco, Sei, Sdy),

Sdl SCU
where .
pi(Seo, Ser, Sdy) = [J U@ w1 (] |dl) ()|} ).
j=0

We describe the process for computing B(Sc;) for all 2¢ combinations of

involved local carries in Sc; as follows.
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2.1

2.2

2.3

24

2.5

2.6

2.7

2.8
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Compute

1 0,0 1
Bo(cp cf, cg. o, dg) = Yo A(CS,C&C%,CS) U@ o[ dg][ef0] for
all the 2° choices of (¢}, cg, c3, Y, d}). The time complexity is O(25) and
the memory complexity is O(2%).

123 0 1 71 A
Compute By (6107 anlcOalCla €1, dl) -
Zd}] Bo(ch,c2,¢3, 0, db)-u@ruvrw el gl (el |dd] for all the 26 choices

of (¢}, c,c3,cf,cl,di). The time complexity is O(27) and the memory

complexity is O(26).
Compute Ba(c2,c3,cd,cl,dl) = >l Bi(cd, 2, c3, Y, cl,dl) for all the 2°
choices of (¢, c3, Y, ct, d}). The time complexity is O(2°) and the memory
complexity is O(2°).

2 3,0 .1 2 1 AN
Compute Bs(cg, €05 €15 €1 € d3) =
1
S Ba(cd, &, o, df) - U @202 (3| db[c3|df] for all the 29 choices

of (c2,¢3,c%,ct,c3,d}). The time complexity is O(27) and the memory

complexity is O(29).

Compute B4(cg,c(1)7c%7c%7d§) = ch Bs(c3,c3, Y, ct,c?,db) for all the 25
ch01ce1:s oi (3, i;f ,( %3 2, d}). The time complexity is O(2°) and the memory
complexity is .

Comppute ' Bs(c3, Y, et c2,c3,d3)
Zd% B4(cg,c(f,c%,c%,d%)~U(aé’”i”v?’“’é)[ci’|d§}[c§|d§] for all the 26 choices
of (c,c%, et 2 c3,d3). The time complexity is O(27) and the memory
complexity is O(29).

Compute Bg(c{,ct,c?,c3,d}) = ch Bs(c3, ), ct,c2,c3,d}) for all the 2°
chomt;s of (9, %,(5%; c3,d}). The time complexity is O(2°) and the memory
complexity is

Comppute yB(Scl) = Zdl Bs(Y,cl,c2,¢3,d3) for all the 2% choices in
(Scl)i i.(?., (c(l)bc(léf)l,cl) The time complexity is O(2°) and the memory
complexity 1s .

>

Corglgpglexity of Step 2. The total time complexity of Step 2 is around
O(2999).

e Step 3: The expression for C(Scs) is

C(Sea) =Y > B(Ser) - pa(Sey, S, Sdy),
Sdy Sex

where

pa(Ser, Sea, 5d) = [J US| |d] )
j=0

The computation of C(Scz) for all 2 combinations of involved local carries
in Scy is carried out according to the following steps.
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3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Compute

Colel,f e 5. ) & 39 Bleh el cf, o) - U2 Do) for
all the 2° choices of (i, c%, c3,¢3,d3). The time complexity is O(25) and
the memory complexity is O(2%).

1.2 .3 0 1 72 A

Compute Cy (621, €1, €1, €3, €3, d3) =
1.2 .3 0 12 aug v, wi)i 1) 72171 72 6 o

> @2 Colcl, 2, é3,¢Y,d2) - U222 [ 42][c}|d2] for all the 26 choices

of (ci,c3,¢3,¢9,cd,d?). The time complexity is O(27) and the memory

complexity is O(26).
Compute Cy(c?,¢3,c9,ch, d?) & > Cy(ck,c2,c3,c9, ¢k, d?) for all the 25
choices of (c2,¢3,¢9, c3,d?). The time complexity is O(2°) and the memory
complexity is O(2°).
Compute 03(61, c?, cg, 2 02, d3)
L Oo(c2, 63,68, b, d2)- U@ u3:593) [(2|d2] [c2|d?] for all the 26 choices
&2 1,1, €2, Ca 2 1
of (01705{’7087027027(12) The time complexity is O(27) and the memory
complexity is O(29).
Compute C’4(c§’,cg,c§,c§7d2) > C3(c%,c‘;’,cg,c§,c§,d2) for all the 2°
choices of (c3,¢9, ¢k, c3,d3). The time complexity is O(2°) and the memory
complexity is O(2%).
Compute Cs (cﬁ’, 58,305,203, cs,d3)
L Cu(c3, 9, cd, 2, d2) - U @u2v2w3) (31 42][3|d2] for all the 26 choices
3 1, €2, C2, C2, (3 21a3]|c1|d3
of (c3,¢c9,¢c3,c3,¢c3,d3). The time complexity is O(27) and the memory
complexity is O(29).
Compute C’6(cg,c§,c§,cg,d2) =2 C5(c:f,cg,c%,c%,c%,d§) for all the 2°
choices of (c9,c3, 3, ¢3,d3). The tlme complexity is O(2°) and the memory
complexity is O(25).
Compute C(Scz) = Zdz Co(c3,ch, c3,c5,d%) for all the 2* choices in
(Sca), ie., (9,cd,c3,c3). The time complexity is O(2°) and the memory
complexity is O(2%).

[I>

1>

Complexity of Step 3. The total time complexity of Step 3 is around
0(2939).

e Step 4: The expression for D(Sc3) is

D(Se3) =Y Y C(Sca) - ps(Sea, Ses, Sds),
Sd3 Sca

where

po(Sea, Sy, Sda) = [[ U242l ] )
j=0

The computation of D(Sc3) for all 24 combinations of involved local carries
in Scs is carried out according to the following steps.
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4.1 Compute
DO(C%,C%,C%, Cgv dg) Z C(c2v 62’ 62’ 62) U(ao u‘} vs wo [ g|d8] [Cg|0] for
all the 2° choices of (c3, c%, 02,503,d3) The time complexity is O(25) and
the memory complexity is O(2°).

4.2 Compute Dy (ch, c3,c3,c5, ¢k, d3)
> a3 Do(ch, c3,c3,c8,d3) - U(“i”ué’”é’w?)[c§|d‘;’][cé|d8] for all the 25 choices
of (c3,c3,c3,¢8,c3,d3). The time complexity is O(27) and the memory
complexity is O(26).

4.3 Compute Dy(c2,c3,c3,ch,d3) = >l Dy(cd, c3,c3,c9, ¢k, d3) for all the 2°
choices of (c3, 3, cg, i, d3). The time complexity is O(2°) and the memory
complexity is O(2°).

4.4 Compute Ds(c3,¢3,¢3, 3,3, d3)

2 2
S Dalch ch c§, ch, df) - U@243:052) 318 3] for all the 2° choices
of (c%,c§’7cg,c§7c§éd§). The time complexity is O(27) and the memory
complexity is O(2°).

4.5 Compute D4(c§,cg,c§,c§,d3) S>> Dg(cg,cg,cg,cé,cg,d3) for all the 25
choices of (c3, 3, c3 3 c3,d3). The time complexity is O(2°) and the memory
complexity is O(2°).

4.6 Compute Ds(c3,c8,ch, 3, c3,d3)
ng Dy(c3,c8, ek, c3,d3) - U(ag’“g’”g’wg)[c§|d§][c§|d§’] for all the 25 choices
of (cg,cg,cé,cg,cgédg). The time complexity is O(27) and the memory
complexity is O(2°).

4.7 Compute Dg(cg,c‘%,c%,cg,d:‘) £ D5(c§,cg,c§,c§,c§,d3) for all the 25
choices of (c3,ci,c3,¢3,d3). The tlme complexity is O(2°) and the memory
complexity is O(25).

4.8 Compute D(Sc3) = ng Dg(cY, ¢k, c3,c3,d3) for all the 2% choices in
(Sc3), ie., (5,3, c3,c3). The time complexity is O(2°) and the memory
complexity is O(2%).

(>

[I>

>

Complexity of Step 4. The total time complexity of Step 4 is around
O(29%).
After the values of D(Scs) for all the combinations of involved local carries in
Sez are obtained, the accurate value of Cor((U,V, W) i A) can be derived
according to Theorem 3 as Cor((U,V,W) EiN A) = > ., D(Sc3) with a
time complexity of O(2%). To sum up, the total time complexity for computing

Cor((U,V,W) EiN A) according to Step 1 to Step 5 is around 27-17 4 29-39 4
29.39 + 29.39 + 24 — 0(211)

Appendix H Searching for 4-tuples of Vectors

Here we present the method in [28, 30] for searching 4-tuples of column vectors
of the generator matrix G which add to 0 on some bits.
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Rewriting the matrix G in column vectors as G = (g;, 8, ---, En ), We try
to find the XORs of the I-bit column vectors that vanish on some [ — I’ bits.
Specifically for SNOW 3G and SNOW 2.0, we look for a number of 4-tuples
from G which add to 0 on their most significant [ —{’ bits. As stated in [28, 30],
this can be solved using Wagner’s k-tree algorithm [39] by combining a small
technique. Below we illustrate this process.

Let 1; and I3 be two positive integers such that l; + 1y =1 — 1, and high (a)
be the value of the vector a on the most significant n bits. Collecting the NV
column vectors of G in one single list L, we carry out the following two steps:

® (Create a new list L; from the original list L composed of all the XORs of
g, and g, with g, # g;,, 8;,,8;, € L such that high, (g; ©g;,) = 0.
We say that [ bits are eliminated. For j = 1,2,..., N, we will regard the
column vectors g; as random vectors, thus L, has an expected size of m; =
(N)27" ~ N22= (i1 This step is fulfilled by a sort-and-merge procedure
as follows: First, sort the N vectors into 2t equivalence classes according to
their values on the most significant [; bits, thus any two vectors in the same
equivalence class have the same value on these bits. Then, look at each pair
of vectors (g;,,g;,) in each equivalence class to create L;.

® Create a new list Lo from Ly by further eliminating Iy bits using the same
sort-and-merge procedure as that in Step 1. That is, first sort the my vectors
in L, into 2" equivalence classes according to their values on the next most
significant Iy bits, and then look at each pair of vectors in each equivalence
class to create Lo. Similarly, the expected number of elements in Lo is
my 2 ()27 xmi2 (et

Following the above steps, we make an estimation that, we obtain about
meo 4-tuples” (8/,,8/,:8j,,8;,) such that high, ,(g; ©g;, ©® gji ®©g;,) =
0, which correspond to msy parity checks with the correlation o* involving
only xg,z1,...,2y—1. The running time and memory complexities of the above
procedure are essentially proportional to the size of the lists that have been
processed, which can be estimated as O(N + my).

7As illustrated in [28], there may exist some repeated tuples, whose number is comparatively
quite small to the usual cases with non-repeated elements. Note that these repeated samples will
not affect the processing phase of the LFSR initial state recovery, since the absolute values of the
correlation of folded approximation relations in such cases is instead larger than the normal cases.
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