
Combining MILP Modeling with Algebraic

Bias Evaluation for Linear Mask Search:

Improved Fast Correlation Attacks on SNOW

Xinxin Gong1, Yonglin Hao1* and Qingju Wang2

1State Key Laboratory of Cryptology, Beijing, 100878, China.
2SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

*Corresponding author(s). E-mail(s): haoyonglin@yeah.net;
Contributing authors: xinxgong@126.com; qjuwang@gmail.com;

Abstract

The Mixed Integer Linear Programming (MILP) technique has been
widely applied in the realm of symmetric-key cryptanalysis. In this paper,
we propose a new bitwise breakdown MILP modeling strategy for describ-
ing the linear propagation rules of modular addition-based operations.
We apply such new techniques to cryptanalysis of the SNOW stream
cipher family and find new linear masks: we use the MILP model to
find many linear mask candidates among which the best ones are iden-
tified with particular algebraic bias evaluation techniques. For SNOW
3G, the correlation of the linear mask we found is the highest on record:
such results are highly likely to be optimal according to our analysis. For
SNOW 2.0, we find new masks matching the correlation record and many
new sub-optimal masks applicable to improving correlation attacks. For
SNOW-V/Vi, by investigating both bitwise and truncated linear masks,
we find all linear masks having the highest correlation, and prove the
optimum of the corresponding truncated patterns under the “fewest
active S-box preferred” strategy. By using the newly found linear masks,
we give correlation attacks on the SNOW family with improved com-
plexities. We emphasize that the newly proposed uniform MILP-aided
framework can be potentially applied to analyze LFSR-FSM structures
composed of modular addition and S-box as non-linear components.

Keywords: SNOW Family Stream ciphers, Bitwise Breakdown, MILP
Modeling, Fast Correlation Attack

1

2 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

1 Introduction

MILP-Aided Symmetric-Key Cryptanalysis. Ever since the introduc-
tion by Mouha et al. [1], the MILP-aided method has enjoyed great success
in the realm of symmetric-key cryptanalysis. MILP models have been used in
searching for differential and linear [2–4] characteristics, and integral distin-
guishers [5, 6] for block ciphers, constructing distinguishers on hash functions
[7], and launching cube attacks on stream ciphers [8–12], etc. They are also
used in FCA on bit-oriented stream ciphers [13]. The MILP-aided method con-
structs a model M capturing the cryptographic property propagation rules
of the targeted primitive. Then, M is solved with some off-the-shelf solvers
like Gurobi [14]. Finally, the targeted characteristics, such as linear masks, are
extracted from the solution of M.

For describing linear propagation rules, MILP models are quite efficient
when coping with simple operation such as the exclusive-OR (⊕), branching
and S-boxes of ≤ 4 bits. However, the MILP modeling of complicated nonlinear
operations such as the modular 2m addition (denoted as �m) and the 8-bit
S-box transformation (SB) can be quite challenging. The �m operation has a
linear mask searching space of O(22m) which is computationally infeasible to
exhaust since m = 32, 64 are typical choices in symmetric-key primitives. As
to SB, though several optimizations [15–17] are made so far, an 8-bit S-box
still requires over 2400 linear constraints making theM hard to solve. On the
other hand, 8-bit S-boxes and modular additions are basic building blocks of
many symmetric-key cryptographic primitives. Therefore, applying the MILP
modeling to the cryptanalysis of such primitives can be quite challenging.

The SNOW Family. The symmetric-key cryptographic primitives such as
block ciphers, stream ciphers, hash functions play an important role in the
cyber world protecting the security of information, where stream ciphers stand
out for their high efficiency and low resource consumptions. Many stream
ciphers are designed and selected as international standards for world-wide
applications, among which are three main members of the SNOW stream
cipher family namely SNOW 2.0, SNOW 3G and SNOW-V/Vi. SNOW 2.0
[18], proposed by Ekdahl and Johansson, was selected as an standard stream
cipher in ISO/IEC 18033-4. SNOW 3G [19], designed in 2006 by ETSI/SAGE,
serves as the core of 3GPP Confidentiality and Integrity Algorithms UEA 2
& UIA2 for UMTS and LTE networks. It is currently in use in 3G/4G mobile
communication systems. Both SNOW 2.0 and SNOW 3G enjoy a 128-bit secu-
rity. In response to the new requirements from 3GPP encryption, SNOW-V [20]
and SNOW-Vi [21] are proposed recently. Since the close similarity between
two designs1, we refer to both of them as SNOW-V/Vi hereafter. Targeting
at standards of 5G and beyond, SNOW-V/Vi has extremely high software
performance and been claimed to have a 256-bit security.

All members of SNOW family use the classic structure LFSR-FSM: the
linear feedback shift register (LFSR) serves as the source of pseudo-randomness

1They only differ in the LFSR updating function which makes no difference in our analysis.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 3

and the nonlinear finite state machine (FSM) disrupts the linearity using 8-bit
S-boxes and modular 232 add as building blocks. The SNOW family members
enjoy high efficiencies in both software and hardware environments.

Fast Correlation Attacks. One of the most effective cryptanalytic method
for stream ciphers of LFSR-FSM structure is the fast correlation attack [22–
24], referred as FCA hereafter. Same as the linear attacks on block ciphers
utilizing the correlation between the plaintext s0 and the ciphertext sN , FCA
on stream ciphers is based on the linear correlation between the LFSR bits `
and output bits z. Therefore, for FCA, finding linear masks (Γ`,Γz) for ` and
z of stream ciphers such that Γ` · `⊕ Γz · z = 0 hold with high correlations is
of the great importance.

Great efforts have been made in finding high-correlation (Γ`,Γz), resulting
in various FCA on SNOW stream ciphers [25–35]. The best FCAs for SNOW
2.0 [28] and SNOW 3G [30] have data/time/memory complexities of well over
2128, while the complexities corresponding to the best FCAs on SNOW-V/Vi
[33, 34] are below 2256, violating the claimed 256-bit security.

Motivations. It is noticeable that most of the (Γ`,Γz)’s used in FCAs on
SNOW are deduced either by hand or through partial exhaustive search accord-
ing to some intuitive strategy: even the SAT-based automatic search in [35]2

uses directly the truncated pattern in [34]. However, whether there are bet-
ter linear masks are largely unknown. Therefore, there is an urgent demand
of uniform frameworks for efficiently finding many (Γ`,Γz)’s that are likely to
have high correlations. With so many (Γ`,Γz) candidates, one needs a method
to compute their correlations accurately and efficiently so as to identify the
masks applicable to FCAs. To sum up, the whole linear mask search process
is divided into two tasks as follows:

• Candidate Search : Find many (Γ`,Γz)’s as candidates with a uniform
framework.

• Correlation Computation : For each candidate, compute the correlation
accurately for further selections.

Since the discussion of optimality is the strength of MILP models, we are
to propose a MILP model based framework for accomplishing the first task
Candidate Search so as to improve the FCA results on primitives using both
modular additions and large S-boxes.

Our Contributions. In this paper, we make progress in both Candidate
Search and Correlation Computation aspects.

For Candidate Search, we propose a new bitwise breakdown strategy for
modeling the linear propagation rules of modular addition-based operations
with MILP models. Following our strategy, a modular 2m addition is broken
down to m bitwise additions from the least significant bit (LSB) to the most
significant bit (MSB). Each bitwise addition can be regarded as a small S-box
whose linear propagation rules can be captured with MILP constraints deduced

2In fact, this work is accomplished independently and almost in parallel with [35].

4 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

with the H-representation technique in [2]. This strategy is not only quite easy
for understanding but also flexible for describing the linear propagation of con-
secutive modular addition-based operations and deducing optimal truncated
linear masks. Combining such new modular addition descriptions with a sim-
ple S-box modeling method, we propose a uniform MILP-aided framework for
finding linear mask candidates which are of independent interest.

For Correlation Computation of SNOW-V/Vi linear masks, we propose an
accurate correlation computation algorithm for particular composition func-
tion F using the algebraic bias evaluation technique. Such a technique has
been proved effective in previous cryptanalysis of SNOW 2.0 and SNOW 3G
[28, 30].

Thanks to new techniques, we are able to find many linear mask (Γ`,Γz)’s
with currently the highest correlations (i.e., having the largest value |Cor|) for
the targets in SNOW family.

• For SNOW 3G, we find 18 masks with |Cor| > 2−21: 15 of them are new; the
best three breaks the previous correlation record in [30] setting a new record
of |Cor| = 2−20.386. There are another 175 masks with 2−22 < |Cor| ≤ 2−21.

• For SNOW 2.0, we find 26 masks with |Cor| > 2−15: 23 of them are new;
the best 4 ties the highest correlation record of ±2−14.411 originated in [28].
We compare the linear mask results in Table E8 of Section E.2.

• For SNOW-V/Vi, we investigate multiple highly qualified truncated lin-
ear mask candidates, the best of which enables us to find 8 bitwise mask
(Γ`,Γz)’s with |Cor| > 2−48 and another 127 with 2−49 ≤ |Cor| < 2−48:
such results are in accordance with those in [35] while different methods are
used. We also investigate linear masks following sub-optimal truncated pat-
terns whose correlation cannot be larger than |Cor| = 2−50.816, indicating
the optimum of current results.

Table 1: Comparison of FCAs on SNOW 2.0, SNOW 3G and SNOW-V/Vi

Cipher Ref. Data Time Memory

SNOW 2.0
[28] 2159.62 2162.88 2162.32

This paper 2156.75 2163.66 2163.36

SNOW 3G

[29] 2176.56 2176.92 2176.56

[30] 2172.42 2174.98 2174.17

This paper 2170.81 2174.95 2174.13

This paper 2169.52 2175.85 2175.07

SNOW-V/Vi

[34] 2237.50 2246.53 2238.77

[35]† 2239.30 2247.22 2239.32

[35]† 2237.81 2246.06 2238.17

[35]† 2236.87 2247.79 2239.88

[35]† 2234.88 2246.40 2238.51

This paper 2231.76 2247.38 2239.48

†: In [35], the complexity for finding all pairs of vectors colliding on some bits from N vectors is

under-estimated as O(
√

2N). We unify this estimation as O(N log2N), which is more accurate.

With the new highly qualified linear masks, we can directly propose new
FCAs with improved data complexities for SNOW 2.0 and SNOW 3G. For

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 5

SNOW-V/Vi, we give a FCA using multiple linear masks and thus obtain new
trade-off points. We compare our FCAs with the current best ones in Table 1
showing that ours have the lowest data complexities.

Organization of the Paper. Section 2 provides the necessary background
and notations used throughout the paper. The idea of bitwise breakdown strat-
egy is described in Section 3, followed by the MILP modeling in Section 4. With
the help of an algebraic bias evaluation of composition functions in Section 5,
we apply the MILP modeling technique to the Candidate Search task of three
targets of SNOW in Section 6, obtaining masks of the highest correlation. The
selected linear masks are then used for new FCAs in Section 7. We summarize
the whole paper in Section 8.

2 Preliminaries

2.1 Notations and Definitions

We first introduce some notations and definitions used throughout this paper.
The binary field is denoted by F2 and its m-dimensional extension field is
denoted by Fm2 whose elements are m-dimensional binary vector of the form
a = (a0, a1, . . . , am−1) ∈ Fm2 : a0 is LSB and am−1 is MSB. The bitwise linear
mask of a ∈ Fm2 is naturally denoted as Γa ∈ Fm2 . One instance of a with static
value can also be represented as HEX numbers: a = (0, 1, 0, 0, 0, 1, 1, 1)⇔ a =
0xe2. Besides, a matrix M ∈ Fm×n2 represents a 0-1 matrix of size m×n. The
bitwise XOR is denoted by “⊕” and the AND of a, b ∈ F2 is represented as
a ·b or simply ab. For a, b ∈ Fm2 , the standard inner product over Fm2 is defined

as a · b =
⊕m−1

i=0 aibi. The addition modulo 2m is �m and we may use �nm for
n consecutive modular additions: specifically, the case of n = 1 in Eq. (1) is
denoted as �m and referred as the ordinary addition while the case of n = 2
in Eq. (2) is referred as the consecutive addition hereafter.

�m : z = x�m y, (1)

�2
m : z = x�m y �m w. (2)

The summation and multiplication over real numbers are simply denoted as
“+” and “∗”.

Let n, m be two positive integers such that m divides n and d = n
m . For

x ∈ Fn2 , and its bitwise linear mask Γx ∈ Fn2 , we can write x as x = (x0 ‖
· · · ‖ xd−1), where xi ∈ Fm2 for i = 0, . . . , d− 1 and x0 is the least significant
part3. Corresponding to the bitwise linear mask Γx, the truncated linear mask
is defined naturally as Tx = (Tx0 , . . . , Txd−1

) ∈ Fd2, where

Txi =

{
0, if Γxi = 0 (∈ Fm2)

1, otherwise

3Note that Γx · x =
⊕d−1
i=0 Γxi · xi, where Γxi ∈ Fm2 is the bitwise linear mask of xi ∈ Fm2 .

6 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

For x,y ∈ Fn2 , z = x �m y ∈ Fn2 is acquired by d parallel operations of the
addition modulo 2m as: zi = xi �m yi ∈ Fm2 for i = 0, . . . , d− 1. For SNOW-
V/Vi, �32 is carried out on 128-bit states by the parallel applications of four
additions modulo 232 over each sub-word.

The AES round function, denoted as AESR, is used in the FSM updating
function of SNOW-V/Vi, which is composed of SubBytes (SB), ShiftRows (SR)
and MixColumns (MC) as AESR(·) = MC ◦ SR ◦ SB(·) with no AddRoundKey
operation included here. Note that the branch number of MC in each column
is 5. Let s be the 128-bit input to AESR(·), then s is divided bytewisely and
mapped to the state array of the AES round function as follows:

s = (s0‖ . . . ‖s15) =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15


When analyzing the truncated linear masks, we constantly use the bytewise

truncation: for x ∈ Fn2 , its truncated linear mask Tx is always of the length
n
8 . Therefore, for the bitwise linear mask Γs of s ∈ F128

2 in SNOW-V/Vi, the
corresponding bytewise-truncated linear mask Ts has 16 entries.

In FCAs on LFSR-based stream ciphers, the output bits are regarded as
general vectorial Boolean functions of internal state bits, where the correlation,
denoted as Cor, is one of the most important parameters for evaluating the
strength of the linear approximation and also the efficiency of FCAs.

Definition 1 For an arbitrary vectorial Boolean function F : Fn2 → Fm2 and its
input-output linear mask pair (Γi,Γo) ∈ Fn2 × Fm2 , the correlation CorF (Γi,Γo) (or
simply Cor(Γi,Γo) when F is obvious from the context) is defined as

CorF (Γi,Γo) = Pr
x←Fn2

{Γo · F (x) = Γi · x} − Pr
x←Fn2

{Γo · F (x) 6= Γi · x}.

When CorF (Γi,Γo) 6= 0, we know that Γi can propagate to Γo following the
linear propagation rule of F : such (Γi,Γo) are referred as “available” masks

whose correlations are also denoted as Cor(Γi
F−→ Γo). Specifically, for linear

function F , for each Γi ∈ Fn2 , there exists Γo ∈ Fm2 making CorF (Γi,Γo) = 1.

2.2 Brief Descriptions of SNOW-V/Vi, SNOW 3G and
SNOW 2.0

All members of SNOW family use the classic LFSR-FSM structure, where
the LFSR serves as the source of pseudo-randomness and the FSM dis-
rupts the linearity. For our targeted SNOW-V/Vi, SNOW 3G and SNOW 2.0
stream ciphers, we only provide the description of the non-linear FSM part in
keystream generation phase. For more details on the designs, we refer to the
original specification documents [18–21]. Specifically, we use � to represent
�32 in SNOW 2.0 and SNOW 3G descriptions.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 7

2.2.1 SNOW-V/Vi

The overall schematic of SNOW-V algorithm is shown in Fig. A1 of
Appendix A. The LFSR part of SNOW-V/Vi [20, 21] consists of two LFSRs,
namely LFSR-A4 and LFSR-B, both of 16 cells of length 16, giving 512 bits
in total. The FSM part consists of three 128-bit registers namely R1, R2
and R3. At each time instance, two 128-bit states from LFSR-A and LFSR-B
denoted as T1,T2 are first output, and then the FSM takes the two blocks as
inputs and produces a 128-bit keystream as Eq. (3)

zt = (T1t �32 R1t)⊕R2t (3)

After zt is output, the FSM is updated according to Eq. (4)
R1t+1 = σ(R2t �32 (R3t ⊕ T2t))

R2t+1 = AESR(R1t)

R3t+1 = AESR(R2t)

(4)

where σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15] is a bytewise permu-
tation. We emphasize that, for the linear approximation of the FSM of
SNOW-V/Vi, we extract the function F(x,y, z) = σ(x�32 y)�32 z, denoted
as F-function, which is the unique building block of SNOW-V/Vi. For com-
puting the correlations under any given linear masks, we propose an efficient
algorithm in later Section 5 using the algebraic bias evaluation technique.

2.2.2 SNOW 3G

The overall schematic of SNOW 3G is shown in Fig. A2 of Appendix A. SNOW
3G [19] has a 512-bit LFSR consisting of 16 32-bit words denoted as s0, . . . , s15.
Specifically, for i = 0, . . . , 15, the value of si at time instance t is denoted as
st+i. The FSM of SNOW 3G consists of three 32-bit registers namely R1, R2
and R3. For time instance t, the output of SNOW 3G is the 32-bit word zt
computed as Eq. (5).

zt = st ⊕ (st+15 �R1t)⊕R2t (5)

The FSM are updated afterwards as Eq. (6)
R1t+1 = R2t � (R3t ⊕ st+5)

R2t+1 = S1(R1t)

R3t+1 = S2(R2t)

(6)

S1 and S2 are two permutations over F32
2 (S1 is also used in SNOW 2.0) which

can be represented as Si(·) = LLi◦SBXi(·) for i = 1, 2, where SBXi is a nonlinear

4SNOW-Vi is exactly the same as SNOW-V, with the only difference in the LFSR update
function and the tap T2 moved to the higher half of LFSR-A.

8 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

operation using four 8-bit S-boxes in parallel and LLi is the linear transforma-
tion similar to the MC in AESR. The branch number of LLi is also 5. Refer to
[19] for more details of SNOW 3G.

2.2.3 SNOW 2.0

SNOW 2.0 [18] is quite similar to SNOW 3G. It also has a 512-bit LFSR
consisting of 16 32-bit words. However, the FSM only contains two 32-bit
registers R1 and R2. At the time instance t, the 32-bit output zt is computed
as

zt = st ⊕ (st+15 �R1t)⊕R2t (7)

and the updating function of FSM is Eq. (8){
R1t+1 = st+5 �R2t

R2t+1 = S1(R1t)
(8)

The overall schematic of SNOW 2.0 is shown in Fig. A3 of Appendix A. Refer
to [18] for more details of SNOW 2.0.

2.3 Linear Masks for Correlation Attack on Stream
Ciphers

The correlation attack works especially for stream ciphers with LFSRs. The
main idea for this type of attack is using linear approximations of the nonlinear
operations in the cipher and to derive a linear relationship between the outputs
and the LFSR states, then the correlation of such a linear relation is utilized
to launch attacks. For stream ciphers, suppose some output bits z can be
represented as a function of internal state bits as follows

z = F (`, r), (9)

where ` represents the LFSR bits, and r represents the nonlinear bits. During
the keystream generation process, the LFSR bits are updated according to a
linear function g as `← g(`).

In FCA, the linear approximation with linear masks (Γ`,Γr,Γz) satisfyingΓr = 0

|CorF (Γ`,Γz)| :=
∣∣∣Cor [(Γ`,0)

F−→ Γz

]∣∣∣ > 0

can be utilized to recover the LFSR (or the whole internal state). Generally,
the FCA is modelled as a decoding problem, i.e., the keystream segment z can
be seen as the transmission result of the LFSR sequence u through a Binary
Symmetry Channel (BSC) with the error probability p, as shown in Fig. 1.
The FCA is divided into the preprocessing and online processing phases. In
the preprocessing phase, we first collect a number of samples involving only

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 9

Fig. 1: Model for the fast correlation attack

output bits and LFSR initial state bits, and then try to reduce the involved
LFSR initial state bits size at the expense of a folded noise level, and finally an
[N, k]-linear code C is constructed. After this, we enter the processing phase
to recover the target k bits of the LFSR by using the fast Walsh transfomr
(FWT) as was done in [23], and further the whole LFSR bits l.

Obviously, linear approximations with larger |CorF (Γ`,Γz)| values enhance
effectiveness of FCAs. Therefore, finding linear masks (Γ`,Γz) yielding high
correlations is requisite for the success of FCAs. However, `, r, z often contain
many bits and the F function in Eq. (9) is quite complicated. To compute
correlations, we may have to decompose F as

s0 = (`, r)
p0−→ s1 → · · · → sN−1

pN−1−−−→ z = sN .

where p0, . . . , pN−1 are simple operations such as MC, �, S-boxes etc., and si’s
(i = 0, . . . , N) are the intermediate states. Then, the masks of intermediate
states compose a linear trail as follows

(Γ`,0)
p0−→ Γs1 → · · · → ΓsN−1

pN−1−−−→ Γz. (10)

According to the piling-up lemma [36], CorF (Γ`,Γz) can be computed as the
summation of the correlations of all linear trails as

CorF (Γ`,Γz) =
∑

∀(Γs1 ,...,ΓsN−1
)

Cor
[
(Γ`,0)

p0−→ Γs1
→ · · · → ΓsN−1

pN−1−−−→ Γz

]
.

Therefore, a highly qualified linear mask of F should meet the following
criteria:

1. There exist many linear trails in Eq. (10) having non-zero correlations.
2. The absolute correlation values∣∣∣Cor [(Γ`,0)

p0−→ Γs1
→ · · · → ΓsN−1

pN−1−−−→ Γz

]∣∣∣’s of some linear trails are

high.
Therefore, the Candidate Search described in Section 1 can now be rede-

fined in a more specific manner as follows:
Candidate Search: Find many different linear trails as defined in Eq. (10)
((Γ`,Γz)’s are also different) that are likely to have high correlations.

10 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

2.4 MILP Modeling for Searching Linear Masks

The MILP modeling technique has long been used in the realm of cryptanaly-
sis. It has good performance in fields such as finding differential/linear/integral
characteristics of block ciphers, giving cube attacks on stream ciphers, and
constructing all kinds of distinguishers on hash functions etc.

According to Section 2.2, the output and FSM updating functions of our
targeted stream ciphers consists of basic operations of three categories namely
linear, 8-bit S-box and modular addition. The corresponding linear propa-
gation rules are studied thoroughly. There are also quite some efforts made
to describe such rules with MILP models. We treat such three operations
differently:

• Linear: Linear operations include ⊕, branching and all kinds of bitwise
permutations. The corresponding linear propagation rules are quite straight-
forward and the MILP modeling techniques are also mature. For typical
linear operations such as XOR and branching, the bitwise and truncated lin-
ear propagation rules along with the corresponding MILP modeling methods
are detailed in Appendix B.

• 8-bit S-box: The linear propagation rules of 8-bit S-boxes can be per-
fectly captured with a linear approximation table (LAT). However the MILP
model describing such rules can be quite complicated: thousands of linear
constraints are required making the model solving process computationally
infeasible. Therefore, in our model, we simply require the bitwise input and
output masks of S-boxes share the same truncated linear symbol and filter
the feasible input-output pairs after the modeling solving process. There-
fore, our MILP models are quite simple and can be solved efficiently. Such
a S-box modeling technique is described as Algorithm 11 in Appendix B.

• Modular Addition: All of the current works simply consider the ordinary
modular addition in Eq. (1). In our case, there are more complicated modular
addition-based operation such as the consecutive modular addition such as
�2
m in Eq. (2). We propose a bitwise breakdown framework in Section 3

followed by the corresponding MILP modeling technique in Section 4.1. We
also propose a bytewise breakdown accordingly in Section 4.2 so as to deduce
truncated linear masks.

In this way, we are able to construct MILP models for Candidate Search. Note
that AESR, S1 and S2 are all combinations of 8-bit S-box and linear opera-
tions. Their bitwise and truncated linear propagation rules can be described
easily with MILP models. The model construction process are all defined as
algorithms aesModel, aesTruncModel etc. in Appendix B as well.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 11

2.5 Algebraic Bias Evaluation Technique for Correlation
Computation

With the linear mask (Γ`,Γz) and the function F s.t. z = F (`, r) in Eq. (9),
we may define the noise e as

e = (Γ` · `)⊕ (Γz · z) = (Γ` · `)⊕ (Γz · F (`, r)).

Computing the correlation CorF (Γ`,Γz) is equivalent to evaluating the bias of
e towards 0 according to the truth table of e. Nevertheless, such e is a polyno-
mial of ` and r bits with complicated algebraic normal form (ANF). So Cor(e)
cannot be computed directly. Therefore, one has to group the basic operations
p0, . . . , pN−1 into operation groups G0, . . . , Gκ−1 whose inputs are indepen-
dent as far as possible. The noises of different groups, denoted as e0, . . . , eκ−1,
should have simpler ANFs and their correlations Cor(ei) (i = 0, . . . , κ − 1)
can be accurately and efficiently computed. For groups with inputs in com-
mon, e.g., u0, ...,um−1, we introduce the intermediate masks Γu0

,...,Γum−1

and for each possible value of them, we compute a partial correlation over this
value, which is a product of all the correlations Cor(ei), namely

∏κ−1
i=0 Cor(ei).

Finally, the correlation of e can be computed as a sum of partial correlations
over all intermediate masks as

Cor(e) =
∑

∀Γu0 ,...,Γum−1

κ−1∏
i=0

Cor(ei).

Apparently, dividing p0, . . . , pN−1 into appropriate groups is quite technical
depending highly on the definition of F in Eq. (9). The applications to SNOW
family stream ciphers will be illustrated in the later Sections 6.1.2, 6.2.2 and
6.3.2.

3 Bitwise Breakdowns of Two Modular
Addition-based Operations

In this part, we consider two nonlinear operations namely the ordinary modular
2m addition in Eq. (1) and the consecutive modular 2m addition defined in
Eq. (2). We analyze the operations in a bitwise manner inherited from [26, 37],
and deduce their effects on the linear correlations.

3.1 The Ordinary Modular Addition Operation

The ordinary modular addition operation in Eq. (1) can be regarded as a
combination of two functions, namely the half adder ha : F2

2 → F2
2 and the full

adder fa : F3
2 → F2

2.

12 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

A half adder ha takes two bits x, y ∈ F2 as input and outputs two bits,
namely the result bit z and a carry bit oc, denoted as (z, oc)← ha(x, y) where:

2 ∗ oc+ z = x+ y ⇔

{
z = x⊕ y,
oc = xy.

A full adder fa takes as input three bits namely x, y, ic ∈ F2 and also
outputs (z, oc), denoted as (z, oc)← fa(x, y, ic), where

2 ∗ oc+ z = x+ y + ic⇔

{
z = x⊕ y ⊕ ic,
oc = (x · y) ∨ (x · ic) ∨ (y · ic).

Therefore, the ordinary modular addition in Eq. (1) is represented in a bitwise
breakdown manner as Eq. (11), involving one half adder call and w − 1 full
adder calls: 

(z0, oc0)← ha(x0, y0)

(z1, oc1)← fa(x1, y1, oc0)

· · ·
(zm−1, ocm−1)← fa(xm−1, ym−1, ocm−2)

(11)

In order to capture the linear propagation rule of modular addition, we must
handle the accurate linear propagation rules for ha and fa defined in Section 3.1
and Section 3.1 respectively.

For half adder ha, we denote the two input linear mask bits as Γx,Γy and
the two output mask bits as Γz,Γoc respectively. For all 16 possible values of
the linear mask tuple (Γx,Γy,Γz,Γoc), we traverse all 22 (x, y) values and com-
pute the correlation Cor. We find that there are 10 out of 16 (Γx,Γy,Γz,Γoc)
values having non-zero correlations. Such 10 available (Γx,Γy,Γz,Γoc) values
are listed in Table 2 and their correlation satisfies |Cor| = 2−Γoc . In other
words, the correlation of ha can be determined simply with Γoc.

Table 2: ha masks and their corre-
lations.

No. (Γx,Γy,Γz ,Γoc) |Cor|
1 (0,0,0,0) 1
2 (1,1,1,0) 1
3 (0,0,0,1) 2−1

4 (1,0,0,1) 2−1

5 (0,1,0,1) 2−1

6 (1,1,0,1) 2−1

7 (0,0,1,1) 2−1

8 (1,0,1,1) 2−1

9 (0,1,1,1) 2−1

10 (1,1,1,1) 2−1

Table 3: fa masks and their corre-
lations.

No. (Γx,Γy,Γic,Γz ,Γoc) |Cor|
1 (0,0,0,0,0) 1
2 (1,1,1,1,0) 1
3 (1,0,0,0,1) 2−1

4 (0,1,0,0,1) 2−1

5 (0,0,1,0,1) 2−1

6 (1,1,1,0,1) 2−1

7 (0,0,0,1,1) 2−1

8 (1,1,0,1,1) 2−1

9 (1,0,1,1,1) 2−1

10 (0,1,1,1,1) 2−1

For full-adder fa, we denote the three input linear mask bits as Γx,Γy,Γic
and the two output mask bits as Γz,Γoc respectively. There are 10 available

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 13

(Γx,Γy,Γic,Γz,Γoc)’s as shown in Table 3, and same with ha, there is also
|Cor| = 2−Γoc .

Therefore, for the ordinary modular addition in Eq. (1), in addition to
the input-output masks (Γx,Γy,Γz), we should further define Γoc in Eq. (12)
representing the masks of carry bits.

Γoc = (Γoc0 , . . . ,Γocm−1) (12)

Then, we have the following Proposition 1.

Proposition 1 For �m in Eq. (1) with input-output mask (Γx,Γy,Γz), the propa-

gation (Γx,Γy)
�m−−→ Γz is available iff there is a linear mask of carry bits Γoc ∈ Fm2

defined in Eq. (12) satisfying:

• Γocm−1
= 0.

• (Γx0
,Γy0 ,Γz0 ,Γoc0) is in Table 2.

• (Γxi ,Γyi ,Γoci−1
,Γzi ,Γoci) is in Table 3 for i = 1, . . . ,m− 1.

Proof An available mask (Γx,Γy,Γz) should have a non-zero correlation which,
according to the piling-up lemma, can be computed as

∣∣Cor�m(Γx,Γy,Γz)
∣∣ = |Cor(Γx0 ,Γy0 ,Γz0 ,Γoc0)|·

m−1∏
i=1

|Cor(Γxi ,Γyi ,Γoci−1 ,Γzi ,Γoci)|.

Since ocm−1 is not output, Γocm−1 = 0. Further, since

∣∣∣∣Cor [(Γx,Γy)
�m−−→ Γz

]∣∣∣∣ > 0,

there must be{
|Cor(Γx0 ,Γy0 ,Γz0 ,Γoc0)| > 0

|Cor(Γxi ,Γyi ,Γoci−1 ,Γzi ,Γoci)| > 0, where i = 1, . . . ,m− 1.

So there is (Γx0 ,Γy0 ,Γz0 ,Γoc0) lying in Table 2 and (Γxi ,Γyi ,Γoci−1 ,Γzi ,Γoci) in
Table 3 simultaneously, which completes the proof. �

3.2 The Consecutive Modular Addition Operation

The consecutive modular addition �2
m can also be decomposed into bitwise

additions from LSB to MSB: the addition at bit positions 0, . . . ,m− 1 can be
one of the three function calls, namely fa : F3

2 → F2
2, f1 : F4

2 → F3
2 and f2 :

F5
2 → F3

2. fa has been defined in Section 3.1. For f1 : (x, y, w, ic)→ (z, oc, od),
the input and output bits always satisfy

x+ y + w + ic = z + 2 ∗ oc+ 4 ∗ od.

There are 98 out of the 128 input-output mask (Γx,Γy,Γw,Γic,Γz,Γoc,Γod)’s
having non-zero correlations and we list them in Table C1 of Appendix C.

14 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

For f2 : (x, y, w, ic1, ic2) → (z, oc1, oc2), the input and output bits always
satisfy

x+ y + w + ic+ id = z + 2 ∗ oc+ 4 ∗ od.
We list the 122 available input-output mask (Γx,Γy,Γw,Γic,Γid,Γz,Γoc,Γod)’s
along with their correlations in Table C2 of Appendix C.

With fa, f1, f2, the bitwise breakdown of the consecutive modular addition
�2
m can be represented as

(z0, oc0)← fa(x0, y0, w0)

(z1, oc1, od0)← f1(x1, y1, w1, oc0)

(z2, oc2, od1)← f1(x2, y2, w2, oc1)

(z3, oc3, od2)← f2(x3, y3, w3, oc2, od0)

· · ·
(zm−1, ocm−1, odm−2)← f2(xm−1, ym−1, wm−1, ocm−1, odm−3)

As can be seen, each �2
m consists of one fa, two f1 and (m− 3) f2 calls. The

oc and od are referred as the 1st- and 2nd-order carry bits.
As to linear masks, in addition to (Γx,Γy,Γw,Γz), we further define carry

bit mask vectors as Γoc,Γod as{
Γoc = (Γoc0 , . . . ,Γocm−1

)

Γod = (Γod0 , . . . ,Γodm−2
)

It can be proved that available (Γx,Γy,Γw,Γz)’s of �2
m should satisfy the

following Proposition 2.

Proposition 2 For �2
m in Eq. (2) with input-output mask (Γx,Γy,Γw,Γz), the

propagation (Γx,Γy,Γw)
�m−−→ Γz is available iff there are linear masks of carry bits

(Γoc,Γod) ∈ Fm2 × Fm−1
2 defined in Section 3.2 satisfying:

• Γocm−1 = Γodm−2 = Γodm−3 = 0.
• (Γx0 ,Γy0 ,Γw0 ,Γz0 ,Γoc0) is in Table 3.
• (Γxi ,Γyi ,Γwi ,Γoci−1 ,Γzi ,Γoci ,Γodi−1) is in Table C1 for i = 1, 2.
• (Γxi ,Γyi ,Γwi ,Γoci−1 ,Γodi−3 ,Γzi ,Γoci ,Γodi−1) is in Table C2 for i =

3, . . . ,m− 1.

The proof of Proposition 2 is exactly the same as that of Proposition 1.

4 MILP Models for Linear Propagation of
Modular Additions

In order to find the particular linear mask with the highest correlation, a MILP
model M is constructed where the linear mask bits are represented as binary

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 15

variables denoted as M.var. The objective function of the model, denoted as
M.obj, is set to maximize the correlation. The constraintsM.con are imposed
so as to guarantee the availability of input-output linear masks. Additional
variables may also be declared: such variables are to be used in constraints
and the objective M.obj so as to track the magnitude of correlations.

4.1 MILP Models for Bitwise Linear Propagation of
Modular Additions

According to Section 3, the correlation of ha and fa can be accurately deter-
mined with Γoc. Based on the bitwise breakdown in Eq. (11), we define
the model construction process of the ordinary modular addition operation
in Algorithm 1 as (M,Γz,Γoc) ← ordModAdd(M,Γx,Γy). The subrou-
tine haModel and faModel are defined in Algorithm 15 and Algorithm 16
corresponding to the models describing ha and fa respectively.

Algorithm 1 Model Construction of Ordinary Modular Addition
(ordModAdd)

Input: Initial model M and 2 binary variable vectors of length m: Γx =
(Γx0 , . . . ,Γxm−1), Γy = (Γy0 , . . . ,Γym−1)

Output: Updated model M and 2 binary variable vectors of length m: Γz =
(Γz0 , . . . ,Γzm−1) and Γoc = (Γoc0 , . . . ,Γocm−1)

1: (M,Γz0 ,Γoc0)← haModel(M,Γx0 ,Γy0)
2: for i = 1, . . . ,m− 1 do
3: (M,Γzi ,Γoci)← faModel(M,Γxi ,Γyi ,Γoci−1)
4: end for
5: M.con← Γocm−1 = 0
6: Let Γz = (Γz0 , . . . ,Γzm−1) and Γoc = (Γoc0 , . . . ,Γocm−1)
7: Return (M,Γz,Γoc)

For consecutive modular addition, according to Table C1 and Table C2, the
correlations of f1 and f2 cannot be represented with Γoc and Γod. Therefore, we
define additional binary variables p, q. For each available input-output linear
mask (Γi,Γo), the corresponding (p, q) takes two values namely (p, q) and (p, q)
s.t.

2−(p+2q) ≤ Cor(Γi
fj−→ Γo) ≤ 2−(p+2q), j = 1, 2.

We list the values of p, q, p and q in Table C1 and Table C2 as well. Accord-
ing to the bitwise breakdown in Section 3.2, we define the model construction
process of the consecutive modular addition operation in Algorithm 2 as
(M,Γz,p, q) ← conModAdd(M,Γx,Γy,Γw, λ) where λ ∈ {0, 1} determines
whether to use (p, q) (λ = 0) or (p, q) to evaluate the correlations. The sub-
routine f1Model and f2Model are defined in Algorithm 17 and Algorithm 18
in Appendix C corresponding to the models describing f1 and f2 respectively.

The combination of Algorithm 1 and Algorithm 2 is well enough to describe
the bitwise linear propagation of SNOW family of stream ciphers. The optimal

16 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

Algorithm 2 Model Construction of Consecutive Modular Addition
(conModAdd)

Input: Initial model M; 3 binary variable vectors of length m: Γx =
(Γx0 , . . . ,Γxm−1), Γy = (Γy0 , . . . ,Γym−1), Γw = (Γw0 , . . . ,Γwm−1); a binary flag
λ ∈ {0, 1}

Output: Updated model M and 3 binary variable vectors: Γz = (Γz0 , . . . ,Γzm−1),
p = (p0, . . . , pm−1) and q = (q0, . . . , qm−2)

1: (M,Γz0 ,Γp0)← faModel(M,Γx0 ,Γy0 ,Γw0)
2: for i = 1, 2 do
3: (M,Γzi ,Γoci ,Γodi−1

, pi, qi−1)← f1Model(M,Γxi ,Γyi ,Γwi ,Γoci−1 , λ)
4: end for
5: for i = 3, . . . ,m− 1 do
6: (M,Γzi ,Γoci ,Γodi−1

, pi, qi−1)← f2Model(M,Γxi ,Γyi ,Γwi ,Γoci−1 ,Γodi−3
, λ)

7: end for
8: M.con← Γocm−1 = 0
9: M.con← Γodj = 0 for j = m− 2,m− 3

10: Let z = (z0, . . . , zm−1), p = (p0, . . . , pm−1) and q = (q0, . . . , qm−2)
11: Return (M,Γz,p, q)

linear masks for SNOW 2.0 can be directly deduced. However, for SNOW-
V/Vi and SNOW 3G, the bitwise model can be too complicated to be solved
directly. Therefore, we should first deduce a good truncated linear mask as a
hint. Such truncated linear mask hints are also deduced through MILP models
as described in Section 4.2.

4.2 Truncated Linear Propagation of Modular Additions
and Its MILP Description

In this part, we deduce the truncated linear propagation rules for ordinary
modular addition and consecutive modular addition, and propose a MILP
model capturing such propagation rules. We also propose a criteria of truncated
linear characteristics based on their contributions to the linear correlations.

For m = 8t, there is a bytewise breakdown for �m as Eq. (13).
(z0, oc7)← hb(x0,y0)

(z1, oc15)← fb(x1,y1, oc7)

· · ·
(zt−1, oc8t+7)← fb(xt−1,yt−1, oc8t−1)

(13)

where hb : F8
2 × F8

2 → F8
2 × F2 consists of a ha call followed by seven fa calls

and fb : F8
2 × F8

2 × F2 → F8
2 × F2 is eight fa calls.

As to the truncated linear masks, in addition to (Tx, Ty, Tz), we further
define the t truncated carry mask bits as:

Toc = (Toc0 , Toc1 , . . . , Toct−1
) = (Γoc7 ,Γoc15 , . . . ,Γoc8t−1

).

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 17

The truncated linear propagations of hb and fb can therefore be represented
as follows:

(Tx, Ty)
hb−→ (Tz, Toc), (Tx, Ty, Tic)

fb−→ (Tz, Toc).

The available (Tx, Ty, Tz, Toc)’s for hb and (Tx, Ty, Tic, Tz, Toc)’s for fb are listed
in Table D3 and Table D4. The corresponding MILP model construction pro-
cess of hb and fb are defined as Algorithm 21 and Algorithm 22. It is noticeable
that hbModel and fbModel output not only the truncated linear masks but
an additional τ ∈ {0, 1}: τ = 1 for non-zero input-output masks; otherwise
τ = 0. For hb and fb, the available input-output masks have |Cor| ≥ 2−8.
The truncated linear propagation of the ordinary modular addition in Eq. (13)
can therefore be defined as Algorithm 3. The τ = (τ0, . . . , τt−1) output by
Algorithm 3 can be used for evaluating the lowest correlation contribution

(Tx, Ty)→ Tz as 2−8
∑t−1
i=0 τi .

Algorithm 3 Model Construction of the Ordinary Modular Addition
(ordTruncModAdd)

Input: Initial model M and 2 binary variable vectors of length t: Tx =
(Tx0 , . . . , Txt−1), Ty = (Ty0

, . . . , Tyt−1
)

Output: Updated model M, 2 binary variable vectors of length t: Tz =
(Tz0 , . . . , Tzt−1) and τ = (τ0, . . . , τt−1)

1: (M, Tz0 , Toc0 , τ0)← hbModel(M, Tx0 , Ty0
)

2: for i = 1, . . . , t− 1 do
3: (M, Tzi , Toci , τi)← fbModel(M, Txi , Tyi , τi−1)
4: end for
5: Add a constraint M.con← Toct−1 = 0
6: Let Tz = (Tz0 , . . . , Tzm−1), Toc = (Toc0 , . . . , Tocm−1) and τ = (τ0, . . . , τt−1)
7: Return (M, Tz, τ)

As to the �2
m, its bytewise breakdown is of the form Eq. (14).

(z0, oc7, od6, od7)← hb2(x0,y0,w0)

(z1, oc15, od14, od15)← fb2(x1,y1,w1, oc7, od6, od7)

· · ·
(zt−1, oc8t+7, od8t+6, , od8t+7)← fb2(xt−1,yt−1,wt−1, oc8t−1, od8t−2, od8t−1)

(14)
hb2 : F8

2×F8
2×F8

2 → F8
2×F3

2 in Eq. (14) consists of one fa call, two f1 calls and
five f2 calls. fb2 : F8

2 × F8
2 × F8

2 × F3
2 → F8

2 × F3
2 consists of eight f2 calls. The

truncated input-output linear masks are (Tx, Ty, Tw, Tz) and the truncated
carry masks are defined as Toc, Tod in Section 4.2.{

Toc = (Toc0 , . . . , Toct−1
) = (Γoc7 , . . . ,Γoc8t−1

)

Tod = (Tod0 , Tod1 , . . . , Tod2t−2 , Tod2t−1) = (Γod6 ,Γod7 , . . . ,Γod8t−2 ,Γod8t−1).

18 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

According to Proposition 2, there is constantly Toct−1 = 0 and Tod2t−2 =
Tod2t−1 = 0. Therefore, the truncated linear mask propagation of hb2 and fb2
can be defined as follows:

(Tx, Ty, Tw)
hb2−−→ (Tz, Toc, Tod0 , Tod1)

(Tx, Ty, Tw, Tic, Tid0 , Tid1)
fb2−−→ (Tz, Toc, , Tod0 , Tod1).

The available (Tx, Ty, Tw, Tz, Toc, Tod0 , Tod1)’s for hb2 and the available
(Tx, Ty, Tic, Tid0 , Tid1 , Tz, Toc, Tod0 , Tod1)’s for fb2 are listed in Table D5 and
Table D6. The construction of the MILP model for hb2 and fb2 are defined
in Algorithm 19 and Algorithm 20 in Appendix D. The model describing the
truncated linear propagation of the consecutive modular addition in Eq. (14)
can therefore be constructed by calling Algorithm 4. Note that the magnitude
of the correlations are evaluated by max{p + 2q} where (p, q) are defined in
Table C1 and Table C2. According to their definitions, the larger max{p+ 2q}
are, the lower the min |Cor| can be. It is noticeable that for hb2, the non-zero
max{p + 2q} values are within the range [15, 22] while for fb2, the range is
[17, 24]. The average max{p+2q} values for hb2 and fb2 are therefore computed
as 19 and 21 respectively. Specifically, for the fb2 call at the most significant
byte, the non-zero max{p + 2q}’s equal 20 according to Table D6. With the
final τ = (τ0, . . . , τt−1) output by Algorithm 4, we may evaluate the correlation

of propagation (Tx, Ty, Tw)
�2
m−−→ Tz as 2−(19τ0+20τt−1+21

∑t−2
i=1 τi).

Algorithm 4 Truncated Linear Propagation Model Construction of the
Consecutive Modular Addition (conTruncModAdd)

Input: Initial model M and 3 binary variable vectors of length t: Tx =
(Tx0 , . . . , Txt−1), Ty = (Ty0

, . . . , Tyt−1
) and Tw = (Tw0 , . . . , Twt−1)

Output: Updated model M, 2 binary variable vectors of length t: Tz =
(Tz0 , . . . , Tzt−1) and τ = (τ0, . . . , τt−1)

1: (M, Tz0 , Toc0 , Tod0,0 , Tod1,0 , τ0)← hb2Model(M, Tx0 , Ty0
, Tw0)

2: for i = 1, . . . , t− 1 do
3: (M, Tzi , Toci , Tod0,i,Tod1,i , τi)← fb2Model(M, Txi , Tyi , Twi , τi−1)

4: end for
5: Add a constraint M.con← Toct−1 = 0
6: Add a constraint M.con← Tod0,t−1

= 0
7: Add a constraint M.con← Toc1,t−1 = 0
8: Let Tz = (Tz0 , . . . , Tzm−1) and τ = (τ0, . . . , τt−1)
9: Return (M, Tz, τ)

5 Algebraic Bias Evaluation of F-Function

In this part, we detail the process for computing the linear approximations
correlations of the F-Function F(x,y, z) = σ(x�32 y)�32 z under any given
linear masks using the algebraic bias evaluation technique.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 19

For any 128-bit variable X, we represent it in bytes as

X = (x0
0 ‖x0

1 ‖x0
2 ‖x0

3︸ ︷︷ ︸
X0

‖x1
0 ‖x1

1 ‖x1
2 ‖x1

3︸ ︷︷ ︸
X1

‖x2
0 ‖x2

1 ‖x2
2 ‖x2

3︸ ︷︷ ︸
X2

‖x3
0 ‖x3

1 ‖x3
2 ‖x3

3︸ ︷︷ ︸
X3

).

We use temporarily the notation “�” to represent the operation “�8”, then
the output of F can be represented as a 4× 4 matrix as follows:

F(X,Y ,Z) = σ(X �32Y) �32 Z

=


(x0

0�y0
0�0)�z0

0�0 (x0
1�y0

1�c
0
0)�z1

0�0 (x0
2�y0

2�c
0
1)�z2

0�0 (x0
3�y0

3�c
0
2)�z3

0�0
(x1

0�y1
0�0)�z0

1�d
0
0 (x1

1�y1
1�c

1
0)�z1

1�d
1
0 (x1

2�y1
2�c

1
1)�z2

1�d
2
0 (x1

3�y1
3�c

1
2)�z3

1�d
3
0

(x2
0�y2

0�0)�z0
2�d

0
1 (x2

1�y2
1�c

2
0)�z1

2�d
1
1 (x2

2�y2
2�c

2
1)�z2

2�d
2
1 (x2

3�y2
3�c

2
2)�z3

2�d
3
1

(x3
0�y3

0�0)�z0
3�d

0
2 (x3

1�y3
1�c

3
0)�z1

3�d
1
2 (x3

2�y3
2�c

3
1)�z2

3�d
2
2 (x3

3�y3
3�c

3
2)�z3

3�d
3
2


where ckj , d

k
j ∈ {0, 1} for k = 0, 1, 2, 3, j = 0, 1, 2, 3 are local carries introduced

by the first and second �32 formulated as


ck−1 = 0,

ckj =
⌊
(xkj +ykj +ckj−1)/28

⌋
, ϕ(·, ckj−1),


dk−1 = 0,

dkj =
⌊
[(xjk�y

j
k�c

j
k−1)+zkj +dkj−1]/28

⌋
, ψ(·, cjk−1,d

k
j−1).

For any 128-bit mask tuple (U ,V ,W ,A), we define

f (A,U ,V ,W)(X,Y ,Z) = A · (σ(X �32Y)�32 Z)⊕U ·X ⊕ V · Y ⊕W ·Z.

Then the correlation Cor((U ,V ,W)
F−→ A) can be computed for a uniformly

distributed (X,Y ,Z) as:

Cor((U ,V ,W)
F−→ A) = Pr{f (A,U ,V ,W) = 0} − Pr{f (A,U ,V ,W) = 1}.

Computation of Cor((U ,V ,W)
F−→ A). We represent the bytes in

(A,U ,V ,W) as (akj ,u
j
k,v

j
k,w

k
j) for k, j ∈ {0, . . . , 3}2 and further define the

“coordinate” functions

f̄ (akj ,u
j
k,v

j
k,w

k
j)(xjk,y

j
k, z

k
j , c

j
k−1, d

k
j−1)

= akj · [(x
j
k � y

j
k � c

j
k−1)� zkj � d

k
j−1]⊕ ujk · x

j
k ⊕ v

j
k · y

j
k ⊕w

k
j · zkj .

Then we obtain

f (A,U ,V ,W)(X,Y ,Z) =

3⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(xjk,y

j
k, z

k
j , c

j
k−1, d

k
j−1).

20 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

For each function f̄ (akj ,u
j
k,v

j
k,w

k
j), we construct the 4× 4 matrix U(akj ,u

j
k,v

j
k,w

k
j)

whose entry at position (cjk|dkj , c
j
k−1|dkj−1)5 is defined as:

U(akj ,u
j
k,v

j
k,w

k
j))
[
cjk|d

k
j

] [
cjk−1|d

k
j−1

]
=

1

224
(|{xjk,y

j
k,z

k
j ∈F28 : f̄(·, cjk−1,d

k
j−1)=0, ϕ(·, cjk−1)=cjk, ψ(·, cjk−1,d

k
j−1)=dkj }|

− |{xjk,y
j
k,z

k
j ∈F28 : f̄(·, cjk−1,d

k
j−1)=1, ϕ(·, cjk−1)=cjk, ψ(·, cjk−1,d

k
j−1)=dkj }|),

where cjk−1, d
k
j−1 ∈ {0, 1} are input carries of f̄ (akj ,u

j
k,v

j
k,w

k
j), and cjk, d

k
j ∈

{0, 1} are output carries, which can be efficiently computed by adapting the
bit-slicing technique proposed in [37], as shown in Corollary 1.

Algorithm 5 Construction of the matrices u(a,u,v,w)

Output: All the matrices u(a,u,v,w) for a, u, v, w ∈ F2
1: Prepare a 4× 4 matrix N
2: for a, u, v, w ∈ F2 do

3: Create a matrix u(a,u,v,w) of size 4× 4
4: Initialize N with zeros
5: for ic0 ∈ {0, 1}, ic1 ∈ {0, 1}, x, y, z ∈ F2 do

6: Compute r = a · [(x⊕ y ⊕ ic0)⊕ z ⊕ ic1]⊕ u · x⊕ v · y ⊕ w · z
7: Compute oc0 =

⌊
(x+ y + ic0)/2

⌋
8: Compute oc1 =

⌊
((x⊕ y ⊕ ic0) + z + ic1)/2

⌋
9: if r = 0 then

10: N[oc0|oc1][ic0|ic1] := N[oc0|oc1][ic0|ic1] + 1
11: else if r = 1 then
12: N[oc0|oc1][ic0|ic1] := N[oc0|oc1][ic0|ic1]− 1
13: end if
14: end for
15: for ic0, ic1 ∈ {0, 1}, oc0, oc1 ∈ {0, 1} do

16: u(a,u,v,w)[oc0|oc1][ic0|ic1] := N[oc0|oc1][ic0|ic1]/23

17: end for
18: end for

Corollary 1. For any given 8-bit mask (a,u,v,w), we write them in bits, and
let u(aj ,uj ,vj ,wj) be the corresponding 4× 4 matrix pre-computed by Algorithm
5. Then the matrix U (a,u,v,w) can be computed as:

U (a,u,v,w) =
∏0

j=7
u(aj ,uj ,vj ,wj). (15)

5We use the notation c|d to represent the integer value 2c+ d, i.e., c|d = 2c+ d.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 21

For convenience, we fill these carries into 8 sets as follows

Sc0 = {c00, c10, c20, c30}, Sd0 = {d0
0, d

0
1, d

0
2, d

0
3}, Sc1 = {c01, c11, c21, c31}, Sd1 = {d1

0, d
1
1, d

1
2, d

1
3},

Sc2 = {c02, c12, c22, c32}, Sd2 = {d2
0, d

2
1, d

2
2, d

2
3}, Sc3 = {c03, c13, c23, c33}, Sd3 = {d3

0, d
3
1, d

3
2, d

3
3}.

Based on the matrices U (akj ,u
j
k,v

j
k,w

k
j), we give the definitions of functions ρ0,

ρ1, ρ2 and ρ3 as

ρ0(Sc0, Sd0) =
∏3

j=0
U (a0

j ,u
j
0,v

j
0,w

0
j)[cj0|d

0
j][0|d

0
j−1],

ρ1(Sc0, Sc1, Sd1) =
∏3

j=0
U (a1

j ,u
j
1,v

j
1,w

1
j)[cj1|d

1
j][c

j
0|d

1
j−1],

ρ2(Sc1, Sc2, Sd2) =
∏3

j=0
U (a2

j ,u
j
2,v

j
2,w

2
j)[cj2|d

2
j][c

j
1|d

2
j−1],

ρ3(Sc2, Sc3, Sd3) =
∏3

j=0
U (a3

j ,u
j
3,v

j
3,w

3
j)[cj3|d

3
j][c

j
2|d

3
j−1],

and functions A, B, C and D as

A(Sc0) =
∑
Sd0

ρ0(Sc0, Sd0), B(Sc1) =
∑
Sd1

∑
Sc0

A(Sc0) · ρ1(Sc0, Sc1, Sd1),

C(Sc2) =
∑
Sd2

∑
Sc1

B(Sc1) · ρ2(Sc1, Sc2, Sd2), D(Sc3) =
∑
Sd3

∑
Sc2

C(Sc2) · ρ3(Sc2, Sc3, Sd3).

Algorithm 6 Computation of Cor((U ,V ,W)
F−→ A)

Input: the matrices U (akj ,u
j
k,v

j
k,w

k
j) for k = 0, 1, 2, 3 and j = 0, 1, 2, 3; the matrices

U (akj ,u
j
k,v

j
k,w

k
j) for k = 0, 1, 2, 3 and j = 0, 1, 2, 3; 8 sets storing local carries,

i.e., Sc0, Sc1,Sc2,Sc3,Sd0, Sd1,Sd2,Sd3; the functions ρ0, ρ1, ρ2 and ρ3; the
functions A, B, C and D

Output: the accurate value of Cor((U ,V ,W)
F−→ A)

1: Step 1: Compute A(Sc0) =
∑
Sd0

ρ0(Sc0, Sd0)

2: Step 2: Compute B(Sc1) =
∑
Sd1

∑
Sc0

A(Sc0) · ρ1(Sc0, Sc1, Sd1)

3: Step 3: Compute C(Sc2) =
∑
Sd2

∑
Sc1

B(Sc1) · ρ2(Sc1, Sc2, Sd2)

4: Step 4: Compute D(Sc3) =
∑
Sd3

∑
Sc2

C(Sc2) · ρ3(Sc2, Sc3, Sd3)

5: Step 5: Compute Cor((U ,V ,W)
F−→ A) =

∑
Sc3

D(Sc3)

Then, we give Theorem 3 whose proof is in Appendix F.

Theorem 3 For any given masks (U ,V ,W ,A), the correlation of the bitwise linear

mask of F is computed as Cor((U ,V ,W)
F−→ A) =

∑
Sc3

D(Sc3).

22 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

According to Theorem 3, for any given mask tuple (U ,V ,W ,A), the cor-

relation value Cor((U ,V ,W)
F−→ A) can be accurately computed by using the

matrices U (akj ,u
j
k,v

j
k,w

k
j), k = 0, . . . , 3 and j = 0, . . . , 3. We present Algorithm 6

as a high-level description of the computation, while the detailed process for
carrying out Step 1-5 is in Appendix G. For each mask tuple (U ,V ,W ,A),
the time complexity for Algorithm 6 is 211 basic + or ∗ operations: simpler
than the method in [35] requiring 211 (4× 4)-matrix multiplications.

To sum up, for a given mask (U ,V ,W ,A), the correlation

Cor((U ,V ,W)
F−→ A) can be acquired by taking the following two phases:

• Preprocessing: pre-compute the matrices U (a,u,v,w) for all 232 possible
values of a,u,v,w ∈ F28 according to Eq. (15), which requires a total time
and memory complexities of O(232) and O(236) for all (a,u,v,w).

• Processing: compute Cor((U ,V ,W)
F−→ A) following Step 1 to Step 5 in

Appendix G, whose cost is 211 basic + or ∗ operations for each given mask
tuple.

6 Linear Mask Search for SNOW-V/Vi, SNOW
3G and SNOW 2.0

With the aforementioned preparations, Candidate Search of Section 2.3 can
be accomplished with MILP models. Such models are constructed with the
techniques mentioned in Section 2.4. Besides, Correlation Computation can
be accomplished with the classic algebraic bias evaluation technique as shown
in Section 2.5, where each Cor(Γ`,Γz) should be computed accurately and
efficiently. In the following sections, we detail the general Candidate Search and
Correlation Computation processes for SNOW-V/Vi, SNOW 3G and SNOW
2.0 respectively.

6.1 Linear Mask Search for SNOW-V/Vi

According to Section 2.3, we need to first define (`, r, z) along with the
function F in form of Eq. (9). The FSM part of SNOW-V/Vi has three 128-
bit registers. To cancel out the contributions of the non-linear variables, we
consider the 3-round linear approximations of the FSM, as depicted in Fig.
2. According to the keystream generation function and the FSM updating
function in Eq. (3) and Eq. (4), we define (`, r, z) as: z = (zt−1, zt, zt+1),
` = (T1t−1,T1t,T1t+1,T2t) and r = (u,v,w) = (R1t−1,R2t−1,R1t). Then
from Fig. 2 we have z = F (`, r) with the F function defined as follows

zt−1 = (T1t−1 �32 u)⊕ v,

zt = (T1t �32 w)⊕AESR(u),

zt+1 = (T1t+1 �32 σ((T2t ⊕AESR(v))�32 AES
R(u)))⊕AESR(w).

(16)

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 23

Fig. 2: The three-round linear approximations for the FSM of SNOW-V/Vi

For the linear variables (`, z), we define the targeted linear mask (Γ`,Γz) as{
Γ` = (ΓT10

,ΓT11
,ΓT12

,ΓT2) = (ΓT1t−1
,ΓT1t ,ΓT1t+1

,ΓT2t)

Γz = (Γz0
,Γz1

,Γz2
) = (Γzt−1

,Γzt ,Γzt+1
)

(17)

Then the noise e is e = (Γ` · `) ⊕ (Γz · z) = (Γ` · `) ⊕ (Γz · F (`, r)), and the
correlation CorF (Γ`,Γz) is equal to that of e towards 0, i.e., CorF (Γ`,Γz) =
Pr{e = 0} − Pr{e = 1}. Our target is to find linear masks (Γ`,Γz) yielding
high correlations.

The whole linear mask search is carried out following the Candidate Search
and Correlation Computation processes as follows.

6.1.1 Candidate Search for SNOW-V/Vi

The definitions of (`, r, z) and F guarantee that linear trails of the form
Eq. (10) exist. To find particular (Γs0

,Γs1
, . . . ,ΓsN)’s in Eq. (10), a MILP

modelM is constructed where all mask bits are represented with binary vari-
ables M.var satisfying particular constraints M.con. The objective M.obj
should also be set properly so that the solution ofM corresponds to the trails
with high correlations. Finally, the MILP model M is solved and the solu-
tions corresponding to highly qualified linear trails are output. According to
Section 2.4, for each solution, the input-output masks of S-boxes should be
checked with the LAT: if the masks are infeasible, the solution is aborted.

The bitwise model for SNOW-V/Vi is too complicated to be solved. There-
fore, a truncated MILP model MT is constructed so as to find the optimal
(T`, Tz). Then, the bitwise modelM for searching bitwise masks (Γ`,Γz) sat-
isfying the truncated masks (T`, Tz) is constructed and solved. Truncated and

24 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

bitwise linear masks of intermediate states satisfy Eq. (18): the constraints in
MT are listed on the left while those for M are on the right.



Tu0 = Tu1 , Tv0 = Tv1 , Tw0 = Tw1

Tzt−1 = Tv0

(TT1t−1
, Tu0)

�32−−−→ Tzt−1

Tu1

AESR−−−−→ Ta

Ta
branch−−−−→ (Ta0 , Ta1)

(TT1t , Tw0)
�32−−−→ Tzt

Ta0 = Tzt

Tv1

AESR−−−−→ TT2t

(TT2t , Ta1)
�32−−−→ Tκ

σ−→ Tη

(TT1t+1
, Tη)

�32−−−→ Tzt+1

Tw1

AESR−−−−→ Tzt+1



Γu0 = Γu1 , Γv0 = Γv1 , Γw0 = Γw1

Γzt−1 = Γv0

(ΓT1t−1
,Γu0)

�32−−−→ Γzt−1

Γu1

AESR−−−−→ Γa

Γa
branch−−−−→ (Γa0 ,Γa1)

(ΓT1t ,Γw0)
�32−−−→ Γzt

Γa0 = Γzt

Γv1

AESR−−−−→ ΓT2t

(ΓT2t ,Γa1)
�32−−−→ Γκ

σ−→ Γη

(ΓT1t+1
,Γη)

�32−−−→ Γzt+1

Γw1

AESR−−−−→ Γzt+1

(18)

Define Objective Functions for MILP Models. Empirically, the fewer
active S-boxes the higher correlations can be. Therefore, our definition of objec-
tive functions aims at minimizing the number of active S-boxes. Such a “fewest
active S-box preferred” strategy is applied to the objective function defini-
tions through this paper. Since both bitwise and truncated linear propagation
rules for � and AESR are captured by the MILP models, MT and M can
be constructed directly. In order to identify the (T`, Tz) and (Γ`,Γz)’s with
high correlations, the objective functions of MT and M should be defined
properly. For MT , each � model construction call (Algorithm 3) returns a
τ = (τ0, . . . , τ3) vector. The number of active S-boxes equals to |Tu1

|+ |Tv1
|+

|Tw1
|. Each active S-box should have a non-zero |Cor| ≥ 2−6. According to

Section 4.2, we can define tobj = 8
∑
∀�
∑3

i=0 τi+6(|Tu1
|+|Tv1

|+|Tw1
|) and set

MT .obj ← min tobj for searching optimal (T`, Tz)’s. As to bitwise model M,
for each �, the output of ordModAdd in Algorithm 1 returns a Γoc. According
to Section 4.1, its contribution to the correlations can be evaluated as 2−|Γoc|.
Therefore, for bitwise model M, we can define the function bobj =

∑
∀� |Γoc|

as and the objective of M as M.obj← min bobj .
Note that bobj for SNOW-V/Vi do not consider the effect of S-boxes because

the number of active S-boxes |Tu1
| + |Tv1

| + |Tw1
| value has already been

determined with the solution of MT .
Framework for Candidate Search. Following the analysis above, Candi-
date Search for SNOW-V/Vi can be accomplished following the framework
in Algorithm 7: for an arbitrary positive integer N , we are able to find a set
B containing N targeted linear masks (Γ`,Γz)’s having low bobj values. For
SNOW-V/Vi, the optimal (T`, Tz) we found is of the form Eq. (19) which is

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 25

in accordance with that used in [34, 35]{
TT10

= TT11
= Tz0

= Tz1
= 0x1000,

TT12
= TT2 = Tz2

= 0xf000.
(19)

In fact, by solving MT for SNOW-V/Vi we may find many (T`, Tz)’s sharing
the same optimal tobj value, but the bobj ’s of the corresponding (Γ`,Γz) have
significant differences: (Γ`,Γz) satisfying Eq. (19) has a min bobj = 37 while
that satisfying Eq. (20) has min bobj = 42.

TT10 = Tz0 = 0x40

TT11
= Tz1

= 0x1000

TT12
= Tz2

= 0xf000, TT2 = 0xe000

(20)

For other (T`, Tz)’s, min bobj values are even higher. Thus, the best truncated
mask in Eq. (19) is determined easily. Therefore, Candidate Search for SNOW-
V/Vi is accomplished by calling Algorithm 7 with large N settings: after hours’
running, all 34463 (Γ`,Γz)’s satisfying bobj ≤ 41 are found and there are also
millions with bobj ≥ 42. More details and tricks for accelerating Algorithm 7
of such can be found in Appendix E.

Algorithm 7 Find N optimum linear masks (task1Frame)

Input: Integer N as the tageted number of linear mask (Γ`,Γz)’s
Output: A set B containing ≤ N linear masks

1: Define an empty set B = φ
2: Construct MILP model MT and set MT .obj← min tobj
3: Solve MT and acquire truncated linear mask (T`, Tz) with lowest tobj value
4: Construct MILP model M and set M.obj← min bobj
5: Add constraints to M s.t. (Γ`,Γz) follows (T`, Tz)
6: Solve model M with MILP model solver
7: while an optimum solution of M is found do
8: Define η = 1
9: for all S-boxes do

10: Identify the input-output mask (Γi,Γo)
11: Find the correlation |Cor(Γi,Γo)| by refering to the S-box LAT
12: If |Cor(Γi,Γ0)| = 0, set η = 0
13: end for
14: If η = 1, extract (Γ`,Γz) and add it to B
15: If |B| ≥ N , break
16: end while
17: Return B

6.1.2 Correlation Computation for SNOW-V/Vi

According to the function z = F (`, r) of SNOW-V/Vi in Eq. (16), the noise
e = (Γ` · `)⊕ (Γz ·F (`, r)) is a polynomial of `, z and r bits with complicated
ANF. To cancel out the non-linear contributions from r, we decompose the

26 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

whole expression of e wisely and analyze the algebraic property of each noise
in detail.

For convenience, we define some 128-bit intermediate states as follows: U =
SB(u), V = SB(v), W = SB(w), pt = T2t ⊕ AESR(v) and qt = AESR(u).
By introducing a 128-bit intermediate mask Θ, we decompose the noise e into
four sub-noises e1, e2, e3, e4 s.t. e = e1 ⊕ e2 ⊕ e3 ⊕ e4 as follows:
e1 =Γz0

·(T1t−1 �32 SB
−1(U))⊕ ΓT10

·T1t−1 ⊕Θ′ ·U ,
e2 =Γz1

·(T1t �32 SB
−1(W))⊕ ΓT11

·T1t ⊕ Γ′z2
·W ,

e3 =Γz2 ·(T1t+1 �32 σ(pt �32 qt))⊕ ΓT12 ·T1t+1 ⊕ ΓT2 ·pt ⊕ (Θ⊕ Γz1)·qt,
e4 =Γz0 ·SB−1(V)⊕ Γ′T2 ·V .

where the linear masks Θ′, Γ′z2
and Γ′T 2 are defined s.t. Θ′ ·U = Θ ·MC(SR(U))

for all U , Γ′z2
·W = Γz2

·MC(SR(W)) for all W , and Γ′T2 ·V = ΓT2 ·MC(SR(V))
for all V .

From the above expressions, we define the basic operation groups
G(X,Y) = X �32 SB

−1(Y), S(X) = SB−1(X), and F(X,Y ,Z) = σ(X �32

Y)�32 Z, then the correlations of sub-noises are simply

Cor(e1)=Cor((ΓT10,Θ
′)
G−→ Γz0), Cor(e3)=Cor((ΓT2,Θ⊕ Γz1,ΓT12)

F−→ Γz2),

Cor(e2)=Cor((ΓT11
,Γ′z2

)
G−→ Γz1

), Cor(e4)=Cor(Γ′T2
SB−1

−−−→ Γz0
).

The correlations of G and S can be computed accurately with the constant-
time complexity algorithms in [31]. For computing the correlations of the
F-function, we have detailed its algebraic bias evaluation in Section 5.
By applying the results about correlations over composition functions in
[38] and the piling-up lemma, the correlation of the linear approxima-
tion for the FSM of SNOW-V/Vi can be computed as Cor(Γ`,Γz) =
Cor(e2)Cor(e4)

∑
Θ

Cor(e1)Cor(e3).

The Selective Linear Masks. With the algebraic bias evaluation above,
we are able to compute the accurate Cor(Γ`,Γz) for all linear mask candidates
given in Section 6.1 and identify the ones most suitable for FCAs. For the
optimal truncated mask pattern of the form Eq. (19), from those with bobj ≤
41, we find 8 candidate (Γ`,Γz)’s having correlation |Cor| > 2−48, as shown
in Table 46, and another 127 within the range 2−49 ≤ |Cor| < 2−48, which
are in accordance with that in [35]. We tried millions of other candidates with
bobj ≥ 42 and cannot find better correlations.

We also evaluate the candidates with truncated pattern in Eq. (20) and
find that the absolute correlations are higher than 2−50.816 and the best mask

6We use msw(·) to denote the most significant 32-bit word (MSW) of a 128-bit mask.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 27

Table 4: The best masks satisfying Eq. (19) and msw(Γz2
) = msw(ΓT2) =

0x81ec5a80 such that |Cor| > 2−48.

msw(Γz0) msw(Γz1) msw(ΓT10
) msw(ΓT11

) msw(ΓT12
) log |Cor| Ref.

0x0000000c 0x00000040 0x00000008 0x00000040 0x81ec5a00 -47.567 [35]
0x0000000c 0x00000080 0x00000008 0x00000080 0x81ec5a00 -47.579 [35]
0x00000020 0x00000040 0x00000030 0x00000040 0x81ec5a00 -47.660 [35]
0x00000020 0x00000080 0x00000030 0x00000080 0x81ec5a00 -47.672 [35]
0x0000000d 0x00000040 0x0000000d 0x00000040 0x81ec5a00 -47.760 [34, 35]
0x0000000d 0x00000080 0x0000000d 0x00000080 0x81ec5a00 -47.772 [35]
0x00000078 0x00000040 0x00000078 0x00000040 0x81ec5a00 -47.839 [35]
0x00000078 0x00000080 0x00000078 0x00000080 0x81ec5a00 -47.851 [35]

is as follows:

Γz0
= ΓT10

= (0‖0x00300000‖0‖0), Γz1
= (0‖0‖0‖0x00000008),

Γz2
= (0‖0‖0‖0x81ec5a80), ΓT11

= (0‖0‖0‖0x0000000c),

ΓT12
= (0‖0‖0‖0x81ec5a00), ΓT2 = (0‖0‖0‖0xc17a8fa8).

This indicates that the masks in Table 4 are highly likely to be optimal.

6.2 Linear Mask Search for SNOW 3G

6.2.1 Candidate Search for SNOW 3G

Similarly, the FSM part of SNOW 3G has 32-bit three registers, thus
3-round linear approximations of the FSM are considered, as depicted
in Fig.3. According to the keystream generation function and the FSM

Fig. 3: The three-round linear approximations for the FSM of SNOW 3G

updating function in Eq. (5) and Eq. (6), we define (`, r, z) as: z =

28 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

(zt−1, zt, zt+1), ` = (st−1, st, st+1, st+5, st+14, st+15, st+16) and r =
(u,v,w) = (R1t−1,R2t−1,R1t), Then from Fig. 3 we have z = F (`, r) with
the F function defined as follows

zt−1 = (st+14 � u)⊕ v ⊕ st−1

zt = (st+15 �wt)⊕ S1(u)⊕ st
zt+1 = (st+16 � (st+5 ⊕ S2(v))� S1(u))⊕ S1(w)⊕ st+1

(21)

We let Γi be the linear mask of st+i. The targeted linear mask (Γ`,Γz) can
therefore be defined as Eq. (22){

Γ` = (Γ−1,Γ0,Γ1,Γ5,Γ14,Γ15,Γ16)

Γz = (Γz0
,Γz1

,Γz2
) = (Γzt−1

,Γzt ,Γzt+1
)

(22)

The bitwise modelM for SNOW 3G is also hard to solve directly, so the task
Candidate Search of SNOW 3G is also accomplished with Algorithm 7 enabling
us to acquire large number of highly qualified linear masks. The constraints
used in MT and M as well as other details are given in Section E.1.

6.2.2 Correlation Computation for SNOW 3G

According to Eq. (21), we define 32-bit intermediate states x = SBX1(u),
y = SBX1(w), ξt = st+5 ⊕ S2(v) and ηt = S1(u). With the linear mask in
(Γ`,Γz) in Eq. (22), we decompose the noise e = (Γ` · `)⊕ (Γz · F (`, r)) into
four sub-noises as

e1 = Γz0
·(st+14 � SBX1

−1(x))⊕ Γ14 ·st+14 ⊕Θ′ ·x,
e2 = Γz1 ·(st+15 � SBX1

−1(y))⊕ Γ15 ·st+15 ⊕ Γ′z2
·y,

e3 = Γz2 ·(st+16 � ξt � ηt)⊕ Γ16 ·st+16 ⊕ Γ5 ·ξt ⊕ (Θ⊕ Γz1)·ηt,
e4 = Γ′′5 ·SBX2(v)⊕ Γz0

·v,

where Θ′, Γ′z2
and Γ′′5 are defined s.t. Θ′ · x = Θ · LL1(x), Γ′z2

· x = LL1(x),
and Γ′′5 ·x = Γ5 · LL2(x) for all x ∈ F32

2 . Defining the basic operation groups G
and F as G(X,Y) = X �32 SBX1

−1(Y) and F (X,Y ,Z) = X �32 Y �32 Z,
we are able to define the sub-noise correlations as

Cor(e1) = Cor((Γ14,Θ
′)

G−→ Γz0), Cor(e3) = Cor((Γ16,Γ5,Θ⊕ Γz1)
F−→ Γz2),

Cor(e2) = Cor((Γ15,Γ
′
z2

)
G−→ Γz1

), Cor(e4) = Cor(Γz0

SBX2−−−→ Γ′′5).

We use the constant-time algorithms in [28] and [26] respectively to accu-

rately computing Cor((U ,V)
G−→ A) and Cor((U ,V ,W)

F−→ A), while

Cor(B
SBX2−−−→ A) can be obtained through four LAT lookups. Then, same as

SNOW-V/Vi, the targeted Cor for SNOW 3G can also be computed efficiently

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 29

as Cor(Γ`,Γz) = Cor(e2)Cor(e4)
∑
Θ

Cor(e1)Cor(e3).

The Selective Linear Masks. From the millions of linear mask candidates

given in Section 6.2.1, using the algebraic bias evaluation technique above,
we are able to obtain 18 mask tuples having |Cor| > 2−21, and the best is
|Cor| = 2−20.386 breaking the previous record [30] as well. We compare the
results of linear masks in Table E7 of Section E.1. Besides, we obtain another
175 tuples s.t. 2−22 < |Cor| ≤ 2−21. It is noticeable that there is only one opti-
mal solution for MT and all the best masks in Table E7 are found from the
candidates with bobj ≤ 37. For those with bobj ≥ 38, the best correlation does
not increase, indicating that the masks in Table E7 are likely to be optimal.

6.3 Linear Mask Search for SNOW 2.0

6.3.1 Candidate Search for SNOW 2.0

The FSM part of SNOW 2.0 has two 32-bit registers, thus 2-round linear
approximations are considered to cancel out the non-linear contributions, as
depicted in Fig.4. According to the keystream generation function and the

Fig. 4: The two-round linear approximations for the FSM of SNOW 2.0

FSM updating function in Eq. (7) and Eq. (8), we define (`, r, z) as: z =
(zt, zt+1), ` = (st, st+1, st+5, st+15, st+16) and r = (u,v) = (R1t,R2t). Then
z = F (`, r) where the F function is defined as follows{

zt = (st+15 � u)⊕ v ⊕ st
zt+1 = (st+16 � st+5 � v)⊕ S1(u)⊕ st+1

(23)

30 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

We let Γi be the linear mask of st+i. The targeted linear mask (Γ`,Γz) can
therefore be defined as:{

Γ` = (Γ0,Γ1,Γ5,Γ15,Γ16)

Γz = (Γz0 ,Γz1) = (Γzt ,Γzt+1)
(24)

Unlike SNOW-V/Vi and SNOW 3G, the bitwise modelM for SNOW 2.0 can
be solved directly. Therefore, Candidate Search for SNOW 2.0 is accomplished
simply with a bitwise model M. Details are given in Section E.2.

6.3.2 Correlation Computation for SNOW 2.0

With linear mask (Γ`,Γz) in Eq. (24), there is e = e1 ⊕ e2 with e1, e2 defined
as follows:{

e1 =Γz0 · (st+15 � SBX1
−1(x))⊕ Γ15 · st+15 ⊕ Γ′z1

· x
e2 =Γz1

· (st+16 � st+5 � v)⊕ Γ16 · st+16 ⊕ Γ5 · st+5 ⊕ Γz0
· v

where Γ′z1
satisfies Γ′z1

· x = Γz1
· LL1(x) for ∀x ∈ F32

2 . The targeted
correlation is computed as Cor(Γ`,Γz) = Cor(e1)Cor(e2), where Cor(e1) =

Cor((Γ15,Γ
′
z1

)
G−→ Γz0) and Cor(e2) = Cor((Γ16,Γ5,Γz0)

F−→ Γz1).

The Selective Linear Masks. For SNOW 2.0, we obtain 26 mask tuples
with |Cor| > 2−15, while only 3 were found in [28]. Among these masks, 4
tuples yield the same highest correlation ±2−14.411. We compare the results of
linear masks in Table E8 of Section E.2. Besides, we obtain another 372 ones
with 2−16 < |Cor| ≤ 2−15.

7 Using Linear Masks in Fast Correlation
Attacks

Correlation Attack on Full SNOW-V/Vi. We launch our attacks fol-
lowing strictly the preprocessing phase and processing phase. We use all the
8 + 127 = 135 mask tuples which yield correlations |Cor| > 2−49 to build
approximation relations. The average correlation is computed as α , 2−48.58.

We first collect N (to be determined) samples involving only the keystream
outputs and the l-bit LFSR initial state bits, and then try to reduce the number
of the involved LFSR initial state bits to l′(< l) bits by searching for pairs
of columns of the generator matrix which add to 0 on the most significant
l − l′ bits, at the expense of the increased noise level with the correlation α2.
Regarding the column vectors of the generator matrix as random vectors, there
are about M , C2

N2−(l−l′) such pairs, corresponding to M approximation
relations with correlation α2 involving only the first l′ bits of the LFSR initial
state, which can be found by the sort-and-merge procedure with the time
complexity O(N log2N) and the memory complexity O(N).

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 31

To recover the value of the target l′ bits, we use the FWT to speed up the
evaluation of the M linear approximation relations, which needs a time com-
plexity O(M + l′2l

′
) and a memory complexity O(2l

′
). To guarantee a high

success probability, M is usually chosen as M = 2l′ ln 2/(α2)2, the parame-

ter N is thus determined to be N ≈
√
M2l−l′+1, and the required number of

keystream outputs is D = N/135.

Complexity Analysis. For SNOW-V/Vi, we follow the above procedure
with the parameters l = 512, l′ = 238. In the preprocessing phase, we need
to prepare M = 2l′ ln 2/(α2)2 = 2202.69 approximation relations with cor-
relation α2 involving the first 238 bits of the LFSR initial state. Thus the
number of samples required is N =

√
M2l−l′+1 = 2238.84 and we need to

know D = N/135 = 2231.76 keystream outputs. The required time and mem-
ory complexity for preparing M approximation relations is 2246.74 and 2238.84,
respectively. In the processing phase, the FWT is utilized to determine the
first 238 bits of the LFSR initial state, which needs a time complexity 2245.89

and a memory complexity 2238. In summary, the total time and memory com-
plexities are 2247.38 and 2239.48 respectively, and the keystream length needed
is 2231.76. Once the first 238 bits are recovered, the other bits and the FSM
state can be recovered by using a similar method and a small-scale exhaustive
search with a much lower complexity.

Comparison. Table 1 presents a comparison of our attack with the previous
ones in [34, 35], from which we know the data complexity is reduced.

Correlation Attack on SNOW 3G. Different from the correlation attack
on SNOW-V, where pairs of column vectors of the generator matrix vanish-
ing on some bits are searched, we look for k(= 4)-tuples of columns of the
generator matrix for SNOW 3G.

For SNOW 3G, we have l = 512. Suppose our top n best masks in Table
E7 of Appendix E.1 with an average absolute correlation α are used for build-
ing the approximations. In the preprocessing phase, we first collect N (to be
determined) samples involving only the keystream outputs and l LFSR initial
state bits, and then try to reduce the involved LFSR initial state bits size to
l′ bits, by searching for a number of k(= 4)-tuples of columns of the generator
matrix which add to 0 on the most significant l− l′ bits, at the expense of the
increased noise level with the correlation α4. After this, we enter the process-
ing phase to recover the target l′ bits by using the FWT for calculating and
evaluating the parity check equations.

Complexity Analysis. We discuss the attack by setting l′ = 166 from the
following two cases:

Case 1: We use our top 6 best masks in Table E7 for approximations, whose
average absolute correlation is α , 2−20.468. In the preprocessing phase, we
need to prepare M = 2l′ ln 2/(α4)2 = 2171.59 approximation relations with
correlation α4 involving the first 166 bits of the LFSR initial state, i.e., the
number of 4-tuples found from N samples should be at least 2171.59. This can
be solved by the method described in Appendix H. By choosing l1 = 173 and

32 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

l2 = 173, we have m1 = 2172.80 and N = 2173.40. Thus it requires the keystream
outputs of length D = N/6 = 2170.81, and the time/memory complexity for
preparing M approximation relations is O(N + m1), i.e., 2174.13. In the pro-
cessing phase, the FWT is utilized to determine the first 166 bits of the LFSR
initial state, which costs a time complexity 2173.74 and a memory complex-
ity 2166. In summary, the total time and memory complexities are 2174.95 and
2174.13 respectively, and the keystream length needed is 2170.81.
Case 2: We use all the 18 masks in Table E7 for approximations, whose
average absolute correlation is α , 2−20.738. In the preprocessing phase, we
prepare M = 2l′ ln 2/(α4)2 = 2173.75 approximation relations with correlation
α4 involving the first 166 bits of the LFSR initial state. By choosing l1 = 172
and l2 = 174, we have m1 = 2174.38 and N = 2173.69. Thus it requires the
keystream outputs of length D = N/18 = 2169.52, and the time/memory com-
plexity for preparing M approximation relations is O(N +m1), i.e., 2175.07. In
the processing phase, the FWT is utilized to determine the first 166 bits of the
LFSR initial state, which costs a time complexity 2174.58 and a memory com-
plexity 2166. In summary, the total time and memory complexities are 2175.85

and 2175.07 respectively, and the keystream length needed is 2169.52.

Comparison. Table 1 presents a comparison of our attack with the previous
ones in [29, 30]. We want to emphasize that the advantage of our method is
it can find many masks with high correlations efficiently. Making good use of
this, we target attacks with data complexity as low as possible. Such a low-
data result reflects the advantage of our method.

Correlation Attack on SNOW 2.0. We launch our attacks following the
two stages of correlation attacks in Section 4.3 of [28]. Different from [28] where
only 3 mask tuples yielding an average correlation 2−14.51 were used for lin-
ear approximations, we here use all the 26 mask tuples in Table E8 to build
approximation relations, whose average absolute correlation is α , 2−14.76.

Similar with the attack on SNOW 3G, we also look for 4-tuples of columns
of the generator matrix for SNOW 2.0 such that the values of XOR are 0 on
the most significant l − l′ bits. Let l = 512 and l′ = 154. In the preprocessing
phase, we need to prepare M = 2l′ ln 2/(α4)2 = 2125.82 approximation relations
with correlation α4 involving the first 154 bits of the LFSR initial state, i.e.,
the number of 4-tuples found from N samples should be at least 2125.82. This
can be solved by the method described in Appendix H. By choosing l1 =
159 and l2 = 199, we have m1 = 2162.91 and N = 2161.45. Thus it requires
the keystream outputs of length D = N/26 = 2156.75, and the time/memory
complexity for preparing M approximation relations is O(N+m1), i.e., 2163.36.
In the processing phase, the FWT is utilized to determine the first 154 bits of
the LFSR initial state, which costs a time complexity 2161.27 and a memory
complexity 2154. In summary, the total time and memory complexities are
2163.66 and 2163.36 respectively, and the keystream length needed is 2156.82.

Comparison. Table 1 presents a comparison of our attack with previously
the best ones in [28]. Similarly, we reduce the data complexity with the time
and memory complexities slightly increased.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 33

8 Conclusion

This paper proposed a new bitwise breakdown strategy for describing the linear
propagation rules of the modular addition-based operations. When applied to
the SNOW family stream ciphers, a large number of highly qualified linear
trails with the help of MILP tools are found. Besides, we use an algebraic bias
evaluation technique to analyze the strength of linear approximations, and
present an efficient algorithm for accurately computing the correlation values
of linear approximations of a certain type of composition function. Combining
the two techniques, we find many linear masks for SNOW family yielding high
correlations and some of them are likely to be optimal. Based on newly found
linear masks, we give improved correlation attacks on the SNOW family. Our
results further confirm their resistance to correlation attacks.

The uniform MILP-aided framework proposed for finding linear masks is
not only easy to understand but also flexible for describing the linear propaga-
tion of consecutive modular addition-based operations and deducing optimal
truncated linear masks. The main focus of this paper is SNOW family, however,
this uniform framework can be directly used to analyze the linear prop-
erty of LFSR-FSM structures composed of modular addition and S-boxes as
non-linear components, for instance SOSEMANUK and ZUC, in a similar way.

Information on Supplementary. We provide the verification codes for
SNOW 2.0, SNOW 3G and SNOW-V/Vi, practically evaluating linear masks
we found. Our code can be compiled on Linux or on Windows with Visual
Studio 2019.

Declarations

The data sets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.

References

[1] Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear crypt-
analysis using mixed-integer linear programming. In: Wu, C., Yung, M.,
Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Berlin,
Heidelberg (2011)

[2] Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security
evaluation and (related-key) differential characteristic search: Applica-
tion to SIMON, PRESENT, LBLOCK, DES(L) and other bit-oriented
block ciphers. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology –
ASIACRYPT 2014, pp. 158–178. Springer, Berlin, Heidelberg (2014)

[3] Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search
algorithms for differential and linear trails for Speck. In: Peyrin, T. (ed.)

34 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Berlin, Heidelberg
(2016)

[4] Cui, T., Chen, S., Fu, K., Wang, M., Jia, K.: New automatic tool for
finding impossible differentials and zero-correlation linear approximations.
Sci. China Inf. Sci. 64(2) (2021)

[5] Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to search-
ing integral distinguishers based on division property for 6 lightweight
block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 648–678 (2016)

[6] Sun, L., Wang, W., Liu, R., Wang, M.: MILP-aided bit-based division
property for ARX ciphers. Sci. China Inf. Sci. 61(11), 118102–11181023
(2018)

[7] Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J., Nielsen, J.B.
(eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 259–288 (2017)

[8] Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox
polynomials based on division property. IEEE Trans. Computers 67(12),
1720–1736 (2018)

[9] Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved
division property based cube attacks exploiting algebraic properties of
superpoly. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I.
LNCS, vol. 10991, pp. 275–305. Springer, Berlin, Heidelberg (2018)

[10] Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Several MILP-aided attacks
against SNOW 2.0. In: Camenisch, J., Papadimitratos, P. (eds.) CANS
2018. LNCS, vol. 11124, pp. 394–413. Springer, Berlin, Heidelberg (2018)

[11] Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-
subset division property without unknown subset - improved cube attacks
against Trivium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 466–495. Springer,
Berlin, Heidelberg (2020)

[12] Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recov-
ery with nested monomial predictions. In: Tibouchi, M., Wang, H. (eds.)
ASIACRYPT 2021, Part I. LNCS, vol. 13090, pp. 392–421. Springer,
Berlin, Heidelberg (2021)

[13] Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation
attack revisited - cryptanalysis on full Grain-128a, Grain-128, and Grain-
v1. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 35

vol. 10992, pp. 129–159. Springer, Berlin, Heidelberg (2018)

[14] Gurobi optimizer reference manual. https://www.gurobi.com

[15] Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP
modeling for (large) S-boxes to optimize probability of differential char-
acteristics. IACR Trans. Symmetric Cryptol. 2017(4), 99–129 (2017)

[16] Udovenko, A.: MILP modeling of Boolean functions by minimum number
of inequalities. Cryptology ePrint Archive, Report 2021/1099 (2021)

[17] Sun, Y.: Towards the Least Inequalities for Describing a Subset in Zn2 .
Cryptology ePrint Archive, Report 2021/1084 (2021)

[18] Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW.
In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61.
Springer

[19] SAGE, E.: Specification of the 3GPP confidentiality and integrity algo-
rithms UEA2 & UIA2, document 2: SNOW 3G specification, v1.1,
2006

[20] Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream
cipher called SNOW-V. IACR Trans. Symmetric Cryptol. 2019(3), 1–42
(2019)

[21] Ekdahl, P., Maximov, A., Johansson, T., Yang, J.: SNOW-Vi : An extreme
performance variant of SNOW-V for lower grade cpus. In: WiSec 2021,
pp. 261–272. (ACM)

[22] Chepyzhov, V.V., Johansson, T., Smeets, B.J.M.: A simple algorithm for
fast correlation attacks on stream ciphers. In: Schneier, B. (ed.) FSE 2000.
LNCS, vol. 1978, pp. 181–195. Springer, Berlin, Heidelberg (2000)

[23] Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic
point of view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002, pp. 209–221.
Springer, Berlin, Heidelberg (2002)

[24] Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of stream ciphers
with linear masking. In: Yung, M. (ed.) CRYPTO 2002, pp. 515–532.
Springer, Berlin, Heidelberg (2002)

[25] Watanabe, D., Biryukov, A., Cannière, C.D.: A distinguishing attack
of SNOW 2.0 with linear masking method. In: Matsui, M., Zuccherato,
R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 222–233. Springer, Berlin,
Heidelberg (2003)

[26] Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In:

https://www.gurobi.com

36 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer,
Berlin, Heidelberg (2006)

[27] Zhang, B., Xu, C., Meier, W.: Fast correlation attacks over extension
fields, large-unit linear approximation and cryptanalysis of SNOW 2.0.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol.
9215, pp. 643–662. Springer, Berlin, Heidelberg (2015)

[28] Gong, X., Zhang, B.: Fast computation of linear approximation over cer-
tain composition functions and applications to SNOW 2.0 and SNOW
3G. Designs, Codes and Cryptography 88(11), 2407–2431 (2020)

[29] Yang, J., Johansson, T., Maximov, A.: Vectorized linear approximations
for attacks on SNOW 3G. IACR Trans. Symmetric Cryptol. 2019(4),
249–271 (2019)

[30] Gong, X., Zhang, B.: Comparing large-unit and bitwise linear approxi-
mations of SNOW 2.0 and SNOW 3G and related attacks. IACR Trans.
Symmetric Cryptol. 2021(2), 71–103 (2021)

[31] Gong, X., Zhang, B.: Resistance of SNOW-V against fast correlation
attacks. IACR Trans. Symmetric Cryptol. 2021(1), 378–410 (2021)

[32] Yang, J., Johansson, T., Maximov, A.: Improved guess-and-determine and
distinguishing attacks on SNOW-V. IACR Trans. Symmetric Cryptol.
2021(3), 54–83 (2021)

[33] Shi, Z., Jin, C., Zhang, J., Cui, T., Ding, L.: A Correlation Attack on Full
SNOW-V and SNOW-Vi. Cryptology ePrint Archive, Report 2021/1047
(2021)

[34] Shi, Z., Jin, C., Jin, Y.: Improved Linear Approximations of SNOW-V
and SNOW-Vi. Cryptology ePrint Archive, Report 2021/1105 (2021)

[35] Zhou, Z., Feng, D., Zhang, B.: Efficient and extensive search for precise
linear approximations with high correlations of full SNOW-V. Designs,
Codes and Cryptography 90(10), 2449–2479 (2022). https://doi.org/10.
1007/s10623-022-01090-8

[36] Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth,
T. (ed.) EUROCRYPT’93. LNCS, vol. 765, pp. 386–397. Springer, Berlin,
Heidelberg

[37] Maximov, A., Johansson, T.: Fast computation of large distributions and
its cryptographic applications. In: Roy, B. (ed.) Advances in Cryptology
- ASIACRYPT 2005, pp. 313–332. Springer, Berlin, Heidelberg (2005)

https://doi.org/10.1007/s10623-022-01090-8
https://doi.org/10.1007/s10623-022-01090-8

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 37

[38] Correlation theorems in cryptanalysis. Discrete Applied Mathemat-
ics 111(1), 177–188 (2001). https://doi.org/10.1016/S0166-218X(00)
00351-6. Coding and Cryptology

[39] Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) Advances
in Cryptology — CRYPTO 2002, pp. 288–304. Springer, Berlin, Heidel-
berg (2002)

https://doi.org/10.1016/S0166-218X(00)00351-6
https://doi.org/10.1016/S0166-218X(00)00351-6

38 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

Appendix A Overall Schematic of
SNOW-V/Vi, SNOW 3G and
SNOW 2.0

Fig. A1: The keystream generation phase of the SNOW-V stream cipher

Fig. A2: The keystream generation phase of SNOW 3G

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 39

Fig. A3: The keystream generation phase of SNOW 2.0

Appendix B MILP Model Construction of
Common Operations

According to Section 2.4, basic linear operations can be perfectly described
with MILP model constraints. For x0, x1, y ∈ F2, an XOR operation (x0, x1)→
y = x0⊕x1 can be represented as linear constraints in MILP models as Eq. (B1)

M.con←


x0 + x1 − y ≥ 0

x0 − x1 + y ≥ 0

−x0 + x1 + y ≥ 0

x0 + x1 + y ≤ 2

(B1)

and we may simplify the representation of such linear constraints as Eq. (B2).

M.con← y = x0 ⊕ x1 (B2)

For 0-1 matrix M ∈ Fm×n2 , the (column) vectors (x,y) ∈ Fn2 × Fm2 satisfying
y = Mx can be regarded as composition of XORs which is described with
MILP model M in the form of Eq. (B3).{

M.var← x,y as binaries

M.con← y = M |⊕x
(B3)

B.1 Bitwise Linear Propagation Rules

For the XOR operation y = x0 ⊕ x1, the available linear masks satisfy Γy =
Γx0 = Γx1 which is a straightforward linear constraint in MILP model as well.

For branch operation x
branch−−−−→ (y0,y1) = (x,x), the corresponding linear

mask (Γx,Γy0
,Γy1

) satisfies Eq. (B4). According to Eq. (B1) and Eq. (B2),
Eq. (B4) is also a straightforward linear constraint in MILP model.

Γx = Γy0
⊕ Γy1

(B4)

40 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

For linear Fn2 → Fm2 transformation y = Mx, the available linear masks
(Γx,Γy) satisfy Γx = MTΓy which, according to Eq. (B3), can be captured
by the MILP model constraint{

M.var← Γx,Γy as binaries

M.con← Γx = MT |⊕Γy

For 8-bit S-boxes, according to Section 2.4, the input-output masks (Γi,Γo)
simply share the same truncated linear masks: Ti = To. We define Algorithm 11
as the MILP description of the input-output masks of S-boxes.

S1 and S2 used in SNOW 3G (also SNOW 2.0) FSM updating functions can
be regarded as an S-box layer (using four 8-bit S-boxes in parallel) followed
by a linear diffusion using 0-1 matrices M1,M2 ∈ F32×32

2 . With M1 and M2

defined in Eq. (B5) and Eq. (B6), we can construct the MILP model for Si
(i = 1, 2) by calling siModel as in Algorithm 9.

M1 =



0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0



(B5)

M2 =



0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0



(B6)

AESR(·) = MC ◦SR ◦SB(·) used in SNOW-V/Vi FSM updating functions is
a permutation on F128

2 . It can also be regarded as an S-box layer SB followed by
the linear layer MC◦SR: the nonlinear layer SB uses 16 8-bit S-boxes in parallel;

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 41

the MC can be regarded as the M1 diffusion carried out in parallel. Therefore,
the MILP model construction for AESR can be provided as Algorithm 8.

Algorithm 8 Model construction for AESR (aesModel)

Input: Initial model M, a vector of 128 binary variables Γx = (Γx0 , . . . ,Γx127)
Output: Updated modelM, a vector of 128 binary variables Γy = (Γy0 , . . . ,Γy127)

and 2 vector of 16 binary variables Tx = (Tx0 , . . . , Tx15), Ty = (Ty0
, . . . , Ty15

)
as the input-output truncated linear masks

1: for j = 0, . . . , 15 do
2: Define vectors Γxj = (Γx8j , . . . ,Γx8j+7)
3: (M,Γwj , Txj)← sbox(M,Γxj)
4: end for
5: Define permutation over integers

σ : (0, . . . 15)→ (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)

6: Define vector Γw = (Γw0 , . . . ,Γw127) = (Γwσ(0) , . . . ,Γwσ(15))
7: Declare variables M.var← Γy0 , . . . ,Γy127 as binaries
8: Define vector Γy = (Γy0 , . . . ,Γy127)
9: for j = 0, . . . , 3 do

10: Define vector Γpj = (Γy32j , . . . ,Γy32j+31)

11: Define vector Γqj = (Γw32j , . . . ,Γw32j+31)

12: Add constraints M.con← Γqj = MT
1 |⊕Γpj

13: end for
14: for j = 0, . . . , 15 do
15: Define vectors Γyj = (Γy8j , . . . ,Γy8j+7)

16: (M, Tyj)← actSym(M,Γyj)
17: end for
18: Define vectors Tx = (Tx0 , . . . , Tx15) and Ty = (Ty0

, . . . , Ty15
)

19: Return (M,Γy, Tx, Ty)

B.2 Truncated Linear Propagation Rules

It is obvious that Γx = Γy ⇒ Tx = Ty. Therefore, for y = x0 ⊕ x1, the
corresponding truncated linear mask (Tx0

, Tx1
, Ty) always satisfy Tx0

= Tx1
=

Ty.
Let x be an 8-bit word. The available input-output truncated linear mask

of the branch
operation x

branch−−−−→ (y0,y1) = (x,x) contains 3 bits namely (Tx, Ty0
, Ty1

).
Defining the set S = {(0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1)} ⊆ F3

2, we
have (Tx, Ty0

, Ty1
) ∈ S which can be described as MILP model constraints as

Eq. (B7).

M.con←


Tx + Ty0

− Ty1
≥ 0

Tx − Ty0
+ Ty1

≥ 0

−Tx + Ty0
+ Ty1

≥ 0

(B7)

42 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

Algorithm 9 Model construction for Si (siModel)

Input: Initial model M, a vector of 32 binary variables Γx = (Γx0 , . . . ,Γx31) and
i ∈ {1, 2}

Output: Updated model M, a vector of 32 binary variables Γy = (Γy0 , . . . ,Γy31)
and 2 vector of 4 binary variables Tx = (Tx0 , . . . , Tx3), Ty = (Ty0

, . . . , Ty3
) as

the input-output truncated linear masks
1: for j = 0, . . . , 3 do
2: Define vectors Γxj = (Γx8j , . . . ,Γx8j+7)
3: (M,Γwj , Txj)← sbox(M,Γxj)
4: end for
5: Define vector Γw = (Γw0 , . . . ,Γw31) = (Γw0 , . . . ,Γw3)
6: Declare variables M.var← Γy0 , . . . ,Γy31 as binaries
7: Define vector Γy = (Γy0 , . . . ,Γy31)

8: Add constraints M.con← Γw = MT
i |⊕Γy

9: for j = 0, . . . , 3 do
10: Define vectors Γyj = (Γy8j , . . . ,Γy8j+7)

11: (M, Tyj)← actSym(M,Γyj)
12: end for
13: Define vectors Tx = (Tx0 , . . . , Tx3) and Ty = (Ty0

, . . . , Ty3
)

14: Return (M,Γy, Tx, Ty)

Algorithm 10 Model construction of truncated linear symbol actSym

Input: Initial model M and a vector of m binary variables Γx = (Γx0 , . . . ,Γxm−1)
Output: Updated model M, a and a binary variable τ as the truncated linear

symbol
1: Declare a variable M.con← τ as binary
2: for i = 0, . . . ,m− 1 do
3: M.con← τ ≥ Γxi
4: end for
5: M.con← τ ≤

∑m−1
i=0 Γxi

6: Return (M, τ)

Algorithm 11 Model construction for 8-bit S-box (sbox)

Input: Initial model M and a vector of 8 binary variables Γx = (Γx0 , . . . ,Γx7)
Output: Updated modelM, a vector of 8 binary variables Γy = (Γy0 , . . . ,Γy7) and

a binary variable τ as the truncated linear
1: Declare 8 variables M.var← Γy0 , . . . ,Γy7 as binaries
2: Define vector Γy = (Γy0 , . . . ,Γy7)
3: (M, τ)← actSym(M,Γy)
4: (M, τ ′)← actSym(M,Γx)
5: M.con← τ = τ ′

6: Return (M,Γy, τ)

We simplify Eq. (B7) as Eq. (B8)

M.con← Tx = Ty0
⊕T Ty1

(B8)

Therefore, for x
branch−−−−→ (y0,y1) of an arbitrary length, the corresponding

truncated linear MILP model can be constructed as Algorithm 12.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 43

Algorithm 12 Truncated linear model of the branch operation (branchTrunc)

Input: Initial model M and a vector of m binary variables Tx = (Tx0 , . . . , Txm−1)
Output: Updated model M, 2 vectors of m binary variables Ty0

=
(T0,0, . . . , T0,m−1) and Ty1

= (T1,0, . . . , T1,m−1)
1: for j = 0, . . . ,m− 1 do
2: Declare 2 variables M.var← T0,j , T1,j as binaries
3: M.con← Txj = T0,j ⊕T T1,j
4: end for
5: Define vectors Ty0

= (T0,0, . . . , T0,m−1) and Ty1
= (T1,0, . . . , T1,m−1)

6: Return (M, Ty0
, Ty1

)

For S1, S2 and AESR, the S-box layer does not affect the truncated linear
masks and the effects of linear layer can be modeled simply with its branch
number. Since both M1 and M2 have branch number 5, the truncated linear
models for Si (i = 0, 1) and AESR can be described with Algorithm 13 and
Algorithm 14 respectively.

Algorithm 13 Truncated linear model of Si (i = 0, 1) (siTruncModel)

Input: Initial model M and a vector of 4 binary variables Tx = (Tx0 , . . . , Tx3)
Output: Updated model M, a vector of 4 binary variables Ty = (Ty0 , . . . , Ty3)

1: Declare 4 variables M.var← Ty0 , . . . , Ty3 as binaries
2: Define vector Ty = (Ty0 , . . . , Ty3)
3: Declare 1 variable M.var← τ as binary

4: M.con←
∑3
i=0(Txi + Tyi) ≤ 8τ

5: M.con←
∑3
i=0(Txi + Tyi) ≥ 5τ

6: Return (M, Ty)

Algorithm 14 Truncated linear model of AESR (aesTruncModel)

Input: Initial model M and a vector of 16 binary variables Tx = (Tx0 , . . . , Tx15)
Output: Updated model M, a vector of 16 binary variables Ty = (Ty0 , . . . , Ty15)

1: Define permutation over integers: σ : (0, . . . 15) →
(0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)

2: Define vector Tw = (Tw0 , . . . , Tw15) = (Txσ(0) , . . . , Txσ(15))
3: for j = 0, . . . 3 do
4: Define vector Tpj = (Tw4j , . . . , Tw4j+3)

5: (M, Tyj)← siTruncModel(M, Tpj)
6: end for
7: Define vector Ty = (Ty0 , . . . , Ty15) = (Ty0

, . . . , Ty3
)

8: Return (M, Ty)

44 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

Appendix C MILP Model Construction of
Bitwise Breakdown Functions

This part describes the model construction process of ha, fa, f1 and f2 func-
tions. All MILP model constraints are deduced with the H-representation
method in [2] according to the available input-output linear masks.

The available input-output linear masks for ha, fa have been given in
Table 2 and Table 3. The MILP models are constructed with Algorithm 15
and Algorithm 16.

There are 98 available linear mask (Γx,Γy,Γw,Γic,Γz,Γoc,Γod)’s
(Table C1) for the f1 and the MILP model is constructed as Algorithm 17. For
f2, the 122 available (Γx,Γy,Γw,Γic,Γid,Γz,Γoc,Γod)’s and the corresponding
MILP models are given in Table C2 and Algorithm 18 respectively.

Algorithm 15 Model construction for ha (haModel)

Input: Initial model M and 2 binary variables (Γx,Γy)
Output: Updated model M and 2 binary variables Γz ,Γoc

1: Declare two binary variables M.var← Γz ,Γoc as binaries
2: Update M by adding the constraints in Eq. (C9):

M.con←


− Γx + Γz + Γoc ≥ 0

Γy − Γz + Γoc ≥ 0

Γx − Γy + Γoc ≥ 0

(C9)

3: Return (M,Γz ,Γoc)

Algorithm 16 Model construction for fa (faModel)

Input: Initial model M and 3 binary variables (Γx,Γy,Γic)
Input: Updated model M and 2 binary variables Γz ,Γoc

1: Declare 2 binary variables M.var← Γz ,Γoc as binaries
2: Update M by adding the constraints in Eq. (C10)

M.con←



− Γx + Γy − Γic + Γz + Γoc ≥ 0

Γx − Γy + Γic − Γz + Γoc ≥ 0

− Γx − Γy + Γic + Γz + Γoc ≥ 0

− Γx + Γy + Γic − Γz + Γoc ≥ 0

Γx − Γy − Γic + Γz + Γoc ≥ 0

Γx + Γy − Γic − Γz + Γoc ≥ 0

4− Γx − Γy − Γic − Γz − Γoc ≥ 0

Γx + Γy + Γic + Γz − Γoc ≥ 0

(C10)

3: Return (M,Γz ,Γoc)

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 45

Algorithm 17 Model construction for f1 (f1Model)

Input: Initial model M, 4 binary variables (Γx,Γy,Γw,Γic) and a binary flag λ ∈
{0, 1}.

Output: Updated model M and 5 binary variables Γz ,Γoc,Γod, p, q
1: Declare 5 binary variables M.var← Γz ,Γoc,Γod, p, q as binaries
2: Define a vector of variables as v = (Γx,Γy,Γw,Γic,Γz ,Γoc,Γod, p, q)
3: Update M by adding the constraints in Eq. (C11):

M.con←
{
Av +α ≥ 0, if λ = 0

Av +α ≥ 0, if λ = 1
(C11)

where (A,α) and (A,α) are defined in Eq. (C13) and Eq. (C14) respectively.
4: Return (M,Γz ,Γoc,Γod, p, q)

Algorithm 18 Model construction for f2 (f2Model)

Input: Initial model M and 5 binary variables (Γx,Γy,Γw,Γic,Γid)
Output: Updated model M and 5 binary variables Γz ,Γoc,Γod, p, q

1: Declare 5 variables M.var← Γz ,Γoc,Γod, p, q as binaries
2: Define a vector of variables as v = (Γx,Γy,Γw,Γic,Γid,Γz ,Γoc,Γod, p, q)
3: Update M by adding the constraints in Eq. (C12)

M.con←

{
Bv + β ≥ 0, if λ = 0

Bv + β ≥ 0, if λ = 1
(C12)

where (B,β) and (B,β) are defined in Eq. (C15) and Eq. (C16) respectively.

4: Return (M,Γz ,Γoc,Γod, p, q)

Table C1: The available linear masks of f1. We define Γ =
(Γx,Γy,Γw,Γic,Γz,Γoc,Γod)

No. Γ |Cor| p q p q No. Γ |Cor| p q p q

1 (0,0,0,0,0,0,0) 1 0 0 0 0 50 (1,1,1,1,0,0,1) 0.125 1 1 1 1
2 (1,1,1,1,1,0,0) 1 0 0 0 0 51 (0,0,0,0,1,0,1) 0.125 1 1 1 1
3 (0,0,0,0,0,1,0) 0.25 0 1 0 1 52 (1,0,0,0,1,0,1) 0.125 1 1 1 1
4 (1,0,0,0,0,1,0) 0.25 0 1 0 1 53 (0,1,0,0,1,0,1) 0.125 1 1 1 1
5 (0,1,0,0,0,1,0) 0.25 0 1 0 1 54 (1,1,0,0,1,0,1) 0.125 1 1 1 1
6 (1,1,0,0,0,1,0) 0.25 0 1 0 1 55 (0,0,1,0,1,0,1) 0.125 1 1 1 1
7 (0,0,1,0,0,1,0) 0.25 0 1 0 1 56 (1,0,1,0,1,0,1) 0.125 1 1 1 1
8 (1,0,1,0,0,1,0) 0.25 0 1 0 1 57 (0,1,1,0,1,0,1) 0.125 1 1 1 1
9 (0,1,1,0,0,1,0) 0.25 0 1 0 1 58 (1,1,1,0,1,0,1) 0.125 1 1 1 1
10 (1,1,1,0,0,1,0) 0.25 0 1 0 1 59 (0,0,0,1,1,0,1) 0.125 1 1 1 1
11 (0,0,0,1,0,1,0) 0.25 0 1 0 1 60 (1,0,0,1,1,0,1) 0.125 1 1 1 1
12 (1,0,0,1,0,1,0) 0.25 0 1 0 1 61 (0,1,0,1,1,0,1) 0.125 1 1 1 1
13 (0,1,0,1,0,1,0) 0.25 0 1 0 1 62 (1,1,0,1,1,0,1) 0.125 1 1 1 1
14 (1,1,0,1,0,1,0) 0.25 0 1 0 1 63 (0,0,1,1,1,0,1) 0.125 1 1 1 1
15 (0,0,1,1,0,1,0) 0.25 0 1 0 1 64 (1,0,1,1,1,0,1) 0.125 1 1 1 1
16 (1,0,1,1,0,1,0) 0.25 0 1 0 1 65 (0,1,1,1,1,0,1) 0.125 1 1 1 1
17 (0,1,1,1,0,1,0) 0.25 0 1 0 1 66 (1,1,1,1,1,0,1) 0.875 0 0 0 0
18 (1,1,1,1,0,1,0) 0.25 0 1 0 1 67 (0,0,0,0,0,1,1) 0.375 1 0 1 0
19 (0,0,0,0,1,1,0) 0.25 0 1 0 1 68 (1,0,0,0,0,1,1) 0.375 1 0 1 0
20 (1,0,0,0,1,1,0) 0.25 0 1 0 1 69 (0,1,0,0,0,1,1) 0.375 1 0 1 0
21 (0,1,0,0,1,1,0) 0.25 0 1 0 1 70 (1,1,0,0,0,1,1) 0.125 1 1 1 1
22 (1,1,0,0,1,1,0) 0.25 0 1 0 1 71 (0,0,1,0,0,1,1) 0.375 1 0 1 0
23 (0,0,1,0,1,1,0) 0.25 0 1 0 1 72 (1,0,1,0,0,1,1) 0.125 1 1 1 1
24 (1,0,1,0,1,1,0) 0.25 0 1 0 1 73 (0,1,1,0,0,1,1) 0.125 1 1 1 1
25 (0,1,1,0,1,1,0) 0.25 0 1 0 1 74 (1,1,1,0,0,1,1) 0.125 1 1 1 1
26 (1,1,1,0,1,1,0) 0.25 0 1 0 1 75 (0,0,0,1,0,1,1) 0.375 1 0 1 0
27 (0,0,0,1,1,1,0) 0.25 0 1 0 1 76 (1,0,0,1,0,1,1) 0.125 1 1 1 1
28 (1,0,0,1,1,1,0) 0.25 0 1 0 1 77 (0,1,0,1,0,1,1) 0.125 1 1 1 1
29 (0,1,0,1,1,1,0) 0.25 0 1 0 1 78 (1,1,0,1,0,1,1) 0.125 1 1 1 1
30 (1,1,0,1,1,1,0) 0.25 0 1 0 1 79 (0,0,1,1,0,1,1) 0.125 1 1 1 1

Continued

46 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

No. Γ |Cor| p q p q No. Γ |Cor| p q p q

31 (0,0,1,1,1,1,0) 0.25 0 1 0 1 80 (1,0,1,1,0,1,1) 0.125 1 1 1 1
32 (1,0,1,1,1,1,0) 0.25 0 1 0 1 81 (0,1,1,1,0,1,1) 0.125 1 1 1 1
33 (0,1,1,1,1,1,0) 0.25 0 1 0 1 82 (1,1,1,1,0,1,1) 0.375 1 0 1 0
34 (1,1,1,1,1,1,0) 0.25 0 1 0 1 83 (0,0,0,0,1,1,1) 0.375 1 0 1 0
35 (0,0,0,0,0,0,1) 0.875 0 0 0 0 84 (1,0,0,0,1,1,1) 0.125 1 1 1 1
36 (1,0,0,0,0,0,1) 0.125 1 1 1 1 85 (0,1,0,0,1,1,1) 0.125 1 1 1 1
37 (0,1,0,0,0,0,1) 0.125 1 1 1 1 86 (1,1,0,0,1,1,1) 0.125 1 1 1 1
38 (1,1,0,0,0,0,1) 0.125 1 1 1 1 87 (0,0,1,0,1,1,1) 0.125 1 1 1 1
39 (0,0,1,0,0,0,1) 0.125 1 1 1 1 88 (1,0,1,0,1,1,1) 0.125 1 1 1 1
40 (1,0,1,0,0,0,1) 0.125 1 1 1 1 89 (0,1,1,0,1,1,1) 0.125 1 1 1 1
41 (0,1,1,0,0,0,1) 0.125 1 1 1 1 90 (1,1,1,0,1,1,1) 0.375 1 0 1 0
42 (1,1,1,0,0,0,1) 0.125 1 1 1 1 91 (0,0,0,1,1,1,1) 0.125 1 1 1 1
43 (0,0,0,1,0,0,1) 0.125 1 1 1 1 92 (1,0,0,1,1,1,1) 0.125 1 1 1 1
44 (1,0,0,1,0,0,1) 0.125 1 1 1 1 93 (0,1,0,1,1,1,1) 0.125 1 1 1 1
45 (0,1,0,1,0,0,1) 0.125 1 1 1 1 94 (1,1,0,1,1,1,1) 0.375 1 0 1 0
46 (1,1,0,1,0,0,1) 0.125 1 1 1 1 95 (0,0,1,1,1,1,1) 0.125 1 1 1 1
47 (0,0,1,1,0,0,1) 0.125 1 1 1 1 96 (1,0,1,1,1,1,1) 0.375 1 0 1 0
48 (1,0,1,1,0,0,1) 0.125 1 1 1 1 97 (0,1,1,1,1,1,1) 0.375 1 0 1 0
49 (0,1,1,1,0,0,1) 0.125 1 1 1 1 98 (1,1,1,1,1,1,1) 0.375 1 0 1 0

Table C2: The available linear masks of f2. We define Γ =
(Γx,Γy,Γw,Γic,Γid,Γz,Γoc,Γod)

No. Γ |Cor| p q p q No. Γ |Cor| p q p q

1 (0,0,0,0,0,0,0,0) 1 0 0 0 0 62 (0,0,0,1,0,1,0,1) 0.125 1 1 1 1
2 (1,1,1,1,1,1,0,0) 1 0 0 0 0 63 (1,1,0,1,0,1,0,1) 0.125 1 1 1 1
3 (0,0,0,0,0,0,1,0) 0.25 0 1 0 1 64 (1,0,1,1,0,1,0,1) 0.125 1 1 1 1
4 (1,1,0,0,0,0,1,0) 0.25 0 1 0 1 65 (0,1,1,1,0,1,0,1) 0.125 1 1 1 1
5 (1,0,1,0,0,0,1,0) 0.25 0 1 0 1 66 (1,1,1,1,0,1,0,1) 0.25 0 1 0 1
6 (0,1,1,0,0,0,1,0) 0.25 0 1 0 1 67 (0,0,0,0,1,1,0,1) 0.125 1 1 1 1
7 (1,0,0,1,0,0,1,0) 0.25 0 1 0 1 68 (1,1,0,0,1,1,0,1) 0.125 1 1 1 1
8 (0,1,0,1,0,0,1,0) 0.25 0 1 0 1 69 (1,0,1,0,1,1,0,1) 0.125 1 1 1 1
9 (0,0,1,1,0,0,1,0) 0.25 0 1 0 1 70 (0,1,1,0,1,1,0,1) 0.125 1 1 1 1
10 (1,1,1,1,0,0,1,0) 0.25 0 1 0 1 71 (1,1,1,0,1,1,0,1) 0.25 0 1 0 1
11 (1,0,0,0,1,0,1,0) 0.25 0 1 0 1 72 (1,0,0,1,1,1,0,1) 0.125 1 1 1 1
12 (0,1,0,0,1,0,1,0) 0.25 0 1 0 1 73 (0,1,0,1,1,1,0,1) 0.125 1 1 1 1
13 (0,0,1,0,1,0,1,0) 0.25 0 1 0 1 74 (1,1,0,1,1,1,0,1) 0.25 0 1 0 1
14 (1,1,1,0,1,0,1,0) 0.25 0 1 0 1 75 (0,0,1,1,1,1,0,1) 0.125 1 1 1 1
15 (0,0,0,1,1,0,1,0) 0.25 0 1 0 1 76 (1,0,1,1,1,1,0,1) 0.25 0 1 0 1
16 (1,1,0,1,1,0,1,0) 0.25 0 1 0 1 77 (0,1,1,1,1,1,0,1) 0.25 0 1 0 1
17 (1,0,1,1,1,0,1,0) 0.25 0 1 0 1 78 (1,1,1,1,1,1,0,1) 0.625 0 0 1 0
18 (0,1,1,1,1,0,1,0) 0.25 0 1 0 1 79 (0,0,0,0,0,0,1,1) 0.625 0 0 1 0
19 (1,0,0,0,0,1,1,0) 0.25 0 1 0 1 80 (1,0,0,0,0,0,1,1) 0.25 0 1 0 1
20 (0,1,0,0,0,1,1,0) 0.25 0 1 0 1 81 (0,1,0,0,0,0,1,1) 0.25 0 1 0 1
21 (0,0,1,0,0,1,1,0) 0.25 0 1 0 1 82 (1,1,0,0,0,0,1,1) 0.125 1 1 1 1
22 (1,1,1,0,0,1,1,0) 0.25 0 1 0 1 83 (0,0,1,0,0,0,1,1) 0.25 0 1 0 1
23 (0,0,0,1,0,1,1,0) 0.25 0 1 0 1 84 (1,0,1,0,0,0,1,1) 0.125 1 1 1 1
24 (1,1,0,1,0,1,1,0) 0.25 0 1 0 1 85 (0,1,1,0,0,0,1,1) 0.125 1 1 1 1
25 (1,0,1,1,0,1,1,0) 0.25 0 1 0 1 86 (0,0,0,1,0,0,1,1) 0.25 0 1 0 1
26 (0,1,1,1,0,1,1,0) 0.25 0 1 0 1 87 (1,0,0,1,0,0,1,1) 0.125 1 1 1 1
27 (0,0,0,0,1,1,1,0) 0.25 0 1 0 1 88 (0,1,0,1,0,0,1,1) 0.125 1 1 1 1
28 (1,1,0,0,1,1,1,0) 0.25 0 1 0 1 89 (0,0,1,1,0,0,1,1) 0.125 1 1 1 1
29 (1,0,1,0,1,1,1,0) 0.25 0 1 0 1 90 (1,1,1,1,0,0,1,1) 0.125 1 1 1 1
30 (0,1,1,0,1,1,1,0) 0.25 0 1 0 1 91 (0,0,0,0,1,0,1,1) 0.25 0 1 0 1
31 (1,0,0,1,1,1,1,0) 0.25 0 1 0 1 92 (1,0,0,0,1,0,1,1) 0.125 1 1 1 1
32 (0,1,0,1,1,1,1,0) 0.25 0 1 0 1 93 (0,1,0,0,1,0,1,1) 0.125 1 1 1 1
33 (0,0,1,1,1,1,1,0) 0.25 0 1 0 1 94 (0,0,1,0,1,0,1,1) 0.125 1 1 1 1
34 (1,1,1,1,1,1,1,0) 0.25 0 1 0 1 95 (1,1,1,0,1,0,1,1) 0.125 1 1 1 1
35 (0,0,0,0,0,0,0,1) 0.625 0 0 1 0 96 (0,0,0,1,1,0,1,1) 0.125 1 1 1 1
36 (1,0,0,0,0,0,0,1) 0.25 0 1 0 1 97 (1,1,0,1,1,0,1,1) 0.125 1 1 1 1
37 (0,1,0,0,0,0,0,1) 0.25 0 1 0 1 98 (1,0,1,1,1,0,1,1) 0.125 1 1 1 1
38 (1,1,0,0,0,0,0,1) 0.125 1 1 1 1 99 (0,1,1,1,1,0,1,1) 0.125 1 1 1 1
39 (0,0,1,0,0,0,0,1) 0.25 0 1 0 1 100 (1,1,1,1,1,0,1,1) 0.25 0 1 0 1
40 (1,0,1,0,0,0,0,1) 0.125 1 1 1 1 101 (0,0,0,0,0,1,1,1) 0.25 0 1 0 1
41 (0,1,1,0,0,0,0,1) 0.125 1 1 1 1 102 (1,0,0,0,0,1,1,1) 0.125 1 1 1 1
42 (0,0,0,1,0,0,0,1) 0.25 0 1 0 1 103 (0,1,0,0,0,1,1,1) 0.125 1 1 1 1
43 (1,0,0,1,0,0,0,1) 0.125 1 1 1 1 104 (0,0,1,0,0,1,1,1) 0.125 1 1 1 1
44 (0,1,0,1,0,0,0,1) 0.125 1 1 1 1 105 (1,1,1,0,0,1,1,1) 0.125 1 1 1 1
45 (0,0,1,1,0,0,0,1) 0.125 1 1 1 1 106 (0,0,0,1,0,1,1,1) 0.125 1 1 1 1
46 (1,1,1,1,0,0,0,1) 0.125 1 1 1 1 107 (1,1,0,1,0,1,1,1) 0.125 1 1 1 1
47 (0,0,0,0,1,0,0,1) 0.25 0 1 0 1 108 (1,0,1,1,0,1,1,1) 0.125 1 1 1 1
48 (1,0,0,0,1,0,0,1) 0.125 1 1 1 1 109 (0,1,1,1,0,1,1,1) 0.125 1 1 1 1
49 (0,1,0,0,1,0,0,1) 0.125 1 1 1 1 110 (1,1,1,1,0,1,1,1) 0.25 0 1 0 1
50 (0,0,1,0,1,0,0,1) 0.125 1 1 1 1 111 (0,0,0,0,1,1,1,1) 0.125 1 1 1 1
51 (1,1,1,0,1,0,0,1) 0.125 1 1 1 1 112 (1,1,0,0,1,1,1,1) 0.125 1 1 1 1
52 (0,0,0,1,1,0,0,1) 0.125 1 1 1 1 113 (1,0,1,0,1,1,1,1) 0.125 1 1 1 1
53 (1,1,0,1,1,0,0,1) 0.125 1 1 1 1 114 (0,1,1,0,1,1,1,1) 0.125 1 1 1 1
54 (1,0,1,1,1,0,0,1) 0.125 1 1 1 1 115 (1,1,1,0,1,1,1,1) 0.25 0 1 0 1
55 (0,1,1,1,1,0,0,1) 0.125 1 1 1 1 116 (1,0,0,1,1,1,1,1) 0.125 1 1 1 1
56 (1,1,1,1,1,0,0,1) 0.25 0 1 0 1 117 (0,1,0,1,1,1,1,1) 0.125 1 1 1 1
57 (0,0,0,0,0,1,0,1) 0.25 0 1 0 1 118 (1,1,0,1,1,1,1,1) 0.25 0 1 0 1
58 (1,0,0,0,0,1,0,1) 0.125 1 1 1 1 119 (0,0,1,1,1,1,1,1) 0.125 1 1 1 1
59 (0,1,0,0,0,1,0,1) 0.125 1 1 1 1 120 (1,0,1,1,1,1,1,1) 0.25 0 1 0 1

Continued

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 47

No. Γ |Cor| p q p q No. Γ |Cor| p q p q

60 (0,0,1,0,0,1,0,1) 0.125 1 1 1 1 121 (0,1,1,1,1,1,1,1) 0.25 0 1 0 1
61 (1,1,1,0,0,1,0,1) 0.125 1 1 1 1 122 (1,1,1,1,1,1,1,1) 0.625 0 0 1 0

A =



0 0 0 0 0 0 1 −1 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 1 −1 1 0
0 0 0 0 0 1 0 1 −1
1 1 −4 1 1 −1 0 −1 4
−1 −1 4 −1 −1 −1 0 −1 4
2 −1 2 −1 −1 0 −2 2 3
−2 1 −2 1 1 0 −2 2 3
−1 −1 −1 −1 −1 −1 0 −2 −1
1 1 1 1 1 −1 0 −2 −1
2 2 −1 −1 −1 0 −2 2 3
−1 −1 2 2 −1 0 −2 2 3
1 −2 −2 1 1 0 −2 2 3
−2 1 1 −2 1 0 −2 2 3


, α =



0
0
0
0
1
1
0
1
7
2
0
0
1
1


(C13)

A =



0 0 0 0 0 0 1 −1 0
−1 −1 −1 −1 4 −1 −6 5 −1
1 1 1 1 −4 −1 −6 5 −1
−2 2 0 2 −2 1 0 1 3
0 −2 2 −2 2 1 0 1 3
0 0 0 0 0 1 0 1 −1
2 0 −2 −2 2 1 0 1 3
2 −2 −2 2 0 1 0 1 3
2 2 2 −4 −4 1 0 1 5
−1 −1 −1 −1 −1 −1 −3 1 −2
1 1 1 1 1 −1 −3 1 −2
−2 −2 1 1 1 0 −1 1 2
−1 2 −1 −1 2 0 −1 1 2
4 −2 −2 4 −2 1 0 1 5
0 0 0 0 0 1 0 −1 1
0 0 0 0 0 −1 0 1 1



, α =



0
6
6
0
0
0
0
0
2
8
3
2
1
0
0
0



(C14)

B =



5 −1 −1 −1 −1 −1 0 1 −1 4
−5 1 1 1 1 1 0 1 −1 4
0 0 0 0 0 0 1 1 0 −1
0 0 0 0 0 0 0 1 −1 0
−1 −1 3 −1 3 −1 0 −3 3 4
1 1 −3 1 −3 1 0 −3 3 4
−1 −1 3 3 −1 −1 0 −3 3 4
−1 −1 −1 3 3 −1 0 −3 3 4
1 1 1 1 1 1 0 −1 −1 −2
1 1 1 −3 −3 1 0 −3 3 4
1 1 −3 −3 1 1 0 −3 3 4
−1 −1 −1 −1 −1 −1 0 −1 −1 −2
1 −1 1 −1 1 −1 0 −1 1 2
−1 1 1 −1 1 −1 0 −1 1 2
1 −1 −1 1 1 −1 0 −1 1 2
−1 1 −1 1 1 −1 0 −1 1 2
−1 1 −1 1 −1 1 0 −1 1 2
1 −1 −1 1 −1 1 0 −1 1 2
1 1 −1 −1 −1 1 0 −1 1 2
−1 −1 1 1 −1 1 0 −1 1 2
−1 1 1 −1 −1 1 0 −1 1 2
1 −1 1 −1 −1 1 0 −1 1 2
1 1 −1 −1 1 −1 0 −1 1 2
1 1 −1 1 −1 −1 0 −1 1 2
−1 1 −1 −1 1 1 0 −1 1 2
1 −1 −1 −1 1 1 0 −1 1 2
−1 −1 1 −1 1 1 0 −1 1 2
−1 1 1 1 −1 −1 0 −1 1 2
−1 −1 1 1 1 −1 0 −1 1 2
−1 −1 −1 1 1 1 0 −1 1 2
1 −1 1 1 −1 −1 0 −1 1 2
1 1 1 −1 −1 −1 0 −1 1 2
0 0 0 0 0 0 −1 0 1 1
1 1 1 1 −1 1 0 1 −1 0
1 −1 1 1 1 1 0 1 −1 0
1 1 1 −1 1 1 0 1 −1 0
1 1 1 1 1 −1 0 1 −1 0
1 1 −1 1 1 1 0 1 −1 0
−1 −1 −1 −1 5 −1 0 1 −1 4
−1 5 −1 −1 −1 −1 0 1 −1 4
−1 −1 −1 −1 −1 5 0 1 −1 4
−1 −1 1 −1 −1 −1 0 1 −1 0
−1 −1 −1 5 −1 −1 0 1 −1 4



, β =



0
0
0
0
0
2
0
0
2
2
2
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0



(C15)

48 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

B =



0 0 0 0 0 0 −1 1 −1 1
−1 5 −1 −1 −1 −1 0 0 −1 5
0 0 0 0 0 0 1 1 0 −1
1 −5 1 1 1 1 0 0 −1 5
−1 −1 3 −1 3 −1 0 −3 3 1
1 −3 −3 1 1 1 0 −3 3 1
3 3 −1 −1 −1 −1 0 −3 3 1
−3 1 1 1 −3 1 0 −3 3 1
1 1 1 1 1 1 0 −1 −1 −1
−1 −1 −1 −1 −1 −1 0 −1 −1 −1
1 −1 1 1 −1 −1 0 −1 1 1
−1 1 −1 1 1 −1 0 −1 1 1
1 −1 1 −1 −1 1 0 −1 1 1
−1 1 −1 −1 1 1 0 −1 1 1
1 1 −1 −1 1 −1 0 0 0 2
1 1 −1 1 −1 −1 0 0 0 2
−1 −1 1 −1 1 1 0 0 0 2
1 1 1 −1 −1 −1 0 0 0 2
−1 −1 1 1 −1 1 0 0 0 2
1 −1 −1 −1 1 1 0 0 0 2
−1 1 1 1 −1 −1 0 −1 1 1
−1 −1 1 1 1 −1 0 −1 1 1
1 −1 −1 1 1 −1 0 −1 1 1
1 −1 1 −1 1 −1 0 −1 1 1
−1 1 −1 1 −1 1 0 −1 1 1
−1 1 1 −1 1 −1 0 −1 1 1
−1 1 1 −1 −1 1 0 −1 1 1
1 −1 −1 1 −1 1 0 −1 1 1
1 1 −1 −1 −1 1 0 −1 1 1
−1 −1 −1 1 1 1 0 −1 1 1
−1 −1 −1 1 −1 −1 −1 1 −1 1
1 −1 −1 −1 −1 −1 −1 1 −1 1
−1 −1 −1 −1 1 −1 −1 1 −1 1
−1 −1 −1 −1 −1 1 −1 1 −1 1
−1 1 −1 −1 −1 −1 −1 1 −1 1
−1 −1 1 −1 −1 −1 −1 1 −1 1
1 1 1 1 1 −1 0 1 −1 0
−1 1 1 1 1 1 0 1 −1 0
1 −1 1 1 1 1 0 1 −1 0
1 1 1 1 −1 1 0 1 −1 0
1 1 −1 1 1 1 0 1 −1 0
1 1 1 −1 1 1 −1 1 −1 1



, β =



0
0
0
0
3
5
3
5
1
7
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
4
4
4
4
4
4
0
0
0
0
0
0



(C16)

Appendix D Truncated Linear MILP Model
Construction of Bytewise
Breakdown Functions

This part describes the truncated linear propagation model construction
process of hb, fb, hb2 and fb2 functions.

The available input-output truncated linear masks for hb and fb are given
in Table D3 and Table D4. The MILP model are constructed accordingly as
Algorithm 21 and Algorithm 22. Note that the entries in Table 2 for ha are iden-
tical to those in Table D3 for hb. Therefore, we can directly use Algorithm 15
as an subroutine of Algorithm 21.

For hb2, all 114 available (Tx, Ty, Tw, Tz, Toc, Tod0 , Tod1)’s are listed in
Table D5 and the MILP model can be constructed with Algorithm 19. As
to fb2, the 905 (Tx, Ty, Tic, Tid0 , Tid1 , Tz, Toc, Tod0 , Tod1)’s in Table D6 can be
modeled with Algorithm 19.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 49

Table D3: The available input-
output truncated linear masks for
hb.

No. (Tx, Ty, Tz , Toc)
1 (0,0,0,0)
2 (1,1,1,0)
3 (0,0,0,1)
4 (1,0,0,1)
5 (0,1,0,1)
6 (1,1,0,1)
7 (0,0,1,1)
8 (1,0,1,1)
9 (0,1,1,1)
10 (1,1,1,1)

Table D4: The available input-
output truncated linear masks for
fb

No. (Tx, Ty, Tic, Tz , Toc)
1 (0,0,0,0,0)
2 (1,1,0,1,0)
3 (1,1,1,1,0)
4 (1,0,0,0,1)
5 (0,1,0,0,1)
6 (1,1,0,0,1)
7 (0,0,1,0,1)
8 (1,1,1,0,1)
9 (0,0,0,1,1)
10 (1,0,0,1,1)
11 (0,1,0,1,1)
12 (1,1,0,1,1)
13 (1,0,1,1,1)
14 (0,1,1,1,1)
15 (1,1,1,1,1)

Algorithm 19 Truncated Linear Model construction for hb2 (hb2Model)

Input: Initial model M and 3 binary variables (Tx, Ty, Tw)
Output: Updated model M and 5 binary variables (Tz , Toc, Tod0 , Tod1 , τ)

1: Declare 4 variables M.con← Tz , Toc, Tod0 , Tod1 as binaries
2: Define a vector of variables as v = (Tx, Ty, Tw, Tz , Toc, Tod0 , Tod1)
3: Update M by adding the following constraint Eq. (D17)

M.con←



Tz + Toc +−Tod0 + Tod1 ≥ 0

Tw − Tz + Toc + Tod1 ≥ 0

−Ty + Tw + Toc + Tod1 ≥ 0

Tx − Tw + Toc + Tod1 ≥ 0

−Tx + Tz + Toc + Tod1 ≥ 0

(D17)

4: Declare 1 binary variable M.var← τ
5: Define set S = {Tx, Ty, Tw, Tz , Toc, Tod0 , Tod1}
6: for s ∈ S do
7: Add a constraint M.con← τ ≥ s
8: end for
9: Add a constraint M.con← τ ≤

∑
s∈S s

10: Return (M, Tz , Toc, τ)

Table D5: The available input-output truncated linear masks for hb2. We
define T = (Tx, Ty, Tw, Tz, Toc, Tod0 , Tod1) and | log Cor| = max{p+ 2q}

No. T | log Cor| No. T | log Cor| No. T | log Cor|
1 (0,0,0,0,0,0,0) 0 39 (0,0,1,0,1,1,0) 21 77 (0,1,0,1,1,0,1) 21
2 (1,1,1,1,0,0,0) 18 40 (1,0,1,0,1,1,0) 21 78 (1,1,0,1,1,0,1) 21
3 (0,0,0,0,1,0,0) 17 41 (0,1,1,0,1,1,0) 21 79 (0,0,1,1,1,0,1) 21
4 (1,0,0,0,1,0,0) 20 42 (1,1,1,0,1,1,0) 21 80 (1,0,1,1,1,0,1) 21
5 (0,1,0,0,1,0,0) 20 43 (0,0,0,1,1,1,0) 21 81 (0,1,1,1,1,0,1) 21

Continued

50 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

No. T | log Cor| No. T | log Cor| No. T | log Cor|
6 (1,1,0,0,1,0,0) 20 44 (1,0,0,1,1,1,0) 21 82 (1,1,1,1,1,0,1) 21
7 (0,0,1,0,1,0,0) 20 45 (0,1,0,1,1,1,0) 21 83 (0,0,0,0,0,1,1) 19
8 (1,0,1,0,1,0,0) 20 46 (1,1,0,1,1,1,0) 21 84 (1,0,0,0,0,1,1) 22
9 (0,1,1,0,1,0,0) 20 47 (0,0,1,1,1,1,0) 21 85 (0,1,0,0,0,1,1) 22
10 (1,1,1,0,1,0,0) 20 48 (1,0,1,1,1,1,0) 21 86 (1,1,0,0,0,1,1) 22
11 (0,0,0,1,1,0,0) 20 49 (0,1,1,1,1,1,0) 21 87 (0,0,1,0,0,1,1) 22
12 (1,0,0,1,1,0,0) 20 50 (1,1,1,1,1,1,0) 21 88 (1,0,1,0,0,1,1) 22
13 (0,1,0,1,1,0,0) 20 51 (0,0,0,0,0,0,1) 18 89 (0,1,1,0,0,1,1) 22
14 (1,1,0,1,1,0,0) 20 52 (1,0,0,0,0,0,1) 21 90 (1,1,1,0,0,1,1) 22
15 (0,0,1,1,1,0,0) 20 53 (0,1,0,0,0,0,1) 21 91 (0,0,0,1,0,1,1) 22
16 (1,0,1,1,1,0,0) 20 54 (1,1,0,0,0,0,1) 21 92 (1,0,0,1,0,1,1) 22
17 (0,1,1,1,1,0,0) 20 55 (0,0,1,0,0,0,1) 21 93 (0,1,0,1,0,1,1) 22
18 (1,1,1,1,1,0,0) 20 56 (1,0,1,0,0,0,1) 21 94 (1,1,0,1,0,1,1) 22
19 (0,0,0,0,0,1,0) 15 57 (0,1,1,0,0,0,1) 21 95 (0,0,1,1,0,1,1) 22
20 (1,0,0,0,0,1,0) 18 58 (1,1,1,0,0,0,1) 21 96 (1,0,1,1,0,1,1) 22
21 (0,1,0,0,0,1,0) 18 59 (0,0,0,1,0,0,1) 21 97 (0,1,1,1,0,1,1) 22
22 (1,1,0,0,0,1,0) 18 60 (1,0,0,1,0,0,1) 21 98 (1,1,1,1,0,1,1) 22
23 (0,0,1,0,0,1,0) 18 61 (0,1,0,1,0,0,1) 21 99 (0,0,0,0,1,1,1) 19
24 (1,0,1,0,0,1,0) 18 62 (1,1,0,1,0,0,1) 21 100 (1,0,0,0,1,1,1) 22
25 (0,1,1,0,0,1,0) 18 63 (0,0,1,1,0,0,1) 21 101 (0,1,0,0,1,1,1) 22
26 (1,1,1,0,0,1,0) 18 64 (1,0,1,1,0,0,1) 21 102 (1,1,0,0,1,1,1) 22
27 (0,0,0,1,0,1,0) 18 65 (0,1,1,1,0,0,1) 21 103 (0,0,1,0,1,1,1) 22
28 (1,0,0,1,0,1,0) 18 66 (1,1,1,1,0,0,1) 21 104 (1,0,1,0,1,1,1) 22
29 (0,1,0,1,0,1,0) 18 67 (0,0,0,0,1,0,1) 18 105 (0,1,1,0,1,1,1) 22
30 (1,1,0,1,0,1,0) 18 68 (1,0,0,0,1,0,1) 21 106 (1,1,1,0,1,1,1) 22
31 (0,0,1,1,0,1,0) 18 69 (0,1,0,0,1,0,1) 21 107 (0,0,0,1,1,1,1) 22
32 (1,0,1,1,0,1,0) 18 70 (1,1,0,0,1,0,1) 21 108 (1,0,0,1,1,1,1) 22
33 (0,1,1,1,0,1,0) 18 71 (0,0,1,0,1,0,1) 21 109 (0,1,0,1,1,1,1) 22
34 (1,1,1,1,0,1,0) 19 72 (1,0,1,0,1,0,1) 21 110 (1,1,0,1,1,1,1) 22
35 (0,0,0,0,1,1,0) 18 73 (0,1,1,0,1,0,1) 21 111 (0,0,1,1,1,1,1) 22
36 (1,0,0,0,1,1,0) 21 74 (1,1,1,0,1,0,1) 21 112 (1,0,1,1,1,1,1) 22
37 (0,1,0,0,1,1,0) 21 75 (0,0,0,1,1,0,1) 21 113 (0,1,1,1,1,1,1) 22
38 (1,1,0,0,1,1,0) 21 76 (1,0,0,1,1,0,1) 21 114 (1,1,1,1,1,1,1) 22

Table D6: The available input-output truncated linear masks for fb2 and
the logarithm of the correlation lower bounds. The lines in bold satis-
fies the (Toc, Tod0 , Tod1) = (0, 0, 0): this is required by Proposition 2 and
should be satisfied by the final fb2 call in Eq. (14). We define T =
(Tx, Ty, Tic, Tid0 , Tid1 , Tz, Toc, Tod0 , Tod1) and | log Cor| = max{p+ 2q}
No. T | log Cor| No. T | log Cor| No. T | log Cor|
1 (0,0,0,0,0,0,0,0,0,0) 0 303 (1,0,1,0,0,1,0,1,1,0) 23 605 (1,1,0,0,1,0,1,1,0,1) 23
2 (1,1,1,0,0,0,1,0,0,0) 20 304 (0,1,1,0,0,1,0,1,1,0) 23 606 (0,0,1,0,1,0,1,1,0,1) 23
3 (1,1,1,1,0,0,1,0,0,0) 20 305 (1,1,1,0,0,1,0,1,1,0) 23 607 (1,0,1,0,1,0,1,1,0,1) 23
4 (1,1,1,0,1,0,1,0,0,0) 20 306 (0,0,0,1,0,1,0,1,1,0) 22 608 (0,1,1,0,1,0,1,1,0,1) 23
5 (1,1,1,1,1,0,1,0,0,0) 20 307 (1,0,0,1,0,1,0,1,1,0) 23 609 (1,1,1,0,1,0,1,1,0,1) 23
6 (1,1,1,0,0,1,1,0,0,0) 20 308 (0,1,0,1,0,1,0,1,1,0) 23 610 (0,0,0,1,1,0,1,1,0,1) 23
7 (1,1,1,1,0,1,1,0,0,0) 20 309 (1,1,0,1,0,1,0,1,1,0) 23 611 (1,0,0,1,1,0,1,1,0,1) 23
8 (1,1,1,0,1,1,1,0,0,0) 20 310 (0,0,1,1,0,1,0,1,1,0) 23 612 (0,1,0,1,1,0,1,1,0,1) 23
9 (1,1,1,1,1,1,1,0,0,0) 20 311 (1,0,1,1,0,1,0,1,1,0) 23 613 (1,1,0,1,1,0,1,1,0,1) 23
10 (0,0,0,0,0,0,0,1,0,0) 19 312 (0,1,1,1,0,1,0,1,1,0) 23 614 (0,0,1,1,1,0,1,1,0,1) 23
11 (1,0,0,0,0,0,0,1,0,0) 21 313 (1,1,1,1,0,1,0,1,1,0) 23 615 (1,0,1,1,1,0,1,1,0,1) 23
12 (0,1,0,0,0,0,0,1,0,0) 21 314 (0,0,0,0,1,1,0,1,1,0) 22 616 (0,1,1,1,1,0,1,1,0,1) 23
13 (1,1,0,0,0,0,0,1,0,0) 22 315 (1,0,0,0,1,1,0,1,1,0) 23 617 (1,1,1,1,1,0,1,1,0,1) 23
14 (0,0,1,0,0,0,0,1,0,0) 21 316 (0,1,0,0,1,1,0,1,1,0) 23 618 (0,0,0,0,0,1,1,1,0,1) 22
15 (1,0,1,0,0,0,0,1,0,0) 22 317 (1,1,0,0,1,1,0,1,1,0) 23 619 (1,0,0,0,0,1,1,1,0,1) 23
16 (0,1,1,0,0,0,0,1,0,0) 22 318 (0,0,1,0,1,1,0,1,1,0) 23 620 (0,1,0,0,0,1,1,1,0,1) 23
17 (1,1,1,0,0,0,0,1,0,0) 22 319 (1,0,1,0,1,1,0,1,1,0) 23 621 (1,1,0,0,0,1,1,1,0,1) 23
18 (0,0,0,1,0,0,0,1,0,0) 20 320 (0,1,1,0,1,1,0,1,1,0) 23 622 (0,0,1,0,0,1,1,1,0,1) 23
19 (1,0,0,1,0,0,0,1,0,0) 22 321 (1,1,1,0,1,1,0,1,1,0) 23 623 (1,0,1,0,0,1,1,1,0,1) 23
20 (0,1,0,1,0,0,0,1,0,0) 22 322 (0,0,0,1,1,1,0,1,1,0) 23 624 (0,1,1,0,0,1,1,1,0,1) 23
21 (1,1,0,1,0,0,0,1,0,0) 22 323 (1,0,0,1,1,1,0,1,1,0) 23 625 (1,1,1,0,0,1,1,1,0,1) 23
22 (0,0,1,1,0,0,0,1,0,0) 22 324 (0,1,0,1,1,1,0,1,1,0) 23 626 (0,0,0,1,0,1,1,1,0,1) 23
23 (1,0,1,1,0,0,0,1,0,0) 22 325 (1,1,0,1,1,1,0,1,1,0) 23 627 (1,0,0,1,0,1,1,1,0,1) 23
24 (0,1,1,1,0,0,0,1,0,0) 22 326 (0,0,1,1,1,1,0,1,1,0) 23 628 (0,1,0,1,0,1,1,1,0,1) 23
25 (1,1,1,1,0,0,0,1,0,0) 22 327 (1,0,1,1,1,1,0,1,1,0) 23 629 (1,1,0,1,0,1,1,1,0,1) 23
26 (0,0,0,0,1,0,0,1,0,0) 20 328 (0,1,1,1,1,1,0,1,1,0) 23 630 (0,0,1,1,0,1,1,1,0,1) 23
27 (1,0,0,0,1,0,0,1,0,0) 22 329 (1,1,1,1,1,1,0,1,1,0) 23 631 (1,0,1,1,0,1,1,1,0,1) 23
28 (0,1,0,0,1,0,0,1,0,0) 22 330 (0,0,0,0,0,0,1,1,1,0) 22 632 (0,1,1,1,0,1,1,1,0,1) 23
29 (1,1,0,0,1,0,0,1,0,0) 22 331 (1,0,0,0,0,0,1,1,1,0) 23 633 (1,1,1,1,0,1,1,1,0,1) 23
30 (0,0,1,0,1,0,0,1,0,0) 22 332 (0,1,0,0,0,0,1,1,1,0) 23 634 (0,0,0,0,1,1,1,1,0,1) 23
31 (1,0,1,0,1,0,0,1,0,0) 22 333 (1,1,0,0,0,0,1,1,1,0) 23 635 (1,0,0,0,1,1,1,1,0,1) 23
32 (0,1,1,0,1,0,0,1,0,0) 22 334 (0,0,1,0,0,0,1,1,1,0) 23 636 (0,1,0,0,1,1,1,1,0,1) 23
33 (1,1,1,0,1,0,0,1,0,0) 22 335 (1,0,1,0,0,0,1,1,1,0) 23 637 (1,1,0,0,1,1,1,1,0,1) 23
34 (0,0,0,1,1,0,0,1,0,0) 21 336 (0,1,1,0,0,0,1,1,1,0) 23 638 (0,0,1,0,1,1,1,1,0,1) 23
35 (1,0,0,1,1,0,0,1,0,0) 22 337 (1,1,1,0,0,0,1,1,1,0) 23 639 (1,0,1,0,1,1,1,1,0,1) 23
36 (0,1,0,1,1,0,0,1,0,0) 22 338 (0,0,0,1,0,0,1,1,1,0) 23 640 (0,1,1,0,1,1,1,1,0,1) 23
37 (1,1,0,1,1,0,0,1,0,0) 22 339 (1,0,0,1,0,0,1,1,1,0) 23 641 (1,1,1,0,1,1,1,1,0,1) 23
38 (0,0,1,1,1,0,0,1,0,0) 22 340 (0,1,0,1,0,0,1,1,1,0) 23 642 (0,0,0,1,1,1,1,1,0,1) 23
39 (1,0,1,1,1,0,0,1,0,0) 22 341 (1,1,0,1,0,0,1,1,1,0) 23 643 (1,0,0,1,1,1,1,1,0,1) 23

Continued

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 51

No. T | log Cor| No. T | log Cor| No. T | log Cor|
40 (0,1,1,1,1,0,0,1,0,0) 22 342 (0,0,1,1,0,0,1,1,1,0) 23 644 (0,1,0,1,1,1,1,1,0,1) 23
41 (1,1,1,1,1,0,0,1,0,0) 22 343 (1,0,1,1,0,0,1,1,1,0) 23 645 (1,1,0,1,1,1,1,1,0,1) 23
42 (0,0,0,0,0,1,0,1,0,0) 20 344 (0,1,1,1,0,0,1,1,1,0) 23 646 (0,0,1,1,1,1,1,1,0,1) 23
43 (1,0,0,0,0,1,0,1,0,0) 21 345 (1,1,1,1,0,0,1,1,1,0) 23 647 (1,0,1,1,1,1,1,1,0,1) 23
44 (0,1,0,0,0,1,0,1,0,0) 21 346 (0,0,0,0,1,0,1,1,1,0) 23 648 (0,1,1,1,1,1,1,1,0,1) 23
45 (1,1,0,0,0,1,0,1,0,0) 22 347 (1,0,0,0,1,0,1,1,1,0) 23 649 (1,1,1,1,1,1,1,1,0,1) 23
46 (0,0,1,0,0,1,0,1,0,0) 21 348 (0,1,0,0,1,0,1,1,1,0) 23 650 (0,0,0,0,0,0,0,0,1,1) 21
47 (1,0,1,0,0,1,0,1,0,0) 22 349 (1,1,0,0,1,0,1,1,1,0) 23 651 (1,0,0,0,0,0,0,0,1,1) 23
48 (0,1,1,0,0,1,0,1,0,0) 22 350 (0,0,1,0,1,0,1,1,1,0) 23 652 (0,1,0,0,0,0,0,0,1,1) 23
49 (1,1,1,0,0,1,0,1,0,0) 22 351 (1,0,1,0,1,0,1,1,1,0) 23 653 (1,1,0,0,0,0,0,0,1,1) 24
50 (0,0,0,1,0,1,0,1,0,0) 21 352 (0,1,1,0,1,0,1,1,1,0) 23 654 (0,0,1,0,0,0,0,0,1,1) 23
51 (1,0,0,1,0,1,0,1,0,0) 22 353 (1,1,1,0,1,0,1,1,1,0) 23 655 (1,0,1,0,0,0,0,0,1,1) 24
52 (0,1,0,1,0,1,0,1,0,0) 22 354 (0,0,0,1,1,0,1,1,1,0) 23 656 (0,1,1,0,0,0,0,0,1,1) 24
53 (1,1,0,1,0,1,0,1,0,0) 22 355 (1,0,0,1,1,0,1,1,1,0) 23 657 (1,1,1,0,0,0,0,0,1,1) 24
54 (0,0,1,1,0,1,0,1,0,0) 22 356 (0,1,0,1,1,0,1,1,1,0) 23 658 (0,0,0,1,0,0,0,0,1,1) 22
55 (1,0,1,1,0,1,0,1,0,0) 22 357 (1,1,0,1,1,0,1,1,1,0) 23 659 (1,0,0,1,0,0,0,0,1,1) 24
56 (0,1,1,1,0,1,0,1,0,0) 22 358 (0,0,1,1,1,0,1,1,1,0) 23 660 (0,1,0,1,0,0,0,0,1,1) 24
57 (1,1,1,1,0,1,0,1,0,0) 22 359 (1,0,1,1,1,0,1,1,1,0) 23 661 (1,1,0,1,0,0,0,0,1,1) 24
58 (0,0,0,0,1,1,0,1,0,0) 21 360 (0,1,1,1,1,0,1,1,1,0) 23 662 (0,0,1,1,0,0,0,0,1,1) 24
59 (1,0,0,0,1,1,0,1,0,0) 22 361 (1,1,1,1,1,0,1,1,1,0) 23 663 (1,0,1,1,0,0,0,0,1,1) 24
60 (0,1,0,0,1,1,0,1,0,0) 22 362 (0,0,0,0,0,1,1,1,1,0) 22 664 (0,1,1,1,0,0,0,0,1,1) 24
61 (1,1,0,0,1,1,0,1,0,0) 22 363 (1,0,0,0,0,1,1,1,1,0) 23 665 (1,1,1,1,0,0,0,0,1,1) 24
62 (0,0,1,0,1,1,0,1,0,0) 22 364 (0,1,0,0,0,1,1,1,1,0) 23 666 (0,0,0,0,1,0,0,0,1,1) 22
63 (1,0,1,0,1,1,0,1,0,0) 22 365 (1,1,0,0,0,1,1,1,1,0) 23 667 (1,0,0,0,1,0,0,0,1,1) 24
64 (0,1,1,0,1,1,0,1,0,0) 22 366 (0,0,1,0,0,1,1,1,1,0) 23 668 (0,1,0,0,1,0,0,0,1,1) 24
65 (1,1,1,0,1,1,0,1,0,0) 22 367 (1,0,1,0,0,1,1,1,1,0) 23 669 (1,1,0,0,1,0,0,0,1,1) 24
66 (0,0,0,1,1,1,0,1,0,0) 22 368 (0,1,1,0,0,1,1,1,1,0) 23 670 (0,0,1,0,1,0,0,0,1,1) 24
67 (1,0,0,1,1,1,0,1,0,0) 22 369 (1,1,1,0,0,1,1,1,1,0) 23 671 (1,0,1,0,1,0,0,0,1,1) 24
68 (0,1,0,1,1,1,0,1,0,0) 22 370 (0,0,0,1,0,1,1,1,1,0) 23 672 (0,1,1,0,1,0,0,0,1,1) 24
69 (1,1,0,1,1,1,0,1,0,0) 22 371 (1,0,0,1,0,1,1,1,1,0) 23 673 (1,1,1,0,1,0,0,0,1,1) 24
70 (0,0,1,1,1,1,0,1,0,0) 22 372 (0,1,0,1,0,1,1,1,1,0) 23 674 (0,0,0,1,1,0,0,0,1,1) 23
71 (1,0,1,1,1,1,0,1,0,0) 22 373 (1,1,0,1,0,1,1,1,1,0) 23 675 (1,0,0,1,1,0,0,0,1,1) 24
72 (0,1,1,1,1,1,0,1,0,0) 22 374 (0,0,1,1,0,1,1,1,1,0) 23 676 (0,1,0,1,1,0,0,0,1,1) 24
73 (1,1,1,1,1,1,0,1,0,0) 22 375 (1,0,1,1,0,1,1,1,1,0) 23 677 (1,1,0,1,1,0,0,0,1,1) 24
74 (0,0,0,0,0,0,1,1,0,0) 21 376 (0,1,1,1,0,1,1,1,1,0) 23 678 (0,0,1,1,1,0,0,0,1,1) 24
75 (1,0,0,0,0,0,1,1,0,0) 22 377 (1,1,1,1,0,1,1,1,1,0) 23 679 (1,0,1,1,1,0,0,0,1,1) 24
76 (0,1,0,0,0,0,1,1,0,0) 22 378 (0,0,0,0,1,1,1,1,1,0) 23 680 (0,1,1,1,1,0,0,0,1,1) 24
77 (1,1,0,0,0,0,1,1,0,0) 22 379 (1,0,0,0,1,1,1,1,1,0) 23 681 (1,1,1,1,1,0,0,0,1,1) 24
78 (0,0,1,0,0,0,1,1,0,0) 22 380 (0,1,0,0,1,1,1,1,1,0) 23 682 (0,0,0,0,0,1,0,0,1,1) 22
79 (1,0,1,0,0,0,1,1,0,0) 22 381 (1,1,0,0,1,1,1,1,1,0) 23 683 (1,0,0,0,0,1,0,0,1,1) 23
80 (0,1,1,0,0,0,1,1,0,0) 22 382 (0,0,1,0,1,1,1,1,1,0) 23 684 (0,1,0,0,0,1,0,0,1,1) 23
81 (1,1,1,0,0,0,1,1,0,0) 22 383 (1,0,1,0,1,1,1,1,1,0) 23 685 (1,1,0,0,0,1,0,0,1,1) 24
82 (0,0,0,1,0,0,1,1,0,0) 22 384 (0,1,1,0,1,1,1,1,1,0) 23 686 (0,0,1,0,0,1,0,0,1,1) 23
83 (1,0,0,1,0,0,1,1,0,0) 22 385 (1,1,1,0,1,1,1,1,1,0) 23 687 (1,0,1,0,0,1,0,0,1,1) 24
84 (0,1,0,1,0,0,1,1,0,0) 22 386 (0,0,0,1,1,1,1,1,1,0) 23 688 (0,1,1,0,0,1,0,0,1,1) 24
85 (1,1,0,1,0,0,1,1,0,0) 22 387 (1,0,0,1,1,1,1,1,1,0) 23 689 (1,1,1,0,0,1,0,0,1,1) 24
86 (0,0,1,1,0,0,1,1,0,0) 22 388 (0,1,0,1,1,1,1,1,1,0) 23 690 (0,0,0,1,0,1,0,0,1,1) 23
87 (1,0,1,1,0,0,1,1,0,0) 22 389 (1,1,0,1,1,1,1,1,1,0) 23 691 (1,0,0,1,0,1,0,0,1,1) 24
88 (0,1,1,1,0,0,1,1,0,0) 22 390 (0,0,1,1,1,1,1,1,1,0) 23 692 (0,1,0,1,0,1,0,0,1,1) 24
89 (1,1,1,1,0,0,1,1,0,0) 22 391 (1,0,1,1,1,1,1,1,1,0) 23 693 (1,1,0,1,0,1,0,0,1,1) 24
90 (0,0,0,0,1,0,1,1,0,0) 22 392 (0,1,1,1,1,1,1,1,1,0) 23 694 (0,0,1,1,0,1,0,0,1,1) 24
91 (1,0,0,0,1,0,1,1,0,0) 22 393 (1,1,1,1,1,1,1,1,1,0) 23 695 (1,0,1,1,0,1,0,0,1,1) 24
92 (0,1,0,0,1,0,1,1,0,0) 22 394 (0,0,0,0,0,0,0,0,0,1) 20 696 (0,1,1,1,0,1,0,0,1,1) 24
93 (1,1,0,0,1,0,1,1,0,0) 22 395 (1,0,0,0,0,0,0,0,0,1) 22 697 (1,1,1,1,0,1,0,0,1,1) 24
94 (0,0,1,0,1,0,1,1,0,0) 22 396 (0,1,0,0,0,0,0,0,0,1) 22 698 (0,0,0,0,1,1,0,0,1,1) 23
95 (1,0,1,0,1,0,1,1,0,0) 22 397 (1,1,0,0,0,0,0,0,0,1) 23 699 (1,0,0,0,1,1,0,0,1,1) 24
96 (0,1,1,0,1,0,1,1,0,0) 22 398 (0,0,1,0,0,0,0,0,0,1) 22 700 (0,1,0,0,1,1,0,0,1,1) 24
97 (1,1,1,0,1,0,1,1,0,0) 22 399 (1,0,1,0,0,0,0,0,0,1) 23 701 (1,1,0,0,1,1,0,0,1,1) 24
98 (0,0,0,1,1,0,1,1,0,0) 22 400 (0,1,1,0,0,0,0,0,0,1) 23 702 (0,0,1,0,1,1,0,0,1,1) 24
99 (1,0,0,1,1,0,1,1,0,0) 22 401 (1,1,1,0,0,0,0,0,0,1) 23 703 (1,0,1,0,1,1,0,0,1,1) 24
100 (0,1,0,1,1,0,1,1,0,0) 22 402 (0,0,0,1,0,0,0,0,0,1) 21 704 (0,1,1,0,1,1,0,0,1,1) 24
101 (1,1,0,1,1,0,1,1,0,0) 22 403 (1,0,0,1,0,0,0,0,0,1) 23 705 (1,1,1,0,1,1,0,0,1,1) 24
102 (0,0,1,1,1,0,1,1,0,0) 22 404 (0,1,0,1,0,0,0,0,0,1) 23 706 (0,0,0,1,1,1,0,0,1,1) 24
103 (1,0,1,1,1,0,1,1,0,0) 22 405 (1,1,0,1,0,0,0,0,0,1) 23 707 (1,0,0,1,1,1,0,0,1,1) 24
104 (0,1,1,1,1,0,1,1,0,0) 22 406 (0,0,1,1,0,0,0,0,0,1) 23 708 (0,1,0,1,1,1,0,0,1,1) 24
105 (1,1,1,1,1,0,1,1,0,0) 22 407 (1,0,1,1,0,0,0,0,0,1) 23 709 (1,1,0,1,1,1,0,0,1,1) 24
106 (0,0,0,0,0,1,1,1,0,0) 21 408 (0,1,1,1,0,0,0,0,0,1) 23 710 (0,0,1,1,1,1,0,0,1,1) 24
107 (1,0,0,0,0,1,1,1,0,0) 22 409 (1,1,1,1,0,0,0,0,0,1) 23 711 (1,0,1,1,1,1,0,0,1,1) 24
108 (0,1,0,0,0,1,1,1,0,0) 22 410 (0,0,0,0,1,0,0,0,0,1) 21 712 (0,1,1,1,1,1,0,0,1,1) 24
109 (1,1,0,0,0,1,1,1,0,0) 22 411 (1,0,0,0,1,0,0,0,0,1) 23 713 (1,1,1,1,1,1,0,0,1,1) 24
110 (0,0,1,0,0,1,1,1,0,0) 22 412 (0,1,0,0,1,0,0,0,0,1) 23 714 (0,0,0,0,0,0,1,0,1,1) 23
111 (1,0,1,0,0,1,1,1,0,0) 22 413 (1,1,0,0,1,0,0,0,0,1) 23 715 (1,0,0,0,0,0,1,0,1,1) 24
112 (0,1,1,0,0,1,1,1,0,0) 22 414 (0,0,1,0,1,0,0,0,0,1) 23 716 (0,1,0,0,0,0,1,0,1,1) 24
113 (1,1,1,0,0,1,1,1,0,0) 22 415 (1,0,1,0,1,0,0,0,0,1) 23 717 (1,1,0,0,0,0,1,0,1,1) 24
114 (0,0,0,1,0,1,1,1,0,0) 22 416 (0,1,1,0,1,0,0,0,0,1) 23 718 (0,0,1,0,0,0,1,0,1,1) 24
115 (1,0,0,1,0,1,1,1,0,0) 22 417 (1,1,1,0,1,0,0,0,0,1) 23 719 (1,0,1,0,0,0,1,0,1,1) 24
116 (0,1,0,1,0,1,1,1,0,0) 22 418 (0,0,0,1,1,0,0,0,0,1) 22 720 (0,1,1,0,0,0,1,0,1,1) 24
117 (1,1,0,1,0,1,1,1,0,0) 22 419 (1,0,0,1,1,0,0,0,0,1) 23 721 (1,1,1,0,0,0,1,0,1,1) 24
118 (0,0,1,1,0,1,1,1,0,0) 22 420 (0,1,0,1,1,0,0,0,0,1) 23 722 (0,0,0,1,0,0,1,0,1,1) 24
119 (1,0,1,1,0,1,1,1,0,0) 22 421 (1,1,0,1,1,0,0,0,0,1) 23 723 (1,0,0,1,0,0,1,0,1,1) 24
120 (0,1,1,1,0,1,1,1,0,0) 22 422 (0,0,1,1,1,0,0,0,0,1) 23 724 (0,1,0,1,0,0,1,0,1,1) 24
121 (1,1,1,1,0,1,1,1,0,0) 22 423 (1,0,1,1,1,0,0,0,0,1) 23 725 (1,1,0,1,0,0,1,0,1,1) 24
122 (0,0,0,0,1,1,1,1,0,0) 22 424 (0,1,1,1,1,0,0,0,0,1) 23 726 (0,0,1,1,0,0,1,0,1,1) 24
123 (1,0,0,0,1,1,1,1,0,0) 22 425 (1,1,1,1,1,0,0,0,0,1) 23 727 (1,0,1,1,0,0,1,0,1,1) 24
124 (0,1,0,0,1,1,1,1,0,0) 22 426 (0,0,0,0,0,1,0,0,0,1) 21 728 (0,1,1,1,0,0,1,0,1,1) 24
125 (1,1,0,0,1,1,1,1,0,0) 22 427 (1,0,0,0,0,1,0,0,0,1) 22 729 (1,1,1,1,0,0,1,0,1,1) 24
126 (0,0,1,0,1,1,1,1,0,0) 22 428 (0,1,0,0,0,1,0,0,0,1) 22 730 (0,0,0,0,1,0,1,0,1,1) 24
127 (1,0,1,0,1,1,1,1,0,0) 22 429 (1,1,0,0,0,1,0,0,0,1) 23 731 (1,0,0,0,1,0,1,0,1,1) 24
128 (0,1,1,0,1,1,1,1,0,0) 22 430 (0,0,1,0,0,1,0,0,0,1) 22 732 (0,1,0,0,1,0,1,0,1,1) 24

Continued

52 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

No. T | log Cor| No. T | log Cor| No. T | log Cor|
129 (1,1,1,0,1,1,1,1,0,0) 22 431 (1,0,1,0,0,1,0,0,0,1) 23 733 (1,1,0,0,1,0,1,0,1,1) 24
130 (0,0,0,1,1,1,1,1,0,0) 22 432 (0,1,1,0,0,1,0,0,0,1) 23 734 (0,0,1,0,1,0,1,0,1,1) 24
131 (1,0,0,1,1,1,1,1,0,0) 22 433 (1,1,1,0,0,1,0,0,0,1) 23 735 (1,0,1,0,1,0,1,0,1,1) 24
132 (0,1,0,1,1,1,1,1,0,0) 22 434 (0,0,0,1,0,1,0,0,0,1) 22 736 (0,1,1,0,1,0,1,0,1,1) 24
133 (1,1,0,1,1,1,1,1,0,0) 22 435 (1,0,0,1,0,1,0,0,0,1) 23 737 (1,1,1,0,1,0,1,0,1,1) 24
134 (0,0,1,1,1,1,1,1,0,0) 22 436 (0,1,0,1,0,1,0,0,0,1) 23 738 (0,0,0,1,1,0,1,0,1,1) 24
135 (1,0,1,1,1,1,1,1,0,0) 22 437 (1,1,0,1,0,1,0,0,0,1) 23 739 (1,0,0,1,1,0,1,0,1,1) 24
136 (0,1,1,1,1,1,1,1,0,0) 22 438 (0,0,1,1,0,1,0,0,0,1) 23 740 (0,1,0,1,1,0,1,0,1,1) 24
137 (1,1,1,1,1,1,1,1,0,0) 22 439 (1,0,1,1,0,1,0,0,0,1) 23 741 (1,1,0,1,1,0,1,0,1,1) 24
138 (0,0,0,0,0,0,0,0,1,0) 17 440 (0,1,1,1,0,1,0,0,0,1) 23 742 (0,0,1,1,1,0,1,0,1,1) 24
139 (1,0,0,0,0,0,0,0,1,0) 19 441 (1,1,1,1,0,1,0,0,0,1) 23 743 (1,0,1,1,1,0,1,0,1,1) 24
140 (0,1,0,0,0,0,0,0,1,0) 19 442 (0,0,0,0,1,1,0,0,0,1) 22 744 (0,1,1,1,1,0,1,0,1,1) 24
141 (1,1,0,0,0,0,0,0,1,0) 20 443 (1,0,0,0,1,1,0,0,0,1) 23 745 (1,1,1,1,1,0,1,0,1,1) 24
142 (0,0,1,0,0,0,0,0,1,0) 19 444 (0,1,0,0,1,1,0,0,0,1) 23 746 (0,0,0,0,0,1,1,0,1,1) 23
143 (1,0,1,0,0,0,0,0,1,0) 20 445 (1,1,0,0,1,1,0,0,0,1) 23 747 (1,0,0,0,0,1,1,0,1,1) 24
144 (0,1,1,0,0,0,0,0,1,0) 20 446 (0,0,1,0,1,1,0,0,0,1) 23 748 (0,1,0,0,0,1,1,0,1,1) 24
145 (1,1,1,0,0,0,0,0,1,0) 20 447 (1,0,1,0,1,1,0,0,0,1) 23 749 (1,1,0,0,0,1,1,0,1,1) 24
146 (0,0,0,1,0,0,0,0,1,0) 18 448 (0,1,1,0,1,1,0,0,0,1) 23 750 (0,0,1,0,0,1,1,0,1,1) 24
147 (1,0,0,1,0,0,0,0,1,0) 20 449 (1,1,1,0,1,1,0,0,0,1) 23 751 (1,0,1,0,0,1,1,0,1,1) 24
148 (0,1,0,1,0,0,0,0,1,0) 20 450 (0,0,0,1,1,1,0,0,0,1) 23 752 (0,1,1,0,0,1,1,0,1,1) 24
149 (1,1,0,1,0,0,0,0,1,0) 20 451 (1,0,0,1,1,1,0,0,0,1) 23 753 (1,1,1,0,0,1,1,0,1,1) 24
150 (0,0,1,1,0,0,0,0,1,0) 20 452 (0,1,0,1,1,1,0,0,0,1) 23 754 (0,0,0,1,0,1,1,0,1,1) 24
151 (1,0,1,1,0,0,0,0,1,0) 20 453 (1,1,0,1,1,1,0,0,0,1) 23 755 (1,0,0,1,0,1,1,0,1,1) 24
152 (0,1,1,1,0,0,0,0,1,0) 20 454 (0,0,1,1,1,1,0,0,0,1) 23 756 (0,1,0,1,0,1,1,0,1,1) 24
153 (1,1,1,1,0,0,0,0,1,0) 20 455 (1,0,1,1,1,1,0,0,0,1) 23 757 (1,1,0,1,0,1,1,0,1,1) 24
154 (0,0,0,0,1,0,0,0,1,0) 18 456 (0,1,1,1,1,1,0,0,0,1) 23 758 (0,0,1,1,0,1,1,0,1,1) 24
155 (1,0,0,0,1,0,0,0,1,0) 20 457 (1,1,1,1,1,1,0,0,0,1) 23 759 (1,0,1,1,0,1,1,0,1,1) 24
156 (0,1,0,0,1,0,0,0,1,0) 20 458 (0,0,0,0,0,0,1,0,0,1) 22 760 (0,1,1,1,0,1,1,0,1,1) 24
157 (1,1,0,0,1,0,0,0,1,0) 20 459 (1,0,0,0,0,0,1,0,0,1) 23 761 (1,1,1,1,0,1,1,0,1,1) 24
158 (0,0,1,0,1,0,0,0,1,0) 20 460 (0,1,0,0,0,0,1,0,0,1) 23 762 (0,0,0,0,1,1,1,0,1,1) 24
159 (1,0,1,0,1,0,0,0,1,0) 20 461 (1,1,0,0,0,0,1,0,0,1) 23 763 (1,0,0,0,1,1,1,0,1,1) 24
160 (0,1,1,0,1,0,0,0,1,0) 20 462 (0,0,1,0,0,0,1,0,0,1) 23 764 (0,1,0,0,1,1,1,0,1,1) 24
161 (1,1,1,0,1,0,0,0,1,0) 20 463 (1,0,1,0,0,0,1,0,0,1) 23 765 (1,1,0,0,1,1,1,0,1,1) 24
162 (0,0,0,1,1,0,0,0,1,0) 19 464 (0,1,1,0,0,0,1,0,0,1) 23 766 (0,0,1,0,1,1,1,0,1,1) 24
163 (1,0,0,1,1,0,0,0,1,0) 20 465 (1,1,1,0,0,0,1,0,0,1) 23 767 (1,0,1,0,1,1,1,0,1,1) 24
164 (0,1,0,1,1,0,0,0,1,0) 20 466 (0,0,0,1,0,0,1,0,0,1) 23 768 (0,1,1,0,1,1,1,0,1,1) 24
165 (1,1,0,1,1,0,0,0,1,0) 20 467 (1,0,0,1,0,0,1,0,0,1) 23 769 (1,1,1,0,1,1,1,0,1,1) 24
166 (0,0,1,1,1,0,0,0,1,0) 20 468 (0,1,0,1,0,0,1,0,0,1) 23 770 (0,0,0,1,1,1,1,0,1,1) 24
167 (1,0,1,1,1,0,0,0,1,0) 20 469 (1,1,0,1,0,0,1,0,0,1) 23 771 (1,0,0,1,1,1,1,0,1,1) 24
168 (0,1,1,1,1,0,0,0,1,0) 20 470 (0,0,1,1,0,0,1,0,0,1) 23 772 (0,1,0,1,1,1,1,0,1,1) 24
169 (1,1,1,1,1,0,0,0,1,0) 20 471 (1,0,1,1,0,0,1,0,0,1) 23 773 (1,1,0,1,1,1,1,0,1,1) 24
170 (0,0,0,0,0,1,0,0,1,0) 18 472 (0,1,1,1,0,0,1,0,0,1) 23 774 (0,0,1,1,1,1,1,0,1,1) 24
171 (1,0,0,0,0,1,0,0,1,0) 19 473 (1,1,1,1,0,0,1,0,0,1) 23 775 (1,0,1,1,1,1,1,0,1,1) 24
172 (0,1,0,0,0,1,0,0,1,0) 19 474 (0,0,0,0,1,0,1,0,0,1) 23 776 (0,1,1,1,1,1,1,0,1,1) 24
173 (1,1,0,0,0,1,0,0,1,0) 20 475 (1,0,0,0,1,0,1,0,0,1) 23 777 (1,1,1,1,1,1,1,0,1,1) 24
174 (0,0,1,0,0,1,0,0,1,0) 19 476 (0,1,0,0,1,0,1,0,0,1) 23 778 (0,0,0,0,0,0,0,1,1,1) 21
175 (1,0,1,0,0,1,0,0,1,0) 20 477 (1,1,0,0,1,0,1,0,0,1) 23 779 (1,0,0,0,0,0,0,1,1,1) 23
176 (0,1,1,0,0,1,0,0,1,0) 20 478 (0,0,1,0,1,0,1,0,0,1) 23 780 (0,1,0,0,0,0,0,1,1,1) 23
177 (1,1,1,0,0,1,0,0,1,0) 20 479 (1,0,1,0,1,0,1,0,0,1) 23 781 (1,1,0,0,0,0,0,1,1,1) 24
178 (0,0,0,1,0,1,0,0,1,0) 19 480 (0,1,1,0,1,0,1,0,0,1) 23 782 (0,0,1,0,0,0,0,1,1,1) 23
179 (1,0,0,1,0,1,0,0,1,0) 20 481 (1,1,1,0,1,0,1,0,0,1) 23 783 (1,0,1,0,0,0,0,1,1,1) 24
180 (0,1,0,1,0,1,0,0,1,0) 20 482 (0,0,0,1,1,0,1,0,0,1) 23 784 (0,1,1,0,0,0,0,1,1,1) 24
181 (1,1,0,1,0,1,0,0,1,0) 20 483 (1,0,0,1,1,0,1,0,0,1) 23 785 (1,1,1,0,0,0,0,1,1,1) 24
182 (0,0,1,1,0,1,0,0,1,0) 20 484 (0,1,0,1,1,0,1,0,0,1) 23 786 (0,0,0,1,0,0,0,1,1,1) 22
183 (1,0,1,1,0,1,0,0,1,0) 20 485 (1,1,0,1,1,0,1,0,0,1) 23 787 (1,0,0,1,0,0,0,1,1,1) 24
184 (0,1,1,1,0,1,0,0,1,0) 20 486 (0,0,1,1,1,0,1,0,0,1) 23 788 (0,1,0,1,0,0,0,1,1,1) 24
185 (1,1,1,1,0,1,0,0,1,0) 20 487 (1,0,1,1,1,0,1,0,0,1) 23 789 (1,1,0,1,0,0,0,1,1,1) 24
186 (0,0,0,0,1,1,0,0,1,0) 19 488 (0,1,1,1,1,0,1,0,0,1) 23 790 (0,0,1,1,0,0,0,1,1,1) 24
187 (1,0,0,0,1,1,0,0,1,0) 20 489 (1,1,1,1,1,0,1,0,0,1) 23 791 (1,0,1,1,0,0,0,1,1,1) 24
188 (0,1,0,0,1,1,0,0,1,0) 20 490 (0,0,0,0,0,1,1,0,0,1) 22 792 (0,1,1,1,0,0,0,1,1,1) 24
189 (1,1,0,0,1,1,0,0,1,0) 20 491 (1,0,0,0,0,1,1,0,0,1) 23 793 (1,1,1,1,0,0,0,1,1,1) 24
190 (0,0,1,0,1,1,0,0,1,0) 20 492 (0,1,0,0,0,1,1,0,0,1) 23 794 (0,0,0,0,1,0,0,1,1,1) 22
191 (1,0,1,0,1,1,0,0,1,0) 20 493 (1,1,0,0,0,1,1,0,0,1) 23 795 (1,0,0,0,1,0,0,1,1,1) 24
192 (0,1,1,0,1,1,0,0,1,0) 20 494 (0,0,1,0,0,1,1,0,0,1) 23 796 (0,1,0,0,1,0,0,1,1,1) 24
193 (1,1,1,0,1,1,0,0,1,0) 20 495 (1,0,1,0,0,1,1,0,0,1) 23 797 (1,1,0,0,1,0,0,1,1,1) 24
194 (0,0,0,1,1,1,0,0,1,0) 20 496 (0,1,1,0,0,1,1,0,0,1) 23 798 (0,0,1,0,1,0,0,1,1,1) 24
195 (1,0,0,1,1,1,0,0,1,0) 20 497 (1,1,1,0,0,1,1,0,0,1) 23 799 (1,0,1,0,1,0,0,1,1,1) 24
196 (0,1,0,1,1,1,0,0,1,0) 20 498 (0,0,0,1,0,1,1,0,0,1) 23 800 (0,1,1,0,1,0,0,1,1,1) 24
197 (1,1,0,1,1,1,0,0,1,0) 20 499 (1,0,0,1,0,1,1,0,0,1) 23 801 (1,1,1,0,1,0,0,1,1,1) 24
198 (0,0,1,1,1,1,0,0,1,0) 20 500 (0,1,0,1,0,1,1,0,0,1) 23 802 (0,0,0,1,1,0,0,1,1,1) 23
199 (1,0,1,1,1,1,0,0,1,0) 20 501 (1,1,0,1,0,1,1,0,0,1) 23 803 (1,0,0,1,1,0,0,1,1,1) 24
200 (0,1,1,1,1,1,0,0,1,0) 20 502 (0,0,1,1,0,1,1,0,0,1) 23 804 (0,1,0,1,1,0,0,1,1,1) 24
201 (1,1,1,1,1,1,0,0,1,0) 20 503 (1,0,1,1,0,1,1,0,0,1) 23 805 (1,1,0,1,1,0,0,1,1,1) 24
202 (0,0,0,0,0,0,1,0,1,0) 19 504 (0,1,1,1,0,1,1,0,0,1) 23 806 (0,0,1,1,1,0,0,1,1,1) 24
203 (1,0,0,0,0,0,1,0,1,0) 20 505 (1,1,1,1,0,1,1,0,0,1) 23 807 (1,0,1,1,1,0,0,1,1,1) 24
204 (0,1,0,0,0,0,1,0,1,0) 20 506 (0,0,0,0,1,1,1,0,0,1) 23 808 (0,1,1,1,1,0,0,1,1,1) 24
205 (1,1,0,0,0,0,1,0,1,0) 20 507 (1,0,0,0,1,1,1,0,0,1) 23 809 (1,1,1,1,1,0,0,1,1,1) 24
206 (0,0,1,0,0,0,1,0,1,0) 20 508 (0,1,0,0,1,1,1,0,0,1) 23 810 (0,0,0,0,0,1,0,1,1,1) 22
207 (1,0,1,0,0,0,1,0,1,0) 20 509 (1,1,0,0,1,1,1,0,0,1) 23 811 (1,0,0,0,0,1,0,1,1,1) 23
208 (0,1,1,0,0,0,1,0,1,0) 20 510 (0,0,1,0,1,1,1,0,0,1) 23 812 (0,1,0,0,0,1,0,1,1,1) 23
209 (1,1,1,0,0,0,1,0,1,0) 21 511 (1,0,1,0,1,1,1,0,0,1) 23 813 (1,1,0,0,0,1,0,1,1,1) 24
210 (0,0,0,1,0,0,1,0,1,0) 20 512 (0,1,1,0,1,1,1,0,0,1) 23 814 (0,0,1,0,0,1,0,1,1,1) 23
211 (1,0,0,1,0,0,1,0,1,0) 20 513 (1,1,1,0,1,1,1,0,0,1) 23 815 (1,0,1,0,0,1,0,1,1,1) 24
212 (0,1,0,1,0,0,1,0,1,0) 20 514 (0,0,0,1,1,1,1,0,0,1) 23 816 (0,1,1,0,0,1,0,1,1,1) 24
213 (1,1,0,1,0,0,1,0,1,0) 20 515 (1,0,0,1,1,1,1,0,0,1) 23 817 (1,1,1,0,0,1,0,1,1,1) 24
214 (0,0,1,1,0,0,1,0,1,0) 20 516 (0,1,0,1,1,1,1,0,0,1) 23 818 (0,0,0,1,0,1,0,1,1,1) 23
215 (1,0,1,1,0,0,1,0,1,0) 20 517 (1,1,0,1,1,1,1,0,0,1) 23 819 (1,0,0,1,0,1,0,1,1,1) 24
216 (0,1,1,1,0,0,1,0,1,0) 20 518 (0,0,1,1,1,1,1,0,0,1) 23 820 (0,1,0,1,0,1,0,1,1,1) 24
217 (1,1,1,1,0,0,1,0,1,0) 21 519 (1,0,1,1,1,1,1,0,0,1) 23 821 (1,1,0,1,0,1,0,1,1,1) 24

Continued

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 53

No. T | log Cor| No. T | log Cor| No. T | log Cor|
218 (0,0,0,0,1,0,1,0,1,0) 20 520 (0,1,1,1,1,1,1,0,0,1) 23 822 (0,0,1,1,0,1,0,1,1,1) 24
219 (1,0,0,0,1,0,1,0,1,0) 20 521 (1,1,1,1,1,1,1,0,0,1) 23 823 (1,0,1,1,0,1,0,1,1,1) 24
220 (0,1,0,0,1,0,1,0,1,0) 20 522 (0,0,0,0,0,0,0,1,0,1) 20 824 (0,1,1,1,0,1,0,1,1,1) 24
221 (1,1,0,0,1,0,1,0,1,0) 20 523 (1,0,0,0,0,0,0,1,0,1) 22 825 (1,1,1,1,0,1,0,1,1,1) 24
222 (0,0,1,0,1,0,1,0,1,0) 20 524 (0,1,0,0,0,0,0,1,0,1) 22 826 (0,0,0,0,1,1,0,1,1,1) 23
223 (1,0,1,0,1,0,1,0,1,0) 20 525 (1,1,0,0,0,0,0,1,0,1) 23 827 (1,0,0,0,1,1,0,1,1,1) 24
224 (0,1,1,0,1,0,1,0,1,0) 20 526 (0,0,1,0,0,0,0,1,0,1) 22 828 (0,1,0,0,1,1,0,1,1,1) 24
225 (1,1,1,0,1,0,1,0,1,0) 21 527 (1,0,1,0,0,0,0,1,0,1) 23 829 (1,1,0,0,1,1,0,1,1,1) 24
226 (0,0,0,1,1,0,1,0,1,0) 20 528 (0,1,1,0,0,0,0,1,0,1) 23 830 (0,0,1,0,1,1,0,1,1,1) 24
227 (1,0,0,1,1,0,1,0,1,0) 20 529 (1,1,1,0,0,0,0,1,0,1) 23 831 (1,0,1,0,1,1,0,1,1,1) 24
228 (0,1,0,1,1,0,1,0,1,0) 20 530 (0,0,0,1,0,0,0,1,0,1) 21 832 (0,1,1,0,1,1,0,1,1,1) 24
229 (1,1,0,1,1,0,1,0,1,0) 20 531 (1,0,0,1,0,0,0,1,0,1) 23 833 (1,1,1,0,1,1,0,1,1,1) 24
230 (0,0,1,1,1,0,1,0,1,0) 20 532 (0,1,0,1,0,0,0,1,0,1) 23 834 (0,0,0,1,1,1,0,1,1,1) 24
231 (1,0,1,1,1,0,1,0,1,0) 20 533 (1,1,0,1,0,0,0,1,0,1) 23 835 (1,0,0,1,1,1,0,1,1,1) 24
232 (0,1,1,1,1,0,1,0,1,0) 20 534 (0,0,1,1,0,0,0,1,0,1) 23 836 (0,1,0,1,1,1,0,1,1,1) 24
233 (1,1,1,1,1,0,1,0,1,0) 21 535 (1,0,1,1,0,0,0,1,0,1) 23 837 (1,1,0,1,1,1,0,1,1,1) 24
234 (0,0,0,0,0,1,1,0,1,0) 19 536 (0,1,1,1,0,0,0,1,0,1) 23 838 (0,0,1,1,1,1,0,1,1,1) 24
235 (1,0,0,0,0,1,1,0,1,0) 20 537 (1,1,1,1,0,0,0,1,0,1) 23 839 (1,0,1,1,1,1,0,1,1,1) 24
236 (0,1,0,0,0,1,1,0,1,0) 20 538 (0,0,0,0,1,0,0,1,0,1) 21 840 (0,1,1,1,1,1,0,1,1,1) 24
237 (1,1,0,0,0,1,1,0,1,0) 20 539 (1,0,0,0,1,0,0,1,0,1) 23 841 (1,1,1,1,1,1,0,1,1,1) 24
238 (0,0,1,0,0,1,1,0,1,0) 20 540 (0,1,0,0,1,0,0,1,0,1) 23 842 (0,0,0,0,0,0,1,1,1,1) 23
239 (1,0,1,0,0,1,1,0,1,0) 20 541 (1,1,0,0,1,0,0,1,0,1) 23 843 (1,0,0,0,0,0,1,1,1,1) 24
240 (0,1,1,0,0,1,1,0,1,0) 20 542 (0,0,1,0,1,0,0,1,0,1) 23 844 (0,1,0,0,0,0,1,1,1,1) 24
241 (1,1,1,0,0,1,1,0,1,0) 21 543 (1,0,1,0,1,0,0,1,0,1) 23 845 (1,1,0,0,0,0,1,1,1,1) 24
242 (0,0,0,1,0,1,1,0,1,0) 20 544 (0,1,1,0,1,0,0,1,0,1) 23 846 (0,0,1,0,0,0,1,1,1,1) 24
243 (1,0,0,1,0,1,1,0,1,0) 20 545 (1,1,1,0,1,0,0,1,0,1) 23 847 (1,0,1,0,0,0,1,1,1,1) 24
244 (0,1,0,1,0,1,1,0,1,0) 20 546 (0,0,0,1,1,0,0,1,0,1) 22 848 (0,1,1,0,0,0,1,1,1,1) 24
245 (1,1,0,1,0,1,1,0,1,0) 20 547 (1,0,0,1,1,0,0,1,0,1) 23 849 (1,1,1,0,0,0,1,1,1,1) 24
246 (0,0,1,1,0,1,1,0,1,0) 20 548 (0,1,0,1,1,0,0,1,0,1) 23 850 (0,0,0,1,0,0,1,1,1,1) 24
247 (1,0,1,1,0,1,1,0,1,0) 20 549 (1,1,0,1,1,0,0,1,0,1) 23 851 (1,0,0,1,0,0,1,1,1,1) 24
248 (0,1,1,1,0,1,1,0,1,0) 20 550 (0,0,1,1,1,0,0,1,0,1) 23 852 (0,1,0,1,0,0,1,1,1,1) 24
249 (1,1,1,1,0,1,1,0,1,0) 21 551 (1,0,1,1,1,0,0,1,0,1) 23 853 (1,1,0,1,0,0,1,1,1,1) 24
250 (0,0,0,0,1,1,1,0,1,0) 20 552 (0,1,1,1,1,0,0,1,0,1) 23 854 (0,0,1,1,0,0,1,1,1,1) 24
251 (1,0,0,0,1,1,1,0,1,0) 20 553 (1,1,1,1,1,0,0,1,0,1) 23 855 (1,0,1,1,0,0,1,1,1,1) 24
252 (0,1,0,0,1,1,1,0,1,0) 20 554 (0,0,0,0,0,1,0,1,0,1) 21 856 (0,1,1,1,0,0,1,1,1,1) 24
253 (1,1,0,0,1,1,1,0,1,0) 20 555 (1,0,0,0,0,1,0,1,0,1) 22 857 (1,1,1,1,0,0,1,1,1,1) 24
254 (0,0,1,0,1,1,1,0,1,0) 20 556 (0,1,0,0,0,1,0,1,0,1) 22 858 (0,0,0,0,1,0,1,1,1,1) 24
255 (1,0,1,0,1,1,1,0,1,0) 20 557 (1,1,0,0,0,1,0,1,0,1) 23 859 (1,0,0,0,1,0,1,1,1,1) 24
256 (0,1,1,0,1,1,1,0,1,0) 20 558 (0,0,1,0,0,1,0,1,0,1) 22 860 (0,1,0,0,1,0,1,1,1,1) 24
257 (1,1,1,0,1,1,1,0,1,0) 21 559 (1,0,1,0,0,1,0,1,0,1) 23 861 (1,1,0,0,1,0,1,1,1,1) 24
258 (0,0,0,1,1,1,1,0,1,0) 20 560 (0,1,1,0,0,1,0,1,0,1) 23 862 (0,0,1,0,1,0,1,1,1,1) 24
259 (1,0,0,1,1,1,1,0,1,0) 20 561 (1,1,1,0,0,1,0,1,0,1) 23 863 (1,0,1,0,1,0,1,1,1,1) 24
260 (0,1,0,1,1,1,1,0,1,0) 20 562 (0,0,0,1,0,1,0,1,0,1) 22 864 (0,1,1,0,1,0,1,1,1,1) 24
261 (1,1,0,1,1,1,1,0,1,0) 20 563 (1,0,0,1,0,1,0,1,0,1) 23 865 (1,1,1,0,1,0,1,1,1,1) 24
262 (0,0,1,1,1,1,1,0,1,0) 20 564 (0,1,0,1,0,1,0,1,0,1) 23 866 (0,0,0,1,1,0,1,1,1,1) 24
263 (1,0,1,1,1,1,1,0,1,0) 20 565 (1,1,0,1,0,1,0,1,0,1) 23 867 (1,0,0,1,1,0,1,1,1,1) 24
264 (0,1,1,1,1,1,1,0,1,0) 20 566 (0,0,1,1,0,1,0,1,0,1) 23 868 (0,1,0,1,1,0,1,1,1,1) 24
265 (1,1,1,1,1,1,1,0,1,0) 21 567 (1,0,1,1,0,1,0,1,0,1) 23 869 (1,1,0,1,1,0,1,1,1,1) 24
266 (0,0,0,0,0,0,0,1,1,0) 20 568 (0,1,1,1,0,1,0,1,0,1) 23 870 (0,0,1,1,1,0,1,1,1,1) 24
267 (1,0,0,0,0,0,0,1,1,0) 22 569 (1,1,1,1,0,1,0,1,0,1) 23 871 (1,0,1,1,1,0,1,1,1,1) 24
268 (0,1,0,0,0,0,0,1,1,0) 22 570 (0,0,0,0,1,1,0,1,0,1) 22 872 (0,1,1,1,1,0,1,1,1,1) 24
269 (1,1,0,0,0,0,0,1,1,0) 23 571 (1,0,0,0,1,1,0,1,0,1) 23 873 (1,1,1,1,1,0,1,1,1,1) 24
270 (0,0,1,0,0,0,0,1,1,0) 22 572 (0,1,0,0,1,1,0,1,0,1) 23 874 (0,0,0,0,0,1,1,1,1,1) 23
271 (1,0,1,0,0,0,0,1,1,0) 23 573 (1,1,0,0,1,1,0,1,0,1) 23 875 (1,0,0,0,0,1,1,1,1,1) 24
272 (0,1,1,0,0,0,0,1,1,0) 23 574 (0,0,1,0,1,1,0,1,0,1) 23 876 (0,1,0,0,0,1,1,1,1,1) 24
273 (1,1,1,0,0,0,0,1,1,0) 23 575 (1,0,1,0,1,1,0,1,0,1) 23 877 (1,1,0,0,0,1,1,1,1,1) 24
274 (0,0,0,1,0,0,0,1,1,0) 21 576 (0,1,1,0,1,1,0,1,0,1) 23 878 (0,0,1,0,0,1,1,1,1,1) 24
275 (1,0,0,1,0,0,0,1,1,0) 23 577 (1,1,1,0,1,1,0,1,0,1) 23 879 (1,0,1,0,0,1,1,1,1,1) 24
276 (0,1,0,1,0,0,0,1,1,0) 23 578 (0,0,0,1,1,1,0,1,0,1) 23 880 (0,1,1,0,0,1,1,1,1,1) 24
277 (1,1,0,1,0,0,0,1,1,0) 23 579 (1,0,0,1,1,1,0,1,0,1) 23 881 (1,1,1,0,0,1,1,1,1,1) 24
278 (0,0,1,1,0,0,0,1,1,0) 23 580 (0,1,0,1,1,1,0,1,0,1) 23 882 (0,0,0,1,0,1,1,1,1,1) 24
279 (1,0,1,1,0,0,0,1,1,0) 23 581 (1,1,0,1,1,1,0,1,0,1) 23 883 (1,0,0,1,0,1,1,1,1,1) 24
280 (0,1,1,1,0,0,0,1,1,0) 23 582 (0,0,1,1,1,1,0,1,0,1) 23 884 (0,1,0,1,0,1,1,1,1,1) 24
281 (1,1,1,1,0,0,0,1,1,0) 23 583 (1,0,1,1,1,1,0,1,0,1) 23 885 (1,1,0,1,0,1,1,1,1,1) 24
282 (0,0,0,0,1,0,0,1,1,0) 21 584 (0,1,1,1,1,1,0,1,0,1) 23 886 (0,0,1,1,0,1,1,1,1,1) 24
283 (1,0,0,0,1,0,0,1,1,0) 23 585 (1,1,1,1,1,1,0,1,0,1) 23 887 (1,0,1,1,0,1,1,1,1,1) 24
284 (0,1,0,0,1,0,0,1,1,0) 23 586 (0,0,0,0,0,0,1,1,0,1) 22 888 (0,1,1,1,0,1,1,1,1,1) 24
285 (1,1,0,0,1,0,0,1,1,0) 23 587 (1,0,0,0,0,0,1,1,0,1) 23 889 (1,1,1,1,0,1,1,1,1,1) 24
286 (0,0,1,0,1,0,0,1,1,0) 23 588 (0,1,0,0,0,0,1,1,0,1) 23 890 (0,0,0,0,1,1,1,1,1,1) 24
287 (1,0,1,0,1,0,0,1,1,0) 23 589 (1,1,0,0,0,0,1,1,0,1) 23 891 (1,0,0,0,1,1,1,1,1,1) 24
288 (0,1,1,0,1,0,0,1,1,0) 23 590 (0,0,1,0,0,0,1,1,0,1) 23 892 (0,1,0,0,1,1,1,1,1,1) 24
289 (1,1,1,0,1,0,0,1,1,0) 23 591 (1,0,1,0,0,0,1,1,0,1) 23 893 (1,1,0,0,1,1,1,1,1,1) 24
290 (0,0,0,1,1,0,0,1,1,0) 22 592 (0,1,1,0,0,0,1,1,0,1) 23 894 (0,0,1,0,1,1,1,1,1,1) 24
291 (1,0,0,1,1,0,0,1,1,0) 23 593 (1,1,1,0,0,0,1,1,0,1) 23 895 (1,0,1,0,1,1,1,1,1,1) 24
292 (0,1,0,1,1,0,0,1,1,0) 23 594 (0,0,0,1,0,0,1,1,0,1) 23 896 (0,1,1,0,1,1,1,1,1,1) 24
293 (1,1,0,1,1,0,0,1,1,0) 23 595 (1,0,0,1,0,0,1,1,0,1) 23 897 (1,1,1,0,1,1,1,1,1,1) 24
294 (0,0,1,1,1,0,0,1,1,0) 23 596 (0,1,0,1,0,0,1,1,0,1) 23 898 (0,0,0,1,1,1,1,1,1,1) 24
295 (1,0,1,1,1,0,0,1,1,0) 23 597 (1,1,0,1,0,0,1,1,0,1) 23 899 (1,0,0,1,1,1,1,1,1,1) 24
296 (0,1,1,1,1,0,0,1,1,0) 23 598 (0,0,1,1,0,0,1,1,0,1) 23 900 (0,1,0,1,1,1,1,1,1,1) 24
297 (1,1,1,1,1,0,0,1,1,0) 23 599 (1,0,1,1,0,0,1,1,0,1) 23 901 (1,1,0,1,1,1,1,1,1,1) 24
298 (0,0,0,0,0,1,0,1,1,0) 21 600 (0,1,1,1,0,0,1,1,0,1) 23 902 (0,0,1,1,1,1,1,1,1,1) 24
299 (1,0,0,0,0,1,0,1,1,0) 22 601 (1,1,1,1,0,0,1,1,0,1) 23 903 (1,0,1,1,1,1,1,1,1,1) 24
300 (0,1,0,0,0,1,0,1,1,0) 22 602 (0,0,0,0,1,0,1,1,0,1) 23 904 (0,1,1,1,1,1,1,1,1,1) 24
301 (1,1,0,0,0,1,0,1,1,0) 23 603 (1,0,0,0,1,0,1,1,0,1) 23 905 (1,1,1,1,1,1,1,1,1,1) 24
302 (0,0,1,0,0,1,0,1,1,0) 22 604 (0,1,0,0,1,0,1,1,0,1) 23

54 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

Algorithm 20 Truncated Linear Model construction for fb2 (fb2Model)

Input: Initial model M and 6 binary variables (Tx, Ty, Tic, Tid0 , Tid1)
Output: Updated model M and 3 binary variables Tz , Toc, Tod0 , Tod1 , τ

1: Declare 4 variables M.var← Tz , Toc, Tod0 , Tod1 as binaries
2: Update M by adding the following constraint Eq. (D18):

M.con←



−Tid0 + Tz + Toc + Tod0 + Tod1 ≥ 0

Tx − Tz ,+Toc + Tod0 + Tod1 ≥ 0

−Tx + Tw + Toc + Tod0 + Tod1 ≥ 0

−Tw + Tz + Toc + Tod0 + Tod1 ≥ 0

Ty − Tw + Toc + Tod0 + Tod1 ≥ 0

Tw − Tid1 + Toc + Tod0 + Tod1 ≥ 0

−Ty + Tw + Toc + Tod0 + Tod1 ≥ 0

Tx − Tic + Toc + Tod0 + Tod1 ≥ 0

(D18)

3: Declare 1 binary variable M.var← τ
4: Define set S = {Tx, Ty, Tic, Tid0 , Tod1 , Tz , Toc, Tod0 , Tod1}
5: for s ∈ S do
6: Add a constraint M.con← τ ≥ s
7: end for
8: Add a constraint M.con← τ ≤

∑
s∈S s

9: Return (M, Tz , Toc, Tod0 , Tod1 , τ)

Algorithm 21 Truncated Linear Model construction for hb (hbModel)

Input: Initial model M and 2 binary variables (Tx, Ty)
Output: Updated model M and 3 binary variables (Tz , Toc, τ)

1: (M, Tz , Toc)← haModel(M, Tx, Ty)
2: Declare 1 binary variable M.var← τ
3: Define set S = (Tx, Ty, Tz , Toc)
4: for s ∈ S do
5: Add a constraint M.con← τ ≥ s
6: end for
7: Add a constraint M.con← τ ≤

∑
s∈S s

8: Return (M, Tz , Toc, τ)

Appendix E Details for Accomplishing
Candidate Search

When constructing bitwise model M’s, we may define parameters (P , P) as
upper and lower bounds of bobj . By adding MILP model constraint

M.con← P ≤ bobj ≤ P

we are able to acquire quickly the (Γ`,Γz) candidates with bobj ∈
[
P , P

]
. The

values of (P , P) are set based on the global optimal value of min bobj , denoted
as Pmin, and the power of the MILP solver: for too large P , there might be
too many solutions so that the solver cannot terminate in feasible time.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 55

Algorithm 22 Truncated Linear Model construction for fb (fbModel)

Input: Initial model M and 3 binary variables (Tx, Ty, Tic)
Output: Updated model M and 3 binary variables (Tz , Toc, τ)

Declare 2 binary variables M.var← Tz , Toc
Update M by adding the constraints in Eq. (D19)

M.con←



Tx + Ty − Tic − Tz + Toc ≥ 0

− Tx + Ty − Tic + Tz + Toc ≥ 0

Tx − Ty − Tic + Tz + Toc ≥ 0

Tx + Ty + Tic + Tz − Toc ≥ 0

Tx − Tz + Toc ≥ 0

Ty − Tz + Toc ≥ 0

− Tx + Tz + Toc ≥ 0

(D19)

Declare 1 binary variable M.var← τ
Define set S = {Tx, Ty, Tic, Tz , Toc}
for s ∈ S do

Add a constraint M.con← τ ≥ s
end for
Add a constraint M.con← τ ≤

∑
s∈S s

Return (M, Tz , Toc, τ)

The parameter λ in Algorithm 2 is set to λ = 0 by default.

E.1 Details for SNOW 3G

Truncated and bitwise linear masks of intermediate states satisfy Eq. (E20):
the constraints inMT are listed on the left while those forM are on the right.

Tu0
= Tu1

, Tv0 = Tv1 , Tw0
= Tw1

Tu1

S1−−→ Ta, Ta
branch−−−−→ (Ta0 , Ta1)

Tzt−1
= Tv0 , Tzt−1

= T−1,

(T14, Tu0
)

�−→ Tzt−1

Tzt = T0, Tzt = Ta0 , (T15, Tw0
)

�−→ Tzt

Tzt+1
= T1, Tw1

S1−−→ Tzt+1
, Tv1

S2−−→ T5

(T16, T5, Ta1)
�2
−−→ Tzt+1



Γu0
= Γu1

,Γv0 = Γv1 ,Γw0
= Γw1

Γu1

S1−−→ Γa,Γa
branch−−−−→ (Γa0 ,Γa1)

Γzt−1
= Γv0 ,Γzt−1

= Γ−1,

(Γ14,Γu0
)

�−→ Γzt−1

Γzt = Γ0, Γzt = Γa0 , (Γ15,Γw0
)

�−→ Γzt

Γzt+1
= Γ1,Γw1

S1−−→ Γzt+1
,Γv1

S2−−→ Γ5

(Γ16,Γ5,Γa1)
�2
−−→ Γzt+1

(E20)

For each �2, the output of conModAdd in Algorithm 2 returns (p, q).
According to Section 4.1, its contribution to the correlations can be evaluated
as 2−(|p|+2|q|). We use bobj in Eq. (E21) to define M.obj.

bobj =
∑
∀�

|Γoc|+
∑
∀�2

(|p|+ 2|q|) + 6(|Tu1
|+ |Tv1

|+ |Tw1
|) (E21)

For MT , each � and �2 model construction call (Algorithm 3 and Algo-
rithm 4) returns a τ = (τ0, . . . , τ3) vector. According to Section 4.2, we can

56 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

define tobj as Eq. (E22) and set MT .obj ← min tobj for searching optimal
(T`, Tz)’s.

tobj = 8
∑
∀�

3∑
i=0

τi +
∑
∀�2

(19τ0 + 21τ1 + 21τ2 + 20τ3) + 6(|Tu1 |+ |Tv1 |+ |Tw1 |)

(E22)
There is only 1 optimal truncated mask solution forMT with tobj = 53. With
bobj in Eq. (E22), There is Pmin = 35 and the Gurobi solver can exhaust all
solutions with P ≤ 37. We can further set P to values ≥ 38 so as to acquire
more candidates. The best masks in Table E7 can be covered with P = 38.

Table E7: The linear masks for SNOW 3G when Γz2 = Γ5 = 0x1014190f

such that |Cor| ≥ 2−21

Γz0 Γz1 Γ14 Γ15 Γ16 log(|Cor|) Ref.

0x00000002 0x00000001 0x00000003 0x00000001 0x1014190f -20.386 new
0x00000078 0x00000001 0x00000058 0x00000001 0x1014190f -20.409 new
0x00000058 0x00000001 0x00000078 0x00000001 0x1014190f -20.409 new
0x00000030 0x00000001 0x00000030 0x00000001 0x1014190f -20.479 [30]
0x00000020 0x00000001 0x00000020 0x00000001 0x1014190f -20.479 [30]
0x000000d1 0x00000001 0x000000d9 0x00000001 0x1014190f -20.665 new
0x00000001 0x00000001 0x00000001 0x00000001 0x1014190f -20.801 [30]
0x00000002 0x00000005 0x00000003 0x00000007 0x1014190b -20.804 new
0x00000078 0x00000005 0x00000058 0x00000007 0x1014190b -20.827 new
0x00000058 0x00000005 0x00000078 0x00000007 0x1014190b -20.827 new
0x0000002d 0x00000001 0x0000003d 0x00000001 0x1014190f -20.894 new
0x00000020 0x00000005 0x00000020 0x00000007 0x1014190b -20.898 new
0x00000030 0x00000005 0x00000030 0x00000007 0x1014190b -20.898 new
0x000000a0 0x00000001 0x000000f0 0x00000001 0x1014190f -20.902 new
0x000000c2 0x00000001 0x00000082 0x00000001 0x1014190f -20.943 new
0x00000002 0x00000004 0x00000003 0x00000004 0x1014190a -20.974 new
0x00000078 0x00000004 0x00000058 0x00000004 0x1014190a -20.997 new
0x00000058 0x00000004 0x00000078 0x00000004 0x1014190a -20.997 new

E.2 Details for SNOW 2.0

For SNOW 2.0, we can directly deduce the bitwise MILP modelM and acquire
(Γ`,Γz) directly. M can be deduced from the intermediate state linear masks
satisfying Eq. (E23).

Γu0
= Γu1

, Γv0
= Γv1

Γzt = Γv0
, Γzt = Γ0, (Γ15,Γu0

)
�−→ Γzt

Γzt+1 = Γ1, Γu1

S1−→ Γzt+1 , (Γ16,Γ5,Γv1)
�2

−−→ Γzt+1

(E23)

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 57

Similar to SNOW 3G, M for SNOW 2.0 has objective M.obj ← min bobj
with the bobj defined as Eq. (E24)

bobj =
∑
∀�

|Γoc|+
∑
∀�2

(|p|+ 2|q|) + 6|Tu1
| (E24)

Therefore, Candidate Search for SNOW 2.0 is accomplished with a simpli-
fied Algorithm 7 skipping all MT -related steps (Step 2,3,5). According to the
solutions of M, we have Pmin = 21 and the solver enables us to acquire all
solutions with bobj ≤ 24. We also get another millions of by setting P = 25
and P ≥ 26. In fact, the best (Γ`,Γz)’s in Table E8 are acquired with P ≤ 26.

Table E8: The linear masks for SNOW 2.0 such that |Cor| ≥ 2−15

Γz0 Γz1 Γ15 Γ16 Γ5 log(|Cor|) Ref.
0x01800001 0x01800001 0x01800001 0x01800001 0x01800001 -14.411 [28]
0x01000001 0x01800001 0x01000001 0x01000001 0x01800001 -14.411 new
0x01000001 0x01800001 0x01000001 0x01800001 0x01000001 -14.411 new
0x01800001 0x01800001 0x01800001 0x01000001 0x01000001 -14.411 new
0x00018001 0x00018001 0x00018001 0x00018001 0x00018001 -14.496 [28]
0x00010001 0x00018001 0x00010001 0x00018001 0x00010001 -14.496 new
0x00018001 0x00018001 0x00018001 0x00010001 0x00010001 -14.496 new
0x00010001 0x00018001 0x00010001 0x00010001 0x00018001 -14.496 new
0x00010081 0x00010081 0x00010081 0x00010081 0x00010081 -14.635 [28]
0x00010081 0x00010081 0x00010081 0x000100c1 0x000100c1 -14.635 new
0x000180c1 0x000140c1 0x000100c1 0x000180c1 0x000180c1 -14.963 new
0x000100c1 0x000140c1 0x000180c1 0x000180c1 0x000100c1 -14.963 new
0x000180c1 0x000140c1 0x000100c1 0x000100c1 0x000100c1 -14.963 new
0x00018081 0x000140c1 0x00010081 0x000180c1 0x00018081 -14.963 new
0x000100c1 0x000140c1 0x000180c1 0x000100c1 0x000180c1 -14.963 new
0x00018081 0x000140c1 0x00010081 0x00018081 0x000180c1 -14.963 new
0x000180c1 0x000140c1 0x000100c1 0x00018081 0x00018081 -14.963 new
0x00018081 0x000140c1 0x00010081 0x000100c1 0x00010081 -14.963 new
0x000180c1 0x000140c1 0x000100c1 0x00010081 0x00010081 -14.963 new
0x00018081 0x000140c1 0x00010081 0x00010081 0x000100c1 -14.963 new
0x000100c1 0x000140c1 0x000180c1 0x00018081 0x00010081 -14.963 new
0x000100c1 0x000140c1 0x000180c1 0x00010081 0x00018081 -14.963 new
0x00010081 0x000140c1 0x00018081 0x00018081 0x000100c1 -14.963 new
0x00010081 0x000140c1 0x00018081 0x000180c1 0x00010081 -14.963 new
0x00010081 0x000140c1 0x00018081 0x000100c1 0x00018081 -14.963 new
0x00010081 0x000140c1 0x00018081 0x00010081 0x000180c1 -14.963 new

Appendix F Proof of Theorem 3

Proof The function A is defined as

A(Sc0) =
∑
Sd0

ρ0(Sc0, Sd0),

where

ρ0(Sc0, Sd0) =
∏3

j=0
U (a0

j ,u
j
0,v

j
0,w

0
j)[cj0|d

0
j][0|d

0
j−1].

58 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

In terms of the definition of the matrices U (a0
j ,u

j
0,v

j
0,w

0
j) for j = 0, 1, 2, 3, we deduce

that for any fixed (σ0
0 , σ

1
0 , σ

2
0 , σ

3
0) ∈ {0, 1}4, we have

A(σ0
0 , σ

1
0 , σ

2
0 , σ

3
0) = Pr


3⊕
j=0

f̄ (a0
j ,u

j
0,v

j
0,w

0
j)(·) = 0, c00 = σ0

0 , c
1
0 = σ1

0 , c
2
0 = σ2

0 , c
3
0 = σ3

0


−Pr


3⊕
j=0

f̄ (a0
j ,u

j
0,v

j
0,w

0
j)(·) = 1, c00 = σ0

0 , c
1
0 = σ1

0 , c
2
0 = σ2

0 , c
3
0 = σ3

0

 .

The function B is defined as

B(Sc1) =
∑
Sd1

∑
Sc0

A(Sc0) · ρ1(Sc0, Sc1, Sd1),

where

ρ1(Sc0, Sc1, Sd1) =
∏3

j=0
U (a1

j ,u
j
1,v

j
1,w

1
j)[cj1|d

1
j][c

j
0|d

1
j−1].

Similarly we deduce that for any fixed (σ0
1 , σ

1
1 , σ

2
1 , σ

3
1) ∈ {0, 1}4,

B(σ0
1 , σ

1
1 , σ

2
1 , σ

3
1) = Pr


1⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 0, c01 = σ0

1 , c
1
1 = σ1

1 , c
2
1 = σ2

1 , c
3
1 = σ3

1


−Pr


1⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 1, c01 = σ0

1 , c
1
1 = σ1

1 , c
2
1 = σ2

1 , c
3
1 = σ3

1


Similarly, from the definitions of the functions C and D respectively, we can deduce
that

C(σ0
2 , σ

1
2 , σ

2
2 , σ

3
2) = Pr


2⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 0, c02 = σ0

2 , c
1
2 = σ1

2 , c
2
2 = σ2

2 , c
3
2 = σ3

2


−Pr


2⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 1, c02 = σ0

2 , c
1
2 = σ1

2 , c
2
2 = σ2

2 , c
3
2 = σ3

2

 ,

for any fixed (σ0
2 , σ

1
2 , σ

2
2 , σ

3
2) ∈ {0, 1}4, and

D(σ0
3 , σ

1
3 , σ

2
3 , σ

3
3) = Pr


3⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 0, c03 = σ0

3 , c
1
3 = σ1

3 , c
2
3 = σ2

3 , c
3
3 = σ3

3


−Pr


3⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 1, c03 = σ0

3 , c
1
3 = σ1

3 , c
2
3 = σ2

3 , c
3
3 = σ3

3

 ,

for any fixed (σ0
3 , σ

1
3 , σ

2
3 , σ

3
3) ∈ {0, 1}4.

Finally, we derive∑
Sc3

D(Sc3) =
∑

σ0
3∈{0,1}

∑
σ1
3∈{0,1}

∑
σ2
3∈{0,1}

∑
σ3
3∈{0,1}

D(σ0
3 , σ

1
3 , σ

2
3 , σ

3
3)

= Pr


3⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 0

− Pr


3⊕
k=0

3⊕
j=0

f̄ (akj ,u
j
k,v

j
k,w

k
j)(·) = 1


=Cor((U ,V ,W)

F−→ A).

Thus we complete the proof. �

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 59

Appendix G Detailed Process for Carrying
out Step 1 to Step 5

In the following part, we will describe our strategy for carrying out Step 1 to
Step 4 in turn.

• Step 1: Let us recall that the expression for A(Sc0) is

A(Sc0) =
∑
Sd0

ρ0(Sc0, Sd0),

where

ρ0(Sc0, Sd0) =

3∏
j=0

U (a0
j ,u

j
0,v

j
0,w

0
j)[cj0|d0

j][0|d0
j−1].

To compute A(Sc0) for all the 24 combinations of involved local carries in
Sc0, we do the following:

1.1 Compute

A0(c00, c
1
0, d

0
1) ,

∑
d00
U (a0

0,u
0
0,v

0
0,w

0
0)[c00|d0

0][0|0] · U (a0
1,u

1
0,v

1
0,w

0
1)[c10|d0

1][0|d0
0]

for all the 23 choices of (c00, c
1
0, d

0
1). The time complexity is O(24) and the

memory complexity is O(23).

1.2 Compute A1(c00, c
1
0, c

2
0, d

0
2) ,

∑
d01
A0(c00, c

1
0, d

0
1) ·U (a0

2,u
2
0,v

2
0,w

0
2)[c20|d0

2][0|d0
1]

for all the 24 choices of (c00, c
1
0, c

2
0, d

0
2). The time complexity is O(25) and

the memory complexity is O(24).
1.3 Compute

A2(c00, c
1
0, c

2
0, c

3
0, d

0
3) ,

∑
d02
A1(c00, c

1
0, c

2
0, d

0
2) ·U (a0

3,u
3
0,v

3
0,w

0
3)[c30|d0

3][0|d0
2] for

all the 25 choices of (c00, c
1
0, c

2
0, c

3
0, d

0
3). The time complexity is O(26) and

the memory complexity is O(25).
1.4 Compute A(Sc0) =

∑
d03
A2(c00, c

1
0, c

2
0, c

3
0, d

0
3) for all the 24 choices in

(Sc0), i.e., (c00, c
1
0, c

2
0, c

3
0). The time complexity is O(25) and the memory

complexity is O(24).

Complexity of Step 1. The total time complexity of Step 1 is around
O(27.17).

• Step 2: The expression for B(Sc1) is

B(Sc1) =
∑
Sd1

∑
Sc0

A(Sc0) · ρ1(Sc0, Sc1, Sd1),

where

ρ1(Sc0, Sc1, Sd1) =

3∏
j=0

U (a1
j ,u

j
1,v

j
1,w

1
j)[cj1|d1

j][c
j
0|d1

j−1].

We describe the process for computing B(Sc1) for all 24 combinations of
involved local carries in Sc1 as follows.

60 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

2.1 Compute

B0(c10, c
2
0, c

3
0, c

0
1, d

1
0) ,

∑
c00
A(c00, c

1
0, c

2
0, c

3
0) · U (a1

0,u
0
1,v

0
1,w

1
0)[c01|d1

0][c00|0] for

all the 25 choices of (c10, c
2
0, c

3
0, c

0
1, d

1
0). The time complexity is O(26) and

the memory complexity is O(25).
2.2 Compute B1(c10, c

2
0, c

3
0, c

0
1, c

1
1, d

1
1) ,∑

d10
B0(c10, c

2
0, c

3
0, c

0
1, d

1
0) ·U (a1

1,u
1
1,v

1
1,w

1
1)[c11|d1

1][c10|d1
0] for all the 26 choices

of (c10, c
2
0, c

3
0, c

0
1, c

1
1, d

1
1). The time complexity is O(27) and the memory

complexity is O(26).
2.3 Compute B2(c20, c

3
0, c

0
1, c

1
1, d

1
1) ,

∑
c10
B1(c10, c

2
0, c

3
0, c

0
1, c

1
1, d

1
1) for all the 25

choices of (c20, c
3
0, c

0
1, c

1
1, d

1
1). The time complexity is O(26) and the memory

complexity is O(25).
2.4 Compute B3(c20, c

3
0, c

0
1, c

1
1, c

2
1, d

1
2) ,∑

d11
B2(c20, c

3
0, c

0
1, c

1
1, d

1
1) ·U (a1

2,u
2
1,v

2
1,w

1
2)[c21|d1

2][c20|d1
1] for all the 26 choices

of (c20, c
3
0, c

0
1, c

1
1, c

2
1, d

1
2). The time complexity is O(27) and the memory

complexity is O(26).
2.5 Compute B4(c30, c

0
1, c

1
1, c

2
1, d

1
2) ,

∑
c20
B3(c20, c

3
0, c

0
1, c

1
1, c

2
1, d

1
2) for all the 25

choices of (c30, c
0
1, c

1
1, c

2
1, d

1
2). The time complexity is O(26) and the memory

complexity is O(25).
2.6 Compute B5(c30, c

0
1, c

1
1, c

2
1, c

3
1, d

1
3) ,∑

d12
B4(c30, c

0
1, c

1
1, c

2
1, d

1
2) ·U (a1

3,u
3
1,v

3
1,w

1
3)[c31|d1

3][c30|d1
2] for all the 26 choices

of (c30, c
0
1, c

1
1, c

2
1, c

3
1, d

1
3). The time complexity is O(27) and the memory

complexity is O(26).
2.7 Compute B6(c01, c

1
1, c

2
1, c

3
1, d

1
3) ,

∑
c30
B5(c30, c

0
1, c

1
1, c

2
1, c

3
1, d

1
3) for all the 25

choices of (c01, c
1
1, c

2
1, c

3
1, d

1
3). The time complexity is O(26) and the memory

complexity is O(25).
2.8 Compute B(Sc1) =

∑
d13
B6(c01, c

1
1, c

2
1, c

3
1, d

1
3) for all the 24 choices in

(Sc1), i.e., (c01, c
1
1, c

2
1, c

3
1). The time complexity is O(25) and the memory

complexity is O(24).

Complexity of Step 2. The total time complexity of Step 2 is around
O(29.39).

• Step 3: The expression for C(Sc2) is

C(Sc2) =
∑
Sd2

∑
Sc1

B(Sc1) · ρ2(Sc1, Sc2, Sd2),

where

ρ2(Sc1, Sc2, Sd2) =

3∏
j=0

U (a2
j ,u

j
2,v

j
2,w

2
j)[cj2|d2

j][c
j
1|d2

j−1].

The computation of C(Sc2) for all 24 combinations of involved local carries
in Sc2 is carried out according to the following steps.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 61

3.1 Compute

C0(c11, c
2
1, c

3
1, c

0
2, d

2
0) ,

∑
c01
B(c01, c

1
1, c

2
1, c

3
1) · U (a2

0,u
0
2,v

0
2,w

2
0)[c02|d2

0][c01|0] for

all the 25 choices of (c11, c
2
1, c

3
1, c

0
2, d

2
0). The time complexity is O(26) and

the memory complexity is O(25).
3.2 Compute C1(c11, c

2
1, c

3
1, c

0
2, c

1
2, d

2
1) ,∑

d20
C0(c11, c

2
1, c

3
1, c

0
2, d

2
0) ·U (a2

1,u
1
2,v

1
2,w

2
1)[c12|d2

1][c11|d2
0] for all the 26 choices

of (c11, c
2
1, c

3
1, c

0
2, c

1
2, d

2
1). The time complexity is O(27) and the memory

complexity is O(26).
3.3 Compute C2(c21, c

3
1, c

0
2, c

1
2, d

2
1) ,

∑
c11
C1(c11, c

2
1, c

3
1, c

0
2, c

1
2, d

2
1) for all the 25

choices of (c21, c
3
1, c

0
2, c

1
2, d

2
1). The time complexity is O(26) and the memory

complexity is O(25).
3.4 Compute C3(c21, c

3
1, c

0
2, c

1
2, c

2
2, d

2
2) ,∑

d21
C2(c21, c

3
1, c

0
2, c

1
2, d

2
1) ·U (a2

2,u
2
2,v

2
2,w

2
2)[c22|d2

2][c21|d2
1] for all the 26 choices

of (c21, c
3
1, c

0
2, c

1
2, c

2
2, d

2
2). The time complexity is O(27) and the memory

complexity is O(26).
3.5 Compute C4(c31, c

0
2, c

1
2, c

2
2, d

2
2) ,

∑
c21
C3(c21, c

3
1, c

0
2, c

1
2, c

2
2, d

2
2) for all the 25

choices of (c31, c
0
2, c

1
2, c

2
2, d

2
2). The time complexity is O(26) and the memory

complexity is O(25).
3.6 Compute C5(c31, c

0
2, c

1
2, c

2
2, c

3
2, d

2
3) ,∑

d22
C4(c31, c

0
2, c

1
2, c

2
2, d

2
2) ·U (a2

3,u
3
2,v

3
2,w

2
3)[c32|d2

3][c31|d2
2] for all the 26 choices

of (c31, c
0
2, c

1
2, c

2
2, c

3
2, d

2
3). The time complexity is O(27) and the memory

complexity is O(26).
3.7 Compute C6(c02, c

1
2, c

2
2, c

3
2, d

2
3) ,

∑
c31
C5(c31, c

0
2, c

1
2, c

2
2, c

3
2, d

2
3) for all the 25

choices of (c02, c
1
2, c

2
2, c

3
2, d

2
3). The time complexity is O(26) and the memory

complexity is O(25).
3.8 Compute C(Sc2) =

∑
d23
C6(c02, c

1
2, c

2
2, c

3
2, d

2
3) for all the 24 choices in

(Sc2), i.e., (c02, c
1
2, c

2
2, c

3
2). The time complexity is O(25) and the memory

complexity is O(24).

Complexity of Step 3. The total time complexity of Step 3 is around
O(29.39).

• Step 4: The expression for D(Sc3) is

D(Sc3) =
∑
Sd3

∑
Sc2

C(Sc2) · ρ3(Sc2, Sc3, Sd3),

where

ρ3(Sc2, Sc3, Sd3) =

3∏
j=0

U (a3
j ,u

j
3,v

j
3,w

3
j)[cj3|d3

j][c
j
2|d3

j−1].

The computation of D(Sc3) for all 24 combinations of involved local carries
in Sc3 is carried out according to the following steps.

62 Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search

4.1 Compute

D0(c12, c
2
2, c

3
2, c

0
3, d

3
0) ,

∑
c02
C(c02, c

1
2, c

2
2, c

3
2) · U (a3

0,u
0
3,v

0
3,w

3
0)[c03|d3

0][c02|0] for

all the 25 choices of (c12, c
2
2, c

3
2, c

0
3, d

3
0). The time complexity is O(26) and

the memory complexity is O(25).
4.2 Compute D1(c12, c

2
2, c

3
2, c

0
3, c

1
3, d

3
1) ,∑

d30
D0(c12, c

2
2, c

3
2, c

0
3, d

3
0) ·U (a3

1,u
1
3,v

1
3,w

3
1)[c13|d3

1][c12|d3
0] for all the 26 choices

of (c12, c
2
2, c

3
2, c

0
3, c

1
3, d

3
1). The time complexity is O(27) and the memory

complexity is O(26).
4.3 Compute D2(c22, c

3
2, c

0
3, c

1
3, d

3
1) ,

∑
c12
D1(c12, c

2
2, c

3
2, c

0
3, c

1
3, d

3
1) for all the 25

choices of (c22, c
3
2, c

0
3, c

1
3, d

3
1). The time complexity is O(26) and the memory

complexity is O(25).
4.4 Compute D3(c22, c

3
2, c

0
3, c

1
3, c

2
3, d

3
2) ,∑

d31
D2(c22, c

3
2, c

0
3, c

1
3, d

3
1) ·U (a3

2,u
2
3,v

2
3,w

3
2)[c23|d3

2][c22|d3
1] for all the 26 choices

of (c22, c
3
2, c

0
3, c

1
3, c

2
3, d

3
2). The time complexity is O(27) and the memory

complexity is O(26).
4.5 Compute D4(c32, c

0
3, c

1
3, c

2
3, d

3
2) ,

∑
c22
D3(c22, c

3
2, c

0
3, c

1
3, c

2
3, d

3
2) for all the 25

choices of (c32, c
0
3, c

1
3, c

2
3, d

3
2). The time complexity is O(26) and the memory

complexity is O(25).
4.6 Compute D5(c32, c

0
3, c

1
3, c

2
3, c

3
3, d

3
3) ,∑

d32
D4(c32, c

0
3, c

1
3, c

2
3, d

3
2) ·U (a3

3,u
3
3,v

3
3,w

3
3)[c33|d3

3][c32|d3
2] for all the 26 choices

of (c32, c
0
3, c

1
3, c

2
3, c

3
3, d

3
3). The time complexity is O(27) and the memory

complexity is O(26).
4.7 Compute D6(c03, c

1
3, c

2
3, c

3
3, d

3
3) ,

∑
c32
D5(c32, c

0
3, c

1
3, c

2
3, c

3
3, d

3
3) for all the 25

choices of (c03, c
1
3, c

2
3, c

3
3, d

3
3). The time complexity is O(26) and the memory

complexity is O(25).
4.8 Compute D(Sc3) =

∑
d33
D6(c03, c

1
3, c

2
3, c

3
3, d

3
3) for all the 24 choices in

(Sc3), i.e., (c03, c
1
3, c

2
3, c

3
3). The time complexity is O(25) and the memory

complexity is O(24).

Complexity of Step 4. The total time complexity of Step 4 is around
O(29.39).

After the values of D(Sc3) for all the combinations of involved local carries in

Sc3 are obtained, the accurate value of Cor((U ,V ,W)
F−→ A) can be derived

according to Theorem 3 as Cor((U ,V ,W)
F−→ A) =

∑
Sc3

D(Sc3) with a

time complexity of O(24). To sum up, the total time complexity for computing

Cor((U ,V ,W)
F−→ A) according to Step 1 to Step 5 is around 27.17 + 29.39 +

29.39 + 29.39 + 24 = O(211).

Appendix H Searching for 4-tuples of Vectors

Here we present the method in [28, 30] for searching 4-tuples of column vectors
of the generator matrix G which add to 0 on some bits.

Combining MILP Modeling with Algebraic Bias Evaluation for Linear Mask Search 63

Rewriting the matrix G in column vectors as G = (g1,g2, ...,gN), we try
to find the XORs of the l-bit column vectors that vanish on some l − l′ bits.
Specifically for SNOW 3G and SNOW 2.0, we look for a number of 4-tuples
from G which add to 0 on their most significant l−l′ bits. As stated in [28, 30],
this can be solved using Wagner’s k-tree algorithm [39] by combining a small
technique. Below we illustrate this process.

Let l1 and l2 be two positive integers such that l1 + l2 = l − l′, and highn(a)
be the value of the vector a on the most significant n bits. Collecting the N
column vectors of G in one single list L, we carry out the following two steps:

• Create a new list L1 from the original list L composed of all the XORs of
gj1 and gj2 with gj1 6= gj2 , gj1 ,gj2 ∈ L such that highl1(gj1 ⊕ gj2) = 0.
We say that l1 bits are eliminated. For j = 1, 2, ..., N , we will regard the
column vectors gj as random vectors, thus L1 has an expected size of m1 ,
(N2) 2−l1 ≈ N22−(l1+1). This step is fulfilled by a sort-and-merge procedure
as follows: First, sort the N vectors into 2l1 equivalence classes according to
their values on the most significant l1 bits, thus any two vectors in the same
equivalence class have the same value on these bits. Then, look at each pair
of vectors (gj1 ,gj2) in each equivalence class to create L1.

• Create a new list L2 from L1 by further eliminating l2 bits using the same
sort-and-merge procedure as that in Step 1. That is, first sort the m1 vectors
in L1 into 2l2 equivalence classes according to their values on the next most
significant l2 bits, and then look at each pair of vectors in each equivalence
class to create L2. Similarly, the expected number of elements in L2 is
m2 , (m1

2) 2−l2 ≈ m2
12−(l2+1).

Following the above steps, we make an estimation that, we obtain about
m2 4-tuples7 (gj1 ,gj2 ,gj3 ,gj4) such that highl−l′(gj1 ⊕ gj2 ⊕ gj3 ⊕ gj4) =
0, which correspond to m2 parity checks with the correlation α4 involving
only x0, x1, ..., xl′−1. The running time and memory complexities of the above
procedure are essentially proportional to the size of the lists that have been
processed, which can be estimated as O(N +m1).

7As illustrated in [28], there may exist some repeated tuples, whose number is comparatively
quite small to the usual cases with non-repeated elements. Note that these repeated samples will
not affect the processing phase of the LFSR initial state recovery, since the absolute values of the
correlation of folded approximation relations in such cases is instead larger than the normal cases.

	Introduction
	Preliminaries
	Notations and Definitions
	Brief Descriptions of SNOW-V/Vi, SNOW 3G and SNOW 2.0
	SNOW-V/Vi
	SNOW 3G
	SNOW 2.0

	Linear Masks for Correlation Attack on Stream Ciphers
	MILP Modeling for Searching Linear Masks
	Algebraic Bias Evaluation Technique for Correlation Computation

	Bitwise Breakdowns of Two Modular Addition-based Operations
	The Ordinary Modular Addition Operation
	The Consecutive Modular Addition Operation

	MILP Models for Linear Propagation of Modular Additions
	MILP Models for Bitwise Linear Propagation of Modular Additions
	Truncated Linear Propagation of Modular Additions and Its MILP Description

	Algebraic Bias Evaluation of F-Function
	Linear Mask Search for SNOW-V/Vi, SNOW 3G and SNOW 2.0
	Linear Mask Search for SNOW-V/Vi
	Candidate Search for SNOW-V/Vi
	Correlation Computation for SNOW-V/Vi

	Linear Mask Search for SNOW 3G
	Candidate Search for SNOW 3G
	Correlation Computation for SNOW 3G

	Linear Mask Search for SNOW 2.0
	Candidate Search for SNOW 2.0
	Correlation Computation for SNOW 2.0

	Using Linear Masks in Fast Correlation Attacks
	Conclusion
	Overall Schematic of SNOW-V/Vi, SNOW 3G and SNOW 2.0
	MILP Model Construction of Common Operations
	Bitwise Linear Propagation Rules
	Truncated Linear Propagation Rules

	MILP Model Construction of Bitwise Breakdown Functions
	Truncated Linear MILP Model Construction of Bytewise Breakdown Functions
	Details for Accomplishing Candidate Search
	Details for SNOW 3G
	Details for SNOW 2.0

	Proof of Theorem 3
	Detailed Process for Carrying out Step 1 to Step 5
	Searching for 4-tuples of Vectors

