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Abstract. Truncated differential cryptanalyses were introduced by Knudsen in 1994.
They are a well-known family of attacks that has arguably received less attention
than some other variants of differential attacks. This paper gives some new insights
into the theory of truncated differential attacks, specifically the the conditions of
provable security of SPN ciphers with MDS diffusion matrices against this type of
attack. Furthermore, our study extends to various versions within the QARMA family
of block ciphers, unveiling the only valid instances of single-tweak attacks on 10-
round QARMAv1-64, 10-round QARMAv1-128, and 10- and 11-round QARMAv2-64. These
attacks benefit from the optimal truncated differential distinguishers as well as some
evolved key-recovery techniques.
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1 Introduction

In the realm of modern cryptography, the design and analysis of secure block ciphers
play a pivotal role in ensuring the confidentiality of sensitive data. The development of
advanced encryption algorithms has been an ongoing endeavor, aiming to thwart increas-
ingly sophisticated attacks while maintaining implementation efficiency. One of the key
aspects in this evolution is the study of the variations of differential attacks, which are
powerful techniques utilized by cryptanalysts to probe the vulnerabilities of cryptographic
primitives. This paper focuses on the truncated differential attack, a variant of differential
attack proposed in 1994 by Knudsen [1], for security evaluation of block ciphers.

Despite some instances of cryptanalysis based on truncated differential attacks as an
independent attack [2, 3, 4], this attack has garnered less attention compared to other
variations, such as the impossible differential attack, higher-order differential attacks,
boomerang, and rectangle attacks. The primary utilization of truncated differential path
search has been targeted for discovering truncated paths with minimal activation of S-
boxes, to finally instantiated by a high-probability concrete differential path [5].

In a recent work [6], a novel MILP (Mixed Integer Linear Programming) based tool
has been introduced for identifying the optimum truncated differential paths and applied
to MIDORI, SKINNY, and CRAFT block ciphers, covering a greater number of rounds with
higher probabilities compared to their concrete differential counterparts.

This work subsequently garnered some interest in truncated differential attacks. In
[7], considering that [6] has utilized certain approximations, an effective algorithm for
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accurately calculating the truncated differential path probability for a given truncated
path was proposed. Another subsequent work, outlined in [8], aimed at calculating the
probability of truncated differentials, considering the clustering effects (also referred to as
the differential effect). Furthermore, certain studies employed the methodology presented
in [6] to automate the discovery of other distinguishers. These encompass the triangle
attack [9] and mixture differential attacks [10], as examples. The significant advantages
of truncated differential attacks, compared to concrete differential attacks, are as follows.

o Simplicity. The truncated differential attack utilizes a word-oriented variable defi-
nition, which results in much smaller search spaces. Moreover, it does not inherently
depend on the S-box details, hence its MILP model is free from the bottleneck of
S-box modeling. Consequently, the truncated differential automatic search tools
display enhanced running time compared to the concrete (bit-oriented) differentials.

o Efficiency. There are notable instances where the truncated differential distin-
guisher outperforms its concrete counterpart. Some examples include KLEIN [2, 3],
MIDORI, SKINNY, and CRAFT [6]

e Value-insensitivity. The truncated differential distinguisher is inherently indepen-
dent of the concrete value of the active words. This makes the key recovery part
of the attack more flexible, potentially requiring less key material to be guessed, at
the two edges of the distinguisher.

Reflection ciphers are a class of symmetric encryption algorithms that exhibit a unique
property: the set of encryption functions is identical to the set of decryption functions,
making the cipher "reflect" the input to produce the output. This design strategy aims to
reduce the implementation cost of the cipher, by minimizing the overhead of decryption
on top of the encryption.

PRINCE block cipher [11], an SPN cipher with FX construction, stands as one of the
most renowned examples of reflection ciphers. To be precise, it possesses the a-reflection
property, meaning that decryption is equivalent to the encryption with the related key
Kiee = Kene @ o, where « is a constant. In [12], a new attack called the reflection attack
is proposed as a dedicated approach for cryptanalysis of PRINCE-like ciphers. It exploits
the existence of too many fixed points in the intermediate rounds of the cipher and its
extension to the full cipher.

Following in the footsteps of PRINCE, MANTIS [13] emerges as the subsequent reflec-
tion cipher again in the FX framework. It takes inspiration from PRINCE’s design while
evolving into a tweakable block cipher. Notably, MANTIS integrates certain choices from
MIDORI’s components [14] to enhance its structure. However, a practical attack on
MANTIS; has been presented in [15], attributed to the MANTIS’s extremely lightweight
components, including the tweak schedule, and the vulnerability resulting from the inter-
action between the MIDORI-inspired round function and the PRINCE-inspired inner rounds.

The newly introduced QARMAvV2 family of block ciphers [16] and its predecessor QARMAv1
family (formerly known as QARMA) [17] are the most recent reflection ciphers.

Besides reflection property, QARMA boasts additional features such as being tweakable,
lightweight, and low-latency. Drawing inspiration from PRINCE, MIDORI, and MANTIS,
QARMA exhibits notable differences both in the structure and in the choice of components.
Unlike its predecessors, QARMA adopts a three-round Even-Mansour (EM) construction [18]
rather than adhering to the FX construction. This departure from the FX construction
was motivated by the cryptanalysis presented in [19]. Furthermore, QARMA’s decision to
pivot to EM construction is motivated by the improved time, memory, and data complex-
ities, which offer superior bounds compared to the FX construction.

Insights gleaned from the MITM and accelerated exhaustive search attacks on PRINCE
[20], that exploited the unkeyed central construction of PRINCE, the designers of QARMA
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included a key addition in the middle permutation of QARMA. Moreover, this middle per-
mutation is non-involutory to avoid predictable differences at its two sides. Another
innovation within the QARMA design pertains to the introduction of a family of almost
MDS matrices defined over a ring with zero divisors. They allow to encode rotations in
their operation while maintaining the minimal latency associated with binary matrices.
The matrices used in QARMA are with the minimum and close to minimum fixed points
for 64 and 128-bit versions, respectively. This property as well as suitable whitening keys
around the middle permutation makes it secure against the reflection attacks [12].

Similar to PRINCE and MANTIS, QARMAv1 asserts a k-bit time-data trade-off security,
with k as its key size. This implies that for any attack on QARMAv1 to be valid, the product
of time and data complexities must be less than 2¥. However, the designers of QARMAv2
highlighted that such a trade-off threshold does not apply to QARMAv2 attacks.

It is worth noting that the QARMAv1 cipher has been the subject of various cryptanal-
ysis efforts, most of which in the related-tweak model, including MITM attack [21, 22],
statistical saturation attack [23] and impossible differential attack [24, 25]. The only single-
tweak attack [21] is a 10-round MITM attack, but it fails to meet the time-data tradeoff
threshold. To the best of our knowledge, the only third-party analysis of QARMAv2 is an
integral attack in the related-tweak model [26]. A review and discussion on the details of
QARMA attacks, is provided in Sec. 5.2 of the paper. The designers of QARMA have proposed
some security bounds against the differential attack by counting the minimum number of
active S-boxes using Mouha et al’s MILP search method [27]. However, the resistance of
these ciphers against the truncated differential attack has not been evaluated, either by
the designer or external cryptanalysts.

Contributions. This paper gives new insights into the theory of the relatively less dis-
cussed truncated differential attack and adds a new dimension to the cryptanalysis of
QARMA by introducing the first valid single-tweak truncated differential attacks on both
variants of 10-round QARMAv1 as well as 10 and 11-round QARMAv2-64. The contributions
of this paper are as follows:

o Extension of truncated differential attack theory: The paper extends the theory of
truncated differential attacks by formulating the complexities of this attack, proving
the forward/backward symmetry of this attack, and also providing the provable
security of SPN ciphers with MDS MixColumns against this kind of attack.

e Discovering optimal truncated differential distinguishers for QARMA: The non-MDS
MixColumns matrix within the QARMA variants renders them susceptible to truncated
differential analysis. Focusing these ciphers, and employing the automated MILP-
based method proposed in [6], the paper identifies the optimum 6 and 4-round trun-
cated differential distinguishers for QARMAv1-64 and 128, and QARMAv2-64 variants,
all of which has the same structure.

e Single-Tweak attack on 10-round QARMAv1 variants: Based on the identified distin-
guishers, the paper proposes the first valid attacks on both variants of 10-round
QARMAv1 meeting the security claim trade-off threshold given by the designer of
QARMAvV1; i.e. DT < 2F with data and time complexities D and T and the key size
k. The attack exploits some evolved key-recovery methods based on list merging
techniques and precomputation.

o Single-Tweak key-recovery attacks on 10 and 11-round QARMAv2-64: The paper pro-
poses the first key-recovery attacks in the single-tweak model on QARMAv2-64. The
attacks exploit the redundancy of the key schedule and cover 10 and 11 rounds of
the cipher. It deserves to be noted that although the time-data trade-off does not
exist for QARMAv2, the attack on 10-round QARMAv2-64 meets such restriction.
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2 Theoretical Background

In this paper, we consider a block cipher E : F} x F& — F2 with an n-bit plaintext X and
a k-bit key K. The input and output difference variables of E are denoted by AX and
AY, respectively. We assume E is a Markov cipher [28], where the subkeys of iterative
block cipher are assumed to be independent and uniformly distributed. This is the only
assumption behind the truncated differential attack, which is a very common and widely
accepted assumption in differential cryptanalysis.

Definition 1 (Concrete Differential Probability). For block cipher E, the differential
probability of the concrete input difference o € F3' and output difference 8 € F3' is
defined as:

Pr(a 2 B) = )E;{(AY = BIAX = a) [Ex(X)® Ex(X ®a) = 4] (1)

= Pr
X, K X,K

The differential (« £, B) is called an efficient distinguisher if Pryx g (o EN B) > 27"

Definition 2 (Truncated Differential Probability). For block cipher E, the truncated
differential probability with input truncated difference A;, C F3', and output truncated
difference Ay C F3', is defined as:

Pr (Ain 5 Agw) = (AY € Ag|AX € Ayy)

s

Pr
XK
E%[EK(X) O E(X ®a) € Ajut]a € Ay (2)
Definition 3 (Efficient Truncated Differential). The truncated differential (A;;, — Agut)
is called efficient if it can distinguish cipher E from a Pseudo Random Permutation (PRP),
which holds if:

PRP |Aout|

)?}‘((AML i Aout) > lf))(r(Azn — Aout) = on . (3)

The concept of efficient truncated differential was introduced in [7] under the termi-
nology of Expected Differential Distinguishability. This concept is defined as the average
differential probability over the output truncated differences, and it must be significantly
larger than 27" to be able to distinguish the cipher from a PRP. In the rest of the pa-
per, all the probabilities are taken over independent and uniformly distributed random
variables X and K. To streamline the presentation, we will omit X, K for simplicity.

Proposition 1 (Symmetry of the probability of concrete differential). For block cipher
E with concrete input-output differential pair (o, ), it holds that:

Pr(a B ) = Pr(8 £ a) (4)

Proposition 2 (Asymmetry of the probability of truncated differential [29]). For block
cipher E with truncated input-output differential pair (A, Aout) it holds that:

B Azn
Pr(Agur Z25 Aun) = Pr(Agy B Ay 120! (5)
|Aout|
Proof. The proof is given in Appendix A.1. O

Example 1. Fig. 1 shows a 9-round truncated differential distinguisher for Skinny-64
with the probability of 2740 in the forward direction [6]. The reverse truncated differential
in the backward direction is depicted by red arrows, which has the probability of 2756,
Note that this trail is consistent with Lemma 2, where |A;,| = 2% and |Ayy¢| = 22° and

E-! _ 4 _
P(Agut — D) =271025 =275,
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Figure 1: A 9-round truncated differential path for Skinny-64. The probability of black
(forward) direction is 274 and for red (backward) direction is 27°°

-1
Proposition 3. The truncated differential (A, £, Aoyt 1s efficient, iff (Aot £, Ain)
is efficient.
Proof. The proof is straightforward using Prop. 2. O

Definition 4 (Optimum Truncated Differential). The truncated differential (A, RN

Aoyt) is called optimum if it is efficient and has the maximal P(A;, £, Aput)| Al

Despite the concrete differential attack in which the data required for the distinguisher
is only proportional to the inverse of the differential probability [30], this is not the case
with the truncated differential distinguisher. This will be discussed more in Sec. 3.

Proposition 4. The differential (A;, £, Aout) s the optimum truncated differential for
-1

E, iff (Aout £, Ain) is the optimum one for E~L.

Proof. The proof is given in appendix A.2. O

Proposition 5 (Link between concrete and truncated differential probabilities [7]). For
block cipher E, with input and output truncated differences N, Aour C F3, it holds that:

E 1 E
Pr(Ajp — Aout) = m Z Pr(a — ) (6)
aeAin,
BEA ut
Proof. The proof is given in Appendix A.3. O

Prop. 5 implies that the probability of truncated differential (A;;, — Ayyt) is neither
greater nor smaller than each of its consistent concrete differentials (o« — ), € Ay, B €
Aoyt Moreover, assume (o — §*) is the optimum (highest-probability) concrete differ-
ential (which practically corresponds to minimum or near to minimum active S-boxes),
and (A}, — A% ) is the optimum truncated differential. Then, according to Prop. 5,

out
(a* — (*) is not necessarily an instantiation of (A, — A¥ ), i.e. it does not necessitate

mn out
that (a* — 8*) € (AL, = A%
This means that the truncated differential can serve as an independent distinguisher,
with the potential to surpass the performance of concrete differential distinguishers, in
some cases.

3 Truncated Differential Attack

Let (A £, Aoyut) be an rg-round truncated differential of probability 277 for block cipher
E. As shown in Fig. 2, we extend A;, in the backward direction for r;, rounds to get the
difference D;, and A,,; in the forward direction for r,,; rounds to get D, both with
probability 1. We denote |D,| = 2% and |A,| = 2%, where x € {in,out}. According to

Def. 3, (Ain £, A,ut) is an efficient distinguisher if

p<n—out (7)
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9~ (din—0in) 9P
_— e - - == == >
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Figure 2: Truncated differential attack framework

In the following, we formulate the parameters of the chosen plaintext attack constructed
over the truncated differential distinguisher (A;, N Agut)-

Data Complexity. To generate the pairs required for the attack, we construct 2° struc-
tures in plaintext, each of which is constant in non-active bits, and take all 2% values in
active bits of D;,. So, each structure can generate about 22%»~1 pairs with differences
belonging to Dj,.

Lemma 1. The probability that a pair with plaintext difference D;, come up with a
difference Ay, after vy Tounds is Py = 2~ (din—bin)

-1
Proof. We can assume the differential (A, £, D;y,) for the first r;, rounds of E in
backward direction, with probability 1. Applying Lemma 2 to this differential, yields

—1 —1 .
Pr(Dip = Ain) = Pr(Ajy T D) 152k = 1 22 = 2~ (@din=bin) 0

Therefore, the number of total pairs required for the attack must be equal to (277 X
Pfilt)’l = 2ptdin=0in  This gives the number of required structure as 25+2din—1 —
optdin=bin which yields s = p — d;, — d;n + 1. Finally, the data required for the attack
would be as follows.

D = 95tdin — 9p—din+1 (8)

Note that to minimize the data complexity, it is necessary to minimize the value of p—d;,,
which is consistent with the definition of the optimum distinguisher, given in Def. 4

Time Complexity. The probability that a differential pair with difference A;;, at round
rin have a difference belonging to D, at the output is Pgjepe = 2~ (n=dout) S the total
number of sieved pairs supposed to be processed in the key recovery phase of the attack
is P = 2p~ntdintdow=3in and the time complexity of the attack is:

T = vttt 4 gp=0ut1 €5 | gpntditdoni—00 O Ry 0 )
E Ck
where Cg, Cg, and Ck g are the time complexities of the encryption, the sieving step, and
the key recovery step, respectively. Note that (9) is a generalization of the time complexity
of the concrete differential attack, given in [31]. The concrete differential attack can be
regarded as a special case of truncated differential attack, in which d;, = 0oyt = 0.

The concrete differential attack is a symmetric attack, which means that if there is an
attack in the forward direction, there is also another one with the same main parameters,
using the reverse distinguisher in the backward direction [31]. In the following theorem,
we show that the same case is valid for the truncated differential attack, despite the
asymmetry of the truncated differential distinguisher (Prop. 2).



Zahra Ahmadian, Akram Khalesi, Dounia M’foukh, Hossein Moghimi and Maria
Naya-Plasencia 7

Theorem 1. Suppose that there is a chosen plaintext truncated differential attack on

block cipher E based on the distinguisher (A, N Aput) of probability 277, with data
complexity D and the total sieved pairs P. we can construct a chosen ciphertext attack,

-1
using the reversed truncated differential (A;y, L Aout), with the same data complexity
D and total sieved pairs P.

Proof. The proof is given in Appendix A.4. O

4 Potential Targets for Truncated Differential Attack

Truncated differential attacks are particularly effective on word-oriented Substitution-
Permutation Network (SPN) ciphers. While the efficiency of this attack is loosely tied to
the S-box specification, it becomes significantly reliant on the differential characteristics
of the MixColumns matrix. In the following, we present the general structure of a word-
oriented SPN cipher, a framework that encompasses a wide range of block cipher designs
including AES, MIDORI, SKINNY, QARMA, and CRAFT. Subsequently, we establish a theorem
that identifies a prerequisite condition for the effectiveness of the truncated differential
distinguisher.

Definition 5 (Word-oriented SPN cipher). The block cipher F, featuring an internal
state matrix of ¢ x t of m-bit words, is called a word-oriented SPN cipher, if it undergoes
the following sequence of four operations in each round, in any order of execution:

o Subkey addition: XORs a subkey of size t> m-bit words to the internal state.
e S-box: applies m-bit S-boxes to each m-bit word of the internal state, in parallel.

e Permutation: applies the word-wise permutation 7 on Z;2 within the internal state,
i.e. Y[i] = n(X[i]) = X[n(i)] fori €0,...,t> — 1, where X[i] denotes the i*" word of
the internal state. Here, each of the ¢t words within a column of X[i] maps precisely
to t columns of Y[i].

e MixColumns: multiplies matrix M to each column of the internal state, in parallel.
where, M is a t x t matrix M over Fom.

While MDS (Maximum Distance Separable) matrices do provide optimal diffusion
for the MixColumns operation, this constraint has been intentionally relaxed in several
ciphers to gain implementation advantages. In the next theorem, we show that an MDS
MixColumns matrix in the word-oriented SPN ciphers is a sufficient condition for provable
security against truncated differential attacks. This claim holds under two assumptions:
Markov cipher and uniformity of the output of MDS matrices. The former is a widely
accepted assumption in different types of cryptanalysis of block ciphers, directly based on
which the uniformity and independence of the output difference of S-boxes (which is the
input of MixColumns) is concluded [32]. The latter is discussed in the following.

We define Tr : Fi,, — F% as the m-bit truncation operation, i.e. assuming x =
[T1,...,2¢-1] ", 2; € Fam, then Tr(x) = [rg,...,7¢_1]",7; € Fo, where r; = 0 iff z; = 0.
Let Hw : F4 — {0,...,¢} be the Hamming weight operator, i.e. Hw(a) is the number of
non-zero elements of a.

Lemma 2 (Near-Uniform Distribution of MDS Matrix Output). Let M be an MDS
t x t matriz over Fom. For the truncated difference vectors a,b € FY, given a uniform
distribution for x, it holds that:

Pria L b) = Pr(Tr(Mx) = b|Tr(x) = a)
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—_

Hw(a) + Hw(b) =0
1 <Hw(a)+Hw(b) <t (10)
~ 2-m(t=Hw(b))  Hw(a) + Hw(b) >t +1

|
=

Proof. The proof of this lemma is given in Appendix A.5. O

For all MDS matrices M, the accurate value of the transition probability Pr(a M, b)
is given by (42) and (43) of Appendix A.5, that can be approximated as (10). Both the
accurate and approximated transition probabilities are independent of the MDS matrix
description. Moreover, the transition probabilities depend only on Hw(a) and Hw(b), and
for valid transitions (i.e. those with Hw(a) 4+ Hw(b) € {0,¢ + 1,¢ + 2,...2t}), it merely
depends on Hw(b). For, t = 4,m = 4, and m = 8 cases, the accurate and approximated
transition probabilities of MDS matrices are reflected in Branching Property Table (BPT)
in Table 5 of Appendix C. It can be seen that the approximation works well, specifically
for larger values for m.

Theorem 2. Under the assumption of Markov cipher and uniform distribution for output
of MDS matrix, there is no efficient truncated differential distinguisher for 3 rounds + 1
S-boz layer of a word-oriented SPN cipher with an MDS MizColumns matriz.

Proof. Without loss of generality, we consider the order of operations within a round as
given in Def. 5. Let X;, Y;, and Z; be the truncated differences of the input state, input,
and output of MixColumns for round ¢, respectively. Let’s denote the number of zero
columns in Z; as 0 < ¢; < t for ¢ = 1,2,3, which is also equivalent to the number of
zero columns in Y;. Moreover, as a consequence of the property of the Permutation layer
outlined in Def. 5, every non-zero column in Z; = X; 11 = 7~ *(Y;41) inherits a minimum
of ¢;4+1 zero words from zero columns in Z; ;. Therefore, the count of zero words in Z;,
excluding those within zero columus, is at least (¢ — ¢;)c;+1. We use P; to denote the
truncated differential probability for round i. Considering the uniform distribution of the
MDS matrix output (Lemma 2), it holds that:

P, < o7mllt=eieirs)  — 1 9 (11)

Let w3 denote the number of zero words of Zs, not belonging to a zero column so Ps =
27™ws_ Finally, the truncated differential probability of the last S-box layer is P; = 1.
Therefore, the probability of the truncated differential path would be upper-bounded
by Poipher = PiPaPyPy < 27 m{tea—ercattea—cacatwa)  The probability of Z3 being the
truncated differential pattern of the output of a PRP is Pprp = 2~ "(testws)  To prove
the theorem, it suffices to show that the upper bound of Pgjpher is less than or equal
to Pprp. Consider a nonzero column of Zs and Y5, corresponding to the input and
output of a MixColumns matrix of round 2. This MixColumns matrix has at least ¢; and
cs input and output zero words, respectively. Since the MixColumns matrix is MDS, it
follows that ¢; + ¢35 < t which ensures 2-™(tc2—crcattes—cacstws) < 9—m(tes+ws)  Thereby
Pcipher < Pprp, which completes the proof. O

Theorem 2 implies that word-oriented SPN ciphers with non-MDS MixColumns ma-
trices can be potentially vulnerable to truncated differential attacks. This assertion is
corroborated by observations made during truncated differential cryptanalysis of MIDORI,
SKINNY, and CRAFT [6], all of which use non-MDS MixColumns matrices. Within the
QARMA family of block ciphers, to avoid the expensive implementation of MDS matrices,
an almost-MDS matrix is selected as the MixColumns matrix. This motivated us to eval-
uate its security against truncated differential attack, which is outlined in the following
Sections.
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5 Introduction of QARMA Family of Block Ciphers

QARMAv1 (formerly known as QARMA) and QARMAv?2 are two families of lightweight tweakable
block ciphers proposed in 2017 and 2023, respectively [17, 16]. The design of QARMAv1
was influenced by PRINCE [11] and MANTIS [13], fitting to applications such as memory
encryption, the generation of very short tags, and the construction of keyed hash functions.
QARMAv2 which was introduced in ToSC 2023 [16], represents a redesigned version of
QARMAv1 with an extended tweak and strengthened security margins.

5.1 Specifications of QARMA

Both families of QARMA support block sizes n = 64 and 128 referred to as QARMAv1-n and
QARMAv2-n. Throughout the remainder of the paper, the focus is on three versions of QARMA:
QARMAvV1-64, QARMAv1-128, and QARMAv2-64. When we mention QARMA without further
specification, it encompasses these three aforementioned versions. We will first delineate
the round functions of QARMA. Subsequently, we will outline the overall configuration of
both versions of QARMA

5.1.1 Round Function

For QARMAv1-n, n = 64 or 128, and QARMAv2-64 the data is split into 16 m-bit words,
where m = 4 for 64-bit block and 8 for 128 bit block. It is arranged in a 4 x 4 internal
state matrix IS, denoted as:

S0 S1 52 53

S4 S5 S6 St

I8 — (12)

S8 S9  S10  S11
S12 S13 S14 S15

The Forward Round Function R(-) is composed of the following layers:

1. AddRoundTweakey. The round key k;, round tweak ¢;, and round constant ¢; are
added to IS.

2. ShuffleCells. The internal state IS is shuffled according to the word permutation
7, described below.

S0 S1 52 53 S0 S11 Se6  S13
Sq S S S T S1 S1 S12 S
5 6 7 N 0 7 (13>
S8 S9  S10 S11 S5 S14 83 S8
S12 813 S14  S15 S15  S4 S9 52

3. MixColumns. The MixColumns matrix M,, is multiplied by I.S. For QARMAv1-n the
MixColumns matrices are:

0 p p A 0 p p! pi
p 0 p p pP 0 p p
M, = . Mg = 14
L2 p 0 p A pz 0 » (14)
p P p 0 p pt p> 0
and for QARMAv2-64, the MixColumns matrix is:
0 »p p* pz
p> 0 p p
M, = 15
4 p2 p3 0 ) ( )
p p* P 0
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Figure 3: Overall structure of QARMAv1 and QARMAv2

All the above matrices are defined over ring R,, = F3[X]/(X™ + 1), and the multi-
plication by the image p of X in the ring R,, is the circular left rotation of X. All the
three versions of M,,, are symmetric and involutive matrices, i.e. M,, = M, = M,L.

4. SubCells. A m-bit S-box is applied to all words of 1.S.

The Backward Round Function R(-) is the inverse of the forward round function R(-).
The Pseudo-Reflector function P(IS;tk) positioned at the center of the cipher, is

P :%(krefEBQm(T(IS))) (16)

where Q,, = M,,, and the bar over a transformation denotes its inverse.

5.1.2 Overall Structure

QARMA is an Even-Mansour cipher that uses three stages (forward, central, and backward)
at the middle, and whitening keys XORed in at the beginning and end of the cipher. While
QARMAv2 structure exhibits slight differences from QARMAv1, the structure of QARMAv1 has
been integrated into the framework of QARMAv2 in Figure 3.

A (2r + 2)-round QARMA is defined as

K, ® SR (PR (SIS @ ky))))) (17)

where S is a single SubCells layer, and k,, and k!, are input and output whitening keys.

5.1.3 Key Schedule

QARMAv1. The key size of QARMAv1-n is 2n = 32m bits. The secret key K is divided into
two halves of n-bit length, K = w||k, and the first half extends to w’ = o(w) = (w® >>
1)+ (w® > (n—1)). The set of keys used in the structure of QARMAv1 is defined as follows.
The whitening keys are k,, =w® kDT @ ¢p and &k, =w @k B ad T & c¢g. The reflector
key is kr.y = k, the round key is k; = k for forward round functions, and k; = £ ® «
for backward round functions, where « is a constant defined in [17]. The tweak size of
QARMAv1 is n bits. More information about the tweak schedule of QARMAv1 can be found
in [17].

QARMAv2-64. The key size of QARMAv2-64 is 128 bits. The secret key K is divided into two
halves of 64-bit length, K = Kg||K1, and extends to (Lo, L1) = (o(Ko) ® o, 0™ (K1) ® B),
where a, and  are constants defined in [16] and o is the linear function defined as in
QARMAv1. In the forward rounds, the round key k; alternates between Ky and K7, and
in the backward rounds, it alternates between L, and Ly. Moreover, the reflector key is
krep = M - Wy @ Wy where Wy = 0%(Kp) and Wy = 0~%(K;). Finally, the whitening keys
are ky, = Ko and k!, = Lg.

QARMAv2-64 supports two tweak sizes 64 and 128 bits. The former is called the single
block tweak QARMAvV2-64 and the latter is called the double block tweak. More information
about the tweak schedule of QARMAv2 can be found in [16]. The details of the full-round
QARMAv1 and QARMAv2 are illustrated in Figures 8 and 9, respectively.
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5.1.4 Number of Rounds

For QARMAvV1-64, r is chosen as 7, i.e. the total rounds of QARMAv1-64 would be 16 rounds.
However, the designer stated that the cipher is believed to be secure against practical
attacks already for » = 6, i.e. 14 rounds, with some use cases even allowing for r = 5,
i.e. 12 rounds. For QARMAv1-128, r is chosen as 11, i.e. the total round of QARMAv1-128
would be 24 rounds. Again, it is stated that the cipher is believed to be secure against
practical attacks already for » = 8, i.e. 18 rounds. Parameter r and the number of rounds
for QARMAvV2-64 with a single block tweak is set as QARMAv1-64 while for QARMAv2-64 with
two independent tweak blocks r = 9, i.e. 20 rounds.

5.1.5 Security Claim

Time-Data Trade-off for QARMAv1. The designer of QARMAv1 has claimed that: Simi-
larly to MANTIS and PRINCE, for QARMAv1-64 and QARMAv1-128, with r = 7 and r = 11
respectively, we claim that they attain n bits of tradeoff security. This statement means
that any attack on QARMAv1-n with data and time complexities D and 7T, is a valid attack
as far as DT < 22",

QARMAv2-64. The designers of QARMAv2 stated that QARMAv2 has shifted away from basing
security levels on time-data trade-offs. With a time complexity upper bounded to 2128~¢,
they set data limits of 256 blocks per key for QARMAv2-64 with a single block tweak and
r =7, as well as for the version with a double block tweak and r =9

5.2  Cryptanalysis History of QARMA

Most of the cryptanalytic work on QARMAv1-64 and QARMAv1-128 is in the related-tweak
model. In [22], the idea of two related-tweaks in the MITM attacks on 8 and 9 rounds of
QARMAv1-64, along with a related-tweak on 10 rounds of QARMAv1-128, has been proposed.
They are based on a 5-round MITM distinguisher demanding a d-set on tweak variables.
For QARMAv1-64, the 7D is 2196 and 2'9° respectively, while QARMAv1-128 holds 2244, Li
et al. in [23] proposed a new cryptanalytic method that can be seen as a related-tweak
statistical saturation attack by making a link between related-tweak statistical saturation
distinguishers and the tweak difference invariant bias. By applying this approach, a
related-tweak statistical saturation attack for 10-rounds of QARMAv1-64 and an 11-round
attack on QARMAv1-128 were obtained.

In [24], two related-tweak impossible differential attacks on the 11 rounds of both
versions of QARMAv1, without whitening keys, a MITM attack on the 10 rounds of QARMAv1-
128 with whitening keys, and 12 rounds of QARMAv1-128 with the whitening keys are
proposed. In[33] and [25], two related-tweak impossible differential attacks on QARMAv1-64
and QARMAvV1-128 are proposed, respectively. The former, which is a 10-round key recovery
attack with time and data complexity of 212°5-% and 252, violates the 7D threshold claimed
for QARMAv1-64. The latter is an 11-round attack on QARMAv1-128 that omits the outer
whitening key with time complexity and data complexity of 2145:98 and 210254, In [34],
six related-tweak truncated differential attacks are proposed on both versions of QARMAv1.
The attacks conducted on QARMAv1-64 cover 10,10 and 11 rounds respectively, whereas
the attacks on QARMAv1-128 cover 11,12 and 13 rounds. Among these attacks, only two
adhere to the 7D trade-off threshold, while the other four attacks are deemed invalid in
this regard. In [35], a related-tweak impossible differential attack is applied to 11 rounds
of QARMAv1-64 using a 7-round distinguisher. In this attack, the time complexity and data
complexity are 289 and 2! respectively.

In [36], utilizing the concept of a zero-correlation distinguisher and its conversion into
an integral distinguisher, a related-tweak attack is applied to 12 rounds of QARMAv1-64.
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Table 1: Summary of the external cryptanalysis of QARMA

Cipher Model Type  Whitening Symmetry Rounds Time Data Memory Validity Ref.
MITM Yes Yes 8 290 216 290 Yes [22]
MITM Yes No 9 289 216 289 Yes [22]
SS Yes Yes 10 259 259 229.6 Yes [23]
D Yes No 10 2125.8 202 237 No [33]
RT TD Yes No 10 27513 24712 272 Yes [34]
TD Yes Yes 10 283.53 247.06 280 No [34]
TD Yes No 11 211116 934.26 2108 No 34
QARMAV1-64 D Yes No 11 280 261 261 No {35}
ZC/IN Yes No 12 266.2 2484 253.70 Yes [36]
1D No No 11 209 258.38 203.38 Yes [24]
MITM No No 10 2116 253 2116 No [21]
ST TID Yes Yes 10 272 261 2782 No [37]
TD Yes Yes 10 26572 249.39 26312 Yes Sec. 6.2
TID Yes No 11 21204 201 2116 No [37]
MITM Yes Yes 10 PASEE 2 297 Yes [24]
MITM Yes Yes 10 2156 288 2145 Yes [22]
D Yes No 10 212094 9104.02 29450 Yes [25]
1D No No 11 2187 211138 120.38 Yes [24]
RT 1D No No 11 2145.98 2102.54 2135.54 Yes [25]
TDIB Yes No 11 21261 21261 27 Yes [23]
104.60 124.05 48 RY.
QARMAv1-128 gg ;(:f EZ 1; 3154.53 3108.52 22144 Eeos {;i}
MITM Yes No 12 2156.06 288 2154 Yes [24]
TD Yes No 13 2238.02  9106.63 2240 No [34]
MITM No No 10 2232 2105 2232 No [21]
ST TID Yes Yes 10 2237.3 2122 o144 No [37]
TD Yes Yes 10 2137.84 210395  9134.51 Yes Sec. 6.3
TID Yes No 11 22418 2122 2232 No [37]
RT IN Yes No 13 211047 27632 26.32 Yes, (7 =1) [26]
N Yes No 14 2110.17 246.32 246.32 Yes, (7 = 2) [26]
QARMAv2-64
ST TD Yes Yes 10 270.68  247.36 268.68 Yes Sec. 6.4
TD Yes No 11 2105.03 24694 2103.28 Yes Sec. 6.5
RT: Related Tweak ST: Single Tweak
MITM: Meet In the Middle ID: Impossible Differential
SS: Statistical Saturation TD: Truncated Differential
RT/ST: Related Tweak/Single Tweak TDIB: Tweak Difference Invariant Bias
ZC: Zero Correlation IN: Integral.
The time complexity and data complexity of the attack are 2662 and 2484 respectively.

There are only two works in the single-tweak, the first model is [21], which proposes
10-round MITM attacks for both versions of QARMAv1. However, it does not meet the
time-data tradeoff threshold. For QARMAv1-64 the time complexity and data complexity
were reported as 270 and 2°3 respectively, but its memory complexity, which is the lower
bound of the time complexity, is 2'16. For QARMAv1-128, the time complexity and data
complexity were 2'! and 2'°° while its memory complexity remains consistent at 2232.
Hence, both of these attacks do not satisfy the time-data tradeoff threshold and can not be
considered valid attacks on QARMAv1. The second single-tweak attack has been introduced
in [37]. By using a 6-round distinguisher, it proposes four truncated impossible differential
attacks on both versions of QARMAv1. Each of the four conducted attacks violates the 7D
threshold claimed by designers.

Security of the newly introduced cipher QARMAv2 is well studied by the designers but
scarcely by third parties. To the best of our knowledge, the only published result works
in the related-tweak model and covers 13 and 14 rounds of QARMAv2-64, out of the recom-
mended 16 and 20 rounds for 7 =1 and 2, respectively[26].

A summary of all the attacks on reduced-round QARMAv1 and QARMAv2-64, along with
the new attacks presented in this paper, is given in Tab. 1.

6 Truncated Differential attack on QARMA

In this section, we present 10-round attacks on QARMAv1-64 and QARMAv1-128, as well
as 10 and 11-round attacks on QARMAv2-64. All the proposed attacks are the best valid
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attacks in the single-tweak model. We first introduce the optimum 6-round truncated
distinguishers for these ciphers, then based on the 4 inner rounds of which, we propose
the key recovery attacks.

6.1 6-round Truncated Distinguisher for QARMAv1-n and QARMAv2-64

The process of determining the optimal truncated differential path involves two steps: the
identification of the optimal path and computing its accurate probability. To discover the
optimal truncated differential path, we employ the Mixed-Integer Linear Programming
(MILP) tool proposed in [6], which fully automates the search process, in an efficient way.
This approach is built upon the assumption of independent and uniformly distributed
variables for the output differences of the active S-boxes, a consequence of the Markov
cipher assumption [28]. Under this assumption, the only part of the cipher that needs
to be modeled is the Branching Property (BPT) (defined in Def. 6 of Appendix C)
associated with the MixColumns matrix M,,. The BPTs of QARMAv1-64, QARMAv1-128, and
QARMAv2-64 can be found in Appendix C. In [6], an approximated BPT is employed for
its simplicity. In this approximation, all the transition probabilities through MixColumns
matrix are rounded to the nearest power of 27™. However, when dealing with the BPT
of My and Mg matrices of QARMA variants, we calculate more precise values for transition
probabilities, which span a broad range of non-integer values. Thus, we employ the MILP
model proposed by Abdelkhalek in [5], specifically designed for the MILP modeling of
large S-boxes with non-integer transition probabilities, which is well-suited to our case.

In accordance with Def. 4, we define the objective function as the minimization of
p — 6in. To ensure that the resulting path is an efficient one, as stipulated in Def. 3, we
incorporate the constraint p < n — d,,; into the model, for efficient distingusher.

Once we have identified the optimal path under the Markov cipher assumption, we
employ Prop. 5 to determine the accurate value of the distinguisher probability. There
are two approaches for computing this value. The first approach, introduced in [7], is
an efficient and speedy algorithm. It calculates the truncated probability for a given
truncated path (referred to as an "activity pattern' in [7]) by taking into account all the
concrete paths consistent with the specified path. The second approach involves utilizing
a SAT- or MILP-based automatic method to find all concrete differentials (aw — ), where
a € Ay and f € AZ,,, with (A}, ,A¥,) representing the input/output difference of
the optimal truncated path obtained in the previous step. While this approach may not
be as swift as the method proposed in [7], it offers the advantage of considering any
potential differential effects, i.e. the concrete paths that are not necessarily confined
to the optimal truncated path within the internal state differences. Therefore, we opt
for the second approach to refine the probability of the optimal truncated differential
distinguisher. Both the MILP- and SAT-based models were employed independently, and
they provided perfectly matching solutions.

6-round distinguishers. We searched for the longest optimum truncated differential dis-
tinguisher for the middle part of QARMAv1-64 and QARMAv1-128, as well as QARMAv2-64,
independently. In all three cases, we found the same set of 16 distinguishers covering
R? (P(R?(-))) as the optimum distinguisher. These distinguishers, covering 6 full R (or
R) though involving seven {ShuffleCells + MixColumns} layers, are as follows:

R (7’2(13 ()

F(M(a-e;)) F(M(b-e;)), abeFr/{0}, i=0,...,15  (18)

where a-e; is the 4 x 4 matrix whose " element is a, while all other elements are zero. All
the 16 paths given in (18) exhibit a reflective pattern and share the following parameters:
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Figure 4: An optimal 6-round truncated differential distinguisher for QARMAv1-64, QARMAv1-
128, and QARMAv2-64, with probabilities P = 2749-7, 27107:6 'and 274827 respectively. The
red part is the 4-round path with the same probability.
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e For QARMAv1-64, §;, = 4, and d,,; = 4, and the approximated p merely based on
the BPT is 51.8, which is refined to the accurate value p = 49.7, using SAT- and
MILP-based automatic methods for computing (6), independently.

e For QARMAv1-128, é;, = 8, and .y = 8, and the approximated p merely based
on the BPT is 108.77, which is refined to the accurate value p = 107.60 using a
SAT-based automatic method.

e For QARMAv2-64, §;, = 4, and §,,; = 4, and the approximated p merely based on
the BPT is 46.97, which is refined to the accurate value p = 48.27, using SAT-based
automatic method.

The profile of concrete paths and their probabilities are shown in Appendix D. Moreover,
this validation also shows that the accuracy of the pure-truncated search [6] is well enough
in the case of QARMA. An instance of the distinguishers introduced in (18) for ¢ = 4 is shown
in Fig. 4, also described in (19) for QARMAv1-64.

ap 0 O O bp 0 0 O

0 ap 0 O R2(P(R2())) 0 bp 0 O

0 0 0 0 owr ' |lo o o o (19)
0 0 0 ap? 0 0 0 bp?

4-round distinguishers. The first and last rounds of transitions in the paths given in (18)
are deterministic. So, if we omit these two rounds, we come up with a series of 4-round
totally reflective distinguishers with the same probability, which is as follows.

R(P(R(-
a-e; ZEROD G o (20)
2—p
where p = 49.7, 107.60, and 48.27 for QARMAv1-64, QARMAv1-128, and QARMAv2-64, respec-
tively. In Fig. 4, this distinguisher is highlighted within the 6-round distinguisher, in red.
In the next subsection, we use these 4-round paths as the underlying distinguisher for the
proposed key recovery attacks.

6.2 Single-Tweak Key Recovery Attack on 10-Round QARMAv1-64

We first present the main attack procedure on QARMAv1-64, by which its key space is
reduced by a factor of about 2'2. Then, we use it repeatedly to realize a full key recovery
attack, satisfying the 7D trade-off threshold.
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Figure 5: 10-round truncated differential attack on QARMAv1-64
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6.2.1 Reducing the Key Space

We use an equivalent representation of QARMAv1-64, in which the AddRoundTweakey layer
of all rounds, are replaced by an equivalent key u = M(7(k)) XORed in after (before) the
MixColumn layer in the forward (backward) round functions.

We use the 4-round distinguisher given in (20) of probability 27497 for i = 4, which
is shown in Fig. 4, omitting the first and last rounds of the 6-round path. We extend
this distinguisher for three rounds in each direction, resulting in a 10-round attack. This
attack is shown in Fig. 5. For simplicity in this figure, we have omitted the tweaks, the
constants ¢; and also a.

The propagation of active nibbles in the upper and lower parts is exactly the same.
This causes all subkeys k or u involved in the attack to be the same in the upper and
lower parts. The resulting differences in plaintext and ciphertext are active over the same
nibbles, and finally d;;,, = dyu: = 36.

Precomputation Phase. We will use the linear relations in the subkey bits to compute a
precomputation table to reduce the time complexity of the attack by reducing the number
of subkey bits guessed during the attack steps.

Thanks to the key schedule and the linear description of subkey bits involved in the
attack given in Appendix E, we have the following linear relations between the subkey
bits of (w @ k), u and (w' @ k):

(w' @ k)[4]s + (W @ k)11 + (W k)14l = (wSk)[4]s + (w S k)[11]; + (w © k)[14]; + u[5]1 4,
(W @ k)[4l + (v @ k)[11]3 + (' @ k)[14]s = (0w @ k)[4]3 + (w @ k)[11]s + (w © Kk)[14]2 + u[B]1 2,
(W @ k)[4asa+ (W k)1l + (W @ k)[14ls = (wBk)4]1235+ (wdk)[11]5 + (w & k)[14]3 4+ u[5]a3.

Thus if we guess the 2'2 possible values of (w @ k)[4,11,14], the 2* possible values of
u[5], the 2% possible values of (w’ @ k)[4], and the 224 possible values of (C,C”)[4,11,14],
we would be able to compute (w’ @ k)[11] and (w’ @ k)[14], according to Step 1 of the
attack below. Then, the three linear relations between the subkey bits apply a 3-bit
filter on (w’ @ k)[4] and only two possible values of (w’ @ k)[4] remain for each triplet of
(wak)4,11,14], ul5], (C,C")[4,11,14]). We can now compute a precomputation table
of the values of (w’ @ k)[4] for each possible ((w @ k)[4,11,14], u[5], (C,C")[4,11,14]).
Thus we have a size 24! precomputation table of the 2 possible values of (w’ @ k)[4] for
each of the 240 possible values of ((w @ k)[4,11,14], u[5], (C,C")[4,11,14]).

Similarly, we can compute the same precomputation table for the values of (w’ @ k)|[5]
and (v’ & k)[7].

Generating Pairs. We follow the process discussed in Sec. 3 to accurately determine the
data required for the attack. Each structure contains 23 plaintexts, which are constant
in the 7 non-active nibbles {0,1,2,3,6,9,12}, and take all possible values in the other
nibbles. Since none of the differential pairs should share similar values in the active
nibbles, the total number of pairs in each structure is 5(2*(2% — 1))? = 27016 According
to the branching property table of My, which can be found in Appendix C, the filtering
probability is Pg;;; = (2_7‘81)4 = 273125 hecause of the three column transitions in the
first MixColumns, and the one in the second. It must be held that 2577016 = 249.7+31.25
which gives s = 10.8. Therefore, the data required for the attack is 25736 = 246-8_ Finally,
the probability of sieving the ciphertext pairs is Pyjepe = (27%)7 x (%)9 = 272884 and
the total number of pairs after sieving ig 25770-16-28.84 — 952.12.

Attack Steps. For each of the 25212 candidate pairs, in order to verify which keys would
allow to follow the differential path, the following steps are performed:
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1. We first guess the nibble (w @ k)[4] which implies the pair of values in X;[4]. The
MixColumns transi