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Abstract. Truncated differential cryptanalyses were introduced by Knudsen in 1994.
They are a well-known family of attacks that has arguably received less attention
than some other variants of differential attacks. This paper gives some new insights
into the theory of truncated differential attacks, specifically the the conditions of
provable security of SPN ciphers with MDS diffusion matrices against this type of
attack. Furthermore, our study extends to various versions within the QARMA family
of block ciphers, unveiling the only valid instances of single-tweak attacks on 10-
round QARMAv1-64, 10-round QARMAv1-128, and 10- and 11-round QARMAv2-64. These
attacks benefit from the optimal truncated differential distinguishers as well as some
evolved key-recovery techniques.
Keywords: Cryptanalysis · Truncated Differentials · QARMA · Key Recovery

1 Introduction
In the realm of modern cryptography, the design and analysis of secure block ciphers
play a pivotal role in ensuring the confidentiality of sensitive data. The development of
advanced encryption algorithms has been an ongoing endeavor, aiming to thwart increas-
ingly sophisticated attacks while maintaining implementation efficiency. One of the key
aspects in this evolution is the study of the variations of differential attacks, which are
powerful techniques utilized by cryptanalysts to probe the vulnerabilities of cryptographic
primitives. This paper focuses on the truncated differential attack, a variant of differential
attack proposed in 1994 by Knudsen [1], for security evaluation of block ciphers.

Despite some instances of cryptanalysis based on truncated differential attacks as an
independent attack [2, 3, 4], this attack has garnered less attention compared to other
variations, such as the impossible differential attack, higher-order differential attacks,
boomerang, and rectangle attacks. The primary utilization of truncated differential path
search has been targeted for discovering truncated paths with minimal activation of S-
boxes, to finally instantiated by a high-probability concrete differential path [5].

In a recent work [6], a novel MILP (Mixed Integer Linear Programming) based tool
has been introduced for identifying the optimum truncated differential paths and applied
to MIDORI, SKINNY, and CRAFT block ciphers, covering a greater number of rounds with
higher probabilities compared to their concrete differential counterparts.

This work subsequently garnered some interest in truncated differential attacks. In
[7], considering that [6] has utilized certain approximations, an effective algorithm for
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accurately calculating the truncated differential path probability for a given truncated
path was proposed. Another subsequent work, outlined in [8], aimed at calculating the
probability of truncated differentials, considering the clustering effects (also referred to as
the differential effect). Furthermore, certain studies employed the methodology presented
in [6] to automate the discovery of other distinguishers. These encompass the triangle
attack [9] and mixture differential attacks [10], as examples. The significant advantages
of truncated differential attacks, compared to concrete differential attacks, are as follows.

• Simplicity. The truncated differential attack utilizes a word-oriented variable defi-
nition, which results in much smaller search spaces. Moreover, it does not inherently
depend on the S-box details, hence its MILP model is free from the bottleneck of
S-box modeling. Consequently, the truncated differential automatic search tools
display enhanced running time compared to the concrete (bit-oriented) differentials.

• Efficiency. There are notable instances where the truncated differential distin-
guisher outperforms its concrete counterpart. Some examples include KLEIN [2, 3],
MIDORI, SKINNY, and CRAFT [6].

• Value-insensitivity. The truncated differential distinguisher is inherently indepen-
dent of the concrete value of the active words. This makes the key recovery part
of the attack more flexible, potentially requiring less key material to be guessed, at
the two edges of the distinguisher.

Reflection ciphers are a class of symmetric encryption algorithms that exhibit a unique
property: the set of encryption functions is identical to the set of decryption functions,
making the cipher "reflect" the input to produce the output. This design strategy aims to
reduce the implementation cost of the cipher, by minimizing the overhead of decryption
on top of the encryption.

PRINCE block cipher [11], an SPN cipher with FX construction, stands as one of the
most renowned examples of reflection ciphers. To be precise, it possesses the α-reflection
property, meaning that decryption is equivalent to the encryption with the related key
Kdec = Kenc ⊕ α, where α is a constant. In [12], a new attack called the reflection attack
is proposed as a dedicated approach for cryptanalysis of PRINCE-like ciphers. It exploits
the existence of too many fixed points in the intermediate rounds of the cipher and its
extension to the full cipher.

Following in the footsteps of PRINCE, MANTIS [13] emerges as the subsequent reflec-
tion cipher again in the FX framework. It takes inspiration from PRINCE’s design while
evolving into a tweakable block cipher. Notably, MANTIS integrates certain choices from
MIDORI’s components [14] to enhance its structure. However, a practical attack on
MANTIS5 has been presented in [15], attributed to the MANTIS’s extremely lightweight
components, including the tweak schedule, and the vulnerability resulting from the inter-
action between the MIDORI-inspired round function and the PRINCE-inspired inner rounds.

The newly introduced QARMAv2 family of block ciphers [16] and its predecessor QARMAv1
family (formerly known as QARMA) [17] are the most recent reflection ciphers.

Besides reflection property, QARMA boasts additional features such as being tweakable,
lightweight, and low-latency. Drawing inspiration from PRINCE, MIDORI, and MANTIS,
QARMA exhibits notable differences both in the structure and in the choice of components.
Unlike its predecessors, QARMA adopts a three-round Even-Mansour (EM) construction [18]
rather than adhering to the FX construction. This departure from the FX construction
was motivated by the cryptanalysis presented in [19]. Furthermore, QARMA’s decision to
pivot to EM construction is motivated by the improved time, memory, and data complex-
ities, which offer superior bounds compared to the FX construction.

Insights gleaned from the MITM and accelerated exhaustive search attacks on PRINCE
[20], that exploited the unkeyed central construction of PRINCE, the designers of QARMA
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included a key addition in the middle permutation of QARMA. Moreover, this middle per-
mutation is non-involutory to avoid predictable differences at its two sides. Another
innovation within the QARMA design pertains to the introduction of a family of almost
MDS matrices defined over a ring with zero divisors. They allow to encode rotations in
their operation while maintaining the minimal latency associated with binary matrices.
The matrices used in QARMA are with the minimum and close to minimum fixed points
for 64 and 128-bit versions, respectively. This property as well as suitable whitening keys
around the middle permutation makes it secure against the reflection attacks [12].

Similar to PRINCE and MANTIS, QARMAv1 asserts a k-bit time-data trade-off security,
with k as its key size. This implies that for any attack on QARMAv1 to be valid, the product
of time and data complexities must be less than 2k. However, the designers of QARMAv2
highlighted that such a trade-off threshold does not apply to QARMAv2 attacks.

It is worth noting that the QARMAv1 cipher has been the subject of various cryptanal-
ysis efforts, most of which in the related-tweak model, including MITM attack [21, 22],
statistical saturation attack [23] and impossible differential attack [24, 25]. The only single-
tweak attack [21] is a 10-round MITM attack, but it fails to meet the time-data tradeoff
threshold. To the best of our knowledge, the only third-party analysis of QARMAv2 is an
integral attack in the related-tweak model [26]. A review and discussion on the details of
QARMA attacks, is provided in Sec. 5.2 of the paper. The designers of QARMA have proposed
some security bounds against the differential attack by counting the minimum number of
active S-boxes using Mouha et al.’s MILP search method [27]. However, the resistance of
these ciphers against the truncated differential attack has not been evaluated, either by
the designer or external cryptanalysts.

Contributions. This paper gives new insights into the theory of the relatively less dis-
cussed truncated differential attack and adds a new dimension to the cryptanalysis of
QARMA by introducing the first valid single-tweak truncated differential attacks on both
variants of 10-round QARMAv1 as well as 10 and 11-round QARMAv2-64. The contributions
of this paper are as follows:

• Extension of truncated differential attack theory: The paper extends the theory of
truncated differential attacks by formulating the complexities of this attack, proving
the forward/backward symmetry of this attack, and also providing the provable
security of SPN ciphers with MDS MixColumns against this kind of attack.

• Discovering optimal truncated differential distinguishers for QARMA: The non-MDS
MixColumns matrix within the QARMA variants renders them susceptible to truncated
differential analysis. Focusing these ciphers, and employing the automated MILP-
based method proposed in [6], the paper identifies the optimum 6 and 4-round trun-
cated differential distinguishers for QARMAv1-64 and 128, and QARMAv2-64 variants,
all of which has the same structure.

• Single-Tweak attack on 10-round QARMAv1 variants: Based on the identified distin-
guishers, the paper proposes the first valid attacks on both variants of 10-round
QARMAv1 meeting the security claim trade-off threshold given by the designer of
QARMAv1; i.e. DT < 2k with data and time complexities D and T and the key size
k. The attack exploits some evolved key-recovery methods based on list merging
techniques and precomputation.

• Single-Tweak key-recovery attacks on 10 and 11-round QARMAv2-64: The paper pro-
poses the first key-recovery attacks in the single-tweak model on QARMAv2-64. The
attacks exploit the redundancy of the key schedule and cover 10 and 11 rounds of
the cipher. It deserves to be noted that although the time-data trade-off does not
exist for QARMAv2, the attack on 10-round QARMAv2-64 meets such restriction.
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2 Theoretical Background
In this paper, we consider a block cipher E : Fn

2 ×Fk
2 → Fn

2 , with an n-bit plaintext X and
a k-bit key K. The input and output difference variables of E are denoted by ∆X and
∆Y , respectively. We assume E is a Markov cipher [28], where the subkeys of iterative
block cipher are assumed to be independent and uniformly distributed. This is the only
assumption behind the truncated differential attack, which is a very common and widely
accepted assumption in differential cryptanalysis.

Definition 1 (Concrete Differential Probability). For block cipher E, the differential
probability of the concrete input difference α ∈ F n

2 and output difference β ∈ F n
2 is

defined as:

Pr
X,K

(α E−→ β) = Pr
X,K

(∆Y = β|∆X = α) = Pr
X,K

[EK(X)⊕ EK(X ⊕ α) = β] (1)

The differential (α E−→ β) is called an efficient distinguisher if PrX,K(α E−→ β)≫ 2−n.

Definition 2 (Truncated Differential Probability). For block cipher E, the truncated
differential probability with input truncated difference ∆in ⊆ F n

2 , and output truncated
difference ∆out ⊆ F n

2 , is defined as:

Pr
X,K

(∆in
E−→ ∆out) = Pr

X,K
(∆Y ∈ ∆out|∆X ∈ ∆in)

= Pr
X,K

[EK(X)⊕ EK(X ⊕ α) ∈ ∆out|α ∈ ∆in] (2)

Definition 3 (Efficient Truncated Differential). The truncated differential (∆in −→ ∆out)
is called efficient if it can distinguish cipher E from a Pseudo Random Permutation (PRP),
which holds if:

Pr
X,K

(∆in
E−−→ ∆out) > Pr

X
(∆in

P RP−−−→ ∆out) = |∆out|
2n

. (3)

The concept of efficient truncated differential was introduced in [7] under the termi-
nology of Expected Differential Distinguishability. This concept is defined as the average
differential probability over the output truncated differences, and it must be significantly
larger than 2−n to be able to distinguish the cipher from a PRP. In the rest of the pa-
per, all the probabilities are taken over independent and uniformly distributed random
variables X and K. To streamline the presentation, we will omit X, K for simplicity.

Proposition 1 (Symmetry of the probability of concrete differential). For block cipher
E with concrete input-output differential pair (α, β), it holds that:

Pr(α E−→ β) = Pr(β E−1

−−−→ α) (4)

Proposition 2 (Asymmetry of the probability of truncated differential [29]). For block
cipher E with truncated input-output differential pair (∆in, ∆out) it holds that:

Pr(∆out
E−1

−−−→ ∆in) = Pr(∆in
E−→ ∆out)

|∆in|
|∆out|

(5)

Proof. The proof is given in Appendix A.1.

Example 1. Fig. 1 shows a 9-round truncated differential distinguisher for Skinny-64
with the probability of 2−40 in the forward direction [6]. The reverse truncated differential
in the backward direction is depicted by red arrows, which has the probability of 2−56.
Note that this trail is consistent with Lemma 2, where |∆in| = 24 and |∆out| = 220 and
P (∆out

E−1

−−−→ ∆in) = 2−40 24

220 = 2−56.
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Figure 1 goes here.

∆in ∆X1 ∆X2 ∆X3 ∆X4 ∆X5 ∆X6 ∆X7 ∆X8 ∆out

1

1

1

2−8

1

2−8

1

2−12

1

2−16

2−4

2−12

2−20

1

2−12

1

2−4

1

Figure 1: A 9-round truncated differential characteristic for Skinny-64. The
probability of black(forward) direction is 2−40 and for red(backward) direction
is 2−56

Figure 2 goes here.

Din Dout∆in ∆out

2-(din-δin) 2-p

2-(dout-δout)2−p′

Figure 2: Truncated diffrential attack framework

Figure 1: A 9-round truncated differential path for Skinny-64. The probability of black
(forward) direction is 2−40 and for red (backward) direction is 2−56

Proposition 3. The truncated differential (∆in
E−→ ∆out) is efficient, iff (∆out

E−1

−−−→ ∆in)
is efficient.

Proof. The proof is straightforward using Prop. 2.

Definition 4 (Optimum Truncated Differential). The truncated differential (∆in
E−→

∆out) is called optimum if it is efficient and has the maximal P (∆in
E−→ ∆out)|∆in|.

Despite the concrete differential attack in which the data required for the distinguisher
is only proportional to the inverse of the differential probability [30], this is not the case
with the truncated differential distinguisher. This will be discussed more in Sec. 3.

Proposition 4. The differential (∆in
E−→ ∆out) is the optimum truncated differential for

E, iff (∆out
E−1

−−−→ ∆in) is the optimum one for E−1.

Proof. The proof is given in appendix A.2.

Proposition 5 (Link between concrete and truncated differential probabilities [7]). For
block cipher E, with input and output truncated differences ∆in, ∆out ⊆ F n

2 , it holds that:

Pr(∆in
E−−→ ∆out) = 1

|∆in|
∑

α∈∆in,
β∈∆out

Pr(α E−−→ β) (6)

Proof. The proof is given in Appendix A.3.

Prop. 5 implies that the probability of truncated differential (∆in → ∆out) is neither
greater nor smaller than each of its consistent concrete differentials (α→ β), α ∈ ∆in, β ∈
∆out. Moreover, assume (α∗ → β∗) is the optimum (highest-probability) concrete differ-
ential (which practically corresponds to minimum or near to minimum active S-boxes),
and (∆∗

in → ∆∗
out) is the optimum truncated differential. Then, according to Prop. 5,

(α∗ → β∗) is not necessarily an instantiation of (∆∗
in → ∆∗

out), i.e. it does not necessitate
that (α∗ → β∗) ∈ (∆∗

in → ∆∗
out).

This means that the truncated differential can serve as an independent distinguisher,
with the potential to surpass the performance of concrete differential distinguishers, in
some cases.

3 Truncated Differential Attack
Let (∆in

E−→ ∆out) be an rd-round truncated differential of probability 2−p for block cipher
E. As shown in Fig. 2, we extend ∆in in the backward direction for rin rounds to get the
difference Din and ∆out in the forward direction for rout rounds to get Dout, both with
probability 1. We denote |Dx| = 2dx and |∆x| = 2δx , where x ∈ {in, out}. According to
Def. 3, (∆in

E−→ ∆out) is an efficient distinguisher if

p < n− δout (7)
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Figure 2: Truncated differential attack framework

In the following, we formulate the parameters of the chosen plaintext attack constructed
over the truncated differential distinguisher (∆in

E−→ ∆out).

Data Complexity. To generate the pairs required for the attack, we construct 2s struc-
tures in plaintext, each of which is constant in non-active bits, and take all 2din values in
active bits of Din. So, each structure can generate about 22din−1 pairs with differences
belonging to Din.

Lemma 1. The probability that a pair with plaintext difference Din come up with a
difference ∆in after rin rounds is Pfilt = 2−(din−δin).

Proof. We can assume the differential (∆in
E−1

−−−→ Din) for the first rin rounds of E in
backward direction, with probability 1. Applying Lemma 2 to this differential, yields
Pr(Din

E−1

−−−→ ∆in) = Pr(∆in
E−1

−−−→ Din) |∆in|
|Din| = 1 · 2δin

2din
= 2−(din−δin)

Therefore, the number of total pairs required for the attack must be equal to (2−p ×
Pfilt)−1 = 2p+din−δin . This gives the number of required structure as 2s+2din−1 =
2p+din−δin which yields s = p − din − δin + 1. Finally, the data required for the attack
would be as follows.

D = 2s+din = 2p−δin+1 (8)
Note that to minimize the data complexity, it is necessary to minimize the value of p−δin,
which is consistent with the definition of the optimum distinguisher, given in Def. 4

Time Complexity. The probability that a differential pair with difference ∆in at round
rin have a difference belonging to Dout at the output is Psieve = 2−(n−dout). So, the total
number of sieved pairs supposed to be processed in the key recovery phase of the attack
is P = 2p−n+din+dout−δin , and the time complexity of the attack is:

T = (2p−δin+1 + 2p−δin+1 CS

CE
+ 2p−n+din+dout−δin

CKR

CE
)CE (9)

where CE , CS , and CKR are the time complexities of the encryption, the sieving step, and
the key recovery step, respectively. Note that (9) is a generalization of the time complexity
of the concrete differential attack, given in [31]. The concrete differential attack can be
regarded as a special case of truncated differential attack, in which δin = δout = 0.

The concrete differential attack is a symmetric attack, which means that if there is an
attack in the forward direction, there is also another one with the same main parameters,
using the reverse distinguisher in the backward direction [31]. In the following theorem,
we show that the same case is valid for the truncated differential attack, despite the
asymmetry of the truncated differential distinguisher (Prop. 2).
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Theorem 1. Suppose that there is a chosen plaintext truncated differential attack on
block cipher E based on the distinguisher (∆in

E−→ ∆out) of probability 2−p, with data
complexity D and the total sieved pairs P . we can construct a chosen ciphertext attack,
using the reversed truncated differential (∆in

E−1

←−−− ∆out), with the same data complexity
D and total sieved pairs P .

Proof. The proof is given in Appendix A.4.

4 Potential Targets for Truncated Differential Attack
Truncated differential attacks are particularly effective on word-oriented Substitution-
Permutation Network (SPN) ciphers. While the efficiency of this attack is loosely tied to
the S-box specification, it becomes significantly reliant on the differential characteristics
of the MixColumns matrix. In the following, we present the general structure of a word-
oriented SPN cipher, a framework that encompasses a wide range of block cipher designs
including AES, MIDORI, SKINNY, QARMA, and CRAFT. Subsequently, we establish a theorem
that identifies a prerequisite condition for the effectiveness of the truncated differential
distinguisher.

Definition 5 (Word-oriented SPN cipher). The block cipher E, featuring an internal
state matrix of t× t of m-bit words, is called a word-oriented SPN cipher, if it undergoes
the following sequence of four operations in each round, in any order of execution:

• Subkey addition: XORs a subkey of size t2 m-bit words to the internal state.

• S-box: applies m-bit S-boxes to each m-bit word of the internal state, in parallel.

• Permutation: applies the word-wise permutation π on Zt2 within the internal state,
i.e. Y [i] = π(X[i]) = X[π(i)] for i ∈ 0, . . . , t2 − 1, where X[i] denotes the ith word of
the internal state. Here, each of the t words within a column of X[i] maps precisely
to t columns of Y [i].

• MixColumns: multiplies matrix M to each column of the internal state, in parallel.
where, M is a t× t matrix M over F2m .

While MDS (Maximum Distance Separable) matrices do provide optimal diffusion
for the MixColumns operation, this constraint has been intentionally relaxed in several
ciphers to gain implementation advantages. In the next theorem, we show that an MDS
MixColumns matrix in the word-oriented SPN ciphers is a sufficient condition for provable
security against truncated differential attacks. This claim holds under two assumptions:
Markov cipher and uniformity of the output of MDS matrices. The former is a widely
accepted assumption in different types of cryptanalysis of block ciphers, directly based on
which the uniformity and independence of the output difference of S-boxes (which is the
input of MixColumns) is concluded [32]. The latter is discussed in the following.

We define Tr : Ft
2m → Ft

2 as the m-bit truncation operation, i.e. assuming x =
[x1, . . . , xt−1]⊤, xi ∈ F2m , then Tr(x) = [r0, . . . , rt−1]⊤, ri ∈ F2, where ri = 0 iff xi = 0.
Let Hw : Ft

2 → {0, . . . , t} be the Hamming weight operator, i.e. Hw(a) is the number of
non-zero elements of a.

Lemma 2 (Near-Uniform Distribution of MDS Matrix Output). Let M be an MDS
t × t matrix over F2m . For the truncated difference vectors a, b ∈ Ft

2, given a uniform
distribution for x, it holds that:

Pr(a M−→ b) = Pr
x

(Tr(Mx) = b|Tr(x) = a)
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=


1 Hw(a) + Hw(b) = 0
0 1 ≤ Hw(a) + Hw(b) ≤ t

≈ 2−m(t−Hw(b)) Hw(a) + Hw(b) ≥ t + 1
(10)

Proof. The proof of this lemma is given in Appendix A.5.

For all MDS matrices M , the accurate value of the transition probability Pr(a M−→ b)
is given by (42) and (43) of Appendix A.5, that can be approximated as (10). Both the
accurate and approximated transition probabilities are independent of the MDS matrix
description. Moreover, the transition probabilities depend only on Hw(a) and Hw(b), and
for valid transitions (i.e. those with Hw(a) + Hw(b) ∈ {0, t + 1, t + 2, . . . 2t}), it merely
depends on Hw(b). For, t = 4, m = 4, and m = 8 cases, the accurate and approximated
transition probabilities of MDS matrices are reflected in Branching Property Table (BPT)
in Table 5 of Appendix C. It can be seen that the approximation works well, specifically
for larger values for m.

Theorem 2. Under the assumption of Markov cipher and uniform distribution for output
of MDS matrix, there is no efficient truncated differential distinguisher for 3 rounds + 1
S-box layer of a word-oriented SPN cipher with an MDS MixColumns matrix.

Proof. Without loss of generality, we consider the order of operations within a round as
given in Def. 5. Let Xi, Yi, and Zi be the truncated differences of the input state, input,
and output of MixColumns for round i, respectively. Let’s denote the number of zero
columns in Zi as 0 ≤ ci < t for i = 1, 2, 3, which is also equivalent to the number of
zero columns in Yi. Moreover, as a consequence of the property of the Permutation layer
outlined in Def. 5, every non-zero column in Zi = Xi+1 = π−1(Yi+1) inherits a minimum
of ci+1 zero words from zero columns in Zi+1. Therefore, the count of zero words in Zi,
excluding those within zero columns, is at least (t − ci)ci+1. We use Pi to denote the
truncated differential probability for round i. Considering the uniform distribution of the
MDS matrix output (Lemma 2), it holds that:

Pi ≤ 2−m((t−ci)ci+1) i = 1, 2 (11)

Let w3 denote the number of zero words of Z3, not belonging to a zero column so P3 =
2−mw3 . Finally, the truncated differential probability of the last S-box layer is Ps = 1.
Therefore, the probability of the truncated differential path would be upper-bounded
by PCipher = P1P2P3Ps ≤ 2−m(tc2−c1c2+tc3−c2c3+w3). The probability of Z3 being the
truncated differential pattern of the output of a PRP is PP RP = 2−m(tc3+w3). To prove
the theorem, it suffices to show that the upper bound of PCipher is less than or equal
to PP RP . Consider a nonzero column of Z2 and Y2, corresponding to the input and
output of a MixColumns matrix of round 2. This MixColumns matrix has at least c1 and
c3 input and output zero words, respectively. Since the MixColumns matrix is MDS, it
follows that c1 + c3 < t which ensures 2−m(tc2−c1c2+tc3−c2c3+w3) ≤ 2−m(tc3+w3). Thereby
PCipher ≤ PP RP , which completes the proof.

Theorem 2 implies that word-oriented SPN ciphers with non-MDS MixColumns ma-
trices can be potentially vulnerable to truncated differential attacks. This assertion is
corroborated by observations made during truncated differential cryptanalysis of MIDORI,
SKINNY, and CRAFT [6], all of which use non-MDS MixColumns matrices. Within the
QARMA family of block ciphers, to avoid the expensive implementation of MDS matrices,
an almost-MDS matrix is selected as the MixColumns matrix. This motivated us to eval-
uate its security against truncated differential attack, which is outlined in the following
Sections.
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5 Introduction of QARMA Family of Block Ciphers
QARMAv1 (formerly known as QARMA) and QARMAv2 are two families of lightweight tweakable
block ciphers proposed in 2017 and 2023, respectively [17, 16]. The design of QARMAv1
was influenced by PRINCE [11] and MANTIS [13], fitting to applications such as memory
encryption, the generation of very short tags, and the construction of keyed hash functions.
QARMAv2 which was introduced in ToSC 2023 [16], represents a redesigned version of
QARMAv1 with an extended tweak and strengthened security margins.

5.1 Specifications of QARMA

Both families of QARMA support block sizes n = 64 and 128 referred to as QARMAv1-n and
QARMAv2-n. Throughout the remainder of the paper, the focus is on three versions of QARMA:
QARMAv1-64, QARMAv1-128, and QARMAv2-64. When we mention QARMA without further
specification, it encompasses these three aforementioned versions. We will first delineate
the round functions of QARMA. Subsequently, we will outline the overall configuration of
both versions of QARMA

5.1.1 Round Function

For QARMAv1-n, n = 64 or 128, and QARMAv2-64 the data is split into 16 m-bit words,
where m = 4 for 64-bit block and 8 for 128 bit block. It is arranged in a 4 × 4 internal
state matrix IS, denoted as:

IS =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 (12)

The Forward Round Function R(·) is composed of the following layers:

1. AddRoundTweakey. The round key ki, round tweak ti, and round constant ci are
added to IS.

2. ShuffleCells. The internal state IS is shuffled according to the word permutation
τ , described below.

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 τ−→


s0 s11 s6 s13
s10 s1 s12 s7
s5 s14 s3 s8
s15 s4 s9 s2

 (13)

3. MixColumns. The MixColumns matrix Mm is multiplied by IS. For QARMAv1-n the
MixColumns matrices are:

M4 =


0 ρ ρ2 ρ
ρ 0 ρ ρ2

ρ2 ρ 0 ρ
ρ ρ2 ρ 0

 , M8 =


0 ρ ρ4 ρ5

ρ5 0 ρ ρ4

ρ4 ρ5 0 ρ
ρ ρ4 ρ5 0

 (14)

and for QARMAv2-64, the MixColumns matrix is:

M4 =


0 ρ ρ2 ρ3

ρ3 0 ρ ρ2

ρ2 ρ3 0 ρ
ρ ρ2 ρ3 0

 (15)
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Figure 3: Overall structure of QARMAv1 and QARMAv2

All the above matrices are defined over ring Rm = F2[X]/(Xm + 1), and the multi-
plication by the image ρ of X in the ring Rm is the circular left rotation of X. All the
three versions of Mm are symmetric and involutive matrices, i.e. Mm = M⊤

m = M−1
m .

4. SubCells. A m-bit S-box is applied to all words of IS.

The Backward Round Function R̄(·) is the inverse of the forward round function R(·).
The Pseudo-Reflector function P(IS; tk) positioned at the center of the cipher, is

P = τ̄(kref ⊕Qm(τ(IS))) (16)

where Qm = Mm, and the bar over a transformation denotes its inverse.

5.1.2 Overall Structure

QARMA is an Even-Mansour cipher that uses three stages (forward, central, and backward)
at the middle, and whitening keys XORed in at the beginning and end of the cipher. While
QARMAv2 structure exhibits slight differences from QARMAv1, the structure of QARMAv1 has
been integrated into the framework of QARMAv2 in Figure 3.

A (2r + 2)-round QARMA is defined as

k′
w ⊕ S̄(R̄r(P(Rr(S(IS ⊕ kw))))) (17)

where S is a single SubCells layer, and kw and k′
w are input and output whitening keys.

5.1.3 Key Schedule

QARMAv1. The key size of QARMAv1-n is 2n = 32m bits. The secret key K is divided into
two halves of n-bit length, K = w||k, and the first half extends to w′ = o(w) = (w0 ≫
1)+(w0 ≫ (n−1)). The set of keys used in the structure of QARMAv1 is defined as follows.
The whitening keys are kw = w⊕ k⊕ T ⊕ c0 and k′

w = w′ ⊕ k⊕ α⊕ T ⊕ c0. The reflector
key is kref = k, the round key is ki = k for forward round functions, and ki = k ⊕ α
for backward round functions, where α is a constant defined in [17]. The tweak size of
QARMAv1 is n bits. More information about the tweak schedule of QARMAv1 can be found
in [17].

QARMAv2-64. The key size of QARMAv2-64 is 128 bits. The secret key K is divided into two
halves of 64-bit length, K = K0||K1, and extends to (L0, L1) = (o(K0)⊕α, o−1(K1)⊕β),
where α, and β are constants defined in [16] and o is the linear function defined as in
QARMAv1. In the forward rounds, the round key ki alternates between K0 and K1, and
in the backward rounds, it alternates between L1 and L0. Moreover, the reflector key is
kref = M ·W0 ⊕W1 where W0 = o2(K0) and W1 = o−2(K1). Finally, the whitening keys
are kw = K0 and k′

w = L0.
QARMAv2-64 supports two tweak sizes 64 and 128 bits. The former is called the single

block tweak QARMAv2-64 and the latter is called the double block tweak. More information
about the tweak schedule of QARMAv2 can be found in [16]. The details of the full-round
QARMAv1 and QARMAv2 are illustrated in Figures 8 and 9, respectively.
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5.1.4 Number of Rounds

For QARMAv1-64, r is chosen as 7, i.e. the total rounds of QARMAv1-64 would be 16 rounds.
However, the designer stated that the cipher is believed to be secure against practical
attacks already for r = 6, i.e. 14 rounds, with some use cases even allowing for r = 5,
i.e. 12 rounds. For QARMAv1-128, r is chosen as 11, i.e. the total round of QARMAv1-128
would be 24 rounds. Again, it is stated that the cipher is believed to be secure against
practical attacks already for r = 8, i.e. 18 rounds. Parameter r and the number of rounds
for QARMAv2-64 with a single block tweak is set as QARMAv1-64 while for QARMAv2-64 with
two independent tweak blocks r = 9, i.e. 20 rounds.

5.1.5 Security Claim

Time-Data Trade-off for QARMAv1. The designer of QARMAv1 has claimed that: Simi-
larly to MANTIS and PRINCE, for QARMAv1-64 and QARMAv1-128, with r = 7 and r = 11
respectively, we claim that they attain n bits of tradeoff security. This statement means
that any attack on QARMAv1-n with data and time complexities D and T , is a valid attack
as far as DT < 22n.

QARMAv2-64. The designers of QARMAv2 stated that QARMAv2 has shifted away from basing
security levels on time-data trade-offs. With a time complexity upper bounded to 2128−ϵ,
they set data limits of 256 blocks per key for QARMAv2-64 with a single block tweak and
r = 7, as well as for the version with a double block tweak and r = 9

5.2 Cryptanalysis History of QARMA

Most of the cryptanalytic work on QARMAv1-64 and QARMAv1-128 is in the related-tweak
model. In [22], the idea of two related-tweaks in the MITM attacks on 8 and 9 rounds of
QARMAv1-64, along with a related-tweak on 10 rounds of QARMAv1-128, has been proposed.
They are based on a 5-round MITM distinguisher demanding a δ-set on tweak variables.
For QARMAv1-64, the T D is 2106 and 2105, respectively, while QARMAv1-128 holds 2244. Li
et al. in [23] proposed a new cryptanalytic method that can be seen as a related-tweak
statistical saturation attack by making a link between related-tweak statistical saturation
distinguishers and the tweak difference invariant bias. By applying this approach, a
related-tweak statistical saturation attack for 10-rounds of QARMAv1-64 and an 11-round
attack on QARMAv1-128 were obtained.

In [24], two related-tweak impossible differential attacks on the 11 rounds of both
versions of QARMAv1, without whitening keys, a MITM attack on the 10 rounds of QARMAv1-
128 with whitening keys, and 12 rounds of QARMAv1-128 with the whitening keys are
proposed. In[33] and [25], two related-tweak impossible differential attacks on QARMAv1-64
and QARMAv1-128 are proposed, respectively. The former, which is a 10-round key recovery
attack with time and data complexity of 2125.8 and 262, violates the T D threshold claimed
for QARMAv1-64. The latter is an 11-round attack on QARMAv1-128 that omits the outer
whitening key with time complexity and data complexity of 2145.98 and 2102.54. In [34],
six related-tweak truncated differential attacks are proposed on both versions of QARMAv1.
The attacks conducted on QARMAv1-64 cover 10,10 and 11 rounds respectively, whereas
the attacks on QARMAv1-128 cover 11,12 and 13 rounds. Among these attacks, only two
adhere to the T D trade-off threshold, while the other four attacks are deemed invalid in
this regard. In [35], a related-tweak impossible differential attack is applied to 11 rounds
of QARMAv1-64 using a 7-round distinguisher. In this attack, the time complexity and data
complexity are 280 and 261 respectively.

In [36], utilizing the concept of a zero-correlation distinguisher and its conversion into
an integral distinguisher, a related-tweak attack is applied to 12 rounds of QARMAv1-64.
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Table 1: Summary of the external cryptanalysis of QARMA
Cipher Model Type Whitening Symmetry Rounds Time Data Memory Validity Ref.

QARMAv1-64

RT

MITM Yes Yes 8 290 216 290 Yes [22]
MITM Yes No 9 289 216 289 Yes [22]

SS Yes Yes 10 259 259 229.6 Yes [23]
ID Yes No 10 2125.8 262 237 No [33]
TD Yes No 10 275.13 247.12 272 Yes [34]
TD Yes Yes 10 283.53 247.06 280 No [34]
TD Yes No 11 2111.16 234.26 2108 No [34]
ID Yes No 11 280 261 261 No [35]

ZC/IN Yes No 12 266.2 248.4 253.70 Yes [36]
ID No No 11 269 258.38 263.38 Yes [24]

ST

MITM No No 10 2116 253 2116 No [21]
TID Yes Yes 10 272 261 278.2 No [37]
TD Yes Yes 10 265.72 249.39 263.12 Yes Sec. 6.2
TID Yes No 11 2120.4 261 2116 No [37]

QARMAv1-128

RT

MITM Yes Yes 10 2164.48 288 297 Yes [24]
MITM Yes Yes 10 2156 288 2145 Yes [22]

ID Yes No 10 2120.94 2104.02 294.50 Yes [25]
ID No No 11 2137 2111.38 2120.38 Yes [24]
ID No No 11 2145.98 2102.54 2135.54 Yes [25]

TDIB Yes No 11 2126.1 2126.1 271 Yes [23]
TD Yes No 11 2104.60 2124.05 248 Yes [34]
TD yes No 12 2154.53 2108.52 2144 No [34]

MITM Yes No 12 2156.06 288 2154 Yes [24]
TD Yes No 13 2238.02 2106.63 2240 No [34]

ST

MITM No No 10 2232 2105 2232 No [21]
TID Yes Yes 10 2237.3 2122 2144 No [37]
TD Yes Yes 10 2137.84 2103.95 2134.51 Yes Sec. 6.3
TID Yes No 11 2241.8 2122 2232 No [37]

QARMAv2-64

RT IN Yes No 13 2110.47 246.32 246.32 Yes, (T = 1) [26]
IN Yes No 14 2110.17 246.32 246.32 Yes, (T = 2) [26]

ST TD Yes Yes 10 270.68 247.36 268.68 Yes Sec. 6.4
TD Yes No 11 2105.03 246.94 2103.28 Yes Sec. 6.5

RT: Related Tweak ST: Single Tweak
MITM: Meet In the Middle ID: Impossible Differential
SS: Statistical Saturation TD: Truncated Differential
RT/ST: Related Tweak/Single Tweak TDIB: Tweak Difference Invariant Bias
ZC: Zero Correlation IN: Integral.

The time complexity and data complexity of the attack are 266.2 and 248.4 respectively.
There are only two works in the single-tweak, the first model is [21], which proposes
10-round MITM attacks for both versions of QARMAv1. However, it does not meet the
time-data tradeoff threshold. For QARMAv1-64 the time complexity and data complexity
were reported as 270 and 253 respectively, but its memory complexity, which is the lower
bound of the time complexity, is 2116. For QARMAv1-128, the time complexity and data
complexity were 2141 and 2105 while its memory complexity remains consistent at 2232.
Hence, both of these attacks do not satisfy the time-data tradeoff threshold and can not be
considered valid attacks on QARMAv1. The second single-tweak attack has been introduced
in [37]. By using a 6-round distinguisher, it proposes four truncated impossible differential
attacks on both versions of QARMAv1. Each of the four conducted attacks violates the T D
threshold claimed by designers.

Security of the newly introduced cipher QARMAv2 is well studied by the designers but
scarcely by third parties. To the best of our knowledge, the only published result works
in the related-tweak model and covers 13 and 14 rounds of QARMAv2-64, out of the recom-
mended 16 and 20 rounds for T = 1 and 2, respectively[26].

A summary of all the attacks on reduced-round QARMAv1 and QARMAv2-64, along with
the new attacks presented in this paper, is given in Tab. 1.

6 Truncated Differential attack on QARMA

In this section, we present 10-round attacks on QARMAv1-64 and QARMAv1-128, as well
as 10 and 11-round attacks on QARMAv2-64. All the proposed attacks are the best valid
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attacks in the single-tweak model. We first introduce the optimum 6-round truncated
distinguishers for these ciphers, then based on the 4 inner rounds of which, we propose
the key recovery attacks.

6.1 6-round Truncated Distinguisher for QARMAv1-n and QARMAv2-64
The process of determining the optimal truncated differential path involves two steps: the
identification of the optimal path and computing its accurate probability. To discover the
optimal truncated differential path, we employ the Mixed-Integer Linear Programming
(MILP) tool proposed in [6], which fully automates the search process, in an efficient way.
This approach is built upon the assumption of independent and uniformly distributed
variables for the output differences of the active S-boxes, a consequence of the Markov
cipher assumption [28]. Under this assumption, the only part of the cipher that needs
to be modeled is the Branching Property (BPT) (defined in Def. 6 of Appendix C)
associated with the MixColumns matrix Mm. The BPTs of QARMAv1-64, QARMAv1-128, and
QARMAv2-64 can be found in Appendix C. In [6], an approximated BPT is employed for
its simplicity. In this approximation, all the transition probabilities through MixColumns
matrix are rounded to the nearest power of 2−m. However, when dealing with the BPT
of M4 and M8 matrices of QARMA variants, we calculate more precise values for transition
probabilities, which span a broad range of non-integer values. Thus, we employ the MILP
model proposed by Abdelkhalek in [5], specifically designed for the MILP modeling of
large S-boxes with non-integer transition probabilities, which is well-suited to our case.

In accordance with Def. 4, we define the objective function as the minimization of
p − δin. To ensure that the resulting path is an efficient one, as stipulated in Def. 3, we
incorporate the constraint p ≤ n− δout into the model, for efficient distingusher.

Once we have identified the optimal path under the Markov cipher assumption, we
employ Prop. 5 to determine the accurate value of the distinguisher probability. There
are two approaches for computing this value. The first approach, introduced in [7], is
an efficient and speedy algorithm. It calculates the truncated probability for a given
truncated path (referred to as an "activity pattern" in [7]) by taking into account all the
concrete paths consistent with the specified path. The second approach involves utilizing
a SAT- or MILP-based automatic method to find all concrete differentials (α→ β), where
α ∈ ∆∗

in and β ∈ ∆∗
out, with (∆∗

in, ∆∗
out) representing the input/output difference of

the optimal truncated path obtained in the previous step. While this approach may not
be as swift as the method proposed in [7], it offers the advantage of considering any
potential differential effects, i.e. the concrete paths that are not necessarily confined
to the optimal truncated path within the internal state differences. Therefore, we opt
for the second approach to refine the probability of the optimal truncated differential
distinguisher. Both the MILP- and SAT-based models were employed independently, and
they provided perfectly matching solutions.

6-round distinguishers. We searched for the longest optimum truncated differential dis-
tinguisher for the middle part of QARMAv1-64 and QARMAv1-128, as well as QARMAv2-64,
independently. In all three cases, we found the same set of 16 distinguishers covering
R̄2(P(R2(·))) as the optimum distinguisher. These distinguishers, covering 6 full R (or
R̄) though involving seven {ShuffleCells + MixColumns} layers, are as follows:

τ̄(M(a · ei))
R̄2(P(R2(·)))−−−−−−−−→

2−p
τ̄(M(b · ei)), a, b ∈ Fm

2 /{0}, i = 0, . . . , 15 (18)

where a ·ei is the 4×4 matrix whose ith element is a, while all other elements are zero. All
the 16 paths given in (18) exhibit a reflective pattern and share the following parameters:
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Figure 4: An optimal 6-round truncated differential distinguisher for QARMAv1-64, QARMAv1-
128, and QARMAv2-64, with probabilities P = 2−49.7, 2−107.6, and 2−48.27, respectively. The
red part is the 4-round path with the same probability.

• For QARMAv1-64, δin = 4, and δout = 4, and the approximated p merely based on
the BPT is 51.8, which is refined to the accurate value p = 49.7, using SAT- and
MILP-based automatic methods for computing (6), independently.

• For QARMAv1-128, δin = 8, and δout = 8, and the approximated p merely based
on the BPT is 108.77, which is refined to the accurate value p = 107.60 using a
SAT-based automatic method.

• For QARMAv2-64, δin = 4, and δout = 4, and the approximated p merely based on
the BPT is 46.97, which is refined to the accurate value p = 48.27, using SAT-based
automatic method.

The profile of concrete paths and their probabilities are shown in Appendix D. Moreover,
this validation also shows that the accuracy of the pure-truncated search [6] is well enough
in the case of QARMA. An instance of the distinguishers introduced in (18) for i = 4 is shown
in Fig. 4, also described in (19) for QARMAv1-64.

aρ 0 0 0
0 aρ 0 0
0 0 0 0
0 0 0 aρ2

 R̄2(P(R2(·)))−−−−−−−−→
2−49.7


bρ 0 0 0
0 bρ 0 0
0 0 0 0
0 0 0 bρ2

 (19)

4-round distinguishers. The first and last rounds of transitions in the paths given in (18)
are deterministic. So, if we omit these two rounds, we come up with a series of 4-round
totally reflective distinguishers with the same probability, which is as follows.

a · ei
R̄(P(R(·)))−−−−−−−→

2−p
b · ei (20)

where p = 49.7, 107.60, and 48.27 for QARMAv1-64, QARMAv1-128, and QARMAv2-64, respec-
tively. In Fig. 4, this distinguisher is highlighted within the 6-round distinguisher, in red.
In the next subsection, we use these 4-round paths as the underlying distinguisher for the
proposed key recovery attacks.

6.2 Single-Tweak Key Recovery Attack on 10-Round QARMAv1-64
We first present the main attack procedure on QARMAv1-64, by which its key space is
reduced by a factor of about 212. Then, we use it repeatedly to realize a full key recovery
attack, satisfying the T D trade-off threshold.



Zahra Ahmadian, Akram Khalesi, Dounia M’foukh, Hossein Moghimi and María
Naya-Plasencia 15

PTX X0

Y1 Z1

Y2 Z2

X1

X2

Y7 Z7

Y2

X7

Y8 Z8

Y2

X8

Y9 CTXX9

+

w ⊕ k

S

τ, M +

u

S

τ, M +

u

S

4-round truncated

differential distinguisher

with P = 2−p

S̄ +

u

M̄, τ̄

S̄ +

u

M̄, τ̄

S̄ +

w′ ⊕ k
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6.2.1 Reducing the Key Space

We use an equivalent representation of QARMAv1-64, in which the AddRoundTweakey layer
of all rounds, are replaced by an equivalent key u = M(τ(k)) XORed in after (before) the
MixColumn layer in the forward (backward) round functions.

We use the 4-round distinguisher given in (20) of probability 2−49.7 for i = 4, which
is shown in Fig. 4, omitting the first and last rounds of the 6-round path. We extend
this distinguisher for three rounds in each direction, resulting in a 10-round attack. This
attack is shown in Fig. 5. For simplicity in this figure, we have omitted the tweaks, the
constants ci and also α.

The propagation of active nibbles in the upper and lower parts is exactly the same.
This causes all subkeys k or u involved in the attack to be the same in the upper and
lower parts. The resulting differences in plaintext and ciphertext are active over the same
nibbles, and finally din = dout = 36.

Precomputation Phase. We will use the linear relations in the subkey bits to compute a
precomputation table to reduce the time complexity of the attack by reducing the number
of subkey bits guessed during the attack steps.

Thanks to the key schedule and the linear description of subkey bits involved in the
attack given in Appendix E, we have the following linear relations between the subkey
bits of (w ⊕ k), u and (w′ ⊕ k):

(w′ ⊕ k)[4]3 + (w′ ⊕ k)[11]2 + (w′ ⊕ k)[14]2 = (w ⊕ k)[4]2 + (w ⊕ k)[11]1 + (w ⊕ k)[14]1 + u[5]1,4,

(w′ ⊕ k)[4]4 + (w′ ⊕ k)[11]3 + (w′ ⊕ k)[14]3 = (w ⊕ k)[4]3 + (w ⊕ k)[11]2 + (w ⊕ k)[14]2 + u[5]1,2,

(w′ ⊕ k)[4]2,3,4 + (w′ ⊕ k)[11]4 + (w′ ⊕ k)[14]4 = (w ⊕ k)[4]1,2,3 + (w ⊕ k)[11]3 + (w ⊕ k)[14]3 + u[5]2,3.

Thus if we guess the 212 possible values of (w ⊕ k)[4,11,14], the 24 possible values of
u[5], the 24 possible values of (w′ ⊕ k)[4], and the 224 possible values of (C, C ′)[4,11,14],
we would be able to compute (w′ ⊕ k)[11] and (w′ ⊕ k)[14], according to Step 1 of the
attack below. Then, the three linear relations between the subkey bits apply a 3-bit
filter on (w′ ⊕ k)[4] and only two possible values of (w′ ⊕ k)[4] remain for each triplet of
((w⊕ k)[4,11,14], u[5], (C, C ′)[4,11,14]). We can now compute a precomputation table
of the values of (w′ ⊕ k)[4] for each possible ((w ⊕ k)[4,11,14], u[5], (C, C ′)[4,11,14]).
Thus we have a size 241 precomputation table of the 2 possible values of (w′ ⊕ k)[4] for
each of the 240 possible values of ((w ⊕ k)[4,11,14], u[5], (C, C ′)[4,11,14]).

Similarly, we can compute the same precomputation table for the values of (w′⊕ k)[5]
and (w′ ⊕ k)[7].

Generating Pairs. We follow the process discussed in Sec. 3 to accurately determine the
data required for the attack. Each structure contains 236 plaintexts, which are constant
in the 7 non-active nibbles {0,1,2,3,6,9,12}, and take all possible values in the other
nibbles. Since none of the differential pairs should share similar values in the active
nibbles, the total number of pairs in each structure is 1

2 (24(24 − 1))9 = 270.16. According
to the branching property table of M4, which can be found in Appendix C, the filtering
probability is PF ilt = (2−7.81)4 = 2−31.25, because of the three column transitions in the
first MixColumns, and the one in the second. It must be held that 2s+70.16 = 249.7+31.25

which gives s = 10.8. Therefore, the data required for the attack is 2s+36 = 246.8. Finally,
the probability of sieving the ciphertext pairs is Psieve = (2−4)7 × ( 15

16 )9 = 2−28.84, and
the total number of pairs after sieving is 2s+70.16−28.84 = 252.12.

Attack Steps. For each of the 252.12 candidate pairs, in order to verify which keys would
allow to follow the differential path, the following steps are performed:
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1. We first guess the nibble (w ⊕ k)[4] which implies the pair of values in X1[4]. The
MixColumns transition to column two in Y1 implies that ∆X1[11] = ∆X1[14] =
ρ−1∆X1[4]. On the other hand, we know the differences in nibbles X0[11] and
X0[14] in the input of the S-box as they are given by the plaintext.
There is a 2−pn probability of having a possible transition through the DDT and
for each transition 2pn values make it possible. Thus, on average we associate one
value of the nibbles (w ⊕ k)[11,14], per pair and per guess of (w ⊕ k)[4]. The time
complexity of this step is 252.12 × 24 = 256.12.

2. We guess the nibble u[5] to be able to use the precomputation table. Since we have
P and P ′, we already have the needed bits of the ciphertexts, i.e. (C, C ′)[4,11,14].
Thus we can read on the precomputation table the 2 possible values of (w′ ⊕ k)[4]
and compute as in step 1, the value of (w′ ⊕ k)[11] and (w′ ⊕ k)[14]. The time
complexity after this step is 256.12 × 24 × 2 = 261.12.

3. Since we guessed u[5], we can compute the pairs of values in Y8[5], and consequently
X8[5]. Due to the linear relation imposed by the MixColumns matrix, it holds that
∆Z7[4] = ρ−1∆X8[5]. Thanks to the reflective structure of the cipher, the same
conditions apply to the upper part and we can compute ∆Z2[4] = ρ−1∆X2[5].

4. We repeat Steps 1,2 and 3 with ((w′ ⊕ k)[5], u[0]) and ((w′ ⊕ k)[7], u[15]). The time
complexity is now 3× 261.12 = 262.72.

5. We now have to match the three different candidates subkey bits we computed. For
this, we will merge the list of the 29 differences (∆1Z2[4], ∆1Z7[4]) computed in Step
3 using u[5], the list of the 29 differences (∆2Z2[4], ∆2Z7[4]) computed in Step 3
using u[0] and the list of the 29 differences (∆3Z2[4], ∆3Z7[4]) computed in Step 3
using u[15].
There is 28 possible values for the differences (∆iZ2[4], ∆iZ7[4]) , i = 1, 2, 3, therefore
for each of the 29 possible values of ((w⊕k)[4,11,14], u[5], (w′⊕k)[4]), there is 29

28 = 2
values of ((w ⊕ k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15]) which will match. Similarly,
for each of the two values of ((w ⊕ k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15]), there will
be two matches in the list of differences (∆3Z2[4], ∆3Z7[4]) thus there will be 2
values of ((w⊕ k)[7,8,13], u[15], (w′ ⊕ k)[7,8,13]) for each of the 2 values of ((w⊕
k)[5,10,15], u[0], (w′ ⊕ k)[5,10,15]).
Thus for each of the 29 guesses of ((w ⊕ k)[4,11,14], u[5], (w′ ⊕ k)[4,11,14]) we
match two sets of subkey bits candidates ((w⊕ k)[5,10,15], u[0], (w′⊕ k)[5,10,15])
and for each of those two sets we match two sets of subkey bits candidates of ((w⊕
k)[7,8,13], u[15], (w′ ⊕ k)[7,8,13]). So overall, we get 252.12 × 29 × 2 × 2 = 263.12

candidate triplets (P, P ′, information bits of key).

The information bits of subkeys involved in the attack have linear representations in key
bits w and k, which are shown in Tab. 7 of Appendix E. The resulting linear system
of equations has 84 equations (each corresponds to a guessed/implied subkey bit in the
attack) in 77 variables (w and k bits), and its rank is 75. This means that the remaining
triplets give 263.12 possible values for 75 key bits, hence reducing the space for about 11.88
bits.

6.2.2 Recovering the Whole Key

If we repeat the attack steps once again with a new set of data, the data and time
complexity will increase by a factor of 2, each. But, the key space is reduced by a factor
of 211.88. So, the remaining candidate keys will become 263.12−11.88 = 251.24.
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In general, the time complexity of repeating the attack for N times is 263.12 ×N , and
the complexity of the exhaustive search of the remaining key bits is 2128−11.88N , so the
time complexity would be 2128−11.88N + 263.12 ×N , which is minimized at N = 6. All in
all, the time, data, and memory complexities of the attack are:

D = 6× 246.8 = 249.39

T = 263.12 × 6 + 2128−11.88×6 = 265.72 (21)
M = 263.12

T D = 2115.11 < 2128. (22)

6.3 Single-Tweak Key Recovery Attack on 10-Round QARMAv1-128
The attack on QARMAv1-128 shares many similarities with QARMAv1-64 and uses the same
4-round pattern for truncated distinguisher with probability 2−107.60. Therefore, in this
section, we will focus on highlighting the distinctions between them to avoid repeating
the details already discussed.

Precomputation Phase. For QARMAv1-128, we also have linear relations in the subkey
bits which are used in the precomputation phase of the attack. Based on the linear
description of subkey bits involved in the attack given in Appendix E, we have the following
linear relations between the subkey bits of (w ⊕ k), u and (w′ ⊕ k):

(w′⊕k)[4]2 +(w′⊕k)[11]3 +(w′⊕k)[14]7 = (w⊕k)[4]1 +(w⊕k)[11]2 +(w⊕k)[14]6 +u[5]5,6

(w′⊕k)[4]3 +(w′⊕k)[11]4 +(w′⊕k)[14]8 = (w⊕k)[4]2 +(w⊕k)[11]3 +(w⊕k)[14]7 +u[5]6,7

(w′⊕k)[4]4+(w′⊕k)[11]5+(w′⊕k)[14]2...8 = (w⊕k)[4]3+(w⊕k)[11]4+(w⊕k)[14]1...7+u[5]7,8

(w′⊕k)[4]5 +(w′⊕k)[11]6 +(w′⊕k)[14]2 = (w⊕k)[4]4 +(w⊕k)[11]5 +(w⊕k)[14]1 +u[5]1,8

(w′⊕k)[4]6 +(w′⊕k)[11]7 +(w′⊕k)[14]3 = (w⊕k)[4]5 +(w⊕k)[11]6 +(w⊕k)[14]2 +u[5]1,2

(w′⊕k)[4]7 +(w′⊕k)[11]8 +(w′⊕k)[14]4 = (w⊕k)[4]6 +(w⊕k)[11]7 +(w⊕k)[14]3 +u[5]2,3

(w′⊕k)[4]8+(w′⊕k)[11]2...8+(w′⊕k)[14]5 = (w⊕k)[4]7+(w⊕k)[11]1...7+(w⊕k)[14]4+u[5]3,4

Thus if we guess the 224 possible values of (w⊕ k)[4,11,14], the 28 possible values of
u[5], the 28 possible values of (w′ ⊕ k)[4], and the 248 possible values of (C, C ′)[4,11,14],
we would be able to compute (w′ ⊕ k)[11] and (w′ ⊕ k)[14], as in Step 1 of the attack.
Then, the seven linear relations between the subkey bits apply a 7-bit filter on (w′⊕ k)[4]
and only two possible values of (w′ ⊕ k)[4] remain for each triplet of ((w ⊕ k)[4,11,14],
u[5], (C, C ′)[4,11,14]). We can now compute a precomputation table of the values of
(w′ ⊕ k)[4] for each possible ((w ⊕ k)[4,11,14], u[5], (C, C ′)[4,11,14]). Thus we have a
size 281 precomputation table of the 2 possible values of (w′ ⊕ k)[4] for each of the 280

possible values of ((w ⊕ k)[4,11,14], u[5], (C, C ′)[4,11,14]).
Similarly, we can compute the same precomputation table for the values of (w′⊕ k)[5]

and (w′ ⊕ k)[7].

Generating Pairs. Each structure contains 29m = 272 plaintexts, which are constant in
7 non-active words, taking all possible values in the other words. The total number of
pairs in each structure is 1

2 (2m(2m − 1))9 = 2142.94. The filtering probability is PF ilt =
(2−15.99)4 = 2−63.96. It must be held that 2s+142.94 = 2107.60+63.96 which gives s = 28.62.
Therefore, the data required for the attack is 2s+72 = 2100.62. Finally, the probability of
sieving the ciphertext pairs is Psieve = (2−8)7× ( 255

256 )9 = 2−56.05, and the total number of
pairs after sieving is 2s+142.94−56.05 = 2115.51.
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Attack Steps. Since the attack steps is very similar to QARMAv1-64’s, which are performed
for each of the 2101.68 pairs of data. In the following, we just report the time complexity
of each step.

1. The time complexity of this step is 2115.51 × 28 = 2123.51.

2. The time complexity after this step is 2123.51 × 28 × 2 = 2132.51.

3. In this step, it should hold that ∆Z7[4] = ρ−5∆X8[5] and ∆Z2[4] = ρ−5∆X2[5].

4. After repeating Steps 1,2 and 3 with ((w′ ⊕ k)[5], u[0]) and ((w′ ⊕ k)[7], u[15]), the
time complexity is now 3× 2132.51 = 2134.10.

5. The three different candidate subkey bits should be matched by merging the list of
the 217 differences (∆iZ2[4], ∆iZ7[4]), 1 ≤ i ≤ 3, computed in Step 3 using u[5],
u[0], and u[15].
Thus for each of the 217 guesses of ((w ⊕ k)[4,11,14], u[5], (w′ ⊕ k)[4,11,14]) we
match two sets of subkey bits candidates ((w⊕ k)[5,10,15], u[0], (w′⊕ k)[5,10,15])
and for each of those two sets we match two sets of subkey bits candidates of ((w⊕
k)[7,8,13], u[15], (w′⊕k)[7,8,13]). So overall, we get 2115.51× 217× 2× 2 = 2134.51

candidate triplets (P, P ′, information bits of key).

The linear representations of the information bits of subkeys involved in the attack in key
bits w and k are shown in Tab. 8 of Appendix E. The resulting linear system of equations
has 168 equations in 149 variables, with rank 147. This means that the remaining triplets
give 2134.51 possible values for 147 key bits, hence reducing the space for about 12.49 bits.

6.3.1 Recovering the Whole Key

The time complexity of repeating the attack N times is 2134.51 ×N , and the complexity
of the exhaustive search of the remaining key bits is 2256−12.49N , so the time complexity
would be 2256−12.49N + 2134.51 × N , which is minimized at N = 10. All in all, the time,
data, and memory complexities of the attack are:

D = 10× 2100.62 = 2103.95

T = 2256−12.49×10 + 2134.51 × 10 = 2137.84

M = 2134.51

T D = 2241.79 < 2256. (23)

6.4 Single-Tweak Key Recovery Attack on 10-Round QARMAv2-64
In this section, we present a 10-round attack on QARMAv2-64, illustrated in Fig. 6. Despite
sharing the same pattern of active nibbles throughout the cipher with QARMAv1-64, the
attack on QARMAv2 follows a modified strategy due to variations in key schedules. We
again use the equivalent representation of QARMAv2-64, in which the AddRoundTweakey
layer of all rounds, are replaced by an equivalent key K ′

i = M(τ(Ki)) (L′
i = M(τ(Li))),

i = 0, 1, XORed in after (before) the MixColumn layer in the forward (backward) round
functions.

The attack overview is outlined as follows: initially, we select a set of (pairs of) plain-
texts based on the differential input to the cipher and filter them according to the resulting
differential output. Subsequently, we compute the differential input and output of the dis-
tinguisher for each pair, denoted as (∆Z2[4], ∆Z7[4]) along three distinct paths, each
dependent on a set of subkeys. The values of the relevant subkeys, along with their corre-
sponding (∆Z2[4], ∆Z7[4]) pairs, are organized into three separate lists, namely L1, L2,
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Figure 6: 10-round truncated differential attack on QARMAv2-64

and L3. Finally, these lists are consolidated, and candidate subkeys are filtered based on
the redundancy of the subkeys involved. In the initial path, the computation of differ-
ences (∆Z2[4], ∆Z7[4]) depends on the subkeys (K0[7,8,13], L1[7,8,13], K ′

1[15], L′
0[15]).

So, we construct list L1 as follows:

L1 : (K0[7,8,13], L1[7,8,13], K ′
1[15], L′

0[15], ∆Z2[4], ∆Z7[4]) (24)

Similarly, the other two lists L2 and L3, are constructed, as follows:

L2 : (K0[4,11,14], L1[4,11,14], K ′
1[5], L′

0[5], ∆Z2[4], ∆Z7[4]) (25)
L3 : (K0[5,10,15], L1[5,10,15], K ′

1[0], L′
0[0], ∆Z2[4], ∆Z7[4]) (26)

Note that the attack benefits from both inter-list dependencies (relationships between
subkeys of different lists) and intra-list dependencies (relationships within the subkeys of
the same list).
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Subkey Relations. Using relations K ′
1 = M(τ(K1)) and L′

0 = M(τ(L0)), the exploited
subkey relations would be outlined as (27) to (32)

K ′
1[0] = ρK1[10] + ρ2K1[5] + ρ3K1[15] →


K ′

1[0]0 = L1[10]0 + L1[5]1 + L1[15]2 + L1[0]0
K ′

1[0]1 = L1[10]1 + L1[5]2 + L1[14]3
K ′

1[0]2 = L1[10]2 + L1[4]3 + L1[15]0
K ′

1[0]3 = L1[9]3 + L1[5]0 + L1[15]1

(27)

K ′
1[5] = ρ3K1[11] + ρK1[14] + ρ2K1[4] →


K ′

1[5]0 = L1[11]2 + L1[14]0 + L1[4]1
K ′

1[5]1 = L1[10]3 + L1[14]1 + L1[4]2
K ′

1[5]2 = L1[11]0 + L1[14]2 + L1[3]3
K ′

1[5]3 = L1[11]1 + L1[13]3 + L1[4]0

(28)

K ′
1[15] = ρK1[13] + ρ2K1[7] + ρ3K1[8] →


K ′

1[15]0 = L1[13]0 + L1[7]1 + L1[8]2
K ′

1[15]1 = L1[13]1 + L1[7]2 + L1[7]3
K ′

1[15]2 = L1[13]2 + L1[6]3 + L1[8]0
K ′

1[15]3 = L1[12]3 + L1[7]0 + L1[8]1

(29)

L′
0[0] = ρL0[10] + ρ2L0[5] + ρ3L0[15] →


L′

0[0]0 = K0[10]0 + K0[5]1 + K0[15]2 + K0[0]0
L′

0[0]1 = K0[10]1 + K0[5]2 + K0[14]3
L′

0[0]2 = K0[10]2 + K0[4]3 + K0[15]0
L′

0[0]3 = K0[9]3 + K0[5]0 + K0[15]1

(30)

L′
0[5] = ρ3L0[11] + ρL0[14] + ρ2L0[4] →


L′

0[5]0 = K0[11]2 + K0[14]0 + K0[4]1
L′

0[5]1 = K0[10]3 + K0[14]1 + K0[4]2
L′

0[5]2 = K0[11]0 + K0[14]2 + K0[3]3
L′

0[5]3 = K0[11]1 + K0[13]3 + K0[4]0

(31)

L′
0[15] = ρL0[13] + ρ2L0[7] + ρ3L0[8] →


L′

0[15]0 = K0[13]0 + K0[7]1 + K0[8]2
L′

0[15]1 = K0[13]1 + K0[7]2 + K0[7]3
L′

0[15]2 = K0[13]2 + K0[6]3 + K0[8]0
L′

0[15]3 = K0[12]3 + K0[7]0 + K0[8]1

(32)

Generating Pairs. We choose 2s structures of 236 plaintexts, which are constant in the
seven non-active nibbles {0,1,2,3,6,9,12}, and take all possible values in the other
nibbles. Since none of the differential pairs should share similar values in the active
nibbles, the total number of pairs in each structure is 1

2 (24(24 − 1))9 = 270.16. Hence, we
have 2s+70.16 pairs of plaintexts in total. According to the BPT of the diffusion matrix,
which can be found in Appendix C, the filtering probability is PF ilt = (2−7.81)4 = 2−31.25,
because of the three column transitions in the first MixColumns, and the one in the second.
So, it must be held that 2s+70.16 = 248.27+31.25 which gives s = 9.36. Therefore, the data
required for the attack is 2s+36 = 245.36. Finally, the probability of sieving the ciphertext
pairs is Psieve = (2−4)7× ( 15

16 )9 = 2−28.84 due to the 7 non-active and the 9 active nibbles,
and the total number of pairs after sieving is 2s+70.16−28.84 = 250.68.

Attack Steps. For each of the 250.68 candidate pairs the following steps are performed:
1. Similar to the first step in key recovery attack on QARMAv1-64, we guess K0[7] and

L1[7] and compute (K0[8,13], (Y1, Y ′
1)[15]) and (L1[8,13], (Y8, Y ′

8)[15]), respectively.
Then,

(a) We guess L1[6]3, L1[12]3. Utilizing the other guessed bits from L1 in (29), we
calculate K ′

1[15]. Subsequently, ∆Z2[4] can be computed.
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(b) Similarly, we make guesses for K0[6]3 and K0[12]3. Using the known value of
L′

0[15] as specified in (32), we compute ∆Z7[4].

All guessed values for subkeys, along with the resulting values for (∆Z2[4], ∆Z7[4])
for each subkey guess, are incorporated into the list L1 as defined in (24). The time
complexity of this step is 28(22 + 22) = 211, and the size of L1 is 212.

2. Likewise Step 1, we guess K0[4] and L1[4] and compute (K0[11,14], (Y1, Y ′
1)[5]) and

(L1[11,14], (Y8, Y ′
8)[5]), respectively. Then,

(a) We guess L1[3]3, L1[10]3, and L1[13]3, and compute K ′
1[5] by (28). Then,

∆Z2[4] can be obtained.
(b) We also guess K0[3]3, K0[10]3, and K0[13]3, and compute L′

0[5] by (31). Then,
∆Z7[4] can be obtained.

Similar to Step 1, we construct list L2, as defined in (25). The time complexity of
this step is 28(23 + 23) = 212 and the size of L2 is 214.

3. Likewise Step 1, we guess K0[5] and L1[5] and compute (K0[10,15], (Y1, Y ′
1)[0]) and

(L1[10,15], (Y8, Y ′
8)[0]), respectively. Then,

(a) We guess L1[0]0, L1[9]3, and L1[14]3, and compute K ′
1[0] by (27). Then, ∆Z2[4]

can be obtained.
(b) We also guess K0[0]0, K0[9]3, and K0[14]3, and compute L′

0[0] by (30). Then,
∆Z7[4] can be obtained.

Similar to Step 1, we construct list L3, as defined in (26). The time complexity of
this step is 28(23 + 23) = 212 and the size of L3 is 214.

4. In the last step, we merge lists L1, L2 and L3. For this purpose,

(a) For each 212 tuple in L1, we get (∆Z2[4], ∆Z7[4]).
(b) For each (∆Z2[4], ∆Z7[4]) from Step 4.a, we get 26 values for subkeys involved

in L2. Since L1[13]3 and K0[13]3 are present in both L1 and L2, the overall
subkey candidates undergo a filtering process by a factor of 2−2. Consequently,
we have 212 × 26 × 2−2 = 216 candidates at the end of this step.

(c) For each 216 candidates from Step 4.c, we get 26 values for the subkeys involved
in L3. Since L1[10]3, L1[14]3 and K0[10]3, K0[14]3 are present in both L2 and
L3, the number of subkey candidates would be 216 × 26 × 2−4 = 218.

Finally, we repeat these steps for each of the 250.68 pairs. Consequently, we accumulate
250.68×218 = 268.68 candidates for the 88 involved subkey bits. This results in a reduction
of the key space by a factor of 219.32. The time complexity of these steps is as follows:

250.68(211 + 212 + 212 + 218) ≈ 268.68

6.4.1 Recovering the Whole Key

We repeat the attack steps N times. So, the total time complexity would be N × 268.68 +
2128−19.32N , which is minimized at N = 4. Therefore, the data, time, and memory
complexities of the attack are:

D = 4× 245.36 = 247.36

T = 4× 268.68 + 2128−19.32×4 = 270.68 (33)
M = 268.68
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Figure 7: 11-round truncated differential attack on QARMAv2-64

6.5 Single-Tweak Key Recovery Attack on 11-Round QARMAv2-64
As stated in Sec. 5.1.5, QARMAv2-64 no longer relies on time-data trade-offs as the founda-
tion for determining security levels. This enables us to extend the 10-round attack to one
round more, as detailed in the following.

Generating Pairs. As in 10-round attack in Sec. 6.4, we choose 2s structures of 236

plaintexts, which are constant in the 7 non-active nibbles {0,1,2,3,6,9,12}, and take
all possible values in the other nibbles, according to Fig. 7. The total number of pairs
in each structure is 1

2 (24(24 − 1))9 = 270.16 and we have 2s+70.16 pairs of plaintexts in
total. Similarly, the filtering probability is PF ilt = (2−7.81)4 = 2−31.25 according to the
BPT of the diffusion matrix. So, it must be held that 2s+70.16 = 248.27+31.25 which gives
s = 9.36. Therefore, the data required for the attack is 2s+36 = 245.36. Finally, there is
no sieving due to the fully active state in the cipher output and the attack will proceed
with 2s+70.16 = 279.52 pairs.

Attack Steps. For each of the 279.52 candidate pairs the following steps are performed:
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1. We guess 28 possible values for L0[0,5] and compute (X10, X ′
10)[0,5] as well as

∆X10[0,5]. Since the differences in two nibbles in the last MixColumn input as
well as differences in two nibbles in its output are known, the other four nibbles
differences can be computed. In this way, ∆C[0,5,10,15] and ∆X10[0,5,10,15]
are known.
So, for each guess of L0[0,5] per pair, we have one value for L0[10,15], in average.
The time complexity of this step is 279.52×28 = 287.52 and we have 279.52+8 = 287.52

candidates at the end of this step.

2. Based on the key schedule, K0[5]0,1,2, K0[10]0,1,2, K0[15]0,1 can be computed from
L0[0,5,10,15], already determined in the previous step. So, we just need to guess
K0[5]3, K0[10]3, K0[15]2,3 to compute ∆Y1[0,4,8,12]. According to the BPT of the
diffusion matrix, the probability of ∆Y1[0] ̸= 0 and ∆Y1[4] = ∆Y1[8] = ∆Y1[12] = 0
for the chosen pairs is equal to 2−7.81. Hence, we come up with 287.52+4−7.81 = 283.71

candidates at the end of this step with time complexity 287.52+4 = 291.52.

3. Similar to step 1, we guess 28 possible values for L0[1,4] and compute values of
L0[11,14]. So, we have 283.71+8 = 291.71 candidates at the end of this step with
time complexity 283.71+8 = 291.71.

4. Based on the key schedule, K0[4], K0[11]0,1,2, and K0[14] can be computed from
L0[4,5,11,14,15], already guessed in Steps 1 and 3. So, we just need to guess
K0[11]3 to compute ∆Y1[1,5,9,13]. Likewise Step 2, the probability of ∆Y1[5] ̸= 0
and ∆Y1[1] = ∆Y1[9] = ∆Y1[13] = 0 for the chosen pairs equals 2−7.81, according to
the BPT of the diffusion matrix. Therefore, we have 291.71+1−7.81 = 284.9 candidates
with time complexity 292.71 at the end of this step.

5. Since there are three nibbles with non-zero difference in the output of the third
column of the last MixColumn as well as its input, we need to guess three nibbles of
the subkeys L0[2,7,8,13] to compute the fourth nibble. Hence, we have 284.9+12 =
296.9 candidates with time complexity 296.9 at the end of this step.

6. From the already guessed subkeys L0[7,8,13,14], we can compute the whole bits of
subkeys K0[7,8,13] except K0[8]3, which should be guessed. Then, ∆Y1[3,7,11,15]
can be computed. Given the probability of 2−7.81 for ∆Y1[15] ̸= 0 and ∆Y1[3] =
∆Y1[7] = ∆Y1[11] = 0 for the chosen pairs, we end up with 296.9+1−7.81 = 290.09

candidates. The time complexity at the end of this step is 297.9.

7. Similar to Step 1, we guess 28 possible values for L0[3,6] and compute values of
L0[9,12]. However, there is a filter with probability 2−3 since L0[6]0, L0[9]0 and
L0[12]0 should comply with the already known values K0[5]3, K0[8]3 and K0[11]3,
respectively. So, we have 290.09+8−3 = 295.09 candidates at the end of this step with
time complexity 298.09.

8. We refer to a precomputation table, indexed by ((X9, X ′
9)[4,5,7,8,10,11,13,14,15],

L′
0[0,5,15]). In each entry of this table, the possible values for the combinations

of L′
1[4,11,14], L′

1[5,10,15] and L′
1[7,8,13] are stored in a way that the differ-

ential pattern of the distinguisher’s output is satisfied. For the number of candi-
dates in each entry, since there are 24 possible values for each set of L′

1[4,11,14],
L′

1[5,10,15] and L′
1[7,8,13], independently (i.e. 212 candidates for their combi-

nations in total), and the probability 2−7.81 for getting the differential output of
the distinguisher for the filtered pairs, there are 212−7.81 = 24.19 possible values for
L′1[4,5,7,8,10,11,13,14,15] in each entry. The required memory to store such a
table is 284+4.19 = 288.19. Hence, we have 295.09+4.19 = 299.28 candidates at the end
of this step with time complexity 295.09.
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9. Finally, we guess 24 possible values for K ′
1[0] and compute K ′

1[5,15] in order to have
∆Z2[4] ̸= 0 and ∆Z2[0] = ∆Z2[8] = ∆Z2[12] = 0. Therefore, we have 299.28+4 =
2103.28 candidates at the end of this step with time complexity 2103.28 which is the
dominant time complexity of the attack.

Since we achieve 2103.28 candidates for 112 involved key bits, the key space is reduced by
a factor of 28.72 with time complexity 2103.28.

6.5.1 Recovering the Whole Key

We repeat the attack steps N times. So, the total time complexity would be N × 2103.28 +
2128−8.72N , which is minimized at N = 3. Therefore, the data, time, and memory com-
plexities of the attack are:

D = 3× 245.36 = 246.94

T = 3× 2103.28 + 2128−8.72×3 = 2104.86 + 2101.84 = 2105.03 (34)
M = 2103.28

7 Conclusion
We have generalized and provided some new insights on truncated differential attacks,
contributing to potential future research directions. We showcased a successful application
of this attack to specific variants within the QARMA family of ciphers. It led to the only valid
known attack in the single-tweak model on QARMAv1-64, QARMAv1-128, and QARMAv2-64
variants. Our proposed attacks reached up to 10 rounds of QARMAv1-64 and QARMAv1-128,
maintaining adherence to the time-data trade-off security claimed by the designers, and
11-round of QARMAv2-64, satisfying the data limit provided by its designers. Although the
designers have not made any claims for the single-tweak model, our findings indicate that
QARMAv2-64, despite the version update, does not offer a higher level of security compared
to QARMAv1-64 in this model.

To execute these attacks, we employed optimal truncated differential distinguishers
identified through an automatic MILP- and SAT-based search. We introduced an en-
hanced variant-specific key-recovery procedure. Tailored to the target variant under anal-
ysis, our approach utilizes a combination of list merging techniques and precomputation,
resulting in a significant reduction in time complexity.
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A Proofs of Theorems

A.1 Proof of Proposition 2
By using Bayes theorem,

Pr(∆out
E−1

−−−→ ∆in) = Pr(∆X ∈ ∆in|∆Y ∈ ∆out)

= Pr(∆Y ∈ ∆out|∆X ∈ ∆in) Pr(∆X ∈ ∆in)
Pr(∆Y ∈ ∆out)

= Pr(∆in
E−→ ∆out)

|∆in|
|∆out|

(35)

where the last equality holds by assuming uniform distributions for ∆X and ∆Y .

A.2 Proof of Proposition 4

This proposition is proved by contradiction. Suppose that (∆out
E−1

−−−→ ∆in) is not opti-
mum. So, there is another efficient differential (U E−1

−−−→ V) such that P (U E−1

−−−→ V)|U | >
P (∆out

E−1

−−−→ ∆in)|∆out|. By Lemma 2, it holds that:

P (U E−1

−−−→ V)|U | > P (∆out
E−1

−−−→ ∆in)|∆out|

P (V E−→ U)|V | > P (∆in
E−→ ∆out)|∆in| (36)

Eq. (36) means that (∆in
E−→ ∆out) is not the optimum truncated differential distinguisher

for E, which is a contradiction. The proof of the reverse direction is analogous to this
direction.
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A.3 Proof of Proposition 5
Using the law of total probability and the rule of union of disjoint events, we can write:

Pr(∆in → ∆out) = Pr(∆Y ∈ ∆out|∆X ∈ ∆in)
=

∑
α∈∆in

Pr(∆Y ∈ ∆out|∆X ∈ ∆in, ∆X = α) Pr(∆X = α|∆X ∈ ∆in)

= 1
|∆in|

∑
α∈∆in

Pr(∆Y ∈ ∆out|∆X = α)

= 1
|∆in|

∑
β∈∆out

∑
α∈∆in

Pr(∆Y = β|∆X = α)

= 1
|∆in|

∑
α∈∆in,
β∈∆out

Pr(α→ β)

A.4 Proof of Theorem 1
Suppose that P (∆out

E−1

−−−→ ∆in) = 2−p′ . So, according to Lemma 2,

p′ = p− δin + δout (37)

This distinguisher is efficient if p′ < n−δin which, given (37), is equivalent to the efficiency
of the forward distinguisher (7). Suppose that we construct 2s′ structures in the output of
the cipher, each of which contains 2dout ciphertexts, that gives 22dout−1 pairs of ciphertexts.
So, the total number of pairs would be 2s′+2dout−1. The filtering probability from Dout

to ∆out is P ′
filt = 2−(dout−δout). So, the total pairs required for the attack is 2p′+dout−δout

which must be equal to 2s′+2dout−1. In this way, the total number of structures would be
obtained as 2s′ = 2p′−dout−δout+1. Therefore, the data complexity of the attack is

D′ = 2s′+dout = 2p′−δout+1 = 2p−δin+1 = D (38)

Finally, the sieving probability is P ′
sieve = 2−(n−din), and Total pairs after sieving is

P ′ = 2p′−n+din+dout−δout = 2p−n+din+dout−δin = P (39)

The time complexity of the attack mainly depends on D′ and P ′.

A.5 Proof of Lemma 2
Let N(a, b) =

∣∣{(x, y) ∈ Ft
2m × Ft

2m |y = Mx, Tr(x) = a, Tr(y) = b}
∣∣. Since M is an

MDS matrix, N(a, b) = 0 for 1 ≤ Hw(a) + Hw(b) ≤ t and N(a, b) = 1 for a = b = 0.
Therefore, we have

Pr(a→ b) =


1 Hw(a) + Hw(b) = 0
0 1 ≤ Hw(a) + Hw(b) ≤ t

N(a,b)
(2m−1)Hw(a) Hw(a) + Hw(b) ≥ t + 1

. (40)

We first provide a recursive form for N(a, b), then show how (40) approximately equals
(10). Let Q(a, b) =

∣∣{(x, y) ∈ Ft
2m × Ft

2m |y = Mx, Tr(x) ⪯ a, Tr(y) ⪯ b, x ̸= 0}
∣∣, where

Tr(x) ⪯ a means that Tr(x) is component-wise less than or equal to a. According to the
definitions of N and Q, it holds that:

N(a, b) = Q(a, b)−
∑

0≺a′≺a,
0≺b′≺b

N(a′, b′) (41)
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It is more convenient to first compute Q(a, b), then N(a, b) according to (41). Let
Hw(a) = i and Hw(b) = j. Let I and J represent the index sets of zero components in
a and b, respectively. So, |I | = t − i and |J | = t − j, and Tr(x) ⪯ a implies xr = 0 if
r ∈ I , and Tr(y) ⪯ b implies yr = 0 if r ∈ J . All these constraints simplifies Q(a, b) into
Q(a, b) =

∣∣{x′ ∈ Fi
2|M ′x′ = 0, x′ ̸= 0}

∣∣, where M ′ = M [J , Ic], i.e. M ′ is a submatrix of
M with dimensions t− j × i, obtained by retaining rows in J , and removing columns in
I .

So, Q(a, b) would be the number of non-zero solutions for the homogeneous system of
linear equations M ′x′ = 0 over F2m . Since M is an MDS matrix, any submatrix of that,
including M ′ is non-singular. Therefore, according to Rouché–Capelli Theorem [38], it
has a number of 2m(i−(t−j)) = 2m(i+j−t) solutions, excluding x′ = 0, it would be

Q(a, b) = 2m(i+j−t) − 1 (42)

According to (42), Q(a, b) only depends on i and j, so for simplicity we can change the
arguments (a, b) of N and Q into (i, j), and (41) will be updated to

N(i, j) = 2m(i+j−t) − 1−
∑

t+1≤i′+j′<i+j

(
i

i′

)(
j

j′

)
N(i′, j′) (43)

While (43) does not provide a direct formula for N(i, j), it meets our needs adequately.
Note that the terms within the summation, N(i′, j′), are of order at most 2m(i+j−t−1),
much smaller than the first term 2m(i+j−t), specifically for large m. Hence, we can approx-
imate N(i, j) by its dominant term, which is 2m(i+j−t). by replacing N(i, j) ≈ 2m(i+j−t)

into (40), it holds that

Pr(a→ b) ≈ 2m(i+j−t)

(2m − 1)i
≈ 2−m(t−j), (44)

which completes the proof.

B Overview of full-round QARMA

An overview of the full-round QARMA family of block ciphers is given in Figures 8 and 9.

8 The QARMA Block Cipher Family

w0 w1 w0 w1

P F C F C

k0 T k1 k0 + α T

Figure 1: The Overall Scheme
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Figure 2: The Structure of QARMAr

2 Specification of QARMA

2.1 General Definitions and Notation
The overall scheme of the TBC QARMA is depicted in Figure 1. There, and throughout
the paper, a bar over a function – e.g. F – denotes its inverse. QARMA is a three-round
Even-Mansour construction where the permutations are parameterized by a core key, and
the key mixings between rounds are derived from a whitening key. The first and third
permutations are functionally the inverse of each other and are further parameterized by a
tweak. The central permutation is designed to be easily inverted by means of a simple
transformation of the key.

The cipher is depicted in more detail in Figure 2. Both similarities and differences with
respect to previous designs can be clearly seen from the picture.

The keys k0, k1, w0, and w1 are derived from a master key K via a simple key
specialisation. The letters P , C and T denote the plaintext, the ciphertext and the tweak;
S represents a layer of sixteen m-bit S-Boxes, h and τ are permutations, M and Q are
MixColumns-like operations, with Q involutory, and ω is a LFSR.

Write n = 16m with m = 4 or 8. All n-bit values are represented as arrays of sixteen
m-bit cells. Cells are indexed in big endian order (hence, for QARMA-64, bits 63..60 are
contained in the zeroth cell, and bits 3..0 in in the fifteenth cell) while the bits inside a
cell are ordered in little endian order. Any array of sixteen cells is also viewed as a 4× 4
matrix, for instance, the internal state admits representations

IS = s0‖s1‖ · · · ‖s14‖s15 =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 , (1)

so that 4 × 4 matrices operate column-wise on these values by left multiplication. The
plaintext is given as P = p0‖p1‖ · · · ‖p14‖p15, the tweak as T = t0‖t1‖ · · · ‖t14‖t15.

Figure 8: QARMAv1 full round [17]
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6 The QARMAv2 Family of Tweakable Block Ciphers

K0 K1 K0 K1 K0 K0 K1

P S R {X} R R {X} R R R {X}
τ

W0 = o2(K0)

M

L1 L0 L1 L0 L1 L1 L0 W1 = o−2(K1)

τ

C S R {X} R R {X} R R R {X}

(k0) (k1)

(k1) (k0)

o(K0) + αo−1(K1) + β

==

T1 φr−1(T0) φ(T1) φr−2(T0) φ
r+1

2 (T0) φ
r−1

2 (T1)

φ
r−1

2 (T0)φ
r+1

2 (T1)φr−2(T1)φ(T0)φr−1(T1)T0

c2 c3 c4 cr−1 cr

c2 c3 c4 cr−1 cr

Figure 2: QARMAv2 encryption for odd r. If r is even, W0 and W1 are
swapped and the forward function starts with R instead of R {X}.

the MIDORI StateShuffle operation (2). The 4 by 4 matrix M operates column-wise by
left multiplication on each layer of a block. S is the parallel application of 16 ℓ identical
S-Boxes to all cells of the state. All these components are defined later in this section.

X denotes the eXchangeRows operation, that applies only for ℓ = 2. It swaps the
first two rows between the two layers. It is performed every other full round, where two
eXchangeRows’s always flank the reflector, or, in other words, eXchangeRows is always
included in Rounds r and r + 1. X and S clearly commute with each other.

The half round function consists of just a round key addition and a S-Box layer and is
only used for the first and the last rounds of the cipher.

2.4 The S-Boxes
For the general-purpose versions of QARMAv2, we use the following S-Box

ק =
[

4 7 9 B C 6 E F 0 5 1 D 8 3 2 A
]

. (4)

For the PAC and memory authentication applications we optionally allow the use of
QARMAv1’s σ0

σ0 =
[

0 E 2 A 9 F 8 B 6 4 3 7 D C 1 5
]

. (5)

2.5 The Diffusion Matrix
Let ρ denote the cyclic rotation to the left of the four bits in a cell, i.e. ρ((x3, x2, x1, x0)) =
(x2, x1, x0, x3). It is a linear transformation of F4

2, and ρ4 = 1, the identity map. The
diffusion matrix M is defined as the circulant matrix

M := M4,1 = circ(0, ρ, ρ2, ρ3) =


0 ρ ρ2 ρ3

ρ3 0 ρ ρ2

ρ2 ρ3 0 ρ
ρ ρ2 ρ3 0

 . (6)

For the properties of these matrices and their classification we refer to Appendix H.
Following the QARMAv1 paper, this and other diffusion matrices, such as the MIDORI
circulant M0 := circ(0, 1, 1, 1) and M4,2 = circ(0, ρ, ρ2, ρ), are Almost-MDS (i.e. they have
differential branch number equal to 4) and are grouped into classes depending on their
transition patterns: Class I includes M0 and M4,1; and M4,2 is a Class II matrix. Their

Figure 9: QARMAv2 full round [16]

C Branching Property Tables
Definition 6 (Branching Property Table (BPT)). For matrix Mt×t over F2m , the Branch-
ing Property Table is defined as a 2t × 2t table whose entry (a, b) reflects the base-2
logarithm of P (a M−→ b):

BPT (a, b) = log2(Pr
x
{Tr(M · x) = b|Tr(x) = a}) (45)

where a = [a3, a2, a1, a0]⊤, b = [b3, b2, b1, b0]⊤ ∈ F2
t , and Tr(·) is the m-bit truncation

operator. The impossible transitions are shown by a "-".

Tables 2 and 4 show the Branching Property Table (BPT) for QARMA-64/128 MixColumns
Matrix M(= Q). Table 5 includes the accurate and approximated BPT for all t× t MDS
matrices for t = 4 and m = 4, 8. Since, for accurate MDS matrices the transition proba-
bilities depend only on Hw(a) and Hw(b), the BPT reduces to a (t + 1) × (t + 1) table.

Table 2: BPT for QARMAv1-64 MixColumns Matrix M4
a / b 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 0 - - - - - - - - - - - - - - -

0x1 - - - - - - - - - - - - - - 0 -

0x2 - - - - - - - - - - - - - 0 - -

0x3 - - - -6.229 - - - -4.229 - - - -4.229 - - - -0.184

0x4 - - - - - - - - - - - 0 - - - -

0x5 - - - - - -3.907 - - - - - - - - - -0.099

0x6 - - - - - - -6.229 -4.229 - - - - - - -4.229 -0.184

0x7 - - - -8.135 - - -8.135 -4.181 -7.814 - - -4.091 - -4.006 -4.091 -0.408

0x8 - - - - - - - 0 - - - - - - - -

0x9 - - - - - - - - - -6.229 - -4.229 - -4.229 - -0.184

0xa - - - - - - - - - - -3.907 - - - - -0.099

0xb - - - -8.135 -7.814 - - -4.091 - -8.135 - -4.181 - -4.091 -4.006 -0.408

0xc - - - - - - - - - - - - -6.229 -4.229 -4.229 -0.184

0xd - - -7.814 - - - - -4.006 - -8.135 - -4.091 -8.135 -4.181 -4.091 -0.408

0xe - -7.814 - - - - -8.135 -4.091 - - - -4.006 -8.135 -4.091 -4.181 -0.408

0xf - - - -7.998 - -7.913 -7.998 -4.314 - -7.998 -7.913 -4.314 -7.998 -4.314 -4.314 -0.368
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Table 3: BPT for QARMAv1-128 MixColumns Matrix M8
a / b 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 0 - - - - - - - - - - - - - - -

0x1 - - - - - - - - - - - - - - 0 -

0x2 - - - - - - - - - - - - - 0 - -

0x3 - - - -14.404 - - - -8.011 - - - -8.011 - - - -0.011

0x4 - - - - - - - - - - - 0 - - - -

0x5 - - - - - -7.994 - - - - - - - - - -0.005

0x6 - - - - - - -14.404 -8.011 - - - - - - -8.011 -0.011

0x7 - - - -16.007 - - -16.007 -8.011 -15.99 - - -8.06 - -8 -8.006 -0.022

0x8 - - - - - - - 0 - - - - - - - -

0x9 - - - - - - - - - -14.404 - -8.011 - -8.011 - -0.011

0xa - - - - - - - - - - -7.99 - - - - -0.005

0xb - - - -16.007 -15.99 - - -8.006 - -16.007 - -8.011 - -8.006 -8 -0.022

0xc - - - - - - - - - - - - -14.404 -8.011 -8.011 -0.011

0xd - - -15.99 - - - - -8 - -16.007 - -8.006 -16.007 -8.011 -8.006 -0.022

0xe - -15.99 - - - - -16.007 -8.006 - - - -8 -16.007 -8.006 -8.011 -0.022

0xf - - - -16 - -15.995 -16 -8.017 - -16 -15.995 -8.017 -16 -8.017 -8.017 -0.022
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Table 4: BPT for QARMAv2-64 MixColumns Matrix M4
a / b 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 0 - - - - - - - - - - - - - - -

0x1 - - - - - - - - - - - - - - 0 -

0x2 - - - - - - - - - - - - - 0 - -

0x3 - - - -3.906 - - - - - - - - - - - -0.099

0x4 - - - - - - - - - - - 0 - - - -

0x5 - - - - - -3.906 - - - - - - - - - -0.099

0x6 - - - - - - -3.906 - - - - - - - - -0.099

0x7 - - - - - - - -4.006 -7.813 - - -4.006 - -4.006 -4.006 -0.421

0x8 - - - - - - - 0 - - - - - - - -

0x9 - - - - - - - - - -3.906 - - - - - -0.099

0xa - - - - - - - - - - -3.906 - - - - -0.099

0xb - - - - -7.813 - - -4.006 - - - -4.006 - -4.006 -4.006 -0.421

0xc - - - - - - - - - - - - -3.906 - - -0.099

0xd - - -7.813 - - - - -4.006 - - - -4.006 - -4.006 -4.006 -0.421

0xe - -7.813 - - - - - -4.006 - - - -4.006 - -4.006 -4.006 -0.421

0xf - - - -7.913 - -7.913 -7.913 -4.328 - -7.913 -7.913 -4.328 -7.913 -4.328 -4.328 -0.365

Table 5: Accurate (left) and approximated (right) BPTs for all the 4× 4 MDS Matrix for
m = 4 and m = 8, i = Hw(a) and j = Hw(b).

m = 4, accurate
i/j 0 1 2 3 4

0 0 - - - -

1 - - - - 0

2 - - - -3.907 -0.447

3 - - -7.814 -4.354 -0.363

4 - -11.721 -8.261 -4.269 -0.374

m = 4, approximated
i/j 0 1 2 3 4

0 0 - - - -

1 - - - - 0

2 - - - -4 0

3 - - -8 -4 0

4 - -12 -8 -4 0

m = 8, accurate
i/j 0 1 2 3 4

0 0 - - - -

1 - - - - 0

2 - - - -7.994 -0.023

3 - - -15.989 -8.017 -0.023

4 - -23.98 -16.01 -8.017 -0.023

m = 8, approximated
i/j 0 1 2 3 4

0 0 - - - -

1 - - - - 0

2 - - - -8 0

3 - - -16 -8 0

4 - -24 -16 -8 0
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D Profile of Number of Concrete Paths in Terms of Prob-
ability

Table 6: Number of concrete differential paths N(p̃) of probability p̃ consistent with the
6-round truncated path given in (18), for QARMAv1-64 (left), QARMAv1-128 (right), and
QARMAv2-64 (bottom).

p̃ N(p̃) 1
|∆in| log2(

∑
i≤p̃

2−iN(i))

55 2 -57.9068

56 20 -55.3218

57 44 -54.3832

58 189 -53.3637

59 512 -52.6098

60 1624 -51.8913

61 3784 -51.3483

62 9943 -50.8505

63 21134 -50.4608

64 40528 -50.1657

65 66060 -49.9631

66 96836 -49.8308

67 119046 -49.7551

68 123644 -49.7173

69 99734 -49.7063

70 64261 -49.6967

71 29406 -49.6965

72 10514 -49.6963

p̃ N(p̃) 1
|∆in| log2(

∑
i≤p̃

2−iN(i))

109 2 -115.9943

110 5 -114.8243

111 9 -114.2394

112 38 -113.4707

113 155 -112.5891

114 688 -11.5785

115 2479 -110.5740

116 10174 -109.6268

117 38190 -108.6982

118 133167 -108.0414

119 75479 -107.8413

120 91853 -107.7319

121 123217 -107.6629

122 122651 -107.6298

123 120829 -107.6137

124 118665 -107.6103

125 112937 -107.6022

126 114523 -107.6003

127, . . . , 144 2268082 -107.5984

p̃ N(p̃) 1
|∆in| log2(

∑
i≤p̃

2−iN(i))

57 1 -60.9070

58 11 -58.2065

59 82 -56.1521

60 546 -54.3333

61 3606 -52.5822

62 18630 -51.0887

63 77596 -49.8603

64 267390 -48.8693

65 272415 -48.5438

66 286225 -48.3983

67 295291 -48.3286

68 299727 -48.2945

69 307232 -48.2773

70 316206 -48.2686

71 325986 -48.2641

72 395470 -48.2614

E Linear description of Subkey bits

The information bits guessed/implied during the attack have linear representations in key
bits w and k which are shown in Tab. 7 and Tab. 8. In this paper the bit indices are
arranged according to the following patterns. For QARMA-64


x0 . . . x3 x4 . . . x7 x8 . . . x11 x12 . . . x15

x16 . . . x19 x20 . . . x23 x24 . . . x27 x28 . . . x31
x32 . . . x35 x36 . . . x39 x40 . . . x43 x44 . . . x47
x48 . . . x51 x52 . . . x55 x56 . . . x59 x60 . . . x63

 , (46)



Zahra Ahmadian, Akram Khalesi, Dounia M’foukh, Hossein Moghimi and María
Naya-Plasencia 35

and for QARMA-128
x0 . . . x7 x8 . . . x15 x16 . . . x23 x24 . . . x31

x32 . . . x39 x40 . . . x47 x48 . . . x55 x56 . . . x63
x64 . . . x71 x72 . . . x79 x80 . . . x87 x88 . . . x95
x96 . . . x103 x104 . . . x11 x112 . . . x119 x120 . . . x127

 . (47)
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