On Time-Space Lower Bounds for Finding Short
Collisions in Sponge Hash Functions

Akshima', Xiaoqi Duan?, Siyao Guo?, and Qipeng Liu*

! NYU Shanghait
akshima@nyu.edu
* ETH Ziirich

dogther66@gmail.com

3 NYU Shanghai¥
siyao.guo.41@gmail.com

4 UC San Diego
qipengliuO@gmail.com

Abstract. Sponge paradigm, used in the design of SHA-3, is an alternative hash-
ing technique to the popular Merkle-Damgard paradigm. We revisit the problem of
finding B-block-long collisions in sponge hash functions in the auxiliary-input ran-
dom permutation model, in which an attacker gets a piece of S-bit advice about the
random permutation and makes 7' (forward or inverse) oracle queries to the random
permutation.

Recently, significant progress has been made in the Merkle-Damgard setting and
optimal bounds are known for a large range of parameters, including all constant
values of B. However, the sponge setting is widely open: there exist significant gaps
between known attacks and security bounds even for B = 1.

Freitag, Ghoshal and Komargodski (CRYPTO 2022) showed a novel attack for B =1
that takes advantage of the inverse queries and achieves advantage f)(min(SzTQ/ZQC,
(S2T/2%¢)2/3) 4+ T?/2"), where r is bit-rate and ¢ is the capacity of the random
permutation. However, they only showed an O(ST/2°+T72/2") security bound, leaving
open an intriguing quadratic gap. For B = 2, they beat the general security bound by
Coretti, Dodis, Guo (CRYPTO 2018) for arbitrary values of B. However, their highly
non-trivial argument is quite laborious, and no better (than the general) bounds are
known for B > 3.

In this work, we study the possibility of proving better security bounds in the sponge
setting. To this end,

— For B = 1, we prove an improved O(S2T?/22°45/2°4+T/2°+T?/2") bound. Our
bound strictly improves the bound by Freitag et al., and is optimal for ST? < 2¢.

— For B = 2, we give a considerably simpler and more modular proof, recovering
the bound obtained by Freitag et al.

— We obtain our bounds by adapting the recent multi-instance technique of Ak-
shima, Guo and Liu (CRYPTO 2022) which bypasses the limitations of prior
techniques in the Merkle-Damgard setting. To complement our results, we prov-
ably show that the recent multi-instance technique cannot further improve our
bounds for B = 1,2, and the general bound by Correti et al., for B > 3.

Overall, our results yield state-of-the-art security bounds for finding short collisions
and fully characterize the power of the multi-instance technique in the sponge setting.

1 Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai

2 Akshima, Xiaoqi Duan, Siyao Guo, and Qipeng Liu

Keywords: Collision - hash functions - Sponge - multi-instance - pre-computation -
auxiliary input

1 Introduction

Sponge paradigm [BDPAQ7, BDPAOQS] is a novel domain extension technique for handling
arbitrary long inputs based on a permutation F : [R] x [C] — [R] x [C] (where C := 2°,
R := 2" for bit-rate r and capacity ¢) with fixed input length. Specifically, a B-block message
m = (my,--- ,mpg) with m; € [R] is hashed into SPr(a, m) as follows: initialize (x¢, yo) =
(0,a), and compute

(xi,9:) = F(xi—1 ® my,y;—1) for 1 <4 < Bj; finally output 2

where a € [C] is the initialization saltﬂ We say m # m’ is a pair of B-block collision with
respect to a salt a if they both have at most B blocks and SPp(a, m) = SPp(a, m’).

Sponge paradigm is an important alternative hashing technique to the popular Merkle-
Damgard (MD) paradigm |[Mer89, [Dam89|. Notably, it has been used in the most recent
hashing standard SHA-3. In this work, we are interested in the collision resistance property
of sponge hash functions against preprocessing attackers, which can have an arbitrary (but
bounded) precomputed advice about F' to help.

Recently, several works have rigorously studied the algorithms for collision finding us-
ing preprocessing for Merkle-Damgard hash functions [DGK17, |(CDGS18, [ACDW20, |GK22,
AGL22, [FGK23|, and significant progress has been made towards fully determining the op-
timal security bounds for all values of B [GK22, |AGL22|. However, unlike the MD setting,
the sponge setting draws much less attention |[CDG18| [FGK22|, and our understanding is
quite unsatisfactory. Significant gaps exist between known attacks and security bounds even
for B=1.

All of them |[CDG18, [FGK22| studied this question in the auxiliary-input random per-
mutation model (AI-RPM) proposed by Coretti, Dodis and Guo [CDG18|. In this model,
F is treated as a random permutation, and an adversary A consists of a pair of algorithms
(A1, Az). In the offline stage, (computationally unbounded) A; precomputes S bits of advice
about F. In the online stage, A, takes this advice, and receive a random challenge salt a as
the initialization salt of F. Next, it makes T oracle queries to F or F~! during the attack,
and finally output two messages that form the collision. We remark that inverse queries are
not allowed in the MD setting, since the hash functions used by MD are usually one-way
functions, while in sponge F' is a invertible permutation.

Freitag, Ghoshal and Komargodski [FGK22| showed a novel attack for B = 1 that
takes advantage of the inverse queries and applies the function inversion algorithms by
Hellman [Hel80]. This attack achieves advantage 2(min(S?T?/C?,(S%T/C?)%/3) + T?/R).

5 In some practical sponge applications like SHA-3, this salt is usually set to 0. However, when we
study the collision resistance of sponge hash functions in the auziliary input model, such a fixed
salt will make finding collisions trivial. [CDG18§]| identified this need for salting the hash functions
for collision resistance in the auziliary input model and so we are interested in the security bounds
against a random initialization salt (just like what prior works |[CDG18| |ACDW20, AGL22,
FGK22| did). See more details on the definition of the auziliary input model below in section

Time-Space Bounds for Collisions in Sponge 3

This is particularly interesting because it suggests that for some range of parameters (e.g.,
ST? > (), 1-block sponge hashing is less secure than 1-block MD hashing (for which the
trivial attack by storing S collisions is known to be optimal [DGK17]). For B > 2, Freitag
et al., based on an analogous attack for MD hashing given by Akshima, Cash, Drucker
and Wee [ACDW20|, showed an attack with advantage 2(STB/C + T2/ min(C, R)) (the
notations {2, O hides poly-log factors).

In terms of security upper bounds, Coretti, Dodis and Guo [CDG18| proved an O(ST?/C+
T?/R) bound for any B, showing the optimality of the attack for finding B ~ T-length col-
lisions. For other choices of B, only sub-optimal bounds are known for B < 2, and no better
bound than O(ST2/C + T2/R) is known for any B > 3. Specifically, Freitag et al. showed
an O(ST/C + T?/R) bound for B = 1 and O(ST/C + S*T*/C? + T?/min(C, R)) bound
for B = 2. Therefore, there is still a quadratic gap between the attack and security upper
bound even for B = 1. On the contrast, optimal bounds are known for all constant values
of B in the MD setting [DGK17, [ACDW20, (GK22, |AGL22].

That motivates us to study the following question in this paper:

What is the optimal bound for B =17
Is there a better attack or security upper bound?

From the technical level, we are particularly interested in the multi-instance technique
used to prove nearly optimal bounds for MD hashing [AGL22]. Specifically, it has recently
been observed that the sequential random multi-instance technique by |[AGL22] (referred
to as multi-instance games technique in [AGL22|) subsumes the popular presampling tech-
nique |[CDGS18| [CDG18| and sequential distinct multi-instance technique [ACDW20| (re-
ferred to as multi-instance problem technique in |[AGL22]). In the MD setting, it bypasses
provable limitations of presampling technique [CDG18| and gives more modular proofs than
sequential distinct multi-instance technique [ACDW20]. Moreover, the sequential random
multi-instance technique successfully gave optimal bounds for various primitives even in the
quantum setting [CGLQ20|. Therefore, we set out to understand the following question,

Can we prove better bounds or provide simpler proofs using multi-instance games?

In this work, we answer both questions.

1.1 Our results

Our first contribution is an improved bound for B = 1.

Theorem 1 (Informal). The advantage of the best adversary with S-bit advice and T
queries for finding 1-block collisions in sponge hash functions in the auxiliary-input random
permutation model, is

°\eztetetw

~ (52T2 S T T2>

Our bound strictly improves the O(ST/C + T2 /R) bound, and matches the best known
attacks for most ranges of parameters. Note that S/C,T/C,T?/R terms match trivial or
standard attacks, and the S?72/C? term matches the attack min(S2T2/C?, (S%T/C?)%/3)
by [FGK22| as long as ST? < C. Notably, our bound is optimal for ST? < C.

4 Akshima, Xiaoqi Duan, Siyao Guo, and Qipeng Liu

We believe that further bridging the gap between the attack by [FGK22] and our bound
is challenging. This is because their attack is obtained via connections with the function
inversion problem for which an analog gap exists. Bridging the gap for the function inversion
problem is a long standing open problem, and better security bounds would imply new
classical circuit lower bounds, as shown by Corrigan-Gibbs and Kogan |[CK19).

Our second contribution is a considerably simpler proof for B = 2, recovering one of the
main results of [FGK22|. The original proof classified the collision structure into over 20
types, while we only need 8 types. This is possible because we do a careful analysis using
the MI-games technique from [AGL22.

Theorem 2 (Informal). The advantage of the best adversary with S-bit advice and T
queries for finding 2-block collisions in sponge hash functions in the auzxiliary-input random
permutation model, is

ol t o T amen

~ (ST S2T4 T2)

We note that the term ST/C+T?/ min(C, R) matches the best known attack by [FGK22).
Therefore the above bound is optimal when the S2T*/C? term doesn’t dominate the sum,
i.e., ST? < C. However, this leaves an intriguing possibility of obtaining a better attack
than ST/C for ST? > C, which will further confirm that sponge hashing is less secure than
the MD hashing against preprocessing attackers (this message has been conveyed for B = 1
by [FGK22|).

We prove our results using the sequential distinct multi-instance technique (referred to
as multi-instance problem technique in [AGL22|), and the sequential random multi-instance
technique (referred to as the multi-instance game techniques in |[AGL22|). It illustrates
the power of the multi-instance technique over prior techniques in the sponge setting. The
sequential distinct MI technique bypasses the limitation of the presampling technique (for
B = 1) and sequential random MI technique gives more modular proofs (for B = 2). A
comparison of our results with the prior works is summarized in Table

The difference between sequential distinct MI technique and sequential random MI tech-
nique is in how the challenge games are defined. As the name suggests, in sequential distinct
MI technique the game picks a random set of distinct challenge problems, the adversary
is presented with one instance of the challenge problem at a time and has to solve all the
instances of the distinct challenge problems to win. Whereas in the sequential random MI
technique, the game picks a new randomly chosen instance of challenge problem each time,
and the adversary gets that challenge only after solving all the previous challenges. Pick-
ing a random instance of the challenge problem allows the sequence of challenges to be
independent of each other.

Roughly speaking, the sequential MI technique reduces proving ¢ security in the auxiliary
input model against (S, T)-algorithms to proving (¢/2)* security in the (S, T')-multi-instance
game. There are S stages in this game, and the adversary need to win all the S stages to
win the whole game. In the i*" stage, the adversary will first receive a challenge salt a;, then
make T queries to F' (or F~! for sponge), and finally output a pair of messages ma, mp
such that SPp(a;,ma) = SPr(a;,mp). The adversary is allowed to use the queries from
previous stages, but is no longer allowed to store advice bits. (See Section for relevant
definitions.)

Time-Space Bounds for Collisions in Sponge 5

Given that the sequential MI technique is used successfully to prove optimal bounds
for various problems, such as finding 2-block collision in MD hash functions [AGL22|, we
wonder why we cannot prove better bounds for B = 2 in the sponge setting: is it an issue
of our proofs or the technique. Therefore, we set out to understand the limitation of this
technique.

Our third contribution is the following theorem, which implies that it is impossible to
prove better bounds for any B using the sequential multi-instance technique in the sponge
setting.

Theorem 3 (Informal). Suppose S,T, R > 16. There are adversaries for finding 1-block
collisions with advantage (2(S2T2/C?))S, and adversaries for finding 2-block collisions
with advantage (fZ(SQT‘l/C))S, and adversaries for finding 3-block collisions with advantage
(2(8T2/C))S when T% < R, in, the (S, T)-multi-instance games of sponge hash functions.

These lower bounds give limitations on the bound one can prove with multi-instance
techniques. In particular, it implies that (using the multi-instance technique) the S272/C?
term obtained in Theorem [I| cannot be improved. It also explains why Theorem [2| (also
[FGK22|) cannot prove better than S?7*/C?, and why no non-trivial bounds (i.e., better
than ST?/C) can be proved for B > 3. Together with our new security upper bounds
and the general known bouncﬂ for the multi-instance games (summarized in Table , we
fully characterize the power of the multi-instance technique in the sponge setting. As the
bounds in Theorem Theorem and the general O(ST?/C+T?/R) bound are the best one
can prove using the multi-instance technique, other novel techniques are required to obtain
optimal bounds for collision resistance of sponge in the Al setting. In Section we point
out potential techniques for future directions.

Best known attacks Previous Security bounds Our Security bounds
. 2 2 2 2 22 2
B=1 |min(Z1-, (££)*%) + Lo ST+ T- [FGK22| Sr+E2+5+ % [Thm|lh
+5+Z
B=2 ST 4 T2 A R [FGK22]| £ + sttt 1% [Thm
- &) min(C,R) C Cc?2 min(C.R) C Cc2 min(C,R)
2 2 2
3<B<T T+ ome ST + 2 |CDG18| -

Table 1: Asymptotic security bounds on the security of finding B-block-long collisions in sponge
hash functions constructed from a random permutation F : [R] X [C] — [R] x [C] against (S, T)-
algorithms. For simplicity, logarithmic terms and constant factors are omitted and S, T > 1.

5 [CDG18] proved an 5(%T2 + T%) bound using presampling which implies an (5(STT2 + %))S
multi-instance security.

6 Akshima, Xiaoqi Duan, Siyao Guo, and Qipeng Liu

Our attacks Security bounds -
B=1 (5(5222))5 [Th [10) (5(52CZQ+%+%+T§))S [ThmH
9)

B=29 (5(5%4))3 [Thm(SCT+SZ€4+.TM(TC,R)))S[Lemma

C2
5 (sr2))? 5 (st 2\
3<B<T|(2(5F)) [Thm 1 (0% +%))
Table 2: Asymptotic bounds on the security finding B-block-long collisions in sponge hash functions
constructed from a random permutation F' : [R] x [C] — [R] x [C] in the (S, T)-multi-instance

games. We note that naive attacks can achieve (£2(S/C))%, (2(T/C))® and (2(T?/R))® advantage
in (S, T)-MI games model.

1.2 Technical Overview

In this section, we present an overview of our proofs using reduction to the the multi-instance
game model to analyze security bounds of B-block collision finding for B = 1 and B = 2,
followed by our attacks for B =1, B =2 and B > 3 in the multi-instance game model.

The high level idea is: the multi-instance approach |[AGL22, |(CGLQ20, TK10, ACDW20,
GK22, FGK22| reduces proving the security of a problem with S-bit advice to proving the
security of S random instances of the problem. If the instances are given at once, then
we call it “paralle]” multiple instance problem, and if the instances are presented one at
a time, we call it “sequential” multi-instance game. [AGL22] showed that if any adversary
(with no advice) can solve S random instances of the problem “sequentially” with success
probability at most ¢%, then any adversary with S-bit advice can solve one instance of the
problem with success probability at most 26. We note that security bounds for “parallel”
multiple instance problem implies security bounds for corresponding “sequential” multiple
instance games. Henceforth, we always mean sequential multi-instance games when we refer
to multi-instance games in this paper.

Our proof for B = 1. We use the compression technique from [DTT10] to analyze our multi-
instance games. The compression technique (refer to Theorem [5| for the precise statement)
states that for a pair of encoding and decoding algorithms that can compress a random
function by at least log 1/e bits, succeeds with probability at most . Here, we will design
a pair of encoding and decoding algorithm, such that whenever an adversary A wins the
multi-instance game, the encoder can use this adversary A to compress F. The challenge
is to show that the encoder can compress ‘enough’ bits using this A to obtain the desired
(upper) bound on the success probability of the adversary A.

To get an idea, we first look at the simplest case. Say there is only 1 stage in the game
(i.e., S = 1), and the adversary makes two forward queries that collide for the challenge salt
a. In other words the adversary queries F'(mi,a) and F(ma,a) such that their outputs are
in (m, *). This means the first part of the outputs for both the queries is the same (which is
m in this case). Here we can use 2 pointers, each log T' bits long, to store the positions of the
two colliding forward queries among the adversary’s forward queries, and remove m from
F’s mapping table corresponding to the second query (Since we know it equals to the first

Time-Space Bounds for Collisions in Sponge 7

part of output of the first query). This saves log R bits. Therefore, we can get an O(T?/R)
upper bound as per theorem

However, for S > 1, pointing to the forward colliding queries trivially requires log(ST')-
sized pointers (as the adversary makes a total of ST queries). This gives the bound & <
S2T?/C which is not good enough. We can do better by storing the colliding queries for
all the challenge salts together in an unordered set. The same idea works when the first
occurring of the colliding queries is an inverse query and second one is a forward query.
Refer to section for more details about compressing in these cases.

Another possibility is that the adversary always outputs two inverse queries, say F~!(m;,
(mi,,a;) and F~1(m;,a;,) = (mi,,a;), as the collision. Then we can compress using that
the second part of the output for all these queries will be in ay,...,as.

The trickiest case is when the adversary first makes a forward query, say F(m;,,a;) =
(mi,a;,), then an inverse query, say F~!(m;, a;,) = (mi,,a;) as the collision. The trivial
thing to do is to compress only the inverse query as above. However, it will only achieve an
O(ST/C)® bound, which is not enough for our results. We use the idea that the output salt
of the inverse query is not just in aq, ..., ag but in fact it is one of the salts that is input to a
forward query with output of the form (m;,). The issue is the number of salts in ay, ..., as
meeting this requirement could still be ‘large’. When that happens we have to compress the
output of the forward queries as well to get enough compression. Refer to section [3.1.2| for
more details about this case and how to deal with an adversary that finds different types of
collisions for different challenge salts.

Our proof for B = 2. For B = 2, we will use the proof strategy of Akshima et al. [AGL22| for
dealing with B = 2 in the MD setting. The main difference is that we have to additionally
deal with inverse queries in our analysis. We provide a high level overview of their proof,
and describe where our proof differs due to inverse queries.

Recall that, to prove the sequential multi-instance security, it is sufficient to bound the
advantage of any adversary that finds a 2-block collision for a fresh salt a, conditioned on it
finds 2-block collisions for all the previous random challenge salts aq1,--- ,ag.

Following the terminology of Akshima et al. [AGL22|, we call these ST queries made
during the first S rounds as offline queries, and among the T' queries made for a, we call the
queries that were not made during the first S rounds as online queries. Moreover, we focus
on the case that the new salt a has never been queried among the offline queries (because
the other case happens with probability at most ST/N). As a result, all queries starting
with the challenge salt a have to be online queries.

Akshima et al. [AGL22| studied how can the previous ST queries be helpful for this round
of game? The main observation of Akshima et al. [AGL22| is that although the adversary
learns about the function from the offline queries, and in the worst case, the offline queries
could be very helpful. However, the helpful worst offline queries are not typical and can
be tolerated by refining the technique. To do this, they define a bunch of helpful “high
knowledge gaining” events among previous ST queries including, 1) there are more than
S distinct salts with 1-block collision, 2) there are more than S? pairs of queries forming
collisions, 3) there are more than S distinct salts with self-loops. They show that these
events happen with sufficiently small probability, and conditioned on none of them happens,
no online algorithms can find 2-block collisions with advantage better than the desired
bound.

ail) =

8 Akshima, Xiaoqi Duan, Siyao Guo, and Qipeng Liu

Now the question is what changes when inverse queries are allowed? The high knowledge
gaining events are essentially the same, however some of these events can easily happen when
inverse queries are allowed. In particular, for event 2), it was hard to form collisions (under
the first part of output) among ST forward queries F(z1,y1), ..., F(xst,ysr). However, if
we make ST inverse queries with form F~1(0,y1),..., F~(0,ysr), then we have 2((ST)?)
pairs of input pairs such that their evaluations in the forward direction form collision (under
the first part of output). Given such a set of offline queries, one can find 2-block collisions
for a new salt with probability at least 2(S?7*/C?). Fortunately, this is the worst we can
get, and we can prove the advantage is at most O(S?T*/C?) with adjusted high knowledge
gaining events.

Our attacks for B = 1,2,3 in the MI model. We present three simple attacks for finding
collisions in the multi-instance model and show their analysis. The main high level idea for
all of these attacks is to accumulate relevant high knowledge events in each round to help
with the next round.

We briefly illustrate the core idea of our attacks, starting with the attack for B = 1. In the
ith round, the adversary makes T queries F~1(0,iT+j) for j = 0,...,T—1. The intuition is
that via these inverse queries, the expected number of salts for which a collision is found (i.e.
For a salt a, there exist two inverse queries F~1(0,2) = (m1,a) and F~1(0,y) = (m2,a))
is 2((¢T)%/C?) in previous i-rounds. Therefore, once the random challenge salt in the iz,
round is one of these ‘solved’ salt, then we are already done. Overall, the probability of
finding collisions in each of the S rounds in this manner is at least (2(S*72/C?))%. We note
that this is just the intuition, and we have to carefully deal with the correlations between
winning in previous rounds and the expected events happening in previous rounds.

For B = 2, the most helpful event is to accumulate a lot of pairs of queries whose first
part of output forms a collision. The best way of doing so is to spend an half of the queries
in each round to make inverse queries of queries of form F~1(0,), and spend the other half
of the queries trying to hit two of these queries from the current challenge salt a;. With
high probability there will be £2(i272%/C?) such pairs, and one can win the i, stage with
probability at least £2(i2T*/C?).

For B = 3, the most helpful event is to have at least £2(¢T") salts such that there are
2-block collisions starting from these salts. Specifically, we first try to find 1-block collision
collisions starting from a salt y, and then make queries of form F~1(x,y) to generate these
2(iT) salts. Then, with 2(i72/C) probability one can hit one of these salts from the chal-
lenge salt and form a 3-block collision. We refer to Figure [7] and Section [5] for the details
and analysis of these attacks.

1.3 Discussions and open problems

Is STB-conjecture true for sponge hashing? Akshima et al. [ACDW20| conjectured that
the best attack with time 7' and space S for finding collisions of length B > 2 in salted
MD hash functions built using compression functions with n-bit output achieves advantage
O((STB + T?)/2"). Tt is natural to consider a similar STB-conjecture for sponge hash
functions, conjecturing the ©(STB/C + T?/ min(R, C)) attack by Freitag et al. [FGK22| is
optimal for B > 2. However, this conjecture is only proved for very large B ~ T [CDG18],
and sponge hash is provably less secure than MD hash |[FGK22] for B = 1. It will be

Time-Space Bounds for Collisions in Sponge 9

extremely interesting to either prove or refute the sponge STB-conjecture. To start with, is
the STB-conjecture true for B = 2 in sponge?

Better attacks for B = 2% The current security upper bound for B = 2 suggests that there
may exist an attack with advantage 2(S2T*/C?) in the auxiliary-input random permutation
model. And we show an attack in the multi-instance model with advantage (£2(S27*/C?))%.
Can we utilize similar ideas to show a corresponding attack in the auxiliary-input random
permutation model?

Better bounds via stateless multi-instance games? Our results characterize the power of the
multi-instance technique in the sponge setting by presenting attacks in the model of Akshima
et al. JAGL22|. We observe that, a variant of the reduction of Akshima et al. [AGL22] allows
one to consider more restricted multiple-instance games, where the adversary is stateless and
doesn’t remember information from previous rounds. Because our attacks require knowing
queries from previous rounds, our attacks don’t apply to stateless multi-instance games. We
remark that analyzing stateless adversary for multi-instance games is non-trivial because,
although the challenges are independent, the same random permutation is reused in multiple
rounds. We hope that the study of stateless multi-instance games will shed light on how to
obtain optimal bounds for finding collisions in sponge and potentially close the gap for MD
other major open problem (such as function inversion) in this area.

Other related works. In a recent work [GGPS23|, Golovnev et al. presented an algorithm for
function inversion which works for any S, T such that 7'S? - max{S, T} = O(C?) (where C
is the size of the range of function) and improves over the Fiat and Noar algorithm when
S < T. We mention that the time-space tradeoffs of many other cryptographic primitives,
such as one-way functions, pseudorandom random generators, discrete discrete logarithm
have been studied in various idealized models [DTT10, |CHM20, |(CGK18|,|CGK19,|GGKL21,
DGK17, |CDG18| |[CDGS18]. Recently, Ghoshal and Tessaro studied the pre-image resistance
and collision-resistance security of preprocessing attacks with bounded offline and online
queries for Merkle-Damgard construction in |[GT23].

Acknowledgements

We thank TCC reviewers for their constructive comments. Siyao Guo and Akshima are sup-
ported by National Natural Science Foundation of China Grant No.62102260, Shanghai Mu-
nicipal Education Commission (SMEC) Grant No. 0920000169, NYTP Grant No. 20121201
and NYU Shanghai Boost Fund. The work was done while Xiaoqi Duan was a research as-
sistant at Shanghai Qi Zhi Institute and supported by the Shanghai Qi Zhi Institute. Most
of the work was done while Qipeng Liu was a Postdoctoral researcher in Simons Institute,
supported in part by the Simons Institute for Theory of Computing, through a Quantum
Postdoctoral Fellowship and by the DARPA SIEVE-VESPA grant No. HR00112020023. Any
opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the supporting institutions.

10 Akshima, Xiaoqi Duan, Siyao Guo, and Qipeng Liu

2 Preliminaries

2.1 Notations

For any positive integer N, we write [IV] to denote the set {1,..., N}. For any non-negative
integers N, k, ([]IX]) is used to denote the collection of all k-sized subsets of [IV]. For any finite
set X, x < X indicates x is a uniform random variable in X. We write X to indicate a
tuple of one or more elements from X.

2.2 Random Permutation Model

Random Permutation model is an idealized model where a function is modelled as a random
permutation sampled uniformly from all possible permutations.

Lazy Sampling One useful property of modelling a function, say F', as a random permutation
is that sampling F' uniformly at random is equivalent to initializing I’ with L for every input
and sampling the responses uniformly at random without replacement as and when the input
is queried.

2.3 Sponge Hash Functions

A cryptographic hash function is a function that takes input of arbitrary length and outputs a
fixed length string. They are widely used in security applications such as digital signatures,
message authentication codes and password hashing. In practice, several hash functions,
including SHA-3, are based on the popular Sponge Construction.

A sponge based hash function internally uses a permutation function of fixed length
domain. We will treat this permutation as a random permutation for the purpose of analyzing
it’s security.

We will parameterize our sponge function SP as a function in [R]t x [C] — [R] such
that it uses a random permutation, denoted by F', on [R] x [C] where [R] corresponds to
the set of messages and [C] corresponds to the set of salts. Note that as F' is a permutation,
its inverse, denoted F~!, is an efficiently computable function. Hence, any entity that can
query F' can also query F~!.

Say F'(m,a) = (m/,a’) for some m,m’ € [R] and a,a’ € [C], then will use F(m, a)[1], F(m, a)[2]
to denote the first and second element from the output tuple. In other words, F'(m, a)[1] = m’
and F(m,a)2] =d'.

A message m is called a B-block message if it can be written as m = my||...||mp where
each m; € [R]. Then for a B-block message m = mq||mz||...|/mp and some a € [C], we
define the function SPp(m, a) as follows:

1. Initialize (x0,y0) = (0, a).
2. For the i block, compute (x;,y;) = F(z;_1 ® mi, yi_1).
3. Return zp.

+

Collisions For a given a € [C], two distinct messages m,m’ € [R]T are said to form a

collision, if

SPF(m7 a) = SPF(mlv a)

Time-Space Bounds for Collisions in Sponge 11

2.4 Definitions
We establish some definitions in this subsection which will be used throughtout the paper.

Definition 1. We refer to two queries (my,a1) and (mg,az) as same or not distinct if one
of the following holds true:

1. when both queries are made to F (or F~1), a; = as and my = ma
2. (my,a1) is made to F (or F~1), (ma,as) is made to F~1 (or F) and F(my,a;) =
(ma,az) (or F~1(my,a1) = (mg,a2))

If two queries are not same, then they are referred to as distinct.
Next, we define an Al-adversary against collision resistance in Sponge functions.
Definition 2. A pair of algorithms A = (A1, As) is an (S,T)-Al adversary for SPr if

— Ay has unbounded access to F (and F~1), and outputs S bits of advice, denoted o
— Ay takes o and a challenge salt a € [C] as input, makes T queries to F or F~Y, and
outputs m, m’.

Next, we define the security game for B-block collision-resistance against the (S, 7')-Al
adversary.

Definition 3. For any fized random permutation F : [R] x [C] — [R] x [C], a salt a € [C]
and B which is a function of R,C, we define the game B-AICR in fig.[]]

Game B-AICRE ,(A)

o+ AF

m,m’ Ag/pil(a, a)

If m or m’ consists of more than B blocks
Then Return 0

If m # m' and SPr(m,a) = SPr(m’, a)
Then Return 1

Else Return 0

Fig. 1: Security game B-AICRf ,(.A)

For any (S,T)-AI adversary