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Abstract. Identity-based matchmaking encryption (IB-ME) [Ateniese et al., Crypto 2019] allows users
to communicate privately, anonymously, and authentically. After the seminal paper by Ateniese et
al., much work has been done on the security and construction of IB-ME. In this work, we revisit
the security definitions of IB-ME and provide improved constructions. First, we classify the existing
security notions of IB-ME, systematically categorizing privacy into three categories (CPA, CCA, and
privacy in the case of mismatch) and authenticity into four categories (NMA and CMA, both against
insiders and outsiders). In particular, we reconsider privacy when the sender’s identity is mismatched
during decryption and provide a new simple security game called mismatch security, capturing its
essence. Second, we propose efficient and strongly secure IB-ME schemes from the bilinear Diffie-
Hellman assumption in the random oracle model and from anonymous identity-based encryption and
identity-based signature in the quantum random oracle model. The first scheme is based on Boneh-
Franklin IBE, similar to the Ateniese et al. scheme, but ours achieves a more compact decryption
key and ciphertext and stronger CCA-privacy, CMA-authenticity, and mismatch security. The second
scheme is an improved generic construction, which achieves not only stronger security but also the
shortest ciphertext among existing generic constructions. This generic construction provides a practical
scheme from lattices in the quantum random oracle model.
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1 Introduction

1.1 Background

Identity-based matchmaking encryption (IB-ME), proposed by Ateniese et al. [2, 3], is a new identity-
based cryptographic primitive designed to guarantee confidential and authenticated message delivery while
anonymizing both sender and receiver. Similarly to conventional identity-based encryption (IBE) [5], a key
generation center generates secret keys of users corresponding to their identity, and in the IB-ME setting,
both sender and receiver possess their secret keys. When a sender with identity σ sends a message, it encrypts
the message with its (secret) encryption key ekσ and the identity of the target receiver rcv. When a receiver
with identity ρ decrypts the ciphertext, it uses its secret decryption key dkρ and specifies the identity of
the target sender snd. The decryption process is successful only if the identities match, i.e., σ = snd and
ρ = rcv hold. In case the identities do not match (i.e., σ ̸= snd or ρ ̸= rcv), nothing is leaked except the fact
that the identities are mismatched. IB-ME has many practical applications e.g., secret handshake protocols,
privacy-preserving bulletin boards [2, 3], etc.
Security notions for IB-ME. Ateniese et al. [2, 3] defined privacy and authenticity as the security re-
quirements for IB-ME. In essence, privacy guarantees the confidentiality of messages against unintentional
receivers who do not have the legitimate decryption key; Authenticity guarantees the legitimacy of senders,
preventing impersonation without knowing their encryption key. We can see that privacy (resp., authenticity)
is similar to the semantic security of encryption schemes (resp., unforgeability of signature schemes).

Following the pioneering work by Ateniese et al., a lot of works have explored more desirable security
notions. Regarding authenticity, Francati et al. [18] and Chen et al. [11] defined a new notion of authenticity
that allows an adversary to compromise receiver secret keys freely, in contrast to the definition of Ateniese et
al.3. Wang et al. [32] proposed an extended version of the notions of authenticity, which they call “strong au-
thenticity”, allowing the adversary to access an encryption oracle that computes a ciphertext of adversarially
chosen messages4. For stronger privacy guarantees, Chiku et al. [13] and Lin et al. [25] considered privacy
against chosen-ciphertext attacks (CCA), where an adversary can access a decryption oracle that computes
plaintexts of adversarially chosen ciphertexts. Furthermore, Francati et al. [18] highlighted a deficiency in
the original definition of privacy by Ateniese et al. They pointed out that it does not account for privacy
in the case where the target identity snd chosen by a receiver mismatches with the actual sender’s identity
σ. That is, the original definition does not guarantee the confidentiality of messages in the case rcv = ρ but
snd ̸= σ occurs during decryption5. This gap led them to introduce a new privacy concept called “enhanced
privacy”, which captures privacy in cases involving mismatched sender identities used during decryption.

As explained above, many security definitions for IB-ME have been considered. In particular, existing
works compared the efficiency of each scheme, ignoring the differences in the security properties. In other
words, their comparisons are inaccurate. Moreover, the definition of enhanced privacy proposed by Francati et
al. [18] is comprehensive and well-defined; however, their definition requires detailed case-by-case distinctions,
which in turn incurs complicated proofs. From such a situation, we realize the first question:

Q1: What are the proper security definitions of IB-ME for accurate comparisons?

Constructions of IB-ME. Ateniese et al. introduced the initial IB-ME scheme from the bilinear Diffie-
Hellman (BDH) assumption in the random oracle model (ROM) [2, 3], based on the Boneh-Franklin IBE
scheme [5]. A drawback of the scheme is long decryption keys and ciphertexts: they include three resp. two
group elements. This raises the following second question.

Q2: Can we construct a more efficient and strongly secure IB-ME scheme from the BDH
assumption in the ROM?

3 The difference was not explained explicitly in [11,18] In particular, despite this difference, Francati et al. cited the
original work, which misleads the reader into thinking that the two definitions are the same.

4 The attack scenario can be seen as ordinary chosen message attacks (CMA), but they did not explain it as such.
5 As mentioned in [18], Ateniese et al. noticed this gap and informally argued that their IB-ME scheme ensures the

confidentiality of messages in such a case.
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Table 1: Comparison between our IB-ME schemes and the existing schemes. (Re)Ext stands for (reusable)
randomness extractors, and Hom Sig stands for holomorphic signatures.

Schemes Security properties Assumptions ModelPrivacy Authenticity Mismatch
Ateniese et al. [2] CPA oNMA BDH ROM
Francati et al. [18] CPA iNMA

√
q-ABDHE+SIG+NIZK+ReExt StdM

Chen et al. [11] CPA iNMA SXDH StdM
Wang et al. [32] CPA iCMA Anon HIBE+IBS StdM
Chiku et al. [13] CCA iCMA Anon HIBE + HIBS + OTS StdM
Boyen and Li [6] CPA iCMA

√
Anon IBE+IBS+ReExt+Ext StdM

Lin et al. [25] CCA iNMA SXDH StdM
Belfiore et al. [4] CPA iNMA

√
Anon IBE + Hom Sig + ReExt StdM

Ours (§ 4) CCA oCMA
√

BDH ROM
Ours (§ 5) CCA iCMA

√
Anon IBE+IBS ROM

Following the initial work by Ateniese et al., several works have made efforts to develop improved IB-ME
schemes, with a particular focus on the standard model (StdM) [6, 11, 18, 32]. Francati et al. [18] proposed
an IB-ME scheme in the StdM based on Gentry’s anonymous IBE scheme [20]. Although their scheme is
secure in the StdM, it relies on a non-standard q-augmented bilinear Diffie-Hellman exponent assumption.
To remove the reliance on nonstandard assumptions, Chen et al. [11] constructed an IB-ME scheme based
on an anonymous IBE scheme by Chen et al. [12], whose security relies on the symmetric external Diffie-
Hellman (SXDH) assumption in the StdM, and Wang et al. [32] proposed a generic construction of IB-ME
from anonymous 2-level hierarchical IBE (HIBE) and identity-based signature (IBS) to realize lattice-based
IB-ME schemes. However, they do not consider the stronger notion of security, especially enhanced privacy.
To realize an IB-ME scheme with enhanced privacy from lattices, Belfiore et al. [4] proposed another generic
construction of IB-ME from IBE and homomorphic signatures. Boyen and Li [6] showed that an IB-ME
scheme with enhanced privacy can be constructed from IBE, IBS, and (reusable) extractors. Chiku et al. [13]
proposed a hieratical IB-ME scheme by extending Wang et al.’s construction. They convert it into Priv-
CCA secure IB-ME via Canetti-Halevi-Katz (CHK) transformation [8]. Concurrently, Lin et al. [25] proposed
another Priv-CCA secure IB-ME scheme based on a specific HIBE scheme from SXDH assumption and CHK
transformation.

These works allow us to obtain various IB-ME schemes from both classical and post-quantum assump-
tions. However, all of them only provide weaker CPA privacy, which is insufficient for real-world applications.
Another issue is their ciphertext sizes are long since they use heavily primitives (e.g., HIBE) or include many
seeds for extractors in a ciphertext. This fact gives us the third question:

Q3: Can we generically construct a more efficient and strongly secure IB-ME scheme?

1.2 Our Contributions

We revisit the concept of IB-ME and answer the above three research questions. First, we reformalize the
security notions for IB-ME. Then we present a highly efficient and strongly secure IB-ME scheme from the
BDH assumption in the ROM. Finally, we proposed a new generic construction from IBE and IBS in the
QROM. The comparison of our schemes and the existing ones is summarized in Table 1. See Section 6 for a
detailed comparison, especially of their efficiency.
A1: Re-formalizing security notions of IB-ME. We sort out the differences in security notions for
IB-ME. At first, we reorganize the authenticity notions in previous works. We notice that the existing
definitions can be classified along two points: one is whether an adversary has access to the encryption
oracle, and the other is whether it can compromise the target receiver’s secret key. For the former point, we
name the respective attacks as chosen message attacks (CMA) and no message attacks (NMA) according
to the presence or absence of access to the encryption oracle. For the latter point, we call the adversary
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who compromises the target receiver insiders and otherwise outsiders since we can regard the adversary,
who knows the receiver’s key, as inside the communication.6 As a result, we define four authenticity notions
oNMA, iNMA, oCMA, and iCMA7 (Table 1 shows their correspondence with the previous works).

For privacy, we rename the original definition by Ateniese et al. as CPA privacy since the adversary
cannot access the decryption oracle, and define CCA privacy as in [13, 25].8 Then, we redefine the security
game for “enhanced privacy” which captures privacy in the case of mismatch during decryption. Francati
et al. [18] defined a single definition that includes both the privacy originally considered (CPA privacy) and
privacy in mismatch cases, which complicates understanding the definition and security proofs. Thus, we
extract the essence of privacy in the case of mismatch and give a new simple security definition, called
Priv-MisMatch security. Roughly, it captures the confidentiality of messages in the case the adversary knows
the target receiver’s secret key but does not know the sender’s identity. As a sanity check, we show that our
CPA/CCA privacy and Priv-MisMatch security implies Francati’s CPA/CCA enhanced privacy9. As a result,
we can separate security proofs for CPA/CCA privacy and privacy in the case of mismatch. See Section 3 for
more details.

A2: An efficient and strongly secure IB-ME scheme from BDH in the ROM. We construct an
improved IB-ME scheme from the BDH assumption in the ROM. Our basic idea is combining the Boneh-
Franklin IBE scheme [5] and the Sakai-Ohgishi-Kasahara IB-NIKE scheme [30]. At a high level, a sender
with identity σ has an IB-NIKE key H(σ)msk as its encryption key and a receiver with identity ρ has
an IB-NIKE key H(ρ)msk and an IBE key H(ρ)msk′ as its decryption key, where H is (appropriate) hash
function, and msk (resp., msk′) is a master secret key of the IB-NIKE scheme (resp., the IBE scheme).
When the sender σ encrypts a message m to target a receiver rcv, it computes a ciphertext as (gr,m ⊕
Ĥ(e(Xr,H(rcv)), e(H(σ)msk,H(rcv)))), where g is a generator (of the underlying group), X = gmsk′ is a public
parameter of the IBE scheme, and e is a symmetric pairing. To reduce the key size, we reuse the same
master secret key for the IBE part and the IB-NIKE part. That is, we use the key H(id)msk for both the IBE
scheme and the IB-NIKE scheme, where id is an identity for either sender or receiver. This reduces the size
of a user’s secret key, but weakens the security level since the compromise of a user leaks both encryption
and decryption keys. To overcome this problem, we separate the domains of senders’ and receivers’ keys by
employing asymmetric pairings. Using different hash functions H1 and H2, we compute the key of a sender σ
as H1(σ)

msk ∈ G1 and the key of a receiver ρ as H2(ρ)
msk ∈ G2. This allows us to reduce the key size without

weakening security. Intuitively, privacy is followed by the security of the IBE scheme, and authenticity is
followed by the security of the IB-NIKE scheme10. To achieve the stronger CCA security, we employ the
Fujisaki-Okamoto (FO) transformation [19]. Quite surprisingly, the FO transformation allows us to achieve
oCMA security for free. Moreover, we formally prove that our scheme also achieves Priv-MisMatch security.
As a result, we get a highly efficient and strongly secure IB-ME scheme from the BDH assumption in the
ROM. Both encryption and decryption keys contain only one group element, and the ciphertext contains
one group element and a λ-bit string, both of which are smaller than those of the Ateniese et al. scheme.
See Section 4 for more details.

A3: An efficient and strongly secure generic construction of IB-ME in the QROM. We propose
a generic construction of IB-ME from anonymous IBE and IBS in the ROM. Toward our new construction,
we first observe that Boyen and Li’s construction [6], which follows the “Encrypt-then-Sign” paradigm, is
unsuitable for realizing CCA privacy. Roughly, in their construction, the ciphertext consists of the IBE
ciphertext, two seeds for randomness extractors, and the IBS signature for them. They showed that the

6 Here, we employ the naming used in a similar situation in signcryption [27]
7 The prefix o (resp. i) indicates the adversary is an outsider (resp. insider).
8 Since all existing schemes, including ours, achieve CPA security against insiders who know sender’s secret keys,

we do not consider privacy against weaker outsiders explicitly. Therefore, we simply use CPA to refer to security
against insiders.

9 Originally, Francati considered enhanced privacy in the CPA setting. We extend it to the CCA setting and prove
the relationship.

10 Due to the bilinearity in the IB-NIKE part, the authenticity only holds when both sender and receiver are not
compromised, i.e., authenticity only holds against outsiders. This is also the case in the work by Ateniese et al.

5



scheme realizes CPA privacy if IBE is CPA secure and IBS is CMA secure. Some readers might imagine that
Boyen and Li’s IB-ME scheme is CCA secure if IBE is CCA secure. However, this is not the case because
other elements in the IB-ME ciphertext may be malleable. Especially if IBS is only CMA secure, the CCA
adversary can create another valid signature for the challenge ciphertext without knowing the signing key.11
To prevent this attack, IBS must be strong CMA secure. This means that, to realize CCA security in their
IB-ME scheme, both IBE and IBS require stronger security notions.

To obtain a CCA secure IB-ME scheme without assuming strong security for IBS, we construct an IB-ME
scheme from IBE and IBS with another approach, which is seen as the “Sign-then-Encrypt” paradigm. In our
construction, a sender σ holds an IBS’s user key ekσ, and a receiver ρ holds an IBE’s user key. The sender
σ encrypts a message m to a receiver rcv as ct ← IBE.Enc(mpkIBE, rcv,m||sig), where mpkIBE (resp., mpkIBS)
is a public parameter of the IBE (resp., IBS) scheme and sig ← IBS.Sign(mpkIBS, ekσ,m||ρ). We can show
that this simple construction achieves the CCA security and the iCMA security from the CCA security of the
IBE scheme and the CMA security of the IBS scheme, respectively. However, it is not Priv-MisMatch secure
because an adversary who knows the receiver’s keys can decrypt the IBE ciphertexts and thus obtain the
encrypted messages without knowing the sender’s identity. To hide ciphertext even in the case of mismatch
(i.e., snd ̸= σ), we employ a random oracle inspired by our BDH-based IBME scheme. Now, the IBE
ciphertext ct, which encrypts the message and signature, is masked by the randomness Z := H(σ) where H
is a random oracle. That is, ct⊕Z is the actual ciphertext of our IB-ME scheme. This prevents an adversary
from distinguishing the masked ciphertext from a random one without knowing the sender’s identity, thanks
to the unpredictability of RO. As a result, we can formally show the Priv-MisMatch security of our generic
construction. We obtain an efficient and strongly secure generic construction of IB-ME in the random oracle
model without assuming strong EUF-CMA security for IBS. See Section 5 for more details.

1.3 Related Work

Identity-based encryption. Identity-based encryption, proposed by Shamir [31], is an encryption scheme
that allows users to use arbitrary strings (e.g., e-mail addresses) as their public keys. After quite a long
time, Boneh and Franklin constructed the first IBE scheme [5] using bilinear pairings, and then a lot of IBE
schemes have been proposed from various assumptions [1, 14, 20, 22, 23, 33, 34]. In IBE, the sender specifies
only the receiver’s identity, but in IB-ME, the sender specifies not only the receiver’s identity but also the
sender’s identity.
Identity-based signcryption. Signcryption [36] is a cryptographic primitive that offers private and au-
thenticated delivery of messages. The motivation for signcryption is to provide equivalent functionality more
efficiently than a simple combination of encryption and signature schemes. The notion of identity-based sign-
cryption (IB-SC) was proposed by Malone-Lee [26]. The difference between IB-ME and IB-SC is that the
former ensures the anonymity of communicating users and the confidentiality of messages when ciphertexts
are decrypted with mismatched sender identities. Therefore, IB-ME provides better security properties than
IB-SC.
(General) Matchmaking encryption. Ateniese et al. proposed matchmaking encryption [2, 3]. In ME
setting, the sender and the receiver have their own attribute, and they can specify access policies the other
party must satisfy. Ateniese et al. also gave generic constructions of ME based on functional encryption,
signature scheme, and non-interactive zero-knowledge. Recently, Francati et al. [16, 17] proposed a simple
ME scheme based on two-key predicate encryption. Note that IB-ME is an ME supporting the policy of
identity equivalence.

1.4 Organization of This Paper

The remaining part of this paper is organized as follows. In Section 2, we introduce notations and definitions
of the cryptographic primitives that will be used in this paper. Then, in Section 3, we give the relevant
11 In more detail, the IBS signature is one-time padded with the one-time key extracted by the randomness extractor.

We note that this does not affect our argument because a one-time pad is malleable.
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definitions including syntax and security definitions of IB-ME. Section 4 shows an efficient and strongly
secure IB-ME scheme based on BDH assumption in the ROM. In Section 5, we provide a new generic
construction of IB-ME based on IBE and IBS in the QROM. Finally, Section 6 presents a comparison
between our IB-ME schemes and the existing schemes.

2 Preliminaries

In this section, we first define some notations used in this work. Then we recall asymmetric bilinear groups,
identity-based encryption, identity-based signature, and reusable computational extractors.

2.1 Notation

N denotes the set of positive integers. ∅ denotes the empty set. ê denotes the base of the natural logarithm.
PPT stands for probabilistic polynomial time. For n ∈ N, we denote [n] := {1, 2, . . . , n}. x := y denotes that
x is defined by y. y ← A(x; r) denotes that a PPT algorithm A outputs y on input x and randomness r.
We simply denote y ← A(x) when A uses uniform randomness. AO means A has oracle access to a function
O(·). poly(λ) denotes a polynomial in λ. We say that a function f(λ) is negligible in λ if f(λ) = o(1/λc)
for every c ∈ Z, and we write negl(λ) to denote a negligible function in λ. x ←$ X denotes an element x is
sampled uniformly at random from a finite set X . Let X be a distribution over X . The min-entropy of X
is defined as H∞(X) := − logmaxx∈X Pr[X = x]. We call a distribution with min-entropy κ κ-distribution.
x←$ X denotes an element x ∈ X is sampled following the distribution X.

2.2 Asymmetric Bilinear Groups

We recall (asymmetric) bilinear groups12 and the bilinear Diffie-Hellman (BDH) assumption from [7]. Let
G1, G2 and GT be groups of prime order p. Let g1 ∈ G1 and g2 ∈ G2 be respective generators of G1 and G2.
Let e : G1 × G2 → GT be an efficiently computable function that satisfies (1) for any u ∈ G1, v ∈ G2 and
α, β ∈ Zp, e(uα, vβ) = e(u, v)αβ (i.e., bilinearity) and (2) e(g1, g2) ̸= 1, where 1 is the unit element in GT (i.e.,
non-degeneracy). This function e is called a bilinear map or pairing. We call G := (p,G1,G2,GT , g1, g2, e)
a bilinear group. We define bilinear group generators that generate a bilinear group corresponding to the
input security parameter.

Definition 1 (Bilinear Group Generator). A bilinear group generator G is a PPTalgorithm that, on
input 1λ, outputs the description of a bilinear group G = (p,G1,G2,GT , g1, g2, e).

We define the BDH assumption for G.

Definition 2 (Bilinear Diffie-Hellman (BDH) Assumption [7]). Let G be a bilinear group generator.
We say that BDH assumption holds for G if for all PPT adversaries A, it holds that

AdvbdhA,G(λ) := Pr

D = e(g1, g2)
αβγ

∣∣∣∣∣∣
G := (p,G1,G2,GT , g1, g2, e)← G(1λ),

α, β, γ ←$ Zp,

D ← A(G, gα1 , g
α
2 , g

β
2 , g

γ
1 )


= negl(λ).

2.3 Identity-Based Encryption

Syntax. An IBE scheme IBE consists of the following four algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes the security parameter 1λ, and outputs a public param-
eter mpk and a master secret key msk. mpk defines the identity space ID, the message space M, and
the ciphertext space CT .

12 This work only uses asymmetric bilinear groups. So, we omit the term “asymmetric”.
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ANO-IND-ID-CCAA
IBE(λ)

1 : LSK := ∅
2 : coin←$ {0, 1}

3 : (mpk,msk)← Setup(1λ)

4 : (id∗,m∗)← AOSK ,OD (mpk)

5 : if id∗ ∈ LSK then

6 : return coin

7 : ct0 ← Enc(mpk, id∗,m∗)

8 : ct1 ← CT

9 : ĉoin← AOSK ,OD (ctcoin)

10 : if coin = ĉoin then

11 : return 1

12 : else

13 : return 0

Oracle OSK(id)

1 : if id = id∗ then

2 : return ⊥
3 : skid ← KGen(mpk,msk, id)

4 : LSK ← LSK ∪ {id}
5 : return skid

Oracle OD(id, ct)

1 : if (id, ct) = (id∗, ctcoin) then

2 : return ⊥
3 : skid ← KGen(mpk,msk, id)

4 : m← Dec(mpk, skid, ct)

5 : return m

Fig. 1: The security game for IBE.

KGen(mpk,msk, id)→ skid: The key generation algorithm takes mpk, msk and an identity id ∈ ID as input
and outputs a secret key skid.

Enc(mpk, id,m)→ ct: The encryption algorithm takes mpk, id ∈ ID, and a plaintext m ∈ M as input, and
outputs a ciphertext ct ∈ CT .

Dec(mpk, skid, ct)→ m or ⊥: The decryption algorithm takes mpk, skid, and ct as input, and outputs m ∈M
or a special symbol ⊥ /∈M.

Correctness. We say that an IBE scheme IBE is correct if for all λ ∈ N, id ∈ ID and m ∈M, it holds that

Pr

Dec(mpk, skid, ct) = m

∣∣∣∣∣∣
(mpk,msk)← Setup(1λ),
skid ← KGen(mpk,msk, id),
ct← Enc(mpk, id,m)

 = 1− negl(λ).

Security. We recall adaptive-identity anonymity against chosen-ciphertext attacks (ANO-IND-ID-CCA secu-
rity) for IBE.

Definition 3 (ANO-IND-ID-CCA Security of IBE). We say that an IBE scheme IBE is ANO-IND-ID-CCA
secure if for all PPT adversaries A,

Advano-ind-id-ccaA,IBE (λ) :=

∣∣∣∣Pr[ANO-IND-ID-CCAA
IBE(λ)⇒ 1

]
− 1

2

∣∣∣∣ = negl(λ),

where the security game ANO-IND-ID-CCAA
IBE(λ) is depicted in Fig. 1.

2.4 Identity-Based Signature

Syntax. An IBS scheme IBS consists of the following four algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes the security parameter 1λ and outputs a public param-
eter mpk and the secret master key msk. mpk defines the identity space ID, message space M, and
signature bit length sigLen.
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EUF-ID-CMAA
IBS(λ)

1 : LSK ,LSIG := ∅

2 : (mpk,msk)← Setup(1λ)

3 : (id∗,m∗, sig∗)← AOSK ,OSIG(mpk)

4 : if id∗ ∈ LSK ∨ (id∗,m∗) ∈ LSIG then

5 : return 0

6 : if Ver(mpk, id∗,m∗, sig∗) = 1 then

7 : return 1

8 : else

9 : return 0

Oracle OSK(id)

1 : skid ← KGen(mpk,msk, id)

2 : LSK ← LSK ∪ {id}
3 : return skid

Oracle OSIG(id,m)

1 : skid ← KGen(mpk,msk, id)

2 : sig← Sign(mpk, skid,m)

3 : LSIG ← LSIG ∪ {(id,m)}
4 : return sig

Fig. 2: The security game for IBS.

KGen(mpk,msk, id)→ skid: The key generation algorithm takes mpk, msk, and an identity id ∈ ID as input
and outputs a signing key skid.

Sign(mpk, skid,m)→ sig: The signing algorithm takes mpk, skid, and a message m ∈M as input and outputs
a signature sig.

Ver(mpk, id,m, sig)→ 0 or 1: The verification algorithm takes mpk, id ∈ ID, m and sig as input, and outputs
a bit b ∈ {0, 1}.

Correctness. We say that an IBS scheme IBS is correct if for all λ ∈ N, id ∈ ID and m ∈M, it holds that

Pr

Ver(mpk, id,m, sig) = 1

∣∣∣∣∣∣
(mpk,msk)← Setup(1λ),
skid ← KGen(mpk,msk, id),
sig← Sign(mpk, skid,m)

 = 1− negl(λ).

Security. We recall adaptive-identity unforgeability against chosen message attacks (EUF-ID-CMA secu-
rity) [24].

Definition 4 (EUF-ID-CMA Security of IBS). We say that an IBS scheme IBS is EUF-ID-CMA secure
if for all PPT adversaries A, it holds that

Adveuf-id-cma
A,IBS (λ) := Pr

[
EUF-ID-CMAA

IBS(λ)⇒ 1
]
= negl(λ),

where the security game EUF-ID-CMAA
IBS(λ) is depicted in Fig. 2.

3 Identity-Based Matchmaking Encryption

In this section, we first recall the syntax and security definition of identity-based matchmaking encryption
(IB-ME) defined by Ateniese et al. [2]. Then, we introduce stronger security notions of them and reformulate
privacy in the case of mismatch during decryption introduced by Francati et al. [18].

3.1 Syntax

An IB-ME scheme IB-ME consists of the following five algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes the security parameter 1λ, and outputs a public param-
eter mpk and master secret key msk. mpk defines the identity space ID, the message space M and the
ciphertext space CT .
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SKGen(mpk,msk, σ)→ ekσ: The sender key generation algorithm takes mpk, msk, and a sender’s identity
σ ∈ ID as input, and outputs an encryption key ekσ.

RKGen(mpk,msk, ρ)→ dkρ: The receiver key generation algorithm takes mpk, msk, and a receiver’s identity
ρ ∈ ID as input and outputs a decryption key dkρ.

Enc(mpk, ekσ, rcv,m)→ ct: The encryption algorithm takes mpk, ekσ, a receiver’s identity rcv, and a plaintext
m ∈M as input and outputs a ciphertext ct ∈ CT .

Dec(mpk, dkρ, snd, ct)→ m or ⊥: The decryption algorithm takes mpk, dkρ, a sender’s identity snd, and ct
as input and outputs m ∈M or a special symbol ⊥ /∈M.

Correctness. We say that an IB-ME scheme IB-ME is correct if for all λ ∈ N, σ, ρ, snd, rcv ∈ ID such that
snd = σ and rcv = ρ, and m ∈M, it holds that

Pr

Dec(mpk, dkρ, snd, ct) = m

∣∣∣∣∣∣∣∣
(mpk,msk)← Setup(1λ),
ekσ ← SKGen(mpk,msk, σ),
dkρ ← RKGen(mpk,msk, ρ),
ct← Enc(mpk, ekσ, rcv,m)

 = 1− negl(λ).

We say that an IB-ME scheme is perfectly correct if the above probability is equal to 1 (i.e., no error occurs).

3.2 Security Notions, Reconsidered

Standard security notions. IB-ME schemes must satisfy two primary security properties: privacy and
authenticity. In essence, privacy ensures that nothing is disclosed to unintended recipients who do not adhere
to the sender’s policy, while authenticity guarantees that it is impossible to impersonate the sender without
possessing the sender’s secret key. We revisit the definitions of privacy and authenticity outlined by Ateniese
et al. [2]. To clarify, we rename their definitions privacy against chosen plaintext attacks (Priv-CPA) and
authenticity against no-message attacks from outsiders (Auth-oNMA). The term “outsiders” indicates that
neither the target sender nor the target receiver is compromised. Subsequently, an authenticity notion is
improved in which adversaries can compromise the target receiver [11, 18]. Since the adversary knows the
target receiver’s key, we call such adversary insiders and call the corresponding authenticity notion authen-
ticity against no-message attacks from insiders (Auth-iNMA). It is worth noting that this distinction between
insider and outsider adversaries is a well-established concept in the context of signcryption [27].

The security games are depicted in Fig. 3. We remark that we employ a “real-or-random” style Priv-CPA
game instead of the Ateniese et al.’s “left-or-right” style game. In greater detail, to account for sender and re-
ceiver anonymity, Ateniese et al. designed the security game where the adversary outputs {(sndi, rcvi,mi)}i∈{0,1}
and presents a challenge ciphertext generated with one of them depending on the challenge bit coin ∈ {0, 1}.
On the contrary, we define the game in a way that the adversary outputs (snd, rcv,m) and is provided with
either a real ciphertext generated using this information or a random ciphertext sampled from the ciphertext
space CT similar to the anonymity in IBE (cf. Section 2.3). In essence, our definition asserts that cipher-
texts convey no information beyond what is derived from the master public keys. Note that our definition
immediately encompasses the Ateniese et al.’s definition.

Definition 5 (Priv-CPA Security of IB-ME). We say that an IB-ME scheme IB-ME is Priv-CPA secure
if for all PPT adversaries A, it holds that

Advpriv-cpaA,IB-ME(λ) :=

∣∣∣∣Pr[Priv-CPAA
IB-ME(λ)⇒ 1

]
− 1

2

∣∣∣∣ = negl(λ),

where the security game Priv-CPAA
IB-ME(λ) is depicted in Fig. 3.

Definition 6 (Auth-{o, i}NMA Security of IB-ME). Let x ∈ {o, i}. We say that an IB-ME scheme IB-ME
is Auth-xNMA secure if for all PPT adversaries A, it holds that

Advauth-xnma
A,IB-ME (λ) := Pr

[
Auth-xNMAA

IB-ME(λ)⇒ 1
]
= negl(λ),

where the security game Auth-xNMAA
IB-ME(λ) is depicted in Fig. 3.

10



Priv-XXXA
IB-ME(λ)

1 : // XXX ∈ {CPA,CCA}

2 : LS ,LR := ∅; rcv∗ := ⊥
3 : coin←$ {0, 1}
4 : (mpk,msk)← Setup(1λ)

5 : (σ∗, rcv∗,m∗)← AO(mpk)

6 : if rcv∗ ∈ LR then

7 : return coin

8 : ekσ∗ ← SKGen(mpk,msk, σ∗)

9 : ct0 ← Enc(mpk, ekσ∗ , rcv∗,m∗)

10 : ct1 ←$ CT

11 : ĉoin← AO(ctcoin)

12 : if coin = ĉoin then

13 : return 1

14 : else

15 : return 0

Auth-xYYYA
IB-ME(λ)

1 : // x ∈ {o, i}, YYY ∈ {NMA,CMA}

2 : LS ,LR,LE := ∅; ρ∗ := ⊥
3 : (mpk,msk)← Setup(1λ)

4 : (snd∗, ρ∗, ct∗)← AO(mpk)

5 : dkρ∗ ← RKGen(mpk,msk, ρ∗);

6 : m∗ ← Dec(mpk, dkρ∗ , snd
∗, ct∗)

7 : if x = o ∧ ρ∗ ∈ LR then

8 : return 0

9 : if YYY = CMA

∧ (snd∗, ρ∗,m∗) ∈ LE then

10 : return 0

11 : if m∗ ̸= ⊥ ∧ snd∗ /∈ LS then

return 1

12 : else

13 : return 0

Available Oracles

Priv-CCA : O = {OS ,OR,OD}
Auth-xCMA : O = {OS ,OR,OE}
Others : O = {OS ,OR}

Oracle OS(σ)

1 : ekσ ← SKGen(mpk,msk, σ)

2 : LS ← LS ∪ {σ}
3 : return ekσ

Oracle OR(ρ)

1 : if ρ = rcv∗ then

2 : return ⊥
3 : dkρ ← RKGen(mpk,msk, ρ)

4 : LR ← LR ∪ {ρ}
5 : return dkρ

Oracle OE(σ, rcv,m)

1 : ekσ ← SKGen(mpk,msk, σ)

2 : ct← Enc(mpk, ekσ, rcv,m)

3 : LE ← LE ∪ {(σ, rcv,m)}
4 : return ct

Oracle OD(snd, ρ, ct)

1 : if (snd, ρ, ct) = (σ∗, rcv∗, ctcoin) then

2 : return ⊥
3 : dkρ ← RKGen(mpk,msk, ρ)

4 : m← Dec(mpk, snd, dkρ, ct)

5 : return m

Fig. 3: The privacy and authenticity games for IB-ME schemes.
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Priv-MisMatchAIB-ME(λ)

1 : LS ,LR := ∅
2 : coin←$ {0, 1}

3 : (mpk,msk)← Setup(1λ)

4 : (Σ∗, rcv∗,m∗)← AOS ,OR(mpk)

5 : dkrcv∗ ← RKGen(mpk,msk, rcv∗)

6 : σ∗ ←$ Σ∗ // Sample from the distribution.

7 : ekσ∗ ← SKGen(mpk,msk, σ∗)

8 : ct0 ← Enc(mpk, ekσ∗ , rcv∗,m∗)

9 : ct1 ←$ CT

10 : ĉoin← AOS ,OR,OE∗ (dkrcv∗ , ctcoin)

11 : if coin = ĉoin then return 1

12 : else return 0

Oracle OE∗(rcv,m)

1 : ct← Enc(mpk, ekσ∗ , rcv,m)

2 : return ct

Fig. 4: The privacy game in the case of mismatch for IB-ME schemes. The oracles OS and OR are defined
in Fig. 3.

Stronger security notions. In this work, we define stronger security notions for IB-ME. We consider
privacy against chosen-ciphertext attacks (Priv-CCA) and authenticity against chosen-message attacks from
outsiders or insiders (Auth-oCMA or Auth-iCMA). In the Priv-CCA game, an adversary can access the decryp-
tion oracle, similar to the standard CCA attack scenario. In the Auth-xCMA game, an adversary can access
the encryption oracle and receive a ciphertext for a message of its choice, as with the signing oracle in the
unforgeability game for (standard) digital signature. These notions Priv-CCA and Auth-xCMA are the desired
security properties in practice. We note that Priv-CCA security was first defined in [13, 25] and Auth-iCMA
is the same as “strong authenticity” by Wang et al. [32] while Auth-oCMA is newly introduced in this paper.

Definition 7 (Priv-CCA Security of IB-ME). We say that an IB-ME scheme IB-ME is Priv-CCA secure
if for all PPT adversaries A, it holds that

Advpriv-ccaA,IB-ME(λ) :=

∣∣∣∣Pr[Priv-CCAA
IB-ME(λ)⇒ 1

]
− 1

2

∣∣∣∣ = negl(λ),

where the security game Priv-CCAA
IB-ME(λ) is depicted in Fig. 3.

Definition 8 (Auth-{o, i}CMA Security of IB-ME). Let x ∈ {o, i}. We say that an IB-ME scheme IB-ME
is Auth-xCMA secure if for all PPT adversaries A, it holds that

Advauth-xcma
A,IB-ME (λ) := Pr

[
Auth-xCMAA

IB-ME(λ)⇒ 1
]
= negl(λ),

where the security game Auth-xCMAA
IB-ME(λ) is depicted in Fig. 3.

Privacy in the case of mismatch during decryption. We additionally consider the case where cipher-
texts are decrypted with the valid receiver’s key but mismatched sender’s identities. Intuitively, IB-ME must
ensure the privacy of messages in this case from the design concept of IB-ME. This guarantees that an ad-
versary who compromises a receiver but has no knowledge about the sender cannot decrypt ciphertexts. This
is a crucial security property of IB-ME, but the original work did not consider it explicitly13. Subsequently,
13 Ateniese et al. informally argued that their IB-ME scheme hides the message and the sender’s identity in the case

of mismatch, but they did not provide a formal model or a formal proof.
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Priv+-CPAA
IB-ME(λ)/ Priv+-CCA

A
IB-ME(λ)

1 : LS ,LR := ∅
2 : coin←$ {0, 1}

3 : (mpk,msk)← Setup(1λ)

4 : (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv1,m

∗
0,m

∗
1)← A

OS ,OR, OD (mpk)

5 : σ∗
0 ←$ Σ∗

0 // Sample from the distribution.

6 : σ∗
1 ←$ Σ∗

1 // Sample from the distribution.

7 : ekσ∗
0
← SKGen(mpk,msk, σ∗

0)

8 : ekσ∗
1
← SKGen(mpk,msk, σ∗

1)

9 : ctcoin ← Enc(mpk, ekσ∗
coin

, rcv∗coin,m
∗)

10 : ĉoin← AOS ,OR,OE∗ , OD (ctcoin)

11 : if coin = ĉoin then return 1

12 : else return 0

Oracle OR(rcv)

1 : dkρ ← RKGen(mpk,msk, ρ)

2 : LR ← LR ∪ {ρ}
3 : return dkρ

Oracle OE∗(i ∈ {0, 1}, rcv,m)

1 : ct← Enc(mpk, ekσ∗
i
, rcv,m)

2 : return ct

Fig. 5: The enhanced privacy game for IB-ME schemes. The boxed codes are only for Priv+-CCA game. The
oracles OS ,OD is defined in Fig. 3.

Francati et al. [18] defined a new privacy notion called “enhanced privacy” that captures privacy in this case.
To model an adversary that does not know who the sender is, Francati et al. assumed that the target senders’
identities are chosen from the corresponding high min-entropy distributions. Their definition effectively cap-
tures this intuition, but they used a single game that includes both conventional privacy and privacy in the
case of mismatch, complicating the understanding of the definition and security proofs. In addition, their
original definition does not capture the so-called “offline guessing attack”, where an adversary who knows
the decryption key can try to guess the sender’s identity locally after it gets a ciphertext. Therefore, in this
work, we redefine the above intuition as another simple security game, which we call Priv-MisMatch security.

The new security game Priv-MisMatch is shown in Fig. 4. The difference from the definition by Francati
et al. is that (1) the adversary specifies one target receiver and is given the secret key of the target receiver
explicitly, and (2) the adversary tries to distinguish whether the challenge ciphertext is real or random as
Priv-CPA/Priv-CCA games. This represents the intuition that, even if the adversary knows the the target
receiver’s key, it is difficult for the adversary to guess the sender’s identity and the privacy of messages is
guaranteed (i.e., a ciphertext does not leak any information about the sender, receiver, and the encrypted
message). Also, we explicitly consider the advantage due to the offline guessing attack. The formal definition
is as follows.

Definition 9 (Priv-MisMatch Security of IB-ME). We say that an IB-ME scheme IB-ME is Priv-MisMatch
secure if for all κ-admissible PPT adversaries A, it holds that

Advpriv-mismatch
A,IB-ME (λ, κ) :=

∣∣∣∣Pr[Priv-MisMatchAIB-ME(λ)⇒ 1
]
− 1

2

∣∣∣∣ ≤ TA

2κ
+ negl(λ),

where the security game Priv-MisMatchAIB-ME(λ) is depicted in Fig. 4 and TA = poly(λ) denotes the running
time of A. Note that we say that the adversary A is κ-admissible if its outputs Σ∗ is κ-distributions.

The term TA/2
κ represents the advantage of the adversary’s offline guessing attacks. Since the adversary

knows the receiver’s decryption key, it can perform an exhaustive search offline and find the correct sender’s
identity. If the sender’s identities are chosen from a distribution with sufficiently large entropy, such a guess
is infeasible for PPT adversaries. Therefore, for a reasonable Priv-MisMatch security, κ ≥ ω(log λ) would be
assumed [18]. In this case, we have Advpriv-mismatch

A,IB-ME (λ) = negl(λ).
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3.3 Relationship between Our Definition and Francati’s One

In the following, we show that Priv-CPA/Priv-CCA and Priv-MisMatch cover all the security notions considered
in the enhanced privacy in [18]. The enhanced privacy [18] defined by Francati et al. considered the following
three cases:

– (1) the adversary cannot decrypt the challenge (i.e., it does not hold a valid decryption key),
– (2) the sender’s attributes do not match with the receiver’s policy on the challenge (i.e., the challenge

has a policy that is not satisfied by the sender),
– (3) the adversary receives two challenges. For the first challenge, the adversary cannot decrypt it, and

for the second challenge, the sender’s attributes do not match with the receiver’s policy. In a nutshell,
this condition is a hybrid of (1) and (2).

Formally, they are defined as follows. Originally, Francati et al. defined CPA security, but here we also
consider CCA security.

Definition 10 (Priv+-CPA Security of IB-ME [18]). We say that an IB-ME scheme IB-ME is Priv+-CPA
secure if for all κ-admissible PPT adversaries A, it holds that

Advpriv
+-cpa

A,IB-ME (λ) :=

∣∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

where the security game Priv+-CPAA
IB-ME(λ) is depicted in Fig. 5. An adversary A is admissible if for all

ρ ∈ LR, it satisfies at least one of the following invariants

(Case 1) ρ ̸= rcv∗0 ∧ ρ ̸= rcv∗1,
(Case 2) H∞(Σ∗

0 ) ≥ κ ∧H∞(Σ∗
1 ) ≥ κ,

(Case 3) ρ ̸= rcv∗0 ∧H∞(Σ∗
1 ) ≥ κ,

(Case 4) ρ ̸= rcv∗1 ∧H∞(Σ∗
0 ) ≥ κ.

Definition 11 (Priv+-CCA Security of IB-ME). We say that an IB-ME scheme IB-ME is Priv+-CCA
secure if for all κ-admissible PPT adversaries A, it holds that

Advpriv
+-cca

A,IB-ME(λ) :=

∣∣∣∣Pr[Priv+-CCAA
IB-ME(λ)⇒ 1

]
− 1

2

∣∣∣∣ ≤ negl(λ).

where the security game Priv+-CCAA
IB-ME(λ) is depicted in Fig. 5. An adversary A is admissible if for all

ρ ∈ LR, it satisfies at least one of the following invariants

(Case 1) ρ ̸= rcv∗0 ∧ ρ ̸= rcv∗1,
(Case 2) H∞(Σ∗

0 ) ≥ κ ∧H∞(Σ∗
1 ) ≥ κ,

(Case 3) ρ ̸= rcv∗0 ∧H∞(Σ∗
1 ) ≥ κ,

(Case 4) ρ ̸= rcv∗1 ∧H∞(Σ∗
0 ) ≥ κ.

The following theorems show that Priv-CPA/Priv-CCA and Priv-MisMatch cover all the security notions
considered by Francati et al. [18].

Theorem 1. If an IB-ME scheme IB-ME satisfies Priv-CPA (resp., Priv-CCA) security and Priv-MisMatch
security, then it satisfies Priv+-CPA (resp., Priv+-CCA) security.

Proof. We first prove Case 1 (that is ρ ̸= rcv∗0 ∧ ρ ̸= rcv∗1).

Lemma 1. If there exists an adversary A that breaks the Priv+-CPA (resp., Priv+-CCA) security for case 1,
there exists an adversary B that breaks Priv-CPA (resp., Priv-CCA) security such that∣∣∣∣Pr[Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 1

]
− 1

2

∣∣∣∣ ≤ 2Advpriv-cpaB,IB-ME(λ)(
resp.,

∣∣∣∣Pr[Priv+-CCAA
IB-ME(λ)⇒ 1

∣∣∣Case 1
]
− 1

2

∣∣∣∣ ≤ 2Advpriv-ccaB,IB-ME(λ)

)
.
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Proof. To prove the lemma, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. We define
the advantage of A in Gamei as

ϵi := Pr
[
GameAi (λ)⇒ 1

]
.

Game0. This is the original security game conditioned on coin = 0.
Game1. In this game, we replace ct∗ ← Enc(mpk, ekσ∗

0
, rcv∗0,m

∗
0) with ct∗ ←$ CT .

To show the difference between Game0 and Game1 is negligible, we construct B1 that breaks the Priv-CPA
(resp., Priv-CCA) security of IB-ME using A. The boxed descriptions are only used for the reduction of
Priv-CCA.

1. Upon receiving the master public key mpk, B1 executes A on input mpk.
2. B1 answers queries from A as follows.

(a) When A sends σ to OS oracle, B1 sends σ to its OS oracle and receives ekσ. Then, B1 returns it to
A.

(b) When A sends ρ to OR oracle, B1 sends ρ to its OR oracle and receives dkρ. Then, B1 returns it to
A.

(c) When A sends snd, ρ, ct to OD oracle, B1 sends snd, ρ, ct to its OD oracle and receives m. Then,
B1 returns it to A.

3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B1 picks σ∗

0 ←$ Σ∗
0 and

σ∗
1 ←$ Σ∗

1 , sends (σ∗
0 , rcv

∗
0,m

∗
0) to its challenger, and receives the challenge ciphertext ct∗. Then, B1

returns it to A. Moreover, B1 sends σ∗
0 and σ∗

1 to its OS oracle and receives ekσ∗
0

and ekσ∗
1
.

4. B1 answers queries from A as follows.
(a) When A sends σ to OS oracle, B1 sends σ to its challenger and receives ekσ. Then B1 returns it to
A.

(b) When A sends ρ to OR oracle, B1 sends ρ to its challenger and receives dkρ. Then, B1 returns it to
A.

(c) When A sends (i, rcv,m) to OE∗ , B1 computes ct← Enc(mpk, ekσ∗
i
, rcv,m) and returns ct to A.

(d) When A sends snd, ρ, ct to OD oracle, B1 sends snd, ρ, ct to its OD oracle and receives m. Then,
B1 returns it to A.

5. Finally, when A outputs ĉoin, B1 sends it to the challenger as its guess.

Let coin′ ∈ {0, 1} be the challenge bit for B1. It is clear that if coin′ = 0 (that is ct∗ = Enc(mpk, ekekσ∗
0
, rcv∗0,m

∗
0)),

then B1 perfectly simulates Game0 forA. On the other hand, if coin′ = 1 (that is ct∗ ←$ CT ), then B1 perfectly
simulates Game1 forA. Therefore, we have ϵ0 = Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
]

and ϵ1 = Pr
[
coin′ = ĉoin

∣∣∣ coin′ = 1
]
.

Thus, we have

Pr
[
Priv-CPAB1

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 1
]
+ Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin′ = 1
]
+ Pr

[
ĉoin = 0

∣∣∣ coin′ = 0
])

=
1

2
(1− ϵ1 + ϵ0) ,

(
resp., Pr

[
Priv-CCAB1

IB-ME(λ)⇒ 1
]
=

1

2
(1− ϵ1 + ϵ0)

)
,

which in turn implies

|ϵ0 − ϵ1| = 2Advpriv-cpaB1,IB-ME(λ)
(
resp., |ϵ0 − ϵ1| = 2Advpriv-ccaB1,IB-ME(λ)

)
.
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Game2. In this game, we replace ct∗ ←$ CT with ct∗ ← Enc(mpk, ekσ∗
1
, rcv∗1,m

∗
1). By doing this, Game2 is the

original security game conditioned on coin = 1.
To show the difference between Game1 and Game2 is negligible, we construct B2 that breaks Priv-CPA

(resp., Priv-CCA) security of IB-ME using A. The boxed descriptions are only used for the reduction of
Priv-CCA.

1. Upon receiving the master public key mpk, B2 executes A on input mpk.
2. B2 answers queries from A as follows.

(a) When A sends σ to OS oracle, B2 sends σ to its OS oracle and receives ekσ. Then, B2 returns it to
A.

(b) When A sends ρ to OR oracle, B2 sends ρ to its OR oracle and receives dkρ. Then, B2 returns it to
A.

(c) When A sends snd, ρ, ct to OD oracle, B2 sends snd, ρ, ct to its OD oracle and receives m. Then,
B2 returns it to A.

3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B2 picks σ∗

0 ←$ Σ∗
0 and

σ∗
1 ←$ Σ∗

1 , sends (σ∗
1 , rcv

∗
1,m

∗
1) to its challenger, and receives the challenge ciphertext ct∗. Then B2

returns it to A. Moreover, B2 sends σ∗
0 and σ∗

1 to its challenger and receives ekσ∗
0

and ekσ∗
1
.

4. B2 answers queries from A as follows.
(a) When A sends σ to OS oracle, B2 sends σ to its OS oracle and receives ekσ. Then, B2 returns it to
A.

(b) When A sends ρ to OR oracle, B2 sends ρ to its OR oracle and receives dkρ. Then, B2 returns it to
A.

(c) When A sends (i, rcv,m) to OE∗ , B2 computes ct← Enc(mpk, ekσ∗
i
, rcv,m) and returns ct to A.

(d) When A sends snd, ρ, ct to OD oracle, B2 sends snd, ρ, ct to its OD oracle and receives m. Then,
B2 returns it to A.

5. Finally, when A outputs ĉoin, B2 sends it to the challenger as its guess.

Let coin′ ∈ {0, 1} be the challenge bit for B2. It is clear that if coin′ = 0 (that is ct∗ = Enc(mpk, ekekσ∗
1
, rcv∗1,m

∗
1)),

then B2 perfectly simulates Game2 forA. On the other hand, if coin′ = 1 (that is ct∗ ←$ CT ), then B2 perfectly
simulates Game1 forA. Therefore, we have ϵ1 = Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 1
]

and ϵ2 = Pr
[
coin′ = ĉoin

∣∣∣ coin′ = 0
]
.

Thus, we have

Pr
[
Priv-CPAB2

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
]
+ Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 1
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin′ = 0
]
+ Pr

[
ĉoin = 0

∣∣∣ coin′ = 1
])

=
1

2
(1− ϵ2 + ϵ1) ,

(
resp., Pr

[
Priv-CCAB1

IB-ME(λ)⇒ 1
]
=

1

2
(1− ϵ1 + ϵ0)

)
,

which in turn implies

|ϵ1 − ϵ2| = 2Advpriv-cpaB2,IB-ME(λ)
(
resp., |ϵ1 − ϵ2| = 2Advpriv-ccaB2,IB-ME(λ)

)
.
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From the above arguments, we have∣∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 1
]
− 1

2

∣∣∣∣
≤ 1

2

∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 1 ∧ coin = 0
]
− Pr

[
Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 1 ∧ coin = 1

]∣∣∣
=

1

2
|ϵ0 − ϵ2| ≤

1

2
(|ϵ0 − ϵ1|+ |ϵ1 − ϵ2|) = 2Advpriv-cpaB,IB-ME(λ),

(
resp.,

∣∣∣∣Pr[Priv+-CCAA
IB-ME(λ)⇒ 1

∣∣∣Case 1
]
− 1

2

∣∣∣∣ ≤ 2Advpriv-ccaB,IB-ME(λ)

)
.

Next, we prove Case 2 (that is H∞(Σ∗
0 ) ≥ κ ∧H∞(Σ∗

1 ) ≥ κ).

Lemma 2. If there exists an adversary A that breaks the Priv+-CPA (resp., Priv+-CCA) security for case 2,
then there exists an adversary B that breaks Priv-MisMatch security such that∣∣∣∣Pr[Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 2

]
− 1

2

∣∣∣∣ ≤ 2Advpriv-mismatch
B,IB-ME (λ)(

resp.,
∣∣∣∣Pr[Priv+-CCAA

IB-ME(λ)⇒ 1
∣∣∣Case 2

]
− 1

2

∣∣∣∣ ≤ 2Advpriv-mismatch
B,IB-ME (λ)

)
.

Proof. To prove the lemma, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. We define
the advantage of A in Gamei as

ϵi := Pr
[
GameAi (λ)⇒ 1

]
.

Game0. This is the original security game conditioned on coin = 0.
Game1. In this game, we replace ct∗ ← Enc(mpk, ekσ∗

0
, rcv∗0,m

∗
0) with ct∗ ←$ CT .

To show the difference between Game0 and Game1 is negligible, we construct B1 that breaks Priv-MisMatch
security of IB-ME using A. The boxed descriptions are only used to simulate the Priv+-CCA game.

1. Upon receiving the master public key mpk, B1 executes A on input mpk.
2. B1 answers queries from A as follows.

(a) When A sends σ to OS oracle, B1 sends σ to its OS oracle and receives ekσ. Then B1 returns it to
A.

(b) When A sends ρ to OR oracle, B1 sends ρ to its OR oracle and receives dkρ. Then, B1 returns it to
A.

(c) When A sends snd, ρ, ct to OD, B1 sends ρ to its OR oracle and receives dkρ. Then, B1 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.

3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B1 picks σ∗

1 ←$ Σ∗
1 , sends

(Σ∗
0 , rcv

∗
0,m

∗
0) to its challenger and receives the target receiver key and challenge ciphertext (dkrcv∗0 , ct

∗).
Then, B1 returns ct∗ to A. Moreover, B1 sends σ∗

1 to its OS oracle and receives ekσ∗
1
.

4. B1 answers queries from A as follows.
(a) When A sends σ to OS oracle, B1 sends σ to its OS oracle and receives ekσ. Then B1 returns it to
A.

(b) When A sends ρ to OR oracle, B1 returns dkrcv∗0 to A if ρ = rcv∗0. Otherwise, B1 sends ρ to its OR

oracle, receives dkρ, and returns it to A.
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(c) When A sends (i, rcv,m) to OE∗ , if i = 0 holds, B1 sends (rcv,m) to its OE∗ oracle and receives ct.
Otherwise, B1 computes ct← Enc(mpk, ekσ∗

1
, rcv,m). Then B1 returns ct to A.

(d) When A sends snd, ρ, ct to OD, B1 sends ρ to its OR oracle and receives dkρ. Then, B1 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.

5. Finally, when A outputs ĉoin, B1 sends it to the challenger as its guess.

Let coin′ ∈ {0, 1} be the challenge bit for B1. It is clear that if coin′ = 0 (that is ct∗ = Enc(mpk, ekekσ∗
0
, rcv∗0,m

∗
0)),

then B1 perfectly simulates Game0 forA. On the other hand, if coin′ = 1 (that is ct∗ ←$ CT ), then B1 perfectly
simulates Game1 forA. Therefore, we have ϵ0 = Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
]

and ϵ1 = Pr
[
coin′ = ĉoin

∣∣∣ coin′ = 1
]
.

Thus, we have

Pr
[
Priv-MisMatchB1

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 1
]
+ Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin′ = 1
]
+ Pr

[
ĉoin = 0

∣∣∣ coin′ = 0
])

=
1

2
(1− ϵ1 + ϵ0) ,

which in turn implies
|ϵ0 − ϵ1| = 2Advpriv-mismatch

B1,IB-ME (λ).

Game2. In this game, we replace ct∗ ←$ CT with ct∗ ← Enc(mpk, ekσ∗
1
, rcv∗1,m

∗
1). By doing this, Game2 is the

original security game conditioned on coin = 1.
To show the difference between Game1 and Game2 is negligible, we construct B2 that breaks Priv-MisMatch

security of IB-ME using A. The boxed descriptions are only used to simulate the Priv+-CCA game.

1. Upon receiving the master public key mpk, B2 executes A on input mpk.
2. B2 answers queries from A as follows.

(a) When A sends σ to OS oracle, B2 sends σ to its OS oracle and receives ekσ. Then B2 returns it to
A.

(b) When A sends ρ to OR oracle, B2 sends ρ to its OR oracle and receives dkρ. Then, B2 returns it to
A.

(c) When A sends snd, ρ, ct to OD, B2 sends ρ to its OR oracle and receives dkρ. Then, B2 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.

3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B2 picks σ∗

0 ←$ Σ∗
0 , sends

(Σ∗
1 , rcv

∗
1,m

∗
1) to its challenger, and receives the target receiver key and challenge ciphertext (dkrcv∗1 , ct

∗).
Then B2 returns ct∗ to A. Moreover, B2 sends σ∗

0 to its challenger and receives ekσ∗
0
.

4. B2 answers queries from A as follows.
(a) When A sends σ to OS oracle, B2 sends σ to its OS oracle and receives ekσ. Then, B2 returns it to
A.

(b) When A sends ρ to OR oracle, B2 returns dkrcv∗1 to A if ρ = rcv∗1. Otherwise, B2 sends ρ to its OR

oracle, receives dkρ, and returns it to A.
(c) When A sends (i, rcv,m) to OE∗ oracle, if i = 1 holds, B2 sends (rcv,m) to its OE∗ oracle and receives

ct. Otherwise, B2 computes ct← Enc(mpk, ekσ∗
0
, rcv,m). Then B2 returns ct to A.

(d) When A sends snd, ρ, ct to OD, B2 sends ρ to its OR oracle and receives dkρ. Then, B2 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.

5. Finally, when A outputs ĉoin, B2 sends it to the challenger as its guess.
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Let coin′ ∈ {0, 1} be the challenge bit for B2. It is clear that if coin′ = 0 (that is ct∗ = Enc(mpk, ekekσ∗
1
, rcv∗1,m

∗
1)),

then B2 perfectly simulates Game2 forA. On the other hand, if coin′ = 1 (that is ct∗ ←$ CT ), then B2 perfectly
simulates Game1 forA. Therefore, we have ϵ1 = Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 1
]

and ϵ2 = Pr
[
coin′ = ĉoin

∣∣∣ coin′ = 0
]
.

Thus, we have

Pr
[
Priv-MisMatchB2

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
]
+ Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 1
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin′ = 0
]
+ Pr

[
ĉoin = 0

∣∣∣ coin′ = 1
])

=
1

2
(1− ϵ2 + ϵ1) ,

Thus, we have
|ϵ1 − ϵ2| = 2Advpriv-mismatch

B2,IB-ME (λ).

From the above arguments, we have∣∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 2
]
− 1

2

∣∣∣∣
≤ 1

2

∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 2 ∧ coin = 0
]
− Pr

[
Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 2 ∧ coin = 1

]∣∣∣
=

1

2
|ϵ0 − ϵ2| ≤

1

2
(|ϵ0 − ϵ1|+ |ϵ1 − ϵ2|) = 2Advpriv-mismatch

B,IB-ME (λ).

(
resp.,

∣∣∣∣Pr[Priv+-CCAA
IB-ME(λ)⇒ 1

∣∣∣Case 2
]
− 1

2

∣∣∣∣ ≤ 2Advpriv-mismatch
B,IB-ME (λ)

)
.

Next, we prove Case 3 (that is ρ ̸= rcv∗0 ∧H∞(Σ∗
1 ) ≥ κ).

Lemma 3. If there exists an adversary A3 that breaks the Priv+-CPA (resp., Priv+-CCA) security for case 3,
there exists an adversary B1 that breaks Priv-CPA (resp., Priv-CCA) security and B2 that breaks Priv-MisMatch
security such that ∣∣∣∣Pr[Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 3

]
− 1

2

∣∣∣∣ ≤ Advpriv-cpaB1,IB-ME(λ) + Advpriv-mismatch
B2,IB-ME (λ)(

resp.,
∣∣∣∣Pr[Priv+-CCAA

IB-ME(λ)⇒ 1
∣∣∣Case 3

]
− 1

2

∣∣∣∣ ≤ Advpriv-ccaB1,IB-ME(λ) + Advpriv-mismatch
B2,IB-ME (λ)

)
.

Proof. To prove the lemma, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. We define
the advantage of A in Gamei as

ϵi := Pr
[
GameAi (λ)⇒ 1

]
.

Game0. This is the original security game conditioned on coin = 0.
Game1. In this game, we replace ct∗ ← Enc(mpk, ekσ∗

0
, rcv∗0,m

∗
0) with ct∗ ←$ CT .

To show the difference between Game0 and Game1 is negligible, we construct B1 that breaks Priv-CPA
security of IB-ME using A. The boxed descriptions are only used for the reduction of Priv-CCA.

1. Upon receiving the master public key mpk, B1 executes A on input mpk.
2. B1 answers queries from A as follows.

(a) When A sends σ to OS oracle, B1 sends σ to its challenger and receives ekσ. Then B1 returns it to
A.
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(b) When A sends ρ to OR oracle, B1 sends ρ to its challenger and receives dkρ. Then, B1 returns it to
A.

(c) When A sends snd, ρ, ct to OD oracle, B1 sends snd, ρ, ct to its OD oracle and receives m. Then,
B1 returns it to A.

3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B1 picks σ∗

0 ←$ Σ∗
0 and

σ∗
1 ←$ Σ∗

1 , and sends (σ∗
0 , rcv

∗
0,m

∗
0) to its challenger and receives the challenge ciphertext ct∗. Then B1

returns it to A. Moreover, B1 sends σ∗
0 and σ∗

1 to its challenger and receives ekσ∗
0

and ekσ∗
1
.

4. B1 answers queries from A as follows.
(a) When A sends σ to OS oracle, B1 sends σ to its challenger and receives ekσ. Then B1 returns it to
A.

(b) When A sends ρ to OR oracle, B1 sends ρ to its challenger and receives dkρ. Then, B1 returns it to
A.

(c) When A sends (i, rcv,m) to OE∗ , B1 computes ct← Enc(mpk, ekσ∗
i
, rcv,m) and returns ct to A.

(d) When A sends snd, ρ, ct to OD oracle, B1 sends snd, ρ, ct to its OD oracle and receives m. Then,
B1 returns it to A.

5. Finally, when A outputs ĉoin, B sends it to the challenger as its guess.

Here, since we assume the case 3, A might make a decryption key query ρ such that ρ ̸= rcv∗0. Note that,
if A makes a decryption key query ρ = rcv∗1, B1 can make a decryption key query on input ρ since rcv∗1 is
not the challenge receiver identity for B1 in the Priv-CPA game. Let coin′ ∈ {0, 1} be the challenge bit for
B1. Then, it is clear that if coin′ = 0 (that is ct∗ = Enc(mpk, ekekσ∗

0
, rcv∗0,m

∗
0)), then B1 perfectly simulates

Game0 for A. On the other hand, if coin′ = 1 (that is ct∗ ←$ CT ), then B1 perfectly simulates Game1 for A.
Therefore, we have ϵ0 = Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
]

and ϵ1 = Pr
[
coin′ = ĉoin

∣∣∣ coin′ = 1
]
. Thus, we have

Pr
[
Priv-CPAB1

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 1
]
+ Pr

[
coin′ = ĉoin

∣∣∣ coin′ = 0
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin′ = 1
]
+ Pr

[
ĉoin = 0

∣∣∣ coin′ = 0
])

=
1

2
(1− ϵ1 + ϵ0) ,

which in turn implies
|ϵ0 − ϵ1| = 2Advpriv-cpaB1,IB-ME(λ).

Game2. In this game, we replace ct∗ ←$ CT with ct∗ ← Enc(mpk, ekσ∗
1
, rcv∗1,m

∗
1). By doing this, Game2 is the

original security game conditioned on coin = 1.
To show difference between Game1 and Game2 are negligible, we construct B2 that breaks Priv-MisMatch

security of IB-ME using A. The boxed descriptions are only used to simulate the Priv+-CCA game.

1. Upon receiving the master public key mpk, B2 executes A on input mpk.
2. B2 answers queries from A as follows.

(a) When A sends σ to OS oracle, B2 sends σ to its challenger and receives ekσ. Then B2 returns it to
A.

(b) When A sends ρ to OR oracle, B2 sends ρ to its challenger and receives dkρ. Then, B2 returns it to
A.

(c) When A sends snd, ρ, ct to OD, B2 sends ρ to its OR oracle and receives dkρ. Then, B2 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.
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3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B2 picks σ∗

0 ←$ Σ∗
0 , and

sends (Σ∗
1 , rcv

∗
1,m

∗
1) to its challenger and receives the challenge ciphertext ct∗, dkρ∗

1
. Then B2 returns ct∗

to A. Moreover, B2 sends σ∗
0 to its challenger and receives ekσ∗

0
.

4. B2 answers queries from A as follows.
(a) When A sends σ to OS oracle, B2 sends σ to its challenger and receives ekσ. Then B2 returns it to
A.

(b) When A sends ρ to OR oracle, B2 returns dkρ∗
1

to A if ρ = ρ∗1. Otherwise, B2 sends ρ to its challenger
and receives dkρ. Then, B2 returns it to A.

(c) When A sends (i, rcv,m) to OE∗ , B2 sends (i, rcv,m) to its challenger and receives ct if i = 1.
Otherwise, B2 computes ct← Enc(mpk, ekσ∗

0
, rcv,m). Then B2 returns ct to A.

(d) When A sends snd, ρ, ct to OD, B2 sends ρ to its OR oracle and receives dkρ. Then, B2 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.

5. Finally, when A outputs ĉoin, B2 sends it to the challenger as its guess.

It is clear that if coin = 0 (that is ct∗ = Enc(mpk, ekekσ∗
1
, rcv∗1,m

∗
1)), then B2 perfectly simulates Game2 for

A. On the other hand, if coin = 1 (that is ct∗ ←$ CT ), then B2 perfectly simulates Game1 for A. Therefore,
we have ϵ1 = Pr

[
coin = ĉoin

∣∣∣ coin = 1
]

and ϵ2 = Pr
[
coin = ĉoin

∣∣∣ coin = 0
]
. Thus, we have

Pr
[
Priv-MisMatchB2

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin = ĉoin

∣∣∣ coin = 0
]
+ Pr

[
coin = ĉoin

∣∣∣ coin = 1
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin = 0
]
+ Pr

[
ĉoin = 0

∣∣∣ coin = 1
])

=
1

2
(1− ϵ2 + ϵ1) .

Thus, we have
|ϵ1 − ϵ2| = 2Advpriv-mismatch

B2,IB-ME (λ).

From the above arguments, we have∣∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 3
]
− 1

2

∣∣∣∣
≤ 1

2

∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 3 ∧ coin = 0
]
− Pr

[
Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 3 ∧ coin = 1

]∣∣∣
=

1

2
|ϵ0 − ϵ2| ≤

1

2
(|ϵ0 − ϵ1|+ |ϵ1 − ϵ2|) = Advpriv-cpaB1,IB-ME(λ) + Advpriv-mismatch

B2,IB-ME (λ)

(
resp.,

∣∣∣∣Pr[Priv+-CCAA
IB-ME(λ)⇒ 1

∣∣∣Case 3
]
− 1

2

∣∣∣∣ ≤ Advpriv-cpaB1,IB-ME(λ) + Advpriv-mismatch
B2,IB-ME (λ)

)
.

Finally, we prove Case 4 (that is ρ ̸= rcv∗1 ∧H∞(Σ∗
0 ) ≥ κ).

Lemma 4. If there exists an adversary A4 that breaks the Priv+-CPA (resp., Priv+-CCA) security for case 4,
there exists an adversary B1 that breaks Priv-MisMatch security and B2 that breaks Priv-CPA (resp., Priv-CCA)
security such that∣∣∣∣Pr[Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 4

]
− 1

2

∣∣∣∣ ≤ Advpriv-mismatch
B1,IB-ME (λ) + Advpriv-cpaB2,IB-ME(λ)(

resp.,
∣∣∣∣Pr[Priv+-CCAA

IB-ME(λ)⇒ 1
∣∣∣Case 4

]
− 1

2

∣∣∣∣ ≤ Advpriv-mismatch
B1,IB-ME (λ) + Advpriv-ccaB2,IB-ME(λ)

)
.
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Proof. To prove the lemma, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. We define
the advantage of A in Gamei as

ϵi := Pr
[
GameAi (λ)⇒ 1

]
.

Game0. This is the original security game for coin = 0.
Game1. In this game, we replace ct∗ ← Enc(mpk, ekσ∗

0
, rcv∗0,m

∗
0) with ct∗ ←$ CT .

To show difference between Game0 and Game1 are negligible, we construct B1 that breaks Priv-MisMatch
security of IB-ME using A. The boxed descriptions are only used to simulate the Priv+-CCA game.

1. Upon receiving the master public key mpk, B1 executes A on input mpk.
2. B1 answers queries from A as follows.

(a) When A sends σ to OS oracle, B1 sends σ to its challenger and receives ekσ. Then B1 returns it to
A.

(b) When A sends ρ to OR oracle, B1 sends ρ to its challenger and receives dkρ. Then, B1 returns it to
A.

(c) When A sends snd, ρ, ct to OD, B1 sends ρ to its OR oracle and receives dkρ. Then, B1 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.

3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B2 picks σ∗

1 ←$ Σ∗
1 , and

sends (Σ∗
0 , rcv

∗
0,m

∗
0) to its challenger and receives the challenge ciphertext ct∗, dkρ∗

0
. Then B1 returns ct∗

to A. Moreover, B1 sends σ∗
1 to its challenger and receives ekσ∗

1
.

4. B1 answers queries from A as follows.
(a) When A sends σ to OS oracle, B1 sends σ to its challenger and receives ekσ. Then B1 returns it to
A.

(b) When A sends ρ to OR oracle, B1 returns dkρ∗
0

to A if ρ = ρ∗0. Otherwise, B1 sends ρ to its challenger
and receives dkρ. Then, B1 returns it to A.

(c) When A sends (i, rcv,m) to OE∗ , B1 sends (i, rcv,m) to its challenger and receives ct if i = 0.
Otherwise, B1 computes ct← Enc(mpk, ekσ∗

1
, rcv,m). Then B1 returns ct to A.

(d) When A sends snd, ρ, ct to OD, B1 sends ρ to its OR oracle and receives dkρ. Then, B1 computes
m← Dec(mpk, dkρ, snd, ct) and returns it to A.

5. Finally, when A outputs ĉoin, B1 sends it to the challenger as its guess.

It is clear that if coin = 0 (that is ct∗ = Enc(mpk, ekekσ∗
1
, rcv∗1,m

∗
1)), then B1 perfectly simulates Game0 for

A. On the other hand, if coin = 1 (that is ct∗ ←$ CT ), then B1 perfectly simulates Game1 for A. Therefore,
we have ϵ0 = Pr

[
coin = ĉoin

∣∣∣ coin = 0
]

and ϵ1 = Pr
[
coin = ĉoin

∣∣∣ coin = 1
]
. Thus, we have

Pr
[
Priv-MisMatchB1

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin = ĉoin

∣∣∣ coin = 1
]
+ Pr

[
coin = ĉoin

∣∣∣ coin = 0
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin = 1
]
+ Pr

[
ĉoin = 0

∣∣∣ coin = 0
])

=
1

2
(1− ϵ1 + ϵ0) .

Thus, we have
|ϵ0 − ϵ1| = 2Advpriv-mismatch

B1,IB-ME (λ).

Game2. In this game, we replace ct∗ ←$ CT with ct∗ ← Enc(mpk, ekσ∗
1
, rcv∗1,m

∗
1). By doing this, Game2 is the

original security game for coin = 1.
To show difference between Game1 and Game2 are negligible, we construct B2 that breaks Priv-CPA

security of IB-ME using A. The boxed descriptions are only used for the reduction of Priv-CCA.

22



1. Upon receiving the master public key mpk, B2 executes A on input mpk.
2. B2 answers queries from A as follows.

(a) When A sends σ to OS oracle, B2 sends σ to its challenger and receives ekσ. Then B2 returns it to
A.

(b) When A sends ρ to OR oracle, B2 sends ρ to its challenger and receives dkρ. Then, B2 returns it to
A.

(c) When A sends snd, ρ, ct to OD oracle, B2 sends snd, ρ, ct to its OD oracle and receives m. Then,
B2 returns it to A.

3. When A sends (Σ∗
0 , Σ

∗
1 , rcv

∗
0, rcv

∗
1,m

∗
0,m

∗
1) to request a challenge ciphertext, B2 picks σ∗

0 ←$ Σ∗
0 and

σ∗
1 ←$ Σ∗

1 , and sends (σ∗
1 , rcv

∗
1,m

∗
1) to its challenger and receives the challenge ciphertext ct∗. Then B2

returns it to A. Moreover, B2 sends σ∗
0 and σ∗

1 to its challenger and receives ekσ∗
0

and ekσ∗
1
.

4. B2 answers queries from A as follows.
(a) When A sends σ to OS oracle, B2 sends σ to its challenger and receives ekσ. Then B22 returns it to
A.

(b) When A sends ρ to OR oracle, B2 sends ρ to its challenger and receives dkρ. Then, B2 returns it to
A.

(c) When A sends (i, rcv,m) to OE∗ , B2 computes ct← Enc(mpk, ekσ∗
i
, rcv,m) and returns ct to A.

(d) When A sends snd, ρ, ct to OD oracle, B2 sends snd, ρ, ct to its OD oracle and receives m. Then,
B2 returns it to A.

5. Finally, when A outputs ĉoin, B2 sends it to the challenger as its guess.

First, A can make a decryption key query on input ρ∗0 since ρ∗0 is not the challenge receiver identity of the
Priv-CPA game. Then, it is clear that if coin = 0 (that is ct∗ = Enc(mpk, ekekσ∗

1
, rcv∗1,m

∗
1)), then B2 perfectly

simulates Game2 for A. On the other hand, if coin = 1 (that is ct∗ ←$ CT ), then B2 perfectly simulates
Game1 for A. Therefore, we have ϵ1 = Pr

[
coin = ĉoin

∣∣∣ coin = 1
]

and ϵ2 = Pr
[
coin = ĉoin

∣∣∣ coin = 0
]
. Thus,

we have

Pr
[
Priv-CPAB2

IB-ME(λ)⇒ 1
]
=

1

2

(
Pr

[
coin = ĉoin

∣∣∣ coin = 0
]
+ Pr

[
coin = ĉoin

∣∣∣ coin = 1
])

=
1

2

(
1− Pr

[
ĉoin = 0

∣∣∣ coin = 0
]
+ Pr

[
ĉoin = 0

∣∣∣ coin = 1
])

=
1

2
(1− ϵ2 + ϵ1) .

(
resp., Pr

[
Priv-CPAB2

IB-ME(λ)⇒ 1
]
=

1

2
(1− ϵ2 + ϵ1)

)
Thus, we have

|ϵ1 − ϵ2| = 2Advpriv-cpaB2,IB-ME(λ)
(
resp., |ϵ1 − ϵ2| = 2Advpriv-ccaB2,IB-ME(λ)

)
.

From the above arguments, we have∣∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 4
]
− 1

2

∣∣∣∣
≤ 1

2

∣∣∣Pr[Priv+-CPAA
IB-ME(λ)⇒ 1

∣∣∣Case 4 ∧ coin = 0
]
− Pr

[
Priv+-CPAA

IB-ME(λ)⇒ 1
∣∣∣Case 4 ∧ coin = 1

]∣∣∣
=

1

2
|ϵ0 − ϵ2| =

1

2
(|ϵ0 − ϵ1|+ |ϵ1 − ϵ2|) = Advpriv-mismatch

B1,IB-ME (λ) + Advpriv-cpaB2,IB-ME(λ).
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(
resp.,

∣∣∣∣Pr[Priv+-CCAA
IB-ME(λ)⇒ 1

∣∣∣−]1
2

∣∣∣∣ ≤ Advpriv-mismatch
B1,IB-ME (λ) + Advpriv-ccaB2,IB-ME(λ)

)

Putting Lemmata 1 to 4, we have

Advpriv
+-cpa

A,IB-ME (λ) ≤ 4Advpriv-cpaB,IB-ME(λ) + 4Advpriv-mismatch
B,IB-ME (λ).

4 Improved IB-ME Scheme from BDH in the ROM

This section shows an improved IB-ME scheme from the BDH assumption in the ROM. Our idea is to
combine the Boneh-Franklin IBE scheme [5] and the Sakai-Ohgishi-Kasahara IB-NIKE scheme [30]. We
also introduce several optimizations to reduce secret key and ciphertext sizes. To achieve stronger security,
we employ the FO transformation [19]. Interestingly, the FO transformation allows us to achieve not only
Priv-CCA security at minimum costs but also Auth-oCMA security for free. We also provide a formal proof
of its Priv-MisMatch security. As a result, we obtain a highly efficient and strongly secure IB-ME scheme
compared to the scheme of Ateniese et al. [2].

4.1 Construction

The proposed IB-ME scheme IB-MEBDH is as follows. Its identity and message spaces are ID = {0, 1}∗ and
M = {0, 1}msgLen, respectively.

Setup(1λ): It first generates a bilinear group G := (p,G1,G2,GT , g1, g2, e)← G(1λ) and selects hash functions
H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G2, Ĥ : {0, 1}∗ × {0, 1}∗ × G1 × GT × GT → {0, 1}msgLen+λ, and
G : {0, 1}∗ × {0, 1}∗ × {0, 1}msgLen × {0, 1}λ → Zp. Then, it samples x ←$ Zp and sets X := gx1 . Finally,
it outputs mpk := (G,H1,H2, Ĥ,G, X) and msk := x.

SKGen(mpk,msk, σ): It computes uσ := H1(σ) and outputs ekσ := uxσ.
RKGen(mpk,msk, ρ): It computes uρ := H2(ρ) and outputs dkρ := uxρ .
Enc(mpk, ekσ, rcv,m): It picks k ←$ {0, 1}λ and computes r := G(σ, rcv,m, k). Then, it computes urcv :=

H2(rcv) and

R := gr1, ctxt := (m||k)⊕ Ĥ(σ, rcv, R, e(Xr, urcv), e(ekσ, urcv)).

Finally, it outputs ct := (R, ctxt).
Dec(mpk, dkρ, snd, ct = (R, ctxt)): It computes usnd := H1(snd) and

m||k := ctxt⊕ Ĥ(snd, ρ, R, e(R, dkρ), e(usnd, dkρ)).

It then computes r := G(snd, ρ,m, k) and checks if R = gr1. If so, it outputs m. Otherwise, it outputs ⊥.

Correctness. We can verify that IB-MEBDH is perfectly correct. For any λ ∈ N, (mpk,msk) ∈ Setup(1λ) and
any σ, ρ, snd, rcv ∈ {0, 1}∗ such that σ = snd and ρ = rcv, we have

e(Xr, urcv) = e((gx1 )
r,H2(rcv)) = e(gr1,H2(ρ)

x) = e(R, dkρ),

e(ekσ, urcv) = e(H1(σ)
x,H2(rcv)) = e(H1(snd),H2(ρ)

x) = e(usnd, dkρ).

That is, it holds that

Ĥ(σ, rcv, R, e(X, urcv)
r, e(ekσ, urcv)) = Ĥ(snd, ρ, R, e(R, dkρ), e(usnd, dkρ)),

and thus the receiver recovers m||k that the sender σ = snd encrypts. Thus, the receiver can recompute
r := G(snd, ρ,m, k) that satisfies R = gr1.
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4.2 Security Proof

We can show that IB-MEBDH is Priv-CCA, Priv-MisMatch and Auth-oCMA secure in the ROM.

Theorem 2. Suppose the hash function G is a random oracle. If there exists an adversary A that breaks
the Priv-CCA security of IB-MEBDH, there exists an adversary B that breaks the BDH assumption for G such
that

Advpriv-ccaA,IB-MEBDH(λ) ≤ 3ê(1 + qR)qĤ · Adv
bdh
B,G(λ) +

qDec

p
+

3qG
2λ

.

where p is the order of the underlying bilinear group and qR, qD, qĤ, and qG are the maximum number of
queries A makes to are the maximum number of queries A sends to OR, OD, Ĥ and G oracles, respectively.

To prove the Priv-CCA security of IB-MEBDH, we use the intermediate scheme IB-MEBasic, which is a
simplified version of IB-MEBDH. We prove that IB-MEBasic is Priv-CPA secure under the BDH assumption,
and then prove the Priv-CCA security of IB-MEBDH assuming the Priv-CPA security of IB-MEBasic.

Basic IB-ME scheme. The IB-ME scheme IB-MEBasic is as follows. The differences between IB-MEBasic and
IB-MEBDH are that IB-MEBasic.Enc samples uniform randomness r instead of generating it with a hash function
G, and IB-MEBasic.Dec does not perform the ciphertext validity check (i.e., do not check if R = gr1 holds). Its
identity and message spaces are ID = {0, 1}∗ and M = {0, 1}msgLen+λ, respectively.

Setup(1λ): It is identical to IB-MEBDH.Setup except that G is not chosen.
SKGen(mpk,msk, σ): It is identical to IB-MEBDH.SKGen.
RKGen(mpk,msk, ρ): It is identical to IB-MEBDH.RKGen.
Enc(mpk, ekσ, rcv,m): It chooses r ←$ Zp and computes urcv := H2(rcv) and

R := gr1, ctxt := m⊕ Ĥ(σ, rcv, R, e(Xr, urcv), e(ekσ, urcv)).

It outputs ct := (R, ctxt).
Dec(mpk, dkρ, snd, ct = (R, ctxt)): It computes usnd := H1(snd) and

m := ctxt⊕ Ĥ(snd, ρ, R, e(R, dkρ), e(usnd, dkρ)).

Finally, it outputs m.

We can easily verify that IB-MEBasic is correct. We now show that IB-MEBasic is Priv-CPA secure.

Theorem 3. Suppose that the hash functions H1,H2, Ĥ are random oracles. If there exists an adversary A
that breaks the Priv-CPA security of IB-MEBasic, there exists an adversary B that breaks the BDH assumption
for G such that

Advpriv-cpaA,IB-MEBasic(λ) ≤ ê(1 + qR)qĤ · Adv
bdh
B,G(λ),

where qR and qĤ are the maximum number of queries A sends to OR and Ĥ oracles, respectively. The running
time of B is about that of A.

Proof of Theorem 3. To prove the theorem, we consider the following sequence of games Gamei for i ∈
{0, 1, 2}. We define the advantage of A in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0. This is the original security game. By definition, we have

ϵ0 = Advpriv-cpaA,IB-MEBasic(λ).

Game1. In this game, we add abort conditions. We guess the challenge identity ρ∗ that is not sent to OR

oracle. If the guess fails, the game aborts and sets a random coin as A’s output. To do so, we change the
challenger’s procedures as follows. (The other procedures are worked as in the previous game.)
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– When A sends ρ to H2 oracle, it flips a coin d which yields 0 with probability 1 − δ. Then, it samples
b←$ Zp, computes uρ := gb2 and updates LH2 ← LH2 ∪ {(ρ, uρ, b, d)}. Then it returns uρ to A.

– When A sends ρ to OR oracle, it searches an entry (ρ, uρ, b, d) ∈ LH2
14. If d = 0, the game aborts.

Otherwise (i.e., d = 1), it computes dkρ := (gx2 )
b and returns it to A.

– When A outputs (σ∗, rcv∗,m∗) to request a challenge ciphertext, it searches (rcv∗, urcv∗ , b, d) from LH2
.

If d = 1, the game aborts. Otherwise (i.e., d = 0), it works as in Game0.

The advantage of A in Game1 is equal to the advantage of A in Game0 conditioning on the game does
not abort. Therefore, we have

ϵ1 = ϵ0 · Pr[¬abort].

Let us estimate the probability Pr[¬abort]. The probability that the game does not abort in OR oracle
is δqR . The probability the game does not abort when A request a challenge ciphertext is 1− δ. Hence, the
overall non-aborting probability is δqR(1 − δ). This value is maximum when δ̂ = qR

1+qR
, and thus we have

Pr[¬abort] ≤ 1
ê(1+qR) for large qR. Therefore, we have

ϵ0 ≤ ê(1 + qR) · ϵ1.

Game2. In this game, the challenge ct0 := (R∗, ctxt∗) is computed as

r∗ ←$ Zp, Z ←$ {0, 1}msgLen+λ, R∗ := gr
∗

1 , ctxt∗ ← m∗ ⊕ Z.

Let BadQ be the event that A queries (·, rcv∗, R∗, U∗, ·) to the oracle Ĥ where U∗ := e(R∗, dkrcv∗). Since Z
is chosen independently at random from random oracles, A can distinguish the two games if BadQ occurs,
and otherwise, they proceed identically. Thus, we have

|ϵ2 − ϵ1| ≤ Pr[BadQ].

To estimate Pr[BadQ], we show that if A triggers BadQ, we can construct an adversary B that solves the
BDH problem.The construction of B is as follows.

1. Upon receiving (G = (p,G1,G2,GT , g1, g2, e), g
α
1 , g

α
2 , g

β
2 , g

γ
1 ), B sets X := gα1 (i.e., msk is implicitly set

α) and prepares three random oracles H1,H2, Ĥ (i.e., initialize the lists LH1
,LH2

,LĤ). Also, B flip a coin
coin←$ {0, 1}. Then, B executes A on input mpk := (G,H1,H2, Ĥ, X).

2. When A makes oracle queries, B answers them as follows:
(a) When A sends σ to H1 oracle, B samples b ←$ Zp and computes uσ := gb1. Then, B updates LH1

←
LH1
∪ {(σ, uσ, b)} and returns uσ to A.

(b) When A sends ρ to H2 oracle, B samples b ←$ Zp. With probability 1 − δ, B computes uρ := (gβ2 )
b

and updates LH2
← LH2

∪ {(ρ, uρ, b, 0)}. Otherwise, B computes uρ := gb2 and updates LH2
←

LH2 ∪ {(ρ, uρ, b, 1)}. Then, B returns uρ to A.
(c) When A sends (σ, ρ,R, U, V ) to Ĥ oracle, B samples Z ←$ {0, 1}msgLen and updates LĤ ← LĤ ∪
{(σ, ρ,R, U, V, Z)}. Then, B returns Z to A.

(d) When A sends σ to OS oracle, B searches (σ, uσ, b) ∈ LH1 and computes ekσ := (gα1 )
b. Then, B

returns ekσ to A.
(e) When A sends ρ to OR oracle, B searches (ρ, uρ, b, d) ∈ LH2

. If d = 0, B aborts the game. Otherwise
(i.e., d = 1), B computes dkρ := (gα2 )

b. Then, B returns dkρ to A.
(f) When A outputs (σ∗, rcv∗,m∗) to request a challenge ciphertext, B searches (rcv∗, urcv∗ , b∗, d∗) ∈ LH2

.
If d∗ = 1, B aborts the game. Otherwise, B sets R∗ := gγ1 and computes ctxt∗ := m∗ ⊕ Z where
Z ←$ {0, 1}msgLen+λ. Then B sets ct0 := (R∗, ctxt∗) and ct1 ←$ CT , and returns ctcoin to A.

14 If no entry exists, H2(ρ) is internally queried and flips a coin d. (In the rest of this paper, when we have a similar
situation, we also deal with it in the same manner.)
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3. Finally, A outputs a guess ĉoin. Then, B picks an entry (·, rcv∗, R∗, U∗, ·) ∈ LĤ at random and outputs
D := (U∗)

1
b∗ as the solution of the BDH problem.

We can see that B perfectly simulates the Priv-CPA game against A if B does not abort. Moreover, we know
that dkrcv∗ = (urcv∗)

α = (gαβ2 )b
∗

and R∗ = gγ1 , and thus

U∗ = e(R∗, dkrcv∗) = e(gγ1 , g
αβb∗

2 ) = (e(g1, g2)
αβγ)b

∗
.

If A distinguish the two games, A has queried Ĥ(·, rcv∗, R∗, U∗, ·), and thus with probability at least 1
qĤ

, B
can solve the BDH problem correctly. Thus we have

|ϵ2 − ϵ1| ≤ Pr[BadQ] ≤ qĤ · Adv
bdh
G,B(λ).

In Game2, both ct0 and ct1 are chosen at random from the ciphertext space. Since coin is information-
theoretically hidden from A, we have ϵ2 = 0.

Putting everything together, we obtain

Advpriv-cpaA,IB-MEBasic(λ) ≤ ê(1 + qR)qĤ · Adv
bdh
B,G(λ).

We now prove the Priv-CCA security of IB-MEBDH assuming the Priv-CPA security of IB-MEBasic. The
proof is similar to the proof of the FO transformation for PKE schemes [19].

Proof of Theorem 2. To prove the theorem, we consider the following sequence of games Gamei for i ∈
{0, · · · , 5}. Define the advantage of A in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0. This is the original security game. By definition, we have

ϵ0 = Advpriv-ccaA,IB-MEBDH(λ).

Game1. In this game, the randomness k∗ ∈ {0, 1}λ (used to generate the challenge ciphertext) is chosen in
the setup phase instead of the challenge phase. Since there is no difference in A’s view, we have

ϵ1 = ϵ0.

Game2. In this game, we change the behavior of G oracle. When A sends a tuple (σ, ρ,m, k) to G, the
challenger picks r ←$ Zp, and computes

ekσ := H1(σ)
x, ct← IB-MEBasic.Enc(mpk15, ekσ, ρ,m||k; r).

Then, it updates LG ← LG ∪ {((σ, ρ,m, k), r, ct)} and returns r to A.
Since there is no difference in the behaviors of oracles from A’s viewpoint, we have

ϵ2 = ϵ1.

We remark that ekσ is unique for each identity σ, and thus the ciphertext computed as above can be uniquely
determined by (σ, ρ,m, k).
15 For simplicity, we use the same symbol mpk for IB-MEBasic and IB-MEBDH since mpk of IB-MEBDH covers that of

IB-MEBasic.
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Game3. In this game, we change the behavior of OD oracle. When A sends (snd, ρ, ct) to OD, it finds an
entry ((snd, ρ,m, k), r, ct) ∈ LG. If such a tuple exists, m||k is returned to A. Otherwise, ⊥ is returned to A.

Let BadD be the event thatA submits a decryption query on (snd, ρ, ct) such that ((snd, ρ,m, k), r, ct) /∈ LG

but it is not rejected in the previous game. Due to the perfect correctness of the scheme, the two games
proceed identically unless BadD occurs. Thus, we have

|ϵ3 − ϵ2| ≤ Pr[BadD].

We now estimate Pr[BadD]. In the previous game, if ((snd, ρ,m, k), r, ct) /∈ LG when (snd, ρ, ct) is sent to
OD, G(snd, ρ,m, k) is queried internally and r ←$ Zq is sampled. Then, OD checks whether R = gr1 holds.
For any R ∈ G1, the probability that R = gr1 holds for randomly chosen r ∈ Zp is 1/p. Since A queries OD

at most qD, we have
|ϵ3 − ϵ2| ≤ Pr[BadD] ≤ qD

p
.

After this game, the decryption oracle is simulated without any decryption keys.
Game4. In this game, we add an abort condition into G oracle. If A sends a tuple (·, ·, ·, k) such that k = k∗

before the challenge phase, the game aborts. Since k∗ ∈ {0, 1}λ is chosen at random and information-
theoretically hidden from A before the challenge phase, we have

|ϵ4 − ϵ3| ≤
qG
2λ

.

Game5. In this game, we change how to generate the challenge ciphertext ct0. To generate ct0, the challenger
chooses r∗ ←$ Zp and computes

ekσ∗ := H1(σ
∗)x, ct0 ← IB-MEBasic.Enc(mpk, ekσ∗ , rcv∗,m∗||k∗; r∗).

Now, the randomness r∗ is chosen independently from G. Let BadQ be the event that A sends (·, ·, ·, k∗) to
G oracle after it requests the challenge ciphertext. Since A’s view is identical unless BadQ occurs, we have

|ϵ5 − ϵ4| ≤ Pr[BadQ].

To estimate Pr[BadQ], we show that if A can trigger the event BadQ, there exists an adversary B1 that
breaks the Priv-CPA security of IB-MEBasic.

The construction of B1 is as follows. Upon receiving mpk (of IB-MEBasic), B1 samples k∗ ←$ {0, 1}λ,
prepares mpk of IB-MEBDH, and executes A on input it. Then, B1 simulates the Priv-CCA game against A as
in Game5. When a query is sent to OS or OR oracle, B1 uses its oracles to generate encryption or decryption
keys. When A requests a challenge ciphertext on (σ∗, rcv∗,m∗), B1 sends (σ∗, rcv∗,m∗||k∗) to its challenger,
receiving the challenge ciphertext ct∗. B1 forwards it to A. When A triggers the event BadQ, B1 outputs
ĉoin := 0 to its challenger as its guess of coin. If A does not trigger the event BadQ, B1 outputs a randomly
chosen ĉoin←$ {0, 1} to its challenger.

Now, we evaluate the B1’s advantage. Let Fail be the event that BadQ occurs when ĉoin = 1 (i.e., ct∗ is
sampled from CT ). Since k∗ is uniformly distributed and independent from B1’s view when ct∗ is sampled
from CT , Pr[Fail] ≤ qG/2

λ. Assume Fail did not happen, i.e., BadQ occurs only when ĉoin = 0. Since B1
always outputs 0 when BadQ occurs, Pr

[
coin = ĉoin

]
= 1. If BadQ did not occur, B1 outputs a random coin

and thus Pr
[
coin = ĉoin

]
= 1/2. Thus, we have

Advpriv-cpaB1,IB-MEBasic(λ) +
qG
2λ
≥

∣∣∣∣Pr[coin = ĉoin
]
− 1

2

∣∣∣∣
=

∣∣∣∣Pr[BadQ] + 1

2
Pr[¬BadQ]− 1

2

∣∣∣∣ = 1

2
Pr[BadQ].
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Therefore, we have

|ϵ5 − ϵ4| ≤ Pr[BadQ] ≤ 2Advpriv-cpaB1,IB-MEBasic(λ) +
2qG
2λ

.

We finally bound ϵ5. If A can breaks the Priv-CCA security in Game5, there exists an adversary B2 that
breaks the Priv-CPA security of IB-MEBasic such that

ϵ5 = Advpriv-cpaB2,IB-MEBasic(λ).

The proof is straightforward because B2 can simulate OD without any decryption keys and the challenge
ciphertext is generated with independent randomness r∗.

Putting everything together and folding both adversaries B1 and B2 into one adversary B, we obtain

Advpriv-ccaA,IB-MEBDH(λ) ≤ 3Advpriv-cpaB,IB-MEBasic(λ) +
qD
p

+
3qG
2λ

= 3ê(1 + qR)qĤ · Adv
bdh
B,G(λ) +

qDec

p
+

3qG
2λ

.

Theorem 4. IB-MEBDH is Priv-MisMatch secure in the ROM. Formally, a κ-admissible adversary A attack-
ing the Priv-MisMatch security of IB-MEBDH has advantage

Advpriv-mismatch
A,IB-MEBDH (λ) ≤

qĤ + qG

2κ−1
.

where qĤ and qG are the maximum number of queries A makes to the Ĥ and G oracles, respectively.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. Define the
advantage of A in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0. This is the original security game. By definition, we have

ϵ0 = Advpriv-mismatch
A,IB-MEBDH (λ).

Game1. In this game, the challenger aborts the game if σ∗
0 or σ∗

1 are sent to Ĥ or G oracle before A requests
the challenge ciphertext. Since both are chosen independently at random and from κ-distribution, we have

|ϵ1 − ϵ0| ≤
qĤ + qG

2κ
.

Game2. In this game, the challenge ciphertext ct0 is computed as ct0 ← (gr01 , (m0||k0) ⊕ Z0) for random
r0 ←$ Zp and Z0 ←$ {0, 1}msgLen+λ. A may notice this change when it sends σ∗

0 or σ∗
1 to Ĥ or G oracle. Since

σ∗ is chosen independently at random from κ-distribution, we have

|ϵ2 − ϵ1| ≤
qĤ + qG

2κ
.

In Game2, both ct0 and ct1 are distributed uniformly at random. This means that coin is information-
theoretically hidden from A, so we have

ϵ2 = 0.

Putting everything together, we obtain

Advpriv-mismatch
A,IB-MEBDH (λ) ≤

qĤ + qG

2κ−1
.
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Theorem 5. Suppose the hash functions H1, H2, Ĥ, and G are random oracles. Under the BDH assump-
tion, IB-MEBDH is Auth-oCMA secure in the ROM. Formally, if there exists an adversary A that breaks the
Auth-oCMA security of IB-MEBDH, there exists an adversary B that breaks the BDH assumption such that

Advauth-ocma
A,IB-MEBDH(λ) ≤

ê2(qS + qR)
2qĤ

4
· AdvbdhB,G(λ) +

qG
2msgLen+λ

+
1

p
,

where p is the order of the underlying bilinear group and qS, qR, qĤ, and qG are the maximum number of
queries A makes to the OS, OR, Ĥ, and G oracles, respectively.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, · · · , 3}. Define
the advantage of A in Gamei as

ϵi := Pr
[
GameAi (λ)⇒ 1

]
.

Game0. This is the original Auth-oCMA game. By definition, we have

ϵ0 = Advauth-ocma
A,IB-MEBDH(λ).

Game1. In this game, we change the behavior of OS , OR, and OE as follows.

– When A sends σ to OS oracle, it computes ekσ := H1(σ)
x. Then, it searches entries (snd, rcv,m||k, ctxt) ∈

LE such that snd = σ. If such entries exist, it works as follows for each such entry. Let urcv := H2(rcv)
and r := G(σ, rcv,m, k).
• If there exists an entry (snd, rcv, gr1, e(X

r, urcv), e(ekσ, urcv), ∗) ∈ LĤ, it aborts the game. (In this case,
it cannot program the random oracle.)

• Else, it updates

LĤ ← LĤ ∪ {(snd, rcv, g
r
1, e(X

r, urcv), e(ekσ, urcv), ctxt⊕ (m||k))}.

After that, it removes the programmed entries from LE .
Finally, it returns ekσ to A.

– When A sends ρ to OR oracle, it computes dkρ := H2(ρ)
x. Then, it searches entries (snd, rcv,m||k, ctxt) ∈

LE such that rcv = ρ. If such entries exist, it works as follows for each such entry. Let usnd := H1(snd)
and r := G(snd, ρ,m, k).
• If there exists an entry (snd, rcv, gr1, e(g

r
1, dkρ), e(H1(snd), dkρ), ∗) ∈ LĤ, it aborts the game.

• Else, for each entry, it updates

LĤ ← LĤ ∪ {(snd, rcv, g
r
1, e(g

r
1, dkρ), e(usnd, dkρ), ctxt⊕ (m||k))}.

Finally, it returns dkρ to A.
– When A sends a tuple (σ, rcv,m) to OE oracle, it samples k←$ {0, 1}λ and computes r := G(σ, rcv,m, k)

and R := gr1. Then, it computes ctxt as follows.
1. If σ ∈ LS , it retrieves ekσ

16 and computes urcv := H2(rcv) and

ctxt := (m||k)⊕ Ĥ(σ, rcv, R, e(Xr, urcv), e(ekσ, urcv)).

2. If σ /∈ LS and rcv ∈ LR, it retrieves dkrcv
17 and computes usnd := H1(snd) and

ctxt := (m||k)⊕ Ĥ(σ, rcv, R, e(R, dkrcv), e(usnd, dkrcv)).

3. If σ /∈ LS and rcv /∈ LR, it samples ctxt←$ {0, 1}msgLen+λ and updates LE ← LE∪{(σ, rcv,m||k, ctxt)}.
16 Since σ ∈ LS , the challenger already has computed ekσ.
17 Since rcv ∈ LR, the challenger already has computed dkrcv.
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Let Fail be the event that Game1 aborts if (snd, rcv, gr1, e(X
r, urcv), e(ekσ, urcv), ∗) ∈ LĤ exists. Game0 and

Game1 are identical unless Fail occurs. Therefore, we have

|ϵ1 − ϵ0| ≤ Pr[Fail].

To estimate Pr[Fail], we show that if A can trigger Fail, we can construct an adversary B1 that solves the
BDH problem. The construction of B1 is as follows.

1. Upon receiving (G = (p,G1,G2,GT , g1, g2, e), g
α
1 , g

α
2 , g

β
2 , g

γ
1 ), B1 sets X := gα1 (i.e., msk is implicitly set

α) and prepares the random oracles H1, H2, Ĥ, and G (i.e., initialize the lists LH1
, LH2

, LĤ, and LG).
Then, B1 samples I ←$ [qĤ] and executes A on input mpk := (G,H1,H2, Ĥ,G, X).

2. When A makes oracle queries, B1 answers them as follows:
(a) When A sends σ to H1 oracle, B1 samples b←$ Zp. With probability 1− δ, B1 computes uσ = (gγ1 )

b,
and updates LH1

← LH1
∪ {(σ, uσ, b, 0)}. Otherwise, B1 computes uσ := gb1 and updates LH1

←
LH1
∪ {(σ, uσ, b, 1)}. Then, B1 returns uσ to A.

(b) When A sends ρ to H2 oracle, B1 samples b̂←$ Zp. With probability 1− δ, B1 computes uρ := (gβ2 )
b̂,

and updates LH2
← LH2

∪ {(ρ, uρ, b̂, 0)}. Otherwise, B1 computes uρ = gb̂2 and updates LH2
←

LH2
∪ {(ρ, uρ, b̂, 1)}. Then, B1 returns uρ to A.

(c) When A sends (σ, ρ,R, U, V ) to Ĥ oracle, if this is the I-th query to Ĥ, B1 checks if both (σ, uσ, b, d) ∈
LH1 and (ρ, uρ, b̂, d̂) ∈ LH2 has coin d = 0 and d̂ = 0. If not, B1 aborts the game. Otherwise
(d = d̂ = 0), B1 outputs D := V

1
bb̂ as the solution of the BDH problem. If this is not the I-th query,

B1 samples Z ←$ {0, 1}msgLen and updates LĤ ← LĤ ∪ {(σ, ρ,R, U, V, Z)}. B1 returns Z to A.
(d) When A sends (σ, ρ,m, k) to G oracle, B1 samples r ←$ Zp and updates LG ← LG ∪ {(σ, ρ,m, k, r)}.

Then, B1 returns r to A.
(e) When A sends (σ, rcv,m) to OE oracle, it answers as in Game1.
(f) When A sends σ to OS oracle, B1 extracts (σ, uσ, b, d) from LH1

. If d = 0, B1 aborts the game.
Otherwise, if d = 1, B1 computes ekσ = (gα1 )

b and works as in Game1.
(g) When A sends ρ to OR oracle, B1 extracts (ρ, uρ, b̂, d) from LH2

. If d = 0, B1 aborts the game.
Otherwise, if d = 1, B1 computes dkρ = (gα2 )

b̂ and works as in Game1.

Roughly, B1 guesses the identities and the Ĥ query that causes the event Fail, and if B1 succeeds to guess,
it perfectly simulates the Auth-oCMA game against A. Let us estimate the probability that B1 succeeds to
guess. The probability Fail occurs at the I-th Ĥ query is 1

qĤ
. The probability OS and OR do not abort is

δqS+qR . The probability the game does not abort when A sends the I-th Ĥ query is (1−δ)2. Hence, the overall
probability that B1 succeeds to guess is 1

qĤ
· δqS+qR(1− δ)2. This value is maximum when δ̂ = 1− 2

qS+qR+2 ,
and thus the probability is at most 4

ê2(qS+qR)2qĤ
for large qS+qR. Moreover, if B1 succeeds to guess, we know

that uσ = (gγ1 )
b and uρ = (gβ2 )

b̂ if σ /∈ LS and ρ /∈ LR, and thus

V = e(uσ, uρ)
α = e(gγb1 , gβb̂2 )α = (e(g1, g2)

αβγ)bb̂.

B1 can solve the BDH problem correctly when it does not abort. Thus, we have

|ϵ1 − ϵ0| ≤ Pr[Fail] ≤
ê2(qS + qR)

2qĤ
4

· AdvbdhB1,G(λ).

Game2. In this game, the challenger decrypts ctxt∗ with a random Z∗ ←$ {0, 1}msgLen+λ instead of Z∗ :=

Ĥ(snd∗, ρ∗, R∗, e(R∗, dkρ∗), e(H1(snd
∗), dkρ∗)).

Let BadQ be the event that A makes a query (σ∗, ρ∗, ·, ·, V ∗) to the oracle Ĥ where V ∗ := e(uσ∗ , uρ∗)x.
Since Z∗ is now chosen independently from random oracles, A notices the difference between the two games
if BadQ occurs and otherwise the two games proceed identically. Thus, we have

To estimate Pr[BadQ], we show that if A triggers BadQ, we can construct an adversary B2 that solves
the BDH problem. The construction of B2 is as follows.
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1. Upon receiving (G = (p,G1,G2,GT , g1, g2, e), g
α
1 , g

α
2 , g

β
2 , g

γ
1 ), B2 sets X := gα1 (i.e., msk is implicitly set

α) and prepares three random oracles H1, H2, Ĥ, and G (i.e., initialize the lists LH1
, LH2

, LĤ, and LG).
Then, B2 executes A on input mpk := (G,H1,H2, Ĥ,G, X).

2. When A makes oracle queries, B2 answers them as follows:
(a) When A sends σ to H1 oracle, B2 samples b←$ Zp. With probability 1− δ, B2 computes uσ = (gγ1 )

b

and updates LH1 ← LH1 ∪ {(σ, uσ, b, 0)}. Otherwise, B2 computes uσ := gb1 and updates LH1 ←
LH1 ∪ {(σ, uσ, b, 1)}. Then, B2 returns uσ to A.

(b) When A sends ρ to H2 oracle, B2 samples b̂←$ Zp. With probability 1− δ, B2 computes uρ := (gβ2 )
b̂

and updates LH2
← LH2

∪ {(ρ, uρ, b̂, 0)}. Otherwise, B2 computes uρ = gb̂2 and updates LH2
←

LH2
∪ {(ρ, uρ, b̂, 1)}. Then, B2 returns uρ to A.

(c) When A sends (σ, ρ,R, U, V ) to Ĥ oracle, B2 samples Z ←$ {0, 1}msgLen and updates LĤ ← LĤ ∪
{(σ, ρ,R, U, V, Z)}. Then, B2 returns Z to A.

(d) When A sends (σ, ρ,m, k) to G oracle, B2 samples r ←$ Zp and updates LG ← LG ∪ {(σ, ρ,m, k, r)}.
Then, B2 returns r to A.

(e) When A sends (σ, rcv,m) to OE oracle, it answers as in the previous game.
(f) When A sends σ to OS oracle, B2 extracts (σ, uσ, b, d) from LH1

. If d = 0, B2 aborts the game.
Otherwise (that is, d = 1), B2 computes ekσ = (gα1 )

b and returns it to A.
(g) When A sends ρ to OR oracle, B2 extracts (ρ, uρ, b̂, d) from LH2 . If d = 0, B2 aborts the game.

Otherwise (that is, d = 1), B2 computes dkρ = (gα2 )
b̂ and return it to A.

3. A outputs (snd∗, ρ∗, ct∗ := (R∗, ctxt∗)). B2 sets σ∗ := snd∗. If both (σ∗, uσ∗ , b∗, d∗) ∈ LH1 and (ρ∗, uρ∗ , b̂∗, d̂∗) ∈
LH2

do not have coins d∗ = 0 and d̂∗ = 0, B2 aborts the game. Otherwise, B2 picks an entry (σ∗, ρ∗, R∗, U, V, ĥ) ∈
LĤ at random, and outputs D := V

1
b∗ b̂∗ as the solution of the BDH problem.

We can see that B2 perfectly simulates the Auth-oCMA game if B2 does not abort. Let us estimate the
probability Pr[¬abort]. The probability OS and OR do not abort is δqS+qR . The probability the game does
not abort when A outputs a forgery is (1−δ)2. Hence, the overall non-aborting probability is δqS+qR(1−δ)2.
This value is maximum when δ̂ = qS+qR

qS+qR+2 , and thus Pr[¬abort] ≤ 4
ê2(qS+qR)2 for large qS + qR. Moreover,

we know that uσ∗ = (gγ1 )
b∗ , uρ∗ = (gβ2 )

b̂∗ , and thus

V ∗ = e(uσ∗ , uρ∗)α = e(gγb
∗

1 , gβb̂
∗

2 )α = (e(g1, g2)
αβγ)b

∗b̂∗ .

If A can distinguish the two games, A has queried Ĥ(σ∗, rcv∗, ·, ·, V ∗), and thus B2 can solve the BDH problem
correctly with probability at least 1

qĤ
. Therefore,

|ϵ2 − ϵ1| ≤ Pr[BadQ] ≤
ê2(qS + qR)

2qĤ
4

· AdvbdhB2,G(λ).

Game3. In this game, the challenger checks if G(m∗, k∗, snd∗, ρ∗) has been queried, and if so, it aborts the
game. Otherwise, it samples r∗ ←$ Zp at random instead of generating it with G. Since m∗||k∗ is chosen
independently at random, the probability G(m∗, k∗, snd∗, ρ∗) was queried is qG

2msgLen+λ , and thus we have

|ϵ3 − ϵ2| ≤
qG

2msgLen+λ
.

We finally evaluate ϵ3. In Game3, A breaks the Auth-oCMA security if R∗ = gr
∗

1 holds for randomly chosen
r∗ ∈ Zp. Since for any R ∈ G1 the probability that R∗ = gr

∗

1 holds for a randomly chosen r∗ ∈ Zp is 1
p , we

have
ϵ3 =

1

p
.

Putting everything together and folding both adversaries B1 and B2 into one adversary B, we obtain

Advauth-ocma
A,IB-MEBDH(λ) ≤

ê2(qS + qR)
2qĤ

4
· AdvbdhB,G(λ) +

qG
2msgLen+λ

+
1

p
.
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5 Improved IB-ME Scheme from IBE and IBS in the QROM

This section shows a new generic construction of IB-ME based on IBE, IBS, which we call IB-MEIBE+IBS. To
achieve Priv-MisMatch security, we hide messages with random oracle.

5.1 Construction

To construct an IB-ME scheme with identity space ID = {0, 1}∗ and message space M = {0, 1}msgLen, we
use the following building blocks.

– An IBE scheme IBE = (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) with IDIBE = {0, 1}∗ and MIBE =
{0, 1}msgLen+sigLen+seedLen.

– An IBS scheme IBS = (IBS.Setup, IBS.KGen, IBS.Sign, IBS.Ver) with IDIBS = {0, 1}∗ and sigLen bits
signatures.

– A hash function H : ID → CT .

The proposed IB-ME scheme IB-MEIBE+IBS is as follows.

Setup(1λ): It computes (mpkIBE,mskIBE) ← IBE.Setup(1λ) and (mpkIBS,mskIBS) ← IBS.Setup(1λ), and out-
puts mpk := (mpkIBE,mpkIBS) and msk := (mskIBE,mskIBS).

SKGen(mpk,msk, σ): It outputs ekσ ← IBS.KGen(mpkIBS,mskIBS, σ).
RKGen(mpk,msk, ρ): It outputs dkρ ← IBE.KGen(mpkIBE,mskIBE, ρ).
Enc(mpk, ekσ, rcv,m): It computes sig← IBS.Sign(mpkIBS, ekσ,m||rcv), ct← IBE.Enc(mpkIBE, rcv,m||sig) and

ĉt := ct⊕ H(σ). It outputs ĉt.
Dec(mpk, dkρ, snd, ct): It computes ct′ := ĉt⊕H(snd). Then, it computes m′||sig′ ← IBE.Dec(mpkIBE, dkρ, ct

′).
If the output is equal to ⊥, it outputs ⊥. Else, it computes b← IBS.Ver(mpkIBS, snd,m

′||ρ, sig′). If b = 1,
it outputs m′; otherwise, it outputs ⊥.

Correctness. We can verify that IB-MEIBE+IBS is correct with negligible correctness errors. The condition
σ = snd ensures ct′ = ĉt⊕ H(snd) = ĉt⊕ H(σ) = ct. Furthermore, the condition rcv = ρ and the correctness
of the IBE scheme, for any messages, we have m′||sig′ = m||sig with all but negligible probability. Finally,
the correctness of the IBS scheme ensures IBS.Ver(mpkIBS, snd,m

′||ρ, sig′) = 1. Therefore, the decryption
algorithm finally outputs the encrypted message m with a probability of all but negligible.

5.2 Security Proof

We can show that IB-MEIBE+IBS is Priv-CCA, Priv-MisMatch and Auth-iCMA secure.

Theorem 6. If there exists an adversary A that breaks the Priv-CCA security of IB-MEIBE+IBS, there exists
an adversary B that breaks the ANO-IND-ID-CCA security of IBE such that

Advpriv-ccaA,IB-ME(λ) = Advano-ind-id-ccaB,IBE (λ).

Proof. Let A be an adversary that breaks the Priv-CCA security of IB-MEIBE+IBS. We show an adversary B
that breaks the ANO-IND-ID-CCA security of IBE by using A. The description of B is as follows.

1. Upon receiving the master public key mpkIBE, B generates (mpkIBS,mskIBS)← IBS.Setup(1λ) and executes
A on input mpk := (mpkIBE,mpkIBS).

2. B answers queries from A as follows.
– When A sends σ to OS oracle, B computes ekσ ← IBS.KGen(mpkIBS,mskIBS, σ) and returns it to A.
– When A sends ρ to OR oracle, B sends ρ to OSK oracle and receives dkρ. Then B returns it to A.
– When A sends (snd, ρ, ĉt) to OD oracle, B simulates the decryption process by using its decryption

oracle. Note that when ĉt = ˆct∗, it must be (snd, ρ) ̸= (σ∗, rcv∗). When snd = σ∗, the challenge
IBE ciphertext ct∗ is decrypted with the receiver ρ ̸= rcv∗; when ρ = rcv∗, snd ̸= σ∗ and it implies
ˆct∗ ⊕ H(snd) ̸= ct∗. Therefore, in any case, the decryption process can be simulated.
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3. WhenA sends (σ∗, rcv∗,m∗) to request a challenge ciphertext, B first computes sig∗ ← IBS.Sign(mpkIBS, ekσ∗ ,m∗)
and sends (rcv∗,m∗||sig∗) to its challenger and receives the challenge ciphertext ct∗. Then, it computes
ĉt := ct∗ ⊕ H(σ∗) which is sent to A.

4. Finally, when A outputs ĉoin, B sends it to the challenger as its guess.

We can verify that B perfectly simulates the Priv-CCA game against A. Moreover, rcv∗ /∈ LR implies rcv∗ /∈
LSK . Therefore, if A breaks the Priv-CCA security, B also breaks the ANO-IND-ID-CCA security, that is,

Advpriv-ccaA,IB-ME(λ) = Advano-ind-id-ccaB,IBE (λ).

Theorem 7. IB-MEIBE+IBS is Priv-MisMatch secure in the QROM. Formally, a κ-admissible adversary A
attacking the Priv-MisMatch security of IB-MEIBE+IBS has advantage

Advpriv-mismatch
A,IB-MEIBE+IBS(λ) ≤

q2H
2κ−1

.

where qH is the maximum number of queries A makes to the H oracle.

Proof. To prove the theorem, we consider the following sequence of games Gamei for i ∈ {0, 1, 2}. Define the
advantage of A in Gamei as

ϵi :=

∣∣∣∣Pr[GameAi (λ)⇒ 1
]
− 1

2

∣∣∣∣.
Game0. This is the original security game. By definition, we have

ϵ0 = Advpriv-mismatch
A,IB-MEIBE+IBS(λ).

Game1. In this game, the challenger aborts the game if σ∗
0 or σ∗

1 are sent to H oracle before A requests the
challenge ciphertext. Since both are chosen independently at random and from κ-distribution, we have

|ϵ1 − ϵ0| ≤
q2H
2κ

.

Game2. In this game, the challenge ciphertext ĉt
∗ is replaced with a random ciphertext. A may notice this

change when it sends σ∗
0 or σ∗

1 to H oracle. Since σ∗ is chosen independently at random from κ-distribution,
we have

|ϵ2 − ϵ1| ≤
q2H
2κ

.

In Game2, the challenge ciphertext is distributed uniformly at random regardless of the value of the
challenge bit. This means that coin is information-theoretically hidden from A, so we have

ϵ2 = 0.

Putting everything together, we obtain

Advpriv-mismatch
A,IB-MEIBE+IBS(λ) ≤

q2H
2κ−1

.

Theorem 8. If there exists an adversary A that breaks the Auth-iCMA security of IB-MEIBE+IBS, there exists
an adversary B that breaks the EUF-ID-CMA security of IBS such that

Advauth-icma
A,IB-ME (λ) = Adveuf-id-cma

B,IBS (λ).
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Table 2: Comparison of the IB-ME schemes from the BDH assumption in the ROM. The column “Ciphertext”
indicates the difference between the length of ciphertext and that of plaintext. |G1|, |G2| and |GT | denotes
the size of respective group elements.

Schemes Security Space complexity
Priv Auth Mismatch Enc. key Dec. key Ciphertext

Ateniese et al. [2] CPA oNMA |G1| 3|G2| 2|G1|+ λ
Boyen and Li [6]
(IBE [5]+IBS [10]) CPA iCMA

√
|G1| |G2| 3|G1|+ 3λ

IB-MEBDH(§ 4) CCA oCMA
√

|G1| |G2| |G1|+ λ

IB-MEIBE+IBS(§ 5)
(IBE [5]+IBS [10]) CCA iCMA

√
|G1| |G2| 3|G1|+ λ

Proof. Let A be an adversary that breaks the Auth-iCMA security of IB-MEIBE+IBS. We show an adversary
B that breaks the EUF-ID-CMA security of IBS by using A. The description of B is as follows.

1. Upon receiving the master public key mpkIBS, B generates (mpkIBE,mskIBE)← IBE.Setup(λ) and executes
A on input mpk := (mpkIBE,mpkIBS).

2. B answers queries from A as follows.
– When A sends σ to OS oracle, B sends σ to its key generation oracle OSK oracle and receives ekσ.

Then B returns it to A.
– When A sends ρ to OR oracle, B computes dkρ ← IBE.KGen(mpkIBE,mskIBE, ρ) and returns it to A.
– When A sends (σ, rcv,m) to OE oracle, B first sends (σ,m||rcv) to its signing oracle and receives sig.

Then, it computes ct← IBE.Enc(mpkIBE, rcv,m||sig) and ĉt := ct⊕ H(σ). It returns ĉt to A.
3. WhenA outputs (snd∗, ρ∗, ĉt∗) as a forgery, B computes ct∗ := ĉt

∗⊕H(snd∗), m∗||sig∗ ← IBE.Dec(mpkIBE, dkρ, ct
∗).

If the output is not ⊥, it computes b∗ ← IBS.Ver(mpkIBS, snd
∗,m∗||ρ∗, sig∗). If b∗ = 1, it outputs

(m∗||ρ∗, sig∗) as its forgery.

We can verify that B perfectly simulates the Auth-iCMA game. If A creates a valid forgery, we have snd∗ /∈
LS , (snd∗, ρ∗,m∗) /∈ LE , and IBS.Ver(mpkIBS, snd

∗,m∗||ρ, sig∗) = 1. snd∗ /∈ LS implies snd∗ /∈ LSK , and
(snd∗, ρ∗,m∗) /∈ LE implies (snd∗,m∗||ρ∗) /∈ LSIG. Therefore, if A breaks the Auth-iCMA security, B also
breaks the EUF-ID-CMA security. Thus, we have

Advauth-icma
A,IB-ME (λ) = Adveuf-id-cma

B,IBS (λ).

6 Comparison

We compare our IB-ME schemes, IB-MEBDH and IB-MEIBE+IBS, with the existing schemes by Ateniese et
al. [2], Wang et al. [32] and Boyen and Li [6], which are based on standard assumptions. Their security and
secret key and ciphertext sizes are summarized in Tables 2 and 3.
IB-ME from the BDH assumption in the ROM. We compare IB-MEBDH and IB-MEIBE+IBS with
the Ateniese et al. scheme and the Boyen and Li scheme. We instantiate IB-MEIBE+IBS and the Boyen
and Li scheme with the Boneh-Franklin IBE scheme [5], the Cha-Cheon IBS scheme [10] and a RO-based
reusable extractor. Table 2 summarizes their properties. Among them, IB-MEBDH is the best in terms of
key and ciphertext sizes, as they are only one group element. In addition, it achieves stronger Priv-CCA
and Auth-oCMA security. We can see that IB-MEBDH is a pure improvement of the Ateniese et al. scheme.
IB-MEIBE+IBS has about twice the ciphertext of IB-MEBDH, but achieves Auth-iCMA security (that is, secure
even if the receiver’s key is compromised), which is stronger than Auth-oCMA security. Thus, IB-MEBDH and
IB-MEIBE+IBS offer a trade-off between efficiency and security level. Compared with the Boyen and Li scheme,
IB-MEIBE+IBS is better because it achieves Priv-CCA security and offers more compact ciphertexts.
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Table 3: Comparison of IB-ME schemes from lattices in the ROM. The data sizes are provided in bytes.
The column “Ciphertext” indicates the difference between the length of ciphertext and that of plaintext. All
achieve 80-bit security.

Schemes Security Space complexity
Priv Auth Mismatch Enc. key Dec. key Ciphertext

Wang et al. [32]
(LATTE-3 [35]+Falcon-IBS†) CPA iCMA 1595 41472 16085

Boyen and Li [6]
(DLP-0 [14,15]+Falcon-IBS†) CPA iCMA

√
1595 1152 4117

IB-MEIBE+IBS(§ 5)
(DLP-0 [14,15]+Falcon-IBS†)

CCA iCMA
√

1595 1152 4021

†: IBE scheme derived from Falcon-512 [29] via the signature-to-IBS conversion [24].
We assume that the secret key of Falcon is a seed of 32 bytes.

IB-ME from lattices in the QROM. We compare post-quantum lattice-based IB-ME schemes in the
QROM derived from our IB-MEIBE+IBS, the Wang et al. scheme, and the Boyen and Li scheme. Our scheme
and Boyen and Li scheme are instantiated with a lattice-based anonymous IBE scheme by Ducas, Lyuba-
shevsky and Prest (DLP) [14,15] while the Wang et al. scheme is based on a lattice-based anonymous HIBE
scheme LATTE [35]18. All use a lattice-based IBS scheme derived from Falcon [29] through signature-to-IBS
conversion [24]. Table 3 summarizes their security and space complexity. Our scheme offers small secret
keys and ciphertexts of less than 5 kilobytes. Compared to the Wang et al. scheme, our decryption key and
ciphertext are only 2.8% and 25.2% of theirs, respectively. This is due to the fact that our scheme is simply
based on IBE, not HIBE. Compared to the Boyen and Li scheme, our scheme offers similar space complexity,
but the ciphertext is 64 bytes (=2λ bits) shorter than their scheme. Therefore, our construction is considered
to be more sophisticated than that of Boyen and Li. It should be noted that our scheme achieves Priv-CCA
security differently from existing schemes.
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