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Abstract In 2018, Aono et al. (ASIACRYPT 2018) proposed to use
quantum backtracking algorithms (Montanaro, TOC 2018; Ambainis and
Kokainis, STOC 2017) to speedup lattice point enumeration. Quantum
lattice sieving algorithms had already been proposed (Laarhoven et al.,
PQCRYPTO 2013), being shown to provide an asymptotic speedup over
classical counterparts, but also to lose competitiveness at dimensions
relevant to cryptography if practical considerations on quantum com-
puter architecture were taken into account (Albrecht et al., ASTACRYPT
2020). Aono et al.’s work argued that quantum walk speedups can be ap-
plied to lattice enumeration, achieving at least a quadratic asymptotic
speedup a la Grover search while not requiring exponential amounts of
quantum accessible classical memory, as it is the case for sieving. In this
work, we explore how to lower bound the cost of using Aono et al.’s tech-
niques on lattice enumeration with extreme cylinder pruning, assuming
a limit to the maximum depth that a quantum computation can achieve
without decohering, with the objective of better understanding the prac-
tical applicability of quantum backtracking in lattice cryptanalysis.

Keywords: Quantum cryptanalysis - Lattice enumeration - Post-quantum
cryptography - Quantum circuits

1 Introduction

Cryptographic constructions based on the hardness of computational problems
over algebraic lattices have achieved significant popularity in recent years. Part
of the reason for this popularity is the conjectured security of protocols built
on them against quantum adversaries, due to the apparent resistance of lattice
problems against quantum attacks.

The state-of-the-art attacks on lattice problems usually involve the use of
lattice reduction techniques, with block reduction algorithms being the most
popular choice [75,76,24,14,56,6,33]. The leading cost of block lattice reduc-
tion (and therefore, often, of the attacks overall) comes from solving instances
of the (approximate [52,4]) shortest vector problem (SVP) in high dimension.
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The leading choice for (approximate) SVP solvers are lattice point enumera-
tion [45,30,34,24,13,3] and sieving [2,60,50,17,6] algorithms. Due to the cen-
tral role these algorithms play in the cryptanalysis of lattice-based construc-
tions [53,9,5] and because multiple post-quantum (PQ) soon-to-be standards
are lattice-based [77,54,66], clearly understanding their cost is crucial.

Enumeration and sieving are originally classical algorithms, with asymptot-
ically different classical runtime (namely, 20(nlogn) o1 enumeration and 29"
for sieving) and memory cost (namely, O(poly(n)) for enumeration and 2°(™) for
sieving). Several quantum speedups on sieving have been proposed [51,46,22,20].
These algorithms improve upon their classical counterparts using a quantum
search or a quantum walk to speed up nearest neighbour subroutines. Quantum
speedups for enumeration have received significantly less attention. Hypothetical
quadratic quantum speedups on enumeration were first suggested in [72]. Aono,
Nguyen, and Shen [13] demonstrated them by leveraging quantum backtrack-
ing techniques [57,10] on the enumeration tree constructed internally as part of
enumeration. Bai, van Hoof, Johnson, Lange and Ngu [16] investigated concrete
implementations of the arithmetic quantum circuits required.

While applicability of these speedups appears clear in the unbounded-depth
logical-qubit model, where quantum computation achieves low error rates for
free and does not decohere, our current understanding of quantum computer
engineering suggests that this model may be overly optimistic for hypothetical
real-world quantum adversaries [65]. For example, Albrecht, Gheorghiu, Postlet-
waite and Schanck [7] investigate the impact of error correction on quantum
lattice sieving, determining that achieving even small speedups over classical
sieving in the cryptanalytic regime requires making several optimistic algorith-
mic and physical assumptions. We are currently not aware of any similar work
on the validity of quantum speedups on enumeration in similarly constrained
models.

Our contributions. In this paper, we set to investigate whether quantum speedups
on lattice enumeration [13] apply to enumeration with extreme cylinder pruning
in the limited quantum depth setting. In this setting, we assume the availabil-
ity of error-corrected logical qubits and quantum-accessible classical memory
(QRACM) [36,49,42]. However, we also assume a limit MAXDEPTH to the depth
that a quantum circuit can achieve, as computations with higher depth than
MAaXDEPTH are assumed to decohere, returning noise.

This setting has been proposed by the National Institute of Standards and
Technology (NIST) in their Call for Proposals for PQ KEMs and digital signa-
tures [62, Sec. 4.A.5]. NIST proposes different values for MAXDEPTH (namely, of
240 264 and 296), capturing different run-times and quantum computing technol-
ogy, and proposes costs for key-search attacks against block ciphers and collision-
search attacks for hash functions in this setting. As a case-study, we adopt the
same MAXDEPTH limitations, and investigate their effect on quantum enumer-
ation with cylinder pruning against CRYSTALS-Kyber, the key encapsulation
mechanism (KEM) selected for standardisation by NIST.



Since our initial results suggest that enumeration trees constructed when at-
tacking Kyber are mostly too large to be directly enumerated quantumly when
MAXDEPTH is considered, we propose a combined classical-quantum enumera-
tion algorithm that allows leveraging any available quantum computation capa-
bilities, regardless of quantum depth budget limits. We provide a detailed yet
generous-to-the-adversary analysis of the runtime costs of this combined attack
in terms of quantum depth and number of gates under reasonable heuristics
that we support with experimental evidence. We identify multiple known un-
knowns that affect the cost of the combined attack, and provide lower bounds
for each one where possible, and otherwise provide experiment-backed heuristics.
Finally, we use our analysis to estimate lower bounds on the cost of perform-
ing the primal lattice attack on Kyber in various settings, using our combined
classical-quantum extreme cylinder pruning enumeration.

Our results suggest that quantum cylinder pruning enumeration techniques
are unlikely to affect larger parameters sets for lattice-based schemes when tak-
ing into consideration a MAXDEPTH constraint. While their effect on smaller
parameters cannot be fully excluded, successful attacks are contingent on vari-
ous unknown quantities being favorable to the attacker.

As part of our analysis, we also develop some minor results concerning the
structure of lattice enumeration trees, which we report in the full version of this
paper [19] together with matching experiments, and that are of independent
interest. We have made the source code used to produce our experimental
results, tables, and plots publicly available at https://github.com/mtiepelt/
QuantumLatticeEnumeration.

Related work. The limited quantum depth budget setting has been explored
in the case of Grover’s algorithm against AES and LowMC by Jaques, Naehrig,
Roetteler and Virdia [41]. Follow-up work focused on both optimizing the Grover
search oracles [82], and improving the search algorithm [26]. Albrecht, Gheo-
rghiu, Postlethwaite and Schanck [7] investigated the cost of quantum nearest
neighbour search for lattice sieving in the non-free error correction setting. In
recent independent work, Bai, van Hoof, Johnson, Lange and Ngo [16] investi-
gate circuit designs for the core quantum operator used as part of quantum
enumeration, ignoring resource constraints. Most significantly, Ambainis and
Kokainis [10] expanded on the work of Montanaro [57] by developing a tree size
estimation algorithm and applying it to quantum backtracking to obtain an al-
gorithm that performs as a classical algorithm would in the worst case, resulting
in meaningful speedups in case the expected size of the trees being enumerated
is much lower than their upper bound. We do not consider this algorithm as in
lattice enumeration we experimentally observe the average tree sizes to closely
match the analysis we use as upper bound.

Open directions. First, a more careful (and hence less generous) design of quan-
tum circuits used for quantum backtracking could be used to attempt to provide
an upper bound on the cost. Another open direction would be the extension of
this work to other pruning techniques, such as discrete pruning [13], as well as
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the theoretical analysis of the multiplicative Jensen’s gap (cf. Definition 1) on
lattice enumeration trees. In this direction, we outline a possible approach to
bounding it in Appendix I.

Roadmap. In Section 2 we cover preliminaries. In Section 3 we describe our lower
bounds on the cost of combined classical-quantum enumeration. In Section 4 we
estimate the cost of the core circuit used in quantum enumeration. In Section 5
we use our estimates to investigate the cost of quantum enumeration as part of
the primal lattice attack on Kyber.

2 Preliminaries

We denote the set of integers by Z and the set of real numbers by R. We denote
logarithms in base 2 by log. We define [m] := {1, ..., m}. Furthermore, we write
the absolute value of ¢ € R as ||, the Euclidean norm of v € R™ as |[v|| =
(v3 + - +v2)"? and the inner product of v, w € R”™ as v - w. Given a finite set
S, we denote by U(S) the uniform distribution over S, and write s ~ U(S) for an
element being uniformly distributed in S. To describe asymptotic complexities,

we write O(-) for the big-o and £2(-) for the big-omega notation.

2.1 Lattices

An n-dimensional lattice A is a discrete, additive subgroup of (R™, +), generated
by a set of linearly independent vectors B = (by,...,b,) € R"*", b; € R™ called a
basis. We consider full-rank integer lattices A = {>"|_, bi¢; | ¢; € Z} C Z™ with
r = n and denote B* the result of performing Gram-Schmidt orthogonalization
on B. We let A\;(A) = min,ea\ (o} ||v]| denote the first minimum of the lattice.
Furthermore, the projection 7 ; : A — span(by, -+ ,b;—1)" maps a lattice point
onto the span orthogonal to the vector space spanned by b1,...,b,_1. We omit
the subscript B and write 7;(-) when the basis being used is clear from context.
Given a lattice A of rank n, the set m;(A) = {m;(v) | v € A} is itself a lattice in
R™ 1, We sometimes refer to such lattices as projective sublattices.

Lattice enumeration. Given an input basis B of A and an upper bound A1 (A4) < R
(e.g., R = ||bt]]), lattice enumeration finds a vector v € A such that ||v|] < R.
The procedure performs a depth-first-search on a tree consisting of an “empty
node” root on level k = 0, and ofa the set of projected lattice points of norm at
most R in m,_x41(A) on level k > 0. The leaves of the tree on level k = n are
lattice points of norm at most R.

As originally proposed, enumeration algorithms iterated over a tree span-
ning the complete intersection of the lattice with a ball of radius R around the
origin [64,45,31,73]. Modern variants restrict the search space by introducing a
branch-and-bound methodology, pruning the tree based on a heuristic bound on
the norm ||m;(v)|| of the target’s orthogonal projections [34,55,3]. This slightly
reduces the success probability p of the algorithm, since the short vector may be



erroneously pruned from the tree, introducing a trade-off between faster traver-
sal speed on the smaller tree versus having to re-run the procedure O(p~!) times
on re-randomised versions of the lattice basis. In this work, we focus on the ex-
treme cylinder pruning variant originating from [73, Alg. ENUM] used in [34],
with pruning bounds Ry, for each level k of the search tree.

Enumeration trees. The key observation behind lattice enumeration algorithms
is that orthogonal projections cannot increase the norm of a vector. This means,
for a lattice A with basis B = (b1,...,b,), shortest vector v, and sufficiently
large R, that R > [[ol] = [Im (0)|] = [[72(0)]] = -+ > [ma(0)]] = 0, with ;(v)
living in an (n—i+1)-dimensional subspace of R™. Thus, to enumerate vectors
in A of norm at most R, it is sufficient to enumerate vectors in the lower-rank
projections m;(A) for ¢ < n, discarding guesses for ;(v) if they are too long.
Starting from ¢ = n, suppose 7,(v) = g, is guessed correctly for some vector
gn € mn(A).! The enumeration algorithm then attempts to extend this into a
guess g,_1 € m,_1(A) for m,_1(v) such that 7, (gn_1) = gn- If ||gn_1|| < R,? one
proceeds similarly trying to extend g,_1 into a guess for g,_o for m,_2(v) and
so on; else one attempts to find a different guess g/,_; # gn—1 for m,_1(v) that is
short enough, and if no such vector exists one aborts the search in 7, _1(A) and
attempts to extend a different guess g/, # g, for m,(v). Every guess g; for m;(v)
of norm at most R becomes a node in the enumeration tree. A node g; is the child
of some guess g;+1 for m;41(v) such that m;11(g;) = gi+1. Moreover, every node
g; 1s the parent of guesses {g;—1 € mi—1(A) | m(gi—1) = g;} for m;—1(v). Careful
computation using the Gram-Schmidt vectors B* = (b7,...,b) and coeflicients
Wi = by - b;‘/||b;“||2 for ¢ > j, shows that given a lattice vector v = Y1 | ¢;b;
where ¢; € Z for all 4, its projections are of the form w;(v) = Z?:j a;b where
@j = ¢j + > ;s Mijci- By orthogonality of the (b7);, we have ||7r; (0)||* =
laj [2[[03[|* + |7 41 (v)[|*. Hence, for any guess gj1 for m;,1(v), a guess g; for
mj(v) with mj11(g;) = gj41 must satisfy |a;|> < (R* — [|m;01(0)[*)/[[05]], i-e.,

n n 2
s AR (CH- uz',rcz) [ladls
R 7H7rj+1(v)‘| r=j+1 i=r+1
CiFY i ei| < = - (@)

N 16511 16511

i>7

Remark 1. In the case of pruned enumeration, the main difference in the process
is that we are given a pruning set {R; | i € [n],0 < Ry < --- < R,, = R} rather
than a single bound R, with R,,_;41 replacing R in Eq. (1).

! Since lattices are symmetrical around the origin, in practice implementations con-
sider only half of the possible guesses for m;(v).

2 To unburden notation, we temporarily consider the non-pruned case with Rj =
R, Vk.



Ezpected cost of enumeration. The cost of enumeration is typically estimated
to be equal to the number of nodes visited by the algorithm—the “enumeration
tree”. Let Zj be the set of nodes on the k'" level of the tree (that is, at distance
k from the empty root node), Hy be the expected cardinality of Z over the
distribution of random bases being enumerated,® and N be the total number of
nodes in the tree. The cardinality of Z; depends on the pruning strategy and
on the geometry of the projective sublattices implied by the lattice bases. The
expected number of total nodes is E[N] = 2 37" | E[|Zy|] = 3 >°)_, Hy, where
the expectation is taken over the distribution from which the lattice is being
sampled and the extreme cylinder pruning re-randomization (if any is used),
and the 1/2 factor is due to exploiting lattices’ additive symmetry to avoid
unnecessarily visiting half of the tree. Cost estimation for the algorithm then
reduces to estimating Hj. This is a standard computation that we perform in
detail in Appendix A, closely following [34,12].

Solving LWE via lattice reduction. Learning with errors (LWE) [68,69] is a pop-
ular hardness assumption for constructing PQ secure primitives, such as Ky-
ber [77]. One of the main approaches to solving LWE is via block lattice reduction
algorithms, such as BKZ [75,76]. After building a lattice embedding of dimen-
sion n of a given LWE challenge, block reduction algorithms will call O(poly(n))
many times an SVP solver, such as lattice enumeration, in dimension g < n. This
process results in a better basis for the LWE lattice embedding that allows the
attacker to recover the LWE challenge secret. In our work, we consider modern
versions of BKZ using early-termination and approximate-SVP solvers, which
have been shown [52,4] to be effective while requiring to find a “short enough”
lattice vector, rather than the shortest. In order to go from an LWE challenge to
an embedding and a choice of BKZ block size 8, we use the lwe-estimator [§].

2.2 Quantum Algorithms

We denote quantum registers in the Hilbert space H as lower case letters |a),
and the unitary operator that implements a function f as Us. We denote by Id
the identity operator.

Quantum backtracking. Backtracking search is a depth-first-search algorithm
that allows exhaustively finding “marked” leaves on trees. Given a tree T of height
n, we partition the set of nodes into levels 1 < k < n, based on their distance
from the root node r. Every node x € T corresponds to a partial assignment to
a set of variables x1, ..., z, identifying a path to the node, using * to mark yet
unassigned values (e.g., the root node r is labelled (, ..., *), nodes on level k = 1
are labelled (x,...,*, Z,) for some values of Z,,, and so forth). The backtracking
algorithm needs to be provided with an oracle for a predicate function P :
T — {TRUE, FALSE, INDETERMINATE} that given a node returns TRUE if it

3 In the case of BKZ reduction with extreme cylinder pruning, these are re-randomized
instances of a local BKZ block.



DF(7) times QD(T) times  WQ(T, W) times
[FINDMV} -- *P[DETECTMV} -- {QPE} -- {W = RARB]

Quantum backtracking
[57, Alg. 2 and §2.3]

Quantum circuit

Figure 1: Overview of Montanaro’s marked vertex (MV) finding backtracking
algorithm [57]. Only part of the algorithm needs to run within MAXDEPTH.

is a marked leaf, FALSE if it can be determined that the node cannot be on
the path to a marked leaf, and INDETERMINATE otherwise. Lattice enumeration
algorithms are backtracking algorithms with a predicate Pg(v) returning FALSE
if ||m;(v)|| > R, INDETERMINATE if ||m;(v)|| < R for i < n and no other value
|| (v)]| is known with j < 4, and TRUE if ||m(v)|| = [|v]] < R.*

In [57], Montanaro introduced quantum backtracking algorithms for detect-
ing [57, Alg. 2] and returning [57, § 2.3] marked vertices in a tree, both achieving
an asymptotic speedup over classical backtracking. We depict their main sub-
procedures in Fig. 1. Both of these algorithms are based on a common quantum
walk, QPE(W), where W is the operator that corresponds to a single step of the
quantum walk using the predicate Pr to decide if a node is marked.

Then the quantum walk can be seen as a quantum phase estimation (QPE)
which consecutively applies WQ(7T, ) many times W to a state corresponding
to a superposition of the nodes in the backtracking tree 7. By the proof of [57,
Lem. 2.4], the eigenvectors of W are the states that admit a path from the root
to a marked node. Measuring the root node after a sufficient number of steps
allows to identify whether a path to a marked node exists with false positive
probability < 1/4 and false negative probability < 1/2. The detection algorithm
DETECTMYV [57, Alg. 2| consists of repeating QD(7) = [elog(Y/spmv)] many
times QPE, for some constant ¢ > 0, to output “marked node exists” or “no
marked node exists” with a failure probability of at most dpyv. We determine
bounds on values for € and dppy in Section 3.1 (with a more detailed analysis
in [19, App. H|) and refer to the resulting number of calls to the QPE within
DEeETECTMYV as QD(7).

Theorem 1 ([57, Theorem 1.2], abridged). Let T be a backtracking tree
of size at most #T " with degree O(1). Let P(x) be a predicate that returns
TRUE if and only if x is a marked node. For any 0 < dpmyv < 1, DETECTMV
outputs “marked node exists” if there exists x € T such that P(x) = TRUE and
“marked node does not exist” otherwise, with failure probability at most dpnv .
The algorithm performs O (\/ #7Tn log(1/6DMv)) evaluations of P, using poly(n)
qubits.

For the algorithm returning a marked node in 7, Montanaro suggests to
perform classical depth-first-search on T by using DETECTMYV as a predicate.
DETECTMYV would be called on the children ¢; of the root node, until one on
the subtrees rooted at ¢;, for some 4, returns “marked node exists”. It would then

4 The pruned enumeration case replaces R with R,_i41, cf. Remark 1.



proceed to search for a child of ¢; spawning a subtree with a marked node, and so
on, until reaching a marked leaf. For a tree of height n with nodes having at most
d children, FINDMV will call DETECTMV O(nd) times, in the worst case. We
will discuss the concrete number of calls (denoted by DF (7)) in Section 3.1. If no
upper bound on the number of nodes of T is known, the search can be repeated
with growing values of #7 % = 20, 2!, 22, ... resulting in an additional runtime
factor of O(log #7T). Montanaro also shows that overestimating the tree-size does
not affect the quantum walk’s success probability.

Quantum backtracking for lattice enumeration. Aono, Nguyen and Shen [13] an-
alyze the asymptotic cost of using quantum backtracking algorithms to perform
lattice enumeration in a black-box setting. In [13, Thm. 7(1)], they identify the
asymptotic runtime for finding a short non-zero vector using cylinder pruning
and poly(n) many qubits to be O (v#T n® poly(log(1/5),logn)). In [13, Sec 4.2,
they argue that this holds also when performing extreme pruning with M ran-
domized lattice bases (B;);<, by collecting each enumeration tree into a larger,
single tree, resulting in an asymptotic runtime for finding a non-zero vector via
quantum extreme pruning of O (\/ #T M3\ poly(logn,log(1/8),log(N), log M))7
where ) is the bit-size of the entries of B;, for i € [M] and #7 ™ is the sum of
the number of nodes of all M trees.

2.3 Cost Metrics for Quantum Circuits

Circuit depth. Given a circuit instantiating a quantum algorithm using a given
set of gates, a common metric to measure its cost is the circuit’s depth. This
can be defined as the longest path from the input state to the output state,
if the circuit is considered as a directed graph with quantum gates as nodes.
Circuit depth can be seen as an analogous measure to the runtime of a classical
computation, by considering that applying a gate must take a non-zero amount
of time, and is therefore often used to express the asymptotic cost of quantum
algorithms. In this paper, we make two crucial assumptions regarding circuit
depth. First, we exclusively measure T-depth, that is the circuit depth when only
taking into consideration T gates, as preparation of these is expected to be the
most time-consuming part of practical quantum computation [44,32]. Second, we
investigate the cost of quantum enumeration when imposing a limit MAXDEPTH
to the maximum depth a circuit can achieve while maintaining state coherence.
This consideration follows from observing that currently state decoherence seems
to be one of the main hurdles to achieving large-scale quantum computation. As
part of the call for proposals for its PQ cryptography standardization process,
NIST [62] proposed the three possible values of 240, 264 or 296 for MAXDEPTH.
This limitation means that care should be paid to any circuit parallelization
required to stay within MAXDEPTH circuit depth when measuring the cost of
long-running quantum algorithms as these do not always trivially parallelize,
such as in the case of Grover’s search [81].



Number of gates. Another metric commonly used to express the cost of quantum
circuits in the literature is the number of gates, or G-cost (which can always be
lower-bounded by the depth of the circuit). The use of the G-cost is motivated by
the observation that, in practice, quantum gates are not a physical device, but an
operation performed on the quantum state. Such operation is likely managed by
a classical microcontroller, meaning that the G-cost is a lower bound on the cost
of evaluating gates of a quantum circuit. As such cost also consumes classical
resources, it can be compared to the cost of classical algorithms [43, Def. 2.4].
As part of their call for proposals, NIST [62] defined security categories cor-
responding to the hardness of breaking AES and SHA. When considering quan-
tum algorithms, they expressed this hardness in terms of G-cost, assuming a
MAXDEPTH limit. We will similarly estimate lower bounds on the G-cost of
quantum enumeration, as to simplify comparisons to the rest of the literature.

Memory. Different kinds of memory devices can be used by quantum computers,
categorised by their interface [42]. A common metric that we ignore in this
work is that of how many qubits are used by the algorithm. The reason is that
qubits are currently notoriously difficult to maintain in a coherent state. Another
form of useful memory is QRACM. This can be thought of as a classical array
(a1,...,a,) that can be read by a quantum computer into a state » .. |a;)
in O(n poly(log(n))) operations [36,49,42]. All our algorithms use a polynomial
amount of qubits, and some of our approaches require an exponential amount of
QRACM.

Limits of the NIST metrics. The NIST metrics were designed to give a security
goal and allow comparisons between candidates. As all metrics, part of them
is arbitrary, and they were not designed to accurately define what could be
computable in the long term. In particular, the classical and quantum security
levels are incomparable, and a break of a system due to a quantum attack does
not imply that the most efficient way to attack it will be, in the long run,
quantum. Still, PQ cryptography has to do some optimistic assumptions on the
capabilities of quantum computers, as otherwise pre-quantum schemes would
suffice.

3 Estimating the Cost of Quantum Enumeration

In this section, we outline the components of our cost estimation of quantum
lattice enumeration via backtracking under a MAXDEPTH restriction. We start
by reviewing the gate-cost of Montanaro’s FINDMV algorithm and the depth
of the quantum walk QPE(W), since the latter will imply an upper bound to
the size of the largest tree that can be searched within a MAXDEPTH budget
for coherent quantum computations. We then proceed to explore the cost of
combining quantum enumeration with classical one, to address settings where
the trees are too large for the limited quantum depth budget.



3.1 Quantum Backtracking to Find a Marked Vertex

We follow the proof of Theorem 1, aiming to provide concrete lower bounds
(rather than asymptotic upper bounds) to the cost of the FINDMV algorithm.
The quantum backtracking framework laid out in Section 2.2 performs a clas-
sical depth-first search on the backtracking tree, where each node is evaluated
using multiple, individual quantum walks to decide whether it spawns a subtree
containing a marked node. An overview of Montanaro’s quantum algorithm is
sketched in Fig. 1. Since the depth of a quantum circuit is the principal limita-
tion for our cost model (see Section 2.3) all calls to the quantum circuit QPE(W)
can be viewed independently, meaning their depth does not accumulate towards
the MAXDEPTH limit.

Node degree. While Theorem 1 assumes the tree being enumerated having
constant degree, this is not the case for enumeration trees (of depth n) on general
lattices where the leaves are lattice vectors of norm at most R. Given a node

(%, .oy Cpnktl,- -+, Cn) on level k of the tree, an upper bound Cj, on its degree
corresponds to an upper bound on the number of possible values c,_, € Z
such that (x,..., %, ¢uk,Cn—k+1,---,Cn) is in the backtracking tree. An upper

bound on the degree of the tree would then be C = maxy Cy. For g-ary lattices
as considered in our experiments in Section 5, a bound could be C, = ¢ for
all k. A better bound is given by Lemma 1 in Appendix C, where we show
Cr = min(|2 - Rey1/[1b;, _4l[1, 0)-

Procedures. As outlined in Section 2.2 and Fig. 1, the quantum algorithm that
can identify marked vertices in a tree, FINDM 'V, will internally call DETECTMV,
which detects whether a marked vertex exists in a tree at all. This, in turn, runs
quantum phase estimation QPE on the operator W.

Each procedure calls the respective sub-procedure multiple times (with the
number of calls depending on the properties of the respective tree T), resulting
in total depth and gate cost for FINDMV of

T-DeEpTH(FINDMV(T)) = DF(T) - QD(T) - WQ(T, W) - T-DEPTH(W), (2)
GCosT(FINDMV(T)) = DF(T) - QD(T) - WQ(T, W) - GCosTt(W), (3)

where DF(-), QD(-), and WQ(-) are the number of calls to the subroutines
DETECTMYV in FINDMV, QPE in DETECTMYV, and W in QPE, respectively.
We will analyze the number of these calls under the assumption that the search
tree is of depth n and degree bound by C, prioritizing strict lower bounds.

Number of calls DF(-). Every call to FINDMV (cf. Section 2.2) performs a classi-
cal search upon input tree 7, and outputs a single leaf on level n. Aono, Nguyen
and Shen [13] analyze the number of calls to DETECTMV made when searching
an enumeration tree without an asymptotically constant degree. Their analysis
performs an asymptotically convenient implicit transformation of the tree into
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a binary tree [13, Theorem 5], resulting in O(nlogC) calls in the worst case,
where we could take ¢ = maxy{min(|2 - Rx41/|0;_.l|1,9)} (cf. Appendix C).
This bound is likely tight on average when trees are guaranteed to contain a
marked leaf. However, as we will see in Section 3.2, a MAXDEPTH constraint
results in performing quantum walks on (sub-)trees without such a guarantee.
Since FINDMV requires a single call to DETECTMYV to identify that a tree has
no marked leafs, we instead lower bound DF(-) > 1.

The success probability of a call to FINDMV depends on that of DETECTMV.
In the following paragraph we lower bound the cost of DETECTMYV with success
probability 1, so that FINDMV also has full success probability.

Number of calls @D(+). An upper bound on the quantum depth required to run
DETECTMYV can be established directly from [57, Alg. 2] and [57, Lemma 2.4].

Corollary 1 (T-DEPTH of quantum circuit to detect a marked node).
Let W be a quantum operator of depth T-DEPTH(W) that acts on a backtracking
tree T in n (unassigned) variables. Let QPE(W) be the quantum circuit perform-
ing phase estimation on W. For any failure probability dpmv € (0,1), there exists
a quantum algorithm DETECTMYV that decides with probability at least 1—dpyv
if @ marked node exists in T by calling QPE [elog(Y/somv)| times, such that
T-DEPTH(QPE) < /o3/#T-n - T-DEPTH(W), for some value b > 0 depending
on W.

As mentioned in Section 2.2 and Corollary 1, each call to DETECTMYV repeats
the QPE a total of [elog(1/spmv)] times for some constant e > 0. The value of
¢ depends on the failure probability of the quantum phase estimation QPE(W),
and on the desired failure probability dpyy of DETECTMYV. The failure proba-
bility of QPE(W) in turn depends on the number of applications of the operator
W, relative to the tree-size #7, the dimension n of the lattice and a constant b
(cf. Corollary 1). It is important to note that there is a trade-off between the
number of repetitions of W in the QPE, and the number of repetitions of the
QPE. We do not consider any optimizations related to this trade-off as they are
implementation specific. Instead, since we are determining lower bounds for the
number of calls, with € > 0 we lower bound QD(7) > 1.

Number of calls WQ(-). As used inside of DETECTMV, QPE needs to be run
with precision b/v/#7- n, for some constant b > 0, returning after ~ /#7-n/b
evaluations of W. Or put differently, asymptotically, £2(v/#7n) is a lower bound
on the query-complexity of detecting a marked node in a tree with #7 nodes
and depth n [1, Theorem 7|[58, Sec 4]. Montanaro also notes that Thm. 1.1
and thus Lem. 2.4 of [58] are optimal for dpymyv € £2(1). As a consequence,
Corollary 1 is an asymptotic lower bound if b € £2(1), where in the black box
setting T-DEPTH(W) € £2(1).

Finding the hidden constant for the phase estimation is more involved. While
explicit constants exist for phase estimation [18], Montanaro’s algorithm may not
necessarily use the optimal majority voting scheme as part of DETECTMYV. Let
MYV denote the event that no marked vertex is contained in the tree 7. An
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approximation for the constants in QPE was analyzed by [21, Sec 4.1], who
showed that the probability p; := Pr[X; = 1 | MV] that the QPE outputs one
even if no marked vertex exists is bounded by p; < 2v/b(1 + o(1)). In our case,
setting p; as low as possible leads to p; < 1/4, which implies using at least

b > 1/64. Since we evaluate W about +/#7-n/b times and 1/b < 64, it follows

WQ(T, W) ~ 64v/%T n.

Notably, there is a trade-off between the number of repetitions of W in the QPE,
and the number of repetitions of the QPE (cf. Appendix H.1). Fewer repetitions
of the first (reducing both T-DEPTH and GCOST) results in an increase of the
number of repetitions of the QPE (increasing only GCosT). We do not con-
sider optimizations related to this trade-off. To ensure generous-to-the-adversary
bounds, we settle for the following conjecture for our estimations in Section 5.

Conjecture 1 The query complezity WQ(T, W) of quantum phase estimation
of W (QPE(W)) is WQ(T,W) = V4T n.

Beyond lower bounds. The lower bounds on DF(7),QD(7) and WQ(T) re-
sult in a conservative cost estimation at the cost of potentially underestimating
the attack cost. In Appendix H, we perform a heuristic analysis of the hidden
constants, estimating tighter bounds for these quantities. Indeed, we show that
the number of calls to DETECTMYV is likely DF(7) € {1,nlogC} depending on
the subtree being searched. Then a sufficient number of calls to the QPE in
DETECTMYV could be QD(T) = [e - log(nlog(C))] with € = 20, and a sufficient
number of calls to W during QPE is WQ(T) = 641/#7n, adopting a constant
b>1/64.

While our estimations seem realistic, and support Conjecture 1, for the sake
of keeping our analysis as conservative as possible, we will keep using the strict
lower bounds above during attack cost estimation in Sections 3.3 and 5. Analogue
results to those in Section 5 using the less strict estimates can be found in
Appendix H.

Depth of QPE(W). With Conjecture 1 in hand, we can attempt to estimate
the depth budget required to break practical lattice-based schemes using quan-
tum enumeration as proposed by Aono, Nguyen and Shen [13]. By using the
lwe-estimator [8] we obtain the block size 3 required by the BKZ [75,76] al-
gorithm to successfully run key recovery on Kyber [77] using the primal lattice
attack. Using n = 8 and E[#7T | equal to the returned cost of enumeration when
using a custom cost model implementing the lower bound from [12, Eq. 16], and

momentarily assuming E[v/#T] = \/E[#T] (cf. Section 3.3), we can see that

log E[#7] + log 3 90.3  for Kyber-512,

o o

log E[\/#Tn] ~ hals 5 87 ~{166.2 for Kyber-768,
263.7 for Kyber-1024,
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with 7 collecting 264 cylinder pruning enumeration trees of dimension S.

While the above numbers are a rule-of-thumb approximation, it can be seen
that most likely and regardless of the value of T-DEPTH(W), breaking Kyber-768
and Kyber-1024 with a single direct quantum enumeration will not be possible
within MAXDEPTH < 296, To deal with this issue, we propose combining quan-
tum backtracking with classical enumeration, in a manner similar to classical
parallel enumeration.

3.2 Combined Classical-Quantum Enumeration

Generally, parallelization of lattice enumeration [25,40,48] is conceptually simple,
as the tree structure directly induces a partitioning to the search problem. This
means that when searching for short vectors on a tree n levels deep (where n = 8
is the BKZ block size), one can first serially enumerate all nodes on level k& < n,
and then run in parallel lattice enumeration on the subtrees rooted at level k of
depth at most n — k.

Following this approach, we will run classical enumeration up to depth k,
and proceed to run quantum enumeration on the smaller subtrees of depth h <
n — k, corresponding to sub-lattices of dimension h. We will choose k such that
the depth of any call to QPE(W) is within the limit of MAXDEPTH, following
Corollary 1. We depict the general strategy in Fig. 2.

This combined approach is independent of the implementation of the quan-
tum circuits, particularly of the operator W. This means we would be able
to estimate bounds on the cost of the attack given different possible values
for T-DEPTH(W) and GCosT(W), including generous lower bounds (cf. Sec-
tion 4.1).

The approach is also compatible with pruned enumeration techniques. In the
remainder of the paper, we will focus in particular on cylinder pruning [34]. We
will start by analyzing the cost of the combined enumeration algorithm on a
single (possibly pruned) tree, in Section 3.3, and extend this to the case where
M pruned trees are combined to achieve high success probability, in Section 3.4.

3.3 Combined Enumeration of a Single Tree

We start by recalling some notation introduced in Section 2.1 to describe enumer-
ation trees, illustrated in Fig. 2. Given a tree of depth n, its nodes are partitioned
into sets (Z;)"_; of expected cardinality (H;)?_; over the distribution of lattices
being inspected, where Z; collects all the nodes “on level i”, that is of distance
i from the root node r. Any node g € Zj generates a subtree 7(g) of depth
h < n — k. The nodes of this subtree are partitioned into sets (Wj.;(g))", of
expected cardinality (S ;)" ; over random trees and g distributed uniformly in
Zy,. The expected number of nodes in the subtree 7(g), including the root g,
is 1 + Ngp, where Ny p = Z?Zl Sk.i, while the expected number of nodes in
the entire enumeration tree 7, including the root r, equals 1 + % i H;. The
% factor comes from the fact that the tree is symmetric around 0, and hence
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Figure 2: Combined classical-quantum enumeration tree. Quantum enumeration
will happen on subtrees rooted at level k, here circled in purple.

only half of the tree needs to be searched to identify all the vectors within the
enumeration radius, up to sign.

Classically and quantumly enumerated components. We first discuss how
we divide the classical and quantum components of the enumeration algorithm.

Classical component. In the setting of combined classical-quantum enumeration,
let k be the level up to where classical enumeration is performed. This costs

k
. 1
ranlgom[Classwal GCost] = 1+ B Z H;, (4)
tree T =1

where we equate the cost of classical enumeration to the number of nodes visited
by the algorithm, as it is standard in the literature.

Quantum component. After the classical enumeration phase, we have Hj; nodes
on level k, each admitting a subtree of height h < n — k, and covering the
remaining levels of the full enumeration tree. A natural approach could be to
enumerate all H, subtrees individually (and possibly in parallel). However, it is
not known which subtree contains the (likely few) marked nodes, meaning that
we would be running ~ Hj, calls to quantum enumeration. In both pruned and
non-pruned enumeration, the bulk of the nodes contained in the trees being tra-
versed is contained in the “middle” levels Z; for ¢ ~ n/2, with pruning “spreading
the bulk” on a larger window of levels around n/2 [34, Fig. 1|. For our setting,
this would imply three scenarios, depending on k:
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k =~ 1, in this case most of the tree fits within the quantum enumeration sub-
routine, and a quadratic speedup is possibly achievable,

k ~ n/2, in which case we would be running ~ H,, /2 quantum enumeration calls,
meaning that the GCoST of the operation would be proportional to H, s,
which is approximately the cost of fully-classical enumeration.

k =~ n, which means that we would be running some quantum enumeration,
but the bulk of the enumeration would anyway be classical, nullifying any
possible speedups from quantum enumeration.

While the case k = 1 is possible, requiring to tolerate a high enough MAXDEPTH
to traverse most of the enumeration tree within the quantum subroutine is quite
restricting; in particular, in light of the rule-of-thumb numbers from Section 3.1.

A possible alternative approach for the quantum phase of the attack is to
collect all the subtrees rooted on level k£ under a single tree, by adding a “virtual”
root node as the “parent” to all the nodes in Z, and to run quantum enumeration
on this tree; we illustrate this in Fig. 3 for multiple virtual nodes. This approach
has the advantage of running a single quantum enumeration rather than Hy
many, potentially achieving a better speedup than in the previous case. However,
this comes at a cost in terms of QRACM [36,49,42], since the g; € Z; would
need to be first enumerated and then stored in memory, to be accessible for the
quantum algorithm. Except for £ ~ 1 or k = n, this approach may require a
super-exponential amount Hy, of QRACM for any meaningfully small value of k
such that a speedup can be achieved (say, for k < n/2).

Given the issues of the two methods above, we consider an interpolation
of both. We assume to have access to enough QRACM to store at a time 2Y
nodes on level k. We combine classical and quantum enumeration by using a
classical enumeration routine CE to visit up to 2¥ nodes {g;}; € Zx, and collect
them under a virtual root node v as to form a tree 7{v). We then run quantum
enumeration on 7(v). If we find a short leaf in 7{v), we terminate. Otherwise, we
resume CE and repeat the collection and the quantum enumeration processes.

Let (g:): = 91,92, -+ € T be the sequence of nodes in the full enumeration
tree 7 visited in order by CE. Let gg,, gk,, -+ € Zx be the subsequence of (g;);
of nodes on level k. Let S1 = {grs--+ Gkou }, 52 = {Gkawi1r- s Gkowynu - C
Zi be the subsets of size 2¥ that our combined classical-quantum enumeration
routine collects under virtual nodes v;, such that .S; is the set of nodes on the
first level of the subtree 7{v;). To be able to estimate the cost we make the
following conjecture.

Conjecture 2 Consider V; := GCOST(FINDMV (T(v;))) as random variables
under the randomness of the distribution of enumeration trees for random lat-
tices. Then the V; are identically distributed.

In Appendix E we present experimental evidence supporting this conjecture
in the case of pruned enumeration. Under Conjecture 2, we estimate that the
expected quantum gate cost of combined classical-quantum enumeration is ap-
proximately
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E [Quantum GCosT]~ E [ Z GCosT(FINDMV(T(v)))]

random random
tree T tree T v, out of the
(1/2)-Hy /2Y many
1 Hyg . .
=5 oy -E[GCosT(FINDMV (T(v)))] (by Wald’s identity) , (5)

where the factor of 1/2 is due to the lattice’s additive symmetry.

Expected cost of one quantum enumeration. After having illustrated how
to divide the classical and quantum components, we move our attention to com-
puting the expected gate-cost of FINDMV on subtrees 7(g) rooted at some node
g. Here, we repurpose the analysis from Section 3.1, adapting it to the case where
the enumerated tree is rooted on level k and has depth h <n — k + 1.°

We start by recalling Eq. (3) for the gate-cost of FINDMV for a tree T{g)
of height h and with at most C children per node, following the analysis in
Section 3.1, which is

GCosT(FINDMV(T(g))) = DF(7(g)) - QD(T(9)) - WQ(T(g), W) - GCosT(W)

> /#T(g) - h - GCosT(W).

The GCosST of operator W and the expected number of repetitions are inde-
pendent of each other, and thus, the respective cost can be analyzed individually.
The cost of the former is explored in Section 4, while we elaborate on the number
of repetitions for a single tree next.

To compute E[GCosT(FINDMV (T(g)))] we first notice that DF(7(g)) and
QD(T(g)) are constant quantities in our analysis (namely, we set both to 1),
although in general they depend on the lattice problem and our setup of the full
algorithm (such as in the choice of k, which would be done a priori based on cost
estimations), as we describe in Appendix H. Similarly, we set h = n — k + 1.
Hence, DF(7(g)), QD(7(g)), and h do not have a probability distribution, and
do not affect the computation of the expectation. Similarly, the design of W is
done a priori, and thus, the resulting GCosT(W) is a constant® (cf. Section 4).

Remark 2. We must note that if the enumeration bound R is small enough to
guarantee only a few marked leaves in the full enumeration tree as in our case,
then the subtrees T(g) will likely often contain no marked leaf, and hence be
of height strictly smaller than n — k 4+ 1. On the one hand, this means that on
most of the T(g) trees, DETECTMV will be called only once at the root, meaning

® The “41” term coming from adding a “virtual” root node.

5 Before applying the quantum operator W, one has to define the circuit using an
upper bound on the depth of the subtrees, since this depth cannot be determined
from the root node alone. Since one of them will contained the marked vertex (and
hence be of full height), we have to prepare the W circuit to tolerate traversing a
full-height subtree. This is then constant for all calls to W.
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DF(7(g)) = 1 (cf. Section 3.1). On the other hand, as part of WQ(7{g), W) we
must nonetheless assume “full height” h = n—k+1, since the few trees containing
marked leaves are of this height. Underestimating the tree height during QPE
would mean that the marked leaves would not be found by FINDMV. As we are
aiming for strict lower bounds, we do not consider the full height of the implicit
binary tree from Aono, Nguyen and Shen [13].

This leaves us with having to estimate E[y/#7(g)]. As pointed out in [13], the
probability distribution of the number of nodes in enumeration trees (or subtrees,

such as T(g)) is not known. Jensen’s inequality gives an upper bound +/E[#7(g)]
but no clear lower bound. We address this by defining the multiplicative Jensen’s
gap, and evaluate the cost of the attack for different values of it.

Definition 1 (Multiplicative Jensen’s gap). Let X be a random variable.
We say X has multiplicative Jensen’s gap 27 if /E[X] = 2* E[V'X].

This leaves us to having to estimate E[#7(g)]. Given a “virtual” node g collecting

2V subtrees rooted at nodes {g1, ..., gav } C Z, by linearity of expectations
h
E [#T _1+Z [#T(g)] =142V (1+ New) =142 +2¢ > S5,
TAgi}i — T {gi}: =

where the expectation is taken over the distribution of random trees 7, and
{g1,...,g2v} is assumed to be as a set of random elements of Zj. While this may
not be exactly true, as it may be easier to find “related” elements in Zj, where
their coefficient vectors are similar, we believe this gives a good approximation
of the cost.

To lower bound S ;j, we start by observing that the W ;(g) partition the set
Zy+j, since every element in the latter descends from a unique element g € Zj.
By the definition of expectation,

(Wi, (9)] 121441
Skj = (Wil = E ’ = :
J g;:][j]d ZT) J r?&go’%ﬂ g;k | Zy, | rtandom | Zi; ‘

We then make a further conjecture to bound the expectation.

Conjecture 3 Given a random enumeration tree generated as part of BKZ-f
reduction for 3 large enough such that the Gaussian heuristic applies,” a level

k> 1, and a node g € Zy, the expected number of nodes in level k+ j descending

from g is E Pf?ﬂ > 1. E}E@Zﬁl] =1 Hflﬂ where the expectation is taken over

the distribution of random trees T, and g is uniformly distributed in Zj,.

In Appendix B, we provide experimental evidence supporting Conjecture 3. In
Appendix C we further observe that in practice often the stronger approximation
Sk,j ~ H;H_j/Hk holds.

7 Experimentally, 8 > 45 appears to be sufficient.
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Combining all the steps above gives us a heuristic estimation of

1 H
E  [Quantum GCOST| ~ 7 - 7: . E [GCosT(FINDMV (T(g)))]
e T
n—k+1
1 H, (1 Hyy
> 2FE = y y—1 Ry _
> o | 5 (1+2 +2 ;:1 i )(n k+1) | GCosT(W), (6)

reducing the estimation of a lower bound on the expected cost to the estimation
of H; and GCoST(W). The estimation of H; can be done using standard lattice
cryptanalysis techniques; we provide a detailed derivation in the case of no prun-
ing and of extreme cylinder pruning in Appendix A. Estimations for GCosT(W)
are discussed in Section 4.1.

The same approach can be used to determine the depth of quantum phase
estimation of W, which is the limiting factor in a runtime analysis with limited
depth budget, resulting in

T-DePTH(QPE(W))

1 n—k+1 Hk
_ +J
> o (122 ;:1 70 | (k1) - T-DepTHOV). (7)

3.4 Combined Enumeration of a Set of Trees

In the context of enumeration with extreme pruning [34] one considers a trade-
off between the success probability of finding a short vector and the number of
nodes pruned. Let p be the probability that the enumeration tree contains a node
corresponding to a sufficiently short lattice point, that is p = 1 if the full tree is
enumerated and p < 1 if branches are pruned. In the case of extreme pruning,
p < 1, meaning that enumeration of the tree is much cheaper, but likely to fail.
To boost the success probability, the original lattice basis is re-randomized M
times, for some large value of M. Under assumptions of independence between
the resulting re-randomized pruned trees, the probability of finding a short vector
in at least one of the M pruned trees is 1 — (1 — p) =1 — (1 — Mp + O(p?)),
which is high if M =~ 1/p as M > 1. It should be noticed that in practice re-
randomization usually lowers the quality of the bases, essentially “undoing” some
of the lattice reduction [3, §2.5]. However, we will ignore this effect for the sake
of finding a simple lower bound and assume that the quality of re-randomized
bases for the same lattice is the same as the one for the original basis. Moreover,
we assume that pruned trees corresponding to these re-randomized bases are
independent of each other.

For our purposes, we will collect the M trees corresponding to M bases into a
single tree 7, by adding a top “super-tree” connecting their roots to an overall
root. Let r be the root node of this new tree and let 71, ro, ..., 737 be the root nodes
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Figure 3: Full enumeration tree 7 for combined classical-quantum enumeration.
Nodes and links in blue correspond to “virtual” nodes.

of the enumeration trees with the re-randomized bases (B;)},. We arrange r as
parent node of the r;; a sketch of the full tree is illustrated in Fig. 3. The back-
tracking predicate (cf. Section 2.2) that decides on branching on input of a node
r; will always return INDETERMINATE on the levels 0 and 1, since all enumera-
tion subtrees rooted at the respective r; are independent of each other due to
basis re-randomisation. We define a quantity H} counting the expected number

of nodes on level k of 7 in terms of H]gz) = E[#{nodes on level k of T(r;)}]
(that is “ Hy, from tree T(r;)”), where T(r;) is the pruned enumeration tree rooted
at r;. It follows that HY =1, HY = M, and HY =Y,y H\y = M - Hy_y
if £ > 1. From H,i” we can then redefine S,ICVIJ similarly to Sy ;, reducing it to
Hj,_1. This means that we can “port” our cost formulae from Section 3.3 by
replacing Hj with H é‘/[ . We estimate H ,i” in the cases of no pruning and of
extreme cylinder pruning in Appendix A, since this is a standard computation
taken from [34,12], and continue with the cost estimation GCosT(W) in the
next subsection.

4 Instantiations for the Quantum Operator W

In this section, we focus on exploring lower bound costs for the quantum op-
erator W. At its core, quantum enumeration consists of multiple repetitions of
QPE on the operator W (see Fig. 1). In estimating whether quantum enumer-
ation could be leveraged under a MAXDEPTH constraint, W plays two roles.
First, its depth T-DEPTH(W) plays a part in determining how much classical
versus quantum enumeration is used, by constraining the admissible values for
k, y and z (cf. Eq. (7)) based on the requirement that T-DEPTH(QPE(W)) <
MaAXDEPTH, since by Corollary 1 the gate depth of QPE is partly determined
by T-DEPTH(W). Second, its gate-cost GCOST(W) is a factor in estimating the
total cost of the attack.
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Table 1: Used T-gate count and depth asymptotics for quantum arithmetic cir-
cuits on x-bit numbers.

Operation T-DEPTH GCosT Reference
Addition and Comparison  O(log x) O(z) [28] or [37, Table 2]
Multiplication and Squaring O(log?z)  O(zlog(z) log(log(x))) [61]

4.1 Query-Based Model

The query-based model assumes access to a black-box oracle that computes on-
demand the operator W on any input. Therefore, we account any query to the
operator as having “unit cost”, meaning T-DEPTH(W) = GCosT(W) = 1. This
setting implies a conservative lower bound on the cost of quantum enumeration.
It also represents the setting where classical-quantum enumeration can make the
most of any hypothetical quantum speedups.

4.2 Circuit-Based Model

Here, we aim to estimate the size of a minimal or smallest known quantum
operator W in the circuit-model. The objective is to provide a more realistic
lowest-known bound on the gate cost (i.e., number of T gates) of W than the
very conservative query-based model. Our focus is on finding an approximate
smallest T-count and T-depth for arithmetic operations used inside of WW. We
claim that, at a minimum, the operator VW has to implement a predicate P
deciding whether a projected lattice point has norm larger than the pruning
bound R;. We assume that each coefficient of the state vector |¢;) consists of
A = [log ¢] qubits. Whenever we require floating point arithmetic, we follow [40]
assuming double precision is used, meaning £ = 53 bits of precision are required.
To estimate a lower bound to the cost of the minimal circuit for W, we ignore the
cost for all operations except for the bare minimum arithmetic that is required
to compute the single, most expensive lattice point projection.

Size of quantum arithmetic circuits. The quantum arithmetic literature contains
many design proposals for integer and floating point adders and multipliers. We
report the smallest (to our knowledge) in Table 1. During our computations, we
will be ignoring constants and lower order terms hidden by the O. We refer the
reader to Appendix F for a more detailed literature review.

Depth and cost estimation of VW. In our setting, quantum enumeration is be-
ing performed on a tree T(g € Z;) corresponding to a lattice coset of dimension
h = n—k, where n is the dimension of the full lattice A = A(by, ..., b,) being enu-
merated. This process would require performing arithmetic using the projected
lattice basis vectors (mp—p+1(bn—rt+1), .- Tn—rt+1(bn—r)) of A for all levels k <
¢ < n. An operator UB'™ is designed as to evaluate the predicate P which iden-
tifies projected vectors v € m,_p41(A) such that ||[v|| < Ry and mp,—g41(v) = g.
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Table 2: Assumed cost of arithmetic operations to implement predicate. Each
operation has input numbers of bit length x; and outputs numbers of size ;1.

Operation Input bit lengths T-DEPTH GCosT

1, parallel multiplication xo = min(\,§) log? (o) h? - 20 log(zo) log(log(zo))
2, binary tree addition 1 =A+¢€ log h - log(z1) h? .z

3, squaring x2 = x1 + logh log?(22) h - z2 log(z2) log(log(x2))
4, binary tree addition T3 = 212 log h - log(z3) h-xs

5, comparison x4 = x3 + logh log(z4) T4

In order to lower-bound the cost of operation, we only consider the case of eval-
uating this inequality at ¢ = n, where (mp—p+1(bp—rs1),. -, Tn—rt41(bn_k)) =
(b1,...,by). Evaluating predicate P becomes checking whether || ., ¢;b;]|? <
R2—||g||? for some integer coefficients (c;);. Since (b1, .. ., by ) span an h-dimensional
vector space, we consider them to be h-dimensional by assuming an appropriate
change of basis was applied.® Our estimate for the cost of UR" is derived as in
Table 2 applying the following sequence of operations:

1. Parallel multiplication of h? pairs (c;, (b;);) + ¢;(b;);, of A- and &-bit length,
outputting numbers of bit length A + &.

2. Addition of coefficients (c1(b1);,...,cn(bn);) — >, ci(b;); for j € [h]. These
additions can be run in parallel over j. For a fixed j, the corresponding
sum is run by adding terms in pairs, forming a binary tree of sums. Each
>, ci(b;); output is A + & + log h bits long.

3. Squaring ), ¢;(b;); sums in parallel (output bit length 2(\ + & + log h)).

4. Adding the squared sums in a binary-tree fashion to obtain || Y., ¢;b;|[? =
>0 ci(b;)j)? of bit length 2(\ + £ + log h) + log h. -

5. Comparison with the (adjusted) pruning bound R? — ||g||2.

In this setting, for the purpose of estimating a minimum cost of the attack we
consider the depth and gate-cost of W to correspond to the sum of depths and
costs of the five operations above, resulting in Corollaries 2 and 3.

Corollary 2. The GCOST in the “Circuit-Based Model” is

GCosT(W) > A% - min(), ) log(min(\, €)) log(log(min(), €))) (8)
+ Rh2-(A+6)
+ b (A + &) +log h) log(((A + €) + log h)) log(log(((A + €) + log h)))
+h-2((AN+8& +1logh)+ 2((A+&) +1ogh) + log h.

8 In classical implementations, this computation benefits from caching of Gram-
Schmidt orthogonalisation operations and results [78]. Asymptotically, the number of
individual arithmetic operations is the same as computing directly from (b1, ..., bs).
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Table 3: Kyber parameters [77, Sec 4.3] with respective BKZ block-sizes required
for the primal attack; column log #7 reports our estimated lower bound on the
number of nodes of the enumeration tree of dimension § using extreme cylinder
pruning with M = 2% and success probability ~ 1, following [12, Eq. (16)].

Scheme LWE dim. n Modulus g Block-size 8 log # 7™ targeted AES security

Kyber-512 512 3329 406 172.5 AES-128
Kyber-768 768 3329 623 323.2 AES-192
Kyber-1024 1024 3329 873 517.7 AES-256

Corollary 3. The T-DEPTH in the “Circuit-Based Model” is

T-DEPTH(W) > log?(min(), €)) + log h - log((\ + €)) 9)
F10g2((A+ €) + log b))
+logh -log(2 (A + &) +logh))
+1og(2 (A + &) +1logh) +logh).

5 Estimating Quantum Enumeration Attacks on Kyber

In Sections 3 and 4, we have described methods to explore the enumeration tree
under a MAXDEPTH limitation (cf. Sections 3.3 and 3.4), and introduced two
different instantiations of the quantum backtracking operator W. In this section,
we leverage these results to present cost estimations for primal lattice reduction
attacks using quantum enumeration against Kyber [77], the PQ KEM selected
by NIST for standardisation in 2022. To that end, we compute lower bounds on
the cost of combined classical-quantum cylinder pruning in the gate-cost metric
against the three different parametrisations of Kyber (cf. Table 3). For each of
them, we consider attacks within MAXDEPTH = 240, 264 29 a5 suggested by
NIST [62], each assuming the two different instantiations of the operator W
outlined in Section 4.

5.1 Attack Setting

Our aim in this section is to estimate a lower bound on the possible cost of
classical-quantum enumeration in the setting of lattice-based cryptography. As a
case-study, we look at the primal attack on Kyber, where a block lattice reduction
algorithm is used to recover the secret key of the cryptosystem by reducing an
embedding lattice [15] constructed using the public key.

We follow the convention of using BKZ as the lattice reduction algorithm, and
assume that its SVP oracle is instantiated using our classical-quantum enumer-
ation approach. The common approach to primal attack estimates is to choose a
cost model for BKZ that accounts for the cost of running the SVP oracle and for
the number of calls made [5]. Normally, cost models will use a closed formula for

22



the cost of enumeration in dimension 3 to account for the cost of the SVP oracle,
either fitted or derived from theory or experiments. This is then used with some
estimation script such as the lwe-estimator [8], which will simulate the effect
of lattice reduction and find the cheapest parametrisation of the attack leading
to high success probability.

Since our setting involves an implicit relation between the gate-cost of the
SVP oracle and the MAXDEPTH constraint, we do not attempt to fit our re-
sults on a curve as a function of 3. Instead, we opt for calling an estimator
script assuming the optimistic cost of classical enumeration obtained as part of
our analysis (cf. Appendix A), which assumes that input bases achieve a lin-
ear lattice profile (as predicted by the Geometric Series Assumption, using the
root-Hermite factor ((73)"/?3/(2me))'/2B=1) from [23]) resulting in a gener-
ous lower bound of the cost of solving SVP via enumeration, 2710868/8+0(8)
and assuming specifically the lower bound costs for extreme cylinder pruning
proven in [12]. From this cost estimation we obtain three different block sizes 3
for the three parameter sets of Kyber, reported in Table 3. We then proceed to
estimate the gate-cost of classical-quantum enumeration in dimension § under
different MAXDEPTH values, and compare these with the corresponding approx-
imate gate-cost of Grover search on AES for the corresponding category (e.g.,
Kyber-512 with AES-128).

It is important to highlight an issue towards claiming lower bounds on the
cost of classical-quantum enumeration, and how we address it. As pointed out
in [13] and mentioned in Section 3, the expected speedup of quantum enumera-
tion over equivalent classical enumeration may be more than quadratic, depend-
ing on the probability distribution of the size of the trees being enumerated,
due to Jensen’s inequality implying E[v#7] < \/E[#7]. Since we would like to
provide lower bounds to the expected attack cost, we define z > 0 such that
E[V#T] = 27%/E[#7T], and estimate the attack cost for 2 = 0,...,64. While
we do not know what the value of z may be for lattices encountered in crypt-
analysis,” this allows us to delegate the estimation of the concrete cost to future
analysis on the distribution of #7, while clearly identifying threshold values zg,
such that z > zy may imply possible effective attacks, while z < zg would indi-
cate that classical-quantum enumeration would not threaten Kyber’s security.

We note that an alternative approach could be deriving a lower bound to
the Jensen’s gap, depending on some other parameter of the problem. We at-
tempt this approach in Appendix I, where we derive bounds depending on the
variance of #7. This, however, presents the same issue as above, namely that
we are not aware of the exact distribution of #7. This means that while it pro-
vides a different formulation of the problem, it currently does not represent a
better alternative to testing many values of z and looking for threshold values.
We do, however, note that preliminary results in Appendix E suggest that the
distribution may be relatively narrowly distributed about its mean.

9 Albeit not at cryptographically relevant sizes, in Appendix D we present the results

of small-dimension measurements of the Jensen’s gap against g-ary lattices. For
pruned enumeration in dimension § = 60, the gap appears to be around z = 1.
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Table 4: Attack parameters for experimental evaluation.

MaxDepTH € {219,264 29}y € {0,...,64}, z€{0,...,64}, M =254,

n € {406, 623,873}, k€ [n], h=n—k+1, DF(:) = QD(:) =1, WQ(T) = VF#T -

Overall, our estimation code for the cost of enumeration on a $-dimensional
lattice bases is given on input a multiplicative Jensen’s gap 2%, a MAXDEPTH
constraint, a number of bases M used during extreme pruning (here, M = 2%), a
maximum number Y of tree nodes that can be stored in QRACM (here, Y = 264),
an estimate on the size of the quantum backtracking operator W and on the val-
ues for DF, QD, and WQ, and pruning parameters for estimating upper bounds
on Hj, and optimizes the level £ which separates classical and quantum enumer-
ation as well as the maximal number 2¥ of nodes on this level to be combined
under a virtual root, looking for the cheapest possible attack. We estimate the
cost assuming extreme pruning attacks targeting success probability ~ 1.

An overview over all parameters used in the estimation process is given in
Table 4, while the costing loop is presented in Figure 4. We have made the
source code used to produce our experimental results, tables, and plots publicly
available at https://github.com/mtiepelt/QuantumlatticeEnumeration.

5.2 Cost Estimation of the Attack

Cost metrics and success conditions. As mentioned in Section 2.3, the cost
of a quantum algorithm can be measured using various metrics. In this paper,
we prefer to focus on the number of classical and quantum gates required by
the attack in total, since, plausibly, applying one quantum gate requires running
one classical computation on some microcontroller [43], meaning that to some
extent these two quantities can be compared and combined. As such, one could
say a classical-quantum enumeration attack was successful if the total number of
gates required'’ was lower than some threshold capturing some security notion.

The success of an attack can be defined in multiple ways. One can note that
submissions to the NIST standardization process, such as Kyber, were required
to propose parameters for cryptographic primitives as hard to break as AES or
SHA (depending on the targeted security category). This would imply a notion
where a quantum attack against Kyber may be considered successful only if its
cost is lower than the number of gates required to run Grover search against
AES, which we estimate using Tables 10 and 12 of [41].!! It should be noticed

10 We lower bound this as the number of nodes visited in the classical phase plus the
number of quantum gates applied during the quantum phase of the attack.

"1 Under no MAXDEPTH constraint, [41, Table 10] suggests that the GCosT of key
recovery against AES-128 (resp. AES-192, AES-256) with success probability ~ 1
is &z 2%3 (resp. 2!'%) 2'8). Under a depth constraint, [41, Table 12] suggests the
GCosT ~ 2" /MaXDEPTH (resp. 2°2'/MaxDEpTH, 22%° /MaxDEPTH). We note
that further improvements in the design of the Grover oracles against AES have
achieved minor speedups in terms of overall gate cost.
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that the reason for such a separation between classical and quantum attacks is
due to the assumed and yet-unknown hidden costs of quantum computation.

While the comparison with the cost of Grover on AES is our primary success
metric for the attack, in Appendix G.1 we investigate the cost of the attack
with respect to possible alternative success metrics. In the following paragraphs
we proceed to explore whether combined classical-quantum enumeration could
plausibly be cheaper than Grover search on AES, where plausibility depends on
the value of the multiplicative Jensen’s gap required (cf. Definition 1). To be
conservative, we compare the cost of Grover search to a simple sum of classical
and quantum gate costs for enumeration, which is likely an extremely generous
approach towards quantum computation cost estimation.

Dependence on pruning parameters. Since enumeration is being performed
on pruned enumeration trees, pruning parameters play an important role in
determining the cost of the attacks. Lower bounds for the pruning radii and for
the values of Hj, in the extreme cylinder pruning setting can be found in [12],
while upper bounds can be found via optimization techniques, thanks to the
seminal work of Gama, Nguyen and Regev [34]. We discuss in more detail how
we obtain both bounds in Appendix A.2. Yet, we want to briefly speculate about
three different ways these can be combined to produce different attack cost
estimates that we reproduce in Table 5.

Subtree-size estimation is performed leveraging Conjecture 3 where the ra-
tios Hy+,/Hy, are used to lower bound E[|Zj4,|/|Zx|]. A first cautious approach,
that we label “LB/UB?”, is to strictly lower bound Hyy;/H}, by taking the lower
bound of Hjy; and dividing it by the upper bound of Hj. A more speculative
approach could be that of assuming that the pruning parameters obtained via
optimisation, and used to determine the upper bound, cannot be significantly im-
proved. In this scenario, that we label “UB /UB?”, the upper bounds are assumed
to be exact values, and the previous numerator can be replaced with an upper
bound for Hj;. Finally, one could instead speculate that the optimal pruning
parameters found are only a local optimum, and pruning radii closer to the lower
bounds can potentially be found. In this scenario, that we label “LB/LB”, one
could imagine that the radii for Hy, when k < n, could be improved, leading
to E[|Zk+;|/|Zx|] being closer to the ratio of lower bounds from [12]. This latter
scenario could counter-intuitively reduce the overall cost of classical enumera-
tion, but increase the average size of subtrees rooted on level k. In the remainder
of the article, we report gate-cost estimates in these three scenarios.

Cost estimation without MAXDEPTH restrictions. We start by estimating
the cost of enumeration without MAXDEPTH restrictions—the most favorable
setting to the adversary. In this setting, a quadratic speedup in terms of quantum
depth can be achieved as the full enumeration tree can be enumerated directly
within a call to FINDMV, meaning no classical phase is required. This means,
the attack conmsists of calling FINDMV (7™) once. No QRACM is needed, and
the classical cost is null. We do notice that this is not necessarily optimal but we
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CosTtiNngLoop(n, MAXDEPTH, Y = 254, Z = 264)

1: for z€{0,1,2,...,log(Z)}
2 kE<n+1
3 while LB(T-DepTH(QPE(W))) < MAXDEPTH and k > 0
4: y < Largest y € {0,1,2,...,log(Y)}
5 s.t. LB(T-DepTH(QPE(W))) < MAXDEPTH
6 // store classical cost and quantum cost
7 CC «+ ranIdEom[Claussic:axl GCosT]
tree T
g QC « LB(mnI(l-}om[Quantum GCosT])
tree T
9: GCosT[2][y, k] + CC+ QC
10 : k+—k—-1

11: return (r?I}’i,?(GCOST[ZD)ze{0,1,2,m,1og(2)}

Figure 4: Pseudocode for cost estimation under MAXDEPTH constraint, following
Eq. (7). GCosT[z][y, k] is the total cost associated with the quantum enumer-
ation (i.e., the sum of Eq. (6) and Eq. (4)) with M = 2%4. Operator W is
instantiated according to Section 4.1 and Section 4.2, respectively. LB(-) stands
for “lower bound of”.

consider it as it is a good reference for the cost of other attacks. We report the cost
of this attack under MD = ocop—q in Table 5. This is also the state of the art prior
to the introduction of combined classical-quantum enumeration. The dependency
between the cost of the attack and the Jensen’s gap 27 is straightforward in this
setting, with the quantum cost exponentially reducing as z increases. It appears
from our estimates that quantum enumeration on Kyber-768 and -1024 may be
more expensive than key-search on AES in this setting. Only Kyber-512 appears
to be plausibly approachable, z > 7 sufficing, yet this is still only considering
the query model for W. A significantly larger Jensen’s gap of z > 32 is already
required in the circuit-based model of W in Section 4.2. We remark that in this
setting Grover search on AES can be very competitive, achieving a full quadratic
speedup.

We also consider the cost of running our combined classical-quantum enumer-
ation attack in unlimited depth. Differently from the attack mentioned above,
we decide not to fit the entire tree within one quantum enumeration, and rather
first perform an optimal amount of classical precomputation. We report the re-
sults of this cost estimation in Table 5, under the “MD = c0” rows. This is the
minimal cost we find when unlimited quantum depth is available. The results
are quite similar to those of fully-quantum enumeration, with only Kyber-512
and -768 appearing possibly easier to attack in the case where Conjecture 3 is
instantiated using “LB/UB” numbers. Yet, even the most aggressive setting (W
as in Section 4.1, using LB/UB), the query complexity of quantum enumera-
tion on Kyber-512 essentially matches the query complexity of Grover search on
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Table 5: Summary of the values for the Jensen’s gap 2% at crossover points of our
combined classical-quantum enumeration attacks against Kyber and the cost of
Grover’s search against AES (cf. [41, Tables 10 and 12]). We remark that exact
crossovers happen at fractional values of z. In this table we round down threshold
values of z. MAXDEPTH is abbreviated to MD. X/Y refers to how E[|Z;4;|/|Zk|]
is estimated for displayed level k (c.f. Section 5.2), Cost is as in Table 6.

less likely to be feasible NN more likely to be feasible
Crossover points when comparing Cost of Grover on AES against the total GCosT (cf. Table 6) with ...
.. W as in Section 4.1 H ... W as in Section 4.2
MD Kyber LB/UB UB/UB LB/LB H LB/UB UB/UB LB/LB

220,k<25  2>220,k<11 2z2>12,k<83 z2>0,k <27 z>28,k<T79

-512

Cost > 262 Cost > 216 Cost > 2'1° Cost > 2% Cost > 2'1°
168 P22k <84 2> 17,k <73
240 Cost > 217 Cost > 2!8°

-1024

z22>0,k <26 22>220,k<9  22>12,k<64 z >0,k <26 z>28,k <54

-512
Cost > 263 Cost > 292 Cost > 27 Cost > 27° Cost > 29t
768 z>1,k <64 22> 17,k <67
264 Cost > 21%° Cost > 21%¢

-1024

512 #20k<26 | 2215k<1 227,k<40 2>0,k <26 2> 31,k <40
Cost > 253 Cost > 2%2 Cost > 2%2 Cost > 2™ Cost > 252
768 22 Lk<53 2>19,k <43
2% Cost > 2124 Cost > 2124

-1024

2>0,k<26 z2>15k<1 2>0,k<26 2> 31,k <40

-512

Cost > 263 Cost > 282 Cost > 27 Cost > 22
768 22 0,k<37 z>24,k <37
00 Cost > 2113 Cost > 2114

-1024

z>T,k=0 z2>15k=0 z2>7,k=0 z2>32,k=0
Cost > 252 Cost > 2%2 Cost > 2%2

-768
=0
-1024

AES-128 in the same unbounded depth setting, with the query-complexity of
enumeration on Kyber-768 is greater than that of Grover search on AES-192.

2>32,k=0
Cost > 252

Cost estimation with MAXDEPTH restrictions. We now consider the effect
of depth restrictions on the cost of the attack. Depth restrictions mean that we
will need to use a combined classical-quantum attack as described in Sections 3.2
and 3.3, where classical enumeration is run up to level k, as to create subsets
{g1,..-,92v} C Zg. A “virtual” root node v is added as “parent” of these, and
quantum enumeration is run on the resulting tree 7(v). This process requires
about 2Y QRACM to store the {g;}i<2v, and is run on the extreme cylinder
pruning enumeration tree 7 from Section 3.4.
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To compute Eq. (6) given a Jensen’s gap 2%, we minimize the total cost of the
combined classical-quantum enumeration with extreme cylinder pruning using
M = 264 re-randomized bases and overall success probability ~ 1 over 2¢ < 264
and k£ < n. For each set of parameters, we only consider those where the depth
of QPE(W) (cf. Eq. (7)) is no larger than MAXDEPTH. For every z € {0, ..., 64},
we output (y, k) minimizing the total cost. We report our results in Table 5,
under the “MD = 240,264 2967 yqws.

First, we observe that attacks on Kyber-1024 appear unlikely to beat key-
search on AES-256 in all settings. The value of z required to reach an attack costs
on Kyber-512 and -768 smaller than those of Grover on AES is relatively low
when assuming the strict “LB/UB + query-based model for W setting (cf. Sec-
tion 4.1). However, assuming the circuit-based model for W, immediately raises
the requirements for a successful attack on Kyber-768 up to z > 17, suggest-
ing a successful attack may not be too likely. This is likely a fairer comparison,
since in the “W as in Section 4.1” columns we are anyway comparing query-
complexity of enumeration versus gate-complexity of Grover on AES. As for
Kyber-512, while we cannot fully exclude attacks due to the very conservative
analysis made, we note that the estimated gate cost of the attack significantly
increases assuming the need for non-trivial circuits for W (263 — 275-294) or
that the pruning radii found via optimisation cannot be improved (282-2116
c.f. the “UB/UB” columns). We note that the cost of Kyber-512 is the same
in the MAXDEPTH = 26 and MAXDEPTH = 0o cases, since in either case the
quantum depth budget is large enough to fit the attack achieving the overall
optimal classical-quantum enumeration tradeoff.

We remark that for all attacks identified within z < 64, we have k < n/2.
This matches our analysis in Section 3.3 since as k — n/2, the cost of the classical
phase of combined classical-quantum enumeration would approach the cost of
fully classical enumeration, while introducing a further quantum overhead.

An important difference between the bounded- and unbounded-depth set-
tings for combined classical-quantum enumeration is the dependency of the total
cost on the Jensen’s gap 2%. Indeed, while in the unbounded setting the cost of
the attack is simply proportional to 27%, in the bounded setting different values
of MAXDEPTH and z imply different amounts of classical precomputation.

Since we do not have a clear prediction of the exact value of z for different
enumeration tree distributions, we investigate how sensitive the total cost of the
attack is to small changes in z by plotting the predicted classical and quantum
gate costs and QRACM requirements as a function of z. In Fig. 5 we show the
resulting plots for Kyber-1024 at MAXDEPTH = 2%° and 2% in the query-based
model as a representative example. Plots for MAXDEPTH = 24, Kyber-512 and
-768, and for the circuit-based model can be found in Appendix G. Overall, costs
appear to decrease smoothly as z increases without major sudden changes. A
peculiar phenomenon can be observed, namely the optimal attack is not achieved
when the two phases of the attack are balanced. We will elaborate on this next.

Unbalanced classical and quantum cost. In Fig. 5 as well as in Appendix G, the
figures show a gap between the costs of the classical and quantum phases, rather
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Table 6: Legend for plots and tables reporting attack costs under MAXDEPTH
constraint.

Expected GCosT for AES key recovery [41, Tab. 12]
with prob. ~ 1
Expected combined cost of all quantum circuits
enumerating levels below k, cf. Eq. (6)
Lower bounds on the cost of enumeration with extreme
cylinder pruning [12]
Expected # nodes (cf. Eq. (4)) enumerated classically
up to level k
Canonical bit security
Total GCosT Classical cost + quantum cost
Asymptotic runtime of quantum enumeration,
~ 2V NM - (n— k)2
Max. amount of quantum accessible classical memory,

Exp. cost of Grover on AES
Quantum GCosT

Exp. cost of class. enum.
Classical GCosT

2128 2192 2256
’ ’

Quasi-Sqrt (class. cost)

QRACM constraint on 2Y

27 Multiplicative Jensen’s Gap, cf. Definition 1
Cost Value of total GCoST at this point

k Level up to which tree is enumerated classically
MAXDEPTH Constraint on T-DePTH(QPE(W)), cf. Eq. (7)

o # subtrees rooted at level k combined under a single

FINDMYV call, cf. Section 3.3

than having these be balanced. The only parameter determining the classical
cost is k. Since in our observed case the classical cost is always smaller than the
quantum one, the only option for balancing the two would be by increasing k.
Increasing k — k + 1 means that the classical cost increases by an additive term
Hj.1/2, while the quantum cost and the quantum depth approximately change

n—k—1 Hgq1 n—k—1 Hy
n—k Hx and n—k Hpiz

quantum cost overall will depend on whether Hy1/Hj, is larger or smaller than
1 as well as whether a different value of y is chosen as to keep using exactly
MAXDEPTH quantum depth during the attack. From Table 5, it appears that
the optimal attacks we find are in the k < n/2 regime where Hy11/Hy > 1 [34],
meaning that increasing k£ may increase both classical and quantum costs, which
is undesirable. Due to the complexity of an analytic analysis, we believe the
safer approach is looking for the optimal attack computationally. It would then
appear that the lowest classical plus quantum cost is achieved with unbalanced
quantum and classical costs within the constraints we consider.

by a factor

, respectively. How this affects the

Cost estimation beyond lower bounds for QD(W) and WQ(T,W).
In Appendix H, we explore more likely values for QD (W) and WQ(T, W), and
re-estimate the costs presented in this section. Overall, comparing those results
(Table 11 in Appendix H) with Table 5 it would appear that the impact of
using the results from Appendix H.1 over the query-model numbers in Table 5 is

29



smaller than the impact of moving from a query-based to a circuit-based model
for W.

Conclusions. In this paper, we introduced a new quantum algorithm that
combines classical and quantum enumeration to circumvent likely restrictions to
serial quantum computation, developed a heuristic analysis of its cost in terms of
classical and quantum gates and quantum depth, provided lower bounds for the
cost, and studied its hypothetical impact on the cryptanalysis of Kyber in various
settings as a case-study. On the way, we produced various experimental results
on the distribution of subtrees of enumeration trees, and on the hidden constants
of quantum enumeration algorithms. From our estimates on Kyber, we see that
the asymptotic square-root speedup suggested by previous analysis of quantum
enumeration with extreme cylinder pruning are not necessarily guaranteed under
a MAXDEPTH constraint. Rather, achieving asymptotic speedups and “breaks”
depends on a vast array of hypothetical developments, such as cheap quantum
computation and QRACM, better pruning radii and small quantum circuits for
floating point arithmetic, and on known unknowns such as the Jensen’s gap for
the distribution of enumeration subtree sizes.

While we can say with some confidence that quantum enumeration does not
seem to threat parameters in the Kyber-1024 regime, the picture is less clear
for smaller schemes. Yet, we stress again the very conservative nature of our
analysis. Requiring non-trivial circuits for W such as those in [16] would likely
imply security with respect to AES for Kyber-768 and large absolute gate-costs
for attacks against Kyber-512.

We believe that the take-home message of this case-study is that, as analo-
gously noticed in the key-search setting [41], imposing MAXDEPTH limitations
to quantum backtracking appears to present a significant obstacle towards lever-
aging this technique for lattice cryptanalysis.
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Figure5: Cost estimation for Kyber-1024 under MAXDEPTH restrictions with
the instantiation for operator W as in Section 4.1 corresponding to the lower
bound (LB/UB) for Conjecture 3, cf. Table 6 for an expanded legend.
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A Estimating the Size of Lattice Enumeration Trees

In this appendix we perform some standard computations on the size of enumer-
ation trees. We use these to compute the value of Hy in Sections 3 and 5. This
analysis closely follows [34].

Size of the enumeration tree. The cost of lattice enumeration is typically es-
timated to be equal to the number of nodes visited by the algorithm. These
nodes form the “enumeration tree”. If we let Z; be the set of nodes on the kP
level of the tree (that is, at distance k from the root node), Hy be the expected
cardinality of Zj for the enumeration tree of a random lattice basis and N the
expected total number of nodes in the tree visited by the algorithm, we have

1 1
N = ran]gom[#ﬂ o 5 Z ranlgom HZkH - 5 Z Hk’
tree T k=1 tree k=1

where the 1/2 factor is due to exploiting lattices’ additive symmetry to avoid
visiting half of the tree. The cardinality of Z; depends on the pruning strategy
and on the geometry of the projective sublattices implied by the lattice bases,
and can be estimated using the Gaussian heuristic. For example, we have

7. Ball (0, R) N mp_py1(A), using no pruning,
g Cr,.... R NTp—g+1(A4), using cylinder pruning,

where Cg, . r, = {(21,...,21) € RF | Doi< x7 < R3 forall j < k} is the
intersection of cylinders of increasing dimension and non-decreasing radius, and
where the covolume of the projected sublattices m,_x11(A) depends on the
quality of the input lattice basis B = (b1,...,b,), with covol(m,—g+1(A)) =
[T 105 = covol(A)/ TP (bt ||, where B* = (b%,...,b%) is the Gram-
Schmidt orthogonalisation of B.

Cost estimation for the algorithm then reduces to estimating Hj, as done
in [34,12], noting that log N < log (n - maxy Hy/2) € O(logmaxy Hy). We pro-
ceed to illustrate how to estimate Hy, in the case of non-pruned enumeration. We
will use these results, together with the analysis of [12], to numerically estimate
lower bounds for Hy, in the case of cylinder pruning.

A.1 Computing Hy when no Pruning is Used

We start analysing the simpler case of non-pruned enumeration. We start by
recalling the following common heuristics used in lattice cryptanalysis.

Heuristic 1 (Gaussian heuristic) Given a lattice A C R™ of rank n and a
nice enough set S C R”, the Gaussian heuristic states that

vol(.S)

ANS|~ ——~.
| | covol(A)
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For cryptanalytic purposes, often S is set to be an n-ball of radius R > 1.
Choosing S to be the n-ball of unit radius, gives an approximation for the first
minimum of A:

1/n
A1 (A) ~ F(li;%/mcovol(/l)l/". (10)

Heuristic 2 (Geometric Series Assumption (GSA) for BKZ [74]) Let B =
(b1,...,bn) be a BKZ-B-reduced basis for a rank-n lattice A, and let B* =
(b,...,b}) be the corresponding Gram-Schmidt vectors. Let ||bi]l, ..., ||b%]| be

the basis profile. Then the basis profile follows a geometric series

—1/(8-1
1 s i[5 ~ B VO
b7 ]| ~ ag " [[b1]], where ag ~ | (75) :

2me

Furthermore, by an elementary computation using covol(A) = [, |bf|], we
have

[oa]| = (o3 /)" " covol(A) /7.

Heuristic 3 (BKZ-n-reduced inputs) Whenever we enumerate a lattice A
of rank n, we assume the input basis satisfies Heuristic 2, that is that the norms
of the Gram-Schmidt vectors follow a geometric series with constant ou,.

We briefly justify making these assumptions in our setting. To simplify our
analysis, we will assume that quantum enumeration is being performed as a
subroutine to the BKZ lattice reduction algorithm [75,76]. Heuristic 1 is com-
monly assumed, and considered to be accurate already in relatively small di-
mensions [24], and asymptotically tight [11]. Regarding Heuristic 2, while it is
known that the output of BKZ does not exactly match the output of the GSA
due to fluctuations in the head of the basis profile and a concavity due to the tail
being HKZ-reduced, the GSA practically “holds” for most of the basis profile.
Regarding Heuristic 3, in practice it is known [24,39,52] that the quality of a
lattice basis tends to converge to the GSA within the first few tours. Since the
runtime of enumeration improves as the basis quality does, we will conservatively
assume that in the first few tours the GSA for BKZ- is achieved, and that from
then on all enumeration calls on blocks of rank 3 satisfy Heuristic 3.'2 As we
will see, this will imply an asymptotic cost of 252 +0(8) for enumeration. We
note that in practice the 5log /8 exponent can indeed be achieved with appro-
priate local block preprocessing when running enumeration within block lattice
reduction [3].

Armed with Heuristics 2 and 3, we can now estimate the asymptotic cost
of non-pruned enumeration as an SVP solver in rank n. We start considering

12 This is an overly optimistic assumption, both because it ignores the HKZ-shape of
the basis that in practice causes a significant slowdown [3], and because we will rely
on this analysis for the case of cylinder pruning, where the basis is re-randomised,
causing a loss in reduction quality.
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an arbitrary enumeration radius R. Let Ball,(0, R) be the k-ball of radius R
centered at the origin. Using the Gaussian heuristic,

vol(Bally, (0, R))

H,= E [\Ballk(ﬁ, R) mn,kﬂ(/l)@ ~

I'él;gg()%l_l COVOl(?Tn_k+1(/1))
 Eg[l] [l —

= vol(Ball, (0 Cati=l T — yol(Bally (O

vol(Ball (0, )) covol(A) vol (Ball (0, ) - covol(/l)

(n—k— 1)(n, k)

Rk:ﬂ_k/2 ||b*||n k:
= . (11)

I(s+1) covol(/l)

By letting R be the Gaussian heuristic for the first minimum of the lattice (cf.
Eq. (10)), we have

(n—k—1)(n—k)
2

RETH2 |57 Fa,
I +1) covol(A)

Hk"ftj

(n—k— 1)(n k)

I3+ )M LAl

=2 covol(A)*/"
7k/2 vol(4) r+1) covol(/l)
(2 4 1)k/n (n—k—1)(n—k)
- +)1)|Ibill"‘“an FE covol(4) !
2
k/n—1
F(ﬂ + l)k/n n— i— *
:ﬁll i Ha gl
r(z k/n (n—k—1)(n—k) (n=Dn k—n
=T ED T g o, T
(E ) 1 1
2
_ I+ 1)k/” Bk—n)
r+1)

Using Stirling’s approximation for the I" function on R,

reen=vam () (1 o (L)),

we can further simplify the result as

fi n 5 c—mn 2 —n
e ) syt
vk (5)°

In [34], it is observed that most of the nodes are located around level k ~ n/2.
n2
There, the approximation becomes N ~ H,/; ~ (mn)~32% - oy, ® . Using the

_1
“rule of thumb” approximation ay, ? = nﬁ, the leading term in H, /5 becomes
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nP = 2% loan, Using Sagemath’s [80] find_fit function over the approxi-
mation derived from Eq. (12) for N = %22:1 Hj, (with a,, as in Heuristic 2)
evaluated it on {100, 200, ...,1000}, we find log N ~ 0.12463 nlog n—0.25483 n+
0.35621 logn — 0.26238.

A.2 Estimating H; when Cylinder Pruning is Used

Cylinder pruning indicates a potentially vast family of pruning strategies, de-
pending on how the pruning radii 0 < R; < --- < R, = R are chosen, i.e.
on the pruning strategy. Gama et al. [34] analyse the runtime of four pruning
strategies: linear pruning, where R? = (i/n) - R?, for i = 1,...,n; step pruning
functions, where the R; = a - R for some a € (0,1), whenever i < n/2, and
R; = R otherwise; piece-wise linear pruning, a combination of the above; and
numerically optimised pruning.

Upper bounds. For linear, step and piece-wise linear pruning, Gama et al. [34]
obtain asymptotic results on the value of Hy,. While these suggest closed formu-
lae, in the extreme pruning setting using numerically optimised pruning radii
appears to be the strategy returning the smallest enumeration costs.

In their analysis, Gama et al. suggest an approach to deriving a closed formula
for the size of Hj whenever the pruning radii are pairwise equal, meaning Ry =
Ry <R3=R4y<---<R,_1=R,,and niseven. A similar analysis allows them
to determine the success probability of finding the shortest vector using such
a pruning profile. They suggest using interpolation techniques to heuristically
extend this analysis to arbitrary pruning radii and to odd dimensions. While their
exposition is left somewhat implicit, Chen [23, Sec. 3.3| provides fully specified
algorithms to reproducing and extending their analysis.

In practice, finding upper bounds to the values of Hj reduces to finding
optimised pruning radii R; that achieve a required minimum success probability,
and estimating the volume of the cylinder intersections Cr, ... g, , following the
cited analysis [34,23].

The search for optimised radii requires some form of automated monotonic
optimisation technique applied to the cost of pruned enumeration for a given
set of radii. Public implementations include gradient descent and Nelder-Mead
optimisation methods, available in f£pl1l [78], and methods based on cross-
entropy techniques [70] introduced by Chen [23] and Aono et al. [12], available
in the 202205 version of the Progressive BKZ library [79,14].

For our cost estimates, our starting point is the fplll pruning code. We
apply some minor modifications to adapt it to our setting (cf. Section 5.1):

— We disable some minor undocumented tweaks that the fpl1l team applied
to the volume computations by Chen;

— We change the overall cost function being minimised to assume a single
full-dimension enumeration, rather than multiple enumerations with basis
preprocessing;
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— We let the code assume an input basis profile following Heuristic 3.

The resulting code is used to generate optimal pruning radii for the Kyber attack
parameters targeting success probability 2754, We attempted this using four
different pruning strategies in £p111 (“greedy”, “gradient descent”, “Nelder-Mead”
and “zealous”, ie. gradient descent followed by Nelder-Mead), and chose the sets
attaining the smallest cost (in all cases, these are the “zealous” parameters).

We have then attempted to use these parameters as a starting point for the
cross-entropy optimisation code in the Progressive BKZ library, but unfortu-
nately this did not terminate within a reasonable amount of time, meaning that
we kept the “zealous” sets from fplll.

Lower bounds. In [12], Aono et al. propose a technique for computing lower
bounds to the complexity of cylinder pruning in general, for which they are
able to give a closed formula [12, Eq. 16], in terms of the inverse regularized
incomplete beta function and of the values for Hjy in the case of no pruning.
Aono et al. concluded that their results should be reasonably tight. Given the
ease of computing the lower bounds in [12] and their relative tightness, we use
them to estimate a lower bound to Hy numerically as part of our cost estimations.

B Conjecture 3

In this section we report experiments on the quality of E[X]/E[Y] as an “approx-
imate lower bound” for E[X/Y], i.e., we provide experimental evidence support-
ing Conjecture 3.

Ezperimental setup. We run this experiment using either no pruning (n =
46,48, 50,52) or using linear pruning (n = 40,42,...,66). For each n, we gen-
erate 30 random lattices and proceed to perform enumeration using £pl1l [7§],
with pruning radius R = 1.05 - A;(A). For each lattice enumerated, we measure

|Zk| for k =1,...,n and estimate for all k > 1 and k + j > k the relative size of

E(|Zk+;]

|Zk5]
DA compared to E [

|Zk|
|Z;| for every level i of every generated lattice, and estimate

}. To do this, we collect the measured values of

— H; as the mean value of |Z;| across generated lattices,
— E[1/]|Z;]] as the mean value of 1/|Z;| across lattices,

— Cov (|Zky |, 7 ) as the sample covariance between those quantities across
+il [Zg]
lattices.

We then derive an estimate for E [%} by observing that Cov(X,Y) = E[XY]—

E[X]E[Y], and replacing X = |Zy4,| and Y = 1/|Zy|.

Random lattice generation. We generate random lattices as done in [24], and
use to model lattice blocks found during the BKZ reduction. These lattices have
been used to produce predictions for the quality of lattice reduction in [24],
resulting in a popular “BKZ simulator”, and we therefore deem them a viable
tool to model projected sublattices found during block reduction.
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Results. In Figs. 6 and 7, we present a representative selection of the resulting

E[| Zk+;11/E[| Zx ] ;
measurements of W for every 1 < k < k + j < n, for the largest

attained values of n. All plots are available in the code release. Throughout our

. Zho E[| Zky; . L
experiments, we observe E {%] > %w, even as dimension increases.

Some instances (n = 50 without pruning, n = 58 with linear pruning) appear to
peak more than the others. Interestingly, this happens both with and without
pruning, and does not appear to be a function of dimension.
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C Estimating the Size of Lattice Enumeration Subtrees

In this section we elaborate on the number of descendants |Wy, ;(g)| of a node g,
in general for j > 1 and in particular for the number of children C(g) = |Wj.1(g)|.

C.1 Theoretical Analysis
First, we obtain an upper bound to the number of children of a node.

Lemma 1 (Upper bound of C(g)). Let Ry < --- < R,, be the enumeration
radii in pruned enumeration. Let B be a basis of the lattice A of rank n. Let g1
be a guess for mjy1(v) on level k =n— (j+ 1)+ 1 of the enumeration tree . The
number of children of g;j11 on the tree is at most approzimately |z Ry11/|[b}|[] =
|z - Re+1 /][0 _4l|], were z =1 if k =0 and 2 otherwise.

Proof. Recall Eq. (1),

’CﬁE Wi,j Ci
i>]

1
< e VR~ a1
J

2
1 n n
= 1G] RZ,— ) <6r+ > /M,rCz‘) |65 [[2-

r=j+1 i=r+1

Guessing a value g; for 7;(v) consists of picking ¢; € Z satisfying Eq. (1) given
fixed values for ¢; for ¢ > j and for Gram-Schmidt vectors and coefficients.
Letting RHS be the right-hand side of Eq. (1), ¢; € [-RHS—},_ . pij ¢;, RHS—
ij pijci] NS where S =Z if k > 0 and S = Z>¢ if k = 0. The size of such
intersection, and hence the number of valid guesses for c;, is approximately
|z - RHS] for « = 2 if k > 0 and = 1 otherwise. Finally, we note that
RHS < Ry41/l|b}|[, proving the result. O

Expected value of E[|W} ;(g)|]. As part of experiments reported in Ap-
pendix C.2 on non-pruned enumeration for verifying Conjecture 3, we observed
a stronger approximation result, i.e. that Conjecture 3 appears tight for j ~ 1.
We present an attempt at a proof of this heuristic, pointing out the argument
that we are missing for completing it.

Conjecture 4 The lower bound of Conjecture 3 is tight for j =~ 1, i.e.,

(] — |Zk+j] _ Hi .

B W@l = B el S B oy,

The approximation follows from taking the expectation of the Taylor series of %
evaluated at (z,y) = (E[|Zx+,|]), E[|Zx]|]) [Eq. 3.87-88][29].

The error term in the approximation is quadratic in (|Zx4;| — E[|Zk+;]]) and
(I1Zx| — E[|Zk|]). An argument that these estimates are tight would complete
the proof, however they would also imply tightness for general j, and not just
for j ~ 1. While we do not provide a proof, we give experimental support next.
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Table 7: LWE parameters used in lattice reduction experiments.

Secret dimension n Modulo ¢ Standard deviation o #Samples m

72 97 1.0 87

C.2 Experimental Evidence

In the following, we provide experimental evidence for the accuracy of Con-
jecture 4, as well as for the validity of Conjecture 3 and Lemma 1, in the
setting of lattice enumeration without pruning. To verify our conjectures, we
modified a copy of f£plll version 5.4.2 [78] to record the average number of
descendants Sy ; = E[|Wy ;(g)|] of nodes g € Z, where the descendants are
located j levels below g. This includes measuring the average number of children
Sk = E[C(9)] = E[|Wk,1(g)|]. We run experiments on lattices built using the
primal attack embedding by Bai and Galbraith [15]'* on LWE instances (with
standard deviation o used for instantiating discrete Gaussian samplers for er-
ror and secret vector coefficients) estimated to be solved using BKZ with block
size = 60. Given the first minimum \; of the blocks being enumerated, the
enumeration radius is set to R = 1.1 - A\;. We list the parameters in Table 7.

Since Conjecture 3 requires computing Hj, we run our experiments on trees
generated by enumeration without pruning, to avoid the issue of having to com-
pute the volumes of the cylinder intersections used in pruned enumeration as
part of the Gaussian heuristic. While this means that our predictions for the
lower bound are easier to compute, it also means that we run experiments only
up to block size 8 = 40.

Remark 3. Our theoretical treatment of lattices happens in a generous model
where lattice bases achieve the GSA corresponding to BKZ-5 reduced-ness at
all basis indices. Experimentally, this is not easily achievable. To account for this
we take a few precautions:

— We inspect experiment results starting at 10 completed tours of BKZ-3, in
order to give some time for the basis profile to approach the GSA.

— We inspect experiments happening on blocks located approximately half-way
through the basis, in order to protect them from GSA deviations:

e Towards the initial bases vectors due to the presence of several g-vectors;
e Towards the final 3 bases vectors due to these being HKZ reduced, caus-
ing a clear deviation from the GSA.

— We select the highest possible block sizes £p111 would successfully execute
within a reasonable time, to enter the Gaussian heuristic “regime” as much as
possible; unfortunately due to checking heuristics for enumeration without
pruning this means attempting relatively small block sizes.

— As an extra caution we over-impose a plot showing the basis profile on the
block being enumerated for every experiment, and the [24] simulation of the
corresponding block.

13 Positioning the g-vectors at the beginning of the basis.
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Results on C(g) = |Wg,1(g)|- We observe close agreement between our
heuristics and the measurements at block size § = 40. In Fig. 8, we provide two
example plots of a characteristic measurement.

Results on |Wy ;i(g)|, when 7 > 1. In Figs. 9 to 11, we provide example
plots of characteristic measurements. In order to imitate the combined classical-
quantum methodology from Section 3, we pick subtrees reaching towards the
lowest level on the tree. This means fixing a height h € {20,30}, and picking
k = 8 — h when measuring statistics.

We compute E[|Zy;|]/E[| Zk|] for 1 < j < h three times per experiment: us-
ing the measured basis profile, using a simulated basis profile following [24], and
using the geometric series assumption, in order to observe how much the pre-
dictions can differ. We observe that our experiments deviate from the expected
results more than in the case of C(g).

Given the caveats listed in Remark 3, we believe that the measured data
should be compared to the prediction for the lower bound obtained using the
measured basis profile. Out of the cases presented, those where k = 10, h = 30
satisfy the stronger inequality E[|Zx;|/|Zk|] > E[|Zk+;|]/E[|Zx|] when using the
measured profile. This is not always the case for the k = h = 20 case, where
E[|Z+;]]/E[| Zk|] can be slightly above E[|Zj;|/|Zk|], in accordance with the
experiments in Appendix B and with Conjecture 3, although the general shape
seems to be captured by the predictions.

47



- E[C(g € Z)) using [CN11]
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Figure 8: Plots displaying our predictions and measurements for the number of
children C'(g) of anode g € Zj, as a function of k. The green dots are the averages
we measure during the call to enumeration. The blue dashed line is our upper
bound for C(g) given by Lemma 1. Red and black dashed lines are E[C(g)] based
on Conjecture 4 using the measured ||b}|| (“GS”) and a prediction based on the
[24] simulator (“|CN11]”), respectively. In the sub-plot, the green dashed line is
the BKZ simulator’s [24] prediction for the basis profile log||b}||, the blue line

is our measurement.
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series assumption (“gsa”), respectively. In the sub-plot, the green dashed line is
the BKZ simulator’s [24] prediction for the basis profile log||b}||, the blue line
is our measurement.
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D Experiments on the Multiplicative Jensen’s Gap

In Section 5, we presented approximate lower bounds on the cost of combined
classical-quantum enumeration, identifying values of the multiplicative Jensen’s
gap for which the attacks would achieve certain threshold costs. We displayed
these in Table 5 and Tables 9 to 13 in Appendix H.

In this appendix, we present some experiments run on pruned enumeration
trees using fplll version 5.4.2 [78], on the same lattices as used in Appendix C.
We measured the multiplicative Jensen’s gap for subtrees rooted at level k of
height h = 8 — k, for every enumeration tree explored during BKZ reduction
during enumeration of the block spanned by the basis m;(spany (b, . .., bi+s—1)),
indexed by 4. Unlike in Appendix C, in this case we do not need to predict E[| Z;|],
meaning that we can use pruned enumeration as set by default in £p111. This
means that we can run experiments for block sizes 5 > 40.

We present our measurements in Figs. 12 and 13. We observe that the Jensen
gap in the experiments we have attempted seems to be around 2* < 2. While
our experiments are in low dimension and therefore cannot be extrapolated into
cryptanalytic claims, they also suggest that the possibility of enumeration tree
subtrees achieving small multiplicative Jensen’s gaps cannot be immediately
disregarded.

Remark 4. As the block size increases, more re-randomization is performed by
fpl1l1’s default pruning strategy, consequently resulting in a denser dataset for
B = 70 than for 8 = 50.
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Figure 12: Measurement on the Jensen’s gap of subtrees of height h = 5 — k
rooted on level k in pruned enumeration experiments. The height h is reduced in
the last few blocks of the basis of dimension smaller than 8. As the block index 4
increases, we plot the measurements done during enumeration of the projective
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sublattice 7; (spang (b, . .

72 (cf. Table 7), block size 8 = 70, 10" tour, k = 20.

green dots are the average of the squared root.
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E Conjecture 2

In this section we report experimental evidence supporting Conjecture 2, that
is the observation that the number of nodes in subtrees of the enumeration
tree rooted at the same level k is approximately constant, independently of the
number of subtrees previously visited.

We reuse the same experimental setup and lattices used in Appendix D, and
record the size of each subtree 7(g) rooted on some node g € Zy. We refer the
reader to Appendix D for details on the lattices being reduced.

We report results for (n,k) = (40,20), (50,30). While we ran experiments
on larger dimensions, the number of subtrees grows fast enough that storage of
intermediate results becomes a bottleneck.

In Figs. 14 and 15, we plot the size of each subtree rooted on level k that
we encounter, in the order we encounter them. We also plot the mean size we
measure, as well as the measured value of >_ /-, | Zj+;|/|Zk|, which which should
exactly match the mean (and does), as >, [Zg+;| includes all nodes in all
subtrees rooted at level k. We observe that the sizes of the visited subtrees appear
to be similar regardless of when a subtree is encountered, except for a handful of
initial subtrees which correspond to the initial moments of enumeration, where
the coefficient vectors being tried are very sparse, and hence the subtrees are
plausably full of relatively short vectors.

To test whether this similarity of subtree size would translate to collections
of trees, in Figs. 16 and 17 we collect sequential nodes in sets S; of size 2¥, for
y = 4, akin to the trees that would be collected under “virtual nodes” in combined
classical-quantum enumeration. We exclude form this collection the very first
subtree, which as we mentioned appears uncharacterisitcally larger than the oth-
ers. We also plot the average size of these sets S;, as well as 2 - 3.+, [ Zy4|/| Zk|
(which in this case may slightly deviate from the average due to the last virtual
tree not necessarily collecting exactly 2¥ subtrees and due to the exclusion of
the first large subtree). While a mildly decreasing trend appears in the n = 40
plots, this is not apparent in the n = 50 plots.

A natural question that arises regards what exactly is the distribution of
the number of nodes in a subtree. In Figs. 18 and 19 we present histograms
corresponding to the encountered sizes of subtrees rooted on level k. For legibility
purposes, we exclude from the plot the first and larger subtree, which causes the
histograms to be significantly compressed due to the plotting software trying to
fit the outlier bin with a single item inside. We can see that the distribution
appears bimodal, with a first mode around very small subtrees, followed by a
second, wider mode with a local peak around the average size of subtrees. We
observe that successfully modeling this distribution would possibly allow for a
theoretical estimation of the multiplicative Jensen’s gap, either directly or via one
of the lower bounds in Appendix I, and hence would allow to clearly determine
for which parameter sets a quantum enumeration attack would not work.
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F Instantiation of W

In this appendix, we add a few more details to the analysis done in Section 4.

F.1 Components of W

Given a tree T of height h, Montanaro [57] defines the operator W using two
operators R4 and Rp, the first acting on all nodes with even distance from the
root, and the second on all nodes with odd distance. The implementations of the
two operators are nearly identical, and as such we will only capture the original
description of R4 [57, Alg. 3] by decomposing it into the following operators:

Usetup: quantum operator that prepares the quantum state by advancing the
variable assignment (i.e., level k of the tree), and ensures that the operator
acts on the correct set of nodes (i.e., even or odd levels for Usetup(r,) OF
Usetup(R.4)» Tespectively).

U,,s: quantum operator that generates a superposition of children of a node,
performing the map |0) — |@q,s), where S is the set of all children of a node.

Up: quantum operator that computes the norm of the projected lattice point
being inspected, and compares the length of the projection with the pruning
bound R;. The predicate is executed to identify the children of a node.

Up: reflection through |0). Together with the operator U, s it performs the dif-
fusion operation I — 2|dq,s) (Pa.s|-

Utncompute: quantum operator to uncompute the ancillary states and the in-
version of the setup step Usctup-

F.2 Quantum Arithmetic

Smallest known arithmetic circuits. The quantum arithmetic literature contains
many design proposals for integer and floating point adders and multipliers. Gen-
erally, most algorithms are either “ports” of classical designs [28,37,38,61,59], or
they rely on the quantum Fourier transform (QFT) to evaluate these opera-
tions [71,47]. As not all papers work using the same metrics or even quantum
computing architectures, direct comparisons and trade-off evaluations can be dif-
ficult. For example, Pham and Svore [63] claim additions in constant depth and
multiplications in logarithmic depth, however this seems to require a specifically
designed quantum architecture. For a rule-of-thumb estimation of our attack
costs, we opt to chose potentially more common asymptotics for adders and
multipliers achieving the smallest 7" counts and depths in our literature review
(other than [63]). We report these in Table 1, and ignore constants and lower
order terms hidden by the O. Whenever numbers of different bit lengths are mul-
tiplied, we conservatively assume both to have the smaller length, since we have
not found sources describing quantum circuits for unbalanced multiplication. For
the “x < y” comparison operator, we use a circuit with the same asymptotic size
of an adder [28].
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Floating point numbers. We also define a value ¢ that equals the amount of float-
ing point precision required to store the coefficient of the basis vectors b;. The
literature on this topic either proposes algorithms for estimating the required pre-
cision [67,27], appearing this to be about ©(n), or uses double precision [40]. We
notice that while the £p111 library [78] includes support for arbitrary precision
floating point numbers, often experiments use double- or quadruple-precision
floating point numbers. As a conservative choice, we observe that any setting
where quantum-enumeration would be advantageous would likely result in re-
quiring more than double-precision, since otherwise cheap classical implementa-
tions are available, and therefore consider £ = 53 to be a lower bound on the
required precision.

F.3 Arithmetic Cost

Depth and cost estimation of WW. In our setting, quantum enumeration is being
performed on a tree T(g € Zi) of height h = n — k, where n is the dimension of
the full lattice A being enumerated. This process would require performing arith-
metic using the projected lattice basis vectors (m,—k+1(bg+1);- -+ Tn—k+1(bn))
of A. In an attempt to unburden notation, in this paragraph we temporarily
relable these as (b1, ...,by), and consider them to be h-dimensional by applying
an appropriate rotation. Our estimate for the cost of each component of W™in
is then:

Usetup: sets up the states, we assume GCOST(Usetup) = T-DEPTH(Usetup) = 0.

;’)‘é“: generates a superposition of the children of a node. At a bare minimum,

this requires a uniform superposition Z?:_é |i) which is computed by a sin-

gle (parallel) layer of Hadamard gates. Since we are only accounting for

T, we assume T-DEPTH(U2Y) = T-DEPTH(UB™) and GCosT(UY) =
GCosT(U®™), as Hadamard gates do not contribute 7' gates.

Ug‘i“: evaluates the predicate P which identifies projected vectors v € m,_p+1(A)
such that ||[v|| < Ry and 7,41 (v) = g, for all levels k < £ < n. In order to
lower-bound the cost of this operation, we only consider the case of evaluat-
ing this inequality at £ = n, where the condition becomes checking whether

Table 8: Assumed cost of arithmetic operations in U%®. Each operations has
input numbers of bit length x; and outputs numbers of size x;11

Operation Input bit lengths T-DEPTH GCosT
ciy (bi);) — ci(bi); Zo = min(A, &) log?(z0)  h2xo log(zo) log(log(xo))
(Cl(gl)J i Zz Cz(gz)] xr1 = A +£ loghlog(:rl) h2.131
Yici(ba); = (3, calbi);)’ z2 = A+&+logh log?(x2)  hazlog(w2)log(log(z2))
(i) = 12 ebill> @ =2(A+&+1logh)  loghlog(xs) has
1Y, eibil* < R? = ||glI> 4 = 2(A + & +logh) +logh  log(za) T4
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Figure 20: Minimal quantum circuit of U™,

1> i<n cibi]]2 < R%—||g]|2.** The cost of the operation needs to account for
at least the cost of the following operations (summarised in Table 8):

1. Parallel multiplication of h? pairs (c;, (l_);)j) — ci(gi)j, of A- and &-bit
length, outputting numbers of bit length A +¢. =

2. Addition of coefficients (c1(b1);,...,cn(bn);) — >;ci(by); for j € [h].
These additions can be run in parallel over j. For a fixed j, the corre-
sponding sum is run by adding terms in pairs, forming a binary tree of
sums. Each ), ci(l_J;-)j output is A + £ + log h bits long.

3. Squaring the ) . cl(l_;z)] sums in parallel (output bit length 2(\ + £ +
log 1)) and adding them in a binary-tree fashion to obtain || Y., cibil|? =
>0 ci(gi)j)Q of bit length 2(A + £ 4 log h) + log h.

4. The last operation is the comparison with the (adjusted) pruning bound
R? — |g]>.

We depict the implementation of the minimal U%" implementation in Fig. 20.
Up: the quantum operator computing 2 |0) (0| —Id (with Id the identity operator)
which requires mult-controlled-Z gates, we estimate requiring at least one T’
gate.
Utncompute: We conservatively assume that uncomputation does not require T’
gates, as in the case of measurement-based uncomputation of AND gates
in [41], and assume T-DEPTH(Uuncompute) = GCOST(Utncompute) = 0.

' In classical implementations, this computation benefits from extensive caching of
Gram-Schmidt orthogonalisation operations and results [78]. Asymptotically, the
number of individual arithmetic operations is the same as if computing directly
from the basis (b1,...,bp).
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G Further results from Kyber Parameters

G.1 Tables for the Quasi-Sqrt and the Canonical Bit Security

As an alternative to the comparison with the cost of Grover on AES one can
check whether the attack cost under depth constraints ever achieves a “quasi-
quadratic” speedup over classical enumeration (meaning going from #7 gates to
V#T - h, where h is the height of 7), as it could be expected from Theorem 1.
Alternatively, for a scheme like Kyber-512 (with analogous notions for -768 and
-1024), one could consider an attack successful if its gate cost is lower than
geanonical bit security — 9128 " a]heit this is explicitly not the cost metric chosen by
NIST and hence plausibly not targeted by the Kyber team.

G.2 Figures for the Query-based Result

In this section we present the figures from our estimations of the cost of quantum
enumeration that we have not reported in Section 5. For all cost estimations the
quantum operator GCOST(W) and T-Depth(W) are estimated as in Section 4.1
and with DF(W), QD(W), WQ(T, W) as in Section 3,
— Fig. 23c¢ shows the cost estimation for Kyber-512 with T-DEPTH(QPE(W)) <
204,
— Fig. 22 shows the cost estimation without any MAXDEPTH constraint on
T-DEPTH(QPE(W)).
— Fig. 23 shows the cost estimation for Kyber-768 and Kyber-1024 assuming
T-DePTH(QPE(W)) < {240,264 2961,
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Table 9: Summary of the values for the Jensen’s gap 2% at crossover points
of our combined classical-quantum enumeration attacks against Kyber and the
quasi-square root speed up v#7 - h. We remark that exact crossovers happen
at fractional values of z. In this table we round down threshold values of z.
MAXDEPTH is abbreviated to MD. Cost is as in Table 6

less likely to be feasible

I more likely to be feasible

Crossover points when comparing quasi-square-root against the total GCosT (cf. Table 6) with ...

... W as in Section 4.1 ... W as in Section 4.2
MD Kyber  LB/UB UB/UB LB/LB H LB/UB UB/UB LB/LB
512 #20k<25 0 2>29 k<11 z>25k<59 z2>2k<24
Cost > 2% Cost > 2% Cost > 2% Cost > 2%
768 228 EST5 z> 25k <67
240 Cost > 2166 Cost > 2164
-1024
512 220k<2 [ 23ITE<1T 2>13,k<59| 2>0,k<26 [NZSBIKKEN|12520k< 54
Cost > 2% Cost > 2% Cost > 2% Cost > 2™ Cost > 2% Cost > 2%
768 220 k<64 z> 13,k <67
264 Cost > 2157 Cost > o164
> 28,k < 105
11024 = <SPS
Cost > 2262
512 z2>0,k <26 z2>1,k<2 z2>0,k<40 z>0,k <26 z>24,k<1 z>24,k <40
Cost > 2%3 Cost > 2% Cost > 2% Cost > 27 Cost > 2% Cost > 2%°
s 22 0k<53 2> 0,k < 64
2% Cost > 2126 Cost > 21°8
1024 ? =12,k <100 z>29,k <100
Cost > 2762 Cost > 222
512 z>0,k <26 z2>0,k<1 z>0,k <40 z2>0,k <26 z2>24,k<1 2>24,k<40
Cost > 293 Cost > 2°7 Cost > 2% Cost > 27 Cost > 2% Cost > 2%
768 z>0,k <37 z2>2,k<3 z>0,k<31 z2>0,k <37 z2>28,k<3 2>25k<3l
00 Cost > 2113 Cost > 2! Cost > 216% Cost > 2138 Cost > 2170 Cost > 216°
21024 z>0,k <33 z2>2,k<3 z2>0,k<1 z>0,k <33 2>29,k<3 z>26,k <11
Cost > 2206 Cost > 2269 Cost > 2262 Cost > 2232 Cost > 2768 Cost > 2763
512 220k=0 z2>0,k=0 z2>0,k=0 z2>24 k=0 z2>24 k=0 z2>24 k=0
Cost > 2% Cost > 297 Cost > 259 Cost > 2%° Cost > 2% Cost > 2%°
768 z2>0,k=0 z2>0,k=0 z2>0,k=0 z2>25k=0 z2>25k=0 2>25k=0
OOk=0 Cost > 216° Cost > 2170 Cost > 216° Cost > 216° Cost > 21 Cost > 216°
1024 z>0,k=0 z2>0,k=0 z2>0,k=0 z2>26,k=0 z2>26,k=0 z2>26,k=0
Cost > 2262 Cost > 2268 Cost > 2262 Cost > 2263 Cost > 2269 Cost > 2263
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Table 10: Summary of the values for the Jensen’s gap 2% at crossover points
of our combined classical-quantum enumeration attacks against Kyber and the
canonical 128,192, 256 bit security respectively. We remark that exact crossovers
happen at fractional values of z. In this table we round down threshold values
of z. MAXDEPTH is abbreviated to MD. Cost is as in Table 6

less likely to be feasible

more likely to be feasible

Crossover points when comparing the canonical bit security against the total GCosT (cf. Table 6) with ...

... W as in Section 4.1

... W as in Section 4.2

MD Kyber  LB/UB UB/UB LB/LB H LB/UB UB/UB LB/LB
g F20k<2  z>15k<2  2>6k<92 | 2>0k<27 [ 2330,k<24 z>22,k<96
Cost > 2% Cost > 2'26 Cost > 2'%7 Cost > 2% Cost > 227 Cost > 2'26
768 z22>0,k <87 z>12,k <80
240 Cost > 2184 Cost > 219%
-1024
5o 220k<2  2>3k<28  2>0k<83| 2>0k<26 2>18k<2 2>10,k<79
Cost > 2% Cost > 2126 Cost > 211° Cost > 2™ Cost > 2127 Cost > 2127
768 z>0,k <64 z>0,k <67
264 Cost > 2157 Cost > 2190
> 32,k <100
11024, = oS
0 Cost > 2%5¢
g F20k<26  2>0k<2  z>0k<40|| 2>0k<26 2>3,k<5  z>0k<46
Cost > 2%3 Cost > 2190 Cost > 2% Cost > 27 Cost > 2126 Cost > 211°
768 z >0,k <53 z2>28,k<33 2>22k<T77 z>0,k <64
2% Cost > 2126 Cost > 2190 Cost > 2191 Cost > 2158
2> 16,k < 100
512 z2>0,k<26 z2>20,k<1 z>0,k <40 z>0,k <26 z2>0,k<1 z>0,k <40
Cost > 293 Cost > 2°7 Cost > 2% Cost > 27 Cost > 2122 Cost > 2113
768 z2>0,k <37 2>0,k<3 z2>0,k<31 z>0,k <37 z2>T,k<3 z2>0,k<31
o] Cost > 2113 Cost > 217 Cost > 216% Cost > 2138 Cost > 219t Cost > 2190
o4 Z20k<33 | z>16k<3  2>Tk<1 2>0,k <33
Cost > 2206 Cost > 22°° Cost > 2%°° Cost > 2232
512 2>0,k=0 2>0,k=0 2>0,k=0 z2>0,k=0 z2>0,k=0 2>0,k=0
Cost > 2% Cost > 2°7 Cost > 2% Cost > 2114 Cost > 2122 Cost > 2114
768 z2>0,k=0 z2>0,k=0 z2>0,k=0 z2>0,k=0 z2>5k=0 z2>0,k=0
OOk=0 Cost > 216° Cost > 2170 Cost > 216° Cost > 2190 Cost > 2191 Cost > 2190
024 F2Tk=0 2>13k=0 2>T,k=0
Cost > 225 Cost > 225 Cost > 225

67



- - - Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
------------ Canonical bit security of Kyber
Expected cost of classical enumeration
—— Quantum GCost

Total GCost
—— Classical GCost
QRACM
5009 T
450
] z=0
400 Cos€s325 2=28
350 1 k=139 Cost =263
y=2 k=105
300 I y=5 2=32 z=49
o — Cost=255 Cost=221
(e} A e e i e, SR k=100.5m k=100 - - =
= T y=h— p VTR ]
2001 B R S
1501
100
501
0 T T T T T T
0 10 20 30 40 50 60

Log(Jensen's Gap) z
(a) Kyber-1024, MAXDEPTH = 2%,

Figure 21: Cost estimation for Kyber-1024 under MAXDEPTH restriction 264 with
the instantiation for operator W as in Section 4.1, cf. Table 6 for an expanded
legend, corresponding to the lower bound (LB/UB) for Conjecture 3.
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(a) Cost estimation for Kyber-512 without MAXDEPTH (b) Cost estimation for Kyber-768 without MAXDEPTH
restrictions. restrictions.
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(¢) Cost estimation for Kyber-1024 without MAXDEPTH
restrictions.

Figure 22: Cost estimation for Kyber with the instantiation for operator W as
in Section 4.1 and with DF = 1, QD = 1, b = 1 (see Section 3), corresponding
to the lower bound (LB/UB) for the Conjecture 3.
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(f) Kyber-768, MaxDepTH = 2.

Figure 23: Cost estimation for Kyber-512 and -768 under different MAXDEPTH
restrictions with the instantiation for operator W as in Section 4.1 and with
DF =1, QD =1, b =1 (see Section 3), and corresponding to the lower bound

(LB/UB) for Conjecture 3.




G.3 Figures for the Circuit-based Results

Next we present additional figures of quantum enumeration cost estimation to
the ones in Section 5. As before, GCOST(W) and TDepth(W) are estimated as
in Section 4.2 and DF (W), QD(W), WQ(T,W) as in Section 3,

— Fig. 24 shows the cost estimation without any MAXDEPTH constraint on
T-DePTH(QPE(W)).

— Fig. 25 is the cost estimation for Kyber-512 with T-DEPTH(QPE(W)) < 264.

— Fig. 26 shows the cost estimation for Kyber-768 and Kyber-1024 assuming
T-DEPTH(QPE(W)) < MAXDEPTH € {210,264 2961

71



Quasi-Sqrt(classical cost)

Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
—— Quantum GCost

Quasi-Sqgrt(classical cost)

Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
—— Quantum GCost

Total GCost Total GCost
—— Classical GCost —— Classical GCost
QRACM QRACM
"""""""""""""""""""""""""""" 300
150
250 1
220 2001....,.0
2 100 {cost<76 o Cost =139 _
R 0 b bl ettt JR- YOS i == £ i
y=37 150 ’_£64 k=37
—_— — y=64
] — _V ~ 100 —
T \]\ 50
0 T T T T T \ T 0 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Log(Jensen's Gap) z Log(Jensen's Gap) z

(a) Cost estimation for Kyber-512 w/ MAXDEPTH = oo. (b) Cost estimation for Kyber-768 w/ MAXDEPTH = oo.
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(c) Cost estimation for Kyber-1024 w/ MAXDEPTH = co.

Figure 24: Cost estimation for Kyber w/o MAXDEPTH restriction and for oper-
ator W as in Section 4.2 and with DF =1, QD = 1, b = 1, and corresponding
to the lower bound (LB/UB) for Conjecture 3.
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(c) Kyber-512, MaXxDEpPTH = 2%°

Figure 25: Cost estimation for Kyber-512 under different MAXDEPTH restrictions
with operator W as in Section 4.2 and with DF = 1, QD = 1, b = 1, and
corresponding to the lower bound (LB/UB) for Conjecture 3.
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(e) Kyber-768, MaxDEpTH = 2%

Figure 26: Cost estimation for
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(d) Kyber-1024, MaxDepTH = 254,

- - Quasi-Sqgrt(classical cost)

---- Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost

Total GCost
—— Classical GCost
QRACM
500
4504
4004 z=0
Cost =321 z=29
1 k=109 Cost < 263
350 y=5 0|<s=100
3 y=47 =
o300 T — / Cobt 2255
3250;—77—77—70——\-—77—9_1,"\ 777777777
y=55-_
10 [0 e S ————— L T
150 TT—
1004
501
0 T T T T T T
0 10 20 30 40 50 60

Log(Jensen's Gap) z

(f) Kyber-1024, MaxDepTH = 2%.

Kyber-768 and Kyber-1024 under different

MAXDEPTH restrictions with the instantiation for operator W as in Section 4.2
and with DF =1, QD = 1, b = 1 (see Section 3), and corresponding to the lower

bound (LB/UB) for Conjecture 3.




H Beyond Lower Bounds for DF, QD, WQ

In this section, we discuss alternative lower bounds for the quantities representing
the number of calls of the FINDMV and DETECTMV (cf. Fig. 1), such that the
depth and gate-cost of FINDMV (of a tree T being searched be of depth h and
the degree of each node be bound by C) amount to

T-DeEpTH(FINDMV (7)) = DF(T7) - QD(T) - WQ(T, W) - T-DEPTH(W)
GCosT(FINDMV(T)) = DF(T) - QD(T) - WQ(T, W) - GCosT(W).

In what follows, we first describe the alternative analysis and then provide
respective experimental results.

H.1 Alternative Bound Estimation

DF(T). As mentioned in Section 3.1, the analysis in [13] assumes an implicit
transformation of 7 into a binary tree of depth hlogC. DETECTMYV is then
called on the root level, in order to detect whether marked vertices are in the
tree. If no marked vertices are found, no more calls are required, and DF(T) = 1.
If there are, further calls are made to identify the path from the root to the
marked leaf, akin to a binary search. In total, in order to identify one marked
leaf in T (or return error),

1, if 7 contains no marked leaves,

DF(T) = {

hlogC, if T contains at least one marked leaf.

In the setting of combined classical-quantum enumeration, most of the Hy/2Y
trees T(g) explored will not contain any marked leafs. Given that the quantum
GCosT is estimated (cf. Eq. (6)) as

E_[Quantum GCost] ~ % . % .E [GCosT(FINDMV(T(9)))]

tree T

1 Hyg

=5 5y EIDF(T(9)) - QD(T(9)) - WQ(T(9), W) - GCosT(W)],
we could set DF(T(g)) = (s — 1+ hlogC) - %~ with h = n — k + 1 during
cost, estimation, to capture how when the enumeration radius is short enough,
hlogC calls will likely be made on only one of the subtrees, and one call will be
made to the remaining 2{,{% — 1 many subtrees.

This discussion implicitly assumes the correctness of DETECTMYV, which
however can return incorrect results, increasing the complexity of an estimation
on DF. One option would be running DETECTMYV multiple times per level,
with the amount of repetition depending on analysis of the specific DETECTMV
implementation, as well as the noise model of the quantum computer.

A simpler analysis would be to estimate the failure probability of FINDMV

when calling DETECTMYV once per level, assuming a tight failure probability
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upper bound for DETECTMV(T) of dpmy. Then, the success probability of
FINDMYV would be about (1—8pny )PP, which is O(1) if dpyy ~ 1/DF(T).1
Since a priori we do not know whether 7 contains a marked vertex, this would
mean implementing DETECTMYV such that dpyyv = (hlogC)~1, to account for
the in-principle hlogC successful calls required to detect the marked vertex in
its subtree. We proceed to do this next.

QD(T). The way DETECTMYV [57, Alg. 2| is computed is by performing multiple
times, say K many, quantum phase estimation (QPE) on the W operator.

Let X; be a random variable valued 1 when the i‘" call to Q PE(W) returned
an eigenvalue 1, and valued 0 otherwise, and let Y = Zie[ K] X;. The X, are
then i.i.d. Bernoulli random variables. Let MV denote the event that a marked
vertex is contained in 7 and MV the opposite event. The core idea around
DETECTMYV is that whenever a marked vertex exists, QPE(W) will tend to
return 1, and 0 otherwise. Indeed, from [57, Proof of Lemma 2.4] we have that
p1 = Pr[X; = 1| MV] < 1/4 and py == Pr[X; = 0 | MV] < 1/2. In order
to decide whether a tree contains a marked vertex, we run K instances of QPE
on W, and then check whether enough instances returned 1. Namely, for some
fixed @ € (0, 1] to be determined, we return “marked vertex exists” if and only
if Y > aK.

As seen in the previous paragraph on DF(7), we may want to fix a target
failure probability dpyy for DETECTMV, which can be achieved by picking K
high enough. We start assuming we have found «, and use Chernoff bounds
to estimate upper bounds on the “false positive/negative” probabilities Pr[Y” >
aK | MV]and Pr[Y < aK | MV]. By direct computation of the bound, recalling
that the X, are i.i.d., we have

Pr[Yix > aK | MV] < exp(—taK)E [exp(tYk)] = exp(—taK)E

K
H exp(tXi)]

1+ py(exp(t) — 1)>K
exp(at) ’

= exp(—taK)E [(exp(tX1))]" = (

for any t > 0. For Pr[Yx < aK] a similar computation on the left tail gives

K
1—
Pr[Vi < oK | MV] < (eXp(t) + pal eXp(t”) , for any ¢ < 0.
exp(at)

€
We then identify values of o and e such that inf,~g (%W) < 1/2

exp(t)+p2(1—exp(t))
exp(at)

€
and inf, g ( ) < 1/2. From a numerical search, and picking

the smallest possible € returned, we observe a valid pair at @ = 0.369017 and

5 Specifically, it approaches e ! as dpmv — 0.
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¢ = 20.'6 Finally, we compute

Pr{Yy > ok | V] < inf (L2t = 1)
exp(at)

K
< K/E
) =
and similarly for Pr[Yx < oK | MV], suggesting that to get an overall failure
probability of at most dpay, one should choose K /e > log(1/dpamy ). Therefore,
it should be sufficient to choose

QD(T) = K = [20log(hlogC)]| > elog(1/dpmv).

H.2 Experimental Results Using Alternative Bounds

We replicate the analysis performed in Section 5.2, estimating the cost of a com-
bined classical-quantum attack as described in Sections 3.2 and 3.3. In Tables 12
and 13 we summarize the values for the Jensen’s gap 2% at crossover points of our
combined classical-quantum enumeration attacks against the quasi-square-root
and the canonical 128,192,256 bit security of Kyber.

The tables corresponds to attacks in the settings for W as in Section 4.1 and
Section 4.2 with DF(W) and QD(W) as in Appendix H.1 (with C = 1), and
b=1/64 in WQ(T,W). We note that we must set C = 1 since we don’t have
a better lower bound available, again resulting in DF(W) = QD(W) = 1 lower
bounds.

16 Tn particular, our value of « is quite close to the 3/8 = 0.375 proposed in [57]. This
latter value would however imply € = 22.
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Table 11: Summary of the values for the Jensen’s gap 2% at crossover points
of our combined classical-quantum enumeration attacks against Kyber and the
cost of Grover’s search against AES (cf. [41, Tables 10 and 12]). We remark that
exact crossovers happen at fractional values of z. In this table we round down
threshold values of z. MAXDEPTH is abbreviated to MD. Cost is as in Table 6.
The results are estimated from the bounds C = 1,DF(W) = 1, QD(W) = 1,

b=1/64.
less likely to be feasible  ENENEG_—_—EE more likely to be feasible
Crossover points when comparing Grover on AES against the total GCosT (cf. Table 6) with ...
.. W as in Section 4.1 ... W as in Section 4.2
MD Kyber LB/UB UB/UB LB/LB | LB/UB UB/UB LB/LB
512 #20,k<25  2>26k<11 22>18,k<83 220,k <39
Cost > 2™ Cost > 2116 Cost > 2115 Cost > 2110
768 2=8 k<84 22>23,k< 73
940 Cost > 217 Cost > 2180

512 #>0,k<26 z2>26,k<9 z> 18,k <64 z2>0,k<24
Cost > 263 Cost > 292 Cost > 2! Cost > 282
768 22T k<64 2> 23,k < 67
964 Cost > 219° Cost > 2196
512 22>0,k<26 z2>21,k<1 2z>13,k<40 z>0,k <26
Cost > 263 Cost > 282 Cost > 282 Cost > 28!
768 #2>T,k<53 z22>25,k <43
296 Cost > 2124 Cost > 2124
-1024
512 #>0,k<26 z>21,k<1 z>13,k < 40 z2>0,k <26
Cost > 2 Cost > 252 Cost > 257 Cost > 25!
o0

768 225,k <37 2>30,k <37
Cost > 214 Cost > e
»1024—

5 2>13,k=0 z2>21,k=0 z2>13,k=0
Cost > 2%2 Cost > 252 Cost > 2%2

-768

-1024
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Table 12: Summary of the values for the Jensen’s gap 2% at crossover points
of our combined classical-quantum enumeration attacks against Kyber and the
quasi-square root speed up v#7 - h. We remark that exact crossovers happen
at fractional values of z. In this table we round down threshold values of z.
MAXDEPTH is abbreviated to MD. The results are estimated from the bounds
C=1,DFW)=1,QDW) =1,b=1/64.

less likely to be feasible NG more likely to be feasible

Crossover points when comparing quasi-square-root against the total GCosT (cf. Table 6) with ...

... W as in Section 4.1

... W as in Section 4.2

MD Kyber  LB/UB UB/UB LB/LB | LB/UB UB/UB LB/LB
512 22>0,k<25 z2>8k<24
Cost > 274 Cost > 2%
768 22> 14,k <75
940 Cost > 2166

512 220k<26 | 2323 k<11 2>19,k<59| z>0,k<24
Cost > 23 Cost > 2% Cost > 2% Cost > 282
768 22>2,k<64 z>19,k <67
964 Cost > 2'9° Cost > 2'64
512 220k<2 z>Tk<2  2>5k<40| z2>0k<26
Cost > 2%3 Cost > 2% Cost > 2%° Cost > 251
768 2> 0,k<61 2> 3,k <67
996 Cost > 2137 Cost > 2164
_1024 2= 18,k < 100
Cost > 2262
512 22>0,k<26 z2>6,k<1 z>5,k <40 z2>0,k <26
Cost > 2%3 Cost > 2°7 Cost > 2%° Cost > 281
768 2>0,k<37 z>8,k<3 z>5,k<31 z>0,k <37
P Cost > 2119 Cost > 21 Cost > 2166 Cost > 2144
024 #>0k<33  z>8k<3 2>5k<1 2>0,k <33
Cost > 2212 Cost > 2269 Cost > 2263 Cost > 2738
512 z2>6,k=0 z2>6,k=0 z2>6,k=0
Cost > 2% Cost > 2°7 Cost > 2%
768 226,k=0 z2>6,k=0 z2>6,k=0
Ok=0 Cost > 216% Cost > 2170 Cost > 216%
1024 226,k=0 z2>6,k=0 z2>6,k=0
Cost > 2262 Cost > 2268 Cost > 2262

79



Table 13: Summary of the values for the Jensen’s gap 2% at crossover points
of our combined classical-quantum enumeration attacks against Kyber and the
canonical 128,192, 256 bit security respectively. We remark that exact crossovers
happen at fractional values of z. In this table we round down threshold values
of z. MAXDEPTH is abbreviated to MD. Cost is as in Table 6. The results are
estimated from the bounds C = 1,DF(W) =1, QD(W) =1, b = 1/64.

less likely to be feasible

more likely to be feasible

Crossover points when comparing the canonical bit security against the total GCosT (cf. Table 6) with ...
.. W as in Section 4.1

.. W as in Section 4.2

MD Kyber LB/UB UB/UB LB/LB | LB/UB UB/UB LB/LB
512 2>0k<25  2>21,k<28 2>12,k<92]| 2>0,k<39 2> 28,k <96
Cost > 27 Cost > 2126 Cost > 2'%7 Cost > 210 Cost > 2126
_768 z2>3,k<92 z> 18,k <80
910 Cost > 2191 Cost > 9191

512 2>0,k<26 z>9,k <28 z>0,k<92 220,k§24 z>24, k<24 z22>16,k<T79
Cost > 2% Cost > 2'%6 Cost > 2'%7 Cost > 2% Cost > 2'27 Cost > 2'%7
768 #>0,k<64 z>6,k <67
964 Cost > 2169 Cost > el
512 220k<2 z>0,k<4  2>0,k<40 z20,k§26 2>9k<5  2>0,k<58
Cost > 2%3 Cost > 2112 Cost > 2% Cost > 251 Cost > 2126 Cost > 2127
768 220,k<61 2> k<TT|| 2>0,k <67
996 Cost > 2137 Cost > 2191 Cost > P
-1024 2= 22,k <100
Cost > 2274
512 220k<2  z20k<1  z>0,k<40 zZO,kSQG z>1,k<1  2>0,k<40
Cost > 2%3 Cost > 2193 Cost > 2% Cost > 281 Cost > 2127 Cost > 2119
768 220k<37  z2>0k<3 2>0k<3l| 2>0k<37T 2>13,k<3 z>5k<3l
P Cost > 2119 Cost > 217 Cost > 2! Cost > 2144 Cost > 219t Cost > 219t
024 #>0,k<33 | 2222k<3 2>13,k<1| 2>0k<33
Cost > 2%!2 Cost > 2%%° Cost > 2%%° Cost > 223
512 220,k=0 z2>0,k=0 z2>0,k=0 z2>0,k=0 z>1,k=0 z2>0,k=0
Cost > 2% Cost > 2193 Cost > 2% Cost > 2120 Cost > 2127 Cost > 2120
768 220,k=0 z2>0,k=0 z2>0,k=0 z2>5,k=0 z2>11,k=0 z2>5k=0
Ok=0 Cost > 2! Cost > 2176 Cost > 2! Cost > 219t Cost > 2191 Cost > 2191
1024 2213,k=0 2219k=0 2>13,k=0
Cost > 22 Cost > 2%%° Cost > 2%%° ---
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I Lower-Bounding Additive and Multiplicative Jensen’s
Gaps

Let X be the random variable for #7 with support supp(X) C [1,+00), p =
E[X] < o0, 0% = V[X] < co. In this section, we explore two different deriva-
tions for lower bounds of the additive (\/E[X] — E[v/X]) and multiplicative

(v/E[X]/E[v/X]) Jensen’s gaps of X. As part of our derivations, we will use the
notlon of Holder continuity, which we recall next.

Definition 2 (Holder continuity). A real function f: R — R is a-Hélder
continuous over an interval (a,b) C R if for any x,y € (a,b), there exists M > 0
such that |f(x) — f(y)| < M - |z — y|°"

1.1 Bounding the Additive Jensen’s Gap

To lower bound the additive gap, we start by proving that the square root
function /z is %—Hélder continuous.

Lemma 2. \/z is £-Hélder continuous over (0,00) with M > 1.

Proof. Let x,y > 0. First we write

VRS VIE VI ool o V]
A N N IRV Eav A f+f

Now, we note that |z —y| < |z|+ |y| =z +y <z +y+ 27y = (VT + /9)*
Since /x is strictly increasing over (0, 00), it holds that

lz -yl < (VT +v9)? = V]z—y| <V + .y = MSL

Hence, |z — /y| = \/|z — f”‘ gj_} v/|x — y|, which concludes the proof.

O

Lemma 3. The additive Jensen’s gap of X is in absolute value [E[V/X]— /1| <
Vo.

Proof. Following [35, Eq 1.1], it holds that

EVX] - Vil =| > |VaPiX =a]| - vi

zesupp(X)

= Y We-ymPi(X=2a] by > PiX=2a]=1)

zesupp(X) z€supp(X)

> VE- Vil Prix =

z€supp(X)

IN
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< Z | — p| Pr[X = z] (by Lemma 2)

x€supp(X)
=E [\/M} (by definition of E)
< VE([|lz — pl] (by Jensen’s inequality)
<E[(z - p)?] e (by Jensen’s inequality)
= /0. (by definition of o)
This concludes the proof. a

From this the following bound on E[GCosT(QPE(W))] can be derived.

Lemma 4. E[GCosT(QPEW))] > Vh (/i — /o) - GCOST(W), where h is the
height of T.

Proof. From Lemma 3, it holds that
EVX] - Vil < Vo <= —Vo <EVX]- <o
— EVX] > /i —o.
Since it holds that
GCosT(QPE(W)) = WQ(T, W) - GCosT(W),

and under Conjecture 1, letting X = #7, the statement follows. ad

1.2 Bounding the Multiplicative Jensen’s Gap

We start by proving that the natural logarithm function In(z) is 1-Hélder con-

2
tinuous and that In+/z is %—Hélder continuous.

Lemma 5. In(z) is 3-Holder continuous over [1,00) with M > 1.

Proof. Let p = 2. We note that d% Inz = %, and that =,y > 1. Then
Y gt max(z,y)
L=
« t min(z,y)
max(z,y) V2 max(zy) |
< / 12dt / -
min(z,y) min(z,y) |
max(z,y) 1 1/2
min(z,y)

1/2 ~1 1z 1/2 1] 1/2
< |y -zl pdt)  <ly—z[7 - =y -z
1 Tl

1
|[lInz — Iny| = t‘dt

9 1/2
dt) (by Holder’s inequality)
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Lemma 6. In\/z is 3-Hélder continuous over [1,00) with M > 1/2.

Proof. The statement follows immediately as

1 1
vz~ yg] = e —Iny| < Lo — /"%
where the second inequality follows from Lemma 5. O

Lemma 7. Given a multiplicative Jensen’s gap 2% such that E[\/z] = 27%/E[z],
then z < ﬁ\/&

Proof. First, we take logarithms, i.e.,

EVz] =277\/E[z] <= IE[\Vz] =—2In2+In/u.

Then we upper bound z as

2= (in i~ ME[Va)

1
< 1—(111 Vit — E[ln/z]) (by Jensen’s inequality, Eln < InE)
n
1
) > (Inyz—Inyz) PriX = 2
supp(X)
1
<3 Z [In /p — In /x| Pr[X = 2]
n
supp(X)
1 1 1/2
<13 Z §|/¢—x| Pr[X = z] (by Lemma 6)
n
supp(X)
1
= 55 Elk - 2" (by definition of E)
1 o1/ 1 . . . .
<o 2]E [(z—p)?] " = 52 Vo (by applying Jensen’s inequality twice)
O

We can conclude with the following bound on E[GCosST(QPE(W))].

Lemma 8. E[GCosT(QPE(W))] > 2~ zw27\/iu - h - GCosT(W), where h is the
height of T.

Proof. Using Lemma 7, it holds that
EVX] =2"%/u>2 02V /.
Combined with
GCosT(QPE(W)) = WQ(T, W) - GCosT(W),

and under Conjecture 1, letting X = #7 concludes the proof. O
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1.3 Experimentally Estimating /o

Unfortunately, we are not aware of any techniques to estimate the variance of
#7T(g) for an element g € Z;, of a pruned enumeration tree. Therefore, we have
implemented an extension to the experiments from Appendix D originally used
to experimentally measure some multiplicative Jensen’s gaps. This extension lets
us measure the unbiased sample variance s? of the number of nodes #7(g). Using
s2 as an estimate for the variance o2 of the distribution, we then plot v/s2 as an
estimate for /o in Figs. 27 and 28.

Our results seem to indicate that /o increases with the dimension of the tree
[ and with the height of the subtree 5 — k, suggesting that deeper subtrees are
more exposed to variations in their size compared to shallower trees. The value
of the measured estimates v/s2 seems also to stay relatively low (in absolute
value) in our experiments, peaking at around 20. In any case, these experiments
are no more or less conclusive than those in Appendix D, and hence this analysis
does not seem to significantly improve on the methodology used in Section 5.2
for estimating the cost of the attack, that is testing multiple values of possible
Jensen’s gaps.
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(a) n = 72 (cf. Table 7), block size 8 = 50, 10 tour, k = 20.
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(b) n = 72 (cf. Table 7), block size 8 = 60, 10*" tour, k = 20.
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(c) n =72 (cf. Table 7), block size 8 = 70, 10*" tour, k = 20.

Figure 27: Measurement on the Jensen’s gap of subtrees of height h = g — k
rooted on level k in pruned enumeration experiments. The height h is reduced in
the last few blocks of the basis of dimeridlon smaller than S. As the block index 4
increases, we plot the measurements done during enumeration of the projective
sublattice m;(spany(b;, . .., bi+3)). Blue dots are the squared root of the average,

green dots are the average of the squared root, black dots are the fourth root of
the unbiased sample variance.
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Figure 28: Continuation of Fig. 27.
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