
Robust Publicly Verifiable Covert Security: Limited
Information Leakage and Guaranteed Correctness with Low

Overhead

Yi Liu1, Junzuo Lai1, Qi Wang2, Xianrui Qin3, Anjia Yang1, and Jian Weng1

1 College of Cyber Security, Jinan University, Guangzhou 510632, China
liuyi@jnu.edu.com, laijunzuo@gmail.com, anjiayang@gmail.com, cryptjweng@gmail.com

2 Department of Computer Science and Engineering & National Center for Applied Mathematics Shenzhen,
Southern University of Science and Technology, Shenzhen 518055, China

wangqi@sustech.edu.cn
3 Department of Computer Science,

The University of Hong Kong, Hong Kong SAR, China
xrqin@cs.hku.hk

Abstract. Protocols with publicly verifiable covert (PVC) security offer high efficiency and
an appealing feature: a covert party may deviate from the protocol, but with a probability
(e.g., 90%, referred to as the deterrence factor), the honest party can identify this deviation
and expose it using a publicly verifiable certificate. These protocols are particularly suitable for
practical applications involving reputation-conscious parties.

However, in the cases where misbehavior goes undetected (e.g., with a probability of 10%), no
security guarantee is provided for the honest party, potentially resulting in a complete loss of
input privacy and output correctness.

In this paper, we tackle this critical problem by presenting a highly effective solution. We
introduce and formally define an enhanced notion called robust PVC security, such that even
if the misbehavior remains undetected, the malicious party can only gain an additional 1-bit
of information about the honest party’s input while maintaining the correctness of the output.
We propose a novel approach leveraging dual execution and time-lock puzzles to design a robust
PVC-secure two-party protocol with low overhead (depending on the deterrence factor). For
instance, with a deterrence factor of 90%, our robust PVC-secure protocol incurs only additional
∼10% overhead compared to the state-of-the-art PVC-secure protocol.

Given the stronger security guarantees with low overhead, our protocol is highly suitable for
practical applications of secure two-party computation.

Keywords: Secure two-party computation · Robust publicly verifiable covert security · 1-bit
leakage · Dual execution.

1 Introduction

Secure two-party computation (2PC) allows two mutually distrusted parties to jointly evaluate a
common function on their inputs while maintaining input privacy. Traditionally, two main security
notions for 2PC, i.e., semi-honest security and malicious security, have been considered [12]. Pro-
tocols with semi-honest security could be efficient but only protect against passive attackers who
strictly adhere to the prescribed protocols. Alternatively, protocols with malicious security provide a
much stronger guarantee, preventing attackers from gaining any advantage through deviations from
protocols. However, despite progress in the past few years, protocols with malicious security remain
significantly complex and incur high overhead compared to those with semi-honest security.

The notion of covert security [4] is thereby introduced to serve as a compromise between semi-
honest and malicious security. Covert security ensures that a party deviating from the protocol will be
caught by the honest party with a fixed probability ϵ (e.g., ϵ = 90%), referred to as the deterrence fac-
tor. Achieving covert security entails significantly lower overhead than malicious security [4,14,8,22].
Meanwhile, covert security provides a stronger security guarantee than semi-honest security, as it
incorporates the risk of being caught, which can serve as a deterrent to potential cheaters.

Nevertheless, in certain scenarios, the deterrent effect of covert security may be insufficient. Merely
catching the cheater does not enable the honest party to effectively persuade others and accuse the

cheater, as the cheater can still deny their misconduct. To address this limitation, Asharov and Or-
landi [2] introduced an enhanced notion called publicly verifiable covert (PVC) security. Protocols
with PVC security allow the honest party to generate a publicly verifiable certificate when cheating
is detected. The certificate serves as proof of cheating and can be used to convince all other parties,
including external entities. The certificate can be utilized for legal proceedings or incorporated into
a smart contract that automatically enforces financial penalties against the cheater. This property is
particularly compelling in practice, as it is efficient4 and can expose the cheater’s misbehavior publicly
and permanently, thereby imposing a reputational risk and providing stronger accountability mea-
sures. In recent years, PVC security has garnered substantial attention, resulting in the development
of protocols for both general two-party [2,20,17] and multi-party [9,31,10,3] computation. Further-
more, PVC security model is also widely used in specific scenarios, such as financially backed protocols
based on blockchain [33,11], secure computation concerning commitment based on blockchain [1], and
private function evaluation [24].

While PVC security offers an effective deterrent when cheating is detected, there is a critical issue
when misbehavior remains undetected (e.g., with a probability of 10%). In such cases, the honest party
is left without any security guarantees, potentially resulting in a complete loss of input privacy and
output correctness. In other words, the cheater may gain complete knowledge of the honest party’s
input and manipulate the output. This is unacceptable in many scenarios, particularly for parties less
concerned about reputation, who may be more inclined to take risks in pursuit of significant gains.
An existing countermeasure to address this problem is to increase the deterrence factor to a relatively
high level (e.g., 99% or 99.9%). However, it should be noted that the efficiency of protocols with PVC
security is directly related to the deterrence factor, and increasing the deterrence factor comes at the
cost of reduced efficiency. Worse, existing protocols with PVC security exhibit diminishing marginal
benefits when increasing the deterrence factor. For instance, increasing the deterrence factor from
90% to 99% leads to a tenfold increase in protocol execution cost, and the same holds for increasing
from 99% to 99.9%.

Therefore, there is still a lack of effective approaches to prevent reputation-insensitive parties from
deviating from the protocol without incurring significant overhead.

1.1 Our Contributions

In this paper, we present a compelling countermeasure to address the aforementioned problem. Specif-
ically:

New security notion. We introduce an enhanced notion for PVC security named robust PVC secu-
rity to capture the goal. This notion can be seen as making up for the deficiency of covert security
in the other direction, focusing on reducing the benefits of malicious behavior when it goes unde-
tected while maintaining the increased cost for cheater when caught provided by PVC security.
Protocols with robust PVC security ensure that even if the misbehavior remains undetected, the
malicious party can only obtain an additional 1-bit of information about the honest party’s input
while simultaneously preserving the correctness of the protocol’s output. By significantly reducing
the benefits of successful cheating, our approach goes further to effectively discourages malicious
parties from cheating in the protocol.

Protocol with low overhead. We propose a novel approach leveraging dual execution and time-
lock puzzles to design a general robust PVC-secure two-party computation protocol with low
overhead (depending on the deterrence factor). For instance, when the deterrence factor is 90%,
our protocol will incur only additional ∼10% overhead compared to the state-of-the-art PVC-secure
protocol.

With its stronger security guarantees and low overhead, our protocol is highly suitable for practical
applications of secure two-party computation.

1.2 Technical Overview

In this subsection, we commence by reviewing the derandomization technique, which has been em-
ployed in prior works for the design of PVC protocols. Notably, this technique will also serve as a key

4 It has been shown that a two-party PVC protocol with deterrence factor 50% incurs only 20−40% overhead
compared to the state-of-the-art semi-honest protocols based on garbled circuits [17].

2

component in our protocol. Then, we briefly explain our robust PVC security notion and present the
basic idea for designing protocols with robust PVC security. Finally, we discuss the main intuition
behind our novel approach to achieving robust PVC security with low overhead.

Derandomization in PVC Security Recent general secure computation protocols with PVC
security employ the cut-and-choose paradigm along with the derandomization technique [17,9,31,10,3],
which is simpler and more efficient compared to the signed-OT technique used in earlier work [2,20].

Specifically, in the state-of-the-art PVC-secure two-party computation protocol [17] based on
garbled circuits, each party pre-selects a seed for each instance. These seeds determine the randomness
used in specific instances, ensuring that the execution of each instance is fully determined by the
protocol description and the parties’ seeds. At the start of the protocol, the evaluator, who cannot
cheat in garbled circuit evaluation, commits to its own seeds and selects one instance for evaluation,
leaving the remaining instances for checking. Subsequently, the evaluator, acting as the receiver,
engages in classical oblivious transfer (OT) protocols with the garbler to obtain the garbler’s seeds
for the checking instances. Additionally, the parties sign the transcripts for each instance. Throughout
the protocol execution, the evaluator uses the garbler’s seeds to verify the correctness of the messages
received from the garbler for the checking instances. Upon detecting a deviation from the checking
instances, the evaluator combines the previously signed messages and its own seed decommitment to
generate the certificate. Any other party can use the seeds to simulate the protocol execution and
verify deviations. If no deviation is detected, the evaluator proceeds to evaluate the garbled circuit
generated in the evaluation instance.

Importantly, in protocols with PVC security, potential cheaters are unaware of which instances are
being checked, making it impossible for them to prevent honest parties from generating certificates.
The deterrence factor in these protocols is determined by the number of instances. For example, in the
state-of-the-art PVC-secure two-party computation protocol [17], λ instances are involved, with λ−1
instances checked by the evaluator and the remaining one instance used for evaluation. Hence, the
deterrence factor of this protocol is λ−1

λ . This is the reason why existing protocols exhibit diminishing
marginal benefits when increasing the deterrence factor.

Robust PVC Security In this paper, we introduce a new notion called robust PVC security.
Protocols with robust PVC security aim to provide security guarantees inherited from PVC security
while simultaneously limiting the benefits for cheaters when their deviations go undetected. We require
that in such protocols, cheaters can obtain at most an additional 1-bit of information about the
honest party’s input, while ensuring the correctness of the protocol output, i.e., the output remains
untampered.

The term “1-bit information” is used here because our approach leverages the idea of dual execu-
tion. The dual execution technique was initially introduced by Mohassel and Franklin [27] and later
formalized by Huang, Katz, and Evans [18]. This technique has found broad applications in general
secure two-party computation with malicious and covert security [19,28,21,29,16] as well as private
set intersection (PSI) [30].

The dual execution technique is primarily employed in garbled circuits. The idea behind dual
execution is that two parties, PA and PB, execute two protocols for the same evaluation circuit and
inputs. In one protocol, PA acts as the garbler, and PB acts as the evaluator, while in the other
protocol, they switch roles, i.e., PB becomes the garbler, and PA becomes the evaluator. Finally, the
two parties run a secure equality test protocol on the outputs of the two garbled circuits to determine
the final result. If the test passes, both parties obtain the correct evaluation result; otherwise, it
indicates that one party deviated from the protocol, leading to termination. By utilizing this dual
execution technique, the malicious party can obtain, at most, an additional 1-bit of information about
the honest party’s input. The intuition is that even if the malicious party deviates from the protocol as
the garbler, it cannot cheat in garbled circuit evaluation as the evaluator. Therefore, the information
it can obtain from the maliciously generated garbled circuit is limited to the result of the equality
test, i.e., the 1-bit information of either true or false, which may depend on the honest party’s inputs.

Therefore, a straightforward approach to achieving robust PVC security is by integrating dual
execution into PVC-secure protocols. Specifically, two parties PA and PB can execute a PVC-secure
protocol, such as the one proposed in [17], to perform garbled circuit checking and obtain a final
garbled circuit for evaluation. Simultaneously, these two parties switch roles and execute the protocol

3

again to obtain another garbled circuit for evaluation. Then, each party plays the role of the evaluator
and evaluates the garbled circuit they have chosen. Finally, a secure equality test protocol is employed
to determine the final result. Although this approach may seem viable, we propose a superior solution
in this work.

Our Novel Approach If the aforementioned approach is based on the state-of-the-art PVC-secure
protocol in [17], achieving robust PVC security with a deterrence factor of λ−1

λ would require the
protocol to generate 2λ garbled circuits. Specifically, each party would need to generate 2λ − 1
garbled circuits and evaluate one garbled circuit. This includes λ circuits generated as the garbler,
λ − 1 garbled circuits generated for simulating garbled circuit generation in instance checking, and
one garbled circuit that is not generated but needs to be evaluated. Therefore, achieving robust PVC
security based on a PVC-secure protocol incurs a cost that is roughly double that of the PVC-secure
protocol itself. As emphasized in [17], the cost of generating garbled circuits (unless the circuit is very
small) is the efficiency bottleneck of the protocol. Therefore, this approach is not entirely satisfactory.

It happens that this cost can be significantly reduced by leveraging the special protocol framework
when integrating dual execution into a PVC-secure protocol. The idea behind our novel approach
stems from the following question:

Must each party generate λ garbled circuits as the garbler while generating λ − 1 different
garbled circuits as the evaluator for circuit checking?

Fortunately, we found that the answer is NO, and parties can combine these two circuit generation
processes together. The idea of our approach is to let the two parties jointly select λ + 1 seeds in
a blind fashion. Subsequently, each party randomly obtains λ seeds, while one seed remains hidden.
When the sets of seeds obtained by the two parties differ, the intersection of their seeds is of size
λ − 1. Importantly, each party remains unaware of the seeds obtained by the other party. They can
use their own λ seeds to generate λ garbled circuits and an additional dummy garbled circuit for the
hidden seed. Since the parties share λ−1 common seeds, they can now reuse the materials computed
for circuit generation when playing the role of the evaluator to perform the circuit checking.

In summary, there are λ+1 seeds, and each party obtains λ seeds, resulting in a seed intersection
of size λ − 1. Using their respective λ seeds, the parties generate λ garbled circuits, where λ − 1
garbled circuits (derived from seeds in the seed intersection) are identical for both parties. Each party
can then reuse the materials generated from these common λ − 1 seeds to check the λ − 1 garbled
circuits generated by the other party. Consequently, each party is left with one unchecked garbled
circuit, which can be used for dual execution.

With this insight, to achieve robust PVC security with a deterrence factor of λ−1
λ , each party

only needs to generate λ garbled circuits and evaluate one garbled circuit. Notably, the checking of
λ − 1 garbled circuits generated by the other party no longer requires garbled circuit generation. In
comparison to the state-of-the-art protocol with PVC security [17], where a total of 2λ − 1 garbled
circuits are generated by both parties, and one is evaluated, our approach requires only one additional
garbled circuit generation and one additional garbled circuit evaluation. For instance, for the protocol
in [17], achieving a deterrence factor of 90% necessitates the garbler to generate 10 garbled circuits,
while the evaluator needs to perform 9 garbled circuit generations and one garbled circuit evaluation.
In contrast, our approach requires each party to generate 10 garbled circuits and evaluate one garbled
circuit. That is, the protocol in [17] requires 20 garbled circuit generations and evaluations, whereas
our approach requires 22, and thus the additional overhead in our approach is less than 10% (given
that the cost of evaluations is lower than that of generations). Furthermore, the computation of circuit
checking for the protocol in [17] must be conducted after circuit generation, while this computation
is already performed during the garbled circuit generation in our approach. Thus, as garbled circuit
generations and evaluations for each party can be executed in parallel in our approach, the running
time of our approach may outperform the PVC protocol in [17].

However, the realization of this insight is highly non-trivial. We omit intricate details and provide
a brief illustration of the idea behind our approach as follows. The detailed description of our protocol
can be found in Section 4.

To generate λ + 1 seeds, two parties, denoted as PA and PB, can each select λ + 1 seed shares
sAi and sBi , respectively. Subsequently, each party engages in OT protocols with the other party in
two directions. As the sender, each party inputs their seed shares, while as the receiver, each party

4

retrieves λ shares, leaving one share unretrieved. To ensure that each party retrieves all-but-one
shares, we incorporate random values called witnesses as input in the OT protocols. If a receiving
party does not retrieve a share, this party must retrieve the corresponding witness. The retrieved
shares and witnesses should be provided by the receiver and verified by the sender later to continue
the execution of the protocol. The seeds are then defined as si = sAi ⊕ sBi , and each party will derive
λ seeds. A secure equality test is performed by the two parties to ensure that the sets of their seeds
are distinct, and if they are found to be identical, the two parties restart the protocol. Step 1 in Fig. 1
illustrates the scenario where 6 seeds are generated.

sA1 sB1

sA6 sB6

PA PB

s1 = sA1 ⊕ sB1

s6 = sA6 ⊕ sB6

PB holds s1.

sA2

sA3

sA4

sA5

sB2

sB3

sB4

sB5

s2 = sA2 ⊕ sB2

s3 = sA3 ⊕ sB3

s4 = sA4 ⊕ sB4

s5 = sA5 ⊕ sB5

PB

GC2

PA

Checked by PB

Checked by PA

Evaluated by PB

Evaluated by PA

PA holds s6. GCi is derived from si.

GC3

GC4

GC5

GC6

GC1

GC2

GC3

GC4

GC5

Dummy

Dummy

Step 1: Select seeds. Step 2: Check and evaluate GC.

R
ec
ei
ve
d
b
y
P
B

R
eceived

b
y
P
A

Fig. 1. Seeds generation and garbled circuit evaluation.

Then, each party can utilize the λ seeds they obtained to generate λ garbled circuits. In the case
where a party does not obtain a particular seed, a dummy garbled circuit is generated in its place. The
parties can exchange the commitments of their λ+ 1 garbled circuits, where the randomness of each
commitment is also derived from the respective seed. With λ seeds in hand, each party can verify the
correct generation of λ− 1 garbled circuits (from the commitments) while identifying the remaining
one as the dummy circuit. Finally, each party can evaluate the garbled circuit corresponding to the
seed it does not obtain as dual execution and subsequently perform a secure equality test on the
outputs of the garbled circuits to determine the final result. Step 2 in Fig. 1 provides an illustrative
depiction of this procedure.

One issue encountered in this approach is the potential identification of the dummy garbled circuit
when receiving the commitments. More precisely, a malicious party can discern which instances are
being checked by the honest party based on the dummy garbled circuit. If its maliciously generated
garbled circuit is checked by the other party, the malicious party can promptly abort and refuse to
sign the messages required for generating a publicly verifiable certificate. To address this issue, we
must ensure that each party remains unaware of which instances are being checked until the necessary
materials for certificate generation are ready.

In our approach, we leverage a verifiable time-lock puzzle scheme [10,25] to tackle this challenge.
Using this scheme, the puzzle generator can efficiently create a time-lock puzzle for a message, ensuring
that the message remains concealed until a specific time has passed, even against parallel adversaries.
Essentially, this efficiently generated time-lock puzzle compels a solver to complete a computational
task that takes no less time than the specified duration to recover the message. Moreover, once a
puzzle is solved, the solver can effectively convince others that the retrieved message originates from

5

the puzzle. In addition, we also require the option for the puzzle solver to open the puzzle at any time,
serving as the commitment scheme.

By employing a verifiable time-lock puzzle scheme, each party can generate puzzles for the com-
mitments of the garbled circuits. Therefore, both parties, unaware of the instances being checked, can
generate all the necessary materials (e.g., signatures) for generating a publicly verifiable certificate.
Afterwards, both parties open their puzzles, verify the garbled circuits, and continue the protocol’s
execution. If a party refuses to open its puzzles, the other party can solve the puzzle instead. When
both parties are honest, no puzzle solving procedure is involved. In the case of detected deviation,
the party solving the puzzle can still generate a publicly verifiable certificate as proof of cheating.
Given that the puzzle solver can efficiently convince others that the recovered message is derived
from the puzzle, the certificate verification process is also efficient. If no deviation is detected, both
parties open the respective garbled circuits for evaluation and employ the dual execution approach
to evaluate the garbled circuits and determine the evaluation result.

Indeed, similar to the dummy garbled circuit, there exists a potential identification of the dummy
instance in the OT protocols for input-wire labels. The solution is also based on time-lock puzzles, but
it is more involved (refer to Section 4 for the detailed solution). Additionally, to improve efficiency,
we generate time-lock puzzle for messages in a batched fashion, allowing each party to generate only
one real time-lock puzzle (see Section 2 and 4 for details).

1.3 Organization

In Section 2, we introduce the notations used in this paper and the building blocks that form the
foundation of our protocol. Subsequently, in Section 3, we present the formal definition of robust
PVC security. Based on this definition, in Section 4, we propose our robust PVC protocol in detail,
leveraging the idea outlined in Section 1.2, and provide the security proof. Finally, we discuss the
efficiency and potential enhancements of our protocol in Section 5.

2 Preliminaries

We denote the size of a set S as |S| and use the notation x←$S to represent the uniform sampling
of an element x from the set S. Additionally, let [n] = {1, . . . , n} for a positive integer n. For a bit
string x, the ith bit of x is denoted by x[i]. The function bin(·) returns the bit representation of the
input.

Let κ denote the computational security parameter, which is provided in unary format as input
to all algorithms. A function f in κ, mapping natural numbers to [0, 1], is considered negligible if
f(κ) = O(κ−c) for every constant c > 0. Conversely, a function 1− f is deemed overwhelming if f is
negligible.

Given a seed ∈ {0, 1}κ, we can use a pseudorandom function with seed as the key in the Counter
(CTR) mode to derive sufficiently many pseudorandom numbers and use them as random coins for
operations in protocols.

We denote a (non-interactive) commitment scheme as Com. The scheme utilizes random coins
decom for commitment generation and opening. It should satisfy (computational) binding and hid-
ing properties, while also supporting extraction and equivocation. In our protocol, we implement
Com using the random oracle H : {0, 1}∗ → {0, 1}κ by defining Com(m) = H(m, decom), where
decom←$ {0, 1}κ. We employ the collision-resistant hash function H in the protocol. Our protocol
will use the signature scheme (KGen,Sig,Vf) that is existentially unforgeable under chosen-message
attacks (EUF-CMA).

For an execution transcript of a two-party protocol trans = (m1,m2,m3, . . .), where the parties
send their messages alternately, the transcript hash of this execution is defined asH = (H(m1),H(m2),
H(m3), . . .).

Let ΠOT be the protocol that securely realizes a parallel version of the OT functionality FOT

below with perfect correctness [9], such that the receiver (resp. sender) cannot “equivocate” its view
by finding a random tape that produces a different output (resp. uses a different input) from the one
in the real execution.

6

Functionality FOT

Private inputs: PA has input x ∈ {0, 1}λ and PB has input {(Ai,0, Ai,1)}i∈[λ].

Upon receiving x ∈ {0, 1}λ from PA and {(Ai,0, Ai,1)}i∈[λ] from PB, send the selected message {Ai,x[i]}i∈[λ]

to PA.

In our protocol, we will use the protocolΠEq that securely realizes the two-party equality test [7,18]
functionality FEq in the following.

Functionality FEq

Private inputs: PA has input x ∈ {0, 1}κ and PB has input y ∈ {0, 1}κ.

Upon receiving x ∈ {0, 1}κ from PA and y ∈ {0, 1}κ from PB, let b = true if x = y, and b = false
otherwise.

– If both parties are honest, send b to both parties.
– If a party is corrupted by the adversary, send b to this corrupted party. Then if continue from the

adversary is received, send b to the honest party.

Garbling Scheme Our protocol uses a circuit garbling scheme (Gb,Eval) as follows.

– The algorithm Gb takes as input the security parameter 1κ and a circuit C that has n = nA +nB

input wires and nO output wires, and outputs input-wire labels {(Xi,0, Xi,1)}i∈[n], a garbled
circuit GC, and output-wire labels {(Zi,0, Zi,1)}i∈[nO].

– The deterministic algorithm Eval takes as input a set of input-wire labels {Xi}i∈[n] and a garbled
circuit GC. It outputs a set of output-wire labels {Zi}i∈[nO].

The correctness of the garbling scheme means that for any circuit C as above and any input x ∈ {0, 1}n,
we have

Pr

[
∀i, Zi = Zi,z[i]

∧ Zi ̸= Zi,1−z[i]

:
({(Xi,0, Xi,1)}i∈[n],GC, {(Zi,0, Zi,1)}i∈[nO])← Gb(1κ, C)
{Zi} ← Eval({Xi,x[i],GC})

]

where z = C(x), except for a negligible probability. We assume that the garbling scheme satisfies the
standard security definition [23,5]. We assume that there is a simulator SGb such that for all C and
x, the distribution {SGb(1κ, C, C(x))} is computationally indistinguishable from{(

{Xi,x[i]}i∈[n],GC,

{(Zi,0, Zi,1)}i∈[nO]

)
: ({(Xi,0, Xi,1)}i∈[n],GC, {(Zi,0, Zi,1)}i∈[nO])← Gb(1κ, C)

}
.

Verifiable Time-Lock Puzzle Scheme We use a verifiable time-lock puzzle scheme in our protocol.
We restate its definition in [10] with minor modification5 as follows.

Definition 1. A verifiable time-lock puzzle scheme TLP consisting of algorithms (Setup,Gen,Solve,
Verify,Verify′) with solution space S is as follows.

– The algorithm Setup takes as input 1κ and a hardness parameter τ , and outputs public parameters
pp.

– The algorithm Gen takes as input public parameters pp and a solution s ∈ S and then outputs a
puzzle p, together with an opening π.

– The deterministic algorithm Solve takes as input public parameters pp and a puzzle p and then
outputs a solution s and a proof π′.

– The deterministic algorithm Verify takes as input public parameters pp, a puzzle p, a solution s,
and an opening π and then outputs true if the solution s is the valid solution for p. Otherwise,
the algorithm outputs false.

5 In particular, we include the opening π (e.g., randomness) as the output of Gen for later puzzle opening.
We add the algorithm Verify to verify the opening of a puzzle from the puzzle generator.

7

– The deterministic algorithm Verify′ takes as input public parameters pp, a puzzle p, a solution s,
and a proof π′ and then outputs true if the solution s is valid. Otherwise, the algorithm outputs
false. This algorithm must run in total time polynomial in κ and log τ .

A verifiable time-lock puzzle scheme TLP should satisfy completeness, correctness for opening
and proof, soundness, and security. We provide the definition of these properties in Supplementary
Material A.1 and present a verifiable time-lock puzzle scheme [10,25] in Supplementary Material A.2.

In the description of our protocol, we do not explicitly differentiate between puzzle opening and
proof, as well as between the algorithms Verify and Verify′. This is because all of these components
enable efficient verification of the correctness of a given solution within the protocol.

It is worth noting that we can use a time-lock puzzle scheme to generate time-lock puzzles in
a batched manner. Specifically, we can generate a solution s ∈ S and a time-lock puzzle p for s.
Then, given messages {mi}, we can use s as the seed to derive a sufficient number of (symmetric
encryption) keys and randomness and encrypt messages {mi} using keys via IND-CPA (or IND-CCA)
encryption schemes with generated randomness. For simplicity, we slightly abuse notation and denote
the encryption as Encs(·). The puzzle generator can send the puzzle p and the ciphertexts of mi’s to
the puzzle receiver. Note that the ciphertexts of mi’s can also be regarded as time-lock puzzles since
the puzzle receiver learns nothing about the solution s before p is solved based on the security of the
time-lock puzzle and the encryption scheme6. After solving p and obtaining s, the receiver can easily
derive the messages {mi}. In this approach, we refer to the solution s as the master puzzle key and
the puzzle p as the master time-lock puzzle.

In our protocol, we use s as the seed to derive keys, and then use the random oracle with keys in
CTR mode to generate enough pseudorandom padding to encrypt messages {mi}. We can easily see
that the encryption is IND-CPA-secure before s is derived from p. This scheme allows us to program
the random oracle to equivocate the encrypted values in the security proof.

Remark 1. We note that given a ciphertext from the ciphertext space and a key, the decryption of
the ciphertext always succeeds (although not necessarily yielding the correct result). This property
is solely for the convenience of our protocol description. It is very straightforward to modify our
protocol to enable honest parties to generate publicly verifiable certificates for decryption failures
and attribute blame to malicious parties responsible for generating invalid ciphertexts [25].

3 Definition of Robust PVC Security

Based on the discussion in Section 1.2, we define the ideal functionality FRobustPVC for robust PVC
security as follows.

Functionality FRobustPVC with deterrence ϵ

Public inputs: Both parties agree on a circuit C, which has n = nA + nB input wires and nO output
wires.
Private inputs: PA has input xA ∈ {0, 1}nA , whereas the other party PB has input xB ∈ {0, 1}nB .

Both parties send their inputs to the ideal functionality. If abort from the party corrupted by the
adversary is received, send ⊥ to both parties and terminate.

– If an input of the form (cheat, ϵ̂), where ϵ̂ ≥ ϵ, from the party corrupted by the adversary is received:
• With probability ϵ̂, send (corrupted) to both parties and terminate.
• With probability 1− ϵ̂, send (undetected) to the corrupted party. Then ignore any input of the

form (cheat, ·) or (stupidCheat, ·).
– If an input of the form (stupidCheat, ϵ̂) from the party corrupted by the adversary is received:
• With probability ϵ̂, send (corrupted) to both parties and terminate.
• With probability 1− ϵ̂, send ⊥ to both parties and terminate.

– If input xA ∈ {0, 1}nA from PA and xB ∈ {0, 1}nB from PB has been received:
1. If both parties are honest, give C(xA, xB) to them and terminate.
2. If any party is corrupted, give C(xA, xB) to the corrupted party.

6 In this paper, we use “ciphertext” and “puzzle” interchangeably for this setting.

8

3. If a boolean function g from the adversary is received and undetected has been sent, give
g(xA, xB) to the adversary. Then if continue from the adversary is received, give cheating to
the honest party if g(xA, xB) = 0, else give C(xA, xB) to the honest party.

In order to align with the security proof, we introduce slight modifications to the definition inherited
from PVC security. In the ideal functionality FRobustPVC, we permit the adversary to cheat with a
probability of being caught ϵ̂ that larger than or equal to the specified deterrence factor ϵ, i.e.,
ϵ̂ ≥ ϵ. It is evident that this modification does not compromise security. Additionally, we allow the
adversary to engage in stupid cheating. With stupid cheating, we do not impose any restrictions on
the probability of remaining undetected. In this scenario, even if the adversary is not detected, the
ideal functionality will still abort, rendering the adversary unable to gain any advantage. It is also
apparent that this modification does not compromise security.

The definition of robust PVC security is given in the following.

Definition 2. A two-party protocol ΠRobustPVC along with algorithms Blame and Judge achieves ro-
bust publicly verifiable covert (PVC) security with deterrence ϵ if the following conditions hold.

Simulatability The protocol ΠRobustPVC, where the honest party might send cert to the adversary if
cheating is detected, securely realizes FRobustPVC with deterrence ϵ.

Public Verifiability If the honest party outputs corrupted (together with an output certificate cert),
then the output of Judge(cert) is true, except for a negligible probability.

Defamation Freeness For every PPT adversary A corrupting a party, if the other party is hon-
est, the probability that A generates a certificate cert∗ that blames the honest party and leads to
Judge(cert∗) outputting true is negligible.

Remark 2. In the definition above and the protocol description in Section 4, it is specified that the
honest party sends the certificate to the adversary. This specification in the definition is to ensure that
the adversary cannot learn any information about the honest party’s input even when the certificate
is provided.

Remark 3. We note that public verifiability in the definition also implies that if the honest party out-
puts corrupted, the malicious party cannot hinder the honest party from generating a valid certificate.

4 Our Robust PVC-Secure Protocol

In this section, we introduce the protocol ΠRobustPVC that achieves robust PVC security defined in
Section 3. This protocol is based on the idea introduced in Section 1.2.

The protocol description here employs λ instances instead of λ + 1 in Section 1.2 (thus with
deterrence factor ϵ = λ−2

λ−1) for the sake of notation simplicity. The circuit for ΠRobustPVC is denoted
by C, consisting of n = nA + nB input wires and nO output wires. The input of PA is xA ∈ {0, 1}nA

while the input of PB is xB ∈ {0, 1}nB .
Seed preparation. At the beginning of the protocol, each party generates three random κ-bit

strings. For example, PA generates seedAj , seed
′A
j , and witness′

A
j . Here, (seed′

A
j ,witness

′A
j) represents

PA’s seed share and witness for the jth instance, as discussed in Section 1.2, and seedAj is used to
derive randomness for ΠOT when PA acts as the receiver. Each party commits to their three random
strings, and the commitments will be signed by the other party later. This enables a certificate verifier
to simulate the protocols execution based on these seeds/witnesses and verify the deviation of the
other party, given the signature and the openings of signed commitments to these seeds/witnesses.

Next, each party executesΠOT and retrieves all-but-one, i.e., λ−1, seed shares from the other party.
For example, we assume that the index of the garbled circuit PA will evaluate is ȷ̂A, then PA retrieves

{seed′Bj }j∈[λ]\{ȷ̂A} and witness′
B
ȷ̂A . Each seed is defined as seed′j ← seed′

A
j ⊕ seed′

B
j . Subsequently,

both parties execute the equality test protocol ΠEq as mentioned in Section 1.2 to ensure they do
not possess the same set of seeds. Furthermore, parties commit to their retrieved seed shares and
witnesses, which should be opened and verified by the other party at a later stage.
Circuit and input preparation. After obtaining the λ− 1 seeds seed′j ’s, each party can generate

λ−1 garbled circuits {GCj} with randomness derived from {seed′j}. To avoid sending the whole garbled
circuits, each party generates a commitment to each GCj , along with its (randomly permuted) input-
wire and output-wire labels, using randomness derived from seed′j . The input-wire labels in each pair

9

are randomly permuted to hide the semantic values of the labels when the garbled circuit is later
opened for evaluation. Additionally, the garbler commits to the index of his/her input-wire labels with
respect to the randomly permuted input-wire labels. This step ensures that parties cannot change
the input after the instance checking. For the ȷ̂Ath (resp. ȷ̂Bth) instance where PA (resp. PB) does
not possess the seed, dummy materials are generated in their places. As discussed in Section 1.2, a
party cannot directly send the commitments of the garbled circuits to the other party. Instead, each
party uses the verifiable time-lock puzzle scheme to encrypt those commitments and sends them to
the other party.

Then each party acting as the sender executes ΠOT with the other party to transmit input-wire
labels. The inputs to ΠOT are the input-wire labels for the other parties. For each checking instance,
it is essential to ensure that each party can verify the validity of the input-wire labels provided by
the other party. For example, PA needs to verify that PB acting as the sender in ΠOT uses the correct
input-wire labels for PA. Since PA knows seed′j , she knows all the correct input-wire labels. Therefore,
if PA knows the randomness used by PB in ΠOT, she can check whether PB deviates from the protocol.

However, it is important to note that PB’s randomness cannot simply be derived from seed′j or seed
′B
j

that are known to PA. The reason is that, given those materials, PA can simulate the execution of
ΠOT and immediately determine which instance is the ȷ̂Bth instance, i.e., the dummy instance of PB,
subsequently identify the checking instances. Hence, similar to the problem mentioned in Section 1.2,
we need to ensure that a party can check the instance, but until all materials for certificate generation
are ready. In our protocol, we additionally introduce seedAj,OT and seedBj,OT to address this issue. For

each instance, PA randomly choosees uniform κ-bit string seedAj,OT and uses the time-lock puzzle to

encrypt seedAj,OT and input-wire labels of PB. Then in the execution of ΠOT where PA acts as the
sender, the inputs are time-lock puzzles for input-wire labels of PB, and the randomness is derived
from seedAj,OT for PA’s ȷ̂Ath instance while seed′j ⊕ seedAj,OT for other instances.

Each party also acts as the receiver and executes ΠOT with the other party. For example, the
inputs of PA to ΠOT is 0nA for checking instance and xA ∈ [nA] for the evaluation instance with index
ȷ̂A. The randomness in each execution is derived from seedAj . With knowledge of seed′j and seedBj,OT,
PA can later simulate the execution of PA in ΠOT and detect PB’s deviations.
Publicly verifiable evidence creation. Each party proceeds to sign the messages exchanged in
each instance. At this stage, all materials necessary for certificate generation are available. Since all
materials related to checking deviations are encrypted using time-lock puzzles, both parties are unable
to perform the instance checking at this point.
Check of instances. Upon receiving the signature of the other party, each party can open their
respective time-lock puzzles, allowing the other party to perform instance checking. If the other party
fails to open the puzzles, each party can solve the puzzles themselves. With the commitments of the
garbled circuit generated by the other party and the seed for ΠOT (i.e., seedAj,OT or/and seedBj,OT),
both parties can simulate the computation of the other party for their checking instances. Among
these instances, one should be a dummy instance, while the remaining instances should be correct. In
case a deviation by the other party is detected, the detecting party can generate the certificate based
on the signed materials, the openings/proofs for the time-lock puzzles, and the decommitments for
the seeds/witnesses used in ΠOT.
Circuit evaluation. Assuming the checking instances are correct, two garbled circuits remain
for evaluation. First, both parties open the commitments for the seed shares and the witness they
obtained at the beginning of the protocol to demonstrate their honesty. Then, they open their re-
spective garbled circuits, input-wire labels, and the mapping of output-wire labels to each other.
Both parties verify the openings provided by the other party and proceed to evaluate the garbled
circuit to obtain the output-wire labels and the result. For example, PA obtains the output-wire labels
{Zȷ̂A,i}i∈[nO] and the result zȷ̂A , where ȷ̂A represents PA’s index of instance for evaluation. PA then
sets βA ← H(

⊕nO

i=1(Zȷ̂A,i ⊕ Zȷ̂B ,i,zȷ̂A [i])), where {Zȷ̂B ,i,b}i∈[nO],b∈{0,1} denotes the output-wire labels
for the garbled circuit generated by PA and evaluated by PB. Similarly, PB evaluates the garbled
circuit, obtains the output, and computes βB . Finally, the two parties use the equality test protocol
ΠEq to determine the final evaluation result.

The full description of the protocol ΠRobustPVC between two parties PA and PB is given in the
following.

10

Protocol ΠRobustPVC

Schemes/Protocols: The signature scheme (KGen, Sig,Vf) is EUF-CMA-secure. The verifiable time-
lock puzzle scheme TLP is secure with respect to the hardness parameter τ > 2τc, where τc is the timeout
time for execution of Steps 6 and 7. Com is the computational binding and hiding commitment scheme,
H is the collision-resistant hash function, the encryption scheme with respect to TLP is IND-CPA-secure
(see Section 2 for more information). ΠOT is a perfectly correct protocol that realizes FOT, and ΠEq is
an equality test protocol that realizes FEq. The garbling scheme used in this protocol is secure.
Public inputs: Both parties agree on parameters κ, λ, and τ , and a circuit C, which has n = nA +nB

input wires and nO output wires. Both parties also agree on the public information (e.g., time for
communication rounds, algorithms, parameters, and unique id for the execution of this protocol). PA

and PB know keys vkB and vkA, respectively, for the signature scheme.
Private inputs: PA has input xA ∈ {0, 1}nA and keys (vkA, sigkA) for the signature scheme. PB has
input xB ∈ {0, 1}nB and keys (vkB , sigkB) for the signature scheme.

Seed Preparation

1. PA goes through the following steps with PB. In the meantime, they switch their roles to execute
the symmetric steps, i.e., PA plays PB’s role and PB plays PA’s.
(a) PA chooses uniform κ-bit strings for seedAj , seed′

A
j , and witness′

A
j , and computes cseedAj

←

Com(seedAj), cseed′Aj
← Com(seed′

A
j), and cwitness′Aj

← Com(witness′
A
j) for j ∈ [λ], and sends

these commitments to PB. PB picks ȷ̂B ←$ [λ] and sets bȷ̂B = 1 and bj = 0 for j ̸= ȷ̂B .
(b) PA and PB run λ executions of the protocol ΠOT. In the jth execution, PA uses as input

(seed′
A
j ,witness

′A
j) with randomness derived from seedAj , while PB uses as input bj with ran-

domness derived from his seedBj generated in Step 1a. At the end, PB has {seed′Aj }j ̸=ȷ̂B and

witness′
A
ȷ̂B . Denote the transcript of the jth execution by transAj .

Let CheckSetA = [λ]\{ȷ̂A}, CheckSetB = [λ]\{ȷ̂B}, and ComCheckSet = [λ]\{ȷ̂A, ȷ̂B}.
2. PA computes seed′j ← seed′

A
j ⊕ seed′

B
j for all j ∈ CheckSetA and hA ← H(

⊕
j∈CheckSetA

seed′j). PB

performs a similar computation to derive {seed′j} and hB according to his CheckSetB . PA and PB

use the protocol ΠEq to check whether hA = hB . If it does not hold, they continue the protocol
execution. Otherwise, they restart the protocol.

3. PA computes cA ← Com(ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness
′B
ȷ̂A) and sends it to PB. Similarly, PB computes

and sends cB to PA.

Circuit and Input Preparation

4. For j ∈ CheckSetA, PA follows the procedure below, where all randomness in the jth instance is
derived from seed′j .
(a) PA garbles the circuit C. Denote the jth garbled circuit by GCj , the input-wire labels of PA by
{Aj,i,b}i∈[nA],b∈{0,1}, the input-wire labels of PB by {Bj,i,b}i∈[nB],b∈{0,1}, and the output-wire
labels by {Zj,i,b}i∈[nO],b∈{0,1}.

(b) PA computes her label commitments hA
j,i,b ← Com(Aj,i,b) for all i ∈ [nA] and b ∈ {0, 1} and also

hB
j,i,b ← Com(Bj,i,b) for all i ∈ [nB] and b ∈ {0, 1}.

(c) PA computes the commitment cj ← Com(GCj , {(hA
j,i,αA

i
, hA

j,i,ᾱA
i
)}i∈[nA],

{(hB
j,i,αB

i
, hB

j,i,ᾱB
i
)}i∈[nB], {(H(Zj,i,0),H(Zj,i,1))}i∈[nO]), in which each pair (hA

j,i,0, h
A
j,i,1) is ran-

domly permuted with respect to αA
i ←$ {0, 1}, while (hB

j,i,0, h
B
j,i,1) is also randomly permuted.

Denote the index of hA
j,i,xA[i] with respect to xA[i] in (hA

j,i,αA
i
, hA

j,i,ᾱA
i
) by γA

j [i] = αA
i ⊕ x[i], and

thus the string of indices is denoted by γA
j ∈ {0, 1}nA .

In parallel, PB also follows this procedure as PA for j ∈ CheckSetB using randomness derived from
seed′j .
Then, PA lets cȷ̂A = 0, γA

ȷ̂A
= 0, and Bȷ̂A,i,b = 0 for all i ∈ [nB] and b ∈ {0, 1}. Symmetrically, PB

lets cȷ̂B = 0, γB
ȷ̂B

= 0, and Aȷ̂B ,i,b = 0 for all i ∈ [nA] and b ∈ {0, 1}.
5. PA computes and sends cγA

j
← Com(γA

j) for j ∈ [λ] to PB. Similarly, PB computes and sends

cγB
j
← Com(γB

j) for j ∈ [λ] to PA.

6. For j ∈ [λ], PA chooses uniform κ-bit string seedAj,OT and a random master puzzle key sAj , and
generates a master time-lock puzzle psAj

for sAj with respect to the hardness parameter τ . She also

computes puzzles pcj ← EncsAj
(cj), pseedA

j,OT
← EncsAj

(seedAj,OT), and pBj,i,b ← EncsAj
(Bj,i,b) for

i ∈ [nB] and b ∈ {0, 1}. Then PA sends psAj
, pcj , and pseedA

j,OT
to PB.

11

PA and PB run λ executions of ΠOT. In the jth execution, PA uses as input {(pBj,i,0 , pBj,i,1)}i∈[nB],

and PB uses xB ∈ {0, 1}nB as input if j = ȷ̂B and 0nB otherwise. Here PA uses (seed′j ⊕ seedAj,OT) for
j ̸= ȷ̂A and seedAj,OT for j = ȷ̂A to derive her randomness in the jth execution, while PB uses seedBj .
Finally, PB obtains {pBȷ̂B,i,xB [i]

}i∈[nB] for the ȷ̂Bth execution. Denote the transcript hash for the

jth execution of ΠOT by HA
j .

Similarly, PB also follows the same procedure as PA, i.e., PB computes and sends psBj
, pcj , and

pseedB
j,OT

for j ∈ [λ] to PA. PB also runs λ executions of ΠOT for input {(pAj,i,0 , pAj,i,1)}i∈[nA] with

PA as above. Denote the transcript hash for the jth execution of ΠOT by HB
j .

Publicly Verifiable Evidence Creation

7. For each j ∈ [λ], PA generates a signature σA
j ← SigsigkA(id, C, j, cseedBj , cseed′Bj

,

cwitness′Bj
, transAj , trans

B
j ,HA

j , psAj
, pcj , pseedA

j,OT
, τ, λ) and sends these signatures to PB. Then PB checks

whether σA
j is valid for all j ∈ [λ], and aborts with output ⊥ if not. Similarly, PB sends the symmetric

signatures σB
j for all j to PA, and PA checks their validity.

Check of Instances

8. PA and PB open the master time-lock puzzle of the master puzzle key to each other. If one party
does not open the puzzle, the other party can also solve the puzzle to derive the master puzzle key.

9. For each j ∈ [λ], PA decrypts PB’s pcj and pseedB
j,OT

using the master puzzle key sBj to obtain cj and

seedBj,OT. PA also decrypts pAȷ̂A,i,xA[i]
to obtain Aȷ̂A,i,xA[i]. Note that for j ∈ ComCheckSet, honest

PA holds the same seed′j as honest PB, and thus the same materials in Step 4. PA follows the checking
procedure below to check PB’s {cj} and {HB

j }. Once a certificate cert is generated during the check,
PA outputs corrupted, sends cert to PB, and halts immediately.
(a) For j ∈ CheckSetA, if there exists a cj from PB that is not equal to PA’s cj and also cj ̸= 0, PA

uniformly chooses such a j and uses Blame(BadCom, j) to generate cert.
(b) For j ∈ CheckSetA, if cj from PB is equal to PA’s cj , PA simulates PB’s computation of
{pAj,i,b}i∈[nA] and the executions of ΠOT in Step 6 with PB’s randomness derived from {seed′j ⊕
seedBj,OT} to derive the transcript hash ĤB

j . If ĤB
j ̸= HB

j , PA uniformly chooses such a j and
uses Blame(BadOT, j) to generate cert.
For j ∈ CheckSetA, if PB’s cj = 0, PA simulates PB’s computation of {pAj,i,b}, where Aj,i,b = 0,

and the executions of ΠOT in Step 6 with PB’s randomness derived from seedBj,OT to derive the

transcript hash ĤB
j . If ĤB

j ̸= HB
j , PA uniformly chooses such a j and uses Blame(BadOT, j) to

generate cert.
(c) If there are more than one commitment cj = 0 for j ∈ CheckSetA, uniformly choose two of them

and let J = {j | cj = 0} such that |J | = 2. PA uses Blame(BadNum, J) to generate cert.
(d) If for all j ∈ CheckSetA, cj from PB is equal to PA’s cj , PA aborts with output ⊥.
Symmetrically, PB follows the same procedure to check instances (and generates cert if needed).

Circuit Evaluation

10. PA opens the committed message (ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness
′B
ȷ̂A) inside cA to PB, while PB opens cB

to PA. If the other party does not open the commitment or the committed message is incorrect, the
party aborts with output ⊥.

11. PA sends GCȷ̂B , {(hA
i,(0), h

A
i,(1)) = (hA

ȷ̂B ,i,αA
i
, hA

ȷ̂B ,i,ᾱA
i
)}, {(hB

j,i,αB
i
, hB

j,i,ᾱB
i
)} (in the same permuted or-

der as before), and {(H(Zȷ̂B ,i,0),H(Zȷ̂B ,i,1))}, together with decomcȷ̂B
to PB. If Com(GCȷ̂B , {(hA

ȷ̂B ,i,αA
i
,

hA
ȷ̂B ,i,ᾱA

i
)}, {(hB

j,i,αB
i
, hB

j,i,ᾱB
i
)}, {H(Zȷ̂B ,i,b)}; decomcȷ̂B

) ̸= cȷ̂B for some i, PB aborts with output ⊥.
Symmetrically, PB sends the corresponding materials with respect to the ȷ̂Ath instance to PA, and
PA checks the correctness of the materials.

12. PA sends {Aȷ̂B ,i,xA[i]}i∈[nA], γ
A
ȷ̂B

, together with decommitments decomγA
ȷ̂B

and {decomA
ȷ̂B ,i,xA[i]}i∈[nA]

to PB. If Com(γA
ȷ̂B

; decomγA
ȷ̂B

) ̸= cγA
ȷ̂B

or Com(Aȷ̂B ,i,xA[i];

decomA
ȷ̂B ,i,xA[i]) ̸= hA

i,γA
ȷ̂B

[i]
for some i, PB aborts with output ⊥.

Otherwise, PB evaluates GCȷ̂B with input-wire labels {Aȷ̂B ,i,xA[i]}i∈[nA] and {Bȷ̂B ,i,xB [i]}i∈[nB] to
obtain the output-wire labels {Zȷ̂B ,i}i∈[nO]. PB can derive the result zȷ̂B from {Zȷ̂B ,i}i∈[nO] and
{(H(Zȷ̂B ,i,0),H(Zȷ̂B ,i,1))}i∈[nO]. If any of the decoded bits is ⊥, PB then lets zȷ̂B =⊥.

12

Symmetrically, PB sends the corresponding materials with respect to the ȷ̂Ath instance to PA. Then
PA checks the correctness of the materials and evaluates the ȷ̂Ath garbled circuits to derive the result
zȷ̂A .

13. If zȷ̂A =⊥, PA lets βA be a random κ-bit value. Otherwise, PA sets βA ← H(
⊕nO

i=1(Zȷ̂A,i⊕Zȷ̂B ,i,zȷ̂A
[i])).

Symmetrically, PB computes his βB . Then PA and PB use the equality test protocol ΠEq to check
whether βA = βB . If it holds, PA (resp. PB) outputs zȷ̂A (resp. zȷ̂B). Otherwise, parties abort with
output cheating.

The description of the corresponding algorithm Blame that could output a publicly verifiable
certificate for cheating is given in the following.

Algorithm Blame

The party PX runs this algorithm to obtain a certificate cert for the malicious behavior of PY . We first
define the following notations:

– Denote msgj = (id, transYj , transXj ,HY
j , psYj

, pcj , pseedY
j,OT

, τ, λ), where pcj is the ciphertext from PY .

– Denote the proof/opening with respect to psYj
for sYj by πj

a.

– Denote vXj = (seedXj , seed′
X
j ,witness′

X
j) and decomj = (decomX

j , decom′X
j ,

decomX
witness′j

).

The algorithm generates a certificate cert as follows depending on the received parameters.

– (BadCom, j): Output cert = (BadCom, j,msgj , v
X
j , decomj , σ

Y
j , sYj , πj).

– (BadOT, j): Output cert = (BadOT, j,msgj , v
X
j , decomj , σ

Y
j , sYj , πj).

– (BadNum, J): Output cert = (BadNum, {j,msgj , v
X
j , decomj , σ

Y
j , sYj , πj}j∈J).

a Note that πj can be provided by PY for puzzle opening or generated by PX if the puzzle is solved by
PX .

In the following, we present the description of the algorithm Judge. The algorithm Judge could
take as input a certificate cert generated by the algorithm Blame and output whether the accused
party is cheating.

Algorithm Judge

Inputs: A public key vkY , a circuit C, and a certificate cert.
Depending on the types of cheating, the algorithm verifies the certificate cert as follows.

– BadCom: Parse the remaining part as (j,msgj , v
X
j , decomj , σ

Y
j , sYj , πj). Verify the correctness of

(sYj , πj) and output false if πj is incorrect. Derive cj from pcj . Use vXj and decomj to re-construct

commitments cseedXj
, cseed′Xj

, and cwitness′Xj
. Check the correctness of σY

j using vkY , and output false

if the signature is invalid. Decrypt pcj to obtain cj . Use vXj to simulate the executions of ΠOT (in

two directions) based on transXj and transYj and derive seed′
Y
j in Step 1a. Verify the simulation of

ΠOT using transXj and transYj . If they do not match, output false. Then use seed′j = seed′
X
j ⊕ seed′

Y
j

to simulate Step 4 and obtain ĉj . If cj ̸= ĉj and cj ̸= 0, output true. Otherwise, output false.
– BadOT: Parse the remaining part as (j,msgj , v

X
j , decomj , σ

Y
j , sYj , πj). Verify the correctness of (sYj , πj),

and output false if πj is incorrect. Use vXj and decomj to re-construct commitments cseedXj
, cseed′Xj

,

and cwitness′Xj
. Check the correctness of σY

j using vkY , and output false if the signature is invalid.

Decrypt pcj and pseedY
j,OT

to obtain cj and seedYj,OT.

If cj = 0, use seedYj,OT and the master time-lock puzzle key sYj to simulate the execution of ΠOT in
Step 6, and verify whether PY is the first one whose message hash is different from the one in HY

j .
If yes, output true. Otherwise, output false.
If cj ̸= 0, use vXj to simulate the executions of ΠOT (in two directions) based on transXj and transYj
and derive seed′

Y
j in Step 1a. Verify the simulation of ΠOT using transXj and transYj . If they do not

match, output false. Compute seed′j ← seed′
X
j ⊕ seed′

Y
j . Then use seed′j , seed

′
j ⊕ seedYj,OT, and the

master time-lock puzzle key sYj to simulate the executions of ΠOT in Step 6, and verify whether PY

is the first one whose message hash is different from the one in HY
j . If yes, output true. Otherwise,

output false.

13

– BadNum: Parse the remaining part as {j,msgj , v
X
j , decomj , σ

Y
j , sYj , πj}j∈J . Verify the correctness of

{(sYj , πj)} and output false if there exists a tuple (sYj , πj) that is incorrect. Use {vXj } and {decomj} to
re-construct commitments {cseedXj }, {cseed′Xj }, and {cwitness′Xj }. Check the correctness of {σY

j } using
vkY , and output false if there exists a signature that is invalid. Decrypt {pcj} to obtain {cj}. If
cj = 0 for all j ∈ J , output true. Otherwise, output false.

Theorem 1. The protocol ΠRobustPVC along with algorithms Blame and Judge is robust publicly veri-
fiable covert secure with deterrence ϵ = 1− 1

λ−1 .

Proof. We prove the robust PVC security of ΠRobustPVC by showing its simulatability, public verifia-
bility, and defamation freeness.

Simulatability We first prove that ΠRobustPVC securely realizes FRobustPVC with deterrence ϵ = 1− 1
λ−1 .

Without loss of generality, we assume that PB is honest and PA is corrupted by A. Since the roles of
PA and PB in ΠRobustPVC is symmetric, the proof for the scenario where PB is corrupted is similar.

For an adversary A corrupting PA in the real world, we construct a simulator S holding vkA that
runs A as a sub-routine with auxiliary input z and interacts with FRobustPVC in the ideal world. The
simulation procedure is presented below.

0. S uses KGen to generate a pair of key (vkB , sigkB) and sends vkB to A.
1. S goes through the following steps with A.

(a) S receives {cseedAj , cseed′Aj , cwitness′Aj }j∈[λ] from A. In the meantime, S picks uniform κ-bit strings

{seedBj , seed′
B
j ,witness

′B
j }j∈[λ], computes {cseedBj , cseed′Bj

, cwitness′Bj
}j∈[λ], and sends these commit-

ments to A as in the protocol.
(b) For all j, S playing the role of the receiver uses bj = 0 to retrieve seed′

A
j in ΠOT with randomness

derived from seedBj . S also plays the role of the sender and uses {(seed′Bj ,witness′
B
j)}j∈[λ] as

input in ΠOT with randomness derived from seedBj .

2. S computes seed′j = seed′
A
j ⊕ seed′

B
j for all j ∈ [λ]. Then S let hj

B ← H(
⊕

[λ]\j seed
′
j) for all j ∈ [λ].

For the execution of ΠEq, S uses the corresponding simulator SEq to obtain hA. If there exists hj
B ,

such that hj
B = hA, S sets GoodEq = true and picks ȷ̂B ←$ [λ]. If hȷ̂B

B = hA, S returns true for ΠEq

to A and restarts the protocol, and otherwise returns false for ΠEq to A. If there is no hj
B , such that

hj
B = hA, S sets GoodEq = false and returns false for ΠEq to A.

3. S computes and sends dummy commitment cB to A. S also receives commitment cA from A.
4. For all j ∈ [λ], S prepares garbled circuits and input materials as in Step 4 of the protocol.
5. S computes and sends dummy commitment {cγB

j
} to A. S also receives {cγA

j
} from A.

6. S generates the puzzle psBj
for a random chosen master puzzle key sBj as in the protocol for j ∈ [λ].

S also generates dummy ciphertexts for his pcj and pseedB
j,OT

for j ∈ [λ]. Then S sends these puzzles

to A.
S receives puzzles psAj

, pĉj , and pseedA
j,OT

for j ∈ [λ] from A. Since time-lock puzzles can be solved in

polynomial time, S can decrypt these puzzles and derive sAj , ĉj , and seedAj,OT for j ∈ [λ].
For λ executions of ΠOT where S plays the role of the receiver, S uses as input 0nB and random-
ness derived from seedBj and receives A’s {pBj,i,0}. Let HA

j denote the transcript hash for the jth
executions.
For λ executions of ΠOT where S plays the role of the sender, S first generates dummy cipher-
texts {pAj,i,b} and random κ-bit string seed′′j for all j ∈ [λ]. Then S executes ΠOT with A using
{(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness derived from seed′′j .

7. S generates signatures {σB
j } as an honest PB and sends them to A.

S also receives {σA
j } from A. If any of the signatures are invalid, S executes the finishing touches

procedure as follows and sends abort to FRobustPVC to terminate the execution of the protocol.
(a) Choose ȷ̂B ←$ [λ] if GoodEq = false, and otherwise use ȷ̂B chosen in Step 2 in this simulation.
(b) Program the random oracle to let the decryption of pcȷ̂B be 0, decryption of pcj be cj for

j ∈ [λ]\{ȷ̂B}, and decryption of {pAj,i,b} be the correct values as those in the protocol for
j ∈ [λ]\{ȷ̂B} and j = ȷ̂B , respectively.

(c) Program the random oracle: for the ȷ̂Bth instance, let the decryption of pseedB
ȷ̂B,OT

be seedBȷ̂B ,OT =

seed′′ȷ̂B . For j ∈ [λ]\{ȷ̂B}, let the decryption of pseedB
j,OT

be the decryption of pseedB
j,OT

be seedBj,OT =

seed′′j ⊕ seed′j .
Then S simulates the computation of an honest PA playing the role of the sender in the executions
of ΠOT in Step 6 of the protocol and obtain ĤA

j . If ĉj = 0, the simulation is based on seedAj,OT as

14

the ȷ̂Ath instance in the protocol. If ĉj = cj , the simulation is based on seed′j ⊕ seedAj,OT as other

instances in the protocol. Let Jz be the set of indices that ĉj = 0 and ĤA
j matches the simulation

of ΠOT for the ȷ̂Ath instance as described in the protocol. Let Js be the set of indices that ĉj = cj
and ĤA

j matches the simulation of ΠOT for the checking instances.
Hence, there are following cases (let Stupid = false and Type =⊥ by default):
– If |Js| < λ − 2, S executes the finishing touches procedure as in Step 7a-7c of the simulation,

sends (cheat, 1) to FRobustPVC, receives corrupted, opens the puzzle as in Step 8 of the protocol,
generates the certificate cert with respect to j and the inconsistent ĉj or ĤA

j as in the protocol.
S then sends cert to A as Step 9 of the protocol to complete the simulation.

– If |Js| = λ − 2 and |Jz| = 2, S sets Stupid = true and sends (stupidCheat, λ−2
λ

) to FRobustPVC.
If FRobustPVC returns corrupted, S sets caught = (λ−2

λ
, true) and Type = BadNum. If FRobustPVC

returns ⊥, S sets caught = (λ−2
λ

, false). Then S continues the simulation.
– If |Js| = λ − 2, |Jz| = 1, and GoodEq = true, S sends (cheat, λ−2

λ−1
) to FRobustPVC. If FRobustPVC

returns corrupted, S sets caught = (λ−2
λ−1

, true) and Type according to the possible certificate with

respect to the inconsistent ĉj or ĤA
j . If FRobustPVC returns undetected, S sets caught = (λ−2

λ−1
, false).

Then S continues the simulation.
– If |Js| = λ − 2, |Jz| = 1, and GoodEq = false, S sends (cheat, λ−1

λ
) to FRobustPVC. If FRobustPVC

returns corrupted, S sets caught = (λ−1
λ

, true) and Type according to the possible certificate with

respect to the inconsistent ĉj or ĤA
j . If FRobustPVC returns undetected, S sets caught = (λ−1

λ
, false).

Then S continues the simulation.
– If |Js| = λ− 2 and |Jz| = 0, S executes the finishing touches procedure as in Step 7a-7c, sends

(cheat, 1) to FRobustPVC, receives corrupted, opens the puzzle as in Step 8 of the protocol, generates
the certificate cert with respect to j and the inconsistent ĉj or ĤA

j as in the protocol, and sends
cert to A as in Step 9 of the protocol to complete the simulation.

– If |Js| = λ−1, |Jz| = 1, and GoodEq = true, S sets caught =⊥. Then S continues the simulation.
– If |Js| = λ − 1, |Jz| = 1, and GoodEq = false, then S tosses a coin, which with probability 1

λ

outputs false and λ−1
λ

outputs true. If the output is false, then S executes the finishing touches
procedure as follows, opens his puzzle, and sends abort to FRobustPVC to terminate the execution
of the protocol.
(a) Let ȷ̂B be the element in Jz.
(b) Program the random oracle to let the decryption of pcȷ̂B be 0, decryption of pcj be cj for

j ∈ [λ]\{ȷ̂B}, and decryption of {pAj,i,b} be the correct values as those in the protocol for
j ∈ [λ]\{ȷ̂B} and j = ȷ̂B , respectively.

(c) Program the random oracle: Let the decryption of pseedB
ȷ̂B,OT

be seedBȷ̂B ,OT = seed′′ȷ̂B . For

j ∈ [λ]\{ȷ̂B}, let the decryption of pseedB
j,OT

be seedBj,OT = seed′′j ⊕ seed′j .

If the output is true, then S sets caught =⊥ and continues the simulation.
– If |Js| = λ−1 and |Jz| = 0, S sets Stupid = true and then sends (stupidCheat, λ−1

λ
) to FRobustPVC.

If FRobustPVC returns corrupted, S executes the finishing touches by picking ȷ̂B ←$ Js, program-
ming the random oracle to let the decryption of pcȷ̂B be 0, decryption of pcj be cj for j ∈ [λ]\{ȷ̂B},
and decryption of {pAj,i,b} be the correct values as those in the protocol for j ∈ [λ]\{ȷ̂B} and
j = ȷ̂B , respectively. S also programs the random oracle: for the ȷ̂Bth instance, let the de-
cryption of pseedB

ȷ̂B,OT
be seedBȷ̂B ,OT = seed′′ȷ̂B . For j ∈ [λ]\{ȷ̂B}, let the decryption of pseedB

j,OT
be

seedBj,OT = seed′′j ⊕ seed′j . Then S opens the puzzle as in Step 8 of the protocol, generates the

certificate cert with respect to the inconsistent ĉj or ĤA
j as in the protocol. S then sends cert

to A as Step 9 of the protocol to complete the simulation.
If FRobustPVC returns ⊥, S executes the finishing touches by picking ȷ̂B ←$ [λ]\Js and program-
ming the random oracle following the same procedure as FRobustPVC returns corrupted. Then S
opens his puzzle as in Step 8 of the protocol, and simulates the abortion of the honest PB to
terminate the simulation.

– If |Js| = λ, S executes the finishing touches procedure as in Step 7a-7c in this simulation, opens
his puzzle, and sends abort to FRobustPVC to terminate the execution of the protocol.

Rewind A and run steps 1′−7′ below untila |J ′
s| = |Js|, |J ′

z| = |Jz|, caught′ = caught, GoodEq′ = GoodEq,
Stupid′ = Stupid, and Type′ = Type.

1′. S goes through the following steps with A.
(a) S receives the commitments {cseedAj , cseed′Aj , cwitness′Aj }j∈[λ] from A. In the meantime, S playing

the role of PB randomly chooses ȷ̂B ←$ [λ] and then picks uniform κ-bit strings {seedBj , seed′
B
j ,

15

witness′
B
j }j∈[λ]. S then computes cseedBj

, cseed′Bj
, and cwitness′Bj

for j ∈ [λ]\{ȷ̂B} as in the pro-

tocol and let cseedB
ȷ̂B

, cseed′B
ȷ̂B

, and cwitness′B
ȷ̂B

be dummy commitments. Finally, S sends these

commitments to A as in the protocol.
(b) For all j ∈ [λ]\{ȷ̂B}, S playing the role of the receiver uses bj = 0 to retrieve the message

{seed′j
A}j∈[λ]\{ȷ̂B} with randomness derived from {seedBj }. For the ȷ̂Bth instance, S runs the

simulator SOT for the protocol ΠOT, and extracts (seed′
A
ȷ̂B ,witness′

A
ȷ̂B). S also plays the role of

the sender and uses {(seed′Bj ,witness′
B
j)}j∈[λ] as input with randomness derived from seedBj .

2′. S computes seed′j = seed′
A
j ⊕ seed′

B
j for all j ∈ [λ]. Then S let hj

B ← H(
⊕

[λ]\j seed
′
j) for all j ∈ [λ].

S uses the simulator SEq for ΠEq to obtain hA. If there exists hj
B , such that hj

B = hA, S sets

GoodEq′ = true. Then if hȷ̂B
B = hA, S returns true for ΠEq to A and restart the protocol, and

otherwise returns false for ΠEq to A. If there is no hj
B = hA, S sets GoodEq′ = false and returns false

for ΠEq to A.
3′. S computes and sends commitment cB to A. S also receives commitment cA from A. S extracts

(ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness
′B
ȷ̂A) from cA. If this extracted message is correct, store ȷ̂A. Otherwise, let

ȷ̂A =⊥.
4′. For all j ∈ [λ], S prepares garbled circuits and input materials as in Step 4 of the protocol.
5′. S computes and sends dummy {cγB

j
} to A. S also receives {cγA

j
} from A.

6′. S generates puzzles psBj
for a random chosen master puzzle key sBj and ciphertexts pseedB

j,OT
for

j ∈ [λ] as in the protocol. S generates ciphertexts pcj for computed cj for j ∈ [λ]\{ȷ̂B} and let the
ciphertext pcȷ̂B encrypt 0. Then S sends these puzzles to A.
S receives puzzles psAj

, pĉj , and pseedA
j,OT

for j ∈ [λ] from A. Since time-lock puzzles can be solved in

polynomial time, S can decrypt these puzzles and derive sAj , ĉj , and seedAj,OT for j ∈ [λ].
For all j ̸= ȷ̂B , S playing the role of the receiver runs ΠOT with A, using input 0nB and randomness
derived from seedBj . In this way, S receives A’s {pBj,i,0}. In the ȷ̂Bth execution of ΠOT, S playing the
role of the receiver uses the simulator SOT for ΠOT to extract {pBȷ̂B,i,b}i∈[nB],b∈{0,1}. S can decrypt
{pBȷ̂B,i,b}i∈[nB],b∈{0,1} and obtain {Bȷ̂B ,i,b}i∈[nB],b∈{0,1}.
If ȷ̂A =⊥, S first generates ciphertexts for {pAj,i,b} for j ∈ [λ] as in the protocol. Then, S playing
the role of the sender executes ΠOT with A using {(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness

derived from seed′j ⊕ seedBj,OT or seedBj,OT as in the protocol. If ȷ̂A ̸=⊥, S generates ciphertexts for
{pAj,i,b} for j ∈ [λ]\{ȷ̂A} as in the protocol. For [λ]\{ȷ̂A}, S playing the role of the sender executes

ΠOT with A using {(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness derived from seed′j ⊕ seedBj,OT

or seedBj,OT as in the protocol. For j = ȷ̂A, S runs the simulator SOT for ΠOT to extract the input xA

and returns dummy ciphertexts {pAȷ̂A,i} to A.
7′. S generates {σB

j } as an honest PB in the protocol and sends them to A. S also receives {σA
j } from

A. If any of the signatures are invalid, then return to Step 1′.
Then S simulates the computation of an honest PA playing the role of the sender in the executions
of ΠOT in Step 6 of the protocol and obtain ĤA

j . If ĉj = 0, the simulation is based on seedAj,OT as
the ȷ̂Ath instance in the protocol. If ĉj = cj , the simulation is based on seed′j ⊕ seedAj,OT as other

instances in the protocol. Let J ′
z be the set of indices that ĉj = 0 and ĤA

j matches the simulation
of ΠOT for the ȷ̂Ath instance as described in the protocol. Let J ′

s be the set of indices that ĉj = cj
and ĤA

j matches the simulation of ΠOT for the checking instances.
Hence, there are following cases (let Stupid′ = false and Type′ =⊥ by default):
– If |J ′

s| < λ− 2, then return to Step 1′.
– If |J ′

s| = λ − 2 and |J ′
z| = 2, S sets Stupid′ = true. If ȷ̂B ∈ J ′

s, S sets caught′ = (λ−2
λ

, true) and
Type′ = BadNum. Otherwise, S sets caught′ = (λ−2

λ
, false).

– When |J ′
s| = λ − 2, |J ′

z| = 1, and GoodEq′ = true, if ȷ̂B ∈ J ′
s, S sets caught′ = (λ−2

λ−1
, true) and

Type′ according to the possible certificate with respect to the inconsistent ĉj or ĤA
j . Otherwise,

S sets caught′ = (λ−2
λ−1

, false).

– When |J ′
s| = λ − 2, |J ′

z| = 1, and GoodEq′ = false, if ȷ̂B ∈ J ′
s or ȷ̂B ∈ J ′

z, S sets caught′ =
(λ−1

λ
, true) and Type′ according to the possible certificate with respect to the inconsistent ĉj or

ĤA
j . Otherwise, S sets caught′ = (λ−1

λ
, false).

– If |J ′
s| = λ− 2 and |J ′

z| = 0, then return to Step 1′.
– If |J ′

s| = λ− 1, |J ′
z| = 1, and GoodEq′ = true, S sets caught′ =⊥.

– When |J ′
s| = λ− 1, |J ′

z| = 1, and GoodEq′ = false, if ȷ̂ ∈ Js, then S sets caught′ =⊥. Otherwise,
return to Step 1′.

– If |J ′
s| = λ− 1 and |J ′

z| = 0, then return to Step 1′.
– If |J ′

s| = λ, then return to Step 1′.

16

8. If ȷ̂A ̸=⊥, S sends xA to FRobustPVC and receives the output z. Then S regenerates the garbled circuit
via

({Aȷ̂A,i}, {Bȷ̂A,i},GCȷ̂A , {Zȷ̂A,i,b})← SGb(1κ, C, z)
and recomputes the materials of the ȷ̂Ath instance in Step 4b and 4c of the protocol. Since this
garbled circuit is simulated, S uses/programs dummy commitments/values in case of need, e.g., for
γB
ȷ̂A

. S also uses the random oracle to program the opening of cȷ̂A and {pAȷ̂A,i} with respect to the
simulated garbled circuit. Then S opens his puzzle to A as in the protocol. A may also open her
puzzle.

9. If caught′ = (·, true), S generates the corresponding cert and sends it to A to complete the simulation.
10. S sends the opening for cB to A as in the protocol. S also receives the opening for cA from A.

If Stupid′ = true, S simulates the abortion of the honest party to complete the simulation. If the
opening (ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness

′B
ȷ̂A) is not correct, S sends abort to FRobustPVC and simulates the

abortion of the honest party to complete the simulation.
11. S sends the simulated garbled circuit GCȷ̂A , together with corresponding label hash values, to A.
S also receives the garbled circuit GCȷ̂B and related materials from A. If they are invalid, S sends
abort to FRobustPVC and simulates the abortion of the honest party to complete the simulation.

12. S sends the simulated labels, γB
ȷ̂A

, and corresponding decommitments to A. S also receives the

labels, γA
ȷ̂B

, and corresponding decommitments. If the received materials are invalid, S sends abort
to FRobustPVC and simulates the abortion of the honest party to complete the simulation.

13. S uses the simulator SEq for ΠEq to obtain βA from A. Then S defines the boolean function g as
follows.
(a) On input xB ∈ {0, 1}nB , select the corresponding input labels for xB in the label tuples
{(Bȷ̂B ,i,0, Bȷ̂B ,i,1)}i∈[nB].

(b) Evaluate GCȷ̂B with the input-wire labels {Aȷ̂B ,i,xA[i]}i∈[nA] and {Bȷ̂B ,i,xB [i]}i∈[nB] as in the
protocol to obtain {Zȷ̂B ,i}i∈[nO] and zȷ̂B . In particular, if some error occurs in the evaluation of
garbled circuit, some hard-coded random values provided by S are used for {Zȷ̂B ,i}i∈[nO] and
zȷ̂B .

(c) Compute βB ← H(
⊕nO

i=1(Zȷ̂A,i,zȷ̂B
[i] ⊕ Zȷ̂B ,i,zȷ̂B

[i])).

(d) If βA = βB , return true. Otherwise, return false.
S sends g to FRobustPVC, receives the output e from FRobustPVC, and gives e to A. If A does not abort,
S sends continue to FRobustPVC to complete the simulation.

a We could use standard techniques [13,15] to ensure that S runs in expected polynomial time.

Now it remains to show that the joint distribution of the view of A simulated by S and the output
of PB in the ideal world is computationally indistinguishable from the joint distribution of the view of
A and the output of PB in the real world. We provide the detailed proof in Supplementary Material B.

Public Verifiability We argue that whenever an honest party PX outputs the message corrupted, this
party should also be capable of producing a valid certificate for the malicious party PY corrupted by
the adversary. This implies that once the honest party detects the adversary’s cheating behavior, the
adversary cannot prevent the honest party from generating the certificate.

Note that in Step 7, without receiving a valid signature, the honest party will not continue the
execution of the protocol. Alternatively, if the honest party does receive valid signatures, though
this party still cannot obtain the solutions for the time-lock puzzles/ciphertexts at this time, it is
guaranteed that the adversary has signed the time-lock puzzles/ciphertexts. Meanwhile, the adversary
still cannot access the solution for the time-lock puzzles and remains unaware of the indices of the
instances chosen by PX . Therefore, the adversary cannot base her decision to continue or abort on
these indices.

When the adversary gains knowledge of the indices of instances chosen by PX to verify, the honest
party has already gathered sufficient evidence to attribute blame to the adversary. The honest party
can locally solve the adversary’s puzzles to obtain sYj , cj , and seedYj,OT sent by the adversary. These

messages, combined with the committed seeds and witness, as well as transXj and transYj , provide
enough information for anyone to simulate the execution of the checked instance and obtain ĉj and

ĤY
j . Anyone can conduct the same verification on ĉj and ĤY

j as PX to determine if malicious PY

deviated from the protocol execution. Since PX ’s signature is provided, the non-repudiation property
is ensured.

17

Defamation Freeness Assuming an honest party PX is accused by the adversary corrupting PY with a
valid certificate, it implies that the adversary will provide valid signature(s) of PX for the message(s)

(C, j, cseedYj , cseed′Yj , cwitness′Yj , trans
X
j , transYj ,HX

j , psXj , pcj , pseedXj,OT
, τ, λ) .

Since PX is honest, she only signs the puzzles psXj , pcj , and pseedXj,OT
she has generated. These puzzles

can be decrypted to derive sXj , cj , and seedXj,OT. According to the soundness of the verifiable time-lock

puzzle scheme, the adversary cannot provide openings/proofs for solutions different from sXj , cj , and

seedXj,OT.
First, we consider the certificate with type BadCom. In this setting, the adversary aims to demon-

strate that cj does not match the commitment generated from the seed′j (and cj ̸= 0, which is
obvious). Due to the binding property, the adversary can only provide the valid committed values

seedYj , seed
′Y
j , and witness′

Y
j inside cseedYj , cseed′Yj , and cwitness′Yj . A certificate verifier will recompute

seed′
X
j from transXj with randomness derived from seedYj . On the one hand, since seed′

X
j is the output

of a perfectly correct OT protocol, given the signed transcript of ΠOT, there is exactly one valid
output for PY that is consistent with transXj , regardless of PY ’s randomness and inputs. On the other

hand, if the committed values seed′
Y
j and witness′

Y
j are not the inputs of PY playing the role of

the sender in the perfectly correct protocol ΠOT, these committed values do not match the signed

transcript of ΠOT. Therefore, seed
′
j = seed′

A
j ⊕ seed′

B
j should be the same as the one derived by the

honest PX . Consequently, simulation for the computation conducted by PX always leads to the same
cj , and the algorithm Judge will not output true (except for a negligible probability).

Then we consider the certificate with type BadOT. Similarly, we know that the adversary cannot

forge seed′j = seed′
A
j ⊕ seed′

B
j , seed

X
j,OT, and sXj , and a certificate verifier should derive the same

{(pYj,i,0
, pYj,i,1

)} and seed′j ⊕ seedXj,OT. Hence, given the signed HX
j , the algorithm Judge will not

output true except for a negligible probability (when a collision of the hash function is found).
Finally, for the certificate with type BadNum, we know that the adversary cannot forge cj . Hence,

the honest PX should always have exactly one cj = 0. Therefore, the algorithm Judge will not output
true (except for a negligible probability).

Therefore, the protocol ΠRobustPVC along with algorithms Blame and Judge is robust publicly
verifiable secure with deterrence ϵ = 1− 1

λ−1 . ⊓⊔

5 Discussion

In this section, we discuss the performance and possible enhancement of our protocol ΠRobustPVC.

5.1 Comparison

The protocol ΠRobustPVC is building upon the state-of-the-art secure two-party computation protocol
with PVC security [17]. As discussed in Section 1.2, our protocol incurs low additional overhead. We
can easily observe that, compared to the protocol in [17], our protocol only requires an additional
garbled circuit generation and an additional garbled circuit evaluation (see Table 1). Interestingly, as
the deterrence factor increases, the additional overhead for garbled circuit generation/evaluation in
our protocol compared to the protocol in [17] decreases. As emphasized in [17], the cost of generating
garbled circuits (unless the circuit is very small) is the efficiency bottleneck of their protocol, making
the number of garbled circuit generations in our protocol highly desirable.

Table 1. Number of garbled circuit generation and evaluation needed to achieve different deterrence factor
ϵ, along with the additional overhead of our ΠRobustPVC compared to the protocol in [17]. Since evaluations
should be faster than generations, the additional cost is actually overestimated.

ϵ
PVC-secure protocol [17] Our protocol ΠRobustPVC Additional

overheadPA PB Total PA PB Total
80% 5 + 0 = 5 4 + 1 = 5 10 5 + 1 = 6 5 + 1 = 6 12 20%
87.5% 8 + 0 = 8 7 + 1 = 8 16 8 + 1 = 9 8 + 1 = 9 18 12.5%
90% 10 + 0 = 10 9 + 1 = 10 20 10 + 1 = 11 10 + 1 = 11 22 10%
95% 20 + 0 = 20 19 + 1 = 20 40 20 + 1 = 21 20 + 1 = 21 42 5%

18

In the following, we argue that each phase of our protocol incurs low additional overhead compared
to the protocol in [17].

Seed Preparation It is easy to verify that the expected number of executions for this phase is 2−ϵ,
where ϵ is the deterrence factor. For ϵ = 90%, the expected number of executions is only 1.1. For
ϵ = 95%, the expected number is reduced to only 1.05. Additionally, the secure equality test can
be completed very quickly [18,7]. Therefore, the overhead of this phase is low.

Circuit and Input Preparation In our protocol, two parties can perform garbled circuit genera-
tion in parallel during this phase. For the same deterrence factor, the number of garbled circuits
generated in [17] is the same as in ΠRobustPVC (for each party). Therefore, the running time for
garbled circuit generation is approximately the same as that of the protocol in [17]. We also note
that time-lock puzzle generation is efficient. Indeed, for all instances, a single master puzzle key
(inside a real time-lock puzzle) is sufficient. Hence, the overhead of this phase is low.

Publicly Verifiable Evidence Creation This phase is almost identical to the protocol in [17].
Check of Instances If both parties are honest and the master time-lock puzzle is correctly opened,

the computation performed by both parties (in parallel) mainly involves the simulation of ΠOT,
which incurs a similar running time as the protocol in [17]. Moreover, compared to the proto-
col in [17], no simulation of garbled circuit generation is needed. Therefore, our protocol may
outperform the protocol in [17] in this phase.

Circuit Evaluation In this phase, both parties can evaluate the garbled circuit in parallel. Hence,
the running time required for garbled circuit evaluation is almost the same as that of the protocol
in [17]. Additionally, secure equality tests can be completed quickly. Therefore, the overhead of
this phase is low.

Based on the implementation presented in [17], as an example, when ϵ = 87.5%, i.e., the number
of garbled circuit is 8, the execution time of their PVC-secure protocol for an SHA-256 circuit is
71.31 ms in LAN and 2436 ms in WAN. In comparison, the corresponding semi-honest protocol takes
38.04 ms in LAN and 1080ms in WAN, while the maliciously secure protocol takes 611.7 ms in LAN
and 17300 ms in WAN. Given that the performance of our protocol is similar to that of the protocol
in [17], it is evident that our ΠRobustPVC achieves comparable performance to the semi-honest protocol
while significantly outperforming the maliciously secure protocol.

5.2 Size of Certificate

In ΠRobustPVC, we have chosen not to include the circuit description C in the certificate. Instead, we
make the assumption that the circuit description is commonly known. This practice aligns with the
convention followed in PVC-secure protocols [17,9,10,31,3]. Alternatively, one could opt to include the
circuit description C in the certificate. It is worth noting that the description of C can be significantly
shorter than the full circuit, such as representing it in high-level code or utilizing an ID number from
a widely used “reference circuits” database.

Due to the exclusion of the circuit description in the certificate, the size of publicly verifiable
certificates generated in the ΠRobustPVC protocol remains constant.

5.3 Potential Enhancements

In our protocol ΠRobustPVC, we do not aim to prevent an attacker from learning the evaluation result
C(xA, xB) even when the honest party outputs cheating at the end of the protocol. This occurs when
the attacker generates a malicious garbled circuit but not being caught (with probability 1 − ϵ) or
when the attacker causes an abortion in the final equality test protocol.

We note this issue is not the focus of our protocol. In fact, it is well known that two-party
computation cannot guarantee fairness in general [6]. But there are still some countermeasures that
can be readily incorporated into our protocols.

For instance, one approach is to introduce an additional circuit that processes the output-wire
labels before they are used in the equality test, effectively concealing the semantic values associ-
ated with the garbled circuit’s output. Another technique, known as progressive revelation, allows
for a gradual release of the evaluation result bit-by-bit, preventing the attacker from obtaining the
complete input while leaving the honest party with nothing. For more detailed information on these
countermeasures, we refer interested readers to the work [18].

19

Acknowledgments. We would like to express our sincere appreciation to the anonymous reviewers for

their valuable comments. Yi Liu was supported by National Natural Science Foundation of China under Grant

No. 62302194. Junzuo Lai was supported by National Natural Science Foundation of China under Grant No.

U2001205, Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023B1515040020). Qi Wang

was supported by Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet

under Grant No. ZDSYS20210623092007023 and Guangdong Provincial Key Laboratory of Brain-inspired

Intelligent Computation under Grant No. 2020B121201001. Anjia Yang was supported by National Key Re-

search and Development Program of China under Grant No. 2021ZD0112802 and National Natural Science

Foundation of China under Grant No. 62072215. Jian Weng was supported by National Natural Science

Foundation of China under Grant Nos. 61825203, 62332007 and U22B2028, Major Program of Guangdong

Basic and Applied Research Project under Grant No. 2019B030302008, Guangdong Provincial Science and

Technology Project under Grant No. 2021A0505030033, Science and Technology Major Project of Tibetan

Autonomous Region of China under Grant No. XZ202201ZD0006G, National Joint Engineering Research Cen-

ter of Network Security Detection and Protection Technology, Guangdong Key Laboratory of Data Security

and Privacy Preserving, Guangdong Hong Kong Joint Laboratory for Data Security and Privacy Protection,

and Engineering Research Center of Trustworthy AI, Ministry of Education.

References

1. Agrawal, N., Bell, J., Gascón, A., Kusner, M.J.: Mpc-friendly commitments for publicly verifiable covert
security. In: Kim, Y., Kim, J., Vigna, G., Shi, E. (eds.) CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021. pp.
2685–2704. ACM (2021)

2. Asharov, G., Orlandi, C.: Calling out cheaters: Covert security with public verifiability. In: Wang, X.,
Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7658, pp. 681–698. Springer (2012)

3. Attema, T., Dunning, V., Everts, M.H., Langenkamp, P.: Efficient compiler to covert security with public
verifiability for honest majority MPC. In: Ateniese, G., Venturi, D. (eds.) Applied Cryptography and Net-
work Security - 20th International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceedings.
Lecture Notes in Computer Science, vol. 13269, pp. 663–683. Springer (2022)

4. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries.
J. Cryptol. 23(2), 281–343 (2010)

5. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor,
V.D. (eds.) the ACM Conference on Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012. pp. 784–796. ACM (2012)

6. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract).
In: Hartmanis, J. (ed.) Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA. pp. 364–369. ACM (1986)

7. Couteau, G.: New protocols for secure equality test and comparison. In: Preneel, B., Vercauteren, F.
(eds.) Applied Cryptography and Network Security - 16th International Conference, ACNS 2018, Leu-
ven, Belgium, July 2-4, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10892, pp. 303–320.
Springer (2018)

8. Damg̊ard, I., Geisler, M., Nielsen, J.B.: From passive to covert security at low cost. In: Micciancio, D.
(ed.) Theory of Cryptography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings. Lecture Notes in Computer Science, vol. 5978, pp. 128–145. Springer
(2010)

9. Damg̊ard, I., Orlandi, C., Simkin, M.: Black-box transformations from passive to covert security with
public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020
- 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12171, pp. 647–676. Springer
(2020)

10. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Generic compiler for publicly verifiable covert multi-party
computation. In: Canteaut, A., Standaert, F. (eds.) Advances in Cryptology - EUROCRYPT 2021 - 40th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12697, pp.
782–811. Springer (2021)

11. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Financially backed covert security. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022 - 25th IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 13178, pp. 99–129. Springer (2022)

20

12. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge University
Press (2004)

13. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J.
Cryptol. 9(3), 167–190 (1996)

14. Goyal, V., Mohassel, P., Smith, A.D.: Efficient two party and multi party computation against covert ad-
versaries. In: Smart, N.P. (ed.) Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17,
2008. Proceedings. Lecture Notes in Computer Science, vol. 4965, pp. 289–306. Springer (2008)

15. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Information
Security and Cryptography, Springer (2010)

16. Hazay, C., Shelat, A., Venkitasubramaniam, M.: Going beyond dual execution: MPC for functions with
efficient verification. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography
- PKC 2020 - 23rd IACR International Conference on Practice and Theory of Public-Key Cryptography,
Edinburgh, UK, May 4-7, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111, pp.
328–356. Springer (2020)

17. Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security with public verifiability: Faster,
leaner, and simpler. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 -
38th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol.
11478, pp. 97–121. Springer (2019)

18. Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual
execution. In: IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco,
California, USA. pp. 272–284. IEEE Computer Society (2012)

19. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose.
In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II. Lecture Notes in
Computer Science, vol. 8043, pp. 18–35. Springer (2013)

20. Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (almost) for free. In: Iwata, T.,
Cheon, J.H. (eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the
Theory and Application of Cryptology and Information Security, Auckland, New Zealand, November 29
- December 3, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9453, pp. 210–235.
Springer (2015)

21. Kolesnikov, V., Mohassel, P., Riva, B., Rosulek, M.: Richer efficiency/security trade-offs in 2pc. In: Dodis,
Y., Nielsen, J.B. (eds.) Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9014,
pp. 229–259. Springer (2015)

22. Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert adversaries. J. Cryptol. 29(2),
456–490 (2016)

23. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party computation. J. Cryptol. 22(2),
161–188 (2009)

24. Liu, Y., Wang, Q., Yiu, S.: Making private function evaluation safer, faster, and simpler. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022 - 25th IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 13177, pp. 349–378. Springer (2022)

25. Liu, Y., Wang, Q., Yiu, S.: Towards practical homomorphic time-lock puzzles: Applicability and verifia-
bility. In: Atluri, V., Pietro, R.D., Jensen, C.D., Meng, W. (eds.) Computer Security - ESORICS 2022 -
27th European Symposium on Research in Computer Security, Copenhagen, Denmark, September 26-30,
2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13554, pp. 424–443. Springer (2022)

26. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applications. In: Boldyreva,
A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 11692, pp. 620–649. Springer (2019)

27. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography - PKC 2006, 9th International Con-
ference on Theory and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 3958, pp. 458–473. Springer (2006)

28. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: More efficient and secure two-party
computation. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II. Lecture
Notes in Computer Science, vol. 8043, pp. 36–53. Springer (2013)

29. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with online/offline dual execution.
In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016. pp. 297–314. USENIX Association (2016)

21

30. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Thuraisingham,
B., Evans, D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 1229–
1242. ACM (2017)

31. Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert security and public verifiability.
Cryptology ePrint Archive, Report 2021/366 (2021), https://ia.cr/2021/366

32. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryp-
tology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. Lecture Notes
in Computer Science, vol. 11478, pp. 379–407. Springer (2019)

33. Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2pc over a blockchain with applications to
financially-secure computations. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019. pp. 633–650. ACM (2019)

22

Supplementary Material

A Verifiable Time-Lock Puzzle

A.1 Definition

Definition 3. A verifiable time-lock puzzle scheme TLP should satisfy completeness, correctness for
opening and proof, soundness, and security as follows.

Completeness For all κ, τ , pp← TLP.Setup(1κ, τ), and all s ∈ S(κ), we have

(s, ·)← TLP.Solve(TLP.Gen(pp, s)) .

Correctness for Opening For all κ, τ , pp← TLP.Setup(1κ, τ), s ∈ S, and (p, π)← TLP.Gen(pp, s),
we have

TLP.Verify(pp, p, s, π) = true .

Correctness for Proof For all κ, τ , pp ← TLP.Setup(1κ, τ), s ∈ S, and (p, π) ← TLP.Gen(pp, s),
if (s, π′)← TLP.Solve(pp, p), we have

TLP.Verify′(pp, p, s, π′) = true .

Soundness For all κ, τ , and all PPT adversary A, the following probability is negligible in κ:

Pr


(
TLP.Verify(pp, p̂, ŝ, π̂) = true

∨ TLP.Verify′(pp, p̂, ŝ, π̂) = true

)
∧ ŝ ̸= s

:

pp← TLP.Setup(1κ, τ(κ));

(p̂, ŝ, π̂)← A(1κ, pp, τ(κ));
(s, ·)← TLP.Solve(pp, p̂);

 .

Security The verifiable time-lock puzzle scheme TLP is secure with gap ε < 1 if there exists a
polynomial τ̃(·), such that for all polynomials τ(·) ≥ τ̃(·) and all polynomial-size adversaries
(A1,A2) = {(A1,A2)κ}κ∈N, where the depth of A2 is bounded from above by τε(κ), we have

Pr

b← A2(pp, p, τ) :

(τ, s0, s1)← A1(1
κ, τ(κ));

pp← Setup(1κ, τ(κ));

b←$ {0, 1}; (p, ·)← Gen(pp, sb);

 ≤ 1

2
+ negl(κ) ,

where s0, s1 ∈ S.

A.2 Construction

In the following, we present the construction of a verifiable time-lock puzzle scheme. This scheme
draws inspiration from Wesolowski’s public verifiable approach for verifiable delay functions (VDF)
as proposed in [32] for generating the proof of solution (see more in [26,10,25]).

Construction Verifiable Time-Lock Puzzle

Setup(1κ, τ) Sample two strong RSA modulus N = pq, where p = 2p′ + 1 and q = 2q′ + 1. Then pick
a random generator g of JN , where JN is a subgroup of Z∗

n for elements with Jacobi symbol +1.
Compute h← g2

τ

mod N , where 2τ mod 2p′q′ can be computed first to speed up the computation.
Output pp = (τ,N, g, h).

Gen(pp, s) On input pp = (τ,N, g, h) and s ∈ Jn, pick r←$ [⌈n/2⌉], compute u ← gr mod N and
v ← s · hr mod N . Output p = (u, v) and π = r.

Solve(pp, p) Parse p = (u, v). Compute w ← u2τ mod N by repeated squaring. Then compute s ←
w−1v mod N . Generate a prime ℓ ← Hprime(bin(p)) ∈ Prime(2κ), where Prime(2κ) is the set of
the first 22κ primes and Hprime is a hash function mapping arbitrary strings to Prime(2κ). Write
2T = qℓ+ r′, where q, r′ ∈ Z and 0 ≤ r′ < ℓ, and computea π′ ← uq mod N . Output s and π′

Verify(pp, p, s, π) Parse p = (u, v). Check whether π ∈ [⌈n/2⌉], u = gr mod N and v = s · hr mod N . It
they hold, output true. Otherwise, output false.

Verify′(pp, p, s, π′) Parse p = (u, v). Compute r′ ← 2T mod ℓ. Output true if π′ ∈ Zn and v = s ·
π′ℓur′ mod N , and false otherwise.

a Note that π′ ← uq mod n can be efficiently computed by τ ·3/ log(τ) group operations that are allowed
to be parallelized (see [32] for more information).

B Proof of Simulatability for Theorem 1

Proof. Based on the simulation in the proof of Theorem 1, our goal now is to show that the joint
distribution of the view of A and the output of PB in the ideal world is computationally indistinguish-
able from the joint distribution of the view of A and the output of PB in the real world. We define
the following experiments and let the output of each experiment be the view of A and the output of
PB.

Expt0 This is the ideal-world execution between S (as described in the proof of Theorem 1) and the
honest party PB holding some input xB , both interacting with FRobustPVC. We inline the actions
of S, FRobustPVC, and PB, and rewrite the experiment as follows.

0. Use KGen to generate a pair of key (vkB , sigkB) and send vkB to A.
1. Go through the following steps with A.

(a) Receive {cseedAj , cseed′Aj , cwitness′Aj }j∈[λ] from A. Meanwhile, pick uniform κ-bit strings {seedBj ,

seed′
B
j ,witness

′B
j }j∈[λ], compute {cseedBj , cseed′Bj

, cwitness′Bj
}j∈[λ], and send these commitments

to A as in the protocol.
(b) For all j, play the role of the receiver and use bj = 0 to retrieve seed′

A
j in ΠOT with ran-

domness derived from seedBj . Plays the role of the sender and use {(seed′Bj ,witness′
B
j)}j∈[λ]

as input in ΠOT with randomness derived from seedBj .

2. Compute seed′j = seed′
A
j ⊕ seed′

B
j for all j ∈ [λ]. Then let hj

B ← H(
⊕

[λ]\j seed
′
j) for all j ∈ [λ].

For the execution of ΠEq, use the corresponding simulator SEq to obtain hA. If there exists hj
B ,

such that hj
B = hA, set GoodEq = true and pick ȷ̂B ←$ [λ]. If hȷ̂B

B = hA, return true for ΠEq to
A and restart the protocol, and otherwise return false for ΠEq to A. If there is no hj

B , such that
hj
B = hA, set GoodEq = false and return false for ΠEq to A.

3. Compute and send dummy commitment cB to A. Receive commitment cA from A.
4. For all j ∈ [λ], prepare garbled circuits and input materials as in Step 4 of the protocol.
5. Compute and send dummy commitment {cγB

j
} to A. Receive {cγA

j
} from A.

6. Generate the puzzle psBj
for a random chosen master puzzle key sBj as in the protocol for j ∈ [λ].

Generate dummy ciphertexts for his pcj and pseedB
j,OT

for j ∈ [λ]. Then send these puzzles to A.
Receive puzzles psAj

, pĉj , and pseedA
j,OT

for j ∈ [λ] from A. Since time-lock puzzles can be solved

in polynomial time, decrypt these puzzles and derive sAj , ĉj , and seedAj,OT for j ∈ [λ].
For λ executions of ΠOT, play the role of the receiver, use as input 0nB and randomness derived
from seedBj , and receive A’s {pBj,i,0}. Let HA

j denote the transcript hash for the jth executions.
For λ executions of ΠOT, play the role of the sender, generate dummy ciphertexts {pAj,i,b}, and
random κ-bit string seed′′j for all j ∈ [λ]. Then execute ΠOT with A using {(pAj,i,0 , pAj,i,1)}i∈[nA]

as input with randomness derived from seed′′j .
7. Generate signatures {σB

j } as an honest PB and send them to A.
Receive {σA

j } fromA. If any of the signatures are invalid, execute the finishing touches procedure
as follows and simulate the abortion of the honest PB to terminate the simulation.
(a) Choose ȷ̂B ←$ [λ] if GoodEq = false, and otherwise use ȷ̂B chosen in Step 2 in this simulation.
(b) Program the random oracle to let the decryption of pcȷ̂B be 0, decryption of pcj be cj for

j ∈ [λ]\{ȷ̂B}, and decryption of {pAj,i,b} be the correct values as those in the protocol for
j ∈ [λ]\{ȷ̂B} and j = ȷ̂B , respectively.

(c) Program the random oracle: Let the decryption of pseedB
ȷ̂B,OT

be seedBȷ̂B ,OT = seed′′ȷ̂B . For

j ∈ [λ]\{ȷ̂B}, let the decryption of pseedB
j,OT

be seedBj,OT = seed′′j ⊕ seed′j .

Then simulate the computation of an honest PA playing the role of the sender in the executions
of ΠOT in Step 6 of the protocol and obtain ĤA

j . If ĉj = 0, the simulation is based on seedAj,OT

as the ȷ̂Ath instance in the protocol. If ĉj = cj , the simulation is based on seed′j ⊕ seedAj,OT as

other instances in the protocol. Let Jz be the set of indices that ĉj = 0 and ĤA
j matches the

simulation of ΠOT for the ȷ̂Ath instance as described in the protocol. Let Js be the set of indices
that ĉj = cj and ĤA

j matches the simulation of ΠOT for the checking instances.
Hence, there are following cases (let Stupid = false and Type =⊥ by default):

24

– If |Js| < λ− 2, executes the finishing touches procedure as in Step 7a-7c of the simulation,
open the puzzle as in Step 8 of the protocol, generate the certificate cert with respect to
j and the inconsistent ĉj or ĤA

j as in the protocol. Then send cert to A as Step 9 of the
protocol and output corrupted to complete the simulation.

– If |Js| = λ−2 and |Jz| = 2, set Stupid = true. With probability λ−2
λ

set caught = (λ−2
λ

, true)
and Type = BadNum. With the remaining probability, set caught = (λ−2

λ
, false). Then

continue the simulation.
– If |Js| = λ− 2, |Jz| = 1, and GoodEq = true, with probability λ−2

λ−1
set caught = (λ−2

λ−1
, true)

and Type according to the possible certificate with respect to the inconsistent ĉj or ĤA
j .

With the remaining probability, set caught = (λ−2
λ−1

, false). Then continue the simulation.

– If |Js| = λ− 2, |Jz| = 1, and GoodEq = false, with probability λ−1
λ

, set caught = (λ−1
λ

, true)

and Type according to the possible certificate with respect to the inconsistent ĉj or ĤA
j .

With the remaining probability, set caught = (λ−1
λ

, false). Then continue the simulation.
– If |Js| = λ− 2 and |Jz| = 0, execute the finishing touches procedure as in Step 7a-7c. Then

open the puzzle as in Step 8 of the protocol, generate the certificate cert with respect to
j and the inconsistent ĉj or ĤA

j as in the protocol, and send cert to A as in Step 9 of the
protocol to complete the simulation.

– If |Js| = λ− 1, |Jz| = 1, and GoodEq = true, set caught =⊥. Then continue the simulation.
– If |Js| = λ − 1, |Jz| = 1, and GoodEq = false, then toss a coin, which with probability

1
λ

outputs false and λ−1
λ

outputs true. If the output is false, then execute the finishing
touches procedure as follows, open the puzzle, and simulate the abortion of the honest PB

to terminate the simulation.
(a) Let ȷ̂B be the element in Jz.
(b) Program the random oracle to let the decryption of pcȷ̂B be 0, decryption of pcj be

cj for j ∈ [λ]\{ȷ̂B}, and decryption of {pAj,i,b} be the correct values as those in the
protocol for j ∈ [λ]\{ȷ̂B} and j = ȷ̂B , respectively.

(c) Program the random oracle: for the ȷ̂Bth instance, let the decryption of pseedB
ȷ̂B,OT

be

seedBȷ̂B ,OT = seed′′ȷ̂B . For j ∈ [λ]\{ȷ̂B}, let the decryption of pseedB
j,OT

be seedBj,OT =

seed′′j ⊕ seed′j .
If the output is true, then set caught =⊥ and continues the simulation.

– If |Js| = λ− 1 and |Jz| = 0, set Stupid = true.
With probability λ−1

λ
, execute the finishing touches by picking ȷ̂B ←$ Js, programming the

random oracle to let the decryption of pcȷ̂B be 0, decryption of pcj be cj for j ∈ [λ]\{ȷ̂B},
and decryption of {pAj,i,b} be the correct values as those in the protocol for j ∈ [λ]\{ȷ̂B} and
j = ȷ̂B , respectively. Program the random oracle: for the ȷ̂Bth instance, let the decryption
of pseedB

ȷ̂B,OT
be seedBȷ̂B ,OT = seed′′ȷ̂B . For j ∈ [λ]\{ȷ̂B}, let the decryption of pseedB

j,OT
be

seedBj,OT = seed′′j ⊕ seed′j . Then open the puzzle as in Step 8 of the protocol, generates the

certificate cert with respect to the inconsistent ĉj or ĤA
j as in the protocol. Then send cert

to A as Step 9 of the protocol to complete the simulation.
With the remaining probability, execute the finishing touches by picking the index ȷ̂B ←$ [λ]\Js

and programming the random oracle following the same procedure as above. Then open the
puzzle as in Step 8 of the protocol, and simulate the abortion of the honest PB to terminate
the simulation.

– If |Js| = λ, execute the finishing touches procedure as in Step 7a-7c in this simulation, open
the puzzle, and simulate the abortion of the honest PB to terminate the simulation.

Rewind A and run steps 1′ − 7′ below until |J ′
s| = |Js|, |J ′

z| = |Jz|, caught′ = caught, GoodEq′ =
GoodEq, Stupid′ = Stupid, and Type′ = Type.
1′. Go through the following steps with A.

(a) Receive {cseedAj , cseed′Aj , cwitness′Aj }j∈[λ] from A. Meanwhile, choose ȷ̂B ←$ [λ] and uniform κ-

bit strings {seedBj , seed′
B
j ,witness

′B
j }j∈[λ]. Then compute cseedBj

, cseed′Bj
, and cwitness′Bj

for j ∈
[λ]\{ȷ̂B} as in the protocol and let cseedB

ȷ̂B

, cseed′B
ȷ̂B

, and cwitness′B
ȷ̂B

be dummy commitments.

Finally, send these commitments to A as in the protocol.
(b) For all j ∈ [λ]\{ȷ̂B}, play the role of the receiver and use bj = 0 to retrieve {seed′j

A}j∈[λ]\{ȷ̂B}
with randomness derived from {seedBj }. For the ȷ̂Bth instance, run SOT for the protocol ΠOT,

and extract (seed′
A
ȷ̂B ,witness′

A
ȷ̂B). Play the role of the sender and use {(seed′Bj ,witness′

B
j)}j∈[λ]

as input with randomness derived from seedBj .

2′. Compute seed′j = seed′
A
j ⊕ seed′

B
j for all j ∈ [λ]. Then let hj

B ← H(
⊕

[λ]\j seed
′
j) for all j ∈ [λ].

Use the simulator SEq for ΠEq to obtain hA. If there exists h
j
B , such that hj

B = hA, set GoodEq
′ =

25

true. Then if hȷ̂B
B = hA, return true for ΠEq to A and restart the protocol, and otherwise return

false for ΠEq to A. If there is no hj
B = hA, set GoodEq

′ = false and return false for ΠEq to A.
3′. Compute and send commitment cB to A. Receive commitment cA from A. Then extract

(ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness
′B
ȷ̂A) from cA. If this extracted message is correct, store ȷ̂A. Otherwise,

let ȷ̂A =⊥.
4′. For all j ∈ [λ], prepare garbled circuits and input materials as in Step 4 of the protocol.
5′. Compute and send dummy {cγB

j
} to A. Receive {cγA

j
} from A.

6′. Generate puzzles psBj
for a random chosen master puzzle key sBj and ciphertexts pseedB

j,OT
for

j ∈ [λ] as in the protocol. Generate ciphertexts pcj for computed cj for j ∈ [λ]\{ȷ̂B} and let the
ciphertext pcȷ̂B encrypt 0. Then send these puzzles to A.
Receive puzzles psAj

, pĉj , and pseedA
j,OT

for j ∈ [λ] from A. Since time-lock puzzles can be solved

in polynomial time, decrypt these puzzles and derive sAj , ĉj , and seedAj,OT for j ∈ [λ].
For all j ̸= ȷ̂B , play the role of the receiver and run ΠOT with A, using input 0nB and randomness
derived from seedBj . In this way, receive A’s {pBj,i,0}. In the ȷ̂Bth execution of ΠOT, play the role
of the receiver and use the simulator SOT for ΠOT to extract {pBȷ̂B,i,b}i∈[nB],b∈{0,1}. Decrypt
{pBȷ̂B,i,b}i∈[nB],b∈{0,1} and obtain {Bȷ̂B ,i,b}i∈[nB],b∈{0,1}.
If ȷ̂A =⊥, generate ciphertexts for {pAj,i,b} for j ∈ [λ] as in the protocol. Then, play the role
of the sender and execute ΠOT with A using {(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness

derived from seed′j ⊕ seedBj,OT or seedBj,OT as in the protocol. If ȷ̂A ̸=⊥, generate ciphertexts for
{pAj,i,b} for j ∈ [λ]\{ȷ̂A} as in the protocol. For [λ]\{ȷ̂A}, play the role of the sender and execute

ΠOT withA using {(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness derived from seed′j⊕seedBj,OT

or seedBj,OT as in the protocol. For j = ȷ̂A, run the simulator SOT for ΠOT to extract the input
xA and return dummy ciphertexts {pAȷ̂A,i} to A.

7′. Generate {σB
j } as an honest PB in the protocol and send them to A. Receive {σA

j } from A. If
any of the signatures are invalid, then return to Step 1′.
Then simulate the computation of an honest PA playing the role of the sender in the executions
of ΠOT in Step 6 of the protocol and obtain ĤA

j . If ĉj = 0, the simulation is based on seedAj,OT

as the ȷ̂Ath instance in the protocol. If ĉj = cj , the simulation is based on seed′j ⊕ seedAj,OT as

other instances in the protocol. Let J ′
z be the set of indices that ĉj = 0 and ĤA

j matches the
simulation of ΠOT for the ȷ̂Ath instance as described in the protocol. Let J ′

s be the set of indices
that ĉj = cj and ĤA

j matches the simulation of ΠOT for the checking instances.
Hence, there are following cases (let Stupid′ = false and Type′ =⊥ by default):
– If |J ′

s| < λ− 2, then return to Step 1′.
– If |J ′

s| = λ − 2 and |J ′
z| = 2, set Stupid′ = true. If ȷ̂B ∈ J ′

s, set caught′ = (λ−2
λ

, true) and
Type′ = BadNum. Otherwise, set caught′ = (λ−2

λ
, false).

– When |J ′
s| = λ − 2, |J ′

z| = 1, and GoodEq′ = true, if ȷ̂B ∈ J ′
s, set caught′ = (λ−2

λ−1
, true)

and Type′ according to the possible certificate with respect to the inconsistent ĉj or ĤA
j .

Otherwise, set caught′ = (λ−2
λ−1

, false).

– When |J ′
s| = λ − 2, |J ′

z| = 1, and GoodEq′ = false, if ȷ̂B ∈ J ′
s or ȷ̂B ∈ J ′

z, set caught′ =
(λ−1

λ
, true) and Type′ according to the possible certificate with respect to the inconsistent

ĉj or ĤA
j . Otherwise, set caught′ = (λ−1

λ
, false).

– If |J ′
s| = λ− 2 and |J ′

z| = 0, then return to Step 1′.
– If |J ′

s| = λ− 1, |J ′
z| = 1, and GoodEq′ = true, set caught′ =⊥.

– When |J ′
s| = λ−1, |J ′

z| = 1, and GoodEq′ = false, if ȷ̂ ∈ Js, then set caught′ =⊥. Otherwise,
return to Step 1′.

– If |J ′
s| = λ− 1 and |J ′

z| = 0, then return to Step 1′.
– If |J ′

s| = λ, then return to Step 1′.

8. If ȷ̂A ̸=⊥, compute z ← C(xA, xB). Then regenerate the garbled circuit via

({Aȷ̂A,i}, {Bȷ̂A,i},GCȷ̂A , {Zȷ̂A,i,b})← SGb(1κ, C, z)

and recompute the materials of the ȷ̂Ath instance in Step 4b and 4c of the protocol. Since this
garbled circuit is simulated, use/program dummy commitments/values in case of need, e.g., for
γB
ȷ̂A

. Use the random oracle to program the opening of cȷ̂A and {pAȷ̂A,i} with respect to the
simulated garbled circuit. Then open the puzzle to A as in the protocol. A may also open her
puzzle.

9. If caught′ = (·, true), generate the corresponding cert and send it toA to complete the simulation.

26

10. Send the opening for cB to A as in the protocol. Receives the opening for cA from A. If
Stupid′ = true, simulate the abortion of the honest party to complete the simulation. If the
opening (ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness

′B
ȷ̂A) is not correct, simulate the abortion of the honest party

to complete the simulation.
11. Send the simulated garbled circuit GCȷ̂A , together with corresponding label hash values, to A.

Receive the garbled circuit GCȷ̂B and related materials from A. If they are invalid, simulate the
abortion of the honest party to complete the simulation.

12. Send the simulated labels, γB
ȷ̂A

, and corresponding decommitments toA. Receives the labels, γA
ȷ̂B

,
and corresponding decommitments. If the received materials are invalid, simulate the abortion
of the honest party to complete the simulation.

13. Use the simulator SEq for ΠEq to obtain βA from A. Then define the boolean function g as
follows.
(a) On input xB ∈ {0, 1}nB , select the corresponding input labels for xB in the label tuples
{(Bȷ̂B ,i,0, Bȷ̂B ,i,1)}i∈[nB].

(b) Evaluate GCȷ̂B with the input-wire labels {Aȷ̂B ,i,xA[i]}i∈[nA] and {Bȷ̂B ,i,xB [i]}i∈[nB] as in the
protocol to obtain {Zȷ̂B ,i}i∈[nO] and zȷ̂B . In particular, if some error occurs in the evaluation
of garbled circuit, some hard-coded random values are used for {Zȷ̂B ,i}i∈[nO] and zȷ̂B .

(c) Compute βB ← H(
⊕nO

i=1(Zȷ̂A,i,zȷ̂B
[i] ⊕ Zȷ̂B ,i,zȷ̂B

[i])).

(d) If βA = βB , return true. Otherwise, return false.
Compute e ← g(xB) and give e to A. If A aborts, then abort. If e = false, then abort with
output cheating. Otherwise, output zȷ̂B .

Expt1 Different from Expt0, we choose ȷ̂B ←$ [λ] if GoodEq = false in Step 2, and then we use ȷ̂B
in the subsequent steps at the outset of the experiment. We modify Step 7a of the simulation by
using ȷ̂B we have chosen. We then modify the following cases.
– For |Js| = λ − 2 and |Jz| = 2, set caught = (λ−2

λ , true) if ȷ̂B ∈ Js. Otherwise, set caught =

(λ−2
λ , false).

– For |Js| = λ− 2, |Jz| = 1, and GoodEq = true, set caught = (λ−2
λ−1 , true) if ȷ̂B ∈ Js. Otherwise,

set caught = (λ−2
λ , false).

– For |Js| = λ− 2, |Jz| = 1, and GoodEq = false, set caught = (λ−1
λ , true) if ȷ̂B ∈ Js or ȷ̂B ∈ Jz.

Otherwise, set caught = (λ−2
λ , false).

– For |Js| = λ− 1, |Jz| = 1, and GoodEq = false, set caught =⊥ if ȷ̂B ∈ Js.
The rest parts remain the same. It is easy to see that the outputs of Expt1 and Expt0 are
identically distributed.

Expt2 In this experiment, let cseedBȷ̂B
, cseed′Bȷ̂B

, and cwitness′Bȷ̂B
be dummy commitments in Step 1 of the

simulation. Use true randomness in the ȷ̂Bth execution of ΠOT in Step 1 and 6 of the simulation,
where S plays the role of the receiver. Since S will not generate cert with respect to the ȷ̂Bth
instance and the commitment scheme is hiding, it is straightforward to see that the output of
Expt2 is computationally indistinguishable from the output of Expt1.

Expt3 In this experiment, use SOT for the ȷ̂Bth instance ofΠOT in both Step 1 and 6 of the simulation,
where S plays the role of the receiver, and extract all A’s inputs. From the security of ΠOT, we
know that the output of Expt3 is computationally indistinguishable from the output of Expt2.

Expt4 In this experiment, we modify Step 3 of the simulation, such that the commitment cB is
computed as in the protocol and S extracts ȷ̂A as in Step 3′. We also modify Step 6 of the
simulation, such that the ciphertexts {pseedBj,OT

}j∈[λ] and {pcj}j∈[λ] are generated as in the protocol

(note that pcȷ̂B encrypts 0). Now no seed′′j ’s are needed. Then for the finishing touches procedure
in Step 7, we do not need to program the decryption of pcj and pseedBj,OT

. Since once an abortion

is incurred, these dummy ciphertexts in Expt3 will be programmed to be the same as those in
Expt4, we can easily see that the output of Expt4 is computationally indistinguishable from the
output of Expt3.

Expt5 In this experiment, we modify Step 6 of the simulation as follows. If ȷ̂A =⊥, then S generates
{pAj,i,b

}j∈[λ] as in the protocol and uses them as input in ΠOT. If ȷ̂A ̸=⊥, then S generates
{pAj,i,b

}j∈[λ]\{ȷ̂A} as in the protocol and dummy {pAj,i,b
}j=ȷ̂A , and then uses them as input

in ΠOT. Then for the finishing touches procedure in Step 7, we do not need to program the
decryption of {pAj,i,b

} for j ∈ [λ]\{ȷ̂A}. Similarly, we can easily see that the output of Expt5 is
computationally indistinguishable from the output of Expt4.

Expt5′ Because Step 1′ - 6′ in Expt5 are identical to Step 1 - 6, we can combine the rewinding
and obtain this Expt5′ whose output is statistically indistinguishable from the output of Expt5

27

with the only difference is the probability of aborted rewinding. The description of Expt5′ is as
follows.

0. Use KGen to generate a pair of key (vkB , sigkB) and send vkB to A.
1. Go through the following steps with A.

(a) Receive {cseedAj , cseed′Aj , cwitness′Aj }j∈[λ] fromA. Pick ȷ̂B ←$ [λ] and uniform κ-bit strings {seedBj ,

seed′
B
j ,witness

′B
j }j∈[λ]. Compute cseedBj

, cseed′Bj
, and cwitness′Bj

for j ∈ [λ]\{ȷ̂B} as in the

protocol. Let cseedB
ȷ̂B

, cseed′B
ȷ̂B

, and cwitness′B
ȷ̂B

be dummy commitments. Finally, send these

commitments to A as in the protocol.
(b) For all j ∈ [λ]\{ȷ̂B}, as the receiver, use bj = 0 to retrieve {seed′Aj }i∈[λ]\{ȷ̂B} with random-

ness derived from {seedBj } in ΠOT. For the ȷ̂Bth instance, run the simulator SOT for ΠOT

and extract (seed′
A
ȷ̂B ,witness′

A
ȷ̂B). As the sender, use as input {(seed′Bj ,witness′

B
j)}j∈[λ] with

randomness derived from seedBj in ΠOT.

2. Compute seed′j = seed′
A
j ⊕ seed′

B
j for all j ∈ [λ]. Then let hj

B ← H(
⊕

[λ]\j seed
′
j) for all j ∈ [λ].

Use the simulator SEq for ΠEq to obtain hA. If there exists h
j
B , such that hj

B = hA, set GoodEq =

true. Then if hȷ̂B
B = hA, return true for ΠEq to A and restart the protocol, and otherwise return

false to A. If there is no hj
B = hA, set GoodEq = false and returns false for ΠEq to A.

3. Compute and send commitment cB to A. Receive commitment cA from A. Then extract
(ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness

′B
ȷ̂A) from cA. If this extracted message is correct, store ȷ̂A. Otherwise,

let ȷ̂A =⊥.
4. For all j ∈ [λ], prepare garbled circuits and input materials as in Step 4 of the protocol.
5. Compute and send dummy {cγB

j
} to A. Receive {cγA

j
} from A.

6. Generate the puzzle psBj
for a random chosen master puzzle key sBj and ciphertexts pseedB

j,OT
for

j ∈ [λ] as in the protocol. Generate ciphertexts pcj for computed cj for j ∈ [λ]\{ȷ̂B} and let the
ciphertext pcȷ̂B encrypt 0. Then send these ciphertexts to A.
Receive puzzles psAj

, pĉj , and pseedA
j,OT

for j ∈ [λ] from A. Since time-lock puzzles can be solved

in polynomial time, decrypt these puzzles and derive sAj , ĉj , and seedAj,OT for j ∈ [λ].
For all j ̸= ȷ̂B , play the role of the receiver and run ΠOT with A, using input 0nB and randomness
derived from seedBj . In this way, receive A’s {pBj,i,0}. In the ȷ̂Bth execution of ΠOT, play the role
of the receiver and use the simulator SOT for ΠOT to extract {pBȷ̂B,i,b}i∈[nB],b∈{0,1}. Decrypt
{pBȷ̂B,i,b}i∈[nB],b∈{0,1} and obtain {Bȷ̂B ,i,b}i∈[nB],b∈{0,1}.
If ȷ̂A =⊥, generate ciphertexts for {pAj,i,b} for j ∈ [λ] as in the protocol. Then play the role
of the sender and execute ΠOT with A using {(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness

derived from seed′j ⊕ seedBj,OT or seedBj,OT as in the protocol. If ȷ̂A ̸=⊥, generate ciphertexts for
{pAj,i,b} for j ∈ [λ]\{ȷ̂A} as in the protocol. Then for j ∈ [λ]\{ȷ̂A}, play the role of the sender
and execute ΠOT with A using {(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness derived from

seed′j ⊕ seedBj,OT or seedBj,OT as in the protocol. For j = ȷ̂A, run the simulator SOT for ΠOT to
extract the input xA and return dummy ciphertexts {pAȷ̂A,i} to A.

7. Generate {σB
j } and send them to A. Receive {σA

j } from A. If any of the signatures are invalid,
execute the finishing touches procedure by programming random oracle to let decryption of
{pAj,i,b} be the correct values as those in the protocol (if ȷ̂A ̸=⊥), then simulate the abortion
of the honest PB to terminate the simulation.
Simulate the computation of an honest PA playing the role of the sender in the λ executions
of ΠOT in Step 6 of the protocol based on seedAj,OT and possibly seed′j to obtain ĤA

j . Let Jz

be the set of indices that ĉj = 0 and ĤA
j matches the simulation of ΠOT for the ȷ̂Ath instance

as described in the protocol. Let Js be the set of indices that ĉj = cj and ĤA
j matches the

simulation of ΠOT for the checking instances.
Hence, there are following cases (let Stupid = false and Type =⊥ by default):
– If |Js| < λ− 2, execute the finishing touches procedure by programming random oracle to

let decryption of {pAj,i,b} be the correct values as those in the protocol (if ȷ̂A ̸=⊥), opening
the puzzles as in Step 8, generating cert with respect to j and the inconsistent ĉj or ĤA

j as
in the protocol, and sending cert to A as Step 9 to complete the simulation.

– If |Js| = λ − 2 and |Jz| = 2, set Stupid = true. If ȷ̂B ∈ Js, set caught = (λ−2
λ

, true) and
Type = BadNum. Otherwise, set caught = (λ−2

λ
, false).

– When |Js| = λ − 2, |Jz| = 1, and GoodEq = true, if ȷ̂B ∈ Js, set caught = (λ−2
λ−1

, true)

and Type according to the possible certificate with respect to the inconsistent ĉj or ĤA
j .

Otherwise, set caught = (λ−2
λ−1

, false).

28

– When |Js| = λ − 2, |Jz| = 1, and GoodEq = false, if ȷ̂B ∈ Js or ȷ̂B ∈ Jz, set caught =
(λ−1

λ
, true) and Type according to the possible certificate with respect to the inconsistent ĉj

or ĤA
j . Otherwise, set caught = (λ−1

λ
, false).

– If |Js| = λ−2 and |Jz| = 0, execute the finishing touches procedure by programming random
oracle to let decryption of {pAj,i,b} be the correct values as those in the protocol (if ȷ̂A ̸=⊥),
opening the puzzle as in Step 8, generating cert with respect to j and the inconsistent ĉj or
ĤA

j as in the protocol, and sending cert to A as in Step 9 to complete the simulation.
– If |Js| = λ− 1, |Jz| = 1, and GoodEq = true, set caught =⊥.
– When |Js| = λ− 1, |Jz| = 1, and GoodEq = false, if ȷ̂ ∈ Js, then set caught =⊥. Otherwise,

execute the finishing touches procedure by programming random oracle to let decryption
of {pAj,i,b} be the correct values as those in the protocol (if ȷ̂A ̸=⊥), opening the puzzle as
in Step 8, and simulating the abortion to complete the simulation.

– If |Js| = λ − 1 and |Jz| = 0, set Stupid = true. If ȷ̂ ∈ Js, execute the finishing touches
procedure by programming random oracle to let decryption of {pAj,i,b} be the correct values
as those in the protocol (if ȷ̂A ̸=⊥), opening the puzzle as in Step 8, generating cert with
respect to the inconsistent ĉj or ĤA

j as in the protocol, and sending cert to A as in Step 9
to complete the simulation.
If ȷ̂ /∈ Js, open the puzzle as in Step 8 of the protocol and simulate the abortion of the
honest PB to terminate the simulation.

– If |Js| = λ, execute the finishing touches procedure by opening the puzzle as in Step 8 and
simulating the abortion to complete the simulation.

8. If ȷ̂A ̸=⊥, compute z ← C(xA, xB). Then regenerate the (simulated) garbled circuit via

({Aȷ̂A,i}, {Bȷ̂A,i},GCȷ̂A , {Zȷ̂A,i,b})← SGb(1κ, C, z)

and recompute the materials of the ȷ̂Ath instance in Step 4b and 4c of the protocol. Since this
garbled circuit is simulated, use/program dummy commitments/values in case of need, e.g., for
γB
ȷ̂A

. Use the random oracle to program the opening of cȷ̂A and {pAȷ̂A,i} with respect to the
simulated garbled circuit. Then open the puzzle to A as in the protocol. A may also open her
puzzle.

9. If caught = (·, true), generate the corresponding cert and send it to A to complete the simulation.
10. Send the opening for cB to A as in the protocol. Receive the opening for cA from A. If

Stupid = true, simulate the abortion of the honest party to complete the simulation. If the
opening (ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness

′B
ȷ̂A) is not correct, simulate the abortion of the honest party

to complete the simulation.
11. Send the simulated garbled circuit GCȷ̂A , together with corresponding label hash values, to A.

Receive the garbled circuit GCȷ̂B and related materials from A. If they are invalid, simulate the
abortion of the honest party to complete the simulation.

12. Send the simulated labels, γB
ȷ̂A

, and corresponding decommitments to A. Receive the labels, γA
ȷ̂B

,
and corresponding decommitments. If the received materials are invalid, simulate the abortion
of the honest party to complete the simulation.

13. Use the simulator SEq for ΠEq to obtain βA from A. Then define the boolean function g as
follows.
(a) On input xB ∈ {0, 1}nB , select the input-wire labels for xB in {(Bȷ̂B ,i,0, Bȷ̂B ,i,1)}i∈[nB].
(b) Evaluate GCȷ̂B with input-wire labels {Aȷ̂B ,i,xA[i]}i∈[nA] and {Bȷ̂B ,i,xB [i]}i∈[nB] as in the

protocol to obtain {Zȷ̂B ,i}i∈[nO] and zȷ̂B . In particular, if some error occurs in the evaluation
of garbled circuit, some specified hard-coded random values are used for {Zȷ̂B ,i}i∈[nO] and
zȷ̂B .

(c) Compute βB ← H(
⊕nO

i=1(Zȷ̂A,i,zȷ̂B
[i] ⊕ Zȷ̂B ,i,zȷ̂B

[i])).

(d) If βA = βB , return true. Otherwise, return false.
Compute e ← g(xB) and give e to A. If A aborts, then abort. If e = false, then abort with
output cheating. Otherwise, output zȷ̂B .

Expt6 We modify the previous experiment when ȷ̂A ̸=⊥. In Step 8, if ȷ̂A ̸=⊥, regenerate the garbled
circuit via

({Aȷ̂A,i,b}, {Bȷ̂A,i,b},GCȷ̂A , {Zȷ̂A,i,b})← Gb(1κ, C)

and program the random oracle to let the labels {Aȷ̂A,i,xA[i]} be the decrypted value of {pAȷ̂A,i
}.

We also program the random oracle to let labels {Aȷ̂A,i,b} and {Bȷ̂A,i,b} be the labels used for
the generation of cȷ̂A and γB

ȷ̂A
. Then in Step 12 of the simulation, send {Bȷ̂A,i,xB [i]} instead of

simulated {Bȷ̂A,i} to A. The materials programmed with respect to random oracle are adjusted
according to the garbled circuit. Based on the security of the garbling scheme and hash function,

29

and the hiding property of the commitment, we know that the output of Expt6 is computationally
indistinguishable from the output of Expt5.

Expt7 In this experiment, if ȷ̂A ̸=⊥, we move the garbled circuit regeneration to Step 4. Hence,
materials generated in Step 4 and 6 do not need to be dummy and be programmed later. The
commitment cγB

ȷ̂A

is generated based on the labels and xB . Now S does not need to extract the

committed value from cA. It is straightforward to see that the output of Expt7 is computationally
indistinguishable from the output of Expt6.

Expt8 In this experiment, generate cseedBȷ̂B
, cseed′Bȷ̂B

, and cwitness′Bȷ̂B
as in the protocol. Since these

commitments will not be opened, according to the security of the commitment, the output of
Expt8 is computationally indistinguishable from the output of Expt7.

Expt9 In this experiment, solving the time-lock puzzle (in Step 6 and 7) and simulating the compu-
tation of PA playing the role of the sender in ΠOT (in Step 7) are moved to Step 8 and 9. It is
easy to see that the output of Expt9 is identical to the output of Expt8.

Expt10 In this experiment, we modify Step 10 of the simulation, such that we now do not need to
simulate the abortion of the protocol if Stupid = true. Alternatively, the simulator simulate the
abortion if the opening of cA from A is incorrect. In the case that Stupid = true and the protocol
has proceeded to this step, we have |Js| = λ−2 and |Jz| = 2. Hence, A cannot provide the correct
opening of cA except for a negligible probability based on the security of ΠOT and commitment
scheme. Therefore, the output of Expt10 is computationally indistinguishable from the output of
Expt9.

Expt11 In this experiment, we modify Step 2 of the simulation, such that we compute seed′j only for
j ∈ [λ]\{ȷ̂B}. Then we modify the simulation for the computation of PA playing the role of the
sender for sending wire labels in ΠOT. The simulations are based on seedAj,OT and possibly seed′j
for j ∈ [λ]\{ȷ̂B}. In this way, we obtain ĤA

j for j ∈ [λ]\{ȷ̂B}.
Let Ĵz be the set of indices that ĉj = 0 and ĤA

j matches the simulation of ΠOT for the ȷ̂Ath

instance as described in the protocol. Let Ĵs be the set of indices that ĉj = cj and ĤA
j matches

the simulation of ΠOT for the checking instances.
– If |Ĵs| < λ−2, generate cert as in the protocol and send cert to A to complete the simulation.
– If |Ĵs| = λ− 2 and |Ĵz| = 1, continue the execution of the protocol.
– If |Ĵs| = λ− 2, |Ĵz| = 0, generate cert as in the protocol and send cert to A to complete the

simulation.
– If |Ĵs| = λ− 1, abort and terminate the simulation.

It is easy to see that the output of Expt11 is identical to the output of Expt10.
Expt12 In this experiment, we modify Step 13 of the simulation as follows. Uses the simulator
SEq for ΠEq to obtain βA from A. Then on input xB ∈ {0, 1}nB , evaluate the garbled circuit
GCȷ̂B with input-wire labels {Aȷ̂B ,i,xA[i]}i∈[nA] and {Bȷ̂B ,i,xB [i]}i∈[nB] as in the protocol to obtain
{Zȷ̂B ,i}i∈[nO] and zȷ̂B . If any decoded bits is ⊥, let zȷ̂B =⊥.
If zȷ̂B =⊥, let βB ←$ {0, 1}κ. Otherwise, we let βB ← H(

⊕nO

i=1(Zȷ̂A,i,zȷ̂B [i] ⊕ Zȷ̂B ,i,zȷ̂B [i])). Check
whether βA = βB and send the result to A. If A aborts, then abort. If βA ̸= βB , then abort with
output cheating. Otherwise, output zȷ̂B .
It is easy to see that the output of Expt12 is computationally indistinguishable from the output
of Expt11.

Expt13 In this experiment, run the ȷ̂Bth execution ofΠOT in Step 1b and 6 honestly using randomness
derived from seedBȷ̂B . Meanwhile, execute ΠEq as an honest PB. According to the security of ΠOT

and ΠEq, the output of Expt13 is computationally indistinguishable from the output of Expt12.
Expt14 In this experiment, move the evaluation of the garbled circuit from Step 13 to Step 12 of

the simulation. Since in Step 12, the simulator has already received the garbled circuit and wire
label, this modification does not change the simulation. Hence, the output of Expt14 is identical
to the output of Expt13. We present Expt14 as follows.

0. Use KGen to generate a pair of key (vkB , sigkB) and send vkB to A.
1. Go through the following steps with A.

(a) Receive {cseedAj , cseed′Aj , cwitness′Aj }j∈[λ] from A. Meanwhile, pick ȷ̂B ←$ [λ] and uniform κ-bit

strings {seedBj , seed′
B
j ,witness

′B
j }j∈[λ]. Compute cseedBj

, cseed′Bj
, and cwitness′Bj

for j ∈ [λ] as in

the protocol. Finally, send these commitments to A as in the protocol.

30

(b) For all j ∈ [λ]\{ȷ̂B}, as the receiver, use bj = 0 to retrieve {seed′Aj }i∈[λ]\{ȷ̂B} with random-
ness derived from {seedBj } in ΠOT. For the ȷ̂Bth instance, use bȷ̂B = 1 with randomness de-

rived from seedBȷ̂B to retrieve witness′
A
ȷ̂B . As the sender, use as input {(seed′Bj ,witness′

B
j)}j∈[λ]

with randomness derived from seedBj in ΠOT.

2. Compute seed′j = seed′
A
j ⊕ seed′

B
j for all j ∈ [λ]\{ȷ̂B}. Let hB ← H(

⊕
[λ]\ȷ̂B

seed′j). Use ΠEq to
check whether hB = hA. If it holds, restart the protocol. Otherwise, continue the execution.

3. Compute and send commitment cB to A. Receive commitment cA from A.
4. For all j ∈ [λ], prepare garbled circuits and input materials as in Step 4 of the protocol.
5. Compute and send {cγB

j
} to A. Receive {cγA

j
} from A.

6. Generate the puzzle psBj
for a random chosen master puzzle key sBj and ciphertexts pseedB

j,OT
and

pcj for j ∈ [λ] as in the protocol. Then send them to A.
Receive puzzles psAj

, pĉj and pseedA
j,OT

for j ∈ [λ] from A.
For all j ̸= ȷ̂B , play the role of the receiver and run ΠOT with A, using input 0nB and randomness
derived from seedBj . In the ȷ̂Bth execution of ΠOT, play the role of the receiver with input xB

and receive {pBȷ̂B,i,xB [i]
}i∈[nB].

Generate ciphertexts for {pAj,i,b} for j ∈ [λ] as in the protocol. Then play the role of the sender
and execute ΠOT with A using {(pAj,i,0 , pAj,i,1)}i∈[nA] as input with randomness derived from

seed′j ⊕ seedBj,OT or seedBj,OT as in the protocol.
7. Generate {σB

j } and send them to A. Receive {σA
j } from A. If any of the signatures are invalid,

output ⊥ to terminate.
8. Open the puzzle to A as in the protocol. A may also open her puzzle.
9. Decrypt the received puzzles/ciphertexts to derive sAj , ĉj , and seedAj,OT for j ∈ [λ]. In addition,

decrypt {pBȷ̂B,i,xB [i]
}i∈[nB] to obtain {Bȷ̂B ,i,xB [i]}i∈[nB].

Simulate the computation of an honest PA playing the role of the sender in the executions of
ΠOT in Step 6 of the protocol for j ∈ [λ]\{ȷ̂B} based on seedAj,OT and possibly seed′j to obtain

ĤA
j . Let Ĵz be the set of indices that ĉj = 0 and ĤA

j matches the simulation of ΠOT for the ȷ̂Ath

instance as described in the protocol. Let Ĵs be the set of indices that ĉj = cj and ĤA
j matches

the simulation of ΠOT for the checking instances.
– If |Ĵs| < λ−2, generate cert as in the protocol and send cert to A to complete the simulation.
– If |Ĵs| = λ− 2 and |Ĵz| = 1, continue the execution of the protocol.
– If |Ĵs| = λ− 2, |Ĵz| = 0, generate cert as in the protocol and send cert to A to complete the

simulation.
– If |Ĵs| = λ− 1, abort with output ⊥.

10. Send the opening for cB to A as in the protocol. Receive the opening for cA from A. If the
opening (ȷ̂A, {seed′Bj }j ̸=ȷ̂A ,witness

′B
ȷ̂A) for cA is incorrect, abort with output ⊥.

11. Send the garbled circuit GCȷ̂A , together with corresponding label hash values, to A. Receive the
garbled circuit GCȷ̂B and related materials from A. If they are invalid, abort with output ⊥.

12. Send the labels {Bȷ̂A,i,xB [i]}, γB
ȷ̂A

, and corresponding decommitments to A. Receive the labels,

γA
ȷ̂B

, and corresponding decommitments. If the received materials are invalid, abort with output
⊥.

13. As in the protocol, evaluate the garbled circuit GCȷ̂B with input-wire labels {Aȷ̂B ,i,xA[i]}i∈[nA]

and {Bȷ̂B ,i,xB [i]}i∈[nB] to obtain {Zȷ̂B ,i}i∈[nO] and zȷ̂B . If any decoded bits is ⊥, let zȷ̂B =⊥.
If zȷ̂B =⊥, let βB ←$ {0, 1}κ. Otherwise, we let βB ← H(

⊕nO
i=1(Zȷ̂A,i,zȷ̂B

[i] ⊕ Zȷ̂B ,i,zȷ̂B
[i])). Use

ΠEq to check whether βA = βB . If A aborts, then abort. If βA ̸= βB , then abort with output
cheating. Otherwise, output zȷ̂B .

We can easily check that Expt14 indeed is the execution of the real protocol ΠRobustPVC between PB

and A. Hence, the protocol ΠRobustPVC achieves simulatability. ⊓⊔

31

	Robust Publicly Verifiable Covert Security: Limited Information Leakage and Guaranteed Correctness with Low Overhead

