
Bicameral and Auditably Private Signatures

Khoa Nguyen 1, Partha Sarathi Roy 1, Willy Susilo 1, and
Yanhong Xu 2�

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology,

University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
{khoa,partha,wsusilo}@uow.edu.au

2 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

� yanhong.xu@sjtu.edu.cn

Abstract. This paper introduces Bicameral and Auditably Private Sig-
natures (BAPS) – a new privacy-preserving signature system with sev-
eral novel features. In a BAPS system, given a certified attribute x and
a certified policy P , a signer can issue a publicly verifiable signature Σ
on a message m as long as (m,x) satisfies P . A noteworthy character-
istic of BAPS is that both attribute x and policy P are kept hidden
from the verifier, yet the latter is convinced that these objects were
certified by an attribute-issuing authority and a policy-issuing author-
ity, respectively. By considering bicameral certification authorities and re-
quiring privacy for both attributes and policies, BAPS generalizes the
spirit of existing advanced signature primitives with fine-grained controls
on signing capabilities (e.g., attribute-based signatures, predicate signa-
tures, policy-based signatures). Furthermore, BAPS provides an appeal-
ing feature named auditable privacy, allowing the signer of Σ to verifiably
disclose various pieces of partial information about P and x when asked
by auditor(s)/court(s) at later times. Auditable privacy is intrinsically
different from and can be complementary to the notion of accountable
privacy traditionally incorporated in traceable anonymous systems such
as group signatures. Equipped with these distinguished features, BAPS
can potentially address interesting application scenarios for which exist-
ing primitives do not offer a direct solution.
We provide rigorous security definitions for BAPS, following a “sim-ext”
approach. We then demonstrate a generic construction based on com-
monly used cryptographic building blocks, which employs a sign-then-
commit-then-prove design. Finally, we present a concrete instantiation
of BAPS, that is proven secure in the random oracle model under lat-
tice assumptions. The scheme can handle arbitrary policies represented
by polynomial-size Boolean circuits and can address quadratic disclos-
ing functions. In the construction process, we develop a new technical
building block that could be of independent interest: a zero-knowledge
argument system allowing to prove the satisfiability of a certified-and-
hidden Boolean circuit on certified-and-committed inputs.

Keywords: new primitive, signatures, bicamerality, auditable privacy,
fine-grained information disclosure, zero-knowledge for hidden circuits

https://orcid.org/0000-0001-8555-638X
https://orcid.org/0000-0002-5788-5554
https://orcid.org/0000-0002-1562-5105
https://orcid.org/0009-0001-7937-3779

1 Introduction

A prominent line of privacy-preserving cryptography research is dedicated to the
development of advanced multi-user signature systems with fine-grained controls
over the signability of messages. Those controls are often based on authorities’
policies, and/or users’ attributes. Examples of these advanced systems include
attribute-based signatures (ABS) [45], policy-based signatures (PBS) [2], func-
tional signatures (FS) [9], predicate signatures (PS) [1] and multimodal private
signatures (MPS) [48]. In ABS, a user with a certified-and-private attribute x
can sign any message with respect to a public policy P if P (x) = 1. PS offers a
setting dual to ABS, where policies are certified-and-private while attributes are
public. In PBS and FS: (i) policies/functions are also certified-and-private; (ii)
one can sign messages satisfying some policy or in the range of some function;
yet (iii) the notion of attributes is not considered. MPS utilizes both policies
and attributes, but policies have to be public. All these systems share a com-
mon feature: each of them employs a single certification authority: either an
attribute-issuing authority as in ABS/MPS, or a policy-issuing authority as in
PBS/FS/PS. Furthermore, the question of simultaneously protecting the privacy
of both policies and attributes was not considered.

Another active body of work in privacy-preserving signatures focuses on de-
veloping methods for realizing signers’ accountability. Let us name that desirable
feature accountable privacy. Among the earliest and most well-known accountably
private systems are group signatures [13], in which a designated authority can
trace the signer of any valid signature. Subsequent works have refined the tracing
function in various directions: “who can trace” [31,52], “whether to trace” [54,32],
“when to trace” [11,22], and more recently, “what can be traced” [39,48]. Never-
theless, all these systems share a common characteristic: the signer has no control
over which private information can be learned by others (either the public or
the tracing authorities) after outputting signatures.

Motivations. This work aims to address the limitations of the advanced signa-
ture primitives mentioned above. Let us start with several motivating examples.

Consider a conference that implements a double-blind reviewing process and
that allows authors to declare Conflicts of Interest (CoI) with reviewers accord-
ing to some certified policies. For instance, the IACR has different policies to
determine CoI 3, that can be used for IACR conferences. While such a CoI decla-
ration system seems to work well over the years, there has not been implemented
any privacy-preserving mechanism:

(i) For preventing false declarations by dishonest authors (who could attempt
to avoid having their papers reviewed by some non-conflicting reviewers);

(ii) For the author to provide more information on a declared CoI, should the
need arise at a later point while retaining the author’s privacy.

Let us attempt to address the issue (i) by employing ABS/MPS for CoI
declarations. Then, while authors’ attributes (e.g., lists of advisors, advisees,

3 https://www.iacr.org/docs/conflicts.pdf.

2

https://www.iacr.org/docs/conflicts.pdf

recent affiliations, recent co-authors, and family members) are protected, the
underlying policies are not. It could seriously violate authors’ privacy, e.g., the
disclosure of an advisor-advisee relationship could likely reveal side-channel in-
formation about the author. On the other hand, if one employs PBS/FS/PS,
then the policies can be kept private, but the attributes are not protected.

Let us also try to address the issue (ii) by employing a group-signature-like
system. In this case, the traditional method is to force the author to encrypt the
relevant attributes, so that an authority can recover via decryption. The problem
here is the encrypted attributes can already be learned by the authority at the
submission time, regardless of whether there will be a need to justify the declared
CoIs during the reviewing process.

We can observe that existing systems cannot offer satisfactory solutions be-
cause they do not simultaneously protect policies and attributes, and the notion
of accountable privacy typically requires some escrow of private information.
This inspires us to investigate a new privacy-preserving signature primitive that
overcomes these limitations. How about the following arrangements?

Assume that the policies are publicly certified by some authority (e.g., the
IACR). Assume further that authors have their attributes certified by some other
authority. Then, when authors submit a paper, they can check whether the paper
has a CoI with a given reviewer and generate a publicly verifiable signature if
that is the case. Here, if the signature does not reveal any information about the
underlying policy and attribute, then we have a solution for issue (i).

Next, suppose that the PC Chair wants to know some information about the
circumstances of a given CoI. Depending on the context, the required information
could be about which policy was activated, the list of advisees, or a recent
affiliation of the author. Here, a mechanism allowing the disclosure of the exact
piece of information requested by the Chair would help resolve the issue (ii).

Let us consider a further example. Suppose an author would like to apply
for a visa so that they can travel to the conference. In the application process,
the author submits their certified attributes (which could include financial data,
criminal records, health examinations, travel records, etc.) and the associated
certificates to the visa department. Suppose that the latter has several confi-
dential policies for visa acceptance/rejection, which are certified by some higher
authority. Now, assume that there is some concern about the transparency of
the decision-making process. In this situation, the privacy-preserving system
we have just discussed can allow the visa department to verifiably disclose to
a judge certain partial information about the underlying policy and attribute,
e.g., whether the policy considers the applicant’s race, or the criminal records of
the applicant while retaining the privacy of non-disclosed information.

More generally, many decisions regarding crucial issues, such as welfare and
financial aid, employment offers, scholarship/citizenship grants, and tax audits,
are taken based on organizational policies that should not be known by outsiders.
In these scenarios, the policies could be certified by some authority A, while the
users’ attributes could be certified by some other authority B. To show that a
correct decision has been made [33], the decision-makers would need a mechanism

3

allowing them to sign some message m and demonstrate that a private attribute
x certified by B does satisfy a private policy P certified by A. Furthermore, for
auditability purposes, it would be highly desirable if the system also allows the
decision-makers to verifiably disclose the precise pieces of information about x
and P requested by the auditors.

Our Contributions. We introduce “Bicameral and Auditably Private Signa-
tures” (BAPS) as a new privacy-preserving signature primitive aiming to address
(i) the problem of simultaneously protecting policies and attributes and (ii) the
problem of secure disclosures of private information after signing. Let us first
highlight several key features of BAPS.

Bicamerality. The system is “bicameral” in the sense that it involves two
certification authorities, namely, attribute-issuing and policy-issuing ones, that
are responsible for certifying users’ attributes and organizations’ policies, re-
spectively. As discussed above, having two separate certification authorities is a
commonly seen situation in practice.

More concretely, in a BAPS system, the attribute-issuing authority, given its
master secret key mskX, can issue a signing key skx for attribute x. Similarly,
the policy-issuing authority can use its master secret key mskP to generate a cer-
tificate CertP for policy P . Note that, although the certification procedures of x
and P are analogous, the treatments of “signing key” skx and “certificate” CertP
could be largely different in practice. The former typically should be kept pri-
vate, unless its owner would like to have some other party to sign on their behalf.
The latter normally can be made publicly available, e.g., in a list {(Pi,CertPi

)}i
on an organization’s website, except when the policies of the organization must
be kept confidential. In our example about CoI declarations, we consider private
(x, skx) and public {(Pi,CertPi

)}i. Meanwhile, the example with visa applica-
tions assumes that the applicant submits their credentials (x, skx) to the visa
department – which keeps their policies private. In any application scenario, the
signer needs to know both pairs (x, skx) and (P,CertP).

Signability and Privacy. To sign a message m, in addition to the pairs (x, skx)
and (P,CertP), the signer needs to possess a witness w such that P (m,x, w) =
1. Here, similar to [2,39,48], witness w can be viewed as a piece of context-
dependent information which intuitively serves as evidence why m is signable
with respect to x and P . Note that our notion of “signability” is more general
and does capture that of attribute-based signatures [45] (where P takes only
attribute x as its sole input) and policy-based signatures [2,14] (where users’
attributes are not considered in the syntax and P depends on (m,w) only).

If signing is successful, the signer obtains a signature Σ that is publicly
verifiable. In addition, the signer stores a private clue c associated with (m,Σ),
which later can be utilized for auditing purposes – should the need arise.

We demand a strong privacy property for BAPS: a valid message-signature
pair (m,Σ) must not leak any information about the underlying policy P and
attribute x (apart from the fact that P (m,x, w) = 1 for some w). This should
hold even if both authorities are fully corrupted.

4

Disclosures and Auditable Privacy. When asked to disclose certain partial
information of P and/or x according to a disclosing function F (which is chosen
by a court or an auditor among a public list of admitted functions), the signer of a
pair (m,Σ) uses the associated clue c to generate a publicly verifiable testimony-
attestation pair (t, a). Here, the attestation intuitively demonstrates that the
value of the testimony is exactly determined as t = F (P, x), where (P,x) is
precisely the policy-attribute pair underlying the message-signature pair (m,Σ).
Such a disclosure process can be done multiple times with respect to different
disclosing functions.

Here, we demand a noteworthy property for BAPS: auditable privacy. It says
that no additional information about P or x can be learned from the pair (t, a)
beyond the fact that F (P,x) = t. In other words, it guarantees the “residual”
privacy of P and x after (potentially many) disclosures of their partial informa-
tion. It should hold against corrupted authorities and can even be defined in the
strong, statistical sense.

As a short summary, by considering bicameral authorities and requiring pri-
vacy for both attributes and policies, BAPS generalizes the spirit of existing
advanced signature primitives with fine-grained controls on signing capabilities.
Moreover, the property of auditable privacy is sharply different from and can
be complementary to the notion of accountable privacy in group signatures [13]
and variants [31,54,52,32,39,48], which demands that each signature contains a
fixed piece of signer’s information that can be recovered by a designated party.
Equipped with these distinguished features, BAPS can potentially address ap-
plication scenarios for which existing primitives do not offer a direct solution.

Formalizing Security Requirements for BAPS. Let us next discuss our
formalizations of security for BAPS, which is a non-trivial process on its own.

We first tried to define privacy and auditable privacy for BAPS using an
indistinguishability-based approach. However, with that approach, we could not
manage to quantify the amount of information leaked by the disclosure processes.
In fact, we need to ensure that no extra information about P and x is leaked,
apart from the pieces of information carried by the testimonies outputted by the
signer. We then observe that this requirement is quite similar to those in the
contexts of zero-knowledge proofs [23], and functional encryption [6], where a
simulation-based approach has been employed and proven successful. We thus
adopt such an approach, which allows us to formalize privacy and auditable
privacy via a unified notion of simulatability. It essentially says that the setup,
signing, and disclosing processes of BAPS can be efficiently simulated in a way
(statistically) indistinguishable from the real algorithms.

We next aim at formalizing other expected security properties of BAPS. On
the one hand, we would like to ensure that, even if both authorities are corrupted,
any valid signature Σ on any message m should be associated with some policy
P , some attribute x and some witness w such that P (m,x, w) = 1. Also, if
Judge(m,Σ,F, t, a) = 1, then it should hold that t = F (P,x).

5

On the other hand, we also need to protect the security of each of the au-
thorities, which can be divided into two orthogonal properties. Specifically, it
should be infeasible to generate any valid signature, if

– One does not possess a legitimate signing key skx for some attribute x, even
if one corrupted the policy-issuing authority;

– One does not possess a legitimate certificate CertP for some policy P , even
if one corrupted the attribute-issuing authority.

The major technical challenge in formalizing these expected security proper-
ties is that BAPS does not readily provide a rigorous mechanism to determine
whether a valid message-signature pair (m,Σ) is actually associated with some
P , x and w such that P (m,x, w) = 1. Therefore, for definitional purposes, we
would need to introduce an extractable mode that allows us to extract addi-
tional information from (m,Σ) so that we can meaningfully explain whether
and how a violation of security has occurred. As a result, we come up with a
notion called intractability, which nicely captures and unifies the said properties.
This is partially inspired by the “sim-ext” spirit [12], which was also employed
in the context of PBS [2].

We would like to remark that our formalizations of BAPS yield a proper
generalization of the PBS primitive [2]. Indeed, to obtain a PBS, one can simply
remove from a BAPS the treatments of attributes and attribute-issuing author-
ity, as well as the disclosure process. Simulatability and extractability of the
resulting PBS, as defined by Bellare and Fuchsbauer [2], directly follow from
those of the original BAPS. Recall that PBS is already an exceedingly powerful
primitive on its own: it was shown to imply group signatures [3], attribute-based
signatures [45], simulation-sound extractable NIZKs [24], and others.

Generic Constructions. Our next step is to demonstrate the feasibility of
constructing secure BAPS systems from standard assumptions. Specifically, we
present a generic construction that employs several commonly used crypto-
graphic building blocks: two signature schemes, a commitment scheme, and two
non-interactive zero-knowledge (NIZK) argument systems for some NP-relations.
The correctness and security properties of the construction directly follow from
those of the employed building blocks.

On the one hand, the two signature systems and the two NIZK systems are
used in a relatively standard manner. The former systems are governed by the
two authorities and are used for issuing attribute keys and policy certificates. The
latter systems are utilized when generating and verifying BAPS signatures and
attestations. On the other hand, our implementation of the commitment scheme
is worth highlighting. We commit to policy P and attribute x as comP and comx,
respectively, and treat them as a bridge connecting the signing and disclosing
phases. The binding of the commitment scheme ensures that the pair (P,x)
involved in the disclosure(s) of a BAPS signature Σ is the same as the pair used
for generating Σ. Furthermore, its hiding property guarantees that no additional
information about (P,x) can be learned from comP and comx. Note that in
existing group-signature-like systems, a public-key encryption scheme is typically

6

used to disclose some private information of the signer to a designated opening
authority. Due to the existence of a decryption key (which is owned by the
opening authority, and recoverable by an unbounded adversary), the accountable
privacy property in these systems is only achieved in the computational sense.
Here, in contrast, auditable privacy in the statistical sense is achievable if the
commitment is statistically hiding.

In more detail, in the construction, a signature Σ on message m contains the
commitments comP and comx as well as a NIZK argument Π demonstrating
that the committed values P,x were properly certified by the authorities, and
that P (m,x, w) = 1 for some witness w known by the signer. Verification of Σ is
simply the verification of Π. The clue – which will be used for later disclosures
– consists of x, P , and the two randomnesses.

When asked to disclose certain partial information of x and/or P according
to a disclosing function F , the signer of a message-signature pair (m,Σ), who
possesses the corresponding clue, first computes t = F (P,x) and then proves
that t is well-formed with respect to the values P and x committed in the
signature.

We remark that our design approach, which we term sign-then-commit-then-
prove, effectively differs from the sign-then-encrypt-then-prove paradigm tradi-
tionally used for achieving accountable privacy in group-signature-like systems.
The advantage of our approach is that the signer can preserve full privacy of
the committed values (especially if the underlying commitment scheme is statis-
tically hiding) while maintaining the capability of proving additional relations
about the committed values at later times.

Our construction can serve as a proof of concept for designing secure BAPS
systems based on standard assumptions in a modular manner. In particular, it
can be realized in the standard model from pairings and from lattices, using the
techniques for obtaining NIZKs for NP by Groth-Ostrovsky-Sahai [25] and by
Peikert-Shiehian [50] (in conjunction with a lattice-based compiler by Libert et
al. [38]), respectively.

A Lattice-Based Instantiation for Arbitrary Policies. Although via tech-
niques of [50,38] it is feasible to instantiate BAPS in the standard model under
lattice-based (and hence, quantum-safe) assumptions, such construction would
expectedly be extremely inefficient. Our goal here is to build a concrete lattice-
based BAPS that has better efficiency than the generic approach, and that can
handle expressive classes of policies, e.g., polynomial-size Boolean circuits. We
stress that the lattice-based BAPS scheme we provide in this paper merely serves
as an illustration of how to concretely instantiate the aforementioned generic
construction. It is not practical, and moreover, we do not view it as the main
contribution of the paper.

At a high level, our lattice-based BAPS scheme follows the sign-then-commit-
then-prove design approach of the generic construction discussed above. How-
ever, when it comes to middle-level techniques, we do introduce several novel
aspects regarding the evaluation of policies in zero-knowledge and the instanti-
ation of disclosing functions via multivariate quadratic functions.

7

More specifically, for both authorities, we implement the Ducas-Micciancio
signature [15], which has a short public key and has a companion zero-knowledge
argument of a valid message-signature pair [42]. As for commitment schemes,
we employ several adaptations of the ideal-lattice-based scheme by Kawachi,
Tanaka and Xagawa [30], which are used not only to commit to P and x, but
also various different objects appearing in the scheme execution. Last but not
least, we need expressive zero-knowledge argument systems that can handle rel-
atively sophisticated statements, in particular, those that capture the satisfi-
ability of a Boolean circuit whose description is hidden, yet certified via the
Ducas-Micciancio signature. To this end, we adopt a framework proposed in [36]
for interactive Stern-like argument systems [53] and employ several dedicated
techniques for handling the required relations. We remark that our choice of
Stern-like protocols as the zero-knowledge tools has its own advantages and dis-
advantages. On the upside, these tools work smoothly with the statements to
be proven. First, they can be directly applied to interrelated equations involving
two moduli q1 = 2 (representing the evaluation processes of Boolean circuits
as well as disclosing functions) and q2 = 3k for some positive integer k (repre-
senting relations capturing the Ducas-Micciancio signature verification process).
Second, Stern-like protocols normally provide statistical zero-knowledge, which
is crucial in attaining the desirable feature of statistical privacy for the resulting
lattice-based BAPS scheme. Therefore, these zero-knowledge protocols are quite
suitable for our illustration purpose. On the downside, because of the need to
repeat Stern-like protocols many times to make their soundness errors negligibly
small, these tools are much less efficient than the state-of-the-art Schnorr-like
zero-knowledge proof/argument systems, such as [55,8,18,16,44,17,7,27]. While
we have not been able to provide an efficient lattice-based BAPS (see more
elaborations in the discussions on open questions at the end of this section),
we nevertheless expect that, in the near future, practically usable lattice-based
BAPS systems, if any, would likely be developed based on these state-of-the-art
tools.

The major technical challenge of the construction is to prove in zero-knowledge
the satisfiability of a certified-and-hidden Boolean circuit P on some input
(m,x, w), where x is also certified and hidden.

Evaluating Circuits in ZK with “Imaginary Buckets”. To the best of
our knowledge, there has not been much work related to proving circuit sat-
isfiability where both the circuit and input are certified and private. Ling et
al. [40] proposed a code-based protocol for the restricted class of symmetric
Boolean functions. Libert et al. [35] suggested a lattice-based protocol for func-
tions in NC1, represented by branching programs. In Libert et al.’s protocol, the
prover commits to the inputs, builds a Merkle hash tree on top of the commit-
ments, and fetches the inputs to the branching program by following the tree
paths corresponding to the program’s binary representation. We observe that
the ideas from [35] might potentially be extended to handle Boolean circuits.
However, the expected complexity of each tree-based retrieval step would be

8

O(log(K +N) · λ · log λ), where λ is the security parameter, K is the bit-size of
the inputs and N is the circuit size.

We, therefore, take a conceptually different approach with expected complex-
ity O(

√
K +N + λ · log λ). This would yield some valuable improvement when

K +N is a small polynomial in λ, e.g., K +N = o(λ3).
Consider a circuit P whose topology is determined by two functions g, h :

[0, N − 1]→ [0,K +N − 2]. Namely, if the inputs to P are s0, s1, . . . , sK−1 and
the N gate outputs are ordered as sK , . . . , sK+N−1, then we have

sK+i = sg(i) NAND sh(i), ∀i = 0, . . . , N − 1.

At each step in the circuit evaluation process, we need to fetch the values of sg(i)
and sh(i). The problem is that not only these values but also both the indices
g(i) and h(i) are committed. Hence, we would need a mechanism to retrieve
these values properly. Our approach employs a “bucket-based” retrieval process,
the high-level ideas of which are as follows.

We divide the bits of s0, . . . , sK+N−2 into ρ buckets s0, . . . , sρ−1, each of
which is ρ-bit long. (Here, for simplicity, we assume K +N − 1 = ρ2.) Next, we
commit to each bucket, obtaining ρ commitments: com0, . . . , comρ−1. To fetch
the correct inputs to the gates, we will examine the binary representations of
g, h, and follow them to search for the buckets where the correct inputs are
committed, then identify the exact locations of the inputs within the found
buckets. Such a process only requires O(ρ) steps, and thus, yields complexity
O(
√
K +N). We provide more detailed explanations in Section 4.

Handling quadratic disclosing functions. For disclosures, we consider mul-
tivariate quadratic functions. In this setting, the testimony t = F (P,x) is a
multidimensional vector, each coordinate of which has the form∑

i,j∈[1,k̄]

αi,j · (bi · bj) +
∑

ℓ∈[1,k̄]

βℓ · bℓ mod 2,

where αi,j ’s, βℓ’s are public bits and bi’s the bits determining policy P and
attribute x. This definition is thus quite general and captures arbitrary linear and
quadratic relations with respect to the bits of (P,x). By setting the coefficients
appropriately, one indeed can enforce the disclosures of any bits of (P,x), or any
bit-products, or any linear and/or quadratic combinations of the bits.

To prove the well-formedness of t = F (P,x), we will need to demonstrate in
zero-knowledge the correct evaluations of many equations of the above form. This
sub-task also requires several non-trivial steps, since the bits bi’s are involved
not only in these linear and quadratic relations, but they also simultaneously
satisfy various other relations, e.g., they were hashed, signed, and committed.

Open Questions. As the first work that introduces BAPS, we do not (and
cannot) attempt to address all the issues around this new primitive. We pay
more attention to laying the foundations for BAPS, and we view the problem of
constructing a scheme with practical efficiency and/or with additional features
as fascinating open questions for future investigations. In the following, we will
briefly discuss several questions that we are particularly interested in.

9

– Developing practically usable lattice-based BAPS schemes. While
the state-of-the-art zero-knowledge proof/argument systems from lattice as-
sumptions and for lattice relations, such as [18,16,44,17,7,27], have already
come close to practicality, the problem of applying these protocols in an
efficiency-preserving manner to mixed relations like “correct evaluation of a
certified-and-hidden Boolean circuit on a certified-and-hidden input” (which
are helpful for developing BAPS) is still less well-studied. Additionally, these
proof/argument systems typically only satisfy computational zero-knowledge,
which could be an obstacle if one insists on achieving statistically private
BAPS. Nevertheless, we do hope that some reasonably practical lattice-
based BAPS schemes can be developed based on these tools in the near
future, especially if one only targets computational privacy and would like
to consider only some restricted classes of policies, e.g., those defined by
inner-product-like relations.

– Designing efficient BAPS without NIZK. As we have discussed, a
major barrier to constructing efficient BAPS systems is the need for NIZK
systems that can handle relatively sophisticated statements. While the use
of NIZKs seems unavoidable, as a BAPS satisfying our stringent security
definitions does imply a PBS [2] – which in turn implies NIZK, it might
be possible to circumvent this barrier by considering some relaxed security
requirements for BAPS. A similar line of research was conducted with respect
to group signatures [28].

– BAPS with additional functionalities. One interesting question along
this line of research is to enable efficient user revocations, preventing re-
voked users from generating valid signatures while ensuring small compu-
tation/communication overheads for non-revoked users. Another appealing
question is to conceptualize and realize systems that simultaneously offer
both accountable privacy and auditable privacy.

Organization. The rest of the paper is organized as follows. In Section 2,
we present our definitions of BAPS, describe its syntax, and formalize its se-
curity requirements. Section 3 then provides a generic construction of BAPS
satisfying our model, based on commonly used cryptographic building blocks.
In Section 4, we describe our lattice-based construction of BAPS and the sup-
porting techniques for evaluating hidden-and-certified Boolean circuits in zero-
knowledge. The reminders on the cryptographic building blocks employed in our
constructions, the detailed descriptions of the zero-knowledge protocols used in
our lattice-based BAPS scheme, and most of the security analyses are deferred
to the appendix.

2 Bicameral and Auditably Private Signatures

Any Bicameral and Auditably Private Signature (BAPS) system is associated with
a message spaceM, an attribute space X , a witness spaceW, a disclosing space

10

DS, a family P := {P : M × X × W −→ {0, 1}} of policies, and a family
F := {F : P × X → DS} of disclosing functions.

A BAPS system is set up by a trusted party, whose jobs include generating
public parameters and creating secret keys for the bicameral authorities, namely,
the attribute-issuing authority and the policy-issuing authority. Policies (of orga-
nizations) and attributes (of users) are authorized and added to the system by
the corresponding authorities. A signer, given a certified attribute x ∈ X and a
certified policy P ∈ P, can issue a publicly verifiable signature Σ on a message
m ∈M if the signer possesses a witness w such that P (m,x, w) = 1. Here, sim-
ilar to [2,39,48], witness w can be viewed as a context-dependent string which
serves as evidence why m is signable with respect to x and P . In addition, the
signer stores a private clue c associated with (m,Σ), which later can be utilized
for auditing purposes – should the need arise.

When asked (e.g., by a court or an auditor) to disclose certain partial informa-
tion of P and/or x according to a disclosing function F ∈ F , the signer of a pair
(m,Σ) uses the associated clue c to generate a publicly verifiable testimony-
attestation pair (t, a). Here, the attestation intuitively demonstrates that the
value of the testimony is exactly determined as t = F (P,x) ∈ DS, where (P,x) is
precisely the policy-attribute pair underlying the message-signature pair (m,Σ).
Such a disclosure process can be done multiple times with respect to different
disclosing functions in F .

2.1 Syntax of BAPS

A BAPS system associated with (M,X ,W,DS,P,F) is a tuple of polynomial-
time algorithms (Setup,Attribute-Iss,Policy-Iss,Sign,Verify,Disclose, Judge), de-
fined as follows.

Setup(1λ): On input a security parameter λ, it outputs (PP,mskX,mskP), where:

– PP denotes the public parameters which include, among others, the de-
scriptions ofM, X , W, DS, P, F ;

– mskX is the master attribute key and mskP is the the master policy key.

All the subsequent algorithms take PP as an implicit input.

Attribute-Iss(mskX,x): The attribute-issuing algorithm takes as inputs the key
mskX and an attribute x ∈ X . It outputs a signing key skx for x.

Policy-Iss(mskP, P): The policy-issuing algorithm takes as inputs the key mskP
and a policy P ∈ P. It outputs a certificate CertP for P .

Sign(x, skx, P,CertP ,m,w): The signing algorithm takes as inputs a signing key
skx for an attribute x, a certificate CertP for a policy P , a message m ∈M
and a witness w. It outputs either a signature Σ together with a clue c, or
the symbol ⊥ indicating failure.

Verify(m,Σ): On input a message-signature pair (m,Σ), the verification algo-
rithm outputs 1 or 0, indicating the (in)validity of the signature Σ on m.

11

Disclose((m,Σ), c, F): On input a message-signature pair (m,Σ), a clue c and
a disclosing function F ∈ F , the disclosing algorithm outputs a testimony t
together with an attestation a.

Judge((m,Σ), F, (t, a)): On input a message-signature pair (m,Σ), a disclosing
function F and a testimony-attestation pair (t, a), this judging algorithm
outputs 1 or 0, indicating the (in)validity of the disclosure.

2.2 Correctness and Security of BAPS

Correctness. Intuitively, the correctness of BAPS guarantees that honestly
generated message-signature pairs are accepted by Verify, that faithfully gener-
ated testimony-attestation pairs are accepted by Judge, and that the testimony
associated with F, P,x must precisely be t = F (P, x). Formally, a BAPS scheme
is correct if for any P ∈ P, x ∈ X , m ∈M and w ∈ W such that P (m,x, w) = 1,
and for any F ∈ F , it holds that

Pr


Verify(m,Σ) = 1,
t = F (P, x),
Judge(m,Σ,F, t, a) = 1

∣∣∣∣∣∣∣∣∣∣
(PP,mskX,mskP)← Setup(1λ),
skx ← Attribute-Iss(mskX,x),
CertP ← Policy-Iss(mskP, P),
(Σ, c)← Sign(x, skx, P,CertP ,m,w),
(t, a)← Disclose((m,Σ), c, F)

 = 1−negl(λ).

Security. We will first discuss the security features that any BAPS is expected
to satisfy, and then present the formal definitions that capture these features.

We expect that a secure BAPS should provide the following guarantees.

– Justifiability of signatures: Any valid signature Σ on any message m should
be associated with some policy P , some attribute x and some witness w such
that P (m,x, w) = 1. This must hold even if both authorities are corrupted.

– Necessity of possessing attribute keys: Without possessing a legitimate signing
key skx for some attribute x, it should be infeasible to generate any valid sig-
nature. This property captures the security of the attribute-issuing authority,
and it must hold even when the policy-issuing authority is corrupted.

– Necessity of possessing policy certificates: Without possessing a legitimate
certificate CertP for some policy P , it would be infeasible to generate any
valid signature. This property is orthogonal to the preceding one: it captures
the security of the policy-issuing authority in the presence of a potentially
corrupted attribute-issuing authority.

– Auditability: If Judge(m,Σ,F, t, a) = 1, then it should hold that t = F (P,x),
where P and x are the policy and attribute underlying the message-signature
pair (m,Σ). This property ensures the infeasibility of misleading disclosure
results, and it must hold even if both authorities are corrupted.

– Privacy: This property guarantees that a valid message-signature pair (m,Σ)
does not leak any information about the underlying policy P and attribute
x (apart from the fact that P (m,x, w) = 1 for some w). Privacy should

12

hold when both authorities are corrupted. Moreover, it can even be defined
in the statistical sense (similar to ring signatures [4] and attribute-based
signatures [45]).

– Auditable Privacy: This property says that no additional information about
P or x can be learned from the disclosure result (t, a) beyond the fact that
F (P,x) = t. In other words, it guarantees the “residual” privacy of P and
x after (potentially many) disclosures of their partial information. It should
hold against corrupted authorities and can even be defined in the strong,
statistical sense.

While other security features are somewhat reminiscent of similar properties in
existing privacy-preserving signature primitives [13,51,31,54,52,9,32,39,48], au-
ditable privacy is a distinguished property of BAPS. It allows the signer to flexibly
and securely disclose selected pieces of private information when asked by dif-
ferent auditors. This property is sharply different from the notion of accountable
privacy in group signatures [13] and variants [31,54,52,32,39,48], which demands
that each signature contains a fixed piece of information about the signer that
can be recovered by a designated party.

How to formalize Privacy and Auditable Privacy? In our first attempt to
define privacy and auditable privacy for BAPS, we follow an indistinguishability-
based approach. Specifically, the adversary provides a message m, two policies
P0, P1, two attributes x0,x1, and two corresponding witnesses w0, w1 such thatm
is signable under both pairs (P0,x0, w0) and (P1,x1, w1), i.e., P0(m,x0, w0) = 1
and P1(m,x1, w1) = 1. The challenger then chooses a random bit b and generates
a challenge signature Σ∗ on m using (Pb,xb, wb,CertPb

, skxb
). Ideally, we would

like to consider a strong adversary who can fully corrupt both authorities and
can adaptively query the disclosing oracle with respect to the challenge message-
signature pair (m,Σ∗) and any disclosing function F of its choice. However, if
the adversary queries the disclosing algorithm for some F such that F (P0,x0) ̸=
F (P1,x1), then it can easily guess the bit b. Hence, for the definition to be
satisfiable, we must restrict the adversary’s choice of (P0,x0, w0) and (P1,x1, w1)
and require that F (P0,x0) = F (P1,x1) for all F for which the adversary queries
the disclosing algorithm.

Unfortunately, even with the above restriction, the indistinguishability-based
approach might still be inadequate in capturing the expected notion of privacy.
Suppose that the system only allows a single disclosing function, which is the
identity function F (P,x) = (P,x). Then, to prevent the adversary from trivially
winning, we must either demand that (P0,x0) = (P1,x1) or totally prohibit
disclosing queries with respect to the challenge message-signature pair.

We then take a step back and note that our major goal here is to ensure
that, apart from the testimonies of the form t = F (P,x), no additional knowledge
about P and x is leaked. This requirement is quite similar to those in the contexts
of zero-knowledge proofs [23], and functional encryption [6], where a simulation-
based approach has been employed and widely accepted. We, therefore, adopt
this approach, which allows us to formalize privacy and auditable privacy via a
unified notion: simulatability.

13

Simulatability. We formalize this simulation-based notion by requiring the ex-
istence of three auxiliary algorithms SimSetup, SimSign, and SimDisclose.

SimSetup(1λ): On input λ, this algorithm outputs public parameters PP, keys
mskX,mskP for two authorities, together with a trapdoor tr.

SimSign(tr,m, P,x, w): This algorithm takes as inputs the trapdoor tr, and a
message m, a policy P , an attribute x, and a witness w. If P (m,x, w) = 0,
it returns 0. Otherwise, it returns a simulated signature. Note that a signing
key skx or a certificate CertP is not needed here.

SimDisclose(m,Σ, tr, P,x, F): This algorithm takes as inputs a valid message-
signature pair (m,Σ), the trapdoor tr, a policy-attribute pair (P,x), and a
disclosing function F . It returns (t, a) as an output.

Intuitively, the simulatability of BAPS guarantees that the outputs of the above
algorithms are indistinguishable from those of the real algorithms. This notion
is modeled via experiment ExpsimA (λ) in Fig. 1 and is formally defined below.

1 b
$←− {0, 1}, i← 0, j ← 0, k ← 0;

2 (PP0,msk0X,msk0P, tr)← SimSetup(1λ); (PP1,msk1X,msk1P)← Setup(1λ);

3 st = (PPb,mskbX,mskbP).

4 b′ ← AOsor
PolicyKey,O

sor
AttributeKey,O

sor
Sign,O

sor
Disclose(st);

5 If b = b′, return 1; otherwise return 0.

Osor
Sign(i

∗, j∗,m,w)

If i∗ /∈ [1, i] or j∗ /∈ [1, j], return ⊥;
Let P = LP [i

∗][0] and x = LX [j∗][0];
If P (m,x, w) = 0, return ⊥;
k ← k + 1;
Σ∗0 ← SimSign(tr,m, P,x, w);
Let CertP = LP [i

∗][1] and skx = LX [j∗][1];
(Σ∗1, c1)← Sign(x, skx, P,CertP ,m,w);
LS [k][0] = (P,x); LS [k][1] = c1;
LS [k][2] = (m,Σ∗b);
Return Σ∗b.

Osor
PolicyKey(P)

i← i+ 1;
Cert0P ← Policy-Iss(msk0P, P);
Cert1P ← Policy-Iss(msk1P, P);
LP [i][0] = P , LP [i][1] = Cert1P ;
Return CertbP .

Osor
Disclose(m,Σ,F)

Check if ∃ k⋆ such that LS [k
∗][2] = (m,Σ);

If k⋆ does not exist, return ⊥;
Let (P,x) = LS [k

∗][0]; c1 = LS [k
∗][1];

(t0, a0)← SimDisclose(m,Σ, tr, (P,x), F);
(t1, a1)← Disclose(m,Σ, c1, F);
Return (tb, ab).

Osor
AttributeKey(x)

j ← j + 1;
sk0x ← Attribute-Iss(msk0X,x);
sk1x ← Attribute-Iss(msk1X,x);
LX [j][0] = x, LX [j][1] = sk1x;
Return skbx.

Fig. 1: Experiment ExpsimA (λ)

14

Definition 1 (Simulatability). A BAPS scheme is said to satisfy simulatabil-
ity if the advantage of A involved in experiment ExpsimA (λ), defined as AdvsimA (λ) =
|Pr[Expsim

A (λ) = 1]−1/2|, is negl(λ). We say that the BAPS scheme is computa-
tionally simulatable if the advantage of any PPT algorithm A is negligible in λ.
It is statistically simulatable if the advantage of any algorithm A is negligible
and perfectly simulatable if the advantage of any algorithm A is zero.

We next aim at formalizing other expected security properties of BAPS, i.e.,
justifiability of signatures, auditability, necessity of possessing attribute keys,
and policy certificates. This turns out to be a non-trivial task. The major reason
is that the syntax of BAPS does not provide a rigorous mechanism to determine
whether a valid message-signature pair (m,Σ) is actually associated with some
P , x and w such that P (m,x, w) = 1. Therefore, for definitional purposes,
we would need to introduce some auxiliary procedure that allows us to extract
additional information from (m,Σ), e.g., some P , some x, and some w, so that we
can meaningfully explain whether and how a violation of security has occurred.
In addition, such extraction should be possible even in the simulated setting.
Thus, we further assume the existence of algorithm Extract defined below.

Extract(tr,m,Σ): Given the trapdoor tr and a valid message-signature pair (m,Σ),
it returns a tuple (P,x, w) ∈ P × X ×W.

Equipped with such an extractable mode, we are now ready to formalize the
expected properties. For the sake of simpler terminology, we will consider the
following three notions:

– Soundness ensures that the extracted tuple (P,x, w) satisfies P (m,x, w) = 1
and t = F (P,x), for any testimony t outputted by a disclosing process
involving function F . Note that soundness captures both “justifiability of
signatures” and “auditability”.

– Unforgeability-I addresses the “necessity of possessing attribute keys” and
aims to protect the attribute-issuing authority.

– Unforgeability-II addresses the “necessity of possessing policy certificates” and
aims to protect the policy-issuing authority.

We then define extractability as the notion unifying soundness, unforgeability-
I, and unforgeability-II. This is a reminiscence of the “sim-ext” spirit [12], which
was also employed in the context of policy-based signatures [2].

Extractability. We model the three requirements of extractability in Fig. 2
using three experiments Expsound

A (λ), ExpUf-I
A (λ), ExpUf-II

A (λ). All experiments
are run between a challenger C and an adversary A.

Definition 2 (Extractability). A BAPS scheme is said to satisfy the ex-
tractability property if there exists an additional algorithm Extract (as defined
above) in the simulated setup, and for any PPT adversary A involved in the

15

experiments Expsound
A (λ), ExpUf-I

A (λ), ExpUf-II
A (λ), one has

AdvsoundA (λ) = Pr[ExpsoundA (λ) = 1] ∈ negl(λ);

AdvUf-IA (λ) = Pr[ExpUf-IA (λ) = 1] ∈ negl(λ);

AdvUf-IIA (λ) = Pr[ExpUf-IIA (λ) = 1] ∈ negl(λ).

1 (PP,mskX,mskP, tr)← SimSetup(1λ); k ← 0;

2 st = (PP,mskX,mskP); (m,Σ)←A(st);

3 st = (PP,mskP); (m,Σ)← AOAttriKey,OSign,ODis(st);

4 st = (PP,mskX); (m,Σ)← AOPolicyKey,OSign,ODis(st);

5 If (m,Σ) = LS [k
⋆][1] for k⋆ ∈ [1, k] or Verify(PP,m,Σ) = 0, return 0.

6 (P ∗,x∗, w∗)← Extract(tr,m,Σ);

7 If P ∗(m,x∗, w∗) = 0, return 1.

8 If x∗ /∈ QX , return 1. If P ∗ /∈ QP , return 1.

9

(F, t, a)← A(st);
If (m,Σ,F, t, a) ∈ QD or Judge(PP,m,Σ, F, t, a) = 0, return 0.
If t ̸= F (P ∗,x∗), return 1.

10 Return 0.

OAttriKey(x)

skx ← Attribute-Iss(mskX,x);
QX ← QX ∪ {x}
Return skx.

OSign(m,P,x, w)

If P (m,x, w) = 0, return ⊥;
k ← k + 1;
Σ ← SimSign(tr,m, P,x, w);
LS [k][0] = (P,x), LS [k][1] = (m,Σ);
Return Σ.

OPolicyKey(P)

CertP ← Policy-Iss(mskP, P);
QP ← QP ∪ {P};
Return CertP .

ODis(m,Σ,F)

Check if ∃ k⋆ ∈ [1, k] such that
LS [k

⋆][1] = (m,Σ);
If k⋆ does not exist, return ⊥;
Let (P,x) = LS [k

⋆][0];
(t, a)← SimDisclose(m,Σ, tr, P,x, F);
QD ← QD ∪ {(m,Σ,F, t, a)};
Return (t, a).

Fig. 2: Experiments Expsound
A (λ) (excluding dotted and double solid

boxes), ExpUf-I
A (λ) (excluding solid and double solid boxes), and

ExpUf-II
A (λ) (excluding the solid and dotted boxes).

The experiment Expsound
A (λ) operates in two stages which first defines an

extractable mode of the scheme allowing to extract a policy P ∗, an attribute
x∗, and a witness w∗ from any valid message-signature pair (m,Σ). Such an
extraction then enables evaluating the value P ∗(m,x∗, w∗) a posteriori. The

16

adversary wins the experiment if the evaluated value is 0, indicating that m
is not signable with respect to P ∗ and x∗. It proceeds to the second stage
only if P ∗(m,x∗, w∗) = 1, i.e., the adversary did not win in the first stage.
The aim of the adversary in the second stage is to output a disclosing func-
tion F and a Judge-accepted testimony-attestation pair (t, a) corresponding to
(m,Σ) outputted in the first stage such that t ̸= F (P ∗,x∗). To define soundness
in the strongest sense, both authorities’ keys are exposed to the adversary. A
BAPS system satisfies soundness if the winning probability of the adversary in
Expsound

A (λ) is negligible in λ. Said otherwise, even with the help of both fully
corrupted authorities, no signer can fool the system by producing valid signatures
on non-signable messages or creating a testimony accompanied by an accepted
attestation that does not respect the underlying disclosing value F (P ∗,x∗).

Both experiments ExpUf-I
A (λ), ExpUf-II

A (λ) function in the extractable setting.

– Unforgeability-I is similar to the unforgeability/type-1 unforgeability notion
of ABS [45]/MPS [48]. It protects the security of the attribute-issuing au-
thority. In the experiment, the adversary fully corrupts the policy-issuing
authority and can learn their signing keys on attributes of its choices via
OAttriKey. The adversary also makes signing queries by submitting (m,P,x, w)
to OSign. We stress that the signing key of x may not be revealed to the ad-
versary. Its goal is to output a valid pair (m,Σ) such that the extraction
points to an attribute of which it has not previously learned the signing key.

– Unforgeability-II captures the spirit of the unforgeability/extractability no-
tion in FS [9]/PS [1]/PBS [2]. This notion is orthogonal to unforgeability-I
and protects the security of the policy-issuing authority. In the experiment,
the adversary has access to various oracles and intends to output a valid pair
(m,Σ) that is extracted to a policy P ∗ /∈ QP .

3 A Generic Construction for BAPS

In this section, we present a generic construction of BAPS for arbitrary policies
and arbitrary disclosing functions. The construction satisfies the correctness and
the security requirements defined Section 2.2. It employs several commonly used
cryptographic building blocks: two signature schemes, a commitment scheme,
and two non-interactive zero-knowledge (NIZK) argument systems for some NP-
relations. The definitions and the required security properties of these primitives
are recalled in Appendix A.

As a remark, we require that the employed NIZK systems satisfy the simulation-
sound extractability property [24]. We note that it could be possible to replace
these building blocks with a combination of ordinary NIZK systems, (lossy)
public-key encryption, and one-time signatures (similar to a construction in [2]).
The resulting construction, however, would be syntactically much more compli-
cated while relying on essentially the same high-level ideas.

We will give a technical overview of the construction in Section 3.1, describe
it in detail in Section 3.2, and provide its analyses in Section 3.3.

17

3.1 Technical Overview

The construction employs the following cryptographic building blocks.

– Two secure signature schemes

SX = (SX.Kg,SX.Sign,SX.Ver), SP = (SP.Kg,SP.Sign,SP.Ver);

– A secure commitment scheme COM = (C.Setup,C.Com,C.Open);
– Two simulation-sound extractable NIZK systems

NIZKS = (ZKS.Setup,ZKS.SimSetup,ZKS.Prove,ZKS.Ver,ZKS.Sim,ZKS.Extr),

NIZKD = (ZKD.Setup,ZKD.SimSetup,ZKD.Prove,ZKD.Ver,ZKD.Sim,ZKD.Extr),

for the NP-relations RS and RD, respectively, defined below.

The attribute-issuing authority is associated with a signing-verification key-
pair (mskX, vkX) for SX. A signing key skx for attribute x is defined as a signature
of the authority on “message” x.

Similarly, the policy-issuing authority is associated with a signing-verification
key-pair (mskP, vkP) for SP. A certificate CertP for policy P is then a signature
of the authority on “message” P .

To sign a message m with respect to policy P , attribute x and witness w,
the signer first checks whether P (m,x, w) = 1, and aborts if this is not the case.
Next, the signer commits to P and x as comP and comx, respectively. Then,
it proves that (i) m is signable, i.e., P (m,x, w) = 1; (ii) each of P and x is
properly certified by the respective authority; and (iii) comP and comx are valid
commitments to P and x, respectively. Specifically, the signer generates a NIZK
argument Π for the following relation

RS :=
{ (

(m, vkX, vkP, ppC, comx, comP), (x, skx, P,CertP , w, rcom,x, rcom,P)
)
:(

P (m,x, w) = 1
)
∧
(
SX.Ver(vkX,x, skx) = 1

)
∧
(
SP.Ver(vkP, P,CertP) = 1

)
∧
(
C.Open(ppC, comx,x, rcom,x) = 1

)
∧
(
C.Open(ppC, comP , P, rcom,P) = 1

)}
.

The signature Σ then contains the commitments comP and comx as well as
the argument Π. Verification of Σ is simply the verification of Π. The clue –
which will be used for later disclosures – consists of x, P and the randomnesses
rcom,x and rcom,P .

We remark that the design approach being used here, which we term sign-
then-commit-then-prove, is effectively different from the sign-then-encrypt-then-
prove paradigm traditionally used for achieving accountable privacy in group-
signature-like systems. The advantage of our approach is that the signer can
preserve full privacy of the committed values (especially if the underlying com-
mitment scheme is statistically hiding) while maintaining the capability of prov-
ing additional relations about the committed values at later times.

18

When asked to disclose certain partial information of x and/or P according
to a disclosing function F ∈ F , the signer of a message-signature pair (m,Σ),
who possesses the corresponding clue c = (x, P, rcom,P , rcom,x), first computes
t = F (P,x) and then proves that t is well-formed with respect to the values P
and x committed in the signature. Specifically, it generates a NIZK argument a
for the following relation:

RD :=
{ (

F, t, comx, comP , ppC), (x, P, rcom,x, rcom,P)
)
:
(
t = F (P,x)

)
∧
(
C.Open(ppC, comx,x, rcom,x) = 1

)
∧
(
C.Open(ppC, comP , P, rcom,P) = 1

)}
.

To determine the validity of a testimony-attestation pair (t, a) outputted by
the disclosing algorithm, one simply verifies the NIZK argument a.

The correctness and security properties of the construction tightly follow from
those of the employed building blocks. In particular, the scheme is (statistically)
simulatable as long as NIZKS and NIZKD are (statistically) zero-knowledge
and COM is (statistically) hiding. Its extractability, on the other hand, relies
on the unforgeability of SX and SP, the simulation-sound extractability of the
NIZK systems and the binding property of COM.

3.2 Description

In the description of the generic construction, we do not specify the choice of
system parameters (M,X ,W,DS,P,F). We do not make any restriction on the
policies in P nor the disclosing functions in F . We, however, note that these
system parameters should be compatible with those of the building blocks SX
and SP, NIZKS and NIZKD, and COM.

Setup(1λ): On input the security parameter λ, this probabilistic algorithm per-
forms the following steps:
1. Run (mskP, vkP) ← SP.Kg(1

λ) and (mskX, vkX) ← SX.Kg(1
λ) to obtain

signing-verification key pairs for the policy-issuing authority and the
attribute-issuing authority, respectively.

2. Run ZKS.Setup(1
λ) and ZKD.Setup(1

λ) to obtain crsS and crsD for the
argument systems NIZKS and NIZKD, respectively.

3. Generate public parameters ppC ← C.Setup(1λ) for COM.

Let PP := (crsS, crsD, ppC, vkP, vkX) and output (PP,mskP,mskX).

Attribute-Iss(mskX,x): Generate a signing key skx for attribute x as

skx ← SX.Sign(mskX,x).

Policy-Iss(mskP, P): Generate a certificate CertP for policy P as

CertP ← SP.Sign(mskP, P).

Sign(x, skx, P,CertP ,m,w): If P (m,x, w) = 0, the signing algorithm returns ⊥.
Otherwise, it proceeds as follows.

19

1. Commit to x as comx = C.Com(ppC,x, rcom,x), and commit to P as
comP = Com(ppC, P, rcom,P). Here, rcom,x and rcom,P are the commit-
ment randomness.

2. Generate a NIZK argument Π to demonstrate the knowledge of a tuple
η = (x, skx, P,CertP , w, rcom,x, rcom,P) such that the following conditions
hold.
(a) The message m is signable with respect to policy P , attribute x and

witness w, i.e., P (m,x, w) = 1.

(b) comx and comP are valid commitments to x and P , respectively, i.e.,

C.Open(ppC, comx,x, rcom,x) = 1; C.Open(ppC, comP , P, rcom,P) = 1.

(c) (x, skx) is a valid (attribute, signing key) pair, i.e.,

SX.Ver(vkX,x, skx) = 1.

(d) (P,CertP) is a valid (attribute, certificate) pair, i.e.,

SP.Ver(vkP, P,CertP) = 1.

This is done by running

Π ← ZKS.Prove
(
crsS, (m, vkX, vkP, ppC, comx, comP), η

)
to prove that

(
(m, vkX, vkP, ppC, comx, comP), η

)
∈ RS.

3. Let
Σ = (comx, comP , Π); clue = (x, P, rcom,x, rcom,P),

and return (Σ, clue).

Verify(m,Σ): Parse Σ = (comx, comP , Π). Then return the bit

b′ ← ZKS.Ver
(
crsS, (m, vkX, vkP, ppC, comx, comP), Π

)
.

Disclose(m,Σ, clue, F): On input a valid message-signature pair (m,Σ), where
Σ = (comx, comP , Π), a clue clue = (x, P, rcom,x, rcom,P), and a disclosing
function F ∈ F , this algorithm proceeds as follows.

1. Compute t = F (P,x).

2. Generate a NIZK argument a to show the possession of the tuple clue =
(x, P, rcom,x, rcom,P) such that the following conditions hold.

(i) The value t is honestly computed, i.e., t = F (P,x).
(ii) comx and comP are valid commitments to x and P , respectively, i.e.,

C.Open(ppC, comx,x, rcom,x) = 1; C.Open(ppC, comP , P, rcom,P) = 1.

This is done by running

a← ZKD.Prove(crsD, (F, t, comx, comP , ppC), clue)

to prove that ((F, t, comx, comP , ppC), clue) ∈ RD.

3. Return (t, a) as a testimony-attestation pair.

Judge(m,Σ,F, t, a): If Verify(m,Σ) = 0, return 0. Otherwise, parse Σ as Σ =
(comx, comP , Π) and return b′′ ← ZKD.Ver(crsD, (F, t, comx, comP , ppC), a).

20

3.3 Analyses

Correctness. The correctness of the presented BAPS scheme follows directly
from the correctness/completeness of the employed ingredients.

The correctness of the commitment scheme COM ensures that

C.Open(ppC, comx,x, rcom,x) = 1, C.Open(ppC, comP , P, rcom,P) = 1.

Also, it follows from the correctness of signature schemes SX and SP that

SX.Ver(vkX,x, skx) = 1, SP.Ver(vkP, P,CertP) = 1.

Therefore, an honest signer is able to obtain a valid witness

η = (x, skx, P,CertP , w, rcom,x, rcom,P)

such that
(
(m, vkX, vkP, ppC, comx, comP), η

)
∈ RS. Then, thanks to the com-

pleteness ofNIZKS, an honestly generated proofΠ will be accepted by ZKS.Ver.
In other words, algorithm Verify returns 1 with overwhelming probability.

Next, if algorithm Disclose is run honestly, then one has that t = F (P,x) and
that clue = (x, P, rcom,x, rcom,P) satisfies ((F, t, comx, comP , ppC), clue) ∈ RD. As
a result, algorithm ZKD.Ver returns 1 with overwhelming probability, thanks to
the completeness of NIZKD, and so does algorithm Judge.

Security. The proposed generic construction satisfies simulatability and ex-
tractability as defined in Section 2.2. We summarize the security in Theorem 1
and Theorem 2, proofs of which are deferred to Appendix C.

Theorem 1. Assume that the two NIZK systems for RS and RD are statistical
zero-knowledge and the commitment scheme COM is statistically hiding. Then
the proposed BAPS scheme is statistically simulatable.

Theorem 2. The proposed BAPS scheme is extractable if the two underlying
NIZK systems satisfy simulation-sound extractability, COM is computationally
binding, and the two signature schemes are EUF-CMA secure.

4 A Lattice-Based BAPS Scheme

In this section, we present a concrete construction of BAPS, that is proven
secure under lattice-based assumptions in the random oracle model. The scheme
can address arbitrary policies, represented as polynomial-size Boolean circuits.
Furthermore, it can handle those disclosing functions which can be expressed as
quadratic functions of the bits of P and x.

Policies as Boolean Circuits. Let integers n, q, k1, k2, k3,K,N be system pa-
rameters. Set K = k1 + k2 + k3, δP = ⌊log(K +N − 2)⌋+1, and k̄ = 2NδP + k1.
Our construction is associated with message spaceM = {0, 1}k1 , attribute space
X = {0, 1}k2 , witness space W = {0, 1}k3 , disclosing space DS = {0, 1}k̄, and
arbitrary polynomial-size policies P = {P : {0, 1}K → {0, 1}}. In particular,

21

P ∈ P has K-bit inputs and N NAND gates, and whose topology is determined
by two functions g, h : [0, N −1]→ [0,K+N −2]. Namely, if the inputs to P are
s0, s1, . . . , sK−1 and the N gate outputs are ordered as sK , . . . , sK+N−1, then
we have

sK+i = sg(i) NAND sh(i), ∀i = 0, . . . , N − 1.

Since the construction requires signing, committing, and proving relations
about policies, we first need an effective method for policy representation. To
this end, by running the decomposition function described in Appendix B.2 on
g(i), h(i) for all i ∈ [0, N − 1], we obtain idecP(g(i)) = (gi,0, . . . , gi,δP−1)

⊤ and
idecP(h(i)) = (hi,0, . . . , hi,δP−1)

⊤ for i ∈ [0, N−1]. Then we consider the following
representation of the circuit P :

zP = (g0,0, g0,1, . . . , g0,δP−1, . . . , gN−1,0, gN−1,1, . . . , gN−1,δP−1,

h0,0, h0,1, . . . , h0,δP−1, . . . , hN−1,0, hN−1,1, . . . , hN−1,δP−1)
⊤ ∈ {0, 1}2NδP . (1)

Quadratic Disclosing functions. Our construction can work with a collection
F = {F : P × X → {0, 1}k̄} containing polynomially many disclosing functions

F , each of which is determined by two matrices G1 ∈ {0, 1}k̄×k̄2

,G2 ∈ {0, 1}k̄×k̄,
and defined as

F (P,x) = G1 · (b⊗Kron b) +G2 · b mod 2, with b = (z⊤P | x⊤)⊤ ∈ {0, 1}k̄.

Here, b ⊗Kron b ∈ {0, 1}k̄2

denotes the Kronecker product, i.e., a flattening
of the tensor product b⊗ b ∈ {0, 1}k̄×k̄. According to this definition of F , each
coordinate of the vector t = F (P,x) ∈ {0, 1}k̄ has the form∑

i,j∈[1,k̄]

αi,j · (bi · bj) +
∑

ℓ∈[1,k̄]

βℓ · bℓ mod 2,

where αi,j ’s, βℓ’s are entries of G1,G2 and bi’s are coordinates of b – which are
essentially the bits determining policy P and attribute x. This definition is thus
quite general and captures arbitrary linear and quadratic relations with respect
to the bits of (P,x). By setting matrices G1 and G2 appropriately, one can
enforce the disclosures of any bits of (P,x), or any bit-products, or any linear
and/or quadratic combinations of the bits.

4.1 Technical Overview

At a high level, our lattice-based BAPS scheme follows the sign-then-commit-
then-prove design approach of the generic construction in Section 3. However,
when it comes to middle-level techniques, we do introduce several adjustments.

– Policies, which often have long representations, are hashed before being
signed by the policy-issuing authority. This can help to reduce the key size
of the underlying signature system.

22

– We handle the problem of evaluating P (m,x, w) in zero-knowledge via sev-
eral involved sub-protocols. These sub-protocols are connected with each
other via the use of some extra commitments.

More concretely, we make use of the following ideal-lattice-based ingredients.

– A variant of the Ducas-Micciancio (DM) signature scheme [15] (recalled in
Appendix B.4), which is stateful and is adaptively secure in the standard
model. It is used to instantiate the signature systems for both authorities,
i.e., SX and SP. The scheme is carefully chosen among existing lattice-based
signatures because it has the shortest keys among schemes known to admit
a concrete zero-knowledge argument of a valid message-signature pair [42].

– A secure hash function family HmP
(described in Appendix B.1), which is

adapted from [46] and which will be used to hash the binary representations
of policies.

– Two commitment families CMTρ′,m and CMTℓ,m (described in Appendix B.3),
that are adapted from [30] and that will be used to commit to various objects.

– We also need two simulation-sound extractable NIZK systems that can han-
dle linear and quadratic relations with respect to two moduli q and 2 (recalled
in Appendix B.5), and should be compatible with the DM signature scheme.
To this end, we employ a framework proposed in [36] for interactive Stern-
like argument systems [53], and then apply the Fiat-Shamir transform [21]
to obtain the desired properties [20]. These two systems internally employ
a string commitment scheme CMT [30] and a hash function HFS. The latter
will be modeled as a random oracle in the security proofs.

Proving in ZK that P (m,x, w) = 1. The major technical challenge that we
have to overcome is to prove in ZK that a hidden-and-certified policy P evaluates
to 1 on a public message m, a hidden-and-certified attribute x, and a hidden
witness w. To demonstrate our techniques, we define some notations.

Let s0, s1, . . . , sK−1 be the input bits of a policy P represented by a Boolean
circuit consisting of N NAND gates, whose topology is determined by functions
g and h. The task is to prove that the NAND gates are computed faithfully, i.e.,

sK ⊕ sg(0) · sh(0) = 1 mod 2;

sK+1 ⊕ sg(1) · sh(1) = 1 mod 2;

.

sK+N−2 ⊕ sg(N−2) · sh(N−2) = 1 mod 2;

sg(N−1) · sh(N−1) = 0 mod 2,

(2)

where sK+i is the output while sg(i), sh(i) are the two inputs of the i-th NAND
gates for i ∈ [0, N − 1]. In order to compute sK+i as in (2), we have to retrieve
the values sg(i), sh(i), which are either the inputs to P or some intermediate
values. Most importantly, we must show that the retrieval process is honestly
performed.

To this end, a first idea, inspired by Libert et al. [35], is to perform a di-
chotomic search on s = (s0, s1, . . . , sK−1, sK , . . . , sK+N−2) ∈ {0, 1}K+N−1. The

23

expected complexity for a single search is O(log(K +N) · λ · log λ) with λ being
the security parameter. We however take a different approach and perform a
“bucket” search. The expected complexity for a single search is O(

√
K +N +λ ·

log λ). The new complexity is smaller if K+N is a small polynomial (say o(λ3))
in λ.

The high-level idea of our “bucket” search is as follows. We divide s into
ρ chunks s0, . . . , sρ−1, each of which is ρ-bit long4. Next, we commit to each
chunk, obtaining ρ commitments: com0, . . . , comρ−1. Note that idecP(g(i)) =
(gi,0, . . . , gi,δP−1)

⊤ is the binary representation of g(i). Let ag,i and bg,i be the
integers whose binary representation are the first δP/2 bits and second δP/2
bits of idecP(g(i)), respectively. Then the bit sg(i) is committed in the ag,i-
th “bucket”, i.e., comag,i

, and it is the bg,i-th bit (the index starts from 0)
within this bucket. To search sg(i), we then prove the knowledge of a bit yi
satisfying the statement “yi is the bg,i-th bit within the ag,i-th bucket”. Due to
the correctness of the proof system, yi = sg(i). Said otherwise, we can provably
perform a “bucket” search for yi = sg(i).

We stress that the above retrieval process would not have protected P com-
pletely if m were not committed. This is because if one sees a bit of m used in
computing (2), then some partial information about P could be leaked. Thus,
we commit to m even though it is public. To show the publicity of m, we output
the commitment randomnesses in the final signature Σ.
Proving in ZK that t = F (P,x). Another challenge we have to tackle is to
show the correctness of disclosing value t = F (P,x), where F is a multivariate
quadratic function – as mentioned above. Although this task is not as sophis-
ticated as the one for hidden circuits, it also requires several non-trivial steps,
among which is a sub-protocol for demonstrating the well-formedness of a Kno-
necker product b ⊗Kron b, where the bits of b simultaneously satisfy various
other relations, e.g., they were hashed, signed and committed.

4.2 Scheme Description

We now describe our lattice-based BAPS scheme in detail.

Setup(1λ): Given the security parameter 1λ, it generates parameters as follows.

– Let n = O(λ) be a power of 2, let q = 3k, and f(X) = Xn + 1 be a irre-
ducible polynomial. Define rings R = Z[X]/(f(X)) and Rq = R/(qR).

– Let k1 = k1(λ), k
′
2 = k′2(λ), k3 = k3(λ) be positive integers. The message

space isM = {0, 1}k1 , the attribute space is X = {0, 1}k2 with k2 = n·k′2,
and the witness space is W = {0, 1}k3 . Define K = k1 + k2 + k3.

– Lets P = {P : {0, 1}K → {0, 1}}, where each P is a Boolean circuit
containing N NAND gates, and is uniquely determined by two functions
g, h : [0, N − 1]→ [0,K +N − 2]. Let δP = ⌊log(K +N − 2)⌋+ 1.

4 For simplicity, assume that K +N − 1 = 2δP for an even integer δP. Then ρ = 2δP/2.

24

– Let mP = ⌈(2NδP/n)⌉. Generate a random matrix Ahp
$←− (Rq)

1×mP ,
which determines a hash function in the family HmP

and which will be
used to hash the description of policies.

– Let κ = ω(log λ) and HFS : {0, 1}∗ → {0, 1}κ be a collision-resistant hash
function, which will be modeled as a random oracle in the Fiat-Shamir
transformation [21].

– Let CMT be a computationally binding and statistically hiding string
commitment scheme (adapted from [30], also recalled in Appendix B.3),
that will be used in our zero-knowledge argument system.

– Initialize SX := 0, SP := 0. Set c, α0, d, c1, . . . , cd,m,m, ℓ and generate
a verification-signing key-pair (vkP,mskP) for the DM signature scheme
(recalled in Appendix B.4). Denote vkP as

AP,FP,0 ∈ (Rq)
1×m, {AP,[i]}di=0 ∈ (R1×k

q)d+1,FP,FP,1 ∈ (Rq)
1×ℓ, uP ∈ Rq,

and signing key mskP as RP ∈ (Rq)
m×k. Looking ahead, this key pair is

used to sign hashes of the description of policies.

– We also generate another verification key and signing key pair to sign
the attributes. Let vkX be

AX,FX,0 ∈ (Rq)
1×m, {AX,[i]}di=0 ∈ (R1×k

q)d+1,FX,FX,1 ∈ (Rq)
1×ℓ, uX ∈ Rq,

and its corresponding signing key mskX as RX ∈ (Rq)
m×k.

– For simplicity, let us assume that K +N − 1 is a perfect square and let
ρ =
√
K +N − 1 be its square root. We also assume that ρ is a multiple

of n such that {0, 1}ρ ⊂ (Rq)
ρ′

with ρ′ = ρ
n . Sample A0

$←− (Rq)
1×ρ′

and

A1
$←− (Rq)

1×m from the commitment scheme CMTρ′,m. Here A0,A1

are used to commit ρ-bit strings.

– Sample Ac
$←− (Rq)

1×ℓ. This matrix Ac together with A1 will be used
to commit to nℓ-bit strings.

Set the master policy key as mskP = RP ∈ (Rq)
m×k and master attribute

key as mskX = RX ∈ (Rq)
m×k.

Attribute-Iss(mskX,x): Given mskX and an attribute x ∈ {0, 1}nk′
2 ⊂ (Rq)

k′
2 ,

this algorithm computes the tag tx = (t0, . . . , tcd−1)
⊤ ∈ Td such that SX =∑cd−1

j=0 2cd−1−jtj and then updates SX to SX+1. It then runs the DM signing

algorithm, obtaining a signature skx = (tx, rx,vx) ∈ {0, 1}cd ×Rm ×Rm+k

such that:
[AX | AX,[0] +

∑d
j=1 AX,[i] · tx,[i]] · vx = yx;

yx = uX + FX · rdec(FX,0 · rx + FX,1 · x);

∥rx∥∞ ≤ β; ∥vx∥∞ ≤ β.

(3)

Here, rdec is a function that decomposes a ring vector to a vector of appro-
priate length over {−1, 0, 1}. (See Appendix B.2 for the formal description.)

25

Policy-Iss(mskP, P): Given mskP = RP and a policy P , this algorithm generates
certificate CertP in the following manner.
– Let the binary representation of the policy P be zP ∈ {0, 1}2NδP ⊂

(Rq)
mP , as defined in (1).

– Compute a hash of policy P as hP = Ahp · zP ∈ Rq.

– Use the key RP to generate a signature CertP = (tP , rP ,vP) ∈ {0, 1}cd×
Rm ×Rm+k on hP such that:

[AP | AP,[0] +
∑d

j=1 AP,[i] · tP,[i]] · vP = yP ;

yP = uP + FP · rdec(FP,0 · rP + FP,1 · hP);

hP = rdec(Ahp · zP) ∈ {−1, 0, 1}nℓ;
∥rP ∥∞ ≤ β; ∥vP ∥∞ ≤ β.

(4)

Sign(x, skx,m,w, P,CertP): If P (m,x, w) = 0, the signing algorithm returns ⊥.
Otherwise, proceed as follows.
Let m ∈ {0, 1}k1 , x ∈ {0, 1}nk′

2 ⊂ (Rq)
k′
2 , w ∈ {0, 1}k3 . Parse skx =

(tx, rx,vx) and CertP = (tP , rP ,vP).
– First, we rename some inputs to facilitate the presentation. Denote m =

(s0, . . . , sk1−1)
⊤ ∈ {0, 1}k1 , x = (sk1

, . . . , sk1+k2−1)
⊤ ∈ {0, 1}k2 , and

w = (sk1+k2
, . . . , sK−1)

⊤ ∈ {0, 1}k3 . Let the intermediate wires in the
circuit P be sK , . . . , sK+N−2 and the output wire be sK+N−1. Recall
that we assume K +N − 1 = ρ2.

– Next, we will divide the secret bits of s = (s0, . . . , sK+N−2) ∈ {0, 1}ρ
2

into ρ-bit chunks and commit to each of the ρ chunks. To do so, for
i ∈ [0, ρ − 1], let si = (si·ρ, si·ρ+1, . . . , si·ρ+ρ−1)

⊤, sample randomness

rcom,i
$←− {0, 1}nm and compute comi = A0 ·si+A1 ·rcom,i ∈ Rq. Without

loss of generality, we assume k1 = µ1ρ, k2 = µ2ρ for some integers
µ1, µ2. Thus, com0, . . . , comµ1−1 are commitments of the message m and
comµ1 , . . . , comµ1+µ2−1 are commitments of x. It is worth noting that we
still commit to m even though m is public. This is essential in proving
P (m,x, w) = 1 without revealing P . To demonstrate that m is public,
we will reveal the underlying commitment randomness in the resulting
signature.

– Third, we will commit to the hash of the policy description. Let zP ⊆
(Rq)

mP be the representation of P . Compute hP = Ahp · zP ∈ Rq and

hP = rdec(hP) ∈ {−1, 0, 1}nℓ. We then sample randomness rcom,P
$←−

{0, 1}nm and let comP = Ac · hP +A1 · rcom,P be a commitment of P .
For notational purposes, define

selse = (sk1+k2 , sk1+k2+1, . . . , sK+N−2)
⊤ ∈ {0, 1}K+N−1−k1−k2 ,

comm = (com⊤
0 | · · · | com⊤

µ1−1)
⊤ ∈ Rµ1

q ,

comx = (com⊤
µ1
| · · · | com⊤

µ1+µ2−1)
⊤ ∈ Rµ2

q ,

comelse = (com⊤
µ1+µ2

| · · · | com⊤
ρ−1)

⊤ ∈ Rρ−µ1−µ2
q ,

26

rcom,m = (r⊤com,0 | · · · | r⊤com,µ1−1)
⊤ ∈ {0, 1}nmµ1 ,

rcom,x = (r⊤com,µ1
| · · · | r⊤com,µ1+µ2−1)

⊤ ∈ {0, 1}nmµ2 ,

rcom,else = (r⊤com,µ1+µ2
| · · · | r⊤com,ρ−1)

⊤ ∈ {0, 1}nm(ρ−µ1−µ2).

Once the commitment process is done, this algorithm then generates a NIZK
argument demonstrating the knowledge of

η = (x, skx, zP , hP , CertP , w, sK , . . . , sK+N−2, rcom,x, rcom,else, rcom,P)

such that the following conditions hold.

(a) The message is signable with respect to policy P , attribute x, and witness
w, i.e., P (m,x, w) = 1, or equivalently, equations (2) hold.

(b) comx and comelse are valid commitments to x and selse with random-
nesses rcom,x and rcom,else, respectively. In addition, comP is a valid com-
mitment to hP with randomness rcom,P . In other words, the following
equations are satisfied.{

comi = A0 · si +A1 · rcom,i, ∀i ∈ [µ1, ρ− 1]

comP = Ac · hP +A1 · rcom,P .
(5)

(c) The signer owns a valid signing key skx for attribute x, i.e., (x, skx)
satisfies (3).

(d) The signer owns a valid certificate CertP for policy P , i.e., (zP ,hP ,CertP)
satisfies (4).

This is done by running the argument system described in Section 4.4. The
protocol is then repeated κ = ω(log λ) times to achieve negligible soundness
error and made non-interactive via the Fiat-Shamir heuristic [21]. Let the
resultant proof be

Π =
(
{COMi}κ−1

i=0 , {CHi}κ−1
i=0 , {RSPi}κ−1

i=0

)
, (6)

where (CH0, . . . ,CHκ−1)
⊤ = HFS({COMi}κ−1

i=0 , ξ) and ξ is of the form

(m, vkX, vkP, Ahp, Ac, A0, A1, comm, comx, comelse, comP , rcom,m). (7)

Return the signature as Σ = (comm, comx, comelse, comP , rcom,m, Π) and
the clue as clue = (x, P, rcom,x, rcom,P). Note that all the commitments
are needed for the verification of Π. Also, as m is public, the randomnesses
rcom,m are included in Σ.

Verify(m,Σ): This algorithm verifies the validity of the signature Σ as follows.
– Let m = (s0, . . . , sk1−1)

⊤ ∈ {0, 1}k1 and si = (si·ρ, si·ρ+1, . . . , si·ρ+ρ−1)
⊤

for i ∈ [0, µ1 − 1].

– Parse Σ = (comm, comx, comelse, comP , rcom,m, Π), where Π is as in (6),
comm = (com⊤

0 | · · · | com⊤
µ1−1)

⊤, and rcom,m = (r⊤com,0 | · · · | r⊤com,µ1−1)
⊤.

– Return 1 if and only if the following conditions are satisfied.

27

(i) (CH0, . . . ,CHκ−1)
⊤ = HFS({COMi}κ−1

i=0 , ξ) with ξ as in (7).

(ii) For all i ∈ [0, µ1 − 1], comi = A0 · si +A1 · rcom,i.

(iii) For all j ∈ [0, κ− 1], response RSPj is valid with respect to commit-
ment COMj and the challenge CHj .

Disclose(m,Σ, clue, F): This algorithm computes a testimony-attestation pair as
follows.

– Let x = (sk1 , . . . , sk1+k2−1)
⊤ ∈ {0, 1}k2 , and for i ∈ [µ1, µ1 + µ2 − 1], let

si = (si·ρ, si·ρ+1, . . . , si·ρ+ρ−1)
⊤.

– Parse Σ = (comm, comx, comelse, comP , rcom,m, Π), where Π is as in (6),
comx = (com⊤

µ1
| · · · |com⊤

µ1+µ2−1)
⊤, rcom,x = (r⊤com,µ1

| · · · |r⊤com,µ1+µ2−1)
⊤.

Return 0 if Verify(m,Σ) = 0.

– Parse clue = (x, P, rcom,x, rcom,P).

– Let the binary representation of P be zP ∈ {0, 1}2NδP , and F be de-

termined by two matrices G1 ∈ {0, 1}k̄×k̄2

and G2 ∈ {0, 1}k̄×k̄. Next,
denote b = (z⊤P | x⊤)⊤ and then compute the testimony as

t = G1 · (b⊗Kron b) +G2 · b mod 2.

– Generate a NIZK argument of knowledge of clue such that the following
conditions hold.

(i) The testimony t is honestly computed, i.e., for b = (z⊤P | x⊤)⊤,

t = F (P,x) = G1 · (b⊗Kron b) +G2 · b mod 2.

(ii) comx and comP are valid commitments of x and P , i.e.,

comP = Ac · hP +A1 · rcom,P , with hP = rdec(Ahp · zP);
comi = A0 · si +A1 · rcom,i, ∀ i ∈ [µ1, µ1 + µ2 − 1].

This is done by running the argument system in Appendix F on public
input ξD = (G1,G2, t, comx, comP ,Ahp,Ac,A0,A1) and secret input
clue. The protocol is conducted κ = ω(log λ) times in parallel to obtain
negligible soundness error and then made non-interactive via the Fiat-
Shamir heuristic [21]. The resultant proof a is a triple of a form

a =
(
{COMD,i}κ−1

i=0 , {CHD,i}κ−1
i=0 , {RSPD,i}κ−1

i=0

)
, (8)

where (CHD,0, . . . ,CHD,κ−1)
⊤ = HFS({COMD,i}κ−1

i=0 , ξD).

– Return t and a.

Judge(m,Σ,F, t, a): If Verify(m,Σ) = 0, return 0. Otherwise, it proceeds to ver-
ify the validity of a, which is quite similar to the verification of Π. Return 1
if a is valid and 0 otherwise.

28

4.3 Analyses

Correctness. The correctness of our construction relies on two facts: (i) The
employed Ducas-Micciancio signature scheme is correct with overwhelming prob-
ability; (ii) The two underlying zero-knowledge argument systems are perfectly
correct. Therefore, for any policy P , any attribute x, any message m such that
P (m,x, w) = 1 for some witness w, if a signer owns honestly-generated signing
key for x and certificate for P , and signs the message faithfully as in the Sign
algorithm, then the Verify algorithm outputs 1 with overwhelming probability. In
addition, clue contains P , x, and randomnesses for committing them. Therefore,
the testimony can be correctly computed as t = F (P,x) and the attestation a,
honestly generated with the knowledge of clue, will pass the Judge algorithm.

Asymptotic Efficiency. We now analyze the efficiency of our construction
with respect to the security parameter λ, the number K of inputs in P , and the
number N of NAND gates in P .

– The public parameters are dominated by vkX, vkP,Ahp,Ac,A0,A1, which
are of O

(
N · log(K +N) · log λ+ λ · (log λ)2

)
bits.

– The mskX and mskP have bit size O(λ · (log λ)3).
– The signature size is dominated by the size of Π, which has bit size κ·O

(
L1 ·

log q + LP

)
= κ · O

(
λ · (log λ)5 +N

√
K +N log λ+N · λ · (log λ)2 + (K +

N) log λ+ λ
√
K +N(log λ)2

)
.

– The size of attestation is κ · O
(
L2 · log q + LD

)
= κ · O

(
k2 · log λ + µ2λ ·

(log λ)2 +N2 · log2(K +N) + k22
)
. (See Appendix F for details.)

Security. In the random oracle model, our construction satisfies simulatability
and extractability. In particular, the construction is simulatable based on the
facts that (i) the two underlying zero-knowledge argument systems are statis-
tical zero knowledge and (ii) the commitment schemes CMTρ′,m,CMTℓ,m are
statistically hiding. Extractability relies on (i) the computational soundness of
the two underlying ZKAoK systems, (ii) the computational binding property of
CMTρ′,m and CMTℓ,m, (iii) EUF-CMA security of the Ducas-Micciancio signature
scheme, and (iv) the collision resistance of the hash function family HmP

. We
summarize the security in the following theorems and provide detailed proofs in
Appendix G.

Theorem 3. Assume that the two underlying zero-knowledge argument systems
are statistical zero-knowledge and the commitment schemes CMTρ′,m,CMTℓ,m

are statistically hiding. Then the proposed BAPS scheme is simulatable.

Theorem 4. The proposed BAPS scheme is extractable if the two underlying
argument systems are computationally knowledge sound, the two commitment
schemes CMTρ′,m, CMTℓ,m are computationally binding, the Ducas-Micciancio
signature scheme is EUF-CMA secure, and the hash function family HmP

is
collision-resistant.

29

4.4 The Main Zero-Knowledge Argument of Knowledge

Let us now summarize the relation RS appearing in the Sign algorithm.

Public inputs ξ: Ahp, vkP, vkX, Ac, A0, A1, com0, . . . , comρ−1, comP , rcom,0,
. . ., rcom,µ1−1, m.

Secret inputs η: zP ∈ {0, 1}2NδP , x ∈ {0, 1}k2 , w ∈ {0, 1}k3 , sK , . . . , sK+N−2 ∈
{0, 1}, skx = (tx, rx,vx) ∈ {0, 1}cd× (R)m× (R)m+k, CertP = (tP , rP ,vP) ∈
{0, 1}cd × (R)m × (R)m+k, rcom,µ1 , . . . , rcom,ρ−1, rcom,P ∈ {0, 1}nm.

Prover’s goal: Proving knowledge of the secret inputs η such that equations
(2), (3), (4), and (5) are satisfied.

Proving knowledge of η such that substatements involving equations (3), (4), and
(5) can be handled by previous techniques, such as [41,42]. For completeness, we
present them in Appendix E.1-E.3. Specifically, we transform (3) to an equivalent
form MX ·wX = ṽX mod q for wX ∈ VALIDX ⊂ {−1, 0, 1}LX with associated SX
and {Γϕ : ϕ ∈ SX} such that conditions in (18) are conformed. Similarly, we
transform (4) and (5) to Mcert · wcert = vcert mod q for wcert ∈ VALIDcert ⊂
{−1, 0, 1}Lcert with associated Scert, {Γϕ : ϕ ∈ Scert}, and Mcom · wcom = vcom

for wcom ∈ VALIDcom ⊂ {−1, 0, 1}Lcom with associated Scom, {Γϕ : ϕ ∈ Scom},
respectively. Here we focus on the substatement involving the equations (2).

To this end, the challenge is how to retrieve the values sg(i), sh(i) for i ∈
[0, N−1] without revealing g(i), h(i) or sg(i), sh(i). In constructing their oblivious
transfer with access control, Libert et al. [35] encountered a similar issue. They
have to retrieve svar(θ) without revealing svar(θ) or var(θ), among a secret vector
s = (s0, . . . , sυ−1) with var(θ) ∈ [0, υ − 1]. To solve this issue, they perform a
dichotomic search on s. The expected complexity for each retrieval is O(log υ ·
λ · log λ).

If we use their dichotomic search to retrieve sg(i), sh(i), the complexity for a
single search would be O(log(K+N−1) ·λ · log λ). We, however, take a different
approach to retrieve sg(i), sh(i), and the expected complexity for a single search

is O(
√
K +N − 1 + λ · log λ). When K + N is a small polynomial in λ, our

approach is more efficient5. Let us now describe our strategies.

Recall that we commit to s0, . . . , sρ−1, each of which is a ρ-bit string. Let
K+N−1 = ρ2 = 2δP and idecP(g(i)) = (gi,0, gi,1, . . . , gi, δP2 −1

, g
i,

δP
2

, . . . , gi,δP−1)
⊤

be the binary representation of g(i) ∈ [0,K −N − 2]. Define
ag,i =

∑ δP
2 −1
j=0 2

δP
2 −1−j · gi,j ∈ [0, ρ− 1],

bg,i =
∑δP−1

j=
δP
2

2δP−1−j · gi,j ∈ [0, ρ− 1].
(9)

5 If λ = 28, and K + N ≤ λ3 = 224, then our method yields better efficiency. Note
that policies with K + N ≤ 224 ≈ 107 captures many policies of cryptographic
interests [29].

30

We have seen that sg(i) is the bg,i-th bit among the ρ bits sag,i
committed

in comag,i
. Proving the statement that “yi is the bg,i-th bit within the ag,i-

th bucket”, however, is a non-trivial task. To this end, we introduce extra se-
crets s̃i = (s̃i,0, . . . , s̃i,bg,i , . . . , s̃i,ρ−1)

⊤, c̃omg,i, and instead proving knowledge
of yi, s̃i, c̃omg,i satisfying the statement “yi is the bg,i-th bit among the ρ bits s̃i
committed in c̃omg,i. The latter, i.e., c̃omg,i, is further the ag,i-th commitment
among commitments com0, . . . , comag,i

, . . . , comρ−1”. The binding property of
the commitment scheme guarantees that s̃i = sag,i , and hence yi = sg(i).

The next challenge we have to overcome is to prove that yi is the bg,i-th
bit among the ρ bits s̃i,0, . . . , s̃i,ρ−1, where yi, bg,i as well as s̃i,0, . . . , s̃i,ρ−1 are
all secret. Inspired by the technique of proving a well-formed regular word by
Nguyen et al. [49], we introduce intermediate secret bits bi,0, . . . , bi,ρ−1 and prove
that

yi = bi,0 · s̃i,0 + bi,1 · s̃i,1 + · · ·+ bi,ρ−1 · s̃i,ρ−1.

Then yi = s̃i,bg,i if and only if (bi,0, . . . , bi,ρ−1)
⊤ is a regular word defined as

∆ δP
2

(g
i,

δp
2

, . . . , gi,δP−1)
6.

Yet there is a subtle issue here, i.e., a malicious prover may not use the
same (bi,0, . . . , bi,ρ−1)

⊤ for computing yi and for proving that it is a well-formed
regular word. This can be solved, fortunately, by adding extra intermediate bits
b′i,0, . . . , b

′
i,ρ−1 and forcing them equal with an additional constraint:

(bi,0, . . . , bi,ρ−1)
⊤ = (b′i,0, . . . , b

′
i,ρ−1)

⊤.

The same techniques can be used to prove the second half statement that c̃omg,i

is the ag,i-th commitment among the ρ commitments com0, . . . , comρ−1.

Combining all together, to show that we have “bucket” searched sg(i) cor-

rectly, we need to argue knowledge of c̃omg,i ∈ Rq, yi ∈ {0, 1}, (s̃i,0, . . . , s̃i,ρ−1)
⊤ ∈

{0, 1}ρ, rg,i ∈ {0, 1}nm, (ai,0, . . . , ai,ρ−1)
⊤ ∈ {0, 1}ρ, (bi,0, . . . , bi,ρ−1)

⊤ ∈ {0, 1}ρ,
(b′i,0, . . . , b

′
i,ρ−1)

⊤ ∈ {0, 1}ρ, idecP(g(i)) ∈ {0, 1}δP such that

c̃omg,i = A0 · (s̃i,0, . . . , s̃i,ρ−1)
⊤ +A1 · rg,i;

c̃omg,i = [com0, . . . , comρ−1] · (ai,0, . . . , ai,ρ−1)
⊤;

we show (ai,0, ai,1, . . . , ai,ρ−1) = ∆ δP
2

(gi,0, gi,1, . . . , gi, δP2 −1
);

yi = bi,0 · s̃i,0 + bi,1 · s̃i,1 + · · ·+ bi,ρ−1 · s̃i,ρ−1;

(bi,0, bi,1, . . . , bi,ρ−1)− (b′i,0, . . . , b
′
i,ρ−1)

⊤ = 0ρ;

we show (b′i,0, . . . , b
′
i,ρ−1)

⊤ = ∆ δP
2

(g
i,

δP
2

, . . . , gi,δP−1).

(10)

6 Given x = (x0, . . . , xc−1) ∈ {0, 1}c, a regular word ∆c(x) ∈ {0, 1}2
c

has the sole 1
entry at the (

∑c−1
i=0 2c−1−ixi)-th position.

31

We emphasize that (ai,0, ai,1, . . . , ai,ρ−1)
⊤ = ∆ δP

2

(gi,0, gi,1, . . . , gi, δP2 −1
) ensures

that c̃omg,i is actually comag,i
while (b′i,0, . . . , b

′
i,ρ−1)

⊤ = ∆ δP
2

(g
i,

δP
2

, . . . , gi,δP−1)

makes sure that yi is the bg,i-th bit committed in c̃omg,i.

Now, to prove that equations in (2) are satisfied, we need to prove that (i)
the searches of sg(0), sh(0), . . . , sg(N−1), sh(N−1) yield y0, z0, . . . , yN−1, zN−1 and
that (ii) the policy P evaluates to 1 if y0, z0, . . . , yN−1, zN−1 are used, i.e., we
need to show 

sK ⊕ y0 · z0 = 1 mod 2;

sK+1 ⊕ y1 · z1 = 1 mod 2;

.

sK+N−2 ⊕ yN−2 · zN−2 = 1 mod 2;

yN−1 · zN−1 = 0 mod 2.

(11)

Dedicated Stern-like techniques like [41,42,35,49] can be used to prove state-
ments involving equations (10)(11). Specifically, we transform (10) to an equiv-
alent form Mg,i ·wg,i = vg,i mod q for wg,i ∈ VALIDg,i ⊂ {0, 1}Lg,i with asso-
ciated Sg,i and {Γϕ : ϕ ∈ Sg,i} such that the conditions in (18) are all satisfied.
Similar transformations are employed to search sh(i) for i ∈ [0, N − 1].

Also, we are able to transform (11) to an equivalent formMP·wP = vP mod 2
for wP ∈ VALIDP ⊂ {0, 1}LP with associated SP and {Γϕ : ϕ ∈ SP} such that
the conditions in (18) are all fulfilled. For completeness, they are presented in
Appendix E.4 and E.5.

Putting Pieces Altogether. At the final stage of the process, we connect the
previous steps by combining them into

M1 ·w1 = v1 mod q; MP ·wP = vP mod 2,

where w1 ∈ {−1, 0, 1}L1 with L1 = LX +Lcert +Lcom +2N ·Lg,i. As a result, we
can specify a suitable sets VALIDbaps, Sbaps and permutation {Γϕ : ϕ ∈ Sbaps},
for which conditions (18) are satisfied. Details are in Appendix E.6.

At this point, our desired argument protocol between the prover and verifier
works as follows. Given the public inputs ξ, both parties construct M1,MP and
v1,vP as above. The prover additionally constructs w1,wP. Next, they run the
protocol described in Table 2. If the commitment scheme COM is statistically
hiding and computationally binding, the resulting protocol is a statistical ZKAoK
protocol with perfect completeness, soundness error 2/3, and communication
cost

O(L1 · log q + LP) = O
(

λ · (log λ)5 +N
√
K +N log λ

+ N · λ · (log λ)2 + (K +N) log λ+ λ
√
K +N(log λ)2

)
.

Acknowledgements. We thank the anonymous reviewers of ASIACRYPT
2023 for their helpful comments and suggestions. The work of Yanhong Xu

32

was supported in part by the National Key Research and Development Pro-
gram under Grant 2022YFA1004900. Willy Susilo was partially supported by
the Australian Research Council (ARC) Discovery project (DP200100144) and
the Australian Laureate Fellowship (FL230100033).

References

1. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601. Springer (2015)

2. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: PKC 2014. LNCS,
vol. 8383, pp. 520–537. Springer (2014)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer (2003)

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. J. Cryptol. 22(1), 114–138 (2009)

5. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: ASIACRYPT 2014. LNCS, vol. 8873, pp. 551–572. Springer (2014)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer (2011)

7. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Sorniotti, A.: A framework for prac-
tical anonymous credentials from lattices. In: CRYPTO 2023. LNCS, vol. 14082,
pp. 384–417. Springer (2023)

8. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: CRYPTO 2019. LNCS, vol. 11692, pp.
176–202. Springer (2019)

9. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer (2014)

10. Brickell, E.F., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for
discrete logarithm based signature schemes. In: PKC 2000. LNCS, vol. 1751, pp.
276–292. Springer (2000)

11. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and
privacy using e-cash (extended abstract). In: SCN 2006. LNCS, vol. 4116, pp. 141–
155. Springer (2006)

12. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: CRYPTO 2006.
LNCS, vol. 4117, pp. 78–96. Springer (2006)

13. Chaum, D., van Heyst, E.: Group signatures. In: EUROCRYPT 1991. LNCS,
vol. 547, pp. 257–265. Springer (1991)

14. Cheng, S., Nguyen, K., Wang, H.: Policy-based signature scheme from lattices.
Des. Codes Cryptogr. 81(1), 43–74 (2016)

15. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard
model. In: CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer (2014), http:
//eprint.iacr.org/2014/495

16. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: New
techniques to exploit fully-splitting rings. In: ASIACRYPT 2020. LNCS, vol. 12492,
pp. 259–288. Springer (2020)

33

http://eprint.iacr.org/2014/495
http://eprint.iacr.org/2014/495

17. Esgin, M.F., Steinfeld, R., Liu, D., Ruj, S.: Efficient hybrid exact/relaxed lattice
proofs and applications to rounding and vrfs. In: CRYPTO 2023. LNCS, vol. 14085,
pp. 484–517. Springer (2023)

18. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
New techniques for shorter and faster constructions and applications. In: CRYPTO
2019. LNCS, vol. 11692, pp. 115–146. Springer (2019)

19. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: Provably secure group
signature schemes from code-based assumptions. IEEE Trans. Inf. Theory 66(9),
5754–5773 (2020)

20. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79.
Springer (2012)

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer
(1986)

22. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: PKC 2007. LNCS, vol. 4450,
pp. 181–200. Springer (2007)

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

24. Groth, J.: Simulation-sound nizk proofs for a practical language and constant size
group signatures. In: ASIACRYPT 2006. pp. 444–459. LNCS, Springer (2006)

25. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer (2006)

26. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: ASIACRYPT 2012. LNCS,
vol. 7658, pp. 663–680. Springer (2012)

27. Jeudy, C., Roux-Langlois, A., Sanders, O.: Lattice signature with efficient proto-
cols, application to anonymous credentials. In: CRYPTO 2023. LNCS, vol. 14082,
pp. 351–383. Springer (2023)

28. Katsumata, S., Yamada, S.: Group signatures without NIZK: from lattices in the
standard model. In: EUROCRYPT 2019. LNCS, vol. 11478, pp. 312–344. Springer
(2019)

29. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: CCS 2018. pp. 525–537. ACM (2018)

30. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: ASIACRYPT 2008. LNCS,
vol. 5350, pp. 372–389. Springer (2008)

31. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: EUROCRYPT 2004.
LNCS, vol. 3027, pp. 571–589. Springer (2004)

32. Kohlweiss, M., Miers, I.: Accountable metadata-hiding escrow: A group signature
case study. Proc. Priv. Enhancing Technol. 2015(2), 206–221 (2015)

33. Kroll, J., Huey, J., Barocas, S., Felten, E., Reidenberg, J., Robinson, D., Yu, H.:
Accountable algorithms. U. of Pennsylvania Law Review 165(3), 633–705 (2017)

34. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge ar-
guments for matrix-vector relations and lattice-based group encryption. In: ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 101–131 (2016)

35. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Adaptive oblivi-
ous transfer with access control from lattice assumptions. In: ASIACRYPT 2017.
LNCS, vol. 10624, pp. 533–563. Springer (2017)

34

36. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based prfs and applications to e-cash. In: ASIACRYPT 2017. LNCS, vol. 10626,
pp. 304–335. Springer (2017)

37. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. J. Cryptol. 36(3), 23 (2023)

38. Libert, B., Nguyen, K., Passelègue, A., Titiu, R.: Simulation-sound arguments for
LWE and applications to KDM-CCA2 security. In: ASIACRYPT 2020. pp. 128–
158. LNCS, Springer (2020)

39. Libert, B., Nguyen, K., Peters, T., Yung, M.: Bifurcated signatures: Folding the
accountability vs. anonymity dilemma into a single private signing scheme. In:
EUROCRYPT 2021. LNCS, vol. 12698, pp. 521–552. Springer (2021)

40. Ling, S., Nguyen, K., Phan, D.H., Tang, H., Wang, H.: Zero-knowledge proofs for
committed symmetric boolean functions. In: PQCrypto 2021. LNCS, vol. 12841,
pp. 339–359. Springer (2021)

41. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: PKC 2013. LNCS, vol. 7778,
pp. 107–124. Springer (2013)

42. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lat-
tices. In: PKC 2018. LNCS, vol. 10770, pp. 58–88. Springer (2018)

43. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer (2006)

44. Lyubashevsky, V., Nguyen, N.K., Planccon, M.: Lattice-based zero-knowledge
proofs and applications: Shorter, simpler, and more general. In: CRYPTO 2022.
LNCS, vol. 13508, pp. 71–101. Springer (2022)

45. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: CT-
RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer (2011)

46. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Comput. Complex. 16(4), 365–411 (2007)

47. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer (2012)

48. Nguyen, K., Guo, F., Susilo, W., Yang, G.: Multimodal private signatures. In:
CRYPTO 2022. LNCS, vol. 13508, pp. 792–822. Springer (2022)

49. Nguyen, K., Tang, H., Wang, H., Zeng, N.: New code-based privacy-preserving
cryptographic constructions. In: ASIACRYPT 2019. LNCS, vol. 11922, pp. 25–55.
Springer (2019)

50. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer (2019)

51. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: ASIACRYPT 2001.
LNCS, vol. 2248, pp. 552–565. Springer (2001)

52. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Pairing-Based Cryptography - Pair-
ing 2012. LNCS, vol. 7708, pp. 270–294. Springer (2012)

53. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 1757–1768 (1996)

54. Xu, S., Yung, M.: Accountable ring signatures: A smart card approach. In: CARDIS
2004. IFIP, vol. 153, pp. 271–286. Kluwer/Springer (2004)

55. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: Construction and applica-
tions. In: CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer (2019)

35

A Cryptographic Primitives

A.1 Signature Schemes

Definition 3. A signature scheme S = (S.Kg,S.Sign,S.Ver) is a triple of algo-
rithms defined as follows:

– S.Kg(1λ) → (sk, vk): On input the security parameter λ, the key generation
algorithm outputs a signing key sk and a verification key vk.

– S.Sign(m, sk) → Σ: On input a signing key sk, and a message m ∈ {0, 1}∗,
the signing algorithm outputs a signature Σ.

– S.Ver(vk,m,Σ)→ {0, 1}: On input a verification key vk, a message m, and
a signature Σ, the verification algorithm accepts or rejects.

We require a signature scheme S to satisfy the following correctness and
security properties.
Correctness. A signature scheme S is correct if for all λ ∈ N, for all m, we
have that

Pr

[
S.Verify(vk,m,Σ) = 1)

∣∣∣∣ (vk, sk)← S.Kg(1λ),
Σ ← S.Sign(vk,m).

]
= 1.

Security. A signature scheme is existentially unforgeable under adaptive chosen
message attack (EUF-CMA) if for any PPT adversaryA, the following experiment
Expuf

A(λ) outputs 1 with negligible probability in λ.

– The challenger runs (sk, vk)← S.Kg(1λ), and provides vk to A.
– A issues a polynomial number of signature queries on messages of its choice.

The challenger computes Σ ← S.Sign(m, sk) for each query m and sends Σ
to A.

– At the end of the experiment, A outputs a forgery (m∗, Σ∗). The experiment
outputs 1 if S.Ver(vk,m∗, Σ∗) = 1 and (m∗, Σ∗) was not obtained from the
queries.

A.2 Commitment Schemes

Definition 4. A commitment scheme COM = (Setup, Com, Open) is a triple
of algorithms defined as follows:

C.Setup(1λ): On input the security parameter λ, it returns system parameters
ppC.

C.Com(ppC,m) On input ppC and a message m, this probabilistic algorithm sam-
ples a random string r and computes com. It then returns the commitment
com and (m, r).

C.Open(ppC, com,m, r): On input ppC, com, a message m, and randomness r,
this deterministic algorithm outputs 1 if com = C.Com(ppC,m, r) or 0 oth-
erwise.

36

We require a commitment scheme COM to satisfy the following correctness,
hiding, and binding properties.
Correctness. We say that a commitment scheme COM is correct if for all
λ ∈ N, all m, we have that

Pr

[
C.Open(ppC, com,m, r) = 1)

∣∣∣∣ppC ← C.Setup(1λ),
(com, (m, r))← C.Com(ppC,m).

]
= 1.

Statistical hiding. For any ppC ← C.Setup(1λ) and for any m0,m1, the dis-
tributions of {C.Com(ppC,m0)} and {C.Com(ppC,m1)} are statistically indistin-
guishable.

Computational binding. For any PPT adversary A,

Pr

[
C.Com(m0, r0) = C.Com(m1, r1)
∧ m0 ̸= m1

∣∣∣∣ppC ← C.Setup(1λ),
(m0, r0; m1, r1)← A(ppC).

]
= 1.

A.3 Simulation-Sound Extractable NIZKs

Here, we recall the definitions and security properties of simulation-sound ex-
tractable NIZK argument systems following the presentation by Bellare and
Fuchsbauer [2].

Definition 5. A simulation sound extractable NIZK for an NP-relation R is a
tuple of polynomial-time algorithms NIZK = (ZK.Setup,ZK.SimSetup,ZK.Prove,
ZK.Ver,ZK.Sim,ZK.Extr), defined as follows.

ZK.Setup(1λ): On input of the security parameter λ, this setup algorithm outputs
a common reference string crs.

ZK.SimSetup(1λ): On input λ, this simulated setup algorithm outputs a common
reference string crs and a trapdoor tr.

ZK.Prove(crs, x, w): This proof algorithm takes as inputs crs, a statement x and
a witness w, and outputs a proof π.

ZK.Sim(crs, tr, x): This simulated proof algorithm takes as inputs crs, a trapdoor
tr, a statement x, and outputs a simulated proof π.

ZK.Ver(crs, x, π): On input crs, a statement-proof pair (x, π), it outputs either 1
or 0, indicating the (in)validity of proof π.

ZK.Extr(crs, tr, x, π): On input crs, a trapdoor tr, a statement x and a proof π,
this algorithm outputs a witness w.

Perfect completeness. For any λ ∈ N, any (x,w) ∈ R, we have

Pr

[
ZK.Ver(crs, x, π) = 1

∣∣∣∣∣ crs← ZK.Setup(1λ),

π ← ZK.Prove(crs, x, w)

]
= 1.

Computational soundness. For any PPT adversary A,

37

ExpZK
NIZK,A(λ) ExpSE

NIZK,A(λ)
Initialize Initialize

b← {0, 1} (crs, tr)← ZK.SimSetup(1λ); Q← ∅
(crs0, tr)← ZK.SimSetup(1λ) Return crs
(crs1)← ZK.Setup(1λ) SimPROOF(x)

Return crsb π ← ZK.Sim(crs, tr, x); Q← Q ∪ {(x, π)}
PROOF(x,w) Return π

If R(x,w) = 1, then π0 ← ZK.Sim(crs0, tr, x) Finalize(x, π)

else π0 ←⊥; w ← ZK.Extr(crs, tr, x, π)
π1 ← ZK.Prove(crs1, x, w) Return 1 if all of the following hold:
Return πb (x, π) /∈ Q
Finalize(b′) ZK.Ver(crs, x, π) = 1

Return (b = b′) R(x,w) = 0

Table 1. Games defining zero-knowledge and simulation sound extractability for NIZK

Pr

[
ZK.Ver(crs, x, π) = 1
∧ x /∈ LR

∣∣∣∣ crs← ZK.Setup(1λ),
(x, π)← A(crs).

]
= 1− negl(λ).

Zero-knowledge and simulation-sound extractability are defined via the two
experiments ExpZK

NIZK,A(λ) and ExpSE
NIZK,A(λ) in Table 1.

Statistical zero-knowledge. For any A and for all (x,w) ∈ R,

AdvZK
NIZK,A = |Pr

[
ExpZK

NIZK,A(λ)
]
− 1

2
| = negl(λ).

Simulation-sound extractability. For every PPT adversary A,

AdvSE
NIZK,A = Pr

[
ExpSE

NIZK,A(λ) = 1
]
= negl(λ).

B Some Preliminary Lattice-Based Techniques and Tools

Throughout this work, all vectors are column vectors. Let q be a positive integer,
identify Zq = { q−1

2 , . . . ,−1, 0, 1, . . . , q−1
2 }.

B.1 Rings and Ring-Based Hash Functions

Let n be a power of 2, q be a large prime q = q(n) = nO(1), and f(X) = Xn+1 ∈
Z[X] be a monic and irreducible polynomial of degree n. Define quotient rings
R = Z[X]/(f(X)) and Rq = R/(qR).

Let τ : (Rq)
m′ → Znm′

q be the coefficient embedding that maps a ring vector

a = (a0, a1, . . . , am′−1)
⊤ ∈ (Rq)

m′
to τ(a) ∈ Znm′

q , where each

ai = ai,0 + ai,1 ·X + · · ·+ ai,n−1 ·Xn−1 ∈ Rq,

38

τ(a) = (a0,0, . . . , a0,n−1, a1,0, . . . , a1,n−1, . . . , am′−1,0, . . . , am′−1,n−1)
⊤ ∈ Znm′

q .

Since τ is bejective, we will use (Rq)
m′

and Znm′

q interchangeably in this work.
Therefore, the (infinity) norm of a is defined as ∥a∥∞ = ∥τ(a)∥∞.

Define rot : Rq → Zn×n
q as

rot(v) = [τ(v), τ(v ·X), . . . , τ(v ·Xn−1)] ∈ Zn×n
q . (12)

Let A = [a0, a1, . . . , am′−1] ∈ R1×m′

q , we abuse the notion of rot by defining

rot(A) = [rot(a0), rot(a1), . . . , rot(am′−1)] ∈ Zn×nm′

q . It is verifiable that

y = A · x⇔ τ(y) = rot(A) · τ(x), (13)

where A ∈ (Rq)
1×m′

and x ∈ (Rq)
m′

. We note that for x ∈ {0, 1}m′
with a sole 1

in some position, then y = A ·x where each bit of x is treated as either constant
polynomial 0 or 1 can be simplified as τ(y) = [τ(a0), τ(a1), . . . , τ(am′−1)] · x.

We now describe a family of hash functions as in [43,30].

Hm′ = {hA : {0, 1}nm
′
→ Rq|A ∈ (Rq)

1×m′
}, (14)

where hA(x) = A · x7 and x ∈ {0, 1}nm′ ⊂ (Rq)
m′

.

Lemma 1 (Collision resistance [43,30]). For any m′ = m′(n) > log q, there
exists an integer q > 6m′n3/2 log n and γ = 72m′n log2 n, such that Hm′ is
collision resistant if SVP∞

γ is hard for any ideal in the ring R.

B.2 Decompositions

Let us recall the decomposition technique from [41]. Let B be any positive in-
teger. Define δB = ⌊logB⌋ + 1 and a sequence B0, B1, . . . , BδB−1 where Bj =⌊
B+2j

2j+1

⌋
for j ∈ [0, δB−1]. It is verifiable that

∑δB−1
j=0 Bj = B. For any v ∈ [0, B],

let us perform the following algorithm.

1. v′ := v.
2. For j ∈ [0, δB − 1],

(a) If v′ > Bj , set v
(j) := 1, v′ := v′ −Bj

(b) Else: set v(j) := 0.
3. Return idecB(v) = (v(0), v(1), . . . , v(δB−1))⊤ ∈ {0, 1}δB .

It is not hard to see that v =
∑δB−1

j=0 v(j) ·Bj . For v ∈ [−B, 0], idecB(v) is defined

as (−1) · idecB(|v|) ∈ {−1, 0}δB .
For example, for B = 15, we have B0 = 8, B1 = 4, B2 = 2, B1 = 1, and

7 = 0 ·B0 + 1 ·B1 + 1 ·B2 + 1 ·B3. Thus idec15(7) = (0, 1, 1, 1)⊤.
In this work, we also employ the above decomposition on ring vectors. Let B

be 2 ≤ B ≤ q−1
2 and a = (a0, a1, . . . , am′−1)

⊤ ∈ (Rq)
m′

, where ai = ai,0 + ai,1 ·
7 Note that we write hA(x) = A · x instead of hA(x) = A · τ−1(x) if there is no risk
of ambiguity.

39

X + · · · + ai,n−1 ·Xn−1 ∈ Rq and ai,0, . . . , ai,n−1 ∈ [−B,B]. Define rdecB(a) ∈
{−1, 0, 1}nm′δB ⊂ Rm′δB as

rdecB(a) =
(

idecB(a0,0)
⊤, idecB(a0,1)

⊤, . . . , idecB(a0,n−1)
⊤, . . . ,

idecB(am′−1,0)
⊤, idecB(am′−1,1)

⊤, . . . , idecB(am′−1,n−1)
⊤)⊤

.

Define two matrices HB ∈ Zn×nδB and Hm′,B ∈ Znm′×nm′δB as

HB =

B0 . . . BδB−1

. . .

B0 . . . BδB−1

 , Hm′,B =

HB

. . .

HB

 . (15)

Then we have

Hm′,B · rdecB(a) = τ(a) ∈ Znm′
. (16)

For simplicity, we write H,Hm′ , δ, idec, rdec instead of H q−1
2
, Hm′, q−1

2
, δ q−1

2
,

idec q−1
2
, rdec q−1

2
when B = q−1

2 .

B.3 A Lattice-Based Commitment Scheme

Let us now describe an ideal-lattice-based commitment scheme, adapted from [30].
The scheme is computationally binding and statistically hiding by setting suit-
able parameters and assuming the hardness of SVP∞

γ for any ideal in the ring R

with some γ = 72m′n log2 n.

Setup(1λ) This algorithm first determines the public parameters for the commit-
ment scheme. Choose n = O(λ) which is also a power of 2, m′ > 2 log q, and
appropriate q = q(n) > 6m′n3/2 log n. Let f(X) = Xn+1 ∈ Z[X] and define
R,Rq as above. Let the message space be {0, 1}nm′ ⊂ (Rq)

m′
. Next, sample

A0
$←− (Rq)

1×m′
and A1

$←− (Rq)
1×m′

. Output pp = {n, q, f,m′,A0,A1}.
Com(pp,M) On input a message M ∈ {0, 1}nm′ ⊂ (Rq)

m′
, this algorithm first

samples r
$←− {0, 1}nm′ ⊂ (Rq)

m′
and then computes c = A0 ·M+A1 ·r ∈ Rq.

Output c together with the opening r.
Open(pp, c,M, r) On input pp, commitment c ∈ Rq, message M ∈ {0, 1}nm′

and

opening r ∈ {0, 1}nm′
, this algorithm returns 1 if c = A0 ·M +A1 · r.

Denote the scheme as CMTm′,m′ if the rings R,Rq are clear from the context.
Here the first subscript is regarding the message length while the other one is
regarding the randomness length. We also need a string commitment scheme in
our zero-knowledge argument of knowledge protocol. This can be achieved by
applying the Merkle-Damgard technique to the above commitment scheme. For
simplicity, we will use CMT to denote such a scheme without explicitly specifying
the parameters.

40

B.4 A Variant of the Ducas-Micciancio Signature Scheme

We recall a variant of the Ducas-Micciancio signature scheme [15], which is state-
ful and secure against an adaptive adversary who can make at most polynomial
number of signature queries. Looking ahead, the signature scheme is used to
issue attribute signing keys and policy certificates, thus this variant suffices.
Let n, f, q, R,Rq as before. Fix a real constant c > 1, define α0 ≥ 1

c−1 and

d ≥ logc(ω(log n)). For i ∈ [1, d], let ci = ⌊α0 ·ci⌋ and Ti = {0, 1}ci . It is required
that cd ≤ n/2. An element t = (t0, t1, . . . , tci−1)

⊤ ∈ Ti is identified as a ring ele-

ment t(X) =
∑ci−1

j=0 tj ·Xj . For a prefix t≤i = (t0, . . . , tci−1)
⊤ ∈ Ti of an element

t = (t0, t1, . . . , tcd−1) ∈ Td, let t[i] be the ring element t≤i(X)− t≤i−1(X).

Details of the scheme are described below.

Keygen(1λ) Given the security parameter, this algorithm proceeds as follows.
– Let n = O(λ) be a power of 2, modulus q = 3k, and an irreducible

polynomial f(X) = Xn + 1. Define rings R = Z[X]/(f(X)) and Rq =
R/(qR).

– Choose c, α0, d, c1, . . . , cd as described above.
– Define m = 2⌈log q⌉+2, m = m+k, ℓ = δ q−1

2
= ⌊log q−1

2 ⌋+1, β = Õ(n)
to be an integer.

– Set the initial state S := 0.
– The verification key vk then consists of the following:

A,F0 ∈ (Rq)
1×m,A[0], . . . ,A[d] ∈ (Rq)

1×k,F,F1 ∈ (Rq)
1×ℓ, u ∈ Rq.

– The signing key sk is a Micciancio-Peikert [47] trapdoor R ∈ (Rq)
m×k.

Sign(sk,M) On input the signing key and a message M ∈ {0, 1}nℓ ⊂ (Rq)
ℓ, this

algorithm performs the following steps.
– First, compute t = (t0, . . . , tcd−1)

⊤ ∈ Td such that S =
∑cd−1

j=0 2cd−1−jtj
and then update S to S + 1.

– Next, compute At = [A,A[0] +
∑d

i=1 A[i]t[i]] ∈ (Rq)
1×(m+k).

– Sample r ∈ (Rq)
m satisfying ∥r∥∞ ≤ β and compute umsg = F · rdec(F0 ·

r+ F1 ·M) + u ∈ Rq.
– Utilizing the trapdoor R, output a short vector v ∈ (Rq)

m+k such that
∥v∥∞ ≤ β and At · v = umsg.

– Output the signature of M as σ = (t, r,v).
Verify(vk,M, σ) Given the inputs, the verification algorithm computes At and

umsg as in the signing algorithm and then verifies the following three condi-
tions. {

At · v = umsg;

∥r∥∞ ≤ β; ∥v∥∞ ≤ β;
(17)

Return 1 if all conditions are satisfied and 0 otherwise.

Lemma 2. The above stateful Ducas-Micciancio signature scheme is correct
with overwhelming probability and existentially unforgeable against adaptive cho-
sen message attacks (EUF-CMA) assuming the hardness of SVPγ in any ideal of

ring R with γ = Õ(n3) and at most polynomial number of signature queries.

41

B.5 Zero-Knowledge Arguments and Stern-like Protocols

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. The statistical zero-knowledge arguments of knowl-
edge presented in this work are Stern-like [53] protocols. In particular, they
are Σ-protocols in the generalized sense defined in [26,5] (where 3 valid tran-
scripts are needed for extraction, instead of just 2). The basic protocol consists
of 3 moves: commitment, challenge, and response. If a statistically hiding and
computationally binding string commitment is employed in the first move, then
one obtains a statistical zero-knowledge argument of knowledge (ZKAoK) with
perfect completeness, constant soundness error 2/3.

An abstraction of Stern’s protocol. Here, we recall a simplified abstract
Stern-type protocol, adapted from [36]. The simplified variant handles modular
equations with respect to 2 moduli q1, q2, where secret witnesses may simulta-
neously appear across multiple equations.

Let Ki, Li be positive integers with Ki ≥ Li. Let K = K1 + K2 and L =
L1 + L2. Suppose that VALID is a subset of {−1, 0, 1}L and S is a finite set
such that every ϕ ∈ S can be associated with a permutation Γϕ of L elements
satisfying the conditions{

w ∈ VALID ⇐⇒ Γϕ(w) ∈ VALID;

If w ∈ VALID and ϕ is uniform in S, then Γϕ(w) is uniform in VALID.
(18)

In the abstract protocol, for public matrices {Mi ∈ ZKi×Li
qi }i∈{1,2} and vectors

{vi ∈ ZKi
qi }i∈{1,2}, the prover argues in zero-knowledge the possession of integer

vectors {wi ∈ {−1, 0, 1}Li}i∈{1,2} such that:

w =
(
w⊤

1 | w⊤
2

)⊤ ∈ VALID, (19)

∀i ∈ {1, 2} : Mi ·wi = vi mod qi. (20)

Formally, the goal is to construct a statistical ZKAoK for the following relation:

Rabstract =
{
{(Mi,vi) ∈ ZKi×Li

qi × ZKi
qi }i∈{1,2}, w =

(
w⊤

1 | w⊤
2

)⊤ ∈ VALID :

Mi ·wi = vi mod qi,∀i ∈ {1, 2}
}
.

The two relations underlying the signing and disclosing algorithms will be
reduced to an instance of Rabstract with moduli q and 2.

The main ideas underlying the protocol are as follows. To prove (19), the

prover samples ϕ
$←− S and provides evidence that Γϕ(w) ∈ VALID. The verifier

should be convinced while learning nothing else, owing to the aforementioned
properties of the sets VALID and S. Meanwhile, to prove that equations (20) hold,

the prover uses masking vectors {ri
$←− ZLi

qi }i∈{1,2} and demonstrates instead that
Mi · (wi + ri) = vi +Mi · ri mod qi.

42

Inputs. Common input: {(Mi,vi)}i∈{1,2}. Prover’s secret: w =
(
w⊤

1 | w⊤
2

)⊤
.

1. Commitment: P samples ϕ
$←− S, {ri

$←− ZLi
qi }i∈{1,2}, and then computes vectors

r = (r⊤1 | r⊤2)⊤, z = w ⊞ r.
Then P samples randomness ρ1, ρ2, ρ3 for COM, and sends CMT =

(
C1, C2, C3

)
to V, where C1 = COM(ϕ, {Mi · ri mod qi}i∈{1,2}; ρ1), and

C2 = COM(Γϕ(r); ρ2), C3 = COM(Γϕ(z); ρ3).

2. Challenge: V sends a challenge Ch
$←− {1, 2, 3} to P.

3. Response: P sends RSP computed according to Ch, as follows:

- Ch = 1: RSP = (t, s, ρ2, ρ3), where t = Γϕ(w) and s = Γϕ(r).

- Ch = 2: RSP = (π,x, ρ1, ρ3), where π = ϕ and x = z.

- Ch = 3: RSP = (ψ,y, ρ1, ρ2), where ψ = ϕ and y = r.

Verification: Receiving RSP, V proceeds as follows:

– Ch = 1: Check that t ∈ VALID, and C2 = COM(s; ρ2), C3 = COM(t⊞ s; ρ3).

– Ch = 2: Parse x = (x⊤
1 | x⊤

2)
⊤, where xi ∈ ZLi

qi for all i ∈ {1, 2}, and check that

C1 = COM(π, {Mi · xi − vi mod qi}i∈{1,2}; ρ1), C3 = COM(Γπ(x); ρ3).

– Ch = 3: Parse y = (y⊤
1 | y⊤

2)⊤, where yi ∈ ZLi
qi for all i ∈ {1, 2}, and check that

C1 = COM(ψ, {Mi · yi mod qi}i∈{1,2}; ρ1), C2 = COM(Γψ(y); ρ2).

In each case, V outputs 1 if and only if all the conditions hold.

Table 2. A Stern-type ZKAoK for the relation Rabstract.

The interaction between prover P and verifier V is described in Table 2. The
common input consists of {Mi ∈ ZKi×Li

qi }i∈{1,2} and {vi ∈ ZKi
qi }i∈[ν], while P’s

secret input is w =
(
w⊤

1 | w⊤
2

)⊤
. The protocol makes use of a statistically

hiding and computationally binding string commitment scheme COM such as
the SIS-based commitment of [30].

For simplicity of presentation, for vectors w =
(
w⊤

1 | w⊤
2

)⊤ ∈ ZL and

r =
(
r⊤1 | r⊤2

)⊤ ∈ ZL, we denote by w ⊞ r the operation that computes zi =
wi + ri mod qi for all i ∈ {1, 2}, and outputs L-dimensional integer vector z =(
z⊤1 | z⊤2

)⊤
. We note that, for all ϕ ∈ S, if t = Γϕ(w) and s = Γϕ(r), then we

have Γϕ(w ⊞ r) = t⊞ s.

The properties of the protocol are summarized in Theorem 5.

Theorem 5 ([36]). Suppose that COM is a statistically hiding and computa-
tionally binding string commitment. Then, the protocol of Table 2 is a statistical
ZKAoK for Rabstract, with perfect completeness, soundness error 2/3, and com-

munication cost O
(∑2

i=1 Li · log qi
)
. In particular:

43

– There exists an efficient simulator that, on input {Mi,vi}i∈{1,2}, outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT as well as valid responses (RSP1,RSP2,RSP3) to all three possible
values of the challenge Ch, outputs a witness w′ = (w

′⊤
1 | w

′⊤
2)⊤ ∈ VALID

such that Mi ·w′
i = vi mod qi, for all i ∈ {1, 2}.

The proof of the Theorem 5 employs standard simulation and extraction
techniques for Stern-type protocols [30,41]. Details are omitted here and can be
found in [36].

C Deferred Security Proofs for the Generic Construction

C.1 Auxiliary Algorithms for the Generic Construction

To show that our construction satisfies the requirements as defined in Section 2.2,
we would need to construct the following auxiliary algorithms.

SimSetup(1λ): Compared to the real Setup algorithm, the following changes are
introduced.

– At Step 2, the common reference strings and associated trapdoors are
generated via simulated algorithms (crsS, trS) ← ZKS.SimSetup(1λ) for
NIZKS and (crsD, trD)← ZKD.SimSetup(1λ) for NIZKD.

– The algorithm outputs tr := (trS, trD) in addition to (PP,mskX,mskP).

SimSign(tr,m, P,x,w): If P (m,x, w) = 0, i.e., then the algorithm returns 0.
Otherwise, it uses trapdoor tr = (trS, trD) to simulate a signature on mes-
sage m via the following steps.

1. Compute comx and comP as commitments to all-zero strings. Namely,
comx = C.Com(ppC,0, rcom,x) and comP = C.Com(ppC,0, rcom,P).

2. Simulate the NIZK argument Π using trS via

Π ← ZKS.Sim(crsS, trS, (m, vkX, vkP, ppC, comx, comP)).

3. Output the simulated signature Σ = (comx, comP , Π).

SimDisclose(m,Σ, tr, P,x, F): If Verify(m,Σ) = 0, then the algorithm returns ⊥.
Otherwise, let tr = (trS, trD) and parse Σ = (comx, comP , Π). The disclosure
process is then simulated via the following steps.

1. Compute t = F (P,x).
2. Simulate the NIZK argument a using trD via

a← ZKD.Sim(crsD, trD, (F, t, comx, comP , ppC)).

3. Output the simulated testimony-attestation pair (t, a).

44

Extract(tr,m,Σ): Let tr = (trS and parse Σ = (comx, comP , Π). The algorithm
uses trS to extract

η′ ← ZKS.Extr(crsS, trS, (m, vkX, vkP, ppC, comx, comP), Π),

where η′ = (x′, sk′, P ′,Cert′, w′, r′com,x, r
′
com,P). It then returns (P ′,x′, w′).

With the above auxiliary algorithms, we are ready to show that our generic
construction satisfies simulatability and extractability.

C.2 Proof of Theorem 1

Proof. We prove the theorem via a sequence of games that are statistically in-
distinguishable, where the first is the experiment Expsim

A (λ) with b set to 1 while
the last is Expsim

A (λ) with b set to 0. In the process, we rely on the statistical
zero-knowledge property of the NIZK systems NIZKS and NIZKD, and the
statistical hiding property of COM.

Game 0: We start with Exp
sim|b=1
A (λ). In the experiment, the challenger runs the

setup algorithm (PP1,msk1X,msk1P) ← Setup(1λ), and returns (PP1,msk1X,msk1P)
to A. Regarding all the queries made by A, the challenger replies them honestly.
In particular, signature queries and disclosing queries are replied by running
Sign(x, skx, P,CertP ,m,w) and Disclose(m,Σ, c1, F), respectively. The adversary
can make a polynomial number of queries and outputs a bit b′ eventually.

Game 1: This game introduces the following changes to Game 0. At Step 2
of the Setup algorithm, the challenger runs (crsS, trS) ← ZKS.SimSetup(1λ) for
NIZKS and (crsD, trD)← ZKD.SimSetup(1λ) for NIZKD. It then outputs tr =
(trS, trD) in addition to st = (PP1,msk1X,msk1P). Similar to Game 0, only st is
given to the adversary. All the queries are replied exactly the same as in Game 0.
These changes are indistinguishable to the adversary due to the statistical zero-
knowledge property of NIZKS and NIZKD.

Game 2: This game is similar to Game 1 except that, in calls to the Osor
sign

oracle, the challenger commits to x and P honestly, but then simulates the proof
Π instead of generating it faithfully. Simulating the proof is possible since the
challenger has the trapdoor trS. Due to the statistical zero-knowledge property
of NIZKS, this game is statistically indistinguishable from Game 1.

Game 3: This game modifies Game 2 in the following manner. When A queries
theOsor

Disclose oracle, the challenger computes t = F (P,x) faithfully. Then the chal-
lenger simulates the proof a without employing the witness clue = (x, P, rcom,x,
rcom,P), i.e., a← ZKD.Sim(crsD, trD, (F, t, comx, comP , ppC)). Due to the statisti-
cal zero-knowledge property of NIZKD, this game is statistically indistinguish-
able from Game 2.

Game 4: In this game, we make a modification regarding the queries Osor
sign

again. Instead of committing to real x and P , we commit to the all-zero string.
Specifically, comx and comP are all commitment to the all-zero string and the
proof Π is generated as ZKS.Sim(crsS, trS, (m, vkX, vkP, ppC, comx, comP)). Due

45

to the statistical hiding property of COM, the views of the adversary in Game 3
and Game 4 are statistically close.

Finally, observe that Game 4 is identical to the experiment Expsim
A (λ) with

b set to 0. As a result, we can deduce that the two experiments Exp
sim|b=1
A (λ)

and Exp
sim|b=0
A (λ) are statistically indistinguishable. This further implies that

the advantage of A in guessing the bit b in experiment Expsim
A (λ) is at most

negligible in λ. This ends the proof.

C.3 Proof of Theorem 2

Proof. To show our generic construction is extractable, we have to prove that the
advantages of any PPT adversaryA in experimentsExpsound

A (λ),ExpUf-I
A (λ), and

ExpUf-II
A (λ) are negligible in λ. Let us first consider the experiment Expsound

A (λ).

Soundness. Suppose A wins the experiment Expsound
A (λ), in which the chal-

lenger C possess a trapdoor tr = (trS, trD). Then the experiment returns 1 ei-
ther at Line 7 or Line 9 in Fig. 2. Let (m,Σ) be the output of A. Hence,
Verify(m,Σ) = 1. At this point, the challenger runs Extract(tr,m,Σ). In partic-
ular, C runs

η′ ← ZKS.Extr(crsS, trS, (m, vkX, vkP, ppC, comx, comP), Π),

where Σ = (comx, comP , Π) and η′ = (x′, sk′, w′, P ′,Cert′, r′com,x, r
′
com,P). If the

experiment returns 1 at Line 7, implying P ′(m,x′, w′) = 0. This, however, will
break the simulation-soundness of NIZKS. Thus, the probability of outputting
1 at Line 7 is at most negligible in λ. Hence, A can only win the experiment by
exploiting the condition of Line 9 in Fig. 2.

Let (F, t, a) be the output ofA in this second stage. Then (m,Σ,F, t, a) /∈ QD

and Judge(PP,m,Σ, F, t, a) = 1. Now, using trD, the challenger runs

η̃ ← ZKD.Extr(crsD, trD, (F, t, comx, comP , ppC), a),

where η̃ = (x̃, P̃ , r̃com,x, r̃com,P). On the one hand, the assumption that A wins
the experiment in the second stage implies that t ̸= F (P ′,x′). On the other
hand, t = F (P̃ , x̃) by the simulation soundness of NIZKD. This immediately
implies that (P ′,x′) ̸= (P̃ , x̃), which in turn violates the binding property of
COM. The reason is that comx and comP are valid commitments to (x′, P ′)
and (x̃, P̃) due to the simulation soundness of NIZKS and NIZKD, respec-
tively. Therefore, the probability of outputting 1 at Line 9 is also negligible in λ.
Thus the probability of A winning Expsound

A (λ) is negligible in λ, assuming the
simulation-sound extractability of two NIZK systems and the binding property
of COM.

Unforgeability-I. Let us now consider the experiment ExpUf-I
A (λ) and let ϵ1

be the advantage of A. Our goal is to construct another PPT adversary B for
breaking the EUF-CMA security of the signature scheme SX. Given a verifica-
tion key vk from the challenger in experiment Expuf

SX,B(λ), B first performs the
following steps.

46

– Run (mskP, vkP)← SP.Kg(1
λ). Set vkX = vk.

– Run (crsS, trS)← ZKS.SimSetup(1λ) and (crsD, trD)← ZKS.SimSetup(1λ) for
two NIZK systems.

– Run ppC ← C.Setup(1)λ.

Set PP := (crsS, crsD, ppC, vkP, vkX) and tr = (trS, trD). Then B triggers A by
sending PP and mskP to A as described in ExpUf-I

BAPS,A(λ) in Fig. 2. When A
queries the oracle OAttriKey with an attribute x, B queries its own challenger in

experiment Expuf
SX,B(λ), obtaining skx, which is then passed to A. Observe that

B can also easily answer all the queries to the oracles OSign and ODis since B
holds the two trapdoors trS and trD. This is how B simulates the views of A in
experiment ExpUf-I

BAPS,A(λ).
Eventually, A outputs a forgery (m,Σ). Suppose A wins the experiment

ExpUf-I
BAPS,A(λ). We will show how B employs such a forgery for BAPS to find a

forgery for SX. Since A wins, then (m,Σ) is a valid message-signature pair and
is never obtained from the oracle OSign query. Now B can run Extract(tr,m,Σ),
obtaining a tuple η′ = (x′, sk′, w′, P ′,Cert′, r′com,x, r

′
com,P). With overwhelm-

ing probability, P ′(m,x′, w′) = 1 and SX.Ver(vkX,x
′, sk′) = 1, thanks to the

simulation-soundness of the NIZKS system. The fact that A wins the experi-
ment implies that x′ /∈ QX . In other words, B never queries its challenger on x′.
Thus (x′, sk′) is a valid forgery of SX. Therefore, if ϵ1 is non-negligible in λ, B is
able to find a valid forgery of the SX scheme with non-negligible probability as
well. Due to the security of the SX scheme, ϵ1 is negligible.

Unforgeability-II. Let ϵ2 be the advantage of A in the experiment ExpUf-II
A (λ).

We construct a PPT adversary B̂ for breaking the EUF-CMA security of the sig-
nature scheme SP. Given a verification key vk from the challenger in experiment
Expuf

SP,B̂
(λ), B̂ first performs the following steps.

– Set vkP = vk, and then run (mskX, vkX)← SX.Kg(1
λ).

– Run (crsS, trS)← ZKS.SimSetup(1λ) and (crsD, trD)← ZKS.SimSetup(1λ) for
two NIZK systems.

– Run ppC ← C.Setup(1)λ.

Set PP := (crsS, crsD, ppC, vkP, vkX) and tr = (trS, trD). Then B invokes A by
sending PP and mskX to A as described in ExpUf-II

BAPS,A(λ) in Fig. 2. When A
queries the oracle OPolicyKey with a policy P , B̂ turns to its own challenger in ex-

periment Expuf
SP,B̂

(λ), obtaining a signature CertP on P . Next, B̂ relays CertP to

A. Regarding queries to OSign and ODis, B̂ employs the corresponding trapdoors.

This is how B̂ simulates the views of A in experiment ExpUf-II
BAPS,A(λ).

Eventually, A outputs a forgery (m,Σ). Suppose A wins the experiment
ExpUf-II

BAPS,A(λ). Then (m,Σ) is a valid message-signature pair and is not from

the oracle OSign query. Now B̂ runs the Extract(tr,m,Σ) algorithm, obtaining a
tuple η′ = (x′, sk′, w′, P ′,Cert′, r′com,x, r

′
com,P). Due to the simulation-soundness

of the NIZKS system, P ′(m,x′, w′) = 1 and SP.Ver(vk, P
′,Cert′) = 1 with over-

whelming probability. By the winning condition of A, P ′ /∈ QP . Thus, (P
′,Cert′)

47

is a valid forgery for SP. Therefore, if ϵ2 is non-negligible in λ, B̂ is able to find
a valid forgery of the SP scheme with non-negligible probability as well. Due to
the security of the SP scheme, ϵ2 is negligible.

D Previous Extension and Permutation Techniques

In this section, we recall some previous extension and permutation techniques
that will be used in reducing the considered statements to instances of Rabstract.

To prove knowledge of some secret vector such that a statement is true, our
strategy is to reduce the considered statement to an instance of Rabstract. As we
see in Section B.5, the abstracted Stern protocol can only handle secret w such
that the conditions in (18) are conformed. To this end, decomposition, extension,
and permutation techniques are then proposed in various previous works, such
as [41,37,34,49,19]. We will recall some of them, which will be used in this work.

Techniques for proving w ∈ {0, 1}m. To prove the knowledge of a binary
vector w ∈ {0, 1}m, define the extension process and permutation as follows.

– For a binary vector w = (w0 , . . . , wm−1)
⊤ ∈ {0, 1}m, where m ∈ Z+,

denote by ext2(w) the vector (w0 , w0 , . . . , wm−1 , wm−1)
⊤ ∈ {0, 1}2m.

– Let J⋆
m ∈ Zm×2m

q be an extension of the identity matrix Im, obtained by
inserting a zero-column 0m right before each column of Im. We have for
w ∈ {0, 1}m,

w = J⋆
m · ext2(w). (21)

– For f = (f0 , . . . , fm−1)
⊤ ∈ {0, 1}m, define the permutation Fbin(f , ·) that

transforms vector z = (z0,0 , z0,1 , . . . , zm−1,0 , zm−1,1)
⊤ ∈ Z2m

q into:

Fbin(f , z) = (z0,f0 , z0,f̄0 , . . . , zm−1,fm−1
, zm−1,f̄m−1

)⊤.

Note that, for any f ,w ∈ {0, 1}m, we have:

z = ext2(w) ⇐⇒ Fbin(f , z) = ext2(w ⊕ f). (22)

The above equivalence (22) suffices for proving knowledge of a binary vector w
such that M ·w = v for some public M,v. We can simply define the valid set as
VALIDbin = {z : ∃ w ∈ {0, 1}m such that z = ext2(w)}, let Sbin = {0, 1}m and its
associated permutation be {Γϕ = Fbin(f , ·), ϕ = f ∈ Sbin}. It is easy to see that
the desired properties in (18) are achieved and thus we can run the interactive
protocol in Table 2. We also remark that vector f serves as a “one-time pad”
that perfects hides w. If we have to show that w appears in other equations, we
can use the same f at those places to enforce consistency.

Techniques for proving w ∈ {−1, 0, 1}m. For any integer w, let [a]3 be a′ ∈
{−1, 0, 1} such that a = a′ mod 3. To prove knowledge of a vector over {−1, 0, 1},
define the following extension and permutation.

48

– Let w = (w0, . . . , wm−1)
⊤ ∈ {−1, 0, 1}m, let ext3(w) be the extended vec-

tor ([w0 + 1]3 , [w0] , [w0 − 1]3 . . . , [wm−1 + 1]3 , [wm−1]3, [wm−1 − 1]3)
⊤ ∈

{−1, 0, 1}3m.
– Let I⋆m ∈ Zm×3m

q be an extension of the identity matrix Im, obtained by
inserting a zero-column 0m before and after each column of Im. We have for
w ∈ {−1, 0, 1}m,

w = I⋆m · ext3(w). (23)

– For f = (f0 , . . . , fm−1)
⊤ ∈ {−1, 0, 1}m, define the permutation Ftri(f , ·)

that transforms z = (z0,−1, z0,0 , z0,1 , . . . , zm−1,−1, zm−1,0 , zm−1,1)
⊤ ∈ Z3m

q

into:

Ftri(f , z) = (z0,[−f0−1]3 , z0,[−f0]3 , z0,[−f0+1]3 , . . . ,

zm−1,[−fm−1−1]3 , zm−1,[−fm−1]3 , zm−1,[−fm−1+1]3)
⊤.

Note that, for any f ,w ∈ {−1, 0, 1}m, we have:

z = ext3(w) ⇐⇒ Ftri(f , z) = ext3([w + f]3). (24)

Techniques for proving w = x⊙ y = (x0 · y0, . . . , xm−1 · ym−1) ∈ {0, 1}m. To
show the well-formedness of a vector w ∈ {0, 1}m such that it is the component-
wise multiplication of two vectors x = (x0, . . . , xm−1)

⊤,y = (y0, . . . , ym−1)
⊤ ∈

{0, 1}m, the following techniques are used.

– Let the extended vector of w be extmult(w) or extmult(x,y) ∈ {0, 1}4m with
the following form: (

x0 · y0 , x0 · y0 , x0 · y0 , x0 · y0 , . . . ,
xm−1 · ym−1 , xm−1 · ym−1 , xm−1 · ym−1 , xm−1 · ym−1

)
.

– Let K⋆
m ∈ Zm×4m

q be an extension of the identity matrix Im, obtained by
inserting three zero-columns 0m before each column of Im. We have for w ∈
{0, 1}m,

w = K⋆
m · extmult(w). (25)

– For f = (f0 , . . . , fm−1)
⊤ ∈ {0, 1}m and g = (g0 , . . . , gm−1)

⊤ ∈ {0, 1}m,
define the permutation Fmult((f ,g), ·) that transforms

z = (z
(0,0)
0 , z

(0,1)
0 , z

(1,0)
0 , z

(1,1)
0 , . . . , z

(0,0)
m−1 , z

(0,1)
m−1 , z

(1,0)
m−1 , z

(1,1)
m−1)

⊤ ∈ Z4m
q

into Fmult((f ,g), z) of the following form

Fmult((f ,g), z) =
(
z
(f0,g0)
0 , z

(f0,g0)
0 , z

(f0,g0)
0 , z

(f0,g0)
0 , . . . ,

z
(fm−1,gm−1)
m−1 , z

(fm−1,gm−1)

m−1 , z
(fm−1,gm−1)

m−1 , z
(fm−1,gm−1)

m−1

)⊤
Note that, for any f ,g,x,y ∈ {0, 1}m, we have:

z = extmult(x⊙ y) ⇐⇒ Fmult((f ,g), z) = extmult((x⊕ f)⊙ (g ⊕ y)).(26)

49

The above techniques are critical in proving knowledge of binary vectors x,y,w ∈
{0, 1}m such that w = x ⊙ y and x,y,w all appear in a unified equation
M′ ·w′ = v mod q, where w′ = (x⊤,y⊤,w⊤)⊤.

To this end, the prover extends w′ to extmerge(x,y)
△
= extmerge(w

′) of the
following

(ext2(x)
⊤ | ext2(y)⊤ | extmult(x,y)

⊤)⊤ ∈ {0, 1}8m.

Next, define a permutation Fmerge((f ,g), ·) for two vectors f ,g ∈ {0, 1}m as
follows. When applying to vectors z = (z⊤0 , z

⊤
1 , z

⊤
2)

⊤ ∈ Z8m
q , with each block

having appropriate sizes, it maps z to

Fmerge((f ,g), z) =
(
Fbin(f , z0)

⊤ | Fbin(g, z1)
⊤ | Fmult((f ,g), z2)

⊤)⊤. (27)

Due to the equivalences in (22), (26), one can see that the following equivalence
holds as well.

z = extmerge(x,y)⇐⇒ Fmerge((f ,g), z) = extmerge(x⊕ f ,y ⊕ g). (28)

Techniques for proving w = x · y for x ∈ {0, 1} and y ∈ {−1, 0, 1}. To show
that w is well-formed, we recall the following techniques from [42].

– For any x ∈ {0, 1} and y ∈ {−1, 0, 1}, let vector extmig(x, y) ∈ {−1, 0, 1}6 be
of the following form:(

x · [y+1]3, x · [y+1]3, x · [y]3, x · [y]3, x · [y−1]3, x · [y−1]3
)⊤

.

– Let f ∈ {0, 1} and g ∈ {−1, 0, 1}, define the permutation Fmig((f, g), ·)
associated with f, g as follows. It transforms vector

z =
(
z(0,−1), z(1,−1), z(0,0), z(1,0), z(0,1), z(1,1)

)⊤ ∈ Z6

into vector Fmig((f, g), ·) of form(
z(f,[−g−1]3), z(f,[−g−1]3), z(f,[−e]3), z(f,[−g]3), z(f,[−e+1]3), z(f,[−g+1]3)

)⊤
.

It can be easily checked that for any x, f ∈ {0, 1} and any y, g ∈ {−1, 0, 1},
the following equivalence is satisfied.

z = extmig(x, y) ⇐⇒ Fmig((f, g), z) = extmig(x⊕ f, [y + g]3). (29)

Techniques for handling a “mix” vector. We now recall the techniques for
proving knowledge of a vector w of the form:

w = (y⊤ | t0 · y⊤ | · · · | tc−1 · y⊤)⊤ ∈ {−1, 0, 1}cm+m, (30)

where t = (t0, . . . , tc−1)
⊤ ∈ {0, 1}c and y = (y0, . . . , ym−1) ∈ {−1, 0, 1}m. This

is actually extended from previous techniques.

50

– Extend w to extmix(w)
△
= extmix(t,y) ∈ {−1, 0, 1}6cm+3m of the following

form: (
ext3(y)

⊤ | extmig(t0, y0)
⊤ | · · · | extmig(t0, ym−1)

⊤ | · · · |

extmig(tc−1, y0)
⊤ | · · · | extmig(tc−1, ym−1)

⊤)⊤
.

– Next, for f ∈ {0, 1}c and g ∈ {−1, 0, 1}m, define the permutation Fmix((f ,g), ·)
as follows. It permutes vector

z =
(
z⊤−1 | z⊤0,0 | · · · | z⊤0,m−1 | · · · | z⊤c−1,0 | · · · | z⊤c−1,m−1

)⊤ ∈ Z6cm+3m

into Fmix((f ,g), z) of the following form(
Ftri(g, z−1)

⊤ | Fmig((f0, g0), z0,0)
⊤ | · · · | Fmig((f0, gm−1), z0,m−1)

⊤ | · · · |

Fmig((fc−1, g0), zc−1,0)
⊤ | · · · | Fmig((fc−1, gm−1), zc−1,m−1)

⊤)⊤.
Due to equivalence (24) and (29), the following equivalence holds

z = extmix(t,y) ⇐⇒ Fmix((f ,g), z) = extmix(t⊕ f , [y + g]3) (31)

for any t, f ∈ {0, 1}c and any y,g ∈ {−1, 0, 1}m.
Let w = (w0, . . . , wc−1)

⊤ ∈ {0, 1}c. A regular word defined by w, denoted
as ∆c(w) ∈ {0, 1}2c , is a vector that has a sole 1 in t-th position with t =∑c−1

j=0(2
c−1−j · wj).

Techniques for proving z such that z = ∆c(w) for w ∈ {0, 1}c. Let w =

(w0, . . . , wc−1)
⊤ ∈ {0, 1}c. Compute w =

c−1∑
j=0

2c−1−i ·wj ∈ [0, 2c− 1]. Recall that

z = ∆c(w) ∈ {0, 1}2c has a sole 1 in its w-th position. To prove knowledge of
a such vector z, we recall the permutation techniques first presented by Nguyen
et al. [49].

For f = (f0 , · · · , fc−1)
⊤ ∈ {0, 1}c, define Freg(f , ·) : {0, 1}2

c 7→ {0, 1}2c as
follows. It transforms vector

z = (z0,0,...,0 , · · · , zi0,...,ic−1 , · · · , z1,1,...,1)⊤ ∈ {0, 1}2
c

into vector Freg(f , z) = (z′0,0,...,0 , · · · , z′1,1,...,1)⊤, where for each (i0, . . . , ic−1)
⊤ ∈

{0, 1}c, we have zi0,...,ic−1 = z′i0⊕f0,...,ic−1⊕fc−1
. It is verifiable that for any

w, f ∈ {0, 1}c, we have:

z = ∆c(w) ⇐⇒ Freg(f , z) = ∆c(w ⊕ f). (32)

The above equivalence also plays a crucial rule in proving knowledge of z such
that z satisfies some equation(s). We remark that, however, the above permuta-
tion Freg only makes sense if w satisfies some constraints as well. This is similar
to previous techniques extmult and Fmult. Also, this is the reason that we introduce
a redundant vector (b′i,0, . . . , b

′
i,1)

⊤ in equations (10).

51

E Deferred Details of the Main Zero-Knowledge Protocol

In this section we present how to reduce the five substatements involving equa-
tions (3), (4), (5), (10) and (11) to instances ofRabstract, as required in Section 4.4.

E.1 The Substatement Involving (3)

To reduce this statement to an instance of Rabstract, it is actually proving knowl-
edge of a message-signature pair for the Ducas-Micciancio signature scheme [15].
Ling et al. [42] first gave such a proof of knowledge (x, tx, rx,vx) such that equa-
tions (33) hold.

[AX,AX,[0] +
∑d

j=1 AX,[i]tx,[i]] · vx = uX + FX · ex;
ex = rdec(FX,0 · rx + FX,1 · x) ∈ {−1, 0, 1}nℓ;
tx ∈ {0, 1}cd ;x ∈ {0, 1}nk

′
2 ; rx ∈ (R)m; ∥rx∥∞ ≤ β;

vx ∈ (R)m+k; ∥vx∥∞ ≤ β.

(33)

The First Step-Decomposition. Let vx = (v⊤
x,0 | v⊤

x,1)
⊤ with v⊤

x,0 ∈ (R)m and

v⊤
x,1 ∈ (R)k. Since vx,0, vx,1, and rx are β bounded, we first perform the follow-

ing extensions.

– Let v′
x,0 = rdecβ(vx,0) ∈ {−1, 0, 1}nmδβ , v′

x,1 = rdecβ(vx,1) ∈ {−1, 0, 1}nkδβ ,
and r′x = rdecβ(rx) ∈ {−1, 0, 1}nmδβ .

Due to the equations observed in (13) and (16), we have the following equivalent
formulas
[rot(AX,[0]) ·Hk,β] · v′

x,1 +
∑d

i=1

∑ci−1
j=ci−1

[rot(AX,[i] ·Xj) ·Hk,β] · tx,j · v′
x,1

+ [rot(Ax) ·Hm,β] · v′
x,0 − [rot(FX)] · ex = τ(uX) mod q,

[rot(FX,0) ·Hm,β] · r′x + [rot(FX,1)] · x− [H] · ex = 0 mod q.

(34)

Let L′
X = 2nmδβ+nℓ+nk′2+nkδβ(1+cd). Form secret vector w′

X ∈ {−1, 0, 1}L
′
X

that is column concatenation of the following vectors.
w′

X,0 = (v′⊤
x,0 | r′⊤x | e⊤x) ∈ {−1, 0, 1}2nmδβ+nℓ,

w′
X,1 = x ∈ {0, 1}nk′

2 ,

w′
X,2 = (v′⊤

x,1 | tx,0 · v′⊤
x,1 | · · · | tx,cd−1 · v′⊤

x,1)
⊤ ∈ {−1, 0, 1}nkδβ(1+cd).

Through some basic algebra, one can obtain from (34) an unifying equation of
the form

M′
X ·w′

X = ṽX for some vector ṽX. (35)

The Second Step-Extension and Permutation. We now employ the techniques
described in Section D to reduce (35) to an instance of Rabstract.

52

We first perform the following extension.
wX,0 = ext3(w

′
X,0) ∈ {−1, 0, 1}3(2nmδβ+nℓ);

wX,1 = ext2(w
′
X,1) ∈ {0, 1}2nk

′
2 ;

wx,2 = extmix(w
′
X,2) ∈ {−1, 0, 1}nkδβ(6cd+3).

(36)

Let LX = 3(2nmδβ +nℓ)+2nk′2+nkδβ(6cd+3) and wX = (w⊤
X,0|w⊤

X,1|w⊤
X,2)

⊤ ∈
{−1, 0, 1}LX , one can further transform equation (35) to MX · wX = ṽx by in-
serting suitable zero-columns into M′

X.
We now specify the sets VALIDX ⊂ {−1, 0, 1}LX , SX and associated permu-

tation {Γϕ : ϕ ∈ SX} such that wX ∈ VALIDX and the conditions in (18) are
satisfied.

Let VALIDX contain vector w of the form w = (w⊤
0 | w⊤

1 | w⊤
2)

⊤ satisfying
the following:

– There exists w′
0 ∈ {−1, 0, 1}2nmδβ+nℓ such that w0 = ext3(w

′
0).

– There exists w′
1 ∈ {0, 1}nk

′
2 such that w1 = ext2(w

′
1).

– There exist t ∈ {0, 1}cd and v ∈ {−1, 0, 1}nkδβ such that w2 = extmix(t,v).

It is straightforward to verify that wX ∈ VALIDX.
Let SX = {−1, 0, 1}2nmδβ+nℓ × {0, 1}nk′

2 × {0, 1}cd × {−1, 0, 1}nkδβ . For ϕ =
(f0, f1, ft, fv) ∈ SX, the permutation Γϕ works in the following manner. It maps
a vector w = (w⊤

0 |w⊤
1 |w⊤

2)
⊤ ∈ ZLX

q , with each block having appropriate sizes,
to a vector of the following format

Γϕ(w) = (Ftri(f0,w0)
⊤ | Fbin(f1,w1)

⊤ | Fmix((ft, fv),w2)
⊤)⊤. (37)

Due to the equivalences observed in (24), (22), (31), one can see thatw ∈ VALIDX

if and only if Γϕ(w) ∈ VALIDX. In addition, the randomness in ϕ ensures that
Γϕ(w) is randomly distributed in VALIDX if w belongs to VALIDX. We thus
successfully reduce the substatement involving (3) into an instance of Rabstract.

E.2 The Substatement Involving (4)

Again, we aim to transform this statement to an instance of Rabstract. We note
that this is quite similar to (3) except that the signed message is rdec(hP) where
Ahp · zP = hP . In other words, we need to prove knowledge of (zP , tP , rP ,vP)
such that the following conditions hold.

[AP,AP,[0] +
∑d

j=1 AP,[i]tP,[i]] · vP = uP + FP · eP ;
eP = rdec(FP,0 · rP + FP,1 · hP) ∈ {−1, 0, 1}nℓ;
hP = rdec(hP) ∈ {−1, 0, 1}nℓ;
Ahp · zP = hP ;

zP ∈ {0, 1}2NδP ; tP ∈ {0, 1}cd ; rP ∈ (R)m; ∥rP ∥∞ ≤ β;

vP ∈ (R)m+k; ∥vP ∥∞ ≤ β.

(38)

53

We follow the footprint of decomposition, extension and permutation as before.
The First Step-Decomposition. Let vP = (v⊤

P,0,v
⊤
P,1)

⊤ with v⊤
P,0 ∈ (R)m and

v⊤
P,1 ∈ (R)k perform the following extensions.

– Let v′
P,0 = rdecβ(vP,0) ∈ {−1, 0, 1}nmδβ , v′

P,1 = rdecβ(vP,1) ∈ {−1, 0, 1}nkδβ ,
and r′P = rdecβ(rP) ∈ {−1, 0, 1}nmδβ .

Due to the equations observed in (13) and (16), equations (38) are equivalent to
the following.

[rot(AP,[0]) ·Hk,β] · v′
P,1 +

∑d
i=1

∑ci−1
j=ci−1

[rot(AP,[i] ·Xj) ·Hk,β] · tP,j · v′
P,1

+ [rot(AP) ·Hm,β] · v′
P,0 − [rot(FP)] · eP = τ(uP) mod q,

[rot(FP,0) ·Hm,β] · r′P + [rot(FP,1)] · hP − [H] · eP = 0 mod q,

[rot(Ahp)] · zP − [H] · hP = 0 mod q.

(39)

Let L′
cert = 2nmδβ + 2nℓ+ 2NδP + nkδβ(1 + cd). Form secret vector w′

cert ∈
{−1, 0, 1}L′

cert that is column concatenation of the following vectors.
w′

cert,0 = (v′⊤
P,0 | r′⊤P | e⊤P | h⊤

P) ∈ {−1, 0, 1}2nmδβ+2nℓ,

w′
cert,1 = zP ∈ {0, 1}2NδP ,

w′
cert,2 = (v′⊤

P,1 | tP,0 · v′⊤
P,1 | · · · | tP,cd−1 · v′⊤

P,1)
⊤ ∈ {−1, 0, 1}nkδβ(1+cd).

Through some basic algebra, one can obtain from (39) an unifying equation of
the form

M′
cert ·w′

cert = vcert for some vector vcert. (40)

The Second Step-Extension and Permutation. We note that the secret vector
w′

cert in (40) has the same structure as w′
x in equation (35). We thus follow the

same extension and permutation techniques. Specifically, we extendw′
cert towcert

such that (40) can be transform to an equivalent form Mcert · wcert = vcert. In
addition, we can easily form VALIDcert ⊂ {−1, 0, 1}Lcert that contains wcert, Scert
and associated permutation {Γϕ : ϕ ∈ Scert} such that the conditions in (18) are
satisfied. Here Lcert = 3(2nmδβ + 2nℓ) + 2 · 2NδP + nkδβ(3 + 6cd). Due to high
similarity, we omit the details.

E.3 The Substatement Involving (5)

This statement is to prove knowledge of (sµ1
, . . . , sρ−1,hP , rcom,µ1

, . . . , rcom,ρ−1, rcom,P)
such that{
comi = A0 · si +A1 · rcom,i, si ∈ {0, 1}ρ, rcom,i ∈ {0, 1}nm, ∀i ∈ [µ1, ρ− 1],

comP = Ac · hP +A1 · rcom,P , hP ∈ {−1, 0, 1}nℓ, rcom,P ∈ {0, 1}nm.
(41)

First, note that comP = Ac · hP +A1 · rcom,P can be rewritten as

τ(comP) = [rot(Ac)] · hP + [rot(A1)] · rcom,P .

54

Let w′
com,0 ∈ {0, 1}(ρ−µ1)ρ+(ρ−µ1)nm+nm be a secret vector of the following form

w′
com,0 =

(
s⊤µ1
| · · · | s⊤ρ−1 | r⊤com,µ1

| · · · | r⊤com,ρ−1 | r⊤com,P

)⊤
and let w′

com be the column concatenation of w′
com,0 and hP ∈ {−1, 0, 1}nℓ.

Through some basic algebra, (41) can be rewritten as M′
com · w′

com = vcom for
some public inputs M′

com,vcom.

Extension and Permutation. Observe that the secret vectors are either all bi-
nary or ternary, and the techniques for proving a binary vector and a ternary
vector in Section D can be directly applied here. To this end, let wcom,0 =
ext2(w

′
com,0) ∈ {0, 1}Lcom,0 with Lcom,0 = 2(ρ − µ1)(ρ + nm) + 2nm, wcom,1 =

ext3(hP) ∈ {−1, 0, 1}3nℓ, and wcom = (w⊤
com,0 | w⊤

com,1)
⊤ ∈ {−1, 0, 1}Lcom with

Lcom = Lcom,0 + 3nℓ.
By inserting zero-columns in M′

com, we can obtain Mcom such that M′
com ·

w′
com = vcom is further equivalent to Mcom · wcom = vcom. Let VALIDcom ⊂
{0, 1}Lcom contain vectors of form w = (w⊤

0 | w⊤
1)

⊤ ∈ {0, 1}Lcom such that

– There exits w′
0 ∈ {0, 1}Lcom,0/2 such that w0 = ext2(w

′
0) ∈ {0, 1}Lcom,0 .

– There w′
1 ∈ {−1, 0, 1}nℓ such that w1 = ext3(w

′
1) ∈ {−1, 0, 1}3nℓ.

Our secret vector wcom belongs to VALIDcom. Let Scom = {0, 1}Lcom,0/2 ×
{−1, 0, 1}nℓ. For ϕ = (f0, f1) ∈ Scom, the permutation Γϕ transforms a vector

w = (w⊤
0 | w⊤

1)
⊤ ∈ ZLcom

q to Γϕ(w) =
(
Fbin(f0,w0)

⊤ | Ftri(f1,w1)
⊤)⊤

.
Due to the equivalences observed in (22), and (24), one can see that we have

reduce the substatement involving (5) into an instance of Rabstract.

E.4 The Substatement Involving (10)

This statement proves that we have performed the “bucket” search step properly.
The goal is also to transform (10) into an instance of Rabstract so that conditions
in (18) are fulfilled. To this end, we first transform the secret vectors involved
in (10) into vectors over {−1, 0, 1}. Next, we perform some extension techniques
to the secret vectors, obtaining a valid set VALIDg,i so that conditions in (18)
can be satisfied if proper permutations {Γϕ : ϕ ∈ Sg,i} are employed for some
fine-grained set Sg,i. Note that the search of sh(i) is similar and omitted here to
avoid redundancy.

The First Step-Decomposition. Due to the equivalence observed in (13), we trans-
form c̃omg,i = A0 · (s̃i,0, . . . , s̃i,ρ−1)

⊤ +A1 · rg,i into the following

τ(c̃omg,i) = rot(A0) · (s̃i,0, . . . , s̃i,ρ−1)
⊤ + rot(A1) · rg,i,

and write c̃omg,i = [com0, . . . , comρ−1] · (ai,0, . . . , ai,ρ−1)
⊤ as

τ(c̃omg,i) = [τ(com0), . . . , τ(comρ−1)] · (ai,0, . . . , ai,ρ−1)
⊤.

In addition, we have τ(c̃omg,i) = H · rdec(c̃omg,i) due to (16), where H ∈ Zn×nδ
q

and rdec(c̃omg,i) = (hi,0, . . . , hi,nδ−1)
⊤ ∈ {−1, 0, 1}nδ. We now have all the secret

vectors over {−1, 0, 1}.

55

Let L′ = 1 + nδ + nm+ 5ρ. Form a secret vector w′
g,i ∈ {−1, 0, 1}L

′
that is

the column concatenation of the following five vectors

w′
g,i,0 =

(
hi,0, . . . , hi,nδ−1

)⊤ ∈ {−1, 0, 1}nδ;
w′

g,i,1 = yi ∈ {0, 1};
w′

g,i,2 =
(
r⊤g,i, s̃i,0, . . . , s̃i,ρ−1, bi,0, . . . , bi,ρ−1

)⊤ ∈ {0, 1}2ρ+nm;

w′
g,i,3 =

(
s̃i,0 · bi,0, . . . , s̃i,ρ−1 · bi,ρ−1

)⊤ ∈ {0, 1}ρ;
w′

g,i,4 =
(
ai,0, . . . , ai,ρ−1, b

′
i,0, . . . , b

′
i,ρ−1

)⊤ ∈ {0, 1}2ρ;
with (ai,0, ai,1, . . . , ai,ρ−1)

⊤ = ∆ δP
2

(gi,0, gi,1, . . . , gi, δP2 −1
) and (b′i,0, . . . , b

′
i,ρ−1)

⊤ =

∆ δP
2

(g
i,

δP
2

, . . . , gi,δP−1). Through some basic algebra, we can also form public

M′
g,i ∈ Z(2n+ρ+1)×L′

q ,vg,i = 02n+ρ+1 such that equations (10) can be trans-
formed into a unified equation M′

g,i ·w′
g,i = vg,i.

The Second Step-Extension. The purpose of extension is to make sure that
some structure of the extended vector is invariant under a (random) permu-
tation and that revealing the permuted vector does not reveal the original
one. To this end, we perform extension techniques described in Section D on
w′

g,i,0,w
′
g,i,1,w

′
g,i,2,w

′
g,i,3.

1. Extendw′
g,i,0 towg,i,0 = ext3(w

′
g,i,0) ∈ {−1, 0, 1}3nδ. Then according to (23),

w′
g,i,0 = I⋆nδ ·wg,i,0.

2. Extend w′
g,i,1 to wg,i,1 = ext2(w

′
g,i,1) ∈ {0, 1}2 and extend w′

g,i,2 to wg,i,2 =

ext2(w
′
g,i,2) ∈ {0, 1}2(2ρ+nm). Then according to (21), w′

g,i,2 = J⋆
2ρ+nm ·

wg,i,2.
3. Extend w′

g,i,3 to wg,i,3 = extmult(w
′
g,i,3) ∈ {0, 1}4ρ. Then according to (25),

w′
g,i,3 = K⋆

ρ ·wg,i,3.
4. For the consistency of notations, let wg,i,4 = w′

g,i,4.

Let Lg,i = 3nδ + 2(1 + 2ρ+ nm) + 4ρ+ 2ρ and wg,i = (w⊤
g,i,0 | · · · | w⊤

g,i,4)
⊤ ∈

{−1, 0, 1}Lg,i . By inserting suitable zero-columns into the matrix M′
g,i, one can

obtainMg,i ∈ Z(2n+ρ+1)×Lg,i
q such thatM′

g,i·w′
g,i = vg,i is nowMg,i·wg,i = vg,i.

The Third Step-Permutation. We are now at the stage of identifying the sets
VALIDg,i ⊂ {−1, 0, 1}Lg,i , Sg,i and a corresponding permutation {Γϕ : ϕ ∈ Sg,i}
so that conditions in (18) are conformed.

Let VALIDg,i contain vectors w of the form w = (w⊤
0 | w⊤

1 | w⊤
2 | w3 | w⊤

4,0 |
w⊤

4,1)
⊤ such that the following conditions hold. Those conditions are imposed to

make sure that the secret vector wg,i belongs to VALIDg,i.

– w0 ∈ {−, 1, 0, 1}3nδ and there exists a vector w′
0 ∈ {−1, 0, 1}nδ such that

w0 = ext3(w
′
0).

– w1 ∈ {0, 1}2 and there exists a bit w′
1 such that w1 = ext2(w

′
1).

– w2 ∈ {0, 1}2(2ρ+nm) and there exists a vector w′
2 ∈ {0, 1}2ρ+nm such that

w2 = ext2(w
′
2). Let the last 2ρ bits of w′

2 be s̃ = (s̃0, . . . , s̃ρ−1)
⊤, b =

(b0, . . . , bρ−1)
⊤.

56

– w3 ∈ {0, 1}4ρ and w3 = extmult(s̃,b). This ensures the interweaving connec-
tion between w2 and w3.

– w4,0,w4,1 ∈ {0, 1}ρ and there exist vectors w′
4,0 = (g0, . . . , g δP

2 −1
)⊤, w′

4,1 =

(g δP
2

, . . . , gδP−1)
⊤ such that w4,0 = ∆δP/2(w

′
4,0) and w4,1 = ∆δP/2(w

′
4,1).

Let the set Sg,i be {−1, 0, 1}nδ × {0, 1} × {0, 1}nm+2ρ × ({0, 1}δP/2)2. For
ϕ = (f0, f1, f2, f4,0, f4,1) ∈ Sg,i, the permutation Γϕ functions as follows. When
applying to a vector w = (w⊤

0 | w⊤
1 | w⊤

2 | w⊤
3 | w⊤

4,0 | w⊤
4,1)

⊤ ∈ ZLg,i , it
permutes w to Γϕ(w) of the following form:(

Ftri(f0,w0)
⊤ | Fbin(f1,w1)

⊤ | Fbin(f2,w2)
⊤ | Fmult((fs, fb),w3)

⊤ |

Freg(f4,0,w4,0)
⊤ | Freg(f4,1,w4,1)

⊤)⊤,
where fs = (fs,0, . . . , fs,ρ−1)

⊤, fb = (fb,0, . . . , fb,ρ−1)
⊤ are the last 2ρ bits of f2.

Based on the equivalences observed in (24), (22), (26), (32), it is verifiable
that w ∈ VALIDg,i if and only if Γϕ(w) ∈ VALIDg,i. In addition, if ϕ is sam-
pled uniformly at random from Sg,i and w ∈ VALIDg,i, then Γϕ(w) is evenly
distributed in VALIDg,i. Therefore, we have finally reached the point where the
considered statement in (10) has been reduced to an instance of Rabstract.

E.5 The Substatement Involving (11)

Now we need to transform (11) to an instance of Rabstract so that the properties
in (18) are complied. Let w′

P,0 = (sK , . . . , sK+N−2)
⊤ ∈ {0, 1}N−1 and w′

P,1 =

(y0 ·z0, . . . , yN−1 ·zN−1)
⊤ ∈ {0, 1}N . Since the secret vectors are binary, it suffices

to perform extension and permutation techniques.
The First Step-Extension. Observe that si ∈ {0, 1} is a bit and yi · zi is multi-
plication of two bits, we perform the following extension.

1. Extend w′
P,0 to wP,0 = ext2(w

′
P,0) ∈ {0, 1}2(N−1). Then according to (21),

w′
P,0 = J⋆

N−1 ·wP,0.

2. Extend w′
P,1 to wP,1 = extmult(w

′
P,1) ∈ {0, 1}4N . Then according to (25),

w′
P,1 = K⋆

N ·wP,1.

Let LP = 2(N − 1) + 4N and wP = (w⊤
P,0 | w⊤

P,1)
⊤ ∈ {0, 1}LP . Through some

basic algebra, one can form public matrix MP ∈ ZN×LP
q and vector vP ∈ ZN

q

such that equations in (11) are simply MP ·wP = vP.

The Second Step-Permutation. Let us now specify the sets VALIDP ⊂ {0, 1}LP ,
SP and an associated permutation {Γϕ : ϕ ∈ SP} such that the restrictions
in (18) are obeyed.

Let VALIDP contain all vectors w = (w⊤
0 | w⊤

1)
⊤ such that the following two

conditions are applied to w0,w1, respectively.

– w0 ∈ {0, 1}2(N−1) and there exists a vector w′
0 ∈ {0, 1}N−1 satisfying w0 =

ext2(w
′
0).

57

– w1 ∈ {0, 1}4N and there exist y ∈ {0, 1}N and z ∈ {0, 1}N satisfying w1 =
extmult(y, z).

Let the set SP = {0, 1}N−1 × ({0, 1}N)2. For ϕ = (f0, fy, fz) ∈ SP, the permuta-
tion Γϕ maps a vector w = (w⊤

0 | w⊤
1)

⊤ ∈ ZLP into

Γϕ(w) = (Fbin(f0,w0)
⊤ | Fmult((fy, fz),w1)

⊤)⊤.

Based on the equivalences observed in (22), (26), it is verifiable that w ∈
VALIDP if and only if Γϕ(w) ∈ VALIDP. In addition, if ϕ is sampled uniformly
at random from Sp and w ∈ VALIDP, then Γϕ(w) is evenly distributed in
VALIDP. Therefore, we have reduced the statement involving (11) to an instance
of Rabstract.

E.6 Deferred Description of VALIDbaps, Sbaps, Γϕ

We remark that VALIDbaps,Sbaps are not as direct as they may look like. We have
to make sure that some vector, say x that appears in wX, wcom, has to be the
same in all appearances. This requires fine-grained design of VALIDbaps,Sbaps.
Let us recall components of wtype for type ∈ {X, cert, com, (g, 0), . . . , (g,N −
1), (h, 0), . . . , (h,N − 1),P}. Note that ρµ1 = k1 and ρ2 = K +N − 1.

wX :


wX,0 = ext3(w

′
X,0) ∈ {−1, 0, 1}3(2nmδβ+nℓ);

wX,1 = ext2(x) ∈ {0, 1}2nk
′
2 ; x = (sρµ1 , . . . , sρµ1+k2−1)

⊤;

wX,2 = extmix(w
′
X,2) ∈ {−1, 0, 1}nkδβ(6cd+3);

wcert :


wcert,0 = ext3(w

′
cert,0) ∈ {−1, 0, 1}3(2nmδβ+nℓ);

wcert,1 = ext3(hP) ∈ {−1, 0, 1}3nℓ;
wcert,2 = ext2(zP) ∈ {0, 1}2(2NδP);

wcert,3 = extmix(w
′
cert,3) ∈ {−1, 0, 1}nkδβ(3+6cd);

wcom :


wcom,0 = ext2((sρµ1 , . . . , sρ2−1)

⊤) ∈ {0, 1}2(ρ−µ1)ρ;

wcom,1 = ext2(w
′
com,1) ∈ {0, 1}2(ρ−µ1)·nm+2nm;

wcom,2 = ext3(hP) ∈ {−1, 0, 1}3nℓ;
(42)

∀ i ∈ [0, N − 1] wg,i :



wg,i,0 = ext3(w
′
g,i,0) ∈ {−1, 0, 1}3nδ;

wg,i,1 = ext2(yi) ∈ {0, 1}2;
wg,i,2 = ext2(rg,i) ∈ {0, 1}2nm;

wg,i,3 = extmerge((s̃i,0, . . . , s̃i,ρ−1)
⊤, (bi,0, . . . , bi,ρ−1)

⊤) ∈ {0, 1}8ρ;
wg,i,4 =

(
ai,0, . . . , ai,ρ−1, b

′
i,0, . . . , b

′
i,ρ−1

)⊤ ∈ {0, 1}2ρ;
(ai,0, ai,1, . . . , ai,ρ−1)

⊤ = ∆ δP
2

(gi,0, gi,1, . . . , gi, δP2 −1
);

(b′i,0, . . . , b
′
i,ρ−1)

⊤ = ∆ δP
2

(g
i,

δP
2

, . . . , gi,δP−1);

58

∀ i ∈ [0, N − 1] wh,i :



wh,i,0 = ext3(w
′
h,i,0) ∈ {−1, 0, 1}3nδ;

wh,i,1 = ext2(zi) ∈ {0, 1}2;
wh,i,2 = ext2(rh,i) ∈ {01}2nm;

wh,i,3 = extmerge((t̃i,0, . . . , t̃i,ρ−1)
⊤, (di,0, . . . , di,ρ−1)

⊤) ∈ {0, 1}8ρ;
wh,i,4 =

(
ci,0, . . . , ci,ρ−1, d

′
i,0, . . . , d

′
i,ρ−1

)⊤ ∈ {0, 1}2ρ;
(ci,0, ci,1, . . . , ci,ρ−1)

⊤ = ∆ δP
2

(hi,0, hi,1, . . . , hi,
δP
2 −1

);

(d′i,0, . . . , d
′
i,ρ−1)

⊤ = ∆ δP
2

(h
i,

δP
2

, . . . , hi,δP−1);

wP :


wP,0 = ext2((sK , . . . , sK+N−2)

⊤) ∈ {0, 1}2(N−1);

wP,1 = extmult(y, z) ∈ {0, 1}4N ;

y = (y0, . . . , yN−1)
⊤ ∈ {0, 1}N ;

z = (z0, . . . , zN−1)
⊤ ∈ {0, 1}N .

A vector (or bit) are marked in the same color if it appears in multiple locations.
Specifically, zP (partially) appears in wcert, wg,0, . . . ,wg,N−1, wh,0, . . . ,wh,N−1.
Vector hP appears in both wcert and wcom. Vector s = (s0, . . . , sK+N−2)

⊤ (par-
tially) appears inwX, wcom, wP. Vector y (partially) appears inwg,0, . . . ,wg,N−1,
wP while z (partially) appears in wh,0, . . . ,wh,N−1,wP.

We now briefly specify VALIDbaps,Sbaps, {Γϕ : ϕ ∈ Sbaps}. Let VALIDbaps ⊂
{−1, 0, 1}L1+LP be a set that contains concatenation of vectors

wX,wcert,wcom,wg,0, . . . ,wg,N−1,wh,0, . . . ,wh,N−1

such that equations (42) are satisfied. Regarding Sbaps, we can think of it as

SX × Scert × Scom × (Sg,0)2N × SP

yet we force some vectors in Sbaps to be the same. This enforcement applies to
all possible positions if the vectors in those positions are used to permute the
same vectors/bits in wbaps. For instance, for ϕ = (ϕX, ϕcert, ϕcom, . . . , ϕP) ∈ Sbaps,
let ϕX = (fx,0, fx,1, fx,t, fx,v) with fx,1 = (fx,ρµ1 , . . . , fx,ρµ1+k2−1)

⊤ ∈ {0, 1}k2 and

ϕcom = (f⊤com,s, f
⊤
com,r, f

⊤
com,h)

⊤ ∈ {0, 1}ρ2−ρµ1 × {0, 1}(ρ−µ1)nm+nm × {−1, 0, 1}nℓ

with fcom,s = (fcom,ρµ1
, . . . , fcom,ρ2−1)

⊤, we should have, for j ∈ [ρµ1, ρµ1+k2−1],
fx,j = fcom,j since they are used to permute the same bit sj . Finally, Γϕ for
ϕ ∈ Sbaps can be defined by applying ΓϕX

, Γϕcert , . . . , ΓϕP
respectively. It is also

verifiable that VALIDbaps,Sbaps, {Γϕ : ϕ ∈ Sbaps} satisfy the conditions (18).

F The Zero-Knowledge Argument System Underlying
the Disclose Algorithm

We first describe the relationRD incurred in the Disclose algorithm in Section 4.2.
Recall that a policy P is represented by zP ∈ {0, 1}2NδP , a disclosing function F

is specified by two matrices G1 ∈ {0, 1}k̄×k̄2

, G2 ∈ {0, 1}k̄×k̄, and the attribute
x = (sk1

, . . . , sk1+k2−1)
⊤ is divided into chunks si = (si·ρ, si·ρ+1, . . . , si·ρ+ρ−1)

⊤

for i ∈ [µ1, µ1 + µ2 − 1]. Denote b = (z⊤P | x⊤)⊤ ∈ {0, 1}k̄.

59

Public inputs ξD: Ac, A0,A1, Ahp, m, com0, . . . , comρ−1, comP , rcom,0, . . .,
rcom,µ1−1, G1, G2, t.

Secret inputs clue: zP ∈ {0, 1}2NδP , x ∈ {0, 1}k2 , rcom,P ∈ {0, 1}nm, rcom,µ1
,

. . ., rcom,µ1+µ2−1 ∈ {0, 1}nm.
Prover’s goal: Proving knowledge of the secret inputs clue such that

t = G1 · (b⊗Kron b) +G2 · b mod 2, (43)

and {
comi = A0 · si +A1 · rcom,i, ∀ i ∈ [µ1, µ1 + µ2 − 1];

comP = Ac · hp +A1 · rcom,P , with hP = rdec(Ahp · zP)
(44)

holds.

The substatement involving (43). As for equation (43), we perform the
following extension step.

1. Extend b ⊗Kron b to wD,0 = extmult(b ⊗Kron b) ∈ {0, 1}4k̄2

. Then based
on (25), b⊗ b = K⋆

k̄2 ·wD,0.

2. Extend b to wD,1 = ext2(b) ∈ {0, 1}2k̄. Based on (21), b = J⋆
k̄
·wD,1.

Let LD = 2k̄ + 4k̄2 and wD = (w⊤
D,0 | w⊤

D,1)
⊤ ∈ {0, 1}LD . One can easily form

public matrixMD and vector vD = t such that (43) is equivalent toMD·wD = vD

for MD.

Let us now specify the sets VALIDD ⊂ {0, 1}LD , SD and an associated per-
mutation {Γϕ : ϕ ∈ SD} such that the restrictions in (18) are obeyed.

Let VALIDD contain all vectors w = (w⊤
0 | w⊤

1)
⊤ such that the following two

conditions are applied to w0,w1, respectively.

– w0 ∈ {0, 1}2k̄ and there exists a vector w′
0 ∈ {0, 1}k̄ satisfying w0 =

ext2(w
′
0).

– w1 ∈ {0, 1}4k̄
2

and satisfying w1 = extmult(w
′
0,w

′
0).

Let the set SD = {0, 1}k̄. For ϕ = f ∈ SD, the permutation Γϕ maps a vector
w = (w⊤

0 | w⊤
1)

⊤ ∈ ZLD into

Γϕ(w) = (Fbin(f ,w0)
⊤ | Fmult((f , f),w1)

⊤)⊤.

Based on the equivalences observed in (22), (26), it is verifiable that w ∈
VALIDD if and only if Γϕ(w) ∈ VALIDD. In addition, if ϕ is sampled uniformly
at random from SD and w ∈ VALIDD, then Γϕ(w) is evenly distributed in
VALIDD. Therefore, we have reduced the statement involving (43) to an instance
of Rabstract with the modulus 2.

The substatement involving (44). Since the relations in (44) have appeared
in the relations RS, we can apply the same techniques to reduce (44) to an
equivalent form M2 · w2 = v2 mod q for w2 ∈ VALID2 ⊂ {−1, 0, 1}L2 with
associated S2 and {Γϕ : ϕ ∈ S2} such that the constraints in (18) hold.

60

Similar to Section 4.4, we can design VALIDdisclose,Sdisclose and associated
permutation {Γϕ : ϕ ∈ Sdisclose} so that (18) are all satisfied and VALIDdisclose

contains our secret vector (w⊤
2 | w⊤

D)
⊤ ∈ {0, 1}L2+LD . We omit the details due

to similarities.
Putting Pieces Altogether. At this point, our desired argument protocol
works as follows. Given the public inputs ξD, both parties construct matrices
M2, MD and v2,vD as above. The prover additionally constructs w2,wD. Next,
they run the protocol described in Table 2. If the commitment scheme COM
is statistically hiding and computationally binding, the resulting protocol is a
statistical ZKAoK protocol with perfect completeness, soundness error 2/3, and
communication cost

O(L2 · log q + LD) = O
(
k2 · log λ+ µ2λ · (log λ)2 +N2 · log2(K +N) + k22

)
.

G Deferred Security Proofs for the Lattice-Based
Construction

G.1 Auxiliary Algorithms for the Lattice-Based Construction

To show that our construction satisfies the requirements as defined in Section 2.2,
we would need the following auxiliary algorithms.

SimSetup(1λ): The simulated setup algorithm is almost the same as the real
Setup algorithm. The only difference is that the hash function HFS is mod-
elled as a random oracle. It then outputs PP,mskX,mskP. We consider the
capability of modelling the hash function and rewinding the adversary as
the trapdoor tr.

SimSign(tr,m, P,x, w): If P (m,x, w) = 0, return 0. Otherwise, this algorithm
generates a simulated signature in the following manner.
1. First, it commits to m honestly as in the Sign algorithm. Sample ran-

domnesses rcom,0, . . . , rcom,µ1−1
$←− {0, 1}nm and compute comi = A0 ·

si +A1 · rcom,i for i ∈ [0, µ1 − 1].

2. Next, it commits to all-zero strings instead of real sµ1
, . . . , sρ−1 and

hP . Specifically, sample rcom,µ1
, . . . , rcom,ρ−1, rcom,P

$←− {0, 1}nm and let
comi = A0 ·0+A1 ·rcom,i for i ∈ [µ1, ρ−1] and comP = Ac ·0+A1 ·rcom,P .

3. Next, it generates a simulated proof Π instead of a faithfully generated
one. Specifically, it runs the simulator of the argument system in Sec-
tion 4.4 κ times, obtaining κ number of commitments COM′

0, . . . ,COM
′
κ−1.

Next, it programs the random oracle HFS as

(CH′
0, . . . ,CH

′
κ−1)

⊤ = HFS({COM′
i}κ−1

i=0 , ξ)

with ξ as in (7). Then it produces responses RSP′
0, . . . ,RSP

′
κ−1 accord-

ingly. Let the resultant simulated proof be

Π =
(
{COM′

i}κ−1
i=0 , {CH

′
i}κ−1

i=0 , {RSP
′
i}κ−1

i=0

)
.

61

4. Let Σ = (comm, comx, comelse, comP , rcom,m, Π). Return Σ.

SimDisclose(m,Σ, tr, P,x, F): Given all the inputs, this simulated disclosing al-
gorithm proceeds as follows.
1. Compute t = F · (z⊤P ,x⊤)⊤.

2. Generate a simulated proof a by running the simulator of the argument
system in Appendix F κ times and programming the random oracle
HFS as in SimSign algorithm. Let the resultant simulated proof be a =(
{COMD,i}κ−1

i=0 , {CHD,i}κ−1
i=0 , {RSPD,i}κ−1

i=0

)
.

3. Return the testimony-attestation pair (t, a).

Extract(tr,m,Σ): If Verify(m,Σ) = 0, return 0. Otherwise, this algorithm out-
puts (P ∗,x∗, w∗). Parse Σ = ({comi}ρ−1

i=0 , comP , rcom,0, . . . , rcom,µ1−1, Π), let
the proof Π = ({COMi}κ−1

i=0 , {CHi}κ−1
i=0 , {RSPi}κ−1

i=0), and the public input ξ
be of the form (7). First of all, we argue that A must have queried the
random oracle HFS on input ({COMi}κ−1

i=0 , ξ), since otherwise, the prob-
ability that guessing correctly HFS({COMi}κ−1

i=0 , ξ) is at most 3−κ, which
is negligible. Let qHFS

be the total number of oracle queries to HFS and
({COMi}κ−1

i=0 , ξ) be the t-th oracle query with 1 ≤ t ≤ qHFS
. Now algo-

rithm Extract picks t as the target forking point and replays A polyno-
mial times with the same random tape and input as in the original run.
In each rerun, for the first t − 1 queries, A is given the same answers
rply1, · · · , rplyt−1 as in the original run, while from the t-th query onwards,
algorithm Extract replies with fresh random values rply′t, · · · , rply′qHFS

←
{1, 2, 3}κ. According to the Improved Forking Lemma by Brickell et al. [10],
with probability larger than 1/2, algorithm Extract can obtain a 3-fork involv-
ing the tuple ({COMi}κ−1

i=0 , ξ) after polynomial-time executions of algorithm

A. Let rply
(1)
t =

(
CH

(1)
t,0 , · · · ,CH

(1)
t,κ−1

)⊤
; rply

(2)
t =

(
CH

(2)
t,0 , · · · ,CH

(2)
t,κ−1

)⊤
;

rply
(3)
t =

(
CH

(3)
t,0 , · · · ,CH

(3)
t,κ−1

)⊤
be the replies to the HFS queries with re-

spect to the 3-fork branches. It is easy to see that

Pr
[
∃ j ∈ [0, κ− 1] : {CH(1)

t,j ,CH
(2)
t,j ,CH

(3)
t,j } = {1, 2, 3}

]
= 1− (7/9)κ.

Conditioned on the existence of such index j, one can parse the 3 responses

corresponding to the fork branches to obtain
(
RSP

(1)
t,j ,RSP

(2)
t,j ,RSP

(3)
t,j

)
. They

are indeed 3 valid responses with respect to all 3 possible challenges for the
same commitment COMj . Now algorithm Extract can run the knowledge
extractor as in Theorem 5 to extract w∗

1,w
∗
P such that (w∗⊤

1 | w∗⊤
P)⊤ ∈

VALIDbaps, M1 ·w∗
1 = v1 mod q, and MP ·w∗

P = vP mod 2. Parse w∗
1 as

w∗
1 = (w∗⊤

X | w∗⊤
cert | w∗⊤

com | w∗⊤
g,0 | · · · | w∗⊤

g,N−1 | w∗⊤
h,0 | · · · | w∗⊤

h,N−1)
⊤. (45)

Backtracking the transformations we have performed, we are able to obtain
(x∗, sk∗), (z∗,h∗,Cert∗), and (s∗µ1

, . . . , s∗ρ−1, {r∗com,i}
ρ−1
i=µ1

, r∗com,P ,h
∗) fromw∗

X,
w∗

cert, w
∗
com such that they satisfy equations (3), (4), (5), respectively. Note

that the first k2 bits from (s∗⊤µ1
| · · · | s∗⊤ρ−1)

⊤ should be x∗ by the soundness

62

of the argument system underlying the Sign algorithm and let the next k3
bits be w∗. Also the string z∗ specifies a policy P ∗. The Extract algorithm
then outputs (P ∗,x∗, w∗).

In this following, we prove the simulatability and extractability of the pro-
posed concrete BAPS scheme.

G.2 Proof of Theorem 3

Proof. We proceed by defining a sequence of indistinguishable hybrid games be-
tween a challenger and an adversary where the first is the experiment Expsim

A (λ)
with b set to 1 while the last is Expsim

A (λ) with b set to 0.

We start with Exp
sim|b=1
A (λ). Our first change is to replace the Setup algo-

rithm by the SimSetup algorithms. This change is unnoticeable by the adversary
since SimSetup is the same as Setup in the random oracle model.

For the signing queries, we replace the proof Π by a simulated one. This can
be achieved since the challenger has the capability to program the random oracle
HFS. By the statistical zero-knowledge property of the underlying argument
system, this game is indistinguishable from the preceding one. Note that in
this game, all com0, . . . , comρ−1, comP are honestly generated as commitments
to s0, . . . , sρ−1,hP , respectively. Therefore, the challenger has all the needed
information to generate a real proof for the disclosing queries.

Then for the disclosing queries, we replace the proof a by a simulated one.
By the same argument as above, this modification is achievable and indistin-
guishable to the adversary due to the statistical zero-knowledge of the second
argument system. At this point, the challenger generates simulated proofs for
signing queries and disclosing queries even though it has all the information for
generating real proofs.

Next, we focus on modifying the signing queries again. Specifically, we now
consider changing the commitments comµ1

, . . . , comρ−1, comP . For i ∈ [µ1, ρ −
1], comi is now a commitment of an all-zero string instead of si and comP

is a commitment of an all-zero string instead of hP . Due to the statistically
hiding property of the CMTρ′,m and CMTℓ,m, the advantage of the adversary to

distinguish this modification is negligible. This game is in fact Exp
sim|b=0
A (λ),

which concludes the proof.

G.3 Proof of Theorem 4

Proof. To show our lattice-based construction is extractable, we have to prove
that the advantages of any PPT adversary A in Expsound

A (λ), ExpUf-I
A (λ), and

ExpUf-II
A (λ) are negligible in λ.

Soundness. Consider the experiment Expsound
A (λ) and let ϵ be the advantage

of A. Suppose A wins and denote (m,Σ) as the output of A. The experiment
returns 1 either at Line 7 or Line 9 in Fig. 2. Therefore, (m,Σ) is not from

63

querying the oracles and Verify(m,Σ) = 1. We then run Extract(tr,m,Σ) and
let

w∗
1 = (w∗⊤

X | w∗⊤
cert | w∗⊤

com | w∗⊤
g,0 | · · · | w∗⊤

g,N−1 | w∗⊤
h,0 | · · · | w∗⊤

h,N−1)
⊤

be the intermediate outputs of Extract. Similar to how we get P ∗,x∗, w∗, from
{w∗

g,i}
N−1
i=0 , {w∗

h,i}
N−1
i=0 ,w∗

P, we can obtain

{(c̃om∗
g,i, y

∗
i , s̃

∗
i , r

∗
g,i, a

∗
i,0, . . . , a

∗
i,ρ−1, b

∗
i,0, . . . , b

∗
i,ρ−1)}i∈[0,N−1]; (46)

{(c̃om∗
h,i, z

∗
i , t̃

∗
i , r

∗
h,i, c

∗
i,0, . . . , c

∗
i,ρ−1, d

∗
i,0, . . . , d

∗
i,ρ−1)}i∈[0,N−1]; (47)

(y∗0 , . . . , y
∗
N−1, z

∗
0 , . . . , z

∗
N−1, s

∗
K , s∗K+1, . . . , s

∗
K+N−2). (48)

such that (46) and (48) satisfy equations (10) and (11), respectively. Note that (47)
should satisfy equations similar to (10). By the soundness of the argument sys-
tem underlying the signing algorithm, we have the following observations.

– The last N − 1 bits from (s∗⊤µ1
, . . . , s∗⊤ρ−1)

⊤ should be (s∗K , . . . , s∗K+N−2).
– {y∗i , z∗i }i∈[0,N−1] appeared in (46)(47) should be the same as those appeared

in (48).
– For i ∈ [0, N − 1], y∗i is the bg,i-th bit among s̃∗i and c̃om

∗
g,i is comag,i . Here

ag,i, bg,i are computed as in (9) with respect to policy P ∗.

The computational binding property of CMTρ′,m assures that s∗ag,i
= s̃∗i and in

particular s∗g(i) = y∗i for i ∈ [0, N−1]. By the same arguments, we have s∗h(i) = z∗i
for i ∈ [0, N − 1].

As a result, the tuple in (48) satisfies (11) implies that

(s∗g(0), . . . , s∗g(N−1), s∗h(0), . . . , s∗h(N−1), s∗K , s∗K+1, . . . , s∗K+N−2)

satisfies (2). The latter in turn is equivalent to P ∗(m,x∗, w∗) = 1. Therefore,
assuming the binding property of the commitment scheme CMTρ′,m and the
soundness of the first argument system, the probability of outputting 1 at Line
7 is negligible.

Let us now consider the second stage where the adversary outputs (F, t, a).
Then (m,Σ,F, t, a) /∈ QD and Judge(PP,m,Σ, F, t, a) = 1. By the soundness of
the argument system underlying the disclosing algorithm, similar to the above
Extract algorithm, we can also extract z̃, h̃, x̃, r̃com,P , {r̃com,i}i∈[µ1,µ1+µ2−1]

such that the following equations hold.

t = F · (z̃, x̃);
comP = Ac · h̃+A1 · r̃com,P , h̃ = rdec(Ahp · z̃);
comi = A0 · s̃i +A1 · r̃com,i ∀ i ∈ [µ1, µ1 + µ2 − 1].

Let P̃ be the policy specified by z̃. On the one hand, the winning condition of
A implies that t = F · (z̃, x̃) ̸= F (z∗,x∗). This immediately implies that

(z̃, x̃) ̸= (z∗,x∗). (49)

64

On the other hand, by the computational binding property of the commitment
schemes CMTℓ,m and CMTρ′,m, it must be that

(h̃, x̃) = (h∗,x∗). (50)

Combining (49) and (50), we obtain that z̃ ̸= z∗ yet h̃ = h∗. This, however,
violates the collision resistance of the hash function family HmP

. Therefore, as-
suming the binding property of the two commitment schemes, the soundness of
the second argument system, and the collision resistance of the hash function
HmP

, the probability of outputting 1 at Line 9 is also negligible.
Thus the probability of A winning Expsound

A (λ) is negligible in λ.

Unforgeability-I. Let (m,Σ) be the output of the adversary A in the exper-
iment ExpUf-I

A (λ). If A wins the experiment with non-negligible probability ϵ1,
then we construct a PPT algorithm B that breaks the EUF-CMA security of the
DM scheme with non-negligible probability.

Given vk, B sets vkX = vk and then generates all other parameters faithfully
as in the Setup algorithm described in Section 4.2. Next, B internally runs A
by feeding A with PP and mskP. B can simulates A’s view either by querying
its own oracle or programming the hash function HFS. Eventually, A outputs a
forgery (m,Σ). Suppose A wins the experiment. B then proceeds in the following
manner.

First, B runs Extract(tr,m,Σ), obtaining (x∗, sk∗, P ∗,h∗,Cert∗, w∗). Due to
the soundness of the first argument system, P ∗(m∗,x∗, w∗) = 1 and (x∗, sk∗) is a
valid message-signature pair for the DM scheme with overwhelming probability.
Furthermore, x∗ /∈ QX implies that B did not query its own oracle for any
signature on x∗. Then B outputs (x∗, sk∗), which is a valid forgery of the DM
scheme. Therefore, if A wins the experiment with non-negligible probability,
then we can construct an algorithm B which breaks the EUF-CMA security of
the DM scheme with non-negligible probability as well. Due to the security of
the DM scheme, ϵ1 is negligible.

Unforgeability-II. Let ϵ2 be A’s advantage in the experiment ExpUf-II
A (λ). If ϵ2

is non-negligible, we construct an algorithm B̂ that breaks the EUF-CMA security
of the DM scheme.

On receiving vk from its challenger, B̂ sets vkP = vk and then creates all
other parameters as in the Setup algorithm. Next, B̂ runs the adversary A on
PP and mskX. When A makes a OPolicyKey query, B̂ computes CertP by querying
its signing oracle on hP = rdec(Ahp ·zP). When A makes OSign and ODis queries,

B̂ computes the required signature/testimony-attestation pair by programming
the hash function HFS. In the end, A outputs a forgery (m,Σ). Suppose A wins,
B̂ works as follows.

Run the Extract algorithm, obtaining a tuple (x∗, sk∗, P ∗,h∗,Cert∗, w∗). With
all but negligible probability, P ∗(m∗,x∗, w∗) = 1 and (h∗,Cert∗) is a valid
message-signature pair for the DM scheme thanks to the soundness property
of the first argument system underlying the Sign algorithm. In addition, the fact
that A wins the game implies that P ∗ /∈ QP . Let us consider the following two
cases.

65

Case 1: There exists P ∈ QP such that P ∗ ̸= P and h∗ = hP = rdec(Ahp ·zP).
This, however, breaks the collision resistance of the hash function family
HmP

.

Case 2: For all P ∈ QP , h
∗ ̸= hP . As a result, B̂ did not query its signing

oracle for any signature on h∗. B̂ then outputs (h∗,Cert∗), which is a valid
forgery for the DM scheme.

In the random oracle model, assuming the soundness of the first argument sys-
tem, the collision resistance of the hash function family HmP

, the security of the
DM scheme, the advantage of the adversary A in experiment ExpUf-II

A (λ) has to
be negligible.

66

	Bicameral and Auditably Private Signatures
	Introduction
	Bicameral and Auditably Private Signatures
	Syntax of BAPS
	Correctness and Security of BAPS

	A Generic Construction for BAPS
	Technical Overview
	Description
	Analyses

	A Lattice-Based BAPS Scheme
	Technical Overview
	Scheme Description
	Analyses
	The Main Zero-Knowledge Argument of Knowledge

	Cryptographic Primitives
	Signature Schemes
	Commitment Schemes
	Simulation-Sound Extractable NIZKs

	Some Preliminary Lattice-Based Techniques and Tools
	Rings and Ring-Based Hash Functions
	Decompositions
	A Lattice-Based Commitment Scheme
	A Variant of the Ducas-Micciancio Signature Scheme
	Zero-Knowledge Arguments and Stern-like Protocols

	Deferred Security Proofs for the Generic Construction
	Auxiliary Algorithms for the Generic Construction
	Proof of Theorem 1
	Proof of Theorem 2

	Previous Extension and Permutation Techniques
	Deferred Details of the Main Zero-Knowledge Protocol
	The Substatement Involving (3)
	The Substatement Involving (4)
	The Substatement Involving (5)
	The Substatement Involving (10)
	The Substatement Involving (11)
	Deferred Description of VALIDbaps, Sbaps,

	The Zero-Knowledge Argument System Underlying the Disclose Algorithm
	Deferred Security Proofs for the Lattice-Based Construction
	Auxiliary Algorithms for the Lattice-Based Construction
	Proof of Theorem 3
	Proof of Theorem 4

